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THREE-DIMENSIONAL ELASTIC STRESS AND DISPLACEMENT ANALYSIS
OF FINITE GEOMETRY SOLIDS CONTAINING CRACKS

Jonathan Kring, John Gye,,enyesi, and Alexander Mendelson
Lewis Research Center and

U.S. Army Air Mobility R&D Laboratory
Cleveland, Ohio 44135

ABSTRACT. The line method of analysis is applied to the Navier-
Cauchy equations of elastic equilibrium to calculate the displacement fields
in finite geometry bars containing central, surface, and double-edge cracks
under extensionally applied uniform loading. The application of this method
to these equations leads to coupled sets of simultaneous ordinary differen-
tial equations whose solutions are obtained along sets of lines in a dis-
cretized region. Normal stresses and the stress intensity factor variation
along the crack ?eriphery are calculated using the obtained displacement
field. The reported results demonstrate the usefulness of this method in
calculating stress intensity factors for commonly encountered crack geom-
etries in finite solids.

INTRODUCTION. The main goal of fracture mechanics is the prediction
of the load at which a structure weakened by a crack will fail. Knowledge
of the stress and displacement distributions near the crack tip is of funda-
mental importance in evaluating this load at failure. During the early
development of crack mechanics most of the effort was focused on through-

m
thickness cracks which could be characterized as two-dimensional. However,

^	 part-through cracks are the most common type of crack defect found in actual
rn	 service conditions (ref. 1).
w

Because of the geometric singularity associated with any crack type
problem, only limited analytical work has been done in the past on these
problems. Early theoretical solutioas for three-dimensional flaw config-
urations usually involved the discussion of cracks in infinite or semi-

',

	

	 infinite solids (refs. 2 to 8). For this reason, results for finite geom-
etry stress intensity factors are usually given in terms of magnification
factors applied to some convenient reference solution. In addition, con-
siderable scatter exists in the reported results as obtained by different
investigators (ref. 9). In our work these difficulties are avoided by
solving the finite dimensional problems directly.

Recently, approximate solutions of the finite geometry surface crack
problem were obtained by the boundary integral equation method (ref. 10)
and the finite element method (ref. 11). An alternate semi-analytical
method suitable for the elastic solution of crack problems is the line
method of analysis. Successful application of this method to finite
geometry solids containing cracks has been demonstrated by Gyekenyesi
and Mendelson (ref. 12). Although the concept of the line method for
solving partial differential equations is not new (ref. 13), its appli-
cation in the past has been limited to simple examples. The basis of
this technique is the substitution of finite differences for the deriva-
tives with respect to all the independent variables except one for which

f
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the derivatives are retained.	 This approach replaces a given partial di£-
ferential equation with a system of simultaneous ordinary differential equa-
tions whose solutions can then be obtained in closed form. 	 These equations i
describe the dependent variable along lines which are parallel to the co-
ordinate in whose direction the derivatives were retained. 	 Application of
the line method is most useful when the resulting ordinary differential
equations are linear and have constant coefficients. i

p

An inherent advantage of the line method over other numerical methods
is that good results are obtained from the use of relatively coarse grids.
This use of a coarse grid is permissible because.parts of the solutions
are obtained in terms of continuous functions.	 Additional accuracy in
normal stress distributions is derived from the fact that they are ex-
pressed as first-order derivatives of the displacements and these deriv-
atives can be analytically evaluated.	 Inherently inaccurate numerical
differentiation is required only for evaluating the shear stresses, but
this presents no important loss of accuracy since they are an order of
magnitude smaller than the normal stresses: 	 For problems with geometric
singularities, additional accuracy is derived from using a displacement
formulation since the resulting deformations are not singular.

3

It is the purpose of this report to present a simple and systematic
approach to the elastic analysis of three-dimensional, finite geometry
solids containing traction-free cracks.	 The need for these specific solu-
tions has existed for a number of years . in fracture- toughness testing.

i

REDUCTION OF THE NAVIER-CAUCHY EQUATIONS TO SYSTEMS OR ORDINARY
DIFFERENTIAL EQUATIONS, 	 Within the framework of linearized elasticity
theory, the equations of elastic equilibrium in terms of displacements
are

(a+G)Le+G V2 u= 0	 (1)
ax

S^

(N+G) -e+GV 2 v = 0	 (2)
p`.

a

(a + G) 9z + G V2 w	 0	 (3)

where the body forces are assumed to be zero and the dilatation is

_ au	 av	 aw	 (4)e	 +	 + aZax	 ay

i,
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For a finite geometry solid with rectangular boundaries, we construct
three sets of parallel lines (fig. 1(a)). Each set of lines is parallel
to one of the coordinate axes and thus perpendicular to the corresponding
coordinate plane. An approximate solution of equation (1) can be ob-
tained by developing solutions of ordinary differential equations along
the x-directional lines. As seen in the figure, ther are a total of
i = NY x NZ such lines where NY is the number of lines along the y
direction and NZ is the number of lines along the z-direction in a given
plane, respectively. We define the displacements along thesE lines as
ul, u2 , . . ., u l . The derivatives of the y-directional displacements
on these lines with respect to y are defined as v' 11 , v'I2 , . . ., v'Il,
and the derivatives of the z-directional displacements with respect to
z are defined as will, 02, . . ., will. These displacements and deriva-
tives can,then be regarded as functions of x only since they are vari-
ables on x-directional lines. When these definitions are used, the
ordinary differential equation along a generic line ij (a double sub-
script is used here for simplicity of writing) in figure 1(h) may be
written as	 C"

2	 I
2y + 2(1 - 2v) - 2 + 2 + 2 (ui+l,j + ui-1,j)dx	

L 
by hz	 by

a

1
+ h2 (ui,j+l + u i,j-1)

z

__ dv'	 dw'
fib (x)	 dx Iij + dx ij

tij(x)

+ 2(1 — v)	 (5)

(6)

is

where,

and

V, - dv w, = dw
dy	 dz

i

Similar differential equations are obtained along the other x-directional
lines. Since each equation has the terms of the displacements on the sur-
rounding lines, these equations constitute a system of ordinary differential
equations fer the displacements ul , u2 ,-. _ ., ul;

The set of t second order differential equations represented bor (5)
can be reduced to a set of 21 first order differential equations by treating
the derivatives of the u's as an additional set of i unknowns, i.e.,
defining

5
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du 	 dug

ui+l	 dx' u1+2 = dx' etc.
	 (7)

The resulting 21 equations can now be written as a single first order
matrix differential equation '

du
dx - 

A,U + R 

where U and R are column matrices of 21 elements each and Al: is a
21 x 21 matrix of the constant coefficients appearing in equations (5) and
(7) .

In a similar manner, to solve equations (2) and (3), ordinary dif-
ferential equations are constructed along the y- and z-directional lines
respectively. These equations are also expressed in an analogous form
to equations (8); they are

aV 
A2V + S{y )	 (9)

Y

dw
dz = A

3  + T 	 (10)

Equations (8) to (10) are linear first-order ordinary matrix dif-
ferential equations. They are, however, not independent, but are coupled
through the vectors, R, S and T whose components are given by equations
similar to (6). The elements of the coefficient matrices. A l , A2 , and
A3 are all constants, being functions of the mesh spacing and Poisson's
ratio only.

Noting that a second-order differential equationcan satisfy only
a total of two boundary conditions and since three-dimensional elasticity
problems have three boundary conditions at every point of the bounding
surface, some of the boundary data must be incorporated into the surface
line differential equations. Hence, conditions of normal stress and dis-
placement are enforced through the constants of the homogeneous solutions
while shear stress boundary data must be incorporated into the differential
equations of the surface lines. The application of the specified shear
conditions permits the use of central difference approximations when sur-
face line differential equations are constructed. The details of con-
structing these equations are found in reference 14.

SOLUTION OF THE SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS. TUe
systems of ordinary differential equations (8) to (10) can be solved
by any of a number of standard techniques. The method used herein was
basically the matrizant or Peano-Baker method of integration (ref. 15).

Fov i4RkkJ&: on (8) the solution can be written as

(8)

3
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Ax	 Ax	 -An
U(x) ° e 

1 
U(0) + e 

1	
e 

1 
R(n) do	 (11)

0

with similar solutions for equations (9) and (10). U(0) is the initial
value vector, determined from the boundary conditions. The conversion of
given boundary data into required initial values is discussed in more
detail in reference 14.

The matrizant e 
A 

1 x is generally evaluated by its matrix series.
For larger values of x, when convergence becomes slow, additive formulas
may be used. In addition, similarity transformations can be used to diag-
onalize the matrix Al . These various techniques for improving the ac-
curacy are discussed in detail in reference 14.

Since equations (8) to (10) and their boundary conditions are highly
coupled, it is generally impossible to directly evaluate their solutions.
Thus, a successive approximation procedure must be employed where assumed
values must be used initially for the required unknowns. The cyclic
resubstitution of the obtained solutions into the coupling vectors and
the boundary conditions will usually converge to the correct solution,
depending mainly on the accuracy to which the required matrizant can be
evaluated.

Once the successive approximation procedure has converged and the
displacement field in the body has been calculated, the normal stress
distributions can be obtained directly by using the stress-displacement
equations. The shear stresses, however, can be evaluated only through
finite difference approximations for the required displacement gradients

„

r

tp	 a

s
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STRESS INTENSITY FACTOR.	 The stress intensity factor 	 KI	 was at
first obtained from the calculated stresses and displacements by extending
the usual definition

KI	
(12)R40_cy(2nR)n '7

to discrete data, where 	 R	 is measured from and is normal to the crack
front and	 n	 is the singularity.	 It was found, however, that due to the
coarseness of the grid used, the usual plotting and extrapolating techniques
gave results that were erratic and of questionable accuracy. 	 This was
compounded by the fact that the precise crack tip location is not really
known except that it is approximately midway between two lines, one of
which has zero displacement specified in the crack plane and one of which
has zero stress specified. 	 It was found, however, that by using two terms ,-
in the stress and displacement series expansions around the crack tip,
good results could be obtained even with the coarse grid used. 	 Furthermore,
this also permitted us to determine the actual crack tip location from the
computed results. 	 The method utilized is as follows.	 we take}
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L

vl Y=C = a KI	
R 

2n r + KI	 (R + r) 
3	

(13)
I

L
c l	 K	 1	 + I
	

R- rI
	

(14)
YI 

Y=0	 _

	

'27r (R- r) KI	
1

where a is a function of Poisson's ratio, n was assumed to be -1/2
and r is the crack edge position correction measured from the originally
assumed midpoint position. Using displacement data from three adjacent
nodes to the crack edge in equation (13), valu.a of a K I , L /KI ; and r
are calculated for each value of z, with R also measured Irom the
half-way point between nodes sper,3fying boundary stresses and displacements,
respectively. Substituting values of L I/KI and r into equation (14),
we can calculate KI as a function of the corrected crack edge distance,
p = R - r. A plot of In KI versus _rP as i/T } 0 can then be used to
obtain KI. In a similar manner, a can now be calculated from equation (13),
where the corrected crack edge distance with the displacement data is
p =R+r.

APPLICATION TO TENSILE FRACTURE SPECIMENS CONTAINING CRACKS. A great
amount of experimental work has.been done in fracture mechanics (ref. 16)
through the use of crack-notched specimens. In the past, many different
types of specimens have been used to determine a material's fracture toughness.
The most common early specimens employed in these tests were the center-
cracked and double-edge-notched bar specimens. Figures 2(a) and 3(a) show
the finite rectangular bars with through-thickness, traction-free central
and double-edge cracks, respectively. Because of the symmetric geometry and
loading, only one-eighth of each bar has to be discretized as shown in
figures 2(b) and 3(b).

NUMERICAL RESULTS. - Center-Cracked Tensile Fracture Specimen. The
solution of this problem was obtained by using two different sets of lines
along the coordinate axes so that the convergence of the .finite difference
approximations could be checked. In a given direction, uniform line spacing
was used in all computations with no other restriction being placed on the
selection of the grid size. The crack edge location with respect to the
imposed grid was initially assumed to be halfway between nodes specifying
normal stress and displacement boundary conditions, respectively. Sub-
sequently, using the obtained near crack tip stresses and displacements,
a more accurate crack edge location was established for calculating the
stress intensity factor. This approach was considered acceptable since
the results from the two sets of lines at corresponding points did not
change, although the crack edge to node distance was considerably decreased
for the finer mesh. The successive approximation procedure required for
decoupling the three sets of ordinary differential equations was terminated
when the difference between successively calculated nondimensionalized
displacements, which are of the order of unity, at every point was less

t	 than a present value (10-6). As expected, the convergence rate of this

a
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successive approximation procedure was greatly dependent on the initial
guess for the required unknowns do the coupling vectors and boundary condi-
tions.For maximum computer efficiency, displacement data obtained from the
use if coarse grids was interpolated to obtain improved starting values
for the computations involving the final spacing of lines. The required
initial quantities for the preliminary coarse grid calcualtions were taken to
be zero in our work. All calculations were performed on a UNIVAC 1100140
computer, using double precision arithmetic.

For the selected geometry, the crack opening displacements and normal
stresses from our analysis and those from Raju's finite element method
(ref. 17) are compared in Table I. Although in our solution of the gross
displacement and stress fields, the minimum corrected crack edge distance
is p = 0.042c, crack opening displacements and stresses can be calculated
from equations (13) and (14) at any value of p for which these equations
are assumed to be accurate (p - 0.40c or less in this problem). As seen
from Table I, there is good agreement in most displacements, with the normal
stress at the surface showing the greatest difference.

The dimensionless crack opening displacement is shown in figure 4.
Agreement with the finite element results is seen to be very good. It is
noteworthy that the results correspond to elliptical crack profiles in all
cases.

An indication of the accuracy of our technique for computing the stress
intensity factor is seen in figure 5. This '.figure shows the stress intensity
factor variation across the bar thickness. The results obtained in ref-
erence 17 using a finite elements method for a geometry almost identical
to one of the geometries in this paper is also shown. It is seen that very
good agreement is obtained between two completely different methods. In
addition, Isida's plane solution (ref. 18), corrected for finite width and
length, is also shown in this figure for comparison. Note that these results
indicate a small increas in KI at the surface with increasing bar thickness.
Interestingly, for bars with t > 3c, KI increases gradually with z,
reaching a maximum near z - 0.85t, and then decreases rapidly to its surface
value.

Surface Crack Tensile Fracture Specimen. Figure 6 shows a finite geom-
etry bar containing a traction free rectangular surface crack. Because of
the symmetric geometry and loading, only one-fourth of the bar has to be
discretized as shown in figure 6(b).

Selected results of the dimensionless surface crack opening displacements
are shown in figure 7. Note that the crack opening increases rapidly with
crack depth for 0.21 < a/t < 0.87, slightly exceeding even the surface
crack displacement of -a through-thickness crack at a/t = 0.87. The plane
strain solution for a finite width center cracked bar is also shown in figure 7
for reference. Final displacement values in this report were obtained from
a set of 100, 140, and 140 x-, y-, and z-directional differential equations,
respectively. Atypical computer run for this system of equations takes
approximately 30 to 40 minutes of CPU ti.:,e and 720 K bytes of storage.
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In order to show the singularity of the stresses, the y-directional 3

normal stress in the crack plane is plotted in figure E for 	 a/t = 0.536.
The results clearly indicate the singular nature of 	 a	 along the crack
periphery.	 y

-	 Double Edge Crack Tensile Fracture Specimen. 	 Our last example is the
finite bar with double edge cracks. 	 The crack opening displacements for this
problem are presented in figure 9. 	 The stress intensity factor variation

V

as a function of bar thickness is shown in figure 10.	 In both, results
from the finite element method are shown for comparison.	 Agreement is
again excellent.

CONCLUSIONS.	 The line method of analysis presented affords a practical
r
3

way for analysis of three-dimensional crack problems, at least for bodies y'
with reasonably regular boundaries.	 Because parts of the solution are ob-
tained as continuous functions along the lines chosen, relatively good
accuracy can be obtained with coarse grids.	 Results of the analysis include
the displacements and normal stresses at every node inside the body from a
which the stress intensity factor variations were easily calculated. 	 In
addition it should be noted that the common semi-elliptical surface ,:rack
problem could also be analyzed by merely changing the boundary conditions
at certain nodes in the crack plane. 	 Introduction of plasticity into the
analysis could also be accomplished by changing the coupling terms in
equations (8) to (10). 	 Since these have to be determined by an interative
process in any case, it would seem possible to solve the elastoplastic prob-
lem by a simple extension of the present method. 	 Whether this approach is
practical requires further investigation.
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Figure 4. - Crack opening displacement for center-cracked bar under
uniform tension.
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Figure 5. Stress-intensity factor variation as a function of bar thick-
.	 ness for a ce < - , r-cracked rectangular bar under uniform tension.
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'. Figure S. - Dimensionless y-directional normal stress i
.,	 f distribution in the crack plane for a bar under uniform I

tension containing a rectangular surface crack.
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Figure 9. -Crack opening displacement for rectangular bar under
uniform tension containing through-thickness double-edge
cracks.
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Figure 10. - Stress intensity factor variation as function of bar thick-

	

.	 ness for rectangular bar under uniform tension containing double-
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