General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

```
(NASA-TM-73730) DISPLACEMENT COEFFICIENTS N77-28522
ALONG THE INNER BOUNDARIES OF RADIALLY
CRACKED RING SEGMENTS SUBJECT TO FOBCES AND
COUPLES (NASA) 17 p HC A02/MF A01 CSCL 20K
```

Unclas
G3/39 40730

DISPLACEMENT COEFFICIENTS ALONG THE INNER BOUNDARIES OF RADIALLY CRACKED RING SEGMENTS SUBJECT TO FORCE'S AND COUPLES

by Bernard Gross Lewis Research Center Cleveland Ohio 44135
Juiy 1977

1. Report No. NASA TM 73730	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle DISPLACEMENT COEFFICIENTS ALONG THE INNER BOUNDARIES OF RADIALLY CRACKED RING SEGMENTS SUBJECT TO FORCES AND COUPLES	5. Report Date			
7. Authorls) Bernard Gross	6. Performing Organization Code			9. Performing Organization Name and Address
:---				
National Aeronautics and Space Administration				
Lewis Research Center				
Cleveland, Ohio 44135				

[^0]DISPLACEMENT COEFFICIENTS ALONG THE INNER BOUNDARIES OF RADIALLY CRACKED RING SEGMENTS SUBJECT TO FORCES AND COUPLES
by Bernard Gross
Materials Engineer
National Aeronautics and Space Administration
Lewis Research Center Cleveland, Ohio 44135

ABSTRACT
Displacement results of plane boundary collocation analysis are given for various locations on the inner boundaries of radially cracked ring segments (C-shaped specimens) subject to two complementary types of loading. Results are presented for ratios of outer to inncr radius R_{0} / R_{i} in the range of 1.1 to 2.5 , and ratios a / W in the range 0.1 to 0.8 where a is the crack length for a specimen of wall thickness W. By combination of these results the resultant displacement coefficient Δ or the corresponding influence coefficient (E ' $B v / P$), can be obtained for any practical load line location of a pin loaded specimen.

SYMBOLS
a crack length
B specimen depth
E Young's modulus
$E^{\prime}=E /\left(1-v^{2}\right)$ for plane strain conditions
$E^{\prime}=\mathrm{E} \quad$ for plane stress conditions
H distance between displacement gage points
$\mathrm{K}_{\mathrm{I}} \quad$ Stress Intensity Factor
L load line location
M nominal net section bending moment

P
R_{i}

Ro
$v=v_{p}+v_{m}$
v_{p}
V_{m}
W
$\Delta=E^{\prime} v /\left(\sigma_{p}+\sigma_{m}\right) a$
$\Delta_{p}=E^{\prime} v_{p} / \sigma_{p} a$
$\Delta_{m}=E^{\prime} v_{m} / \sigma_{m} a$
ν
σ_{m}
σ_{p}

Subscripts:

I
m
p
,
applied end force
ring segment inner radius
ring segment outer radius
total displacement across gage distance H displacement due to nominal uniform net section tension
displacement due to nominal net section bending curved beam wall thickness, $R_{o}-R_{i}$ resultant displacement coefficient displacement coefficient for ideal case of nominal uniform net section tension
displacement coefficient for ideal case of nominal net section bending

Poisson's ratio
$6 \mathrm{M} / \mathrm{B}(\mathrm{W}-\mathrm{a})^{2}$ component of fictitious normal net stress due to moment M
$P / B(W-a)$ component of fictitious normal net stress due to load P
opening mode of crack tip deformation value for net section bending value for net section tension INTRODUCTION

Kendall, Underwood et al. (Refs. I to 4) have proposed a new type of fracture toughnets test specimen, namely a ring segment specimen (commonly referred to as C-shaped) which contains a radial crack. Plgure 1
shows such a pin loaded specimen as equivalent to a combination of twc complementary types of loading. This specimen is currently under consideration for standardization by ASTM Committee E-24 on Fracture Testing. A round robin program was initiated by ASTM Task Group E-24.01.12 for the purpose of evaluating this specimen. Nominal dimensions for the round robin specimen are: ratio of outer to inner radius, $R_{o} / R_{i}=2.0$; ratio of crack length to wall thickness $a / W=0.5$, where $W=R_{o}-R_{i}$; and load line locations $L / W=0.5$ and $L / W=0.0$.

Pursuant to this task, Buzzard and Fisher obtained displacement coefficients Δ (given in Table I) at various H / W ratios where H is the chord distance between symmetric pairs of gage points on the inner boundary. To augment and evaluate the results of Buzzard and Fisher, a boundary collocation analysis was undertaken to obtain comparable displacement coefficients. The boundary collocation method, using 60 boundary stations and an overdetermined system of equations is exp..ained in a companion paper to this paper, Ref. 5. The advantages of the particular form of displacement coefficient, Δ, are discussed in Ref. 6.

The displacement coefficients Δ_{p} and Δ_{m} obtained here apply to two ideal, complementary types of specimen loading: coefficient Δ_{p} applies to a nominal uniform distribution of stress across the net section, so that the moment of the stress distribution at mid net section is zero; Δ_{m} applies to a nominal bending stress distribution, so that the net normal stress is zero (Fig. 1). While these two types of loading are impractical in themselves, the two coefficients can be combined to represent any practical case of loading of the specimen by a pair of equal and opposite forces normal to the crack (pin-loading). The appro-
priate combined displacement coefficient is then obtained from a simple relation which derives from superposition of the corresponding displacements. Alternatively, values of the dimensionless influence coefficient ($E^{\prime} \mathrm{Bv} / \mathrm{P}$) can be obtained from another simple relation.

It should be appreciated that the accuracy with which the present results will apply to actual pin-loaded C-:haped specimens will depend on the proximity of gage points to the londing pin holes: the closer together these are, the less the accuracy. The reason is that the boundary conditions on the actual specimens are concentrated distributions of stress around the bearing surfaces of the pin holes, whereas the boundary conditions assumed in the present analysis, are statically equivalent stress distributions across the entire cross-section of the specimen. Estimation of the applicable accuracy requires comparison of the present results with experimental results, as given in Table I.

APPROACH
The results presented herein were obtained by boundary collocation analysis of a homogeneous isotropic specimen under plane elasto-static conditions. All plane elasto-static problems reduce to finding a stress function that satisfies the biharmonic equation and associated boundary conditions. A stress function in the form of an inflnite series satisfying the biharmonic equation and boundary conditions on the crack surface was employed (Ref. 7). The coefficient of each term of the stress function is initially unknown, but the postulated boundary conditions determine the value of the stress function and its normal derivative at any point on the boundary. The series is truncated and the coefficients of
the remaining terms can then be determined by satisfying the boundary conditions at a finite number of selected boundary stations. Such boundary points, equally distributed were used to determine the stress function coefficients of the truncated series.

The stress intensity factor K_{I} is directly proportional to the coefficient of the first term of the series, which is singular and dominates the stress field near the crack tip. However, the number of terms in the stress function series requirod to obtain the displacements depend on the relative depth of the crack. In computing the displacements, all coefficients of the truncated stress function seri.es were used, regardless of the crack depth.

RESULTS AND DISCUSSION

Solutions were obtained for Mode I deformation for each of the two types of loading shown in Fig. 1. The stress function boundary conditions appropriate to each case are given in Ref. 5. Displacement coefficients in Table II were obtained for the proportions of the ASTM round-robin radially cracked ring segment specimens, namely: $R_{o} / R_{i}=2$; a/W ratios from 0.40 to 0.60 ; and H / W locations from 0.0 to 1.8. In addition, displacement coefficients in Tables III to V were computed for all combinations of $a / W=0.1$ to 0.8 with three R_{0} / R_{i} ratios: 2.5 , 1.5 , and 1.1 at H / W locations varying from 0.0 to 1.0 . The results presented in Tables II through V are independent of the load line location L/W.

A comparison of the experimentally obtained displacement coefficients, for two nominal load line locations, $L / W=0.5$ and 0.0 , and nominal H / W values of $0.0,1.0$, and 1.8 , with the boundary collocation
results is given in Table I. Very good agreement is obtained with one exception: $H / W=1.8$. As discussed in the INTRODUCTION one may explain tais disagreement of analytical results with experimental results by noting that near the loading pin hole region, where the measurements were made, the analytical model does not accurately simulate the actual complex boundary load conditions. Furthermore, experimental measurements are liable to be less accurate at this location.

Values of Δ were obtained for two complementary, ideal types of specimen loading: Δ_{p} from a nominal uniform net section stress and Δ_{m} from a nominal linear bending stress distribution, as shown in Fig. 1 . The two coefficients can then be combined to represent any practical case of loading of the specimen by a pair of equal and opposite pin loaded forces normal to the crack line.

APPLICATION OF RESULTS
The displacement coefficients are defined as follows:

$$
\begin{align*}
& \Delta_{p}=E^{\prime} v_{p} / \sigma_{p} a \tag{1}\\
& \Delta_{m}=E^{\prime} v_{m} / \sigma_{m}^{a} \tag{2}\\
& \Delta=E^{\prime} v /\left(\sigma_{p}+\sigma_{m}\right) a \tag{3}
\end{align*}
$$

By the superposition principle, $v=v_{p}+v_{r}$ and through algebraic manipulation we obtain

$$
\begin{equation*}
\Delta=\left[\sigma_{p} /\left(\sigma_{p}+\sigma_{m}\right)\right] \Delta_{p}+\left[\sigma_{m} /\left(\sigma_{p}+\sigma_{m}\right)\right] \Delta_{m} \tag{4}
\end{equation*}
$$

Since $\quad \sigma_{m}=6 M / B(W-a)^{2}, M=P[L+(W+a) / 2]$ and $\sigma_{p}=P / B(W-a)$ where $B=$ specimen thickness, substitution into Eq. (4), and some algebraic manipulation gives:

$$
\begin{equation*}
\Delta=\frac{(1-a / W) \Delta_{p}+3(2 L / W+a / W+1) \Delta_{m}}{2(3 L / W+a / W+2)} \tag{5}
\end{equation*}
$$

Alternatively, the dimensionless influence coefficient (E ' Bv / P) can be obtained directiy. From Eqs. (3) and (4):

$$
\begin{equation*}
\frac{E^{\prime} \mathrm{Bv}}{\mathrm{P}}=\frac{\mathrm{Ba}\left(\sigma_{p} \Delta_{p}+\sigma_{m} \Delta_{m}\right)}{\mathrm{P}} \tag{6}
\end{equation*}
$$

which, on substitution of σ_{p} and σ_{m} becomes

$$
\begin{equation*}
\left(E^{\prime} B v / P\right)=(a / W)\left[\frac{(1-a / W) \Delta_{p}+3(2 L / W+a / W+1) \Delta_{m}}{(1-a / W)^{2}}\right] \tag{7}
\end{equation*}
$$

An alternative form is obtained from Eq. (3) on substituting the values of σ_{p} and σ_{m}

$$
\begin{equation*}
\frac{E^{\prime} B v}{P}=2(a / W) \frac{(3 L / W+a / W+2)}{(1-a / W)^{2}} \Delta \tag{8}
\end{equation*}
$$

As an example, let us determine the resultant displacement coefficient Δ, for a pin loaded specimen with load line $L / W=0.5, R_{o} / R_{i}=2$, and $a / W=0.5$.

From Eq. (5) ,

$$
\Delta=0.0625 \Delta_{\mathrm{p}}+0.9375 \Delta_{\mathrm{m}}
$$

For $H / W=1.0$ from Table II, $\Delta_{p}=-1.476$ and $\Delta_{m}=4.366$, hence we obtain $\Delta=4.001$.

As a second example, let us determine the resultant displacement coefficient Δ at the crack mouth of a pin loaded specimen with load line at $L / W=0.5, R_{0} / R_{i}=2$, and $a / W=0.5$. Once again from Eq. (5)

$$
\Delta=0.0625 \Delta_{\mathrm{p}}+0.9375 \Delta_{\mathrm{m}}
$$

From Table II, $\Delta_{\mathrm{p}}=-0.295$ and $\Delta_{\mathrm{m}}=3.438$, hence $\Delta=3.205$.

CONCLUSIONS

The accuracy with which the present results will apply to actual pin loaded C-shaped specimens will depend on the proximity of the gage points ro the loading pin holes: the closer together these are the less the accuracy. Indeed, very good agreement is obtained on comparison of the present results with the experimental results (Table I) with one exception: the displacement along the load line.

This disagreement can be explained as follows:
(a) The analytical model does not accurately simulate the actual complex boundary load conditions near the loading pin hole.
(b) The experimental measurements are liable to be less accurate at this location.

For $H / W<1.1$, on comparison with the analytical results, 13 experimental specimens had displacement coefficient (Δ) variations of less than 2 percent and 4 specimens were within 2.5 and 3.7 percent. For $H / W=1.8$, where the measurements were made along the load line, on comparison with the analytical results a significantly greater variation occurred. Four specimens had variations under 5 percent and the remaining four had variations between 5.3 and 6.4 percent.

REFERENCES

1. Kendall, D. P., and Hussain, M. A., Experimental Mechanics, Vo1. 12, 1972, pp. 184-189.
2. Hussain, M. A., et al., "A Modified Collocation Methor ror C-Shaped Specimens," R-WV-T-X-6-73, Watervliet Arsena1, New York, 1973.
3. Underwood, J. H., Scanlon, R. D., and Kendall, D. P., "K Calibration for C-Shaped Fracture Toughness Specimens of Various Geometries," R-WV-T-6-15-73, Watervliet Arsena1, New York, 1973.
4. Underwood, J. H., and Kendall, D. P., "K Results and Comparisons for Proposed Standard C-Specimen," in Developments in Fracture Mechanic Test Methods Standardization, ASTM STP 632, Am. Soc. Test. Mater., Philadelphia, Pa., 1977 (in process).
5. Gross, B., and Srawley, J. F.., "Analysis of Radially Cracked Ring Segments Subject to Forces and Couples," in Developments in Fracture Mechanic Test Methods Standardization, ASTM STP 632, Am. Soc. Test. Mater., Philadelphia, Pa., 1977 (in process).
6. Srawley, J. E., and Gross, B., in Cracks and Fracture, ASTM STP 601, Am. Soc. Test. Mater., Philadelphia, Pa., 1974, pp. 882-884.
7. Gross, B., and Mendelson, A., International Journal of Fracture Mechanics, Vol. 8, 1972, pp. 267-276.

TABLE I. - COMPARISON OF ANALYTICALLY AND EXPERIMENTALLY DETERMINED DINENSIONLESS DISPLACEMENT COEFFICIENTS FOR RADIALLY CRACKED RING SEGMENTS

L/W	$\mathrm{R}_{\mathrm{o}} / \mathrm{R}_{\mathrm{i}}$	H/W	Machined notch			a/W	Fatigue crack Displacement coefficient	
				$\stackrel{\Delta}{\text { experimental }}$	$\stackrel{\Delta}{\text { analytic }}$		$\begin{gathered} \Delta^{*} \\ \text { experimental } \end{gathered}$	$\begin{gathered} \Delta \\ \text { analytic } \end{gathered}$
0.502	1.953	0.100	0.478	3.36	3.26	0.525	3.20	3.17
. 502		1.056		4.31	4.22		4.06	4.01
. 502		1.792		6.53	6.87		6.08	6.32
0.499	1.988	0.106	0.456	3.28	3.31	0.512	3.17	3.19
. 499		1.022		4.20	4.24		3.99	
. 499		1.759		6.78	6.93		6.28	6.29
0.498	1.949	0.088	0.478	3.30	3.26	0.536	3.07	3.15
. 498		1.066		4.26	4.22		3.90	3.98
. 498		1.796		6.50	6.87		5.86	6.26
0.499	1.949	0.099	0.478	3.38	3.26	0.543	3.09	3.14
. 499		1.060		4.30	4.23		3.85	3.95
. 499		1.790		6.49	6.85		5.78	6.17
0.0005	1.946	0.104	0.474	3.16	3.11			
*In house experimental results from R. J. Buzzard and D. M. Fisher.								

TABLE II. - DISPLACEMENT COEFFICIENTS Δ_{p} AND Δ_{m} FOR $R_{0} / R_{i}=2 / I \quad$ AND RATIOS a / W FROM 0.40 TO 0.60 AND

H/W FROM 0.00 TO 1.80

a / W	$0.40{ }^{\circ}$	0.45	0.50	0.55	0.60
H/W			Δ_{p}		
0.00	0.477	0.078	-0.295	-0.648	-0.984
. 20	. 461	. 060	-0.315	-0.669	-1.006
. 40	. 388	-0.016	-0.391	-0.746	-1.083
. 60	. 183	-0.218	-0.588	-0.936	-1.265
. 80	-0.199	-0.585	-0.938	-1.268	-1.579
1.00	-0.811	-1.159	-1.476	-1.772	-2.050
1.20	-1.765	-2.034	-2.281	-2.514	-2.732
1.40	-3.315	-3.428	-3.541	-3.655	-3.766
1.000	-5.998	-5.808	-5.662	-5.550	-5.459
1.73	-8.911	-8.369	-7.924	-7.551	-7.229
1.80	-10.989	-10.177	-9.506	-8.940	-8.447
	Δ_{m}				
0.00	3.680	3.543	3.438	3.327	3.233
. 20	3.714	3.578	3.468	3.354	3.257
. 40	3.833	3.681	3.559	3.436	3.331
. 60	4.069	3.882	3.733	3.589	3.467
. 80	4.441	4.195	3.999	3.822	3.672
1.00	4.951	4.625	4.366	4.141	3.952
1.20	5.619	5.191	4.845	4.560	4.320
1.40	6.514	5.948	5.481	5.116	4.806
1.60	7.784	7.013	6.378	5.891	5.479
1.73	8.940	7.979	7.207	6.594	6.088
1.80	9.665	8.588	7.725	7.037	6.471

TABLE III. - DISPLACEMENT COEFFICIENTS Δ_{p} AND $\Delta_{\text {mi }}$ FOR $R_{0} / R_{i}=5 / 2$ AND RAIITOS a / W FROM 0.10 TO 0.80

AND H/W FROM 0.00 TO 1.00

a / W	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
H/W	Δ_{p}							
0.00	4.422	2.579	1.318	0.365	-0.432	-1.095	-1.721	-2.315
. 10	4.454	2.578	1.311	. 356	-0.443	-1.105	-1.732	-2.325
. 20	4.603	2.595	1.309	. 344	-0.458	-1.127	-1.754	-2.349
. 30	4.894	2.605	1.281	. 307	-0.499	-1.173	-1.800	-2.393
. 40	5.236	2.587	1.212	. 227	-0.577	-1.252	-1.875	-2.463
. 50	5.515	2.511	1.085	. 095	-0.705	-1.371	-1.986	-2.563
. 60	5.622	2.346	. 886	-0.102	-0.890	-1.537	-2.135	-2.695
. 70	5.465	2.056	. 597	-0.373	-1.141	-1.757	-2.331	-2.865
. 80	4.985	1.589	. 190	-0.734	-1.466	-2.044	-2.582	-3.079
. 90	4.126	. 868	-0.381	-1.221	-1.885	-2.421	-2.907	-3.352
1.00	2.731	-0.235	-1.210	-1.900	-2.442	-2.935	-3.340	-3.708
Δ_{m}								
0.00	5.630	4.516	4.144	3.770	3.502	3.290	3.102	2.932
. 10	5.721	4.666	4.169	3.78:	3.515	3.300	3.110	2.938
. 20	5.997	4.753	4.222	3.829	3.547	3.325	3.132	2.958
. 30	6.613	4.932	4.321	3.900	3.603	3.371	3.170	2.991
. 40	7.536	5.231	4.484	4.012	3.689	3.441	3.227	3.040
. 50	8.695	5.658	4.716	4.171	3.808	3.534	3.304	3.103
. 60	10.033	6.209	5.026	4.381	3.963	3.655	3.402	3.185
. 70	11.562	6.880	5.413	4.645	4.157	3.805	3.523	3.285
. 80	13.399	7.682	5.880	4.969	4.396	3.900	3.670	3.408
. 90	15.793	8.658	6.440	5.366	4.687	4.213	3.851	3.556
1.00	19.031	9.896	7.126	5.860	5.049	4.489	4.070	3.741

TABLE IV. - DISPLACEMENT COEFFICIENTS Δ_{p} AND Δ_{m} FOR $R_{0} / R_{i}=3 / 2$ AND RATIOS a / W FROM 0.10 TO 0.80 AND H/W FROM 0.00 TO 1.00

TABLE V. - DISPLACEMENT COEFFICIENTS Δ_{p} AND Δ_{m} FOR $R_{0} / R_{i}=11 / 10$ AND RATIOS a / W FROM 0.10 TO 0.80 AND H/W FROM 0.00 TO 1.00

a/W	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
H/W					Δ_{p}			
0.00	3.593	2.681	1.780	0.967	0.234	-0.456	-1.124	-1.813
.10	3.659	2.681	1.780	.965	.232	-0.457	$-1 . .25$	-1.814
.20	3.747	2.670	1.769	.958	.229	-0.460	-1.129	-1.816
.30	3.945	2.637	1.736	.942	.218	-0.467	-1.134	-1.820
.40	4.264	2.615	1.703	.916	.200	-0.480	-1.145	-1.827
.50	4.681	2.626	1.659	.881	.174	-0.500	-1.160	-1.838
.60	5.143	2.648	1.615	.840	.138	-0.527	-1.182	-1.854
.70	5.648	2.703	1.582	.792	.096	-0.562	-1.210	-1.874
.80	6.154	2.758	1.549	.741	.047	-0.603	-1.243	-1.899
.90	6.681	2.835	1.527	.688	-0.008	-0.652	-1.281	-1.929
1.00	7.198	2.923	1.505	.632	-0.068	-0.707	-1.326	-1.963
				$\Delta \mathrm{~m}$				
0.00	4.460	4.041	3.718	3.434	3.221	3.059	2.927	2.816
.10	4.529	4.059	3.719	3.434	3.222	3.059	2.927	2.816
.20	4.643	4.064	3.713	3.433	3.223	3.060	2.930	2.819
.30	4.934	4.087	3.710	3.433	3.225	3.063	2.932	2.820
.40	5.393	4.153	3.716	3.436	3.229	3.067	2.935	2.823
.50	5.977	4.264	3.743	3.448	3.237	3.074	2.941	2.827
.60	6.646	4.419	3.792	3.470	3.251	3.082	2.948	2.833
.70	7.374	4.613	3.868	3.505	3.270	3.096	2.957	2.840
.80	8.145	4.847	3.969	3.553	3.297	3.112	2.968	2.847
.90	8.953	5.118	4.089	3.613	3.330	3.133	2.982	2.857
1.00	9.793	5.420	4.224	3.684	3.370	3.158	2.998	2.868

$$
\left(\frac{\sigma_{p}}{\sigma_{M}+\sigma_{P}}\right) \Delta_{p} \quad+\left(\frac{\sigma_{M}}{\sigma_{M}+\sigma_{P}}\right) \Delta_{M}
$$

$$
=\Delta
$$

Flgure 1. - Application of superposition of displacements to specimen loaded through pins at selected distance L from crack mouth.

[^0]: *For sale by the National Tectinical Information Service, Springtield, Virginia 22161

