A Parameter Estimation Subroutine Package

(NASA-CR-154109) A PARAMETER ESTIMATION 1277-28828 SUBRCUTINE PACKAGE (Jet Propulsion Lab.) HC A05/MF A01 CSCI 09B
unclas
G3/61 39276
REPRODUCED BYNATIONAL TECHNICALINFORMATION SERVICEU. S DEPARTMENT OF COMMERCE
National Aeronautics and
Space Admınıstration
Jet Propulsion LaboratoryPasadena, California 91103

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

TECHNICAL REPORT STANDARD TITLE PAGE

HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the report cover. Use all capital letters for title (item 4). Leave items 2, 6, and 14 blank. Complete the remanning items as follows:
3. Recipient's Catalog No. Reserved for use by report recipients.
7. Author(s). Include corresponding information from the report cover. In addition, list the affiliation of an author if it differs from that of the performing organization.
8. Performing Organızation Report No. Insert if performing organization wishes to assign this number.
10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72), which uniquely identifies the work unit under which the work was authorized. Non-NASA performing orgạnizations wilf leave this blank.
11. Insert the number of the contract or granti under which the report was prepared.
15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with. . Translation of (or by)... Presented at conference of. . To be published in. .t.
16. Abstract. Include a brief (not to exceed 200 words) factual summary of the most significant information contained $i \frac{n_{n}}{2}$ the report. If possible, the abstract of a classified report should be, unclassified. If the report contains a significant bibliography or literature survey, mention it here.
17. Key Words. Insert terms or short phrases selected by the author that identify the principal subjects covered in the report, and that are sufficiently specific and precise to be used for cataloging.
18. Distribution Statement. Enter one of the, authorized statements used to denote releasability to the public or a limitation on dissemination for reasons other than security of defense information. Authorized statements are "Unclassified-Unlimited," "U.S. Government and Contractors only," "U.S. Government Agencies only," and "NASA and NASA Contractors only."
19. Security Classification (of report). NOTE: Reports carrying a security classification will require additional markings giving security and downgrading information as specified by the Security Requirements Checklist and the DoD Industrial Security Manual (DoD 5220.22-M).
20. Security Classification (of this page). NOTE: Because this page may be used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, indicate separately the classification of the title and the abstract by following these items with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for classified items.
21. No. of Pages. Insert the number of pages.
22. Price. Insert the price set by the Clearinghouse for Federal Scientific and Technical Information or the Government Printing Office, if known.

A Parameter Estimation Subroutine Package

G. J. Bierman
M. W. Nead

July 1, 1977

Natıonal Aeronautics and
Space Administration
Jet Propulsion Laboratory
Calfornia Institute of Technology
Pasadena, Callfornıa 91103

Prepared Under Contract No NAS 7-100 National Aeronautics and Space Administration

PREFACE

The work described in this report was performed by the Systems Division of the Jet Propulsion Laboratory.

The construction of this estimation subroutine package (ESP) was motivated by an involvement with a particular problem; construction of fast, efficient and simple least squares data processing algorıthms to be used for determining ephemeris corrections. Discussions with T. Duxbury led to the proposal of a subroutine strategy which would have great flexibility. The general utility of such a subroutine package was made evident by H. Koble and N. Mottinger who had a different but related problem that involved combining estimates from different missions. Thanks and credit are also due to J. Ellis, N. Hamata, and F. Peters for contrıbuting to and experimenting with this package of subroutines.

ABSTRACT

Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. In this report we document a library of FORTRAN subroutines that have been developed to facilitate analyses of a variety of parameter estimation problems. Our purpose is to present an easy to use multipurpose set of algorithms that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given, along with examples of how these routines can be used. The following outline indicates the scope of this report: Section I, introduction with reference to background material; Section II, examples and applications; Section III, a subroutine directory summary; Section IV, the subroutine directory user description with input, output and usage explained; and Section V, subroutine FORTRAN listings. The routines are compact and efficient and are far superior to the normal equation data processing algorithms that are often used for least squares analyses.

CONTENTS

I. Introduction 1
II. Applications and Examples 4
III. Subroutine Directory Summary 23
IV. Subroutine Directory User Description 33
V. FORTRAN Subroutine Listings 63

I. Introduction

Techniques related to least squares parameter estimation play a prominent role in orbit determination and related analyses. Numerical and algorıthmic aspects of least squares computation are documented In the excellent reference work by Lawson and Hanson, Ref. [1]. Their algorithms, avaılable from the JPL subroutıne library, Ref. [2], are very reliable and general. Experience has, however, shown that in reasonably well posed problems one can streamline the least squares algorithm codes and reduce both storage and computer times. In this report, we document a collection of subroutines most of which we have written that can be used to solve a variety of parameter estimation problems.

The algorithms for the most part involve triangular and/or symmetric matrices and to reduce storage requirements these are stored in vector form, e.g., an upper triangular matrix U is written as
$\left[\begin{array}{cccc}\mathrm{U}_{11} & \mathrm{U}_{12} & \mathrm{U}_{13} & \mathrm{U}_{14} \\ & \mathrm{U}_{22} & \mathrm{U}_{23} & \mathrm{U}_{24} \\ & & \text { etc. } \\ & & \mathrm{U}_{33} & \mathrm{U}_{34}\end{array}\right]=\left[\begin{array}{lll}\mathrm{U}(1) & \mathrm{U}(2) & \mathrm{U}(4) \\ & \mathrm{U}(7) \\ & \mathrm{U}(3) & \mathrm{U}(5) \\ & \mathrm{U}(8) & \\ & & \mathrm{U}(6) \\ & \mathrm{U}(9) \\ & & \mathrm{U}(10)\end{array}\right]$

Thus, the element from row i and column j of U, $i \leq j$, is stored in vector component $j(j-1) / 2+i$. We hasten, to point out that the engineer, with few exceptions, need have no direct contact with the vector subscripting. By this we mean that the vector subscript related operations are internal to the subroutines, vector arrays transmitted from one
subroutine to another are compatible, and vector arrays displayed using the print subroutine TRIMAT appear in a triangular matrix format.

Aside: The most notable exception is that matrix problems are generally formulated using doubly subscripted arrays. Transforming a double subscripted symmetric or upper triangular matrix $A(\cdot, \cdot)$ to a vector stored form, $\mathrm{U}(\cdot)$ is quite simply accomplished in FORTRAN via $I J=0$

DO $1 \mathrm{~J}=1, \mathrm{~N}$
DO $1 \mathrm{I}=1, \mathrm{~J}$
$I J=I J+1$
$1^{\prime} U(I J)=A(I, J)$
Similarly, transforming an initial vector $D(\cdot)$ of diagonal positions of a vector stored form, $U(\cdot)$, is accomplıshed using

$$
\begin{array}{lll}
& \mathrm{JJ}=0 & \mathrm{JJ}=\mathrm{N} *(\mathrm{~N}+1) / 2 \\
& \mathrm{DO} \perp \mathrm{~J}=1, \mathrm{~N} & \text { or } \\
& \mathrm{JJ}=\mathrm{JJ}+\mathrm{J} & \mathrm{DO} 1 \mathrm{~J}=\mathrm{N}, 1,-1 \\
1 & \mathrm{U}(\mathrm{JJ})=\mathrm{D}(J) & \\
& \mathrm{U}(\mathrm{JJ})=\mathrm{D}(\mathrm{~J})
\end{array}
$$

The conversion on the right has the modest advantage that D and U can share common storage (i.e., U can overwrite D). These conversions are too brief to be efficiently used as subroutines. It seems that when such conversions are needed one can readily include them as in line code. End of Aside
r
Although this package of subroutines is designed in the main, for the analysis of parameter estrmation problems one can use it to solve problems that involve process noise. With modest amounts of additional programming one can even apply our package to filtering problems that involve colored noise and mapping. In the latter case, however, reductions gained from our use of vector storage are for the most part lost.

Mathematical background regarding Householder orthogonal transformations for least squares analyses and U-D matrix factorization for covariance matrix analyses are discussed in references [1] and [3]. Our plan is to illustrate, in Section II, with examples how one can use the basic algorithms and matrix manipulation to solve a variety of important problems. The subroutines which comprise our estimation subroutine package are descrıbed in Section III, and detailed input/ output descriptions are presented in Section IV.

Section V contains FORTRAN listings of the subroutines. There are several reasons for $\operatorname{mncluding~such~listings.~Making~these~listings~}$ avaılable to the engıneer analyst allows him to assess algorithm complexity for himself; and to appreciate the simplicity of the routines he tends otherwise to use as a black box. The routines are not truly portable, and users can, when necessary make modifications so that the subroutine package can operate on systems other than the UNIVAC 1108. When estimation problems arise to which our package does not directly apply (or which can be made to apply by an awkward concatenation of the routines) one may be able to modify the codes and widen still further the class of problems that can be efficiently solved.

II. APPLICATIONS AND EXAMPLES

Our purpose in this section is to illustrate, with a number of examples, some of the problems that can be solved using this ESP. The examples, in addition, serve to catalogue certain estimation technıques that are quite useful.

To begin, let us catalogue the subroutines that comprise the ESP:

1)	AGTRN	(A G Turner)	Agee-Turner rank 1 update
2)	A2A1	(A to A one)	Matrix A to matrix A1
3)	COMBO	(combo)	Combine R and A namelists
4)	Cov2RI	(cov to R I)	Covariance to R inverse
5)	COV2UD	(cov to U D)	Covariance to U-D factors
6)	C2C	(C to C)	Permute the rows and colums of matrix C
7)	INF2R	(Inf to R)	Information matrix to (triangular) R
8)	PERMUT	(permute)	Permute the columns of matrix A
9)	RINCON	(rin con)	R Inverse with condition number bound
10)	RI2COV	(R I to cov)	R inverse to covariance
11)	R2A	(R to A)	Triangular R to matrix A
12)	R2RA	(R to $\mathrm{R} A$)	Transfer a triangular block of R to triangular RA
13)	RUDR	(rudder)	SRIF R to U-D factors or vice versa
14)	THH	(H HH)	Triangular Householder data processing
15)	TRIMAT	(tri mat)	Triangular matrix print
16)	TTHH	(T T H H)	Two triangular matrix Householder processing
17)	TZERO	(T zero)	Zero a horizontal segment of a triangular matrix

18)	UDMES	(U D measurement)	U-D measurement updating
19) UD2COV	(U D to cov)	U-D factors to covarıance	
20) UD2SIG	(U D to sig)	U-D factors to sigmas	
21) UTINV	(U T inverse)	Upper triangular matrix inverse	
22) UTIROW		Upper triangular inverse, inverting only the upper rows	
23) WGS	(W G-S)	Weighted Gram-Schmidt triangular reduction	

These routines are described in succeedingly more detail in sections III, IV, and V. The examples to follow are chosen to demonstrate how these various subroutines can be used to solve orbit determination and other parameter estimation problems. It is important to keep in mind that these examples are not by any means all inclusive, and that this package of subroutines has a wide scope of applicability.

II. 1 Simple Least Squares

Given data in the form of an overdetermined systems of linear equations one may want a) the least squares solution; b) the estimate error covariance, assuming that the data has normalized errors; and c) the sum of squares of the residuals. The solution to this problem, using the ESP can be symbolically depicted as

$$
\text { - }\left[\begin{array}{ll}
A & z
\end{array}\right] \xrightarrow{T H H}[\hat{R} \hat{z}], \mathrm{e}
$$

Remarks: The array [A z] corresponds to the equations $A x=z-v, v \in N(0, I)$; the array $[\hat{R} \hat{z}]$ corresponds to the triangular data equation $\hat{R} x=\hat{z}-\hat{\nu}$, $\nu \in \mathbb{N}(O, I)$ and $e=||z-A \hat{x}||$

- $[\hat{R} \hat{z}] \xrightarrow{\text { UTINV }}\left[\hat{R}^{-1} \hat{x}\right]$

Remark: $\quad \hat{x}=\hat{R}^{-1} \hat{z}$

One may be concerned with the integraty of the computed inyerse and the estimate. If one uses subroutine RINCON instead of UTINY then in addition one obtains an estrmate (lower and upper bounds) for the condition number R, If this condition number estimate is large the computed inverse and estimate are to be regarded with suspicion. By large, we mean considerable with the machine accuracy (yiz. on an 18 decimal digit machine numbers larger than 10^{15}). Note that the condition number estimate is obtained with negligible additional computation and storage.

$$
0\left[\hat{\mathrm{R}}^{-1}\right] \xrightarrow{\mathrm{RI} 2 \mathrm{COV}}[\mathrm{C}]
$$

Remarks: $C=\hat{R}^{-1} \hat{\mathrm{R}}^{-T}=$ estimate error covariance. Some computation can be avoided in RI2COV if only some (or all) of the standard devlations are wanted.

II. 2 Least Squares With A Priori

If a priori information is given, it can be included as additional equations (in the A array) or used to initialize the R array in subroutine THH (see the subroutine argument description given in section IV). One is sometimes interested in seeing how the estimate and/or the formal statistics change corresponding to the use of different a priori conditions. In this case one should compute $[\hat{R} \hat{z}]$ as in case $I I .1$, and then include the a priori $\left[R_{0} z_{0}\right]$ using either subroutine $T H H$, or subroutine TTHH when the a priorl is diagonal or triangular, e.g.,

[^0]It is often good practice to process the data and form $[\hat{R} \hat{z}]$ before including the effects of a priori. When this $1 s$ done one can analyze the effect of different a priori, $\left[R_{0} z_{0}\right]$ without reprocessing the data.

If a priori is given in the form of an information matrix, Λ, (as for example would be the case if the problem is being initialized with data processed using normal equation data accumulation*) then one can obtain R_{o} from Λ using INF2R;

$$
\mathrm{\Lambda} \xrightarrow{\mathrm{INF} 2 \mathrm{R}} \mathrm{R}_{\mathrm{o}}
$$

If there were a normal equation estimate $z=A^{T} b$, then $z_{0}=R_{0}^{-T} z$.

II. 3 Batch Sequential Data Processing

Prime reasons for batch sequential data processing are that many problems are too large to fit in core, are too expensive in terms of core cost, and for certann problems it is desirable to be able to incorporate new data as it becomes available. Subroutines TTH and UDMES are specially designed for this kind of problem. Both of these subroutines overwrite the a priori with the result which then acts as a priori for the next batch of data. If the data is stored on a file or tape as $A_{1}, z_{1}, A_{2}, z_{2}, \ldots$ then the sequential process can be represented as follows:

SRIF Processing**

a) Initialize [R z] with a-priori values or zero
b) Read the next [$\left.\begin{array}{ll}A & \text { z }\end{array}\right]$ from the file

[^1]c) $\underset{\left[\begin{array}{ll}A & 2\end{array}\right]}{\left[\begin{array}{ll}\hat{R} & \hat{z}\end{array}\right]} \xrightarrow{\text { THH }}\left[\begin{array}{ll}\hat{R} & \hat{z}\end{array}\right]^{*}$
d) If there is more data go back to b)
e) Compute estimates and/or covariances using UTINV and RI2COV
(as in example II.1)

$\underline{\mathrm{U}-\mathrm{D} * * \text { Processing }}$

$\left.a^{\prime}\right)$ Initialize $[\hat{U}-\hat{D} \hat{x}]$ with a priori $U-D$ information and estimate
$\left.b^{\prime}\right)$ Read the next $\left[\begin{array}{ll}A & z\end{array}\right]$ scalar measurement from the file
c') $\left.\left.\left[\begin{array}{ll}{[\hat{U}-\hat{D}} & \hat{X}\end{array}\right]\right\} \xrightarrow{A} \begin{array}{ll}A\end{array}\right] \quad$ UDMES $[\hat{U}-\hat{D} \quad \hat{x}]^{*}$
d^{\prime}) If there is more data go back to b^{\prime})
$\left.e^{\prime}\right)$ Compute standard deviations or covariances using UD2SIG or UD2C0V.

Note that subroutine THH is best (most efficiently) used with data batches of substantial size (say 5 or more) and that UDMES processes measurement vectors one component at a time. If the dimension of the state is small the cost of using either method is generally negligible. The UDMES subroutine is best used in problems where estimates are wanted with great frequency or where one wishes to monitor the effects of each update. In a given application one might choose to process data \ln batches for awhile and during critical periods it may be

[^2]desirable to monitor the updating process on a point by point basis. In cases such as this, one may use RUDR to convert a SRIF array to U-D form or vice-versa.

Remarks: Another case where an R to $U-D$ conversion can be useful occurs in large order problems (with say 100 or more parameters) where after data has been SRIF processed one wants to examine estimate and/or covariance sensituvity to the a priori variances of only a few of the variables. Here it may be more convenient to update using the UDMES subroutine.
II. 4 Reduced State Estimates and/or Covariances From a SRIF Array

Suppose, for example, that data has been processed and that we have a triangular SRIF array $[\hat{R} \hat{z}]$ corresponding to the 14 parameter names, a_{r}, a_{x}, $a_{y}, x, y, z, v_{x}, v_{y}, v_{z}, G M$, CU41, L041, CU43, LO43 (constant spacecraft accelerations, position and velocity, target body gravitational constant, and spin axis and longitude station location errors).

Let us ask first what would the computed error covariance be of a model containing only the first 10 variables, i.e., by Ignoring the effect of the station location errors. One would apply UTINV and RI2COV just as in example II.l, except here we would use N (the dimension of the filter) $=10$, instead of $N=14$.

Next, suppose that we want the solution and assoclated covariance of the model without the 3 acceleration errors. One ESP solution is to use

- $[\hat{R} \quad \hat{\mathrm{R}}] \xrightarrow{\mathrm{R} 2 \mathrm{~A}}[\mathrm{~A}]$

NAME ORDER OF A
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}$,
GM, CU41, L041, CU43, L043, RHS* ${ }^{*} a_{r}, a_{x}, a_{y}$,

Remark: One could also have used subroutine COMBO, with the desired namelist as simply a_{r}, a_{x}, a_{y}. This would achieve the same A matrix form.

$$
[\mathrm{A}] \xrightarrow{\mathrm{THH}}[\mathrm{R}]
$$

Remark: $\quad R$ here can replace the original \hat{R} and \hat{z}.

$$
\text { © }[\mathrm{R}] \xrightarrow{\text { UTINV }}\left[\mathrm{R}^{-1} \mathrm{x}_{\mathrm{est}}\right] \xrightarrow{\mathrm{RI} 2 \mathrm{COV}}\left[\operatorname{COV} \mathrm{x}_{\mathrm{est}}\right]
$$

Remarks: Here, use only $N=11$, i.e., 11 variables and the RHS. $x_{\text {est }}$ is the 11 state estimate based on a model that does not contain acceleration errors a_{r}, a_{x}, or a_{y}.

Note how triangularizing the rearranged R matrix produces the desired lower dimensional SRIF array; and this is the same result one would obtain if the original data had been fit using the 11 state model.

As the last subcase of this example suppose that one is only interested in the SRIF array corresponding to the position and velocity variables. The difference between this example and the one above is that here we want to include the effects due to the other variables.

[^3]One might want this sub-array to combine with a position-velocity SRIF array obtained from, say, optical data. One method to use would be,

$$
\text { - }\left[\begin{array}{ll}
\hat{R} & \hat{z}
\end{array}\right] \quad \xrightarrow{\mathrm{R} 2 \mathrm{RA}} \quad\left[\mathrm{R}_{\mathrm{A}} \mathrm{z}_{\mathrm{A}}\right]
$$

INPUT NAMES:
OUTPUT NAMES:
$a_{r}, a_{x}, a_{y}, x, y, z, v_{x}, v_{y}, v_{z}, G M \quad x, y, z, v_{x}, v_{y}, v_{z}, G M$
CU41, L041, CU43, L043, RHS CU41, L041, CU43, L043, RHS Remark: The lower triangle starting with x is copied into R_{A}.

$$
\begin{aligned}
& \text { - }\left[R_{A} z_{A}\right] \xrightarrow{R 2 A}\left[A, z_{A}\right] \text { (Reordering) } \\
& \text { NAMES: GM, CU41, L041, CU43, L043, } \\
& x, y, z, v_{x}, v_{y}, v_{z} \text {, RHS } \\
& \text { - }\left[A, z_{A}\right] \xrightarrow{T H H}\left[\hat{R}_{A} \hat{z}_{A}\right] \text { (Triangularizing) } \\
& \text { - }\left[\hat{R}_{A} \hat{z}_{A}\right] \xrightarrow{R 2 R A}\left[R_{x} z_{x}\right] \text { (Shifting array) } \\
& \text { NAMES: } \mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}} \text {, RHS }
\end{aligned}
$$

Remark: The lower right triangle starting with x is copied into R_{x}. We note that one could have elected to use COMBO in place of the first R2RA usage and R2A; this would have involved slightly more storage, but a lesser number of inputs.' The sequence of operations is in this case,

- $\left[\begin{array}{ll}\hat{R} & \hat{z}\end{array}\right] \xrightarrow{\text { COMBO }}\left[\begin{array}{ll}A & z\end{array}\right]$

ORIGINAL NAMES DESIRED NAMES: $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}$, RHS
Remark: By using COMBO the columns of $[\hat{R} \hat{z}]$ are ordered corresponding to the names $a_{r}, a_{x}, a_{y}, G M$, CU41, L041, CU43, and L043, followed by the desired names list.

- $\left[\begin{array}{ll}A & z\end{array}\right] \xrightarrow{\text { THH }}\left[\begin{array}{ll}\hat{R} & \hat{z}\end{array}\right]$

Remark: The $[\hat{R} \hat{z}]$ array that is output from this procedure is equivalent but different from the $[\hat{R} \hat{z}]$ array that we began with.

$$
\bullet\left[\begin{array}{ll}
\hat{R} & \hat{z}
\end{array}\right] \xrightarrow{R 2 R A}\left[R_{x} z_{x}\right]
$$

Remark: As before, the lower right triangle starting with x is copied into R_{x}.

To delete the last k parameters from a SRIF array, it is not necessary to use subroutines $R 2 A$ and $T H H$. The first $N-k=\bar{N}$ columns of the array already correspond to a square root information matrix of the reduced system. If estimates are involved one can simply move the z column left using:
$R(\overline{\mathrm{~N}} *(\overline{\mathrm{~N}}+1) / 2+i)=R\left(\mathrm{~N}^{*}(\mathrm{~N}+1) / 2+i\right), i=1, \ldots, k$.
Remark: We mention in passing that if one is only interested in estimates and/or covariances corresponding to the last k parameters then one can use R2RA to transform the lower right triangle of the SRIF array to an upper left triangle after which UTINV and RI2COV can be applied.
II. 5 Sensitivity, Perturbation, Computed Covariance and Consider Covariance Matrix Computation

Suppose that one is given a SRIF array

$$
\left[\begin{array}{ccc}
\mathrm{N}_{\mathrm{x}} & \overbrace{\mathrm{x}}^{\mathrm{N}_{\mathrm{y}}} & 1 \\
\mathrm{R}_{\mathrm{xy}} & z_{x} \tag{II.5a}\\
0 & \mathrm{R}_{\mathrm{y}} & z_{y}
\end{array} \quad\right\} \begin{aligned}
& \mathrm{N}_{\mathrm{x}} \\
&
\end{aligned}
$$

in which the N_{y} variables are to be considered. (One can, of course, using subroutines R 2 A and THH reorder and retriangularize an arbitrarıly arranged SRIF array so that a given set of variables fall at the end.) For various reasons one may choose to ignore the y variables in the equation

$$
\begin{equation*}
R_{x} x+R_{x y} y=z_{x}-v_{x}, \quad \nu_{x} \varepsilon N(0, I) \tag{II.5b}
\end{equation*}
$$

and take as the estimate $x_{c}=R_{x}^{-1} z_{x}$. It then follows that

$$
\begin{equation*}
x-x_{c}=-R_{x}^{-1} R_{x y} y-R_{x}^{-1} v_{x} \tag{II.5c}
\end{equation*}
$$

and from this one obtains

$$
\begin{equation*}
\operatorname{Sen} \equiv \frac{\partial\left(x-x_{c}\right)}{\partial y}=-R_{x}^{-1} R_{x y} \tag{II.5d}
\end{equation*}
$$

(sensitivaty of the estimate error to the unmodeled y parameters)

$$
\begin{equation*}
\text { Pert }=\operatorname{Sen} \operatorname{Diag}\left(\sigma_{y}(1), \ldots, \sigma_{y}\left(N_{y}\right)\right) \tag{II.5e}
\end{equation*}
$$

where $\sigma_{y}(1), \ldots, \sigma_{y}\left(N_{y}\right)$ are a priori y parameter uncertainties.
(The perturbations are a measure of how much the estimate error could be expected to change due to the unmodeled y parameters.)

$$
\begin{align*}
P_{c o n} & =R_{x}^{-1} R_{x}^{-T}+\operatorname{Sen} P_{y} \operatorname{Sen}^{T} \tag{II.5f}\\
& =P_{c}+(\text { Pert })(\text { Pert })^{T} \text { if } P_{y} \text { is diagonal* }
\end{align*}
$$

where P_{c} is the estimate error covariance of the reduced mode 1 .
An easy way to compute P_{c}, Pert and $P_{\text {con }}$ is as follows: Use subroutine R2RA to place the y variable a priori $\left[P_{y}^{\frac{1}{2}}(0) \hat{y}_{o}\right] * *$ into the lower right

Pert $=\operatorname{Sen} P_{y}^{\frac{1}{2}}$
$* *$
** The a priori estimate y_{o} of consider parameters is generally zero.
corner of (II.5a), replacing R_{y} and z_{y}, i.e.,

$$
\left[\begin{array}{cc}
{\left[\begin{array}{ll}
\dot{R} & z
\end{array}\right]} \\
\mathrm{P}_{\mathrm{y}}^{\frac{1}{2}}(0) & \left.\hat{y}_{0}\right]
\end{array}\right\} \xrightarrow{R 2 R A}\left[\begin{array}{ccc}
R_{x} & R_{x y} & z_{x} \\
0 & P^{\frac{1}{2}}(0) & \hat{y}_{0}
\end{array}\right]
$$

Now apply subroutine UTIROW to thls system (with a -1 set in the lower right corner*)

Note that the lower portion of the matrix is left unaltered, 1.e., the purpose of UTIROW is to invert a triangular matrix, given that the lower rows have already been inverted. From this array one can, using subroutine RI2COV, get both P_{c} and $P_{c o n}$
-

$$
\begin{aligned}
& {\left[R_{x}^{-1}\right] \xrightarrow{\text { RI2COV }}\left[\mathrm{P}_{\mathrm{c}}\right] \text { computed covariance }} \\
& {\left[R_{x}^{-1} \text { Pert }\right] \xrightarrow{\text { RI2COV }}\left[P_{\text {con }}\right] \text { consider covariance }}
\end{aligned}
$$

Suppose now that one is dealing with a U-D factored Kalman filter formulation. In this case estimate error sensitivities can be sequentially

[^4]calculated as each scalar measurement $\left(z=a_{x}^{T} x+a_{y}^{T} y+v\right)$ is processed.
$$
\operatorname{Sen}_{J}=\operatorname{Sen}_{j-1}-K_{j}\left(a_{x}^{T} \operatorname{sen}_{j-1}+a_{y}^{T}\right)
$$
where Sen $j-1$ is the sensitivity prior to processing this ($j-t h$) measurement, and K_{j} is the Kalman gain vector. In this formulation one computes $P_{\text {con }}$ in a manner analogous to that described in section II.7;

Let $\overline{\mathrm{U}}_{1}=\mathrm{U}_{\mathrm{j}}, \overline{\mathrm{D}}_{1}=\mathrm{D}_{\mathrm{j}} \quad$ (filter $\mathrm{U}-\mathrm{D}$ factors)

$$
\left[s_{1}, \ldots, s_{n_{y}}\right]=S_{j} \quad \text { (estumate error sensıtivıties) }
$$

then compute

$$
\overrightarrow{\mathrm{U}}_{\mathrm{k}}-\overline{\mathrm{D}}_{\mathrm{k}}, \sigma_{\mathrm{k}}^{2}, s_{\mathrm{k}} \quad \xrightarrow{\mathrm{AGTRN}} \overline{\mathrm{U}}_{\mathrm{k}+1}-\overline{\mathrm{D}}_{\mathrm{k}+1} \quad \mathrm{k}=1, \ldots, \mathrm{n}_{\mathrm{y}}
$$

For the final $\overline{\mathrm{U}}-\overline{\mathrm{D}}$ we have

$$
\mathrm{U}_{\mathrm{J}+\mathrm{I}}^{\text {con }}=\overline{\mathrm{U}}_{\mathrm{n}}^{\mathrm{y}} \mathrm{+I}, \mathrm{D}_{\mathrm{j}+1}^{\mathrm{con}}=\mathrm{D}_{\mathrm{n}_{\mathrm{y}}}+1
$$

If $P_{y}(0)=U_{y} D_{y} U_{y}^{T}$, instead of $P_{y}(0)=\operatorname{Diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}\right)$, then in the $U-D$ recursion one should replace the $S_{j}{ }_{j}$ columns by those of $\operatorname{Sen}_{j} U_{j}$ and σ_{j}^{2} should be replaced by the corresponding diagonal elements of D_{y}.

II. 6 Combining Varıous Data Sets

In this example we collect several related problems involving data sets with different parameter lists.

Suppose that the parameter namelist of the current data does not correspond to that of the a priori SRIF array. If the new data Involves a permutation or a subset of the SRIF namelist then an application of
subroutane PERMUT whll create the desired data rearrangement. If the data involves parameters not present in the SRIF namelist then one could use subroutine R2A to modify the SRIF array to include the new names and then if necessary use PERMUT on the data, to rearrange it compatibly.

Suppose now that two data sets are to be combined and that each contains parameters peculiar to $1 t^{*}$ (and of course there are comon parameters). For example let data set 1 contain names $A B C$ and data set 2 contain names $D E B$. One could handle such a problem by noting that the list ABCDE contains both name lists. Thus one could use subroutine PERMUT on each data set comparing it to the master list, $A B C D E$, and then the results could be combined using subroutine THH An alternative automated method for handling this problem is to use subcoutine COMBO with data set 1 (assuming it is in triangular form) and ramelist 2 . The result would be data set 1 in double subscripted form and arranged to the namelist $A C D E B$ (names A and C are peculiar to daté set I and are put first). Having determaned the namelist one could apply subroutine PERMUT to data set 2 and give it a compatible namelist ordering.

The process of increasing the namelist stze to accommodate new variables can lead to problems with excessuvely long namelists, i.e., with high dimension. If it is known that a certain set of variables will not occur in future data sets then these variables can be eliminated and the problem dimension reduced. To elimirate a vector y from a SRIF array, first use subroutine $R 2 A$ to put the y names furst in the namelisc; then use subroutine THH to retriangularize and finally use subroutine R?RA to put the y independent subarray in position for further use; vaz.

$$
[R] \xrightarrow{R 2 A}[A] \xrightarrow{T H H}\left[\begin{array}{lll}
R_{y} & R_{y x} & z_{y} \\
0 & R_{x} & z_{x}
\end{array}\right] \xrightarrow{-\quad 22 R A}\left[R_{x} z_{x}\right]
$$

The rows $\left[R_{y} R_{y x} z_{y}\right]$ can be used to recover a y estimate (and its covariance) when an estimate for x (and its covariance) are determined. (See example II.4).

Still another application related to the combining of data sets involves the combining of SRIF triangular data arrays. One might encounter such problems when combining data from different space missions (that involve common parameters) or one might choose to process data of each type* or tracking station separately and then combine the resulting SRIF arrays. Triangular arrays can be combıned using subroutine TTHH, assuming that subroutines R2A, THH and R2RA have been used previously to formulate a common parameter set for each of the sub problems.

II. 7 Batch Sequential Whyte Noise

It is not uncommon to have a problem where each data set contains a set of parameters that apply only to that set and not to any other, viz. the data is of the form

$$
A_{j} x+B_{j} y_{j}=z_{j}-v_{j} \quad j=I, \ldots, N
$$

where there is generally a priori information on the vector y_{j} variables. Rather than form a concatenated state vector composed of x, y_{1}, \ldots, y_{N} which might create a problem involving exhorbitant amounts of storage and computation we solve the problem as follows.' Apply subroutine THH to $\left[B_{1} A_{1} z_{1}\right]$, with the corresponding R initialized with the y_{1} a priori. The resulting SRIF array is of the form

[^5]\[

\mathrm{N}_{\mathrm{y}_{I}}\left\{\left[$$
\begin{array}{lll}
\mathrm{R}_{\mathrm{y}_{1}} & \mathrm{R}_{\mathrm{y}_{1} \mathrm{x}} & \mathrm{z}_{\mathrm{y}_{I}} \\
0 & \mathrm{R}_{\mathrm{x}_{1}} & \mathrm{z}_{\mathrm{x}_{1}}
\end{array}
$$\right]\right.
\]

Copy the top $\mathrm{N}_{\mathrm{y}_{\mathrm{I}}}$ rows if one will later want an estimate or covariance of the y_{1} parameters. Apply subroutine TZERO to zero the top $\mathrm{N}_{\mathrm{y}_{1}}$ rows and using subroutine R2RA set in the y_{2} a priori ${ }^{*}$. This SRIF array is now ready to be combined with the second set of data $\left[B_{2} \quad A_{2} Z_{2}\right]$ and the procedure repeated.

A somewhat analogous situation is represented by the class of problems that involve noisy model variations, i.e., the state at step $j+1$ satisfies

$$
x_{j+1}=x_{j}+G_{j} w_{j}
$$

where matrix G_{j} is defined so that w_{j} is independent of x_{j} and $w_{j} \in N\left(0, Q_{j}\right)$. Models of this type are used to reflect that the problem at hand is not truly one of parameter estimation, and that sone (or all) of the components vary in a random (or at least unknown) manner that is statistically bounded. To solve this problem in a SRIF formulation suppose that a pricri for X_{j} and w_{j} are written in data equation form (cf ref. [3]),

$$
\begin{aligned}
& R_{j} x_{j}=z_{j}-v_{J} ; \quad v_{j} \varepsilon \mathbb{N}\left(0, I_{n_{W}}\right) \\
& Q_{j}^{-\frac{1}{2}} W_{j}=0-v_{j}^{(W)} ; \quad v_{j}^{(W)} \varepsilon \mathbb{N}(0, I)
\end{aligned}
$$

where $Q_{j}^{\frac{1}{2}}$ is a Cholesky factor of Q_{j} that is obtainable from COV2RI. Conbining these two equations with the one for x_{j+1} gives

[^6]\[

\left[$$
\begin{array}{cc}
I_{n_{w}} & 0 \\
-R_{j} G_{j} Q_{j}^{\frac{1}{2}} & R_{j}
\end{array}
$$\right]\left[$$
\begin{array}{c}
\hat{w}_{j} \\
x_{j+1}
\end{array}
$$\right]=\left[$$
\begin{array}{l}
0 \\
z_{j}
\end{array}
$$\right]-\left[$$
\begin{array}{c}
v_{j}^{(w)} \\
v_{j}
\end{array}
$$\right]
\]

where $Q_{j}^{\frac{1}{2}} W_{J}=w_{j}$. This is the equation to be trıangularized with subroutine THH, i.e.,

If the problem is arranged so that Q_{J} is diagonal one can reduce storage and computation. The form of this algorithm is designed to allow the use of singular Q_{j} matrices.

When the a priori for X_{J} and Q_{j} are given in $U-D$ factored form, one can obtain the $U-D$ factors for x_{j+1} as follows:

Let $\quad Q_{j}=U^{(q)} D^{(q)}\left(U^{(q)}\right)^{T} \quad$ (use COV2UD if necessary)
Set $\bar{G}=G_{J} U^{(q)}=\left[g_{1}, \ldots, g_{n_{W}}\right], D^{(q)}=\operatorname{Diag}\left(d_{1}, \ldots, d_{n_{W}}\right)$
Apply subroutine AGTRN n_{w} times, with $\bar{U}_{1}=\bar{U}_{j}, \bar{D}_{1}=D_{j}$
$\left.\begin{array}{rl}(\bar{U}-\bar{D})_{k} ; d_{k}, g_{k} \xrightarrow{A G T R N}(\bar{U}-\bar{D})_{k+1} \\ \text { 1.e. } \quad\left(\bar{U}_{k} \bar{D}_{k} \bar{U}_{k}^{T}+d_{k} g_{k} g_{k}^{T}=\bar{U}_{k+1} \bar{D}_{k+1} \bar{U}_{k+1}^{T}\right)\end{array}\right\} \quad k=I, \ldots, n_{W}$
Then $U_{j+1}=\bar{U}_{n_{w}}, D_{j+1}=\bar{D}_{n_{w}}$

Certain filtering problems involve dynamic models of the form

$$
x_{j+l}=\Phi_{j} x_{j}+G_{j} w_{j}
$$

Given an estimate for $\mathrm{x}_{\mathrm{j}}, \hat{\mathrm{x}}_{\mathrm{j}}$, the predicted estimate for $\mathrm{x}_{\mathrm{j}+1}$, denoted \tilde{x}_{j+1} is simply ${ }^{*}$

$$
\widetilde{x}_{j+1}=\Phi_{j} \hat{x}_{j}
$$

The U-D factors of the estimate error corresponding to the estimate \tilde{x}_{j+1} can be obtained using the weighted Gram-Schmidt triangularization subroutine

$$
\left[\Phi_{j} U_{j} l \mid \bar{G}\right], \operatorname{Diag}\left(D_{j}, D(q)\right) \xrightarrow{W G S}\left(\widetilde{U}_{j+1}-\widetilde{D}_{j+1}\right)
$$

II. 8 Miscellaneous Uses of the Various ESP Subroutines

In certain parameter analyses we may want to reprocess a set of data suppressing different subsets of variables. In this case the or iginal data should be left unaltered and subroutine $E 2 A 1$ used to copy A into A_{1}, which then can be modified as dictated by rne analysis.

Covariance analyses sometimes are inttiasized using a covariance matrix from a different poblem (or a diffcred phase of the same probleml. In such cases it may be necessary to permute, delete or insert rows and columns into the covariance matrix; and that can be achieved using subroutine C2C.

If a priori for the problem at hand is given as a covariance matriv: then one can compute the corresponding SRTF or U-D initialization using

[^7]subroutines COV2RI or COV2UD. Of course, if the covariance is diagonal the appropriate R and $U-D$ factors can be obtained more simply. To convert a prıori given in the form of an information matrix to a corresponding SRIF matrix one applies subroutine INF2R. To display covariance results corresponding to the SRIF or $U-D$ filter one can use subroutines UTINV, R12COV and UD2COV. The vector stored covariance results are displayed in a triangular format using subroutine TRIMAT. Aside: After careful consideratıon it was decided that subrouthnes to multiply matrices would not be included in our ESP. Our reasons are that parameter estimation does not, in the main, involve matrix multiplication; and when such products occur they generally involve matrices with special structures (viz. rectangle x triangle, triangle x rectangle, diagonal x triangle, etc). To see that these computations are not lengthy or complicated we illustrate how to compute $z=R x$ where R is a triangular vector stored matrix and x is an N vector, $I I=0$ DO $2 I=1, N$ SUM=0. $I I=I I+I$ $@ I I=(I, I)$
$I K=I I$

DO $1 \mathrm{~K}=\mathrm{I}, \mathrm{N}$
SUM $=S U M+R(I K) *_{x}(K) \quad @ I K=(I, K)$
$1 \quad I K=I K+K$
$2 \quad \mathrm{z}(\mathrm{I})=$ SUM @z can overwrite x if desired.

Note that the $I I$ and $I K$ incremental recursions are used to circumvent the $N(N+1) / 2$ calculations of $I K=K(K-1) / 2+I$.

A later more encyclopedic subroutine directory may include the. various matrix products that occur in linear algebra applications. End of Aside

III. SUBROUTINE DIRECTORY SUMMARY

1. AGTRN - (Agee-Turner)

Computes updated U-D factors corresponding to a rank 1 matrix modificatıon; i.e., given $U-D, a \operatorname{scalar} c$, and vector v, \bar{U} and \bar{D} are computed so that $U D U^{T}=U D U^{T}+c v v^{T}$. Both c and v are destroyed durang the computation, and the resultant (vector stored) U-D array replaces the original one. Uses for this routine include (a) adding process noise effects to a U-D factored Kalman filter; (b) computing consider covariances (cf Section II.5); (c) computing "actual" covariance factors resulting from the use of suboptimal Kalman filter gains; and (d) adding measurements to a U-D factored information matrix.
2. A2A1 - (A to A1)

Reorders the columns of a rectangular matrix A, storing the result in matrix $A l$. Columns can be deleted and new columns added. Zero columns are inserted which correspond to new column name entries. Matrices A and AI cannot share common storage.

Example III. 1

$\left[\begin{array}{ccc}\alpha & B & C \\ 1 & 5 & 9 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12\end{array}\right] \xrightarrow{\text { A2A1 }}\left[\begin{array}{ccccc}\mathrm{B} & \mathrm{F} & \mathrm{G} & \mathrm{C} & \mathrm{H} \\ 6 & 0 & 0 & 10 & 0 \\ 7 & 0 & 0 & 11 & 0 \\ 8 & 0 & 0 & 12 & 0\end{array}\right]$

The new namelist (BFGCH) contains F, G and H as new columns and deletes the column corresponding to name α.

Example III. 2

Suppose one is given an observation data file with regression coefficients corresponding to a state vector with components say, $x, y, z, v_{x}, v_{y}, v_{z}$ and station location errors. Suppose further, that the vector being estimated has components $a_{r}, a_{x}^{*}, a_{y}^{*}$, $x, y, z, v_{x}, v_{y}, v_{z}, G M$ and station location errors. A2Al can be used to reorder the matrix of regression coefficients to correspond to the state being estimated. Zero coefficients are set in place for the accelerations and GM which are not present in the original file.
3. COMBO - (combine R and A namelists)

The upper triangular vector stored matrix R has its columns permuted and is copied into matrix A. The names associated with R are to be combined with a second namelist.

The namelist for A is arranged so that R names not contained in the second list appear first (left most). These are then followed by the second list. Names in the second list that do not appear in the R namelist have columns of zeros associated with them,

Example III. 3

[^8]A principal application of this subroutine is to the problem of combining equation sets containing different variables, and automating the process of combining name lists.
4. COV2RI - (Covariance to R inverse)

An input positive semi-definite vector stored matrix P is replaced by its upper triangular vector stored Cholesky factor $U, P=U U^{T}$. The name $R I$ is used because when the input covariance is positive definite, $U=R^{-1}$. 5. COV2UD - (Covariance to U-D factors)

An input positive semi-definite vector stored matrix P is replaced by its upper triangular vector stored $U-D$ factors. $P=U D U^{T}$. 6. $\mathrm{C} 2 \mathrm{C}-(\mathrm{C}$ to C$)$

Reorders the rows and columns of a square (double subscripted) matrix C and stores the result back in C. Rows and columns of zeros are added when new column entries are added.

Example III. 4

$$
\begin{gathered}
\mathrm{A} \\
\mathrm{~A} \\
\mathrm{~B} \\
\mathrm{~B} \\
\Gamma
\end{gathered}\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right] \xrightarrow{\mathrm{C} 2 \mathrm{C}} \begin{gathered}
\Gamma \\
\mathrm{P} \\
\mathrm{~B} \\
\mathrm{Q}
\end{gathered}\left[\begin{array}{cccc}
9 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 \\
8 & 0 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Names P and Q have been added and name A deleted. An important application of this subroutine is to the rearranging of covariance matrices. 7. INF2R - (Information matrix to R)

Replaces a vector stored positive semi-definite information matrix Λ by its lower triangular Cholesky factor $R^{T} ; \Lambda=R^{T} R$. The upper triangular matrix R is in the form utilized by the SRIF algorithms. The algorithm is designed to handle singular matrices because it is a
common practice to omit a priori information on parameters that are either poorly known or which will be well determined by the data.

8. PERMUT

Reorders the columns of matrix A, storing the result back in A. This routine differs from A2A1 principally in that here the result overwrites A. PERMUT is especially useful in applications where storage is at a premium or where the problem is of a recursive nature. 9. RINCON - (R inverse with condition number bound, CNB)

Computes the inverse of an upper triangular vector stored matrix R using subroutine UTINV. A Frobenius bound (CNB) for the condition number of R is computed too. This bound acts as both an upper and a lower bound, because $\mathrm{CNB} / \mathrm{N} \leq$ condition number $\leq \mathrm{CNB}$. When this bound is within several orders of magnitude of the machine accuracy the computed. inverse is not to be trusted, (viz if $\mathrm{CNB} \geq 10^{15}$ on an 18 decimal digit machine R is ill-conditioned).
10. RI2COV - (RI to covariance)

This subroutine computes sigmas (standard deviations) and/or the covariance of a vector stored upper triangular square root covariance matrix, RINV (SRIF inverse). The result, stored in COVOUT (covariance output) is also vector stored, COVOUT can overwrite RINV.
11. \quad R2A - (R to A)

The columns of a vector stored upper triangular matrix R are permuted and variables are added and/or deleted. The result is stored in the double subscripted matrix A. In other respects the subroutine $1 s$ like A2A1.

Example III. 5

α	B	C	D	E
$\left[\begin{array}{rrrrr}2 & 4 & 8 & 14 & 22 \\ 0 & 6 & 10 & 16 & 24 \\ 0 & 0 & 12 & 18 & 26 \\ 0 & 0 & 0 & 20 & 28 \\ 0 & 0 & 0 & 0 & 30\end{array}\right]$				

\hline 24 \& 0 \& 8 \& 4

26 \& 0 \& 12 \& 0

28 \& 0 \& 0 \& 0

30 \& 0 \& 0 \& 0\end{array}\right]\)
R is vector stored as $R=(2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)$ with namelist (α, B, C, D, E) associated with it. Names α and D are not included in matrix A, and a column of zeros corresponding to name F is added.

One trivial, but perhaps useful, application is to convert a vector stored matrix to a double subscripted form. R2A is used most often when one wants to rearrange the columns of a SRIF array so that reduced order estimates, sensitivites, etc. can be obtained; or so that data sets containing different parameters can be combined.
12. R2RA - (Triangular block of R to triangular block of RA)

A triangular portion of the vector stored upper triangular matrix R is put into a triangular portion of the vector stored matrix RA. The names corresponding to the relocated block are also moved. R can coincide with RA.

```
*
    see also the aside in the introduction
```


Examples III. 6

RA
or

R

Note that an upper left triangular submatrix can slide to any lower position along the diagonal, but that a submatrix moving up must go to the upper leftmost corner. Upper shifting is used when one'is Interested in that subsystem; and the lower shifting is used, for example, when inserting a priori information for consider analyses.
13. RUDR - (SRIF R converted to U-D form or vice versa)

A vector stored SRIF array is replaced by a vector stored U-D form or conversely, A point to be noted is that when data is involved the right side of the SRIF data equation transforms to the estimate in the $U-D$ array.
14. THH - (Triangular Householder data packing)

An upper triangular vector stored matrix R is combined with a rectangular doubly subscripted matrix A by means of Householder orthogonal transformations. The result overwrites R, and A is destroyed in the process.

15. TRIMAT - (Triangular matrix print)

Prints a vector stored upper triangular matrix, using a matrix format.

Example III. 7
$R(10)=(2,4,6,8,10,12,14,16,18,20)$ with assoclated namelist ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) is printed as

	A	B	C	D
A	2	4	8	14
B		6	10	16
C			12	18
D				20

(The numbers are printed to 8 significant floating point digits).

To appreciate the importance of this subroutine compare the vector
$R(10)$ with the double subscript representation.
16. TTHH - (Two triangular arrays are combined using Householder orthogonal transformations)

This subroutine combines two single subscripted upper triangular SRIF arrays, R and RA using Householder orthogonal transformations. The result overwrites R .

[^9]
17. TZERO - (Zero a horızontal segment of a vector stored upper triangular matrix)

Upper triangular vector stored matrix R has its rows between ISTART and IFINAL set to zero.

Example III. 8
To zero row 2 and 3 of $R(15)$, in the example of subroutine 11.

$$
\begin{aligned}
& R(15)=(2,4,6,8,10,12,14,16,18,20,22,24,26,28,30) \\
& R(15)=(2,4,0,8,0,0,14,0,0,20,22,0,0,28,30)
\end{aligned}
$$

1.e.,

$$
\left[\begin{array}{rrrrr}
2 & 4 & 8 & 14 & 22 \\
0 & 6 & 10 & 16 & 24 \\
0 & 0 & 12 & 18 & 26 \\
0 & 0 & 0 & 20 & 28 \\
0 & 0 & 0 & 0 & 30
\end{array}\right] \xrightarrow{\text { TZERO }}\left[\begin{array}{rrrrr}
2 & 4 & 8 & 14 & 22 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 20 & 28 \\
0 & 0 & 0 & 0 & 30
\end{array}\right]
$$

[^10]18. UDMES - (U-D measurement update)

Given the U-D factors of the a priori estimate error covariance and the measurement, $z=A x+v$ this routine computes the updated estimate and $U-D$ covariance factors, the predicted residual, the predicted residual variance, and the normalized Kalman gain. This is Bierman's U-D measurement update algorıthm.
19. UD2COV - (U-D factors to covariance)

The input vector stored U-D matrix (diagonal D elements are stored as the diagonal entries of U) is replaced by the covariance P, also vector stored. $P=U D U^{T}$. P can overwrite U to economize on storage.
20. UD2SIG - (U-D factors to sigmas)

Standard deviations corresponding to the diagonal elements of the covariance are computed from the $U-D$ factors. This subroutine, a restricted version of UD2COV can print out the resulting sigmas and a title. The input U-D matrix is unaltered.
21. UTINV - (Upper triangular matrix inversion)

An upper triangular vector stored matrix $R I N(R$ in) is inverted and the result, vector stored, is put in ROUT(R out). ROUT can overwrite RIN to economize on storage. If a right hand side is included and the bottommost tup of RIN has a -1 set in then ROUT will have the solution in the place of the right hand side.
22. UTIROW - (Upper triangular inversion, inverting only the upper rows)
INPUT OUTPUT

An input vector stored R matrix with its lower left triangle assumed to have been already inverted is used to construct the upper rows of the matrix inverse of the result. The result, vector stored, can overwrite the input to economize on storage.

If the columns comprising $R_{x y}$ represent consider terms then taking R_{y}^{-1} as the identity gives the sensitivity on the upper right portion of the result. If $R_{y}^{-1}=\operatorname{Diag}\left(\sigma_{y}, \ldots, \sigma_{n_{y}}\right)$ then the upper right portion of the result represents the perturbation. Note that if z (the right hand side of the data equation) is included in $R_{x y}$ then taking the corresponding $\mathrm{R}_{\mathrm{y}}^{-1}$ diagonal as -1 results in the filter estimate appearing as the corresponding column of the output array. When n_{y} is zero this subroutine is equivalent to UTINV.
23. WGS - (Weighted Gram Schmidt matrix triangularization)

An input rectangular (possibly square) matrix W and a diagonal weight matrix, D_{w}, are transformed to (U-D) form; i.e,

$$
S D_{w} W^{T}=U D U^{T}
$$

where U is unit upper triangular and D is diagonal. The weights D_{v} are assumed nonnegative, and this characteristic is inherited by the resulting D.

IV. SUBROUTINE DIRECTORY USER DESGRIPTION

1. AGTRN (Agee-Turner U-D rank one modification)

Purpose
To compute the (updated) $U-D$ factors of $U D U^{T}+C V V^{T}$.
CALL AGTRN (UIN, UOUT, N, C, V)

Argument Definitions

$\operatorname{UIN}(N *(N+1) / 2) \quad$ Input vector stored positive semidefinite $U-D$ array (with the D entries stored on the diagonal of U)

UOUT $\left(N^{*}(N+1) / 2\right) \quad$ Output vector stored result UOUT=UIN is allowed

Matrix dimension
Input scalar, destroyed by the algorithm Input vector, destroyed by the algorithm

Remarks and Restrictions

If C negative is used the algorithm is numerically unstable, and the result may be numerically unreliable. Singular U matrices are allowed, and these can result in singular output U matraces. Functional Description

This rank one modification is based on a result published by Agee and Turner (1972), White Sands Missile Range Tech. Report No. 38. See also Ref. [3] where the algorithm is derived using geometric arguments.

$$
77-26
$$

2. A 2 A 1 (A to A 1)

Purpose

To rearrange the columns of a namelist indexed matrix to conform to a desired namelist.

CALL A2A1 (A, IA, IR, LA, NAMA, AI, IAI, LAI, NAMA1)

Argument Definitions

A(IR,LA) Input rectangular matrix
IA Row dimension of A, IA.GE.IR
IR Number of rows of A that are to be arranged

LA Number of columns in A; this also represents the number of parameter names associated with A

NAMA(LA) Parameter names associated with A
A1 (IR, LAI) Output rectangular matrix
IA1 Row dimension of A1, IA1.GE.IR
LAI Number of columns in Al; this also represents the number of parameter names associated with A1

Input list of parameter names to be associated with the output matrix A1

Remarks and Restrictions

A1 cannot overwrite A. This subroutine can be used to add on columns corresponding to new names and/or to delete variables from an array.

Functional Description

The columns of A are copied into A1 in an order corresponding to the NAMAI parameter namelist. Columns of zeros are inserted in those Al columns which do not correspond to names in the input parameter namelist NAMA.
3. COMBO (Combine parameter namelists)

Purpose
To rearrange a vector stored triangular matrix and store the result in matrix A. The difference between this subroutine and R2A is that there the namelist for A is input; here it is determined by combining the list for R with a list of desired names.

CALL COMBO (R,L1,NAM1, L2, NAM2, A, IA, LA, NAMA)

Argument Definitions

$\mathrm{R}(\mathrm{LI} *(\mathrm{LI}+\mathrm{I}) / 2)$	Input vector stored upper triangular matrix
L1	No. of parameters in R (and in NAMI)
NAM1 (L1)	Names associated with R
L2	No. of parameters in NAM2
NAM2 (L2)	Parameter names that are to be combined with R (NAMI list); these names may or may not be in NAMI
A(LI, LA)	Output array containing the rearranged R matrix L1.LE.IA
IA	Row dimension of A
LA	No. of parameter names in NAMA, and the column dimension of $\mathrm{A} . \mathrm{LA}=\mathrm{L} 1+\mathrm{L} 2-$ No. names common to NAM1 and NAM2; LA is computed and output
NAMA (LA)	Parameter names associated with the output A matrix ; consists of names in NAM1 not in NAM2 followed by NAM2

Remarks and Restrictions

The column dimension of A is a result of this subroutine. To avoid having A overwrite neighboring arrays one can bound the column dimension of A by $\mathrm{L} 1+\mathrm{L} 2$.

Functional Description

First the NAMI and NAM2 1ists are compared and the names appearing in NAM1 only have theír corresponding R column entries stored in A (e.g. if NAMI (2) and NAMI (6) are the only names not appearing in the NAM2 list then columns 2 and 6 of R are copied into columns 1 and 2 of A). The remaining columns of A are labeled with NAM2. The A namelist is recorded in NAMA. The NAMI list is compared with NAM2 and matching names have their R column entries copied into the appropriate columns of A. NAM2 entries not appearing in NAM1 have columns of zero placed in A.
4. COV2RI (Covariance to Cholesky Square Root, RI)

Purpose

To construct the upper triangular Cholesky factors of a positive semi-definite matrix. Both the input covariance and the output Cholesky factor (square root) are vector stored. The output overwrites the input. Covariance (input) $=\mathrm{U} * \mathrm{~J} * *^{r} \mathrm{~T}$ (output $\mathrm{U}=$ Rinverse) .

CALL $\operatorname{COV} 2 R I(U, N)$

Argument Definitions

$\mathrm{U}\left(\mathrm{N}^{*}(\mathrm{~N}+1) / 2\right) \quad$ Contains the input vector stored covariance matrix (assumed positive definite) and on output it contains the upper triangular square root factor Dimension of the matrices involved

Remarks and Restrictions

No check is made that the input matrix is positive semidefinite. Singular factors (with zero columns) are obtained ff the input is (a) in fact singular, (b) ill-conditioned, or (c) in fact indefinite; and the latter two situations are cause for alarm. Case (c) and possibly (b) can be identified by using RI2COV to reconstruct the input matrix.

Functional Description

An upper triangular Cholesky reduction of the input matrix is implemented using a geometric algorithm described in Ref. [3].

$$
U(\text { input })=U(\text { output }) * U(\text { output })^{I}
$$

At each step of the reduction diagonal testing is used and negative terms are set to zero.
5. COV2UD (Covariance to UD factors)

Purpose
To obtain the U-D factors of a positive semi-definite matrix. The input vector stored matrix is overwritten by the output U-D factors which are also vector stored.

CALL $\operatorname{COV} 2 \mathrm{UD}(\mathrm{U}, \mathrm{N})$

Argument Definitions

$\mathrm{U}\left(\mathrm{N}^{*}(\mathrm{~N}+1) / 2\right) \quad$ Contains the input vector stored covariance matrix; on output it contains the vector stored U-D covariance factors. Matrix dimension

Remarks and Restrictions

No checks are made in this routine to test that the input U matrıx is positive semi-definite. Singular results (with zero columns) are obtained if the input is (a) in fact singular, (b) il1-conditioned, or (c) in fact indefinite; and the latter two situations are cause for alarm. Case (c) and possibly case (b) can be identified by using UD2COV to reconstruct the input matrix. Note that although indefinite matrices have U-D factorizations, the algorithm here applies only to matrices with non-negative eigenvalues.

Functional Description

An upper triangular U-D Cholesky factorization of the input matrix is implemented using a geometric algorithm described in Ref. [3].

$$
U(\text { input })=U * D * U^{T}, \quad U-D \text { stored in } U \text { on output }
$$

at each step of the reduction diagonal testing is used to zero negative terms.

6. C 2 C (C to C)

Purpose

To rearrange the rows and columns of C , from NAMI order to NAM2 order. Zero rows and columns are associated with output defined names that are not contained in NAMI.

> CALL C2C(C,IC,L1,NAM1, L2, NAM2)

Argument Definitions
$C(L 1, L 1) \quad$ Input matrix
IC Row dimension of C IC.GE.L $=$ MAX(L1,L2)

L1
No. of parameter names associated with the input C

NAM1(L) Parameter names associated with C on input. (Only the first Ll entries apply to the input C)

No. of parameter names associated with the output C

NAM2 (L2)
Parameter names associated with the output C

Remarks and Restrictions

The NAM2 list need not contain all the original NAMI names and L1 can be .GE. or .LE. L2. The NAMI list is used for scratch and appears permuted on output. If L2.GT.L1 the user must be sure that NAMI has L2 entries available for scratch purposes.

Functional Description

The rows and columns of C and NAM1 are permuted pairwise to get the names common to NAM1 and NAM2 to coalesce. Then the remaining rows and columns of $\mathrm{C}(\mathrm{L} 2, \mathrm{~L} 2)$ are set to zero.
7. INF2R (Information matrix to R)

Purpose

To compute a lower triangular Cholesky factorization of the input positive semi-definite matrix. The result transposed, is vector stored; this is the form of an upper triangular SRIF matrix.

CALL $\operatorname{INF} 2 R(P, N)$

Argument Definitions

$P\left(N^{*}(N+1) / 2\right) \quad$ Input vector stored positive semidefinite (information) matrix; on output it represents the transposed lower triangular Cholesky factor (i.e. the SRIF R matrix)

N Matrix dimension

Remarks and Restrictions
No checks are made on the input matrix to guard against negative eigenvalues of the input, or to detect ill-conditioning. Singular output matrices have one or more rows of zeros.

Functional Description

A Cholesky type lower triangular factorization of the input matrix is implemented using the geometric formulation described in Ref. [3].

$$
\mathrm{U}(\text { input })=[\mathrm{U}(\text { output })]^{\mathrm{T}} *[\mathrm{U} \text { (output) }]
$$

At each step of the factorization diagonal testing is used to zero columns corresponding to negative entries. The result is vector stored in the form of a square root information matrix as it would be used for SRIF analyses.

8. PERMUT (Permute A)

Purpose

To rearrange the columns of a namelist indexed matrix to conform to a desired namelist. The resulting matrix is to overwrite the input.

CALL PERMUT (A, IA, TR,L1,NAM1, L2, NAM2

Argument Definitions

A(IR, L)	Input rectangular matrix, $\mathrm{L}=\max (\mathrm{L} 1, \mathrm{~L} 2)$ IA
IR	Row dimension of A, IA.GE.IR Number of rows of A that are to be rearranged
NAM1 (L)	Number of parameter names associated with the input A matrix
L2	Parameter names associated with A on input (only the first L1 entries apply to the input A)
NAM2	Number of parameter names associated with the output A matrix
Parameter names associated with the output A	

Remarks and Restrictions

This subroutine is similar to A2A1; but because the output matrix in this case overwrites the input there are several differences. The NAM1 vector is used for scratch, and on output it contains a permutation of the input NAM1 list. The user must allocate $\mathrm{L}=\max (\mathrm{L} 1, \mathrm{~L} 2)$ elements of storage to NAM1. The extra entries, when L2 $>\mathrm{L} 1$, are used for scratch.

Functional Description

The columns of A are rearranged, a pair at a time, to match the NAM2 parameter namelist. The NAM1 entries are permuted along with the columns, and this is why dim (NAM1) must be larger than LI (when L2>L1). Colums of zeroes are inserted in A which correspond to output names that do not appear in NAMI.
9. RINCON (R inverse with condition number bound)

Purpose
To compute the inverse of an upper triangular vector stored triangular matrix, and an estimate of its condition number.

CALL RINCON (RIN,N,ROUT., CNB)
Argument Definitions
$\operatorname{RIN}\left(N^{*}(N+1) / 2\right) \quad$ Input vector stored upper triangular matrix

N

ROUT ($\left.N^{*}(\mathbb{N}+1) / 2\right) \quad$ Output vector stored matrix inverse (RIN = ROUT is permitted)

CNB
Condition number bound. If k is the condition number of RIN, then CNB/N.LE.K.LE CNB

Remarks and Restrictions
The condition number bound, CNB serves as an estimate of the actual condition number. When it is large the problem is ill-conditioned. The matrix inversion is computed using subroutine UTINV.

Functional Description

The matrix inversion, a triangular back substitution, is accomplisned via subroutine UTINV. If any diagonal element of the input R matrix is zero the inversion is not attempted; instead a message is printed. The condition number bound is computed as follows:

$$
\begin{aligned}
& \text { F.NORM R }=\sum_{J=1}^{\text {NTOT }} R(J)^{2} \\
& \text { F.NORM } R^{-1}=\sum_{J=1}^{\text {NTOT }} R^{-1}(J)^{2}
\end{aligned}
$$

where $N T O T=N^{*}(N+1) / 2$ is the number of elements in the vector stored triangular matrix. The condition number bound, CNB, is given by $C N B=\left(F . \text { NORM } R \div F \cdot N O R M R^{-1}\right)^{1 / 2}$
F.NORM is the Frobenius norm, squared. The inequality
$\mathrm{CNB} / \mathrm{N} \leq$ condition number $\mathrm{R} \leq \mathrm{CNB}$
is a simple consequence of the Frobenius norm inequalities given in Lawson-Hanson "Solving Least Squares," page 234.
10. RI2COV (RI Triangular to covariance)

Purpose

To compute the covariance matrix and/or the standard deviation of a vector stored upper triangular square root covariance matrix. The output covariance matrix, also vector stored, may overwrite the input.

CALL RI2COV (RINV,N,SIG,COVOUT,KOV)

Argument Definitions

$\operatorname{RINV}(\mathrm{N} *(\mathrm{~N}+1) / 2)$	```Input vector stored upper triangular covariance square root (RINV =R inverse is the inverse of the SRIF matrix).```
N	Dimension of the RINV matrix
SIG (N)	Output vector of standard deviations
COVOUT $(N *(N+1) / 2)$	Output vector stored covariance matrix (COVOUT = RINV is allowed)
$\operatorname{KOV}\left\{\begin{array}{l} . \mathrm{GT} .0 \\ . \mathrm{LT} .0 \\ . \mathrm{EQ} .0 \end{array}\right.$	Compute covariance and sigmas using the first KOV rows of RINV Compute only the sigmas using the first KOV rows of RINV No covariance, but all sigmas (e.g. use all N rows of RINV)

Remarks and Restrictions

Replacing N by $|\mathrm{KOV}|$ corresponds to computing the covariance of
a lower dimensional system.

Functional Description

COVOUT=RINV*RINV* $\%$ T.
11. R 2 A (R to A)

Purpose

To place the upper triangular vector stored matrix R into the matrix A and to arrange the column to match the desired NAMA parameter list. Names in the NAMA list that do not correspond to any name in NAMR have zero entries in the corresponding A columns.

CALL R2A(R,LR,NAMR, A, IA, LA, NAMA)

Argument Definitions

$R(L R *(L R+1) / 2) \quad$ Input upper triangular vector stored array
LR Row dimension of vector stored R
NAMR(LR) Parameter names associated with R
A(LR,LA) Matrix to house the rearranged R matrix
IA
LA
Row dimension of A, IA.GE.LR.
No. of parameter names associated with the output A matrix.

NAMA (LA)
Parameter names for the output A matrix.

Functional Description
The matrix A is set to zero and then the columns of R are copied into A.
12. R2RA (Permute a subportion R_{A} of a vector stored triangular matrix) Purpose

To copy the upper left (lower right) portion of a vector stored upper triangular matrix R into the lower right (upper left) portion of a vector stored triangular matrix RA.

CALL R2RA(R,NR,NAM,RA,NRA,NAMA)

Argument Definitions

$\mathrm{R}(\mathrm{NR} *(\mathrm{NR}+1) / 2)$	Input vector stored upper triangular matrix
NR	Dimension of vector stored R matrix \dagger
NAM (NR)	Names associated with R.
RA (NRA* (NRA+1)/2)	Output vector stored upper triangular matrix
NRA	If $N R A=0$ on input, then NAMA(1) should have the first name of the output namelist. In this case the number of names in NAMA, NRA, will be computed. The lower right block of R will be the upper left block of RA. If $N R A=$ last name of the upper left block that is to be moved then this upper block is to be moved to the lower right corner of RA. When used in this mode NRA=NR on output ${ }^{\dagger}$.
NAMA (NRA)	Names associated with RA. Note that NRA used here denotes the output value of NRA.

Remarks and Restrictions

RA and NAMA can overwrite R and NAM. The meaning of the NRA $=0$
option is clarified by the following example:

[^11]When NRA $=0$ and $\operatorname{NAMA}(1)={ }^{\prime} C$ ' we are asking that the lower triangular portion of R, beginning at the column labeled C, be moved to form the first (in this case 3) columns of RA. Incidentally, RA could have additional columns; these columns and their names would be unaltered by the subroutine.

The meaning of the other NRA option is illustrated by the following example;

When NRA = 'C' we are asking that the upper left block of R, up to the column labeled C, be moved to the lower left portion of RA and the corresponding names be moved too. If $R A$ overwrites R, as in the example, then the first two rows of R remain unchanged and since NAMA overwrites NAM, the labels of the first two columns remain unaltered.

The remark that $N R A=N R$ on output means, in this example, that the column with name C in R is moved over to column 5. If one wanted to slide the upper left triangle corresponding to names $A B C$ of R to columns 7-9 of an RA matrix (of unspecified dimension, ≥ 9), then one should set $N R=9$ in the subroutine call. Thus NR, when used in this sliding down the diagonal mode, does not represent the dimension of R; but indicates how far the slide will be.
1.3. RUDR (R t:o $U-D$ or $U-D$ to R)

Purpose
To transform an upper triangular vector stored SRIF array to U-D
form or vice versa.
CALI RUDR (RIN, N, ROU'R,IS)

Argument Definitions

RIN (NBAR* $(N B A R+1) / 2)$	Input upper triangular vector stored SRIF or U-D array; NBAR $=A B S(N)+1$
ROUT (NBAR*	

Subroutine used: UTINV
Functional Description
Consider the $N>0$ case. $R I N=R$ is transformed to ROUT $=R$ inverse using subroutine UTINV with dimension $N+I S$. If $I S=1$ the subroutine sets $\operatorname{RIN}((N+1)(N+2)) / 2)=-1$. so that the $N+1$ st column of ROUT will be the X estimate followed by $-1 . R^{-1}=\mathrm{UD}^{1 / 2}$ so that the diagonals are square root scaled U colums. This information is used to construct the U-D array which overwrites ROUT.

Tf N<0 the input is assumed to be a U-N arrav. This arrav is converted to ROUT=UD ${ }^{\frac{1}{2}}$ and then using UTINV, R is computed and stored in ROUT. If $I S=1$ the $U-D$ matrix is assumed augmented by X (estimate), and on output the right side term of the SRIF array is obtained.
14. THH (Triangular Householder Orthogonalization)

Purpose

To compute [$\mathrm{R} \quad \mathrm{z}]$ such that
$T\left[\begin{array}{ll}\widetilde{R} & \widetilde{z} \\ A & z\end{array}\right]=\left[\begin{array}{ll}\hat{R} & \hat{z} \\ 0 & e\end{array}\right] T$ - orthogonal

This is the key algorithm used in the square root information batch sequential fılter.

> CALL THH (R,N,A,IA,M,SOS,NSTRT)

Argument Definitions

$R\left(N^{*}(N+3) / 2\right) \quad$ Input upper triangular vector stored square root information matrix. If estimates are involved SOS.GE.O and R is augmented with the right hand side (stored in the last N locations of R). If SOS.LT. 0 only the first $N *(N+1) / 2$ locations of R are used. The result of the subroutine overwrites the input R

N
$A(M, N+1) \quad$ Input measurement matrix. The $N+1 s t$ column is only used if SOS.GE.O, in which case it represents the right side of the equation $v+A X=z$. A is destroyed by the algorithm, but it is not explicitly set to zero.

Row dimension of A
The number of rows of A that are to be combined with R

Accumulated residual sum of squares corresponding to the data processed prior to this time. On exit SOS represents the updated sum of squares of the residuals $\left.\sum_{i}\left|\|_{i}-A_{i} X_{e s t}\right|\right|^{2}$, summed over the old and new data. It also includes the a priori term
$\left\|R_{o} X_{e s t}{ }^{-z_{o}}\right\|^{2}$. Because SOS cannot
be used if data, z, is not included we use SOS.LT. O to indicate when data is

NSTRT
not included.
First column of the input A matrix that has a nonzero entry. In certain problems, especially those involving the inclusion of a priori statistics, it is known that the first NSTRT-1 columns of A all have zero entries. This knowledge can be used to reduce computation. If nothing is known about A then NSTRT.LE. 1 gives a default value of 1 , i.e. it is assumed that A may have nonzero entries in the very first column.

Pemarks and Restrictions

It is trivial to arrange the code so that R output need not overwrite the input R. This was not done because, in the author's opinion, there are too few times when one desires to have ROUT \neq RIN.

Functional Descriptıon

Assume for simplicity that $N S T R T=1$. Then at step $j, j=1, \ldots, N$ (or N+1 if data is present) the algorithm implicitly determines an elementary Householder orthogonal transformation which updates row j of R and all the columns of A to the right of the j th. At the completion of this step column j of A is $1 n$ theory zero, but it is not explicitly set to zero. The orthogonalization process is discussed at length in the books by Lawson and Hanson, [1] and Bierman [3].
15. TRIIAT (Triangular matrix print)

Purpose
To display a vector stored upper triangular matrix in a two dimensional 8-digit triangular format.

CALL TRIMAT (A, N, CAR, TEXT, NCHAR, NAMES)

Argument Definitions

$A(N * N+1) / 2)$	Vector stored upper triangular matrix
N	Dimension of A
CAR(N)	Parameter names (alphanumeric) associated with A
TEXT (NCHAR)	An array of field data characters to be printed as a title preceding the matrix
NCHAR	No. of characters (nncluding spaces) that are to be printed in text () ABS (NCHAR).LE.126.NCHAR negative is used to avoid skipping to a new page to start printing
NAMES	A logical flag. If NAMES=.F. the CAR namelist is ignored and the colums and rows of A on output appear with numerical column heads

Remarks and Restrictions

Using NCHAR nonnegative, and starting the print at the top of a new page makes it easier to locate the printed result and is especially recommended when dealing with large dimensioned arrays. Page economy can, however, be achieved using the NCHAR negative option. In this case the print begins on the next line.
16. TTHH (Two triangular matrix Householder reduction)

Purpose
To combine two vector stored upper tinangular matrices, R and $R A$ by applying Householder orthogonal transformations. The result overWrites R.

CALL TTHH (R,RA,N)

Argument Definctions
$R(N *(N+1) / 2) \quad$ Input vector stored upper triangular matrix, which also houses the result

RA ($\left.\mathrm{N}^{*}(\mathrm{~N}+1) / 2\right) \quad$ Second input vector stored upper triangular matrix. This matrix is destroyed by the computation.

Matrix dimension
N less than zero is used to indicate that R and $R A$ have right sides $(|N|+1$ columns) and have dimension $|N| *(|N|+3) / 2)$.

Remarks and Restrictions

RA is theoretically zero on output, but is not set to zero.
17. TZERO (Triangular matrix zero)

Purpose

To zero out rows IS (Istart) to IF(Ifinal) of the vector stored upper triangular matrix R.

```
CALL TZERO(R,N,IS,IF)
```

Argument Definition

$\mathrm{R}(\mathrm{N} *(\mathrm{~N}+1) / 2)$	Input vector stored upper triangular matrax
N	Row dimension of vector stored matrix
IS	First row of R that is to be set to zero
IF	Last row of R that is to be set to zero

Functional Description

IS
IF
18. UDMES ($\mathrm{U}-\mathrm{D}$ measurement update)

Purpose

Kalman filter measurement updating using Bierman's U=D measurement update algorithm, cf 1975 CONF. DEC. CONTROL paper. A scalar measurement $z=A^{T} x+v$ is processed, the covariance $U-D$ factors and estimate (if included) are updated, and the Kalman gain and innovations variance are computed.

```
CALL UDMES (U,N,R,A,G,ALPHA)
```


Argument Definitions

INPUTS
U(N* $\left.\mathrm{N}^{*}+1\right) / 2$ Upper triangular vector stored input matrix. D elements are stored on the diagonal. The U vector corresponds to an a priori covariance. If state estimates are involved the last column of U contains X. In this case Dim $U=$ $(\mathrm{N}+1) \div(\mathrm{N}+2) / 2$ and on output $(\mathrm{U}((\mathrm{N}+1) *$ $(N+2) / 2)=z-A * * T * X($ a priori est).

N
Dimension of the state vector

Measurement variance

Vector of Measurement coefficients; if data then $\mathrm{A}(\mathrm{N}+1)=\mathrm{z}$

If ALPHA.LT.zero no estimates are computed (and X and z need not be uncluded)

OUTPUTS

U

ALPHA

A
Updated vector stored U-D factors. When ALPHA (input) is nonnegative the ($N+1$) st column contains the updated estimate and the predicted residual.

Innovations variance of the measurement residual.

Contains $U * * T * A$ (input) and when ALPHA (input) is nonnegative $A(N+1)=$ $z-A * * T * X(a \quad$ priori est)/ALPHA.

$77-26$

G(N) Vector of unweighted Kalman gains, $K=G / A L P H A$.

Remarks and Restrictions

One can use this algorithm with R negative to delete a previously processed data point. One should, however, note that data deletion sometimes introduces numerical errors.

The algorithm holds for $R=0$ (a perfect measurement) but the code may fanl (zero divides occur) if any of the ALPHA terms appearing in the code vanish. Changes in the code which remove the zero divide problems are commented in the code.

Functional Description
The algorithm updates the columns of U, from left to right, using Bierman's algorithm, ef Proc. 1975 Conf. Dec. Control, Houston, Texas, pp 337-346.
19. UD2COV (U-D factor to covariance)

Purpose

To obtain a covariance from its U-D factorization. Both matrices are vector stored and the output covariance can overwrite the input
$U-D$ array, $U-D$ and P are related via $P=U D U^{T}$.
CALL UD2COV (UIN,N,POUT)

Argument Definitions

$\operatorname{UIN}\left(N^{*}(N+1) / 2\right)$	Input vector stored U-D factors, with D entries stored on the diagonal.
POUT $(N *(N+1) / 2)$	Output vector stored covariance matrix N
	Dimension of the matrices involved.

20. UD2SIG (U-D factors to sigmas)

Purpose
To compute variances from the U-D factors of a matrix.

```
CALL UD2SIG(U',IN,SIG,TEXT,NCT)
```


Argument Definıtions

\(\left.$$
\begin{array}{ll}U\left(N^{*}(N+1) / 2\right) & \begin{array}{l}\text { Input vector stored array containing } \\
\text { the U-D factors. The } D \text { (diagonal) } \\
\text { elements are stored on the diagonal } \\
\text { of } U .\end{array} \\
\text { SIG(N) } & \begin{array}{l}\text { Dimension of the U matrix }\end{array}
$$

TEXT () \& Output vector of standard deviations\end{array}\right\}\)| Output label of field data characters, |
| :--- |
| which precedes the printed vector of |
| standard deviations. |

Functional Description
If U and D are written as doubly subscripted matrices then

$$
\operatorname{SIG}(\mathrm{J})=\left(\mathrm{D}(\mathrm{~J}, \mathrm{~J})+\sum_{\mathrm{K}=\mathrm{J}+1}^{\mathrm{N}} \mathrm{D}(\mathrm{~K}, \mathrm{~K})[\mathrm{U}(\mathrm{~J}, \mathrm{~K})]^{2}\right)^{\frac{1}{2}}
$$

If NCT.GT.0 a title is printed, followed by the sigmas.
21. UTINV (Upper triangular matrix inverse)

Purpose

To invert an upper triangular vector stored matrix and store the result in vector form. The algorithm is so arranged that the result can overwrite the input,

CALL UTINV (RIN,N, ROUT)

Argument Definitions

$\operatorname{RIN}\left(\mathrm{N}^{*}(\mathbb{N}+1) / 2\right) \quad$ Input vector stored upper triangular matrix

N
Matrix dimension
ROUT ($\left.N^{*}(N+1) / 2\right)^{\prime} \quad$ Output vector stored upper triangular matrix inverse (ROUT = RIN is permitted

Remarks and Restrictions

I11 conditioning is not tested, but for nonsingular systems the result is as accurate as is the full rank singular value decomposition Inverse. Singularıty occurs If a diagonal is zero. The subroutine terminates when it reaches a zero diagonal. The columns to the left of the zero diagonal are, however, inverted and the result stored in ROUT.

This routine can also be used to produce the solution to $R X=Z$. Place Z in column $N+1$ (viz. $\operatorname{RIN}\left(N^{*}(N+1) / 2+1\right)=Z(1)$, etc.), define $\operatorname{RIN}((N+1)(N+2) / 2)=-1$ and calI the subroutine using $N+1$ instead of N. On return the first N entries of column $N+1$ contain the solution (e.g. ROUT $(N *(N+1) / 2+1)=X(1)$, etc. $)$.

Because matrix inversion is numerically sensitive we recommend using this subroutine only in double precision.

Functional Description

The matrix Inversion is accomplished using the standard back substitution method for unverting triangular matrices, cf. the book references by Lawson and Hanson, [1] or Bierman [3].
22. UTIROW (Upper triangular inverse, anverting only the upper rows) Purpose

To compute the inverse of a vector stored upper triangular matrix, when the lower right corner triangular inverse is glven.

CALL UTIROW (RIN, N, ROUT, NRY)

Argument Definitions

$\operatorname{RIN}\left(\mathrm{N}^{*}(\mathrm{~N}+1) / 2\right)$

N
$\operatorname{ROUT}(\mathrm{N} *(\mathrm{~N}+\mathrm{I}) / 2)$

NRY

Input vector stored upper triangular matrix. Only the first N - NRY rows are altered by the algorithm.

Matrix dimension.
Output vector stored upper triangular matrix inverse. On input the lower NRY dimensional right corner contains the gaven (known) inverse. This lower right corner matrix is left unchanged. (ROUT $=$ RIN is permitted.)

Number of rows, starting at the bottom, that are assumed already inverted.

Remarks and Restrictions

The purpose of this subroutine is to complete the computation of an upper triangular matrix inverse, given that the lower right corner has already been inyerted. Part of the input, the rows to be inverted; are inserted yia the matrix RIN. The portion of the matrix that has already been inverted is entered yia the matrix ROUT. It may seem odd that part of the input matrix is put into RIN and part into ROUT. The reasoning behind this decision is that RIN represents the input matrix to be inyerted (it just happens that we do not make use of the lower right triangular entries) ; ROUT represents the inversion result, and therefore that portion of the inyersion that is given should be entered in this array.

I11 conditioning is not tested, but for nonsingular systems the result is accurate. Singularity halts the algorithm if any of the first N -NRY diagonal elements is zero. If the first zero encountered moving up the diagonal (starting at N-NRY) is at diagonal j then the rows below this element will be correctly represented in ROUT.

To generate estimates do the following: put $N+1$ Into the matrix dimension argument; in the first $N-N R Y$ rows of the last column of RIN put the right hand side elements of the equation $R_{x} x+, R_{x y} y=z_{x}$ (i.e., $R_{x}, R_{x y}$, and z_{x} make up the first N-NRY rows of RIN); in the next NRY entrues of ROUT, beginning in the ($N-N R Y+1$) st element, put $\mathrm{y}_{\text {est }}$ (I.e., $\mathrm{R}_{\mathrm{y}}^{-1}$ and $\mathrm{y}_{\text {est }}$ make up rows $\mathrm{N}-\mathrm{NRY}+1, \ldots, \mathrm{~N}$ of ROUT); and ROUT $((N+1)(N+2) / 2)=-1$. On output, the last column of ROUT will contain $x_{\text {est }}, \mathrm{y}_{\text {est }}$ and -1 .

When NRY $=0$ this algorithm is equivalent to subroutine UTINV. Functional Description

The matrix inversion is accomplished using the standard back substitution method. The computations are arranged row-wise, starting at the bottom (from row $\mathbb{N}-\mathrm{NRY}$, since it is assumed that the last NRY rows have already been inverted).
23. WGS (Weighted Gram-Schmidt matrix triangularization)

Purpose

To compute a vector stored U-D array from an input rectangular matrix W, and a diagonal matrix D_{W} so that $W D_{W} W^{T}=U D U^{T}$.

CALI WGS (W, IMAXW, IW, JW, DW, U, V)

Argument Definitions

W(IW, JW)	Input rectangular matrix, destroyed by the computations
IMAXW	Row dimension of input W matrix, IMAXW.GE.IW
DW(JW)	Diagonal input matrix; the entries are assumed to be nonnegative. This vector is unaltered by the computations
$V(I W *(I W+1) / 2)$	Vector stored output U-D array

Remarks and Restrictions

The algorithm is not numerically stable when negative DW weights are used; negative weights are, however, allowed. If JW is less than IW (more rows than columns), the output U-D array is singular; with IW-JW zero diagonal entries in the output U array.

Functional Description

A D_{W}-orthogonal set of row vectors, $\phi_{1}, \phi_{2}, \ldots, \phi_{I W}$, are constructed from the input rows of the W matrix, i.e., $W=U \phi, \phi D_{W} \phi^{T}=D$. The construction is accomplished using the modified Gram-Schmıdt orthogonal construction (see refs. [1] or [3]). This algorithm is reputed to have excellent numerical properties. Note that the ϕ vectors are not of interest in this routine, and they are overwritten; The V vector used in the program houses vector IW-j+1 of ϕ at step j of algorithm. The fact that the computed $\dot{\phi}$ vectors may not be D orthogonal is of no import in regard to the U and D computed results.
V. FORTRAN Subroutine Listings

SUBROUTINE A2A1 (A,IA,IR,LA,NAMA,A1,IA1,LA1,NAMA1)

SUBROUTINE TO REARRANGE THE COLUMNS OF A(IR.LA). IN NAMA ORDER A2A10010 AND PUT THE RESULT IN A1 (TR.LA1) IN NAMA1 ORDER ZERO COLUMN A2A10020 are inserted in as corresponding to the newly defined names. apa10040

APA10050
A2A10060
IA ROK DIMENSION OF A, IR.LE.IA AZA10070
IR NO. OF ROWS OF A THAT ARE TO BE REARRANGED APA10080
LA NO. OF PARAMETER NAMES ASSOCIATED WITH A ADA10090
NAMA(LA) PARAMFTER NAMES ASSOCIATED WITH A A2A10100
A1(IR.LA1) OUTPUT RECTANGULAR MATRIX A2A10110
A AND A1 CANNOT SHARE COMMON STORAGE A2A10120
IA1 ROW DIMENSION OF A1, IR.LE.IA1 APA10130
LA1 NO. OF PARAMETER NAMES ASSOCIATED WITH A1 AZA10140
NAMA1 (LA1) INPUT LIST OF PARAMETER NAMES TO bE ASSOCIATED ARA10150
WITH THE OUTPUT MATRIX AI
COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL. SEPT. 1976)
DIMENSION A(IA,1), NAMA(1), A1(IA1,1), NAMA1(1)
IMPLICIT DOURLE PRECTSION (A-H.O-Z)
ZERO=0.
$00100 \mathrm{~J}=1$ LIA1
DO 60 I=1, LA
IF (NAMA(I).EQ.NAMA1(J)) GO TO B0 A2A10250
CONTIUE CONTINUE
DO $70 \mathrm{~K}=1$, IR
A1 (K.J)=ZERO a ZERO COL. CORRFS. TO NEW NAME
60 TO 100
DO $90 \mathrm{~K}=1$, IR
$A 1(K, J)=A(K, I)$ D COPY COL. ASSOC. WITH OLD NAME
continue.
RETURN A2A10350
A2A10160
A2A10170
A2A10180
A2A10190
A2A10200
A2A10210
A2A10220
A2A10230
A)A10240

A2A10250
A2A10260
A)A10270
A).A10280

A>A10290
A?A10300
A2A10310
A>A10320
A2A10330

END
A2A10360

	SUBROUTINE COMBO (R,LI, NAM1,L2,NAM2,A,IA,LA,NAMA)	
C		
C	TO REARRANGE A VFCTOR STORED TRIANGULAR MATRIX AND STORF	COMB0010
C	THE RESULT IN MATRIX A. THE DIFFERENCE BETWEEN THIS SUR-	COMB0020
C	ROUTINE AND R2A IS THAT THFRE THE NAMELIST FOR A IS INPIIT.	COME0030
C	HERE IT IS DETERMINED BY COMBINING THE LIST FOR R WITH	COMRO040
C	A LIST OF DESIREN NAMES.	COMB0050
C		COMB0060
C	R(L1*(L.1+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX	COMB0070
C	L1 NO. OF PARAMETERS IN R (AND IN NAM1)	COMRO080
C	NAM1 (L1) NAMES ASSOCIATED WITH R	COMB0090
C	L2 NO. OF PARAMETERS IN NAMP	COMB0100
C	NAM2(L2) PARAMETER NAMES THAT ARE TO BE COMBINED WITH R	Comb0110
C	(NAM1 LIST). THESE NAMES MAY OR MAY NOT RE IN	COMB0120
C	NAM1.	Comb0130
C	A(LI,LA) DUTPUT ARRAY CONTAINING THE REARRANGED	COMB0140
C	R MATRIX, LI.LE.IA.	COMR0150
C	IA ROW DIMENGION OF A	COMB0160
C	LA NO. OF PARAMETER NAMES IN NAMA, AND THE	COMR0170
C	COLUMN DIMENSION OF A. LA=L1+L2-NO. NAMES	COMB0180
C	COMMON TO NAMI AND NAM2. LA IS COMPUTED AND	COMB0190
C	OUTPUT.	COMB0200
C	NAMA(LA) PARAMETER NAMES ASSOCIATED WITH THE OUTPUT A	COMP30210
C	MATRIX. CONSISTS OF NAMES IN NAMI NOT IN	COMB0220
C	NAM2 FOLLOWED BY NAM2.	COMB0230
C		COMB0240
C	COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL. SEPT. 1976)	COMRO250
C		COMRO260
	IMPLICIT DOUBLE PRECISION ($A-H, O-Z$)	COMBO270
	DIMENSION R(1), A(IA,1), NAM1(1), NAM2(1), NAMA(1)	COMB0280
C		COMRO290
	ZERO $=0.0$	COMB0300
	$\mathrm{K}=1$	COMB0310
	DO $100 \mathrm{I}=1 . \mathrm{L} 1$	COMBO320
	DO $50 \mathrm{~J}=1, \mathrm{~L} 2$	COMB0330
	IF (NAMI (I).EQ.NAM2(J)) GO TO 100	COMB0340
	CONTINUE	COMB0350
50	NAMA (K) =NAM1 (I)	COMB0360
	JJ=I*(I-1)/2	COMB0370
	DO $60 \mathrm{~L}=1$, I	COMB0380
60	$A(L, K)=R(J J+L)$	COMB0390
	IF (I.EQ.L1) GO TO 80	COMRO400
	$I P 1=I+1$	COMBO410
	DO 70 L=IP1,L1	COMB0420
70	$A(L, K)=$ ZERO	COMBO430
80	$k=K+1$	COMRO440
100	CONTINUE	COMRO450
C	NAmES UNIQUF TO NAMI ARE NOW in nama	COMBO460
	DO $200 \mathrm{~J}=1 . \mathrm{L} 2$	COMB0470
	DO $150 \mathrm{I}=1 . \mathrm{L} 1$	COMBO480
	IF (NAM2(J).EQ.NAM1 (I)) GO TO 170	COMBO490
150	cont inue	COMBE500
	NAMA (K) =NAM2 (U)	COMP0510
	DO $160 \mathrm{~L}=1 \cdot \mathrm{~L} 1$	COMB0520
160	A $(L, K)=$ ZFRO	COMP30530

```
                                    77-26
C NAMES UNIQUE TO NAM? ARE NOW IN NAMA COMB0540
    GO TO 190 COMBO550
    170 NAMA(K)=NAM2(J)
    COMB0560
C LOCATE DIAGONAL OF PRECEDING COLUMN COMB0570
    JJ=I*(I-1)/2
        DO 180 L=1,I :
    180 A(L,K)=R(JJ+L)
        IF (I.EQ.LI) GO TO 190
        IP1=I+1
        DO 185 L=IP1.L1
    185 A(L,K)=ZERO
    190 K=K+1
    190 K=K+1
    L'A=K-1
C RETURN NAMES MUTUAL TO NAM% AND NAMZ ARE NOW IN NAMA
        RETURN
        END
        COMR0580
    COMR0590
COMB0600
COMRO610
COMB0620
30
COMB0640
COMR0650
COMB0660
COMBO670
COMB0680
COMR0690
COMBO700
```

SUBROUTINE COV2RI (U,N)


```
SUBROUTINE COV2UD (U.N)
    TO OBTAIN THE U-D FACTORS OF A POSITIVE SEMI-DEFINITE MATRIX. COVZUO2O
    THE INPUT MATRIX VECTOR STORED IS OVERWRITTEN BY THE OUTPUT COV2U03O
    U-D FACTORS WHICH ARE ALSO VECTOR STORED. COV2U040
    U(N*(N+1)
    U(N*(N+1)/2) CONTAINS INPIIT VECTOR STORFD COVARIANCE MATRIX. COVZU060
                        ON OUTPUT IT CONTAINS THE VECTOR STORED U-D COVZUO7D
                        COVARIANCE FACTORS.
    N MATRIX DIMENSION COV2U090
                            Cov2U080
    cov2U100
    SINGULAR INPUT COVARIANCES RESULT IN OUTPUT MATRICES WITH ZERO COVZU110
    COLUMNS
                            cov2U120
                                    COV2U130
                                    cov2U140
    COGNIZANT PERSONS: G.J.BIFRMAN/R.A.JACORSON (JPL, FEB. 1977) COVZU150
    cov2U160
    cov2U170
    cov2U180
    cov2U190
    cov2U200
    COV2U210
Z=0.0
    COV2U210
    cov2U230
    cov2U240
J\=N*(N+1)/2
DO 50 J=N,2,-1
    ALPHA=Z
    IF (U(JJ).LT.Z) U(JJ)=Z
    IF (U(JJ).GT.Z) ALPHA=ONE/U(JJ)
    \コニ\JーJ
    KK=0
    KJ=\J
    JM1=J-1
    DO 40 K=1:JM1
        KJ=KJ+1
        BETA=U(KJ)
        U(KJ)=ALPHA*U(KJ)
        IJこJJ
        IK=KK
        DO 30 I=1,K
            IK=IK+1
            IJ=I J+1
            U(IK)=U(IK)-BETA*U(IU)
        KK=KK+K
    CONTINUE
IF (U(1).LT.7) U(1)=7
RETURN
END
```

cov2u010
cov2U230
Cov2U240
cov2U250
covau260
CovaU270
Cov2U280
cov2U290
COV2U300
cov2U310
Cov2U320
cov2U330
cov2U340
Cov2U350
cov2U360
cov2U370
CoV2U380
covau390
cov2U400
cov2U410
cov2U420
Cov2U430
cov2U440
cov2U450
cov2U460
covaU470

SUBROUTINE C2C (C,IC,L1,NAM1.LP,NAM2)		
C		C?COOO10
C	SUBROUTINE TO REARRANGE THE ROWS AND COLUMNS OF MATRIX	C2C00020
C	C(LI,L1) IN NaM1 ORDER `aND PUT THE RESULT IN	C2COOO30
C	C(L2,L2) IN NAM2 ORDER. ZERO COLUMNS AND ROWS ARE	C2C00040
C	ASSOCIATED WITH OUTPUT DEFINED NAMES THAT ARE NOT CONTAINED	C2C00050
C	IN NAM1.	C2C00060
C		C2C00070
C	C(LIPLI) INPUT MATRIX	C2C00080
C	IC ROW DIMENSION OF C, IC.GE.L=MAX(LI,L2)	C2C00090
C	L1 NO. OF PARAMETER NAMES ASSOCIATED WITH THE INPUT C	C2C00100
C	NAM1 (L) PARAMETER NAMES ASSOCIATED WITH C ON INPUT. (ONLY	C2C00110
C	THE FIRST L1 ENTRIES APPLY TO THE INPUT C)	C2C00120
C	L2 NO. OF PARAMETER NAMES ASSOCIATED WITH THE OUTPUT	CC2C00130
C	NAM2(L2) PARAMFTER NAMES ASSOCIATED WITH THE OUTPUT C	C2C00140
C		C?C00150
C	COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL. SEPT. 1976)	C2C00160
C		C2C00170
	IMPLICIT DOUBLE PRECISION ($A=H, O-Z)$	C2C00180
	DIMENSION C(IC.1), NAM1(1), NAM2(1)	C2C00190
C		C2C00200
	ZERO=0.	C2C00210
	L=MAX (L1,L2)	C2C00220
	IF (L.LE.L1) GO TO 5	C2C00230
	$\mathrm{NM}=\mathrm{L} 1+1$	C2C00240
	DO $1 \mathrm{~K}=\mathrm{NM} \cdot \mathrm{L}$	C?COO250
1	NAM1 $(K)=$ ZFRO \quad O ZERO REMAINING NAM1 LOCNS	C2C00260
5	DO $90 \mathrm{~J}=1, \mathrm{~L} 2$	C2C00270
	D0 $10 \mathrm{I}=1 \mathrm{~L}$	C2C00280
	IF (NAM1 (I).EQ.NAM2 (J)) GO TO 30	C2C00290
10	CONTINUE	C2C00300
	GO TO 90	C2C00310
30	IF (I.EQ.J) GO TO 90	C2C00320
	DO $40 \mathrm{~K}=1 \mathrm{~L}$	$\mathrm{C}_{2} \mathrm{COO} 330$
	$H=C(K, J) \quad$ I INTERCHANGE COLUMNS I AND J	C2C00340
	$C(K, J)=C(K, I)$	C2C00350
40	$C(K, I)=H$	C2C00360
	$0080 \mathrm{~K}=1, \mathrm{~L}$	
	H=C (J,K) Q INTERCHANGE ROWS I AND J	$\mathrm{C}_{2} \mathrm{COO} 380$
	$C(J, K)=C(I, K)$	C.C00390
80	$C(I, K)=H$	C2C00400
	NM=NAM1 (I) 且 INTERCHANGE LABELS I AND J	CPC00410
	NAM1 (I)=NAM1 (J)	C2C00420
	NAMI (J) $=$ NM	C2COO430
c 90	CONTINUE	C2C00440
		C2C00450
C	FIND NAMP NAMES NOT IN NAM1 AND SET CORRESPONDING ROWS AND	C2C00460
C	COLUMNS TO ZERO	$\mathrm{C}_{2} \mathrm{C} 00470$
C		C2C00480
	DO $120 \mathrm{~J}=1 . \mathrm{L} 2$	C?COO490
	DO $100 \mathrm{I}=1 . \mathrm{L}$	C2C00500
	IF (NAM1 (I).EQ.NAM2 (J)) GO TO 120	C2C00510
100	CONTINUE	C?C00520
	DO $110 \mathrm{~K}=1 . \mathrm{L} 2$	C2C00530
	$C(J, K)=$ ZFRO	C2C00540
110	$C(K, J)=Z E R O$	C2C00550
120	CONTINUE	C2C00560
C	70	C2C00570
	RETURN 70	C2C00580
	END	C?C00590

C	SUBROUTINE PERMUT	PERMU010
C	SUBROUTINE TO REARRANGE PARAMETERS OF A(IR,L1), NAM1 ORDER	PERMU020
C	TO A(IR,L2), NAM2 ORDER. ZERO COLUMNS ARE INSERTED	PERMU030
C	CORRESPONDING TO THE NEWLY DEFINED NAMES.	PERMU040
C		PFRRMU050
C	A(IR,L) INPUT RFCTANGULAR MATRIX, L=MAX(LI,L2)	Permu060
C	IA ROW DIMFNSION OF A, IA.GE.IR	PFRMU070
C	IR NUMBER OF ROWS OF A THAT ARE TO BE REARRANGED	PERMU080
C	11 NUMBER OF PARAMFTER NAMES ASSOCIATED WITH THE INPUT	PERMU090
C	A Matrix	PERMU100
C	NAMI(L) PARAMETER NAMES ASSOCIATED WITH A ON INPUT	PERMU110
C	(ONLY THE FIRST L1 ENTRIES APPLY TO THE INPUT A)	PERMU120
C	L2 NUMBER OF PARAMETER NAMES ASSOCIATED WITH THE OUTPUT	PERMU130
C	A MATRIX	PERMU140
C	NAM2 PARAMETER NAMES ASSOCIATED WITH THE OUTPUT A	PERMU150
C		PERMU160
C	COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL, SEPT. 1976)	PERMU170
C		PFRMU180
	IMPLICIT DOURLE PRECISION (A-H, O-Z)	PERMU190
	DIMENSION A(IA,1) ${ }^{\text {a }}$ NAM1(1), NAM2(1)	PERMU200
C		PFRMU210
	ZERO=0.	PFRMU220
	L=MAX (L1,L2)	PFRMU230
	IF (L.LE.LI) GO TO 50	PERMU240
	$\mathrm{N} M=\mathrm{L}$ 1 $1+1$	PFRMU250
	DO $40 \mathrm{~K}=\mathrm{NM,L}$	PFRMU260
40		PERMU270
50	DO $100 \mathrm{~J}=1 . \mathrm{L}$?	PFRMU280
	DO $60 \mathrm{I}=1 \mathrm{~L}$	PERMU290
	IF (NAM1 (I).EQ.NAM2(J)) GO TO 65	PERMU300
60	continue	PFRMU310
	GO TO 100	PFRMU320
65	CONTINUE	PERMU330
	IF (I.EQ.J) GO TO 100	PERMU340
	DO $70 \mathrm{~K}=1 . \mathrm{IR}$ (\quad INTERCHANGE COLS I AND J	PERMU350
	W=A(K,J)	PERMU360
	$A(K, J)=A(K, I)$	PERMU370
70	$A(K, I)=W$	PERMU380
	NM=NAM1 (I) [n INTERCHANGE I AND J COL. LABELS	PERMU390
	NAM1 (I) =NAM1 (J)	PFRMU400
	NAM1 (J) $=$ NM	PERMU410
100	CONTINUE	PFRMU420
C	REPEAT TO FILL NEW COLS	PFRMU430
	DO $200 \mathrm{~J}=1 \cdot \mathrm{~L} 2$	PFRMU440
	DO $160 \mathrm{I}=1, \mathrm{~L}$	PFERMU450
	IF (NAM1 (I).EQ.NAM2(J)) GO TO 200	PERMU460
160	CONTINUE	PERMU470
	DO $170 \mathrm{~K}=1$, IR	PERMU480
170	$A(K, J)=$ ZERO	PERMU490
200	CONTINUE	PERMU500
C		PFRMU510
	RETURN	PERMU520
	END	PERMU530

C

DO $10 \mathrm{~J}=1, \mathrm{NTOT}$
RNM=RNM+RIN(J)**2
CALL UTINV (RIN,NRROUT)
RNMOUT=Z
DO $20 \mathrm{~J}=1$,NTOT
RNMOUT=RNMOUT+ROUT (J)**2
CNB $=$ SQRT (RNM*RNMOUT)
WRITE $(6,30)$ CiNB
RETURN $C N B=F R O B \cdot \operatorname{NORM}(R) * F R O R \cdot \operatorname{NORM}(R * *-1)$.

SQUARES', BY LAWSON AND HANSON)

SUBROUTINES REQUIRED: UTINV
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION RIN(1), ROUT(1)
z=0.0
NTOT=N*(N+1)/2

SUBROUTINE RINCON (RIN,N,ROUT,CNB) RINCO010
TO COMPUTE THE INVERSE OF THE UPPER TRIANGULAR VECTOR STOREn RINCOO20 INPUT MATRIX RIN AND STORE THE RESULT IN ROUT. (RIN=ROUT IS RINCOO40 PERMITTED) AND TO COMPUTE A CONDITION NUMBER ESTIMATE. RINCOO50
the frobenius norm is the square root of thf sum of squares
RINC0060
RINCOO70
OF THE ELEMENTS. THIS CONDITION NUMBER BOUND IS USET AS RINCOO80
AN UPPER BOUND AND IT ACTS AS A LOWER ROUND' ON THE ACTUAL RINCOO90
CONDITION NUMBER OF THE PROBLFM. (SEE THE BOOK 'SOLVING LEAST RINCO100

RIN(N*(N+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX DIMENSION OF R MATRICES

RINCO110
RINCO120
RINCO130
RINCO140
RINCO150
RINCO160
RINCO170
RINCO180
COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL.FEB.1977) RINCO190
RINCO200
RINCO210
RINCO220
RINCO230
RINCO240
RINCO250
RINCO260
RINCO270
RINC0280
RINCO290
RINCO300
RINCO310
RINC0320
RINCO330
RINC0340
RINCO350
RINC0360
RINC0370
RINC0380
RTNCO390
RINCO400
RINCO410
RINCO420
30 FORMAT(1HO,5X,'CONDITION NUMBFR ROUND $=1 . D 18.10,2 X, \cdot C N B / N . L E . C O N M I T R I N C O 430$ 1ION NUMBER.LE.CNB',/)

RINC0440
END

RINCO450

SUBROUTINE RIRCOV（RINV，N．SIG．COVOUT，KOV）

IMPLICIT DOURLE PRECTSION（A－H，O－Z）
R12C0010
TO COMPUTE THE COVARIANCE MATRIX AND／OR THE STANDARD DEVTATIONSRI2CO020 OF A VECTOR STOREN UPPER TRIANGULAR SQUARE ROOT COVARIANCE RIZCOO30 mATRIX．THE OUTPUT COVARIANCE MATRIX IS ALSO VECTOR STORED．RI2COO40

RI2C0050
RINV（N＊（N＋1）／2）INPUT VECTOR STORED UPPER TRIANGULAR COVARI－RI2COO60 ance square root．（rinv＝r inverse is tide riacoolo INVERSE OF THE SRIF MATRIX）RI2C0080
N
SIG（N）
COVOUT（ $\mathrm{N} *(\mathrm{~N}+1) / 2$ ） DIMENSION OF THE RINV MATRIX RI2C0090 OUTPUT VECTOR OF STANDARD DEVIATIONS RT2CO100 OUTPUT VFCTOR STORED COVARIANCE MATRIX RI2CO110 （COVOUT＝RINV IS ALLOWED）RI2CO120 COMPUTE COVARIANCE AND SIGMAS USING KOV ROWS RI2CO130 OF RINV． COMPUTE ONLY THE SIGMAS USING KOV ROWS OF RI2CO150 RINV． No COVARIANCE，BUT ALL SIgMAS（E．G．USE RI2CO170 N ROWS OF RINV）．

COGNIZANT PERSONS：G．J．BIERMAN／M．W．NEAD（JPL．SEPT．1976）
RT2C0180
RI2CO190
RI2C0200
RT2C0210
DIMENSION RINV（1），SIG（1），COVOUT（1）
RI2CO220
Ri2C0230
ZERO $=0.0$
RI2C0240
LIM $=$ N
IF（KOV．NE．O）LIM＝IARS（KOV）
RI2C0250
RI2C0260
c
IKS $=0$
Dd $2 \mathrm{~J}=1$ ，LIM
IKS $=1 K \mathrm{~S}+\mathrm{J}$
SUM＝ZERO
IK＝IKS
DO $1 \mathrm{~K}=\mathrm{J}, \mathrm{N}$
SUM $=$ SUM + RINV（IK）＊＊2
IK＝IK＋K
$\operatorname{SIG}(J)=S Q R T(S U M)$
RT2CO270
RI2C0280
RI2C0290
RI2C0300
RI2C0310
RT2C0320
RI2CO330

1
RI2C0340
RI2C0350
Pr2C0360
2
IF（KOV．LE．0）RETURN
PI2C0370
RI2C0380
RI2C0390
＊＊＊COMPUTE COVARIANCE
RI2C0400
」 $こ=0$
NM1＝LIM－1
DO $10 \mathrm{~J}=1, \mathrm{NM} 1$
12C0410
－
Ju＝JJ＋
COVOUT（JJ）$=\operatorname{SIG}(\mathrm{J}) * * 2$
IJS＝JJ＋J
JP1＝」＋1
Do $10 \mathrm{I}=\mathrm{JP} 1$ ， N
IK＝IJS
IMJこI－J
RI2CO420
RI2CO430
RI2C0440

SUM＝ZERO
DO $5 \mathrm{~K}=\mathrm{I}, \mathrm{N}$
RI2C0450
RI2CO460
RI2C0470
RI2CO480
RI2C0490
RT2C0500
RJ2C0510
$I J K=I K+I M J$
PT2C0520
SUM＝SUM＋RINV（IK）＊RTNV（IلJK）
RT：2C0530
IK＝IK＋K
COVOUT（IJS）＝SUM
IJS＝IUS +1
IF（KOV．EQ．N）COVOUT $(J J+N)=S I G(N) * * 2$
RT2CO540

5
10
C

RETURN

SUBRDUTINE RRRA（R，NR，NAMORA，NRA，NAMA）

C		R2RA0010
C	TO COPY THE UPPER LEFT（LOWFR RIGHT）PORTION OF A VECTOR	R2RA0020
C	STORED UPPER TRIANGULAR MATRIX R INTO THF LOWER RIGHT	R2RA0030
C	（UPPER LEFT）PORTION OF A VECTOR STORED TRIANGULAR	R2RA0040
C	MATRIX RA．	R2RA0050
C		R2RA0060
C	$R(N R *$（NR＋1）／2）INPUT VECTOR STORED UPPER TRIANGULAR MATRIX	R2RA0070
C	NR DIMENSION OF R	R2RA0080
C	NAM（INR）NAMES ASSOCIATED WITH R	R2RA0090
C	－RA（NRA＊${ }^{(N R A+1) / 2) ~ O U T P U T ~ V F C T O R ~ S T O R E D ~ U P P E R ~ T R I A N G U L A R ~ M A T R I X ~}$	RPRA0100
C	NRA DIMENSION ASSOCIATED WTTH RA	R2RA0110
C	NAMA（NRA）NAMES ASSOCIATED WITH RA	R2RA0120
C		R2RA0130
C	If NRA＝0 ON INPUT．THEN NAMA（1）SHOULD HAVE THE FIRST NAME OF THE	RアRA0140
C	OUTPUT NAMELIST AND THE NUMBFF OF NAMES IN NAMA IS COMPUTED．	R2RA0150
C	THE LOWER RIGHT BLOCK OF R WILL RE THE UPPER LEFT BLOCK OF RA．	R2RA0160
C		R2RA0170
C	If NRA＝LAST NAME OF THE UPPER LEFT BLOCK THAT IS TO BE MOVED，	R2RA0180
C	THEN THE UPPFR BLOCK IS TO BF．MOVED TO THE LOWER RIGHT POSITION．	R2RA0190
C	WHEN USED IN THIS MODE NRA＝NR ON OUTPUT．	R2RA0200
C		R2RA0210
C	THE NAMES OF THE RELOCATED Block are als 0 MOVED．THE RESULT	R2RA0220
C	CAN COINCIDE WITH R AND NAMA WITH NAM．	R2RA0230
C		R2RA0240
C	COGNIZANT PERSONS：G．J．BIERMAN／M．W．NEAD（JPL．SEPT．1976）	R2RA0250
C		R2RA0260
	IMPLICIT DOURLE PRECISION（A－H，O－Z）	R2RA0270
	DIMENSION R（1），RA（1），NAM（1），NAMA（1）	R2RA0280
	LOGICAL IS	R2RA0290
c		R2RA0300
	$I S=. F A L S E$.	R2RA0310
	LOCN＝NAMA（1）	R2RA0320
C	ISMFALSE CORRESPONDS TO MOVING UPPER LFT．CORNER OF R TO	R2RA0330
C	LOWER RT．CORNER OF RA	R2RA0340
	IF（NRA．EQ，O）GO TO 1	RPRA0350
	LOCN＝NRA	R2RA0360
	ISE＊TRUE．	R2RA0370
C	IS＝TRUE CORRESPONDS TO MOVING LOWER LFT．CORNER OF R TO	R2RA0380
C	UPPER RT．CORNER OF RA	R2RA0390
1	DO $3 \mathrm{I}=1$ ，NR	R2RA0400
	IF（NAM（I）．FQ．LOCN）GO TO 4	R2RA0410
3	CONTINUE	R2RA0420
	WRITE（6．100）	R2RA0430
100	FORMAT，（1HO， $20 \times$＊NAMA（1）NOT IN NAMELIST OF R MATRIX＇）	R PRA0440
	RETURN	RTRA0450
C		R2RA0460
4	$\mathrm{K}=1$	RコRA0470
	$K M 1=K-1$	RPRA0480
	IF（IS）GO TO 15	RPRA0490
C		RアRA0500
	IJS $=$ K＊$(K+1) / 2-1$	P？RA0510
	INRA $=$ NR $-K+1$	R2RA0520
	$\mathrm{I} \mathrm{JA}=0$	R2RA0530
	$K O L A=0$	R2RA0540

```
77-26
    DO 10 KOL=K.NR
                                    RフRA0550
            KOLA=KOL.A+1 R2RA0560
            NAMA(KOL-KM1)=NAM(KOL) R2RA0570
            DO 5 IR=1,KOLA , RPRA0580
                I JA=IJA+1
                            R2RA0590
            RA(IJA)=R(IJS+IR) RORA0600
            5 RA(IUA)=R(IJSHIR)
    10 IJS=IUS+KOL.
    RETURN
C
    15 IJ=K*(K+1)/2
        IJA=NR*(NR+1)/2
    L=NR-KM1
    KOL=K
        DO 25 KOLA=NR,L,-1
        IJS=IJA
        NAMA(KOLA) =NAM(KOL)
            DO 20 IR=KOLA,L,-1
                RA(IJS)=R(IJ)
                IUS=IJS-1
                IJ=IJ-1
            I\A=IJA-KOLA
            KOL=KOL-1
            NRA=NR
C
    RETURN
END
RPRA0610
```


SUBROUTINE THH(R,N,A,IA,M,SOS,NSTRT)

THIS SUBROUTINE PERFORMS A DOUBLE PRECISION TRIANGULARIZATION
THHOOO1O
OF A RECTANGULAR MATRIX INTO A SINGLY-SUBSCRIPTED ARRAY BY APPLICATION OF HOUSEHOLDER ORTHONORMAL TRANSFORMATIONS.
 (LAST N LOCATIONS MAY CONTAIN A RIGHT HAND STDE) NUMBER OF PARAMFTERS
A(IA,N+1) MEASUREMENT MATRIX
IA ROW DIMENSION OF A
NUMBER OF OBSFRVATIONS IN THIS RATCH
ACCUMILLATED SUM OF SQUARES OF THE RESIDUALS
(Z-A*X(EST)**2), INCLUDFS A PRIORI
THH00020
THH0OO30
THH0OO40
THHOOO50
THH00070
N
THH00080

M
SOS
FIRST COL OF THF INPUT A MATRIX THAT HAS A NONZERO ENTRY. IF NSTRT.LE. 1. IT IS SET TO 1. THIS OPTION
IS CONVENIENT WHEN PACKING A PRIORI RY BATCHFS AND THE A MATRIX HAS LEADING COLUMNS OF ZEROS.

THHOOO9O
THHOO100
THH00110
THH00120
THH00130
NSTRT
THHDO140
THH00150
THHOO160 THHOO170
THH00180
ON ENTRY R CONTAINS A PRIORI SOUARE ROOT INFORMATION FILTER (SRIF)THHOO190 ARRAY, AND ON EXIT IT CONTAINS THE A POSTERIORI (PACKED) ARRAY. THHOO200
ON ENTRY A CONTAINS OBSERVATIONS WHICH ARE DESTROYED BY THE THHOO210 INTERNAL COMPUTATTONS. THHOO220
OIV ENTRY IF SOS IS .LT, ZERO ,PROGRAM WILL ASSUME THERE IS NO THHOO230 RIGHT HAND SIDE DATA AND WILL NOT COMPUTF SOS OR USE LAST N THH00240 LOCATIONS OF VECTOR R.

COGNIZANT PERSONS G.J.RIFRMAN/N.HAMATA (JPL, OCT.1975)
THHOO250
THHOO260
THH00270
IMPLICIT DOURLE PRECISION ($A-H, O-Z$)
DIMEISSION A(IA,1):R(1)
DOUBLE PRECISION SUM
DATA ZERO/O.DO/. GNE/1.DO/
THH00280

IF (NSTRT.LE.0) NSTRT=1
NP1 $=N+1$, 1 NO. COLUMNS OF R
IF (SOS.LT.ZERO) NP1=N A NO COLS. $=N$ IF SOS.LT.O
$K K=N S T R T *(N S T R T-1) / 2$
DO 100 J=NSTRT,N
$K K=K K+J$
© J-TH STEP OF HOUSEIIOLDFR REDUCTION
THHOO290

SUM $=2$ ERO
DO 20. $I=1, M$
THHOO300
THH00310
THH00320
THHOO330

20 SUM=SUM+A(I, J)**?
THHOO340
THHOO350
THHOO360
THHOO370
THHOO380
THH00390
THHOO400

IF (SUM L 100 TH THHOO420
TO 100 IF J-TH COL. OF A.EQ.0 GO TO STEP J+ITHHOO430
SUM=SUM+R(KK)**2 THH00440
SUM=DSQRT (SUM) THH00450
IF (R(KK).GT.7ERO) SUM $=-$ SUM \quad THH00460
DELTA 2 R (KK)-SUM THH00470
$R(K K)=S U M$
BETA=ONE/(SUM*DELTA)
JJ=KK
L=」
لl=J+1
THH00480
THHOO490
$\begin{array}{ll}\text { ** READY TO APPLY } J-T H ~ H O U S F H O L D E R ~ T R A N S . ~ & \text { THHOO5.30 } \\ \text { DO } 40 \mathrm{~K}=\mathrm{J}, \mathrm{NP} 1 & \text { THHOO540 }\end{array}$
THHO 0500

THHOO540

```
                                    77-26
            JJ=\J+L 77-26 THH00550
            L=L+1
            SUM=DELTA*R(JJ)
            DO 30 I=1,M
                                    THH00570
            SUM=SUM+A(I;J)*A(I;K)
            IF(SUM.EQ.ZERO) GO TO 40
            SUM=SUM*BETA
            R(JJ)=R(JJ)+SUM*DELTA
            DO 35 I=1,M
            35 A(I,K)=A(I,K)+SUM*A(I,J)
            40 CONTINUE
    100 CONTINUE
            IF(SOS.LT.ZERO) RETURN
C
C calculate sos
C
    SUM=ZERO
    DO 110 I=1,M
    110 SUM=SUM+A(I,NP1)**2
    SOS=DSQRT(SOS**2+SUM)
C
    RETURN
    END
THH00750
```



```
                                    77-26
```

TRIM0550
TRIM0560 TRIM0570
TRIMO580
TRIMO590
TRIMO6OO
TRIMO6：0
TRIMO620
TRIMO630
TRIMO640
TRIM0650
TRIM0660
TRIMO670
TRIM0680
TRIM0690
TRIMO700
TRIMO710
TRIMO720
TRIMO730
TRIMO740
TRIMO750
TRIM0760
TRIM0770
TRIMO780
TRIM0790
TRIMO800
TRIMO810
TRIMO820
TRIMO830
TR！MD840
TRIM0850
TRIM0860
TRIM0870
TRIMO880
TRIM0890
TRIMO900
TRIMO910
TRIMO920
TRIMO930
TRIMO940
TRIM0950
TRIM0960
TRIM0970
TRIMO980
TRIM0990

```
    40 CONTINUE
```

 40 CONTINUE
 C * * *
 C * * *
 DO 190 1CEM1,M2
 DO 190 1CEM1,M2
 K=1
 K=1
 IF(ICOLE:(KT*T)) GO TO 60
 IF(ICOLE:(KT*T)) GO TO 60
 \J=0
 \J=0
 DO 50 J=1,IC
 DO 50 J=1,IC
 JJロJJ+J
 JJロJJ+J
 L(K)mう」
 L(K)mう」
 II=1C-KT*?
 II=1C-KT*?
 IF (II:EQ:7) 60 TO 90
 IF (II:EQ:7) 60 TO 90
 GO TO 70
 GO TO 70
 60 CONTINUE.
 60 CONTINUE.
 C
C
11=1
11=1
L(K)=L(K)+1
L(K)=L(K)+1
70 CONTINUE
70 CONTINUE
DO 80 10I1,6
DO 80 10I1,6
K=K+1
K=K+1
1!=!+KT*7
1!=!+KT*7
L(K)=L(K-1)+II \& OBTAIN COL INDEX FOR ROW
L(K)=L(K-1)+II \& OBTAIN COL INDEX FOR ROW
80 L(K)=L(K-1)+I!
80 L(K)=L(K-1)+I!
90 CONTINUE
90 CONTINUE
C
C
12=MINO(8,(M2+1-KT*7))-11
12=MINO(8,(M2+1-KT*7))-11
V(3)=VFMTII!)
V(3)=VFMTII!)
iF (.NOT.NAMES) GO TO 180
iF (.NOT.NAMES) GO TO 180
HRITE (6,V) CAR(IC),(A(LII)),I=1,12)
HRITE (6,V) CAR(IC),(A(LII)),I=1,12)
GO TO 190
GO TO 190
180 WRITE (6,V) IC,\A(L(I)),I\#1,I2)
180 WRITE (6,V) IC,\A(L(I)),I\#1,I2)
190 CONTINUE
190 CONTINUE
IF (M2.EQ.N) RETURN
IF (M2.EQ.N) RETURN
N1=M2+1
N1=M2+1
M2=M%+7
M2=M%+7
KT=KT+1
KT=KT+1
KP=KP+1
KP=KP+1
IF (KP.LT.3) GO TO 10
IF (KP.LT.3) GO TO 10
WRITE (6,200) (TEXT(I),I=1,NC)
WRITE (6,200) (TEXT(I),I=1,NC)
GO TO 10
GO TO 10
C
C
200 FORMAT (1H1, 2X,2:AG)
200 FORMAT (1H1, 2X,2:AG)
205 FORMAT (1HO,2X,2:AG)
205 FORMAT (1HO,2X,2:AG)
210 FORMAT (1HO,5X,7(11X,AG))
210 FORMAT (1HO,5X,7(11X,AG))
220 FORMAT (1MO,3X,7(11X,16))
220 FORMAT (1MO,3X,7(11X,16))
C
C
END

```
    END
```

SUBROUTINE TTHH(R,RA,N)

	$R(ل J)=R(ل)$ +SUM*DELTA	TTHH0550
	IK=IKS	TTHH0560
	DO $35 \mathrm{I}=\mathrm{IJS.KK}$	TTHH0570
	$R A(I K)=R A(I K)+S(J M * R A(I)$	TTHH0580
35	$I K=I K+1$	TTHH0590
40	$I K S=I K S+K$	TTHH0600
100	$I J S=K K+1$	TTHH0610
C		TTHH0620
	RETURN	TTHH0630
	END	TTHH0640

77－26

SUBROUTINE TZERO（R，N，IS，IF）			
c			TZER0010
C		TO ZERO OUT ROWS IS（ISTART）TO IF（IFINAL）OF A VECTOR	TZERO020
C		STORED UPPER TRIANGULAR MATRIX	T7ERO030
C			TフER0040
C		R（N＊（N＋1）／2）INPUT VECTOR STORED UPPER TRIANGULAR MATRIX	TZER0050
C		N DIMENSION OF R	TZER0060
C		IS FIRST ROW OF R THAT IS TO RE SET TO ZERO	T7ER0070
C		IR LAST ROW OF R THAT IS TO BF SET TO ZERO	TZEROO80
C			T7ER0090
C		COGNIZANT PERSONS：G．J．BIERMAN／C．F．PETERS（JPL，NOV．1975）	TZER0100
C			T7ER0110
		IMPLICIT DOURLE PRECISION（ $\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$ ）	TZER0120
		DIMENSION R（1）	T7ER0130
c			TZERO140
		ZERO $=0.0$	TZERO150
		IJS＝IS＊（IS－1）／？	T 7 ERO160
		DO $10 \mathrm{I}=15 \cdot \mathrm{IF}$	TフER0170
		IJS＝IJS＋I	TフERO180
		IJ＝IUS	TフERO190
		DO $10 \mathrm{~J}=\mathrm{I}, \mathrm{N}$	TZERO200
		$\mathrm{R}(\mathrm{IJ})=$ ZERO	T7ER0210
		$I J=I U+J$	TZER0220
	10	CONTINUE	T 7 ER0230
C			T7ERO240
		RETURN	TフER0250
		END	TZER0260

```
    SUBROUTINE UDMES (U,N,R,A,G,ALPHA) UDMES010
    COMPUTES ESTIMATE AND U-D MEASUREMENT UPDATED UDMESO2O
    COVARIANCE, P=UDU**T UDMES040
    UDMES050
    UDMES060
    UDMES070
    U UPPER TRIANGULAR MATRIX, WITH D ELEMENTS STORED AS THE UDMESO80
        DIAGONAL. U IS VECTOR STORED AND CORRESPONDS TO THE UDMES090
        A PRIORI COVARIANCE. IF STATE ESTIMATES ARE COMPUTED, UDMES100
        THE LAST COLUMN OF U CONTAINS X. UDMESI10
    N DIMENSION OF THE STATE ESTIMATE. MEASUREMENT VARIANCE UDMES 120
    R VECTOR OF :MEASUREMENT COEFFICIENTS, IF DATA THEN A (N+1)=ZUDMES140
        ALPHA IF ALPHA LESS THAN ZERO NO ESTIMATES ARE COMPUTED (AND X AND Z NEED NOT BE INCLUDED) UDMES 150
        ALPHA IF ALPHA LESS THAN ZERO NO ESTIMATES ARE COMPUTED UND INCLUDED) UDMES150
    UDMES170
    *** OUTPUTS ***
    U UPDATED, VECTOR STORED FACTORS AND ESTIMATE AND
        U((N+1)(N+2)/2) CONTAINS (Z-A**T*X)
    ALPHA INNOVATIONS VARIANCE OF THE MEASUREMENT RESIDUAL UDMES230
        G VECTOR OF UNWEIGHTED KALMAN GAINS, K=G/ALPHA
    A CONTAINS U**TA AND (Z-A**T*X)/ALPHA
        COGNIZANT PERSONS: G.J. BIERMAN/M.W. NEAD (JPL, SEPT.1976) UDMES270
    IMPLICIT DOUBLE PRECISION (A-H,O-Z) UDMES280
    DIMENSION U(1), A(1),G(1)}\mathrm{ UDMES300
    DOUBLE PRECISION SUM
    LOGICAL IEST
    ZERO=0.0
    U UPPER TRIANGULAR MATRIX, WITH D ELEMENTS STORED AS THE UDMESO80
        DIAGONAL. U IS VECTOR STORED AND CORRESPONDS TO THE UDMES090
        A PRIORI COVARIANCE. IF STATE ESTIMATES ARE COMPUTED, UDMESIOO
        THE LAST COLUMN OF U CONTAINS X. UDMES110
        DIMENSION OF THE STATE ESTIMATE. UDMES120
    UDMES130
        UDMES180
    UDMES190
    UPDATED, VECTOR STORED FACTORS AND ESTIMATE AND UDMES200
    UDMES210
    UDMES220
    ALPHA INNOVATIONS VARIANCE OF THE MEASUREMENT RESIDUAL UDMES230
    UDMES240
    UDMES250
UOMES260
        COGNIZANT PERSONS: G.J. BIERMAN/M.W. NEAD (JPL, SEPT.1976) UDMES270
    UDMES280
    IMPLICIT DOUBLE PRECISION (A-H,O-Z) UDMES280
    DIMENSION U(1), A(1),G(1)}\mathrm{ UDMES300
UDMES310
UDMES320
UDMES330
    UDMES340
    IEST=.FALSE. UDMES350
    ONNE=1.
    NPl=N+1
    NTOT=N*NP1/2
    IF (ALPHA.LT.ZERO) GO TO 3
    SUM=A(NP1)
    DO 1 J=1,N
    1 SUM=SUM-A (J)*U(NTOT+J)
    U(NTOT+NP1)=SUM 的 Z=Z-A**T*X
    IEST=.TRUE.
    3 KJ=NTOT
    DO. 10 J=N:2,-1
        SUM=A(J)
        JM1=J-1
        DO 5 K=JM1,1,-1
            KJ=kJ-1
5 SUM=SUM+U(KJ)*A(K)
        A(J)=SUM
    KJ=KJ-1
UDMES360
    UNMFS370
```


C
C

```
        77-26
    G(1)=U(1)*A(1) UDMES560
    C G(1)=U(1)*A(1)
C
C
C IF (G(1).EQ.ZERO) GO TO 11
    GAMMA=ONE/SUM
    U(1)=U(1)*R*GAMMA & D(1)
C
    11 KJ=2
        DO 20 J=2.N
        BETA=SUM
        SUM=SUM+G(J)*A(J)
        P=-A(J)*GAMMA
        JM1=J-1
        DO 15 K=1.JM1
            S=U(KJ)
            U(KJ)=S+P*G(K)
            U(KJ)=S+P*G(K)
    15 KJ=KJ+1
    IF (G(J).EQ.ZERO) GO TO 20
                GAMMAA=ONE/SUM
                U(KJ)=U(KJ)*BETA*GAMMA
    20 KJ=KJ+1
        ALPHA=SUM
C
C
C
30
    IF (.NOT.IEST) RETURN
    A (INP1) =U(NTOT+NP1)*GAMMA
    DO 30 J=1,N
        U(NTOT+J)=U(NTOT+J)+G(J)*A(NP1)
    RETURN
    END
UDMES570
    SUM=R+G(1)*A(1)
        @ SUM(1)
UDMES580
    (1) FOR R=0 CASE
UDMES590
    (1) BETA=SUM(J-1)
    (1)SUM(J)
    (a) P=-F(J)*(1/SUM(J-1)) EQN(21) UDMES690
            (a) FOR R=0 CASE
                                UDMES600
    GAMMA=0
    UDMES700
    UDMES710
    UDMES720
C
        f1 FOR R=0 CASE
    (0) GABMA=1/SUM(J)
    G D(J) EQN(19)
C
            EQN. NOS. REFER TO BIERMAN'S 1975 CDC PAPER, PP. 337-346.
UDMES610
UDMES620
UDMES630
        UDMES560
    C
```


C

SUBROUTINE UTINV(RIN:N,ROUT)

TO INVERT AN UPPER TRIANGILAR VECTOR STORED MATRIX AND STORE					
THE RESULT IN VECTOR FORM. THE ALGORITHM IS SO ARRANGED THAT THE RESULT CAN OVERWRITE THF INPUT.					
IN ALDITION TO SOLVE RX=Z. SET RIN(N*(N+1)/2+1)=Z(1), ETC.. AND SET RIN $((N+1) *(N+2) / 2)=-1$. CALL THE SUBROUTIME USING N+1					
INSTEAD OF N. ON RETURN THE FIRST N ENTRTES OF COLUMN $N+1$					
WILL CONTAIN X.					
RIN(N* $(N+1) / 2)$ INPUT VECTOR STORED UPPER TRIANGULAR MATRIX					
N MATRIX DIMFNSION					
ROUT (N* $(N+1) / 2)$	OUTPUT VECTOR STORED UPPFR TRIANGULAR MATRIX				
	VER				

COGNIZANT PERSONS: G.J.BTERMAN/J.ELLIS (JPL, SEPT. 1976)
DOUBLE PRECISION RIN(1), ROIJT(1), WORK, ONF, ZERO ,DIN
DATA ONE/1.0DO/.ZERO/ 0.0DO/
$I P V=N *(N+1) / 2$
IN $=$ IPV
DO $6 \quad I=1, N$
IF (RIN(IPV).NE.ZERO) GO TO 1
WRITE (6.10) I
RETURN
1 DIN $=$ ONE/RIN(IPV)
ROUT (IPV) = DIN
MIN =N
KEND $=\mathrm{I}-1$
LANF $=N=K E N D$
IF (I.EQ.1) GO TO 5
2
J= IN
INITIALIZE ROW LOOP
DO 4 K=1,KEND
WORK =ZERO
MIN $=$ MIN - 1
LIN = IPV
LOT= J
START INNER LOOP
DO 3 L=LANF, MIN
LIN= LIN+L
LOT= LOT+1
3 WORK $=$ WORK + RIN(LIN)* ROUT (LOT)
ROUT (J) $=\quad-W O R K * ~ O I N ~$
$4 \mathrm{~J}=\mathrm{J}$ MIN
5 IPV $=$ IPV -MIN
6 IN = IN -1
RETURN
10 FORMAT (1H0,10X.'UTINV DIAGONAL'.I4, 'IS ZERO')
ENO

UTINV010
UTINV020
UTINVO30
UTINVO40
UTINV050
UTINV060
UTINV070
UTINV080
UTINV090
UTINV100
UTINV110
UTINV120
UTINV130
UTINV140
UTINV150
UTINV160
UTINV170
UTINV180
UTINV190
UTINV200
UTINV210
UTINV220
UTINV230
UTINV240
UTINV250
UTINV260
UTINV270
UTINV280
UTINV290
UTINV300
UTINV310
UTINV320
UTINV330
UTINV340
UTINV350
UTINV360
UTINV370
UTINV380
UTINV390
UTINV400
UTINV410
UTINV420
UTINV430
UTINV440
UTINV450
UTINV460
UTINV470
UTINV480
UTINV490
UTINV500
UTINV510
UTINV520
UTINV530

20	$I K=I K+K$	UTIR0550
C		UTIR0560
30	ROUT (KJS) $=-$ SUM*DINV	UTIR0570
35	IRLST=IROW	UTIR0580
40	II=II-IROW	UTIR0590
	RETURN	UTIR0600
50	FORMAT (1H0,10X,IRIN DIAGONAL, I4, ${ }^{\text {(}}$ (S ZERO')	UTIR0610
	END	UTIR0620

C
SUBROUTINE WGS (W, IMAXW, IWOJW, חo(J,V) WGS00010
MODIFIED GRAMM-SCHMINT ALGORITHM FOR REDUCING WDW(**T) TO UNU(**T)WGSO0020
FORM WHERE U IS A VECTOR STORED TRIANGULAR MATRIX WITH THE WGSOOO30
COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL. MARCH 1977) WGSOO200
IMPLICIT DOURLE PRECTSION (A-H.O-Z)
DIMENSION W(IMAXW,1), D(1), U(1), V(1)
C
40
$z=0.0$
ONE $=1.0$
$00100 \mathrm{~J}=\mathrm{IW}, 1,-1$
SUM $=2$
1) $40 \mathrm{~K}=1$. JW
$V(K)=W(J, K)$
$U(K)=D(K) * V(K) \quad$ QU HERE IS USED AS A WORK VECTOR
SUM=V(K)*U(K)+SUM
W(J.J) $=$ SUM
IF (J.EQ.1) GO TO 100
(E EQ. (4.9) OF BOOK. NEW C(J) WGS00330
DINV=Z
IF (SUM.GT.Z) DINV=ONE/SUM
JM1ニJー1
DO $70 \mathrm{~K}=1$. JM1
SUM 2
DO $50 \quad 1=1 . J W$
SUM $=W(K, I) * U(I)+S U M$
WGS00040
RESULTING D FLEMENTS STORE ON THE DIAGÖNAL
HGS00050
W(IW:JW) INPUT MATRIX TO BE REDUCED TO TRIANGULAR FORA. WGSOOOGO
THIS MATRIX IS NESTROYED BY THE CALCULATION -1 WGS00070
IW.LE.IMAXW. WGSOOOBO
D(IW) VECTOR OF NON FNFGATIVE WEIGHTS FOR THE WGSOOO90
ORTHOGONALIZATION PROCESS. THE D'S ARE UNCHANGED HGS00100
BY THF CALCULATION. WGSOO110
$U(I W *(I W+1) / 2)$ OUTPIIT UPPER TRTANGULAR VECTOR STOREN OUTPUT kGS00120
$V(J W)$ WORK VECTOR WGSOO130
$\begin{array}{ll}\text { WORK VECTOR } & \text { WGS00130 } \\ & \text { WFSS00140 }\end{array}$
(SEE ROOK: WGS00150
- FACTORIZATION METHODS FOR OISCRETE SEQUENTIAL ESTIMATION P W WESO0160
BY G.J.BIERMAN)
WGSOO170
ESTIMATION
WgS001AO
wGSna190
WGS00210
WGS00220
DIMENSION W(IMAXW,1), D(1), U(1), V(1) WGS00230
WGS00240
WGS00250
WGS00260
WGS00270
WGS00280
WGS00290
WGS00300
WGS00310
WGS00320
b'GS00340
- DINV=て
WGS00350
WGSN0360
WGS00378
WGS00380
WGS00390
WGSOO400
WGS00410
WGS00420
C
DO $60 \mathrm{I}=1 . \mathrm{JW}$
$W(K, I)=W(K, I)-S U M * V(I) \quad W \in S \cap 0450$
$W(J, K)=S U M$ ER EQ. $(4.1 n)$ OF BOOK WGSOO460
CONTINUE (A U(K, J) STORED IN W(J,K)

THE LOWER PART OF W IS U TRANSPOSE
$I \mathrm{~J}=0$
DO $110 \mathrm{~J}=1.1 \mathrm{~F}$
DO $1101=1 . J$
$I J=I J+1$
$110 \quad U(I J)=W(J, I)$
C
RETURN 93
END
;
WGS00430
SUM=SUM*DINV

References

[1] Lawson, C. L., Hanson, R. J., Solving Least Squares Problems, Prentice Hall, Englewood Cliffs, N. J. (1974).
[2] JPL FORTRAN V Subprogram Directory, JPL Internal Document 1845-23, Rev. A., Feb. 1, 1975.
[3] Bierman, G. J., Factorization Methods for Discrete Sequential Estimation, Academic Press, New York (1977).
$\xrightarrow{\boldsymbol{j} \|} \rightarrow$ PUBLICATION 77-26

[^0]: The new result overwrites the old.

[^1]: ${ }^{{ }^{*}}{ }_{i . e}$, solving $A x=b-v$ with normal equations, $A A_{0}=A^{T} b ; A=A^{T} A$ is the information matrix.

 施
 The acronym SRIF represents Square Root Information Filter. The SRIF is discussed at length in reference [3].

[^2]: *The new result overwrites the old. **
 U-D processing is a numerically stable algorithmic formulation of the Kalman filter measurement update algorithm, cf reference [3]. The estimate error covariance is used in its UDU ${ }^{T}$ factored form, where U is unit upper triangular and D is diagonal.

[^3]: ${ }_{z}$ is often guven the label RHS (right hand side)

[^4]: To have estimates from the triangular inversion routines one sets a -1 in the l'ast column (below the right hand side).
 **
 Strictly speaking this is not what we call the perturbation unless $R_{y}(0)$ is diagonal.

[^5]: *viz. range, doppler, optical, etc.

[^6]: *In this example it is assumed that all of the y_{j} variables have the same dimension. This assumption, though not essential, simplifies our description of the procedure.

[^7]: * In statistical notation that is commonly used, one writes
 $x(j+1 \mid j)=\Phi_{j} x(j \mid j)$

[^8]: in track and cross track accelerations

[^9]: *The elements are not explicitly set to zero.

[^10]: *The elements are not explicitly set to zero.

[^11]: $\dagger_{\text {see }}$ the concluding paragraph of Remarks and Restrictions

