
JPL PUBLICATION 77-26

A Parameter Estimation
Subroutine Package

(IASA-Cl-154109) A PARAIIERE ES UIIATIO N17-28828
SUBECUTIE PACKAGI (Jet Propulsion lab.)

HC A05/1iF A01 CSCL 09B
Uclas

G3/61 39276

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.$ DEPARTMENT OFCOMMERCE

SPRINGFIELD, VA 22161

-National Aeronautics and
Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, Cahfornia 911-03

https://ntrs.nasa.gov/search.jsp?R=19770021884 2020-03-22T07:59:35+00:00Z

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED

FROM THE BEST COPY FURNISHED US BY

THE SPONSORING AGENCY. ALTHOUGH IT

IS RECOGNIZED THAT CERTAIN PORTIONS

ARE ILLEGIBLE, IT IS BEING RELEASED

IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. P2. Government Accession No. 3. Recipient's Catalog No.
JPL Pub. 77-26

4. Title and Subtitle 5. Report Date July 1, 1977

A PARAMETER ESTIMATION SUBROUTINE PACKAGE 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

G. J. Bierman/M. W. Nead

9. Performing Organization Name and Address 10. Work Unit No.

JET PROPULSION LABORATORY

California Institute of Technology 11. Contract or Grant No.

NAS 7-100
4800 Oak Grove Drive

Pasadena, California 91103 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address JPL Publication

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 14. Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary Notes

16. Abstract

Linear least squares estimation and regression analyses continue to play a major role

in orbit determination and related areas. In this report we document a library of

FORTRAN subroutines that have been developed to facilitate analyses of a variety

of parameter estimation problems. Our purpose is to present an easy to use multi­
purpose set of algorithms that are reasonably efficient and which use a minimal amount

of computer storage. Subroutine inputs, outputs, usage and listings are given, along

with examples of how these routine can be used. The following outline indicates the

scope of this report: Section I, introduction with reference to background materials;

Section II, examples and applications; Section III, a subroutine directory summary;

Section IV, the subroutine directory user description with input, output and usage

explained; and Section V, subroutine FORTRAN listings. The routines are compact

and efficient and are far superior to the normal equation data processing algorithms

that are often used for least squares analyses.

17. Key Words (Selected by Author(s)) 18. Distribution Statement
Computer Programming and Software

Numerical Analysis

Statistics and Probability Unclassified - Unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 101

HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the
report cover. Use all capital letters for title (item 4). Leave items 2, 6, and 14
blank. Complete the remaining items as follows:

3. 	 Recipient's Catalog No. Reserved for use by report recipients.

7. 	 Author(s). Include corresponding information from the report cover. In
addition, list the affiliation of an author if it differs from that of the
performing organization.

8. 	 Performing Organization Report No. Insert if performing organization
wishes to assign this number.

10. 	 Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72),
was 	authorized.which uniquely identifies the work unit upder which the work

Non-NASA performing organzations willl leave this blank.

11. 	 Insert the number of the contract or grant under which the report was
prepared.

15. Supplementary Notes. Enter information not included elsewhere but useful,
such as: Prepared in cooperation\with..i Translation of (or by)... Presented

at conference of.. To be published'in...

16. 	 Abstract. Include a brief (not to exceed 200 words) factual summary of the
most significant information contained 4n. the report. If possible, the
abstract of a classified report should beunclassified. If the report contains
a significant bibliography or literature survey, mention it here.

17. 	 Key Words. Insert terms or short phrases selected by the author that identify
the principal subjects covered in the report, and that are sufficiently
specific and precise to be used for cataloging.

11
18. Distribution Statement. Enter one of the;authorized statements used to

denote releasability to the public or a limitation on dissemination for
reasons other than security of defense information. Authorized statements
are "Unclassified-Unlimited, " "U.S. Goivernment and Contractors only, "
"U. 	 S. Government Agencies only, " and "NASA and NASA Contractors only.

19. 	 Security Classification (of report). NOTE: Reports carrying a security
classification will require additional markings giving security and down­
grading information as specified by the Security Requirements Checklist
and the DoD Industrial Security Manual (DoD 5220.22-M).

20. 	 Security Classification (of this page). NOTE: Because this page may be
used in preparing announcements, bibliographies, and data banks, it should
be unclassified ifpossible. If a classification is required, indicate sepa­
rately the classification of the title and the abstract by following these items
with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for
classified items.

21. 	 No. of Pages. Insert the number of pages.

22. 	 Price. Insert the price set by the Clearinghouse for Federal Scientific and
Technical Information or the Government Printing Office, if known.

JPL PUBLICATION 77-26

A Parameter Estimation
Subroutine Package

G. J. Bierman
M. W. Nead

July 1, 1977

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

Prepared Under Contract No NAS 7-100

National Aeronautics and Space Administration

77-26

PREFACE

The work described in this report was performed by the Systems

Division of the Jet Propulsion Laboratory.

ii

77-26

AKNOWLEDGEMENT

The construction of this estimation subroutine package (ESP) was

motivated by an involvement with a particular problem; construction of

fast, efficient and simple least squares data processing algorithms

to be used for determining ephemeris corrections. Discussions with

T. Duxbury led to the proposal of a subroutine strategy which would

have great flexibility. The general utility of such a subroutine

package was made evident by H. Koble and N. Mottinger who had a

different but related problem that involved combining estimates from

different missions. Thanks and credit are also due to J. Ellis,

N. Hamata, and F. Peters for contributing to and experimenting with

this package of subroutines.

iv

77-26

ABSTRACT

Linear least squares estimation and regression analyses continue

to play a major role in orbit determination and related areas. In

this report we document a library of FORTRAN subroutines that have

been developed to facilitate analyses of a variety of parameter

estimation problems. Our purpose is to present an easy to use multi­

purpose set of algorithms that are reasonably efficient and which use

a minimal amount of computer storage. Subroutine inputs, outputs,

usage and listings are given, along with examples of how these routines

can be used. The following outline indicates the scope of this report:

Section I, introduction with reference to background material; Section

II,examples and applications; Section III, a subroutine directory

summary; Section IV, the subroutine directory user description with

input, output and usage explained; and Section V, subroutine FORTRAN

listings. The routines are compact and efficient and are far superior

to the normal equation data processing algorithms that are often used

for least squares analyses.

V

77-26

CONTENTS

T. Introduction 1

II. Applications and Examples 4

III. Subroutine Directory Summary 23

IV. Subroutine Directory User Description 33

V. FORTRAN Subroutine Listings 63

[Preceding page :blank

vii

77-26

I. Introduction

Techntques related to least squares parameter estimation play a

prominent role in orbit determination and related analyses. Numerical

and algorithmic aspects of least squares computation are documented

in the excellent reference work by Lawson and Hanson, Ref. [1]. Their

algorithms, available from the JPL subroutine library, Ref. [2], are

very reliable and general. Experience has, however, shown that in

reasonably well posed problems one can streamline the least squares

algorithm codes and reduce both storage and computer times. In this

report, we document a collection of subroutines most of which we have

written that can be used to solve a variety of parameter estimation

problems.

The algorithms for the most part involve triangular and/or

symmetric matrices and to reduce storage requirements these are stored

in vector form, e.g., an upper triangular matrix U is written as

U11 U12 U13 U14 U(1) U(2) U(4) U(7)

U22 U23 U24 cU(3)etc. = U(5) U(8)etc.
U(9)

0U(6)

U34
U 33

0U(I)
44
0U

Thus, the element from row i and column j of U, i < j, is stored in

vector component j(j-l)/2 + i. We hasten,to point out that the engineer,

with few exceptions, need have no direct contact with the vector sub­

scripting. By this we mean that the vector subscript related operations

are internal to the subroutines, vector arrays transmitted from one

1

77-26

subroutine to another are compatible, and vector arrays displayed

using the print subroutine TRI1AT appear in a triangular matrix format.

Aside: The most notable exception is that matrix problems are generally

formulated using doubly subscripted arrays. Transforming a double

subscripted symmetric or upper triangular matrix A(-,-) to a vector

stored form, U(-) is quite simply accomplished in FORTRAN via

IJ = 0

DO 1 J = 1,N

DO I I = 1,J

IJ = IJ+l

1 " U(IJ) = A(I,J)

Similarly, transforming an initial vector D() of diagonal positions of

a vector stored form, U(-), is accomplished using

JJ = 0 JJ = N*(N+I)/2

DO 1 J = 1,N or DO 1 J =N,,-l

JJ = JJ+J U(JJ) = D(J)

1 U(JJ) = D(J) 1 JJ = JJ-J

The conversion on the right has the modest advantage that D and U can

share common storage (i.e., U can overwrite D). These conversions

are too brief to be efficiently used as subroutines. It seems that when

such conversions are needed one can readily include them as in line code.

End of Aside

Although this package of subroutines is designed in the main, for

the analysis of parameter estimation problems one can use it to solve

problems that involve process noise. With modest amounts of additional

programming one can even apply our package to filtering problems that

involve colored noise and mapping. In the latter case, however, reduc­

tions gained from our use of vector storage are for the most part lost.

2

77-26

Mathematical background regarding Householder orthogonal trans­

formations for least squares analyses and U-D matrix factorization

for covariance matrix analyses are discussed in references [1] and [3].

Our plan is to illustrate, in Section II, with examples how one can

use the basic algorithms and matrix manipulation to solve a variety

of important problems. The subroutines which comprise our estimation

subroutine package are described in Section III, and detailed input/

output descriptions are presented in Section IV.

Section V contains FORTRAN listings of the subroutines. There are

several reasons for including such listings. Making these listings

available to the engineer analyst allows him to assess algorithm

complexity for himself; and to appreciate the simplicity of the

routines he tends otherwise to use as a black box. The routines are

not truly portable, and users can, when necessary make modifications

so that the subroutine package can operate on systems other than the

UNIVAC 1108. When estimation problems arise to which our package does

not directly apply (or which can be made to apply by an awkward conca­

tenation of the routines) one may be able to modify the codes and widen

still further the class of problems that can be efficiently solved.

3

77-26

II. APPLICATIONS AND EXAMPLES

Our purpose in this section is to illustrate, with a number of

examples, some of the problems that can be solved using this ESP. The

examples, in addition, serve to catalogue certain estimation techniques that

are quite useful.

To begin, let us catalogue the subroutines that comprise the ESP:

1) AGTRN (A G Turner) Agee-Turner rank 1 update

2) A2Al (A to A one) Matrix A to matrix Al

3) COMBO (combo) Combine R and A namelists

4) COV2RI (coy to R I) Covariance to R inverse

5) COV2UD (coy to U D) Covariance to U-D factors

6) C2C (C to C) Permute the rows and columns of tatrix C

7) INF2R (inf to R) Information matrix to (triangular) R

8) PERMUT (permute) Permute the columns of matrix A

9) RINCON (rin con) R inverse with condition number bound

10) RI2COV (R I to cov) R inverse to covariance

11) R2A (R to A) Triangular R to matrix A

12) R2RA (R to R A) Transfer a triangular block of R to trian­
gular RA

13) RUDR (rudder) SRIF R to U-D factors or vice versa

14) THH (T H H) Triangular Householder data processing

15) TRIMAT (tri mat) Triangular matrix print

16) TTHH (T T H H) Two triangular matrix Householder processing

17) TZERO (T zero) Zero a horizontal segment of a triangular

matrix

4

77-26

18) UDMES (U D measurement) U-D measurement updating

19) UD2COV (U D to cov) U-D factors to covariance

20) UD2SIG (U D to sig) U-D factors to sigmas

21) UTINV (U T inverse) Upper triangular matrix inverse

22) UTIROW Upper triangular inverse, inverting only

the upper rows

23) WGS (W G-S) Weighted Gram-Schmidt triangular reduction

These routines are described in succeedingly more detail in sections III,

IV, and V. The examples to follow are chosen to demonstrate how these

various subroutines can be used to solve orbit determination and other

parameter estimation problems. It is important to keep in mind that these

examples are not by any means all inclusive, and that this package of

subroutines has a wide scope of applicability.

II. Simple Least Squares

Given data in the form of an overdetermined systems of linear

equations one may want a) the least squares solution; b) the estimate

error covariance, assuming that the data has normalized errors; and

c) the sum of squares of the residuals. The solution to this problem,

using the ESP can be symbolically depicted as

* [A z]- .. R z], e

Remarks: The array [A z] corresponds to the equations Ax = z-v, vsN(0,I);

the array [R z] corresponds to the triangular data equation Rx = z-V,

veN(O,I) and e = 1z-Ax.I
6A' UTINV 1-­

* [R z] R x]

Remark: x = R z

5

77-26

One may be concerned with the integrity of the computed inverse

and the estimate. If one uses subroutine RINCON instead of UTINY then

in addition one obtains an estimate (lower and upper bounds) for the

condition number R, If this condition number estimate is large the

computed inverse and estimate are to be regarded with suspicion. By

large, we mean considerable with the machine accuracy (yiz. on an 18

decimal digit machine numbers larger than 1015). Note that the condi­

tion number estimate is obtained with negligible additional computation

and storage.

r^-13 R12COVEC,

* R I-----­

-- A-T
Remarks: C = R7 = estimate error covariance. Some computation can

be avoided in R12COV if only some (or all) of the standard deviations

are wanted.

11.2 	 Least Squares With A Priori

If a priori information is given, it can be included as additional

equations (in the A array) or used to initialize the R array in subroutine

THH (see the subroutine argument description given in section IV). One is

sometimes interested in seeing how the estimate and/or the formal

statistics change corresponding to the use of different a priori

A Aconditions. In this case one should compute [R z] as in case II.1, and

then include the a priori [R z0] using either subroutine THH, or

subroutine TTHH when the a priori is diagonal or triangular, e.g.,

[Rz]) TTH{
[z

The new result overwrites the old.

6

77-26

It is often good practice to process the data and form [R z] before

including the effects of a priori. When this is done one can analyze

the effect of different a priori, [R° z] without reprocessing the data.

It a priori is given in the form of an information matrix, A,

(as for example would be the case if the problem is being initialized

with data processed using normal equation data accumulation) then one

can obtain R from A using INF2R;
0

A INF2R R
0

AT, =-T.

If there were a normal equation estimate z = A b, then z R Z.

11.3 Batch Sequential Data Processing

Prime reasons for batch sequential data processing are that many

problems are too large to fit in core, are too expensive in terms of core

cost, and for certain problems it is desirable to be able to incorporate

new data as it becomes available. Subroutines TTH and UDMES are specially

designed for this kind of problem. Both of these subroutines overwrite

the a priori with the result which then acts as a priori for the next

batch of data. If the data is stored on a file or tape as Al, Zl, A2, z2,...

then the sequential process can be represented as follows:

SRIF Processing**

a) Initialize [R z] with a-priori values or zero

b) Read the next [A z] from the file

T T T

i.e., solving Ax = b-v with normal equations, A Ax = A b; A = A A

is the information matrix.

The acronym SRIF represents Square Root Information Filter. The SRIF is

discussed at length in reference [3].

7

77-26

C) [R z]) ,

- [R zI

[A zil

d) 	If there is more data go back to b)

e) 	Compute estimates and/or covariances using IJTINV and R12COV

(as in example II.1)

U-D** Processing

a') Initialize [U-D x] with a priori U-D information and estimate

b1) Read the next [A z] scalar measurement from the file

c') [U-D x] UDMES *

[A z]

d') If there is more data go back to b')

e') Compute standard deviations or covariances using UD2SIG or

UD2COV.

Note that subroutine THH is best (most efficiently) used with

data batches of substantial size (say 5 or more) and that UDMES processes

measurement vectors one component at a time. If the dimension of the

state is small the cost of using either method is generally negligible.

The UDMES subroutine is best used in problems where estimates are

wanted with great frequency or where one wishes to monitor the effects

of each update. In a given application one might choose to process

data in batches for awhile and during critical periods it may be

The 	new result overwrites the old.

U-D 	processing is a numerically stable algorithmic formulation of the Kalman

filter measurement update algorithm, cf reference [3]. The estimate error
covariance is used in its UDUT factored form, where U is unit upper triangular
and D is diagonal.

8

77-26

desirable to monitor the updating process on a point by point basis.

In cases such as this, one may use RODR to convert a SRIF array to U-D

6

form or vice-versa.

Remarks: Another case where an R to U-D conversion can be useful occurs

in large order problems (with say 100 or more parameters) where after

data has been SRIF processed one wants to examine estimate and/or

covariance sensitivity to the a priori variances of only a few of the

variables. Here it may be more convenient to update using the UDMES

subroutine.

11.4 Reduced State Estimates and/or Covariances From a SRIF Array

Suppose, for example, that data has been processed and that we have a

AA

triangular SRIF array [R z] corresponding to the 14 parameter names, ar, ax ,

ay, x, y, z, vx, Vy, vz, GM, CU41, L041, CU43, L043 (constant spacecraft

accelerations, position and velocity, target body gravitational constant,

and spin axis and longitude station location errors).

Let us ask first what would the computed error covariance be of

a model containing only the first 10 variables, i.e., by ignoring the

effect of the station location errors. One would apply UTINV and R12COV

just as in example II.l, except here we would use N (the dimension of

the filter) = 10, instead of N=14.

Next, suppose that we want the solution and associated covariance

of the model without the 3 acceleration errors. One ESP solution is to

use

9

77-26

* [R z]
 A]

NAME ORDER OF A

x, y, z, Vx, Vy, Vz,

GM, CU4, L041, CU43, L043,

RHS , a, a a

Remark: One could also have used subroutine COMBO, with the desired

namelist as simply ar, a., a . This would achieve the same A matrix

form.

• [A] [R]

Remark: R here can replace the original R and z.

*R UTINV [R-l COVxXe
0 [R] - R Xest]-R12COV
 t

Remarks: Here, use only N=11, i.e., 11 variables and the RHS. xest is

the 11 state estimate based on a model that does not contain acceleration

errors ar, a , or a

Note how triangularizing the rearranged R matrix produces the

desired lower dimensional SRIF array; and this is the same result one

would obtain if the original data had been fit using the 11 state model.

As the last subcase of this example suppose that one is only

interested in the SRIF array corresponding to the position and velocity

variables. The difference between this example and the one above is

that here we want to include the effects due to the other variables.

*

z is often given the label EMS (right hand side)

10

77-26

One might want this sub-array to combine with a position-velocity SRIF

array obtained from, say, optical data. One method to use would be,

^^ R2RA
* [R z] [RA zA]

INPUT NAMES: OUTPUT NAMES:

a aax, y, z, v , v, GM x, y, z, vv, GM

CU41, L041, CU43, L043, RHS CU41, L041, CU43, L043, RHS

Remark: The lower triangle starting with x is copied into RA '

R2A

* [RA zA] R [A, ZA] (Reordering)

NAMES: GM, CU41, L041, CU43, L043,

x, y, z, Vx, Vy, vz, RHS

THE
 - ^* [A, zA] [RA zA] (Triangularizing)

* [R A [R] (Shifting array)

NAMES: x, y, z, vx, v , vz, RES

Remark: The lower right triangle starting with x is copied into Rx

We note that one could have elected to use COMBO in place of the first

R2RA usage and R2A; this would have involved slightly more storage, but

a lesser number of inputs. The sequence of operations is in this case,

* 1 COMBO [A z]

ORIGINAL NAMES DESIRED NAMES: x, y, z, v, vy, v., RBS

Remark: By using COMBO the columns of [R z] are ordered corresponding to

the names a , ax, ay, GM, CU41, L041, CU43, and L043, followed by the

desired names list.

11

77-26

THH

* [A z]-[R z]

Remark: The [R z] array that is output from this procedure is

equivalent but different from the [R z] array that we began with.

[^ R2RA

* [R z] [Rx zx

Remark: As before, the lower right triangle starting with x is copied

into R

x

To delete the last k parameters from a SRIF array, it is not

necessary to use subroutines R2A and THH. The first N - k = N columns

of the array already correspond to a square root information matrix of

the reduced system. If estimates are involved one can simply move the

z column left using:

R (N*(N + 1)/2 + i) = R(N*(N +1)/2 + i), i = 1,...,k.

Remark: We mention in passing that if one is only interested in estimates

and/or covariances corresponding to the last k parameters then one can use

R2RA to transform the lower right triangle of the SRIF array to an upper

left triangle after which UTINV and RI2COV can be applied.

11.5 	 Sensitivity, Perturbation, Computed Covariance and Consider

Covariance Matrix Computation

Suppose that one is given a SRIF array

N 	 N 1
x 	 y

1-12

77-26

in which the NY variables are to be considered. (One can, of course, using

subroutines R2A and THH reorder and retriangularize an arbitrarily arranged

SRIF array so that a given set of variables fall at the end.) For various

reasons one may choose to ignore the y variables in the equation

Vx
Rxx + RxyY = Zx - , vx6N(OI) (II.5b)

and take as the estimate x = R z. It then follows that

c x x

-R - I -x - x = R Y - , (II.5c)
c x Xy x x

and from this one obtains

a(x-x C)
Sen c = -R71 R (II.5d)

ay x xy

(sensitivity of the estimate error to the unmodeled y parameters)

Pert = Sen Diag (ay(),...,y (Ny)) (II.5e)

where ay(1),.. .,y(Ny) are a priori y parameter uncertainties.

(The perturbations are a measure of how much the estimate error could be

expected to change due to the unmodeled y parameters.)

P = R71 R- T + Sen P SenT (II.5f)

con x x y

= P c + (Pert)(Pert)
T if P y is diagonal*

where P is the estimate error covariance of the reduced model.

c

An easy way to compute PC, Pert and Pcon is as follows: Use subroutine

R2RA to place the y variable a priori [P
1 (O) Ao]** into the lower right

Pert = Sen P2

Y

The a priori estimate y of consider parameters is generally zero.

13

77-26

corner of (II.5a), replacing Ry and zy, i.e.,

[z] FR R

[P 2 (0) yo0 P(y YO

Now apply subroutine UTIROW to this system (with a -1 set in the lower right

cornerA)

R R z R-1 Pert x

x xy x x c

-2 A UTIROW, 1- A
0 P (0) YO - 0 P y(0) YO

o 0 -1 0 0 -1

Note that the lower portion of the matrix is left unaltered, i.e., the purpose

of UTIROW is to invert a triangular matrix, given that the lower rows have

already been inverted. From this array one can, using subroutine R12COV,

get both P and P

[R-1] R12C0V_ [P I computed covariance

-l R12COV E
[R1 Pert] - [Pe] consider covariance
x con

Suppose now that one is dealing with a U-D factored Kalman filter for­

mulation. In this case estimate error sensitivities can be sequentially

*b

To have estimates from the triangular inversion routines one sets a -1 in the

last column (below the right hand side).

Strictly speaking this is not what we call the perturbation unless Ry(O) is

diagonal.

14

77-26

ay is processed.
calculated as each scalar measurement (z = aTxx + aTy + v)

Y y

+aT TSn
Sen =Sen. -K.(a

j j-l j x j-1 y

where Senj_ 1 is the sensitivity prior to processing this (j-th) measurement,

and K. is the Kalman gain vector. In this formulation one computes P

3 con

in a manner analogous to that described in section 11.7;

=
Let U1 = U , D D. (filter U-D factors)

[Sl,.. Sn = Sen. (estimate error sensitivities)

then compute

2 AGTRN U ­
k k '0 k' Uk+l-Dk+ y

For the final U-f we have

con n D con D

3+1 +1 j+I ny+1

y 2

if P D(0) , = Diag 2 a , then in theUDU instead of P (0)

U-D recursion one should replace the Sen. columns by those of Sen.U. and

a2 should be replaced by the corresponding diagonal elements of D y
:j

11.6 Combining Various Data Sets

In this example we collect several related problems involving data sets

with different parameter lists.

Suppose that the parameter namelist of the current data does not

correspond to that of the a priori SRIF array. If the new data involves

a permutation or a subset of the SRIF namelist then an application of

15

77-26

subroutine PERMUT will create the desired data rearrangement. If the data

involves parameters not present in the SRIF namelist then one could use

subroutine R2A to modify the SRIF array to include the new names and then

if necessary use PERMUT on the data, to rearrange it compatibly.

Suppose now that two data sets are to be combined and that each

contains parameters peculiar to it (and of course there are common para­

meters). For example let data set 1 contain names ABC and data set 2

contain names DEB. One could handle such a problem by noting that the list

ABCDE contains both name lists. Thus one could use subroutine PERMUT

on each data set comparing it to the mastpr list, ABCDE, and then the

results could be combined using subroutine TIH An alternative automated

method for handling this problem is to use sub coutine COMBO with data

set 1 (assuming it is in triangular form) and iamelist 2. The result

would be data set 1 in double subscripted form and arranged to the name­

list ACDEB (names A and C are peculiar to date set 1 and are put first).

Having determined the namelist one could appi) subroutine PERMUT to data

set 2 and give it a compatible namelist orderxng.

The process of increasing the namelist sLze to accommodate new

variables can lead to problems with excessively long namelists, i.e.,

with high dimension. If it is known that a certain set of variables

will not occur in future data sets then these variables can be eliminated

and the problem dimension reduced. To eliminate a vector y from a SRIF

array, first use subroutine E2A to put the y names first in the namelisc;

then use subroutine THH to retriangularize aid finally use subroutine RZRA

to put the y independent subarray in position for further use; viz.

16

77-26

[R] R2A []THR y x yYX URA

[A]
 [Rx zX]

0 x x1

The rows [Ry Ryx zy] can be used to recover a y estimate (and its covariance)

when an estimate for x (and its covariance) are determined. (See example

11.4).

Still another application related to the combining of data sets involves

the combining of SRIF triangular data arrays. One might encounter such prob­

lems when combining data from different space missions (that involve common

parameters) or one might choose to process data of each type* or tracking

station separately and then combine the resulting SRIF arrays. Triangular

arrays can be combined using subroutine TTHH, assuming that subroutines

R2A, THH and P2RA have been used previously to formulate a common parameter

set for each of the sub problems.

11.7 Batch Sequential White Noise

It is not uncommon to have a problem where each data set contains a

set of parameters that apply only to that set and not to any other, viz.

the data is of the form

A.xx + By. = z. - V j = ,

where there is generally a priori information on the vector y. variables.

Rather than form a concatenated state vector composed of x, y,.. "'YN

which might create a problem involving exhorbitant amounts of storage and

computation we solve the problem as follows: Apply subroutine THH to

[B1 A1 zl], with the corresponding R initialized with the yl a priori. The

resulting SIIF array is of the form

viz. range, doppler, optical, etc.

17

77-26

Ny yj x y
A Y

Copy the top N rows if one will later want an estimate or covariance of

yl

the y1 parameters. Apply subroutine TZERO to zero the top N rows and

I
using subroutine R2RA set in the Y2 a priori This SRIF array is now

ready to be combined with the second set of data [B Z2] and the procedure
2A

repeated.

A somewhat analogous situation is represented by the class of problems

that involve noisy model variations, i.e., the state at step j+l satisfies

xj+ 1 xj + G 3w

where matrix G is defined so that w is independent of x and w EN(O,Q.).

Models of this type are used to reflect that the problem at hand is not

truly one of parameter estimation, and that sone (or all) of the components

vary in 'a random (or at least unknown) manner that is statistically

bounded. To solve this problem in a SRIF forulation suppose that a prieri

for x. and w. are written in data equation form (cf ref. [3]),

R x = z - V ; v sN(O,I)i c i i ci L w

Q w* 0 V(w) YW PN(0,1)
5 .1

where Q is a Cholesky factor of Q. that is obtainable from COV2RI. Combining

these two equations with the one for x,.i gives

N

In this example it is assumed that all of the y. variables have the same

dimension. This assumption, though not essential, simplifies our description

of the procedure.

18

77-26

In w 0 wj

-R G Q R.j j+l z

where Qjw = w.. This is the equation to be triangularized with subroutine

THH, i.e.,

Dim w Dimx 1

0 0 (w) RWX) zW
Dim w

n
3 R] THE

Dim x {+-RGQ R31 1]
can reduce storage and
is diagonal one
If the problem is arranged so that Q

of

computation. The form of this algorithm is designed to allow the use

singular Q. matrices.

When the a priori for x31 and Q. are given in U-D
factored form,

one can obtain the U-D factors for xj+ l as follows:

Let Q. = (q) D(q) (U(q))T (use COV2UD if necessary)

D
 d
Set G=3 (q) = [g 1 ,'' gn] = Diag(dl "...)

Apply subroutine AGTRN nw times, with U1 = U I = D i

(U-D)k ; dk' gk AGTj' (1-) k+j

k = 1,...,n
w

(UDU T + dkgkT = Uk+lbk+Uk
i.e.
 k k k kk kkFl k+l

Then Uj+1 = Un , Dj+l = Dn

w19

19

77-26

Certain filtering problems involve dynamic models of the form

x'+1 = x. + G.w.
J33 3 3

A
Given an estimate for x , xi, the predicted estimate for x,+,, denoted

x+1 is simply

I A
x +1 j x3

The U-D factors of the estimate error corresponding to the estimate _+ 1

can be obtained using the weighted Gram-Schmidt triangularization

subroutine

[D U G Diag (DjD G (Uj+l- j+l)

11.8 Miscellaneous Uses of the Various ESP Subroutines

In certain parameter analyses we may want to reprocess a set of data

suppressing different subsets of variables. In this case the otiginal

data should be left unaltered and subroutine L2Al used to copy A into Al,

which then can be modified as dictated by rie analysis.

Covariance analyses sometimes are initiatized using a covariance

matrix from a different p~oblem (or a diftcred phase of the same problem).

In such cases it may be necessary to permute, delete or insert rows and

columns into the covariance matrix; and that can be achieved using sub­

routine C2C.

If a priori for the problem at hand is given as a covariance matrix:

then one can compute the corresponding SRIF or U-D initialization using

In statistical notation that is commonly used, one writes

x(j+llj) = 'j x(j~j)

20

77-26

subroutines COV2RI or COV2UD. Of course, if the covariance is diagonal

the appropriate R and U-D factors can be obtained more simply. To

convert a priori given in the form of an information matrix to a corres­

ponding SRIF matrix one applies subroutine INF2R. To display covariance

results corresponding to the SRIF or U-D filter one can use subroutines

UTINV, R12COV and UD2COV. The vector stored covariance results are

displayed in a triangular format using subroutine TRIMAT.

Aside: After careful consideration it was decided that subroutines to

multiply matrices would not be included in our ESP. Our reasons are

that parameter estimation does not, in the main, involve matrix

multiplication; and when such products occur they generally involve

matrices with special structures (viz. rectangle x triangle, triangle x

rectangle, diagonal x triangle, etc). To see that these computations

are not lengthy or complicated we illustrate how to compute z = Rx

where R is a triangular vector stored matrix and x is an N vector,

I=0

DO 2 I=I,N

SUM=O.

II=II+I @I1=(I,I)

IK=II

DO 1 K=I,N

SUM=SUM+R(IK) *x(K) @IK=(I,K)

1 IK=IK+K

2 z(I)=SUM @z can overwrite x if desired.

21

77-26

Note that the II and IK incremental recursions are used to circumvent

the N(N+I)/2 calculations of IK=K(K-l)/2+I.

A later more encyclopedic subroutine directory may include the

various matrix products that occur in linear algebra applications.

End of Aside

22

77-26

III. SUBROUTINE DIRECTORY SUMMARY

1. AGTRN - (Agee-Turner)

Computes updated U-D factors corresponding to a rank 1 matrix

modification; i.e., given U-D, a scalar c, and vector v, U and D are

T = T
computed so that U D U U D + c v v . Both c and v are destroyed during

the computation, and the resultant (vector stored) U-D array replaces

the original one. Uses for this routine include (a) adding process

noise effects to a U-D factored Kalman filter; (b) computing consider

covariances (cf Section 11.5); (c) computing "actual" covariance

factors resulting from the use of suboptimal Kalman filter gains; and

(d) adding measurements to a U-D factored information matrix.

2. A2Al - (A to Al)

Reorders the columns of a rectangular matrix A, storing the

result in matrix Al. Columns can be deleted and new columns added.

Zero columns are inserted which correspond to new column name entries.

11atrices A and Al cannot share common storage.

Example III.1

a B C B F G C H

1 5 9 5 0 0 9 0

2 6 10 A21 6 0 0 10 0

3 7 11 7 0 0 11 0
; 11 A2Al o
4 8 12 8 0 0 12 0

A Al

The new namelist (BFGCH) contains F, G and H as new columns and deletes

the column corresponding to name a.

23

77-26

Example 111.2

Suppose one is given an observation data file with regression

coefficients corresponding to a state vector with components say,

x, y, z, vx, vy, vz and station location errors. Suppose further,

that the vector being estimated has components ar ,ax , ay

x, y, z, vx, vy, vz, GM and station location errors. A2Al can be used

to reorder the matrix of regression coefficients to correspond to the

state being estimated. Zero coefficients are set in-place for the

accelerations and GM which are not present in the original file.

3. COMO - (combine R and A namelists)

The upper triangular vector stored matrix R has its columns

permuted and is copied into matrix A. The names associated withR

are to be combined with a second namelist.

The namelist for A is arranged so that R names not contained in

the second list appear first (left most). These are then followed by

the second list. Names in the second list that do not appear in the

R namelist have columns of zeros associated with them.

Example 111.3

NAM2 list

a B C D C B E a F D

1 2 4 7 4 2 0 1 0 7
0 3 5 8 5 3 0 0 0 8

0 0 6 96 0 0 0 0 9

0 0 0 10 0 0 0 0 0 1O

R-Vector stored A-Double subscripted

in track and cross track accelerations

24

77-26

A principal application of this subroutine is to the problem of

combining equation sets containing different variables, and automating

the process of combining name lists.

4. 	 COV2RI - (Covariance to R inverse)

An input positive semi-definite vector stored matrix P is replaced by

its upper triangular vector stored Cholesky factor U, P = UUT . The name RI

is used because when the input covariance is positive definite, U = R7I .

5. 	 COV2UD - (Covariance to U-D factors)

An input positive semi-definite vector stored matrix P is re-

T

placed 	by its upper triangular vector stored U-D factors. P = UDU

6. 	 C2C - (C to C)

Reorders the rows and columns of a square (double subscripted)

matrix C and stores the result back in C. Rows and columns of zeros

are added when new column entries are added.

Example 11.4

A B r r P B Q

B 5 C2C P 0 0 0 0
r 6 9B 8 0 5 0

0 0 0 0

Names P and Q have been added and name A deleted. An important appli­

cation of this subroutine is to the rearranging of covariance matrices.

7. 	 INF2R - (Information matrix to R)

Replaces a vector stored positive semi-definite information matrix

A by its lower triangular Cholesky factor RT; A = R TR. The upper tri­

angular matrix R is in the form utilized by the SRIF algorithms. The

algorithm is designed to handle singular matrices because it is a

25

77-26

common practice to omit a priori information on parameters that are

either poorly known or which will be well determined by the data.

8. 	 PERMUT

Reorders the columns of matrix A, storing the result back in A.

This routine differs from A2Al principally in that here the result

overwrites A. PERMUT is especially useful in applications where

storage is at a premium or where the problem is of a recursive nature.

9. 	 RINCON - (R inverse with condition number bound, CNB)

Computes the inverse of an upper triangular vector stored matrix R

using subroutine UTINV. A Frobenius bound (CNB) for the condition

number of R is computed too. This bound acts as both an upper and a

lower bound, because CNB/N 5condition number CNB. When this bound is

within several orders of magnitude of the machine accuracy the computed

inverse is not to be trusted, (viz if CNB 1015 on an 18 decimal digit

machine R is ill-conditioned).

10. 	 RI2COV - (RI to covariance)

This subroutine computes sigmas (standard deviations) and/or the

covariance of a vector stored upper triangular square root covariance

matrix, RINV (SRIF inverse). The result, stored in COVOUT (covariance

output) is also vector stored, COVOUT can overwrite RINV.

11. 	 R2A - (R to A)

The columns of a vector stored upper triangular matrix R are per­

muted and variables are added and/or deleted. The result is stored in

the double subscripted matrix A. In other respects the subroutine is

like 	A2Al.

26

77-26

Example 111.5

a B C D E E F C B

2 4 8 14 22 22 0 8 4

0 6 10 16 24 24 0 10 6

0 0 12 18 26 R2A 26 0 12 0

0 0 0 20 28 28 0 0 0

0 0 0 0 30 30 0 0 0

R A

R is vector stored as R = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)

with namelist (a,B,C,D,E) associated with it. Names a and D are

not included in matrix A, and a column of zeros corresponding to name

F is added.

One trivial, but perhaps useful, application is to convert a

*

vector stored matrix to a double subscripted form. R2A is used most

often when one wants to rearrange the columns of a SRIF array so that

reduced order estimates, sensiLivites, etc. can be obtained; or so that

data sets containing different parameters can be combined.

12. R2RA - (Triangular block of R to triangular block of RA)

A triangular portion of the vector stored upper triangular matrix R

is put into a triangular portion of the vector stored matrix RA. The

names corresponding to the relocated block are also moved. R can

coincide with RA.

see also the aside in the introduction

27

77-26

Eaamples 111.6

Q z 	 Q Z

RAR

or

A F 	 A F

I I
I I

R 	 R

Note 	that an upper left triangular submatrix can slide to any lower

position along the diagonal, but that a submatrix moving up must go

to the upper leftmost corner. Upper shifting is used when onelis

interested in that subsystem; and the lower shifting is used, for

example, when inserting a priori information for consider analyses.

13. 	 RUDR - (SRIF R converted to U-D form or vice versa)

A vector stored SRIF array is replaced by a vector stored U-D

form or conversely. A point to be noted is that when data is involved

the right side of the SRIF data equation transforms to the estimate

in the U-D array.

28

77-26

14. 	 THH - (Triangular Householder data packing)

An upper triangular vector stored matrix R is combined with a rec­

tangular doubly subscripted matrix A by means of Householder orthogonal

transformations. The result overwrites R, and A is destroyed in the process.

T 	 THH ­

15. 	 TRINAT - (Triangular matrix print)

Prints a vector stored upper triangular matrix, using a matrix

format.

Example 111.7

R(lO) (2,4,6,8,10,12,14,16,18,20) with associated namelist

(A,B,C,D) is 	printed as

A 	 B C D

A 2 4 8 14

B 6 10 16

C 12 18

D 20

(The numbers are printed to 8 significant floating point

digits).

To appreciate the importance of this subroutine compare the vector

R(10) with the double subscript representation.

16. 	 TTHH - (Two triangular arrays are combined using Householder

orthogonal transformations)

This subroutine combines two single subscripted upper triangular

SRIF arrays, R and RA using Householder orthogonal transformations.

The result overwrites R.

The elements 	are not explicitly set to zero.

29

77-26

T TTH

17. 	 TZERO - (Zero a horizontal segment of a vector stored upper

triangular matrix)

Upper triangular vector stored matrix R has its rows between ISTART

and IFINAL set to zero.

Example 111.8

To zero row 2 and 3 of R(15), in the example of subroutine 11.

R(15) = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)

R(15) = (2,4,0,8,0,0,14,0,0,20,22,0,0,28,30)

i. e.,

2 4 8 14 22 2 4 8' 14 22

0 6 10 16 24 0 0 0 0 0

0 0 12 18 26 TZERO 0 0 0 0 0

0 0 0 20 28 0 0 0 20 28

0 0 0 0 30 0 0 0 0 30

R-vector stored 	 R-vector stored

The elements are not explicitly set to zero.

30

77-26

18. 	 UDMES - (U-D measurement update)

Given the U-D factors of the a priori estimate error covariance

=
and the measurement, z Ax + v this routine computes the updated

estimate and U-D covariance factors, the predicted residual, the

predicted residual variance, and the normalized Kalman gain. This

is Biermants U-D measurement update algorithm.

19. 	 UD2COV - (U-D factors to covariance)

The input vector stored U-D matrix (diagonal D elements are

stored as the diagonal entries of U) is replaced by the covariance P,

T

also 	vector stored. P = UDU . P can overwrite U to economize on storage.

20. 	UD2SIG - CU-D factors to sigmas)

Standard deviations corresponding to the diagonal elements of the

covariance are computed from the U-D factors. This subroutine, a restricted

version of UD2COV can print out the resulting sigmas and a title. The

input U-D matrix is unaltered.

21. 	UTINV - (Upper triangular matrix inversion)

An upper triangular vector stored matrix RIN(R in) is inverted and

the result, vector stored, is put in ROUT(R out). ROUT can overwrite

RIN to economize on storage. If a right hand side is included and the

bottommost tLp of RIN has a -1 set in then ROUT will have the solution

in the place of the right hand side.

31

77-26

22. UTIROW - (Upper triangular inversion, inverting only the upper rows)

INPUT 	 OUTPUT

x -7R R71R ~~- R

yx 	 xy Y

----- L------------
]REW:---	 -

An input vector stored R matrix with its lower left triangle assumed to

have been already inverted is used to construct the upper rows of the

matrix inverse of the result. The result, vector stored, can overwrite

the input to economize on storage.

If the columns comprising R represent consider terms then taking
xy

-
RyasY the identity gives the sensitivity on the upper right portion of

the result. If R	-1 = Diag(a ,...,a) then the upper right portion of
y y nY

the result represents the perturbation. Note that if z (the right hand

side of the data equation) is included in R then taking the corres­xy

ponding R71 diagonal as -1 results in the filter estimate appearing

y

as the corresponding column of the output array. When n is zero this
Y

subroutine is equivalent to UTINV.

23. WGS - (Weighted Gram Schmidt -matrixtriangularization)

An input rectangular (possibly square) matrix W and a diagonal

weight matrix, Dw, are transformed to (U-D) form; i.e.,

WT T
= UDUS D

w

where U is unit upper triangular and D is diagonal. The weights Dw are

assumed nonnegative, and this characteristic is inherited by the

resulting D.

32

77-26

IV. SUBROUTINE DIRECTORY USER DESCRIPTION

1. AGTRN (Agee-Turner U-D rank one modification)

Purpose

To compute the (updated) U-D factors of UDU
T + CVVT

I CALL AGTRN (UIN,UOUT,N,C,V

Argument Definitions

UIN(N*(N+l)/2) Input vector stored positive semi­
definite U-D array (with the D entries

stored on the diagonal of U)

UOUT(N*(N+l)/2) Output vector stored result

UOUT=UIN is allowed

N Matrix dimension

C Input scalar, destroyed by the algorithm

V(N) Input vector, destroyed by the algorithm

Remarks and Restrictions

If C negative is used the algorithm is numerically unstable,

and the result may be numerically unreliable. Singular U matrices

are allowed, and these can result in singular output U matrices.

Functional Description

This rank one modification is based on a result published by

Agee and Turner (1972), White Sands Missile Range Tech. Report

No. 38. See also Ref. [3] where the algorithm is derived using

geometric arguments.

33

77-26

2. A2AI (A to Al)

Purpose

To rearrange the columns of a namelist indexed matrix to

conform to a desired namelist.

ICALL A2Al(A,IA,IR,LA,NAMA,Al,IAI,LAI,NAMAl)

Argument Definitions

A(IR,LA) Input rectangular matrix

IA Row dimension of A, IA.GE.IR

IR Number of rows of A that are to be

arranged

LA Number of columns in A; this also

represents the number of parameter

names associated with A

NAMA(LA)- Parameter names associated with A

AI(IR,LAl) Output rectangular matrix

IAl Row dimension of Al, IA1.GE.IR

LAI Number of columns in Al; this also

represents the number of parameter

names associated with Al

NAMAl(LAl) Input list of parameter names to be

associated with the output matrix Al

Remarks and Restrictions

Al cannot overwrite A. This subroutine can be used to add

on columns corresponding to new names and/or to delete variables

from an array.

Functional Description

The columns of A are copied into Al in an order corresponding

to the NAMA1 parameter namelist. Columns of zeros are inserted

in those Al columns which do not correspond to names in the input

parameter namelist NAMA.

34

http:IA1.GE.IR
http:IA.GE.IR

77-26

3. 	COMBO (Combine parameter namelists)

Purpose

To rearrange a vector stored triangular matrix and store

the result in matrix A. The difference between this subroutine

and R2A is that there the namelist for A is input; here it is

determined by combining the list for R with a list of desired names.

I CALL COMBO (R,Ll,NAMl,L2,NAM2,A,IA,LA,NA2)

Argument Definitions

R(Ll*(Ll+l)/2) Input vector stored upper triangular matrix

Li No. of parameters in R (and in NAM1)

NAMl(LI) Names associated with R

L2 No. of parameters in NAM2

NAM2(L2) Parameter names that are to be combined
with R (NAMI list); these names may or
may not be in NAI

A(L1,LA) Output array containing the rearranged

R matrix LI.LE.IA

IA Row dimension of A

LA No. of parameter names in NAMA, and the
column dimension of A. LA= Ll+ L2 -
No. names common to NAMl and NA12; LA
is computed and output

NAMA(LA) Parameter names associated with the out­
put A matrix ; consists of names in NAMI
not in NAM2 followed by NAM2

Remarks and Restrictions

The column dimension of A is a result of this subroutine.

To avoid having A overwrite neighboring arrays one can bound the

column dimension of A by Ll+L2.

35

77-26

Functional Description

First the NAM1 and NAM2 lists are compared and the names

appearing in NAMI 6nly have their corresponding R column entries

stored in A (e.g. if NAMI(2) and NAMI(6) are the only names not

appearing in the NAM2 list then columns 2 and 6 of R are copied

into columns 1 and 2 of A). The remaining columns of A are

labeled with NAM2. The A namelist is recorded in NAMA. The

NA I1 list is compared with NAM2 and matching names have their R

column entries copied into the appropriate columns of A. NAM2

entries not appearing in NAMI1 have columns of zero placed in A.

36

77-26

4. 	COV2RI (Covariance to Cholesky Square Root, RI)

Purpose

To construct the upper triangular Cholesky factors of a

positive semi-definite matrix. Both the input covariance and

the output Cholesky factor (square root) are vector stored.

The output overwrites the input. Covariance (input)= U*U**T

(output U = Rinverse).

ICALL COV2RI(U,N)

Argument Definitions

U(N*(N+I)/2) Contains the input vector stored

covariance matrix (assumed positive

definite)and on output it contains

the upper triangular square root factor

N Dimension of the matrices involved

Remarks and Restrictions

No check is made that the input matrix is positive semi­

definite. Singular factors (with zero columns) are obtained if

the input is (a) in fact singular, (b) ill-conditioned, or (c) in

fact indefinite; and the latter two situations are cause for alarm.

Case (c) and possibly (b) can be identified by using RI2COV to

reconstruct the input matrix.

Functional Description

An upper triangular Cholesky reduction of the input matrix

is implemented using a geometric algorithm described in Ref. [3].

T

U(input) = U(output) * U(output)

At each step of the reduction diagonal testing is used and

negative terms are set to zero.

37

77-26

5. 	COV2UD (Covariance to UD factors)

Purpose

To obtain the U-D factors of a positive semi-definite matrix.

The input vector stored matrix is overwritten by the output U-D

factors which are also vector stored.

[CALL COV2UD(U,N)]

Argument Definitions

U(N*(N+I)/2) Contains the input vector stored covari­
ance matrix; on output it contains the

vector stored U-D covariance factors.

N Matrix dimension

Remarks and Restrictions

No checks are made in this routine to test that the input U matrix

is positive semi-definite. Singular results (with zero columns) are

obtained if the input is (a) in fact singular, (b) ill-conditioned,

or 	(c) in fact indefinite; and the latter two situations are cause for

alarm. Case (c) and possibly case (b) can be identified by using UD2-

COV to reconstruct the input matrix. Note that although indefinite

matrices have U-D factorizations, the algorithm here applies only to

matrices with non-negative eigenvalues.

Functional Description

An upper triangular U-D Cholesky factorization of the input matrix

is implemented us'ing a geometric algorithm described in Ref. [3].

U(input) = U*D*UT , U-D stored in U on output

at each step of the reduction diagonal testing is used to zero negative

terms.

38

77-26

6. C2C (C to C)

Purpose

To rearrange the rows and columns of C, from NAMI order to NAM2

order. Zero rows and columns are associated with output defined names

that are not contained in NAMI.

[CALL C2C(C,IC,L,NAMI,L2,NAM2)

Argument Definitions

C(LI,L1) Input matrix

IC Row dimension of C
IC.GE.L = MAX(Ll,L2)

L1 No. of parameter names associated with
the input C

NAMI(L) Parameter names associated with C on input.

(Only the first Li entries apply to the

input C)

L2 No. of parameter names associated with the

output C

NAM2(L2) Parameter names associated with the output C

Remarks and Restrictions

The NAN2 list need not contain all the original NAl1 names and

Li can be .GE. or .LE. L2. The NAM1 list is used for scratch and

appears permuted on output. If L2.GT.Ll the user must be sure that

NAMf has L2 entries available for scratch purposes.

Functional Description

The rows and columns of C and NAMI are permuted pairwise to get

the names common to NAMI and NAM2 to coalesce. Then the remaining rows

and columns of C(L2,L2) are set to zero.

39

http:L2.GT.Ll

77-26

7. 	INF2R (Information matrix to R)

Purpose

To compute a lower triangular Cholesky factorization of the

input positive semi-definite matrix. The result transposed, is

vector stored; this is the form of an upper triangular SRIF matrix.

CALL INF2R(P,N)

Argument Definitions

P(N*(N+I)/2) Input vector stored positive semi­
definite (information) matrix; on output

it represents the transposed lower

triangular Cholesky factor (i.e. the SRIF

R matrix)

N Matrix dimension

Remarks and Restrictions

No checks are made on the input matrix to guard against negative

eigenvalues of the input, or to detect ill-conditioning. Singular

output matrices have one or more rows of zeros.

Functional Description

A Cholesky type lower triangular factorization of the input matrix

is implemented using the geometric formulation described in Ref. [3].

U(input) = [U(output)]T *[U(output)]

At each step of the factorization diagonal testing is used to zero columns

corresponding to negative entries. The result is vector stored in the

form of a square root information matrix as it would be used for SRIF

analyses.

40

77-26

8. 	PERMUT (Permute A)

Purpose

To rearrange the columns of a namelist indexed matrix to conform

to a desired namelist. The resulting matrix is to overwrite the input.

CALL PERMUT(A,IA,IR,L1,NAM1,12,NAN2

Argument Definitions

A(IR,L) Input rectangular matrix, L= max(L,L2)

IA Row dimension of A, IA.GE.IR

IR Number of rows of A that are to be

rearranged

Li Number of parameter names associated with

the input A matrix

NAXI(L) Parameter names associated with A on input

(only the first Li entries apply to the

input A)

L2 Number of parameter names associated with

the output A matrix

NAM2 Parameter names associated with the output A

Remarks and Restrictions

This subroutine is similar to A2Al; but because the output matrix

in this case overwrites the input there are several differences. The

NAMIl vector is used for scratch, and on output it contains a permuta­

tion of the input NAMI list. The user must allocate L= max(Ll,L2)

" elements of storage to NAMI1. The extra entries, when L2> Ll, are

used for scratch.

Functional Description

The columns of A are rearranged, a pair at a time, to match the

NAM2 parameter namelist. The NAMI entries are permuted along with the

columns, and this is why dim (NAMI) must be larger than Li (when L2>Ll).

Columns of zeroes are inserted in A which correspond to output names

that do not appear in NAMl.

41

http:IA.GE.IR

77-26

9. 	RINCON (R inverse with condition number bound)

Purpose

To compute the inverse of an upper triangular vector stored

triangular matrix, and an estimate of its condition number.

CALL 	 RINCON(RIN,,N,ROUT.,CNB)]

Argument Definitions

RIN(N*(N+l)/2) Input vector stored upper triangular matrix

N Matrix dimension

ROUT(N*(N+l)/2) Output vector stored matrix inverse

(RIN=ROUT is permitted)

CNB 	 Condition number bound. If K is the

condition number of RIN, then

CNB/N.LE.K.LE CNB

Remarks and Restrictions

The condition number bound, CNB serves as an estimate of the actual

condition number. When it is large the problem is ill-conditioned. The

matrix inversion is computed using subroutine UTINV.

Functional Description

The matrix inversion, a triangular back substitution, is accomplished

via subroutine UTINV. If any diagonal element of the input R matrix is

zero the inversion is not attempted; instead a message is printed. The

condition number bound is computed as follows:

NTOT

F.NORM = R(J) 2

J=l

NTOT
- R-l(J) 2

F.NORM R 1 E

J=l

42

http:CNB/N.LE.K.LE

77-26

where NTOT = N*(N+l)/2 is the number of elements in the vector stored

triangular matrix. The condition number bound, CNB, is given by

CNB = (F.NOPM R * F.NORM
R71)1/2

F.NORM is the Frobenius norm, squared. The inequality

CNB/N 5condition number RS5CNB

is a simple consequence of the Frobenius norm inequalities given in

Lawson-Hanson "Solving Least Squares," page 234.

43

77-26

10. RI2COV (RI Triangular to covariance)

Purpose

To compute the covariance matrix and/or the standard deviation of

a vector stored upper triangular square root covariance matrix. The

output covari'ance matrix, also vector stored, may overwrite the input.

FCALL RI2COV(RINV,N,SIG,COVOUT,KOV)

Argument Definitions

RINV(N*(N+1)/2) Input vector stored upper triangular

covariance square root (RINV=R inverse

is the inverse of the SRIF matrix).

N Dimension of the RINV matrix

SIG(N) Output vector of standard deviations

COVOUT(N*(N+l)/2) Output vector stored covariance matrix

(COVOUT = RINV is allowed)

.GT.0 Compute covariance and sigmas using the

first KOV rows of RINV

KOV .LT.O Compute only the sigmas using the first

KOV rows of RINV

.EQ.O No covariance, but all sigmas (e.g. use

all N rows of RINV)

Remarks and Restrictions

Replacing N by IKOVI corresponds to computing the covariance of

a lower dimensional system.

Functional Description

COVOUT=RINV*RINV**T.

44

77-26

11. 	 R2A (R to A)

Purpose

To place the upper triangular vector stored matrix R into the

matrix A and to arrange the columns to match the desired NAMA para­

meter list. Names in the NAMA list that do not correspond to any

name in NAMR have zero entries in the corresponding A columns.

CALL R2A(R,LR,NAR,A,IA,LA,NAMA)

Argument Definitions

R(LR*(LR+)/2) Input upper triangular vector stored array

LR Row dimension of vector stored R

NAMR(LR) Parameter names associated with R

A(LR,LA) Matrix to house the rearranged R matrix

IA Row dimension of A, IA.GE.LR.

LA No. of parameter names associated with the

output A matrix.

NAMA(LA) Parameter names for the output A matrix.

Functional Description

The matrix A is set to zero and then the columns of R are copied

into A.

45

http:IA.GE.LR

77-26

12. 	R2RA (Permute a subportion RA of a vector stored triangular matrix)
AI

Purpose

To copy the upper left (lower right) portion of a vector stored

upper triangular matrix R into the lower right (upper left) portion of

a vector stored triangular matrix RA.

ICALL R2RA(R,NR,NAM,RA,NA,NAMA)

Argument Definitions

R(NR*(NR+l)/2) Input vector stored upper triangular matrix

NR 	 Dimension of vector stored R matrixt

NAM(NR) Names associated with 	R.

RA(NRA*(NRA+)/2) Output vector stored 	upper triangular matrix

NRA 	 If NRA= 0 on input, then NAMA&() should have

the first name of the output namelist. In
this case the number of names in NANA, NRA,
will be computed. The lower right block of

R will be the upper left block of RA.

If NRA= last name of the upper left block

that is to be moved then this upper block

is to be moved to the lower right corner
of RA. When used in this mode NRA=NR on
outputt

NAMA(NRA) Names associated with RA. Note that NRA
used here denotes the output value of NRA.

Remarks and Restrictions

RA and NANA can overwrite R and NAM. The meaning of the NRA= 0

option is clarified by the following example:

A B C D E C D E INPUT
- NR = 5

2 4 8 14 22 12 18 26 NAM = 'A','B', 'C','D','E'
NRA = 0

6 10 16 24 20 28 NAMA(l) = 'C'

112
1

18
20

26 30
28 -AMA R

OUTPUT
= 'C', 'D', 'E'

1826RAOTU
1

I 	 BA

R

tsee the concluding paragraph of Remarks and Restrictions

46

77-26

When NRA = 0 and NAMA(l) = 'C' we are asking that the lower triangular

portion of R, beginning at the column labeled C, be moved to form the

first (in this case 3) columns of RA. Incidentally, RA could have

additional columns; these columns and their names would be unaltered

by the subroutine.

The meaning of the other NRA option is illustrated by the following

example;

A B C D E A B A B C1
INPUT
NR= 5

S -NAM = 'A','B','C','D','E'
2 4 8 j14 22

6 10 116 24
Ii--OUTPUT

2 4 8

6 10

14
16

22
24

NRA =
R

'C'

12
12

i1 26_____ *2 4 sNRA=5
NAMA(3-5) = A,'B','C'

20 28 6 10
RA

30 I 12

R R

Then NRA = 'C' we are asking that the upper left block of R, up to the

column labeled C, be moved to the lower left portion of BA and the cor­

responding names be moved too. If RA overwrites R, as in the example,

then the first two rows of R remain unchanged and since NAMA overwrites

NAM, the labels of the first two columns remain unaltered.

The remark that NRA=NR on output means, in this example, that the

column with name C in R is moved over to column 5. If one wanted to

slide the upper left triangle corresponding to names ABC of R to columns

7-9 of an RA matrix (of unspecified dimension, 9), then one should set

NR=9 in the subroutine call. Thus NR, when used in this sliding down

the diagonal mode, does not represent the dimension of R; but indicates

how far the slide will be.

47

77-26

13. 	 RUDR (R to U-D or U-1 to R)

Purpose

To transform an upper triangular vector stored SRIF array to U-D

form or vice versa.

CALL RUDR(RIN,N,ROUT,IS)

Argument Definitions

RIN(NBAR*(NBAR+l)/2) 	 Input upper triangular vector stored SRIF

or U-D array; NBAR = ABS(N) + 1

ROUT(NBAR*(NBAR+)/2) 	 Output upper triangular vector stored

U-D or SRIF array (RIN = ROUT is

permitted)

N 	 Matrix dimension, N.GT.O represents an

R to U-D conversion and N.LT.O represents

a U-D to R conversion.

Is 	 If IS = 0 the input array is assumed not

to contain a right side (or an estimate),

and IS = 1 means an appropriate additional

column is included. In the IS = 0 case

the last column of RIN is ignored and

NBAR 	= ABS(N) is used.

Subroutine used: UTINV

Functional Description

Consider the N>0 case. RTN = R is transformed to ROUT = R inverse

using subroutine UTINV with dimension N+IS. If IS = 1 the subroutine

sets RIN((N+l)(N+2))/2) = -1. so that the N+lst column of ROUT will be

R- 1
the X estimate followed by -1. = UD1/2 so that the diagonals

are square root scaled U columns. This information is used to con­

struct the U-D array which overwrites ROUT.

Tf N<O the input is assumed to be a U-n array. This array is

converted to ROUT=UD
2 and then using UTINV, R is computed and stored in

1 the U-D matrix is assumed augmented by X (estimate),
ROUT. If IS =

and on output the right side term of the SRIF array is obtained.

48

77-26

14. THE (Triangular 	Householder Orthogonalization)

Purpose

To compute [R z] such that

T = T - orthogonal

This is the key algorithm used in the square root information batch

sequential filter.

I CALL THH(R,N,A,IA,M,SOS,NSTRT)

Argument Definitions

R(N*(N+3)/2) 	 Input upper triangular vector stored

square root information matrix. If

estimates are involved SOS.GE.O and R

is augmented with the right hand side

(stored in the last N locations of R).

If SOS.LT.O only the first N*(N+l)/2
locations of R are used. The result

of the subroutine overwrites the input R

N 	 No. of parameters

A(M,N+l) 	 Input measurement matrix. The N+lst
column is only used if SOS.GE.O, in
which case it represents the right side
of the equation v+ AX = z. A is
destroyed by the algorithm, but it is
not explicitly set to zero.

IA 	 Row dimension of A

M 	 The number of rows of A that are to be

combined with R

SOS 	 Accumulated residual sum of squares

corresponding to the data processed

prior to this time. On exit SOS

represents the updated sum of squares

of the residuals . Izi-AiXest

summed over the old and new data. It

also includes the a priori term

.
RXZ 1XestZol12Because SOS cannot

be used if data, z, is not included we

use SOS.LT.O to indicate when data is

49

77-26

not included.

NSTRT 	 First column of the input A matrix

that has a nonzero entry. In certain

problems, especially those involving

the inclusion of a priori statistics,

it is known that the first NSTRT-l

columns of A all have zero entries.

This knowledge can be used to reduce

computation. If nothing is known

about A then NSTRT.LE.1 gives a default

value of 1, i.e. it is assumed that A

may have nonzero entries in the very

first column.

rerarks and Restrictions

It is trivial to arrange the code so that R output need not over­

write the input R. This was not done because, in the author's opinion,

there are too few times when one desires to have ROUT # RIN.

Functional Description

Assume for simplicity that NSTRT = 1. Then at step j, j = 1,...,N

(or N+l if data is present) the algorithm implicitly determines an

elementary Householder orthogonal transformation which updates row j

of R and all the columns of A to the right of the jth. At the

completion of this step column j of A is in theory zero, but it is

not explicitly set to zero. The orthogonalization process is discussed

at length in the books by Lawson and Hanson, [1] and Bierman [3].

50

77-26

15. 	 TRIILAT (Triangular matrix print)

Purpose

To display a vector stored upper triangular matrix in a two

dimensional 8-digit triangular format.

CALL TRIMAT (A,N, CAR,TEXT,NCHAR,NANES)

Argument Definitions

A(N*N+1)/2) 	 Vector stored upper triangular matrix

N 	 Dimension of A

CAR(N) 	 Parameter names (alphanumeric) associated

with A

TEXT(NCHAR) 	 An array of field data characters to

be printed as a title preceding the matrix

NCHAR 	 No. of characters (including spaces) that

are to be printed in text()

ABS(NCHAR).LE.126.NCHAR negative is used

to avoid skipping to a new page to start

printing

NAMES 	 A logical flag. If NAMES=.F. the CAR

namelist is ignored and the columns

and rows of A on output appear with

numerical column heads

Remarks and Restrictions

Using NCHAR nonnegative, 	and starting the print at the top of a

new page makes it easier to locate the printed result and is especially

recommended when dealing with large dimensioned arrays. Page economy

can, however, be achieved using the NCHAR negative option. In this case

the print begins on the next line.

51

77-26

16. TTHH (Two triangular matrix Householder reduction)

Purpose

To combine two vector stored upper toiangular matrices, R and RA

by applying Householder orthogonal transformations. The result over­

writes R.

T 	 TTHH

ICALL TTHH (R,RA,N)

Argument Definitions

R(N*(N+l)/2) Input vector stored upper triangular

matrix, which also houses the result

RA(N*(N+l)/2) 	 Second input vector stored upper

triangular matrix. This matrix is

destroyed by the computation.

N Matrix dimension
N less than zero is used to indicate
that R and RA have right sides
(IN1+1 columns) and have dimension
INI*(INI+3)/2).

Remarks and Restrictions

RA is theoretically zero 	on output, but is not set to zero.

52

77-26

17. 	 TZERO (Triangular matrix zero)

Purpose

To zero out rows IS(Istart) to IF(Ifinal) of the vector stored

upper triangular matrix R.

CALL 	TZERO(R,N,IS,IF)

Argument Definition

R(N*(N+1)/2) 	 Input vector stored upper triangular

matrix

N Row dimension of vector stored matrix

IS First row of R that is to be set to zero

IF Last row of R that is to be set to zero

Functional Description

IF

0

R(input) 	 R(output)

53

77-26

18. 	 UDMES (U-D measurement update)

Purpose

Kalman filter measurement updating using Bierman's U=D measure­

ment update algorithm, cf 1975 CONF. DEC. CONTROL paper. A scalar

measurement z = A Tx + v is processed, the covariance U-D factors and

estimate (if included) are updated, and the Kalman gain and innovations

variance are computed.

[CALL UDNES (U,N,R,A,G,ALPHA)

Argument Definitions

INPUTS

U(N*(N+l)/2) 	 Upper triangular vector stored input

matrix. D elements are stored on the

diagonal. The U vector corresponds to

an a priori covariance. If state

estimates are involved the last column

of U 	contains X. In this case Dim U =

(N+l)*(N+2)/2 and on output (U((N+l)*

(N+2)/2) = z-A**T*X(a priori est).

N 	 Dimension of the state vector

R 	 Measurement variance

A(N) 	 Vector of Measurement coefficients;

if data then A(N+l) = z

ALPHA 	 If ALPHA.LT.zero no estimates are

computed (and X and z need not be

included)

OUTPUTS

U 	 Updated vector stored U-D factors. When

ALPHA (input) is nonnegative the (N+l)st

column contains the updated estimate

and the predicted residual.

ALPHA 	 Innovations variance of the measurement

residual.

A 	 Contains U**T*A(input) and when ALPHA
(input) is nonnegative A(N+I) =
z-A**T*X(a priori est)/ALPA.

54

77-26

G(N) Vector of unweighted Kalman gains,

K = G/ALPHA.

Remarks and Restrictions

One can use this algorithm with R negative to delete a previously

processed data point. One should, however, note that data deletion

sometimes introduces numerical errors.

The algorithm holds for R = 0 (a perfect measurement) but the code

may fail (zero divides occur) if any of the ALPHA terms appearing in

the code vanish. Changes in the code which remove the zero divide

problems are commented in the code.

Functional Description

The algorithm updates the columns of U, from left to right, using

Bierman's algorithm, cf Proc. 1975 Conf. Dec. Control, Houston, Texas,

pp 337-346.

55

77-26

19. 	 UD2COV (U-D factor to covariance)

Purpose

To obtain a covariance from its U-D factorization. Both matrices

are vector stored and the output covariance can overwrite the input

T .
U-1) array. U-D and P are related via P = UDUT

CALL 	UD2COV(UIN,N,POUT)

Argument Definitions

UIN(N*(N+I)/2) 	 Input vector stored U-D factors, with D

entries sLored on the diagonal.

POUT(N*(N+)/2) 	 Output vector stored covariance matrix

(POUT = UIN is permitted).

N 	 Dimension of the matrices involved.

56

77-26

20. UD2SIG (U-D factors to sigmas)

Purpose

To compute variances from the U-D factors of a matrix.

CALL UD2SIG(U,N,SIG,TEXT,NCT)

Argument Definitions

U(N*(N+1)/2) 	 Input vector stored array containing

the U-D factors. The D (diagonal)

elements are stored on the diagonal

of U.

N 	 Dimension of the U matrix

SIG(N) 	 Output vector of standard deviations

TEXT () 	 Output label of field data characters,
which precedes the printed vector of
standard deviations.

NCT 	 Number of characters of text,

O.LE.NCT.LE.126. If NCT = 0, no

sigmas are printed, i.e. nothing is

printed.

Functional Description

If U and D are written as doubly subscripted matrices then

/ N

+ D(KK)[U(JK]2)
SIG(J) = (D(JJ) 	 >
K=J+l

If NCT.GT.0 a title is printed, followed by the sigmas.

57

77-26

21. 	UTI4V (Upper triangular matrix inverse)

Purpose

To invert an upper triangular 'vectorstored matrix and store the

result in vector form. The algorithm is so arranged that the result

can 	 overwrite the input.

I CALL UTINV(RIN,N, ROUT)

Argument Definitions

RIN(N*(N+)/2) 	 Input vector stored upper triangular

matrix

N 	 Matrix dimension

ROUT(N*(N+)/2) 	 Output vector stored upper triangular

matrix inverse (ROUT = BIN is per­
mitted

Remarks and Restrictions

Ill conditioning is not tested, but for nonsingular systems the

result is as accurate as is the full rank singhlar value decomposition

inverse. Singularity occurs if a diagonal is zero. The subroutine

terminates when it reaches a zero diagonal. The columns to the left

of the zero diagonal are, however, inverted and the result stored

in ROUT.

This routine can also be used to produce the solution to RX = Z.

Place Z in column N+l (viz. RIN(N*(N+l)/2+1) = Z(1), etc.), define

RIN((N+l)(N+2)/2) = -1 and call the subroutine using N+l instead of

N. 	On return the first N entries of column N+1 contain the solution

(e.g. 	ROUT(N*(N+I)/2+l) = X(l), etc.).

Because matrix inversion is numerically sensitive we recommend

using this subroutine only in double precision.

58

77-26

Functional Description

The matrix inversion is accomplished using the standard back

substitution method for inverting triangular matrices, cf. the book

references by Lawson and Hanson, [1] or Bierman [3].

59

77-26

22. 	 UTIROW (Upper triangular inverse, inverting only the upper rows)

Purpose

To compute the inverse of a vector stored upper triangular

matrix, when the lower right corner triangular inverse is given.

GALL 	 UTIROW(UIN,N,ROUT,NRY)

Argument Definitions

Input vector stored upper triangular
RIN(N*(N+l)/2)

matrix. Only the first N - NRY rows

are altered by the algorithm.

N 	 Matrix dimension.

ROUT(N*(N+I)/2) 	 Output vector stored upper triangular

matrix inverse. On input the lower

NRY dimensional right corner contains

the given (known) inverse. This lower

right corner matrix is left unchanged.

(ROUT = RIN is permitted.)

NRY Number of rows, starting at the bottom,

that are assumed already inverted.

Remarks and Restrictions

The purpose of this subroutine is to complete the couputation

of an upper triangular matrix inverse, given that the lower right

corner has already been inverted. Part of the input, the rows to

The portion of the
be inverted; are inserted via the matrix RIN.

matrix that has already been inverted is entered via the matrix ROUT.

It may seem odd that part of the input matrix is put into RIN and

part into ROUT. The reasoning behind this decision is that RIN

represents the input matrix to be inverted (;it just happens that

we do not make use of the lower right triangular entries); ROUT

represents the inversion result, and therefore that portion of the

inversion that is given should be entered in this array.

60

77-26

Ill conditioning is not tested, but for nonsingular systems the

result is accurate. Singularity halts the algorithm if any of the

first N-NRY diagonal elements is zero. If the first zero encountered

moving up the diagonal (starting at N-NRY) is at diagonal j then the

rows below this element will be correctly represented in ROUT.

To generate estimates do the following: put N+l into the matrix

dimension argument; in the first N-NRY rows of the last column of

RIN put the right hand side elements of the equation R x + Rx y = z
 x xy X

(i.e., Rx, Rxy , and z make up the first N-NRY rows of RIN); in the

next NRY entries of ROUT, beginning in the (N-NRY+l)st element, put

Yes (i.e., R-1 and ye make up rows N-NRY+l,...,N of ROUT); and

ROUT((N+l)(N+2)/2) = -1. On output, the last column of ROUT will

contain Xest, Yest and -1.

When NRY = 0 this algorithm is equivalent to subroutine UTIV.

Functional Description

The matrix inversion is accomplished using the standard back

substitution method. The computations are arranged row-wise, starting

at the bottom (from row N-NRY, since it is assumed that the last NRY

rows have already been inverted).

61

77-26

23. 	 WGS (Weighted Gram-Schmidt matrix triangularization)

Purpose

To compute a vector stored U-D array from an input rectangular

matrix W, and a diagonal matrix DW so that W D Ww =UD

CALL 	WGS(W,IMAXW,IW,JW,DW,U,V)

Argument Definitions

W(IWJW) Input rectangular matrix, destroed by

the computations

IMAXW Row dimension of input W matrix,

IMAXW.GE.IW

DW(JW) Diagonal input matrix; the entries

are assumed to be nonnegative. This

vector is unaltered by the computations

U(IW*(IW+I)/2) Vector stored output U-D array

V(JW) Work vector in the computation

Remarks and Restrictions

The algorithm is not numerically stable when negative DW weights

are used; negative weights are, however, allowed. If JW is less than

1W (more rows than columns), the output U-D array is singular; with

IW-JW zero diagonal entries in the output U array.

Functional Description

A Dw-orthogonal set of row vectors, i' 42'..., IW' are con­

structed from the input rows of the W matrix, i.e., W = U 4, , 4Dw T = D.

The construction is accomplished using the modified Gram-Schmidt

orthogonal construction (see refs. [1] or [3]). This algorithm is

reputed to have excellent numerical properties. Note that the 4

vectors are not of interest in this routine, and they are overwritten;

The V vector used in the program houses vector IW-j+l of 4 at step j of

algorithm. The fact that the computed 4 vectors may not be D orthogonal

is of no import in regard to the U and D computed results.

62

http:IMAXW.GE.IW

77-26

V. FORTRAN Subroutine Listings

63

77 26

SUBROUTINE AGTRN (UINUOUTPNPCV) AGTRNO0

C AGTRN020

C AGEE-TURNER U-D FACTOR RANK 1 UPDATE AGTRN030

C AGTRN040

C (UOUT)*DOUT*(UOUT)**T=(UIN)*DIN*(UIN)**T+C*V*V**T AGTRN050

C AGTRN060

C UIN(N*(N+1)/2) INPUT VECTOR STORED POSITIVE SEMI-DEFINITE U-D AGTRN070

C ARRAYP WITH n ELEMENTS STORED ON THE DIAGONAL AGTRNOBO

C UOUT(N*(N+1)/2) OUTPUT VECTOR STORED POSITIVE (POSSIBLY) SEMI- AGTRN090

C DEFINITE U-D RESULT, UOUT=UIN IS PERMITTED AGTRNIO0

C N DIMENSION OF THE STATE AGTRN1IO

C C SCALAR. SHOULD BE NON-NEGATIVE AGTRN120

C C IS DESTROYED DURING THE PROCESS AGTRN130

C V(N) INPUT VECTOR FOR RANK ONE MODIFICATION. V IS AGTRN140

C DESTROYED DURING THE PROCESS AGTRNI5O

C AGTRN160

C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPLPFEB.1977) AGTRN17O

C AGTRN18O

IMPLICIT DOUBLE PRECISION (A-HPO-Z) AGTRN190

DIMENSION UIN(l). UOUT(I) V(1) AGTRN200

C AGTRN210

Z=0.0 AGTRN220

IF (C.EQ.Z) RETURN AGTRN230

C AGTRN240

JJ=N*(N+I)/2 AGTRN250

DO 50 J=Np2t-1 AGTRN260

S=V(J) AGTRN270

D=UIN(JJ)+C*S*S AGTRN280

IF (D) 5plOP30 AGTRN290

5 WRITE (6,100) AGTRN300

RETURN AGTRN310

10 JJJJ-J AGTRN320

WRITE (6.110) AGTRN330

Do 20 K=IJ AGTRN340

20 UOUT(JJ+K)=Z AGTRN350

GO TO 50 AGTRN360

30 B=C/D AGTRN37O

BETA=S*B AGTRN3BO

C=B*UIN(JJ) AGTRN390

UOUT(JJ)=D AGTRN400

JJ:JJ-J AGTRN410

JM=J-1 AGTRN420

00 40 I=1eJM1 AGTRN430

V(I)=V(I)-S*UIN(JJ+I) AGTRN440

40 UOUT(JJ+I)=UIN(JJ+I)+BETA*V(I) AGTRN450

50 CONTINUE AGTRN460

C AGTRN470

UOUT(1)=UIN(1)+C*V(1)**2 AGTRN480

RETURN AGTRN49O

C AGTRN500
100 FORMAT (1H0,1OXPP' * * ERROR RETURN DUE TO A COMPUTED NEGATIVE COMAGTRN510

1PUTED DIAGONAL IN AGTRN * * *f) AGTRNS20
110 FORMAT (IHOP10X#* * * NOTE: u-D RESULT IS SINGULAR * * *') AGTRN530

END AGTRN540
64

77-26

C
SUBROUTINE A2AI (A.IAPIRLAPNAMAPAlPIAlLA1,NAMAI)

A2A10010
C SUBROUTINE TO REARRANGE THE COLUMNS OF A(IReLA)p IN NAMA ORDER A2AI0020
C AND PUT THE RESULT IN AI(IR.LA1) IN NAMAI ORDER. ZERO COLUMNS A-AI0O030
C ARE INSERTED IN Al CORRESPONDING TO THE NEWLY DEFINED NAMES. APA10040
C APA10O50
C A(IRpLA) INPUT RECTANGULAR MATRIX A2A100SO
C IA RO DIMENSION OF As IR.LE.IA A2AIO070
C IR NO. OF ROWS OF A THAT ARE TO BE REARRANGED APAXOO80
C LA NO. OF PARAMETER NAMES ASSOCIATED WITH A APA10090
C NAMA(LA) PARAMFTER NAMES ASSOCIATED WITH A A2A10100
C AI(IRPLA1) OUTPUT RECTANGULAR MATRIX A2A10110
C A AND Al CANNOT SHARE COMMON STORAGE A2AIOl20
C IAl ROW DIMENSION OF Ale IR.LE.IA1 - APA10130
C LAl NO. OF PARAMETER NAMES ASSOCIATED WITH Al A2AI0140
C NAMAl(LAl) INPUT LIST OF PARAMETER NAMES TO BE ASSOCIATED A2A10150
C WITH THE OUTPUT MATRIX Al A2AI0160
C A2A10170
C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPLP SEPT. 1976) A2A10180
C A2AI0190

DIMENSION A(IApl)p NAMA(I)p Al(IAIPl).NAMA1(1) A2A10200
IMPLICIT DOURLE PRECISION (A-HO-Z) APAIO210

C A2A10220
ZERO=O. A2AI0230
DO 100 JzlLA1 APA10240

DO 60 I=ZLA A2AI0250

60
IF (NAMA(I).EQ.NAMAI(J)) GO TO
CONTINUE

80 A2A10260
A2AI0270

DO 70 K='IR A2AI0280
70 AI(K#J)=ZERO @ ZERO COL. CORRFS. TO NEW NAME APA10290

GO TO 100 A2AI0300
80 DO 90 K1lpIR A2A10310
90 AI(KJ)=A(KPI) 9 COPY COL. ASSOC. WITH OLD NAME APA10320

1100 CONTINUE A2AI0330
C A2AI0340

RETURN A2AI0350
END A2A10360

65

77-26

SUBROUTINE COMBO (RLItNAMILP.NAM2AtIAPLAPNAMA)

C
C TO REARRANGE A VECTOR STORED TRIANGULAR MATRIX AND STORE COMBOO10

C THE RESULT IN MATRIX A. THE DIFFERENCE BETWEEN THIS SUR- COMBO020

C ROUTINE AND R2A IS THAT THERE THE NAMELIST FOR A IS INPUT. COMBO030

C HERE IT IS DETERMINED BY COMBINING THE LIST FOR R WITH COMROO0O

C A LIST OF DESIRED NAMES. COMBO050

C

C R(L1*(L1+1)/2)

C Li

C NAMI(Li)

C L2

C NAM2(L2)

C

C

C A(LleLA)

C

C IA

C LA

C

C

C

C NAMA(LA)

C

C

C

COMBO060

INPUT VECTOR STORED UPPER TRIANGULAR MATRIX COMBO0O7

NO. OF PARAMETERS IN R (AND IN NAMI) COMBOOBO

NAMES ASSOdIATED WITH R COMBOO90

NO. OF PARAMETERS IN NAM? COMBOO

PARAMETER NAMES THAT ARE TO BE COMBINED wITH R COMB0110

(NAMI LIST). THESE NAMES MAY OR MAY NOT RE IN COMB0120

NAMI. COMBO130

OUTPUT ARRAY CONTAINING THE REARRANGED COM8O140

R MATRIX, LI.LE.IA. COMBO1SO

ROW DIMENSION OF A COMBO160

NO. OF PARAMETER NAMES IN NAMAP AND THE COMBOI7O

COLUMN DIMENSION OF A. LA=L+L2-NO. NAMES COMBOIBO

COMMON TO NAMI AND NAM2. LA IS COMPUTED AND COMBO90

OUTPUT. COMB0200

PARAMETER NAMES ASSOCIATED WITH THE OUTPuT A COMB0210

MATRIX. CONSISTS OF NAMES IN NAMI NOT IN COMB0220

NAM2 FOLLOWED BY NAM2. COMB0230

COMB0240

C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL. SEPT. 1976) COMBO250
C COMR0260

IMPLICIT DOUBLE PRECISION (A-HO-Z) COMB0270
DIMENSION R(1)r A(IApI)t NAMI(l)P NAM2(1)p NAMA(i) COMB0280

C COMBO290

ZERO=0.0 COMBO300

K=1 COMB0310

DO 100 I=Z1Ll COM80320

DO 50 J=IPL2 COMB0330

IF (NAMi(I).EG.NAM2(J)) So TO 100 COMB0340

50 CONTINUE COMB0350

NAMA(K)=NAMI(I) COMB0360

JJ=l*(I-1)/2 COMB037O
DO 60 LItI COMB0380

60 A(LK)=R(JJ+L) COMB0390
IF (I.EQ.L1) GO TO 80 COMR0400
IPI = I+l COM80410

DO 70 L=IPIL1 COMB0420O
70 A(.L.K) = ZERO COMB0430
80 K=K+1 COMBO40

100 CONTINUE COMR0450

C NAMES UNIQUF TO NAM! ARE NOW IN NAMA COMB0460

DO 200 JItL2 COMB047O

DO 150 I=PLI COMBO480

IF (NAM2(J).EQ.NAMI(I)) Go TO 170 COMB0490

150 CONTINUE COMBO500

NAMA(K)=NAM2(J) COMB0510

DO 160 LzlpL1 COMB0520

160 A(L,K)=ZERO COMB0530

66

http:LI.LE.IA

77-26

C NAMES UNIQUE TO NAMP ARE NOW IN NAMA COM0540O

GO TO 190 COMB0550

170 NAMA(K)=NAM2(J) COMB0560

C LOCATE DIAGONAL OF PRECEDING COLUMN COMB057O

JJ=I*(I-l)/2 COMBO5O
'DO 180 L=IrI - COM80590

180 A(LPK)=RJJ+L) COMB0600

IF (I.EQ.L1) GO TO 190 COMB0610

IPII+l COMB0620

DO 185 L=IP1tL1 COMB0630

185 A(LK)=ZERO' COMB0640

190 K=K+1 COMR0650

200 CONTINUE COMB0660

L:A=K-l COMB0670

C -NAMES MUTUAL TO NAMi, AND NAM2 ARE NOW IN NAMA COMBO6BO

RETURN COMA0690

END COMR0700

67

77-26

SUBROUTINE COV2RI(UN)

C COV2ROIO

C TO CONSTRUCT THE UPPER TRIANGULAR CHOLESKY FACTOR OF A COV2RO20

C POSITIVE SEMI-DEFINITE MATRIX. BOTH THE INPUT COVARIANCE COV2RO30

C AND THE OUTPUT CHOLESKY FACTOR (SQUARE ROOT) ARE VECTOR COV2ROO

C STORED. THE OUTPUT OVERWRITFS THE INPUT. COV2R05O

C COVARIANCE(INPUT)=U*U**T (U IS OUTPUT). CoV2R060

C CoV2R07O

C IF THE INPUT COVARIANCE IS SINGULAR THE OUTPUT FACTOR HA9 COV2ROBO

C ZERO COLUMNS. COV2RO90

C COV2RlO1

C U(N*(N+1)/2) CONTAINS THE INPUT VECTOR STORED COVARIANCE COV2RI1O

C MATRIX (ASSUMED POSITIVE DEFINITE) AND ON OUTPUT CoV2R120
C IT CONTAINS THE UPPER TRIANGULAR SQUARE ROOT COV2RI30
C FACTOR. COV2RI4O
C N DIMFNSION OF THE MATRICES INVOLVED CoV2RISO
C COV2R160
C COGNIZANT PERSONS: G.J.BIFRMAN/M.W.NEAD (UPLP FEB. 1977) COV2R17O
C COV2R180

IMPLICIT DOUBLE PRECISION (A-HO-Z) COV2R190
DIMENSION U(I) COV2R200

C COV2R210
zERO=O.O COV2R220
ONE=I. COV2R230
JJ=N*(N+1)/2 COV2R240
JJNzJJ CoV2R250

C COV2R260
DO 5 J=NP2- COV2R27D

IF (U(JJ).LT.ZERO) U(JJ)±ZFRO COV2R2BO
U(JJ)= SQRT(U(JJ)) COV2R290
IF (U(JJ).GT.ZERO) ALPHA=ONE/U(JJ) COV2R300

C COV2R310
KK=O COV2R320
JJN=JJ-J 0 NEXT DIAGONAL COV2R330
JMizJ-1 CoV2R340

DO 4 K=l1JM1 COV2R350
U(JJN+K)=ALPHA*U(JJN+K) r JJN+K=(KPJ) COV2R360
S=U(JJN+K) COV2R370
DO 3 I1IK C0V2R380

3 U(KK+I):U(KK+I)-S*J(JJN+I) I KK+I=(IK) COV2R390
4 KK:KK+K COV2R400
5 JJ:JJN COV2R41O

IF (U(I).LT.ZERO) U(1):ZERO COV2R420
U(1)= SQRT(U(1)) COV2R430

C COV2R440
REtURN COV2R450
END COV2R46O

68

77-26

SUBROUTINE COV2UD (UN)
C COV2UOIO
C TO OBTAIN THE U-D FACTORS OF A POSITIVE SEMI-DEF-INITE MATRIX. COV2U020
C THE INPUT MATRIX VECTOR STORED IS OVERWRITTEN BY THE OUTPUT COV2U03O
C U-0 FACTORS WHICH ARE ALSO VECTOR STORED. COV2UO4O
C COV2U050
C U(N*(N+1)/2) CONTAINS INPtUT VECTOR STORFD COVARIANCE MATRIX. COV2U060
C ON OUTPUT IT CONTAINS THE VECTOR STORED U-D COV2UO7O
C COVARIANCE FACTORS. COV2UO8O
C N MATRIX DIMENSION COV2U09O
C COV2UIOO
C SINGULAR INPUT COVARIANCES RESULT IN OUTPUT MATRICES WITH ZERO COV2U110
C COLUMNS COV2U120
C COV2U130
c COV2U140
C COGNIZANT PERSONS: G.J.BIFRMAN/R.A.JACORSON (JPLi FEB. t977) COV2U1SO
c COV2U160

C
IMPLICIT DOURLE PRECISION (A-HPO-Z) COVPUX7O

COV2U1BO

C
DIMENSION U(1) COV2UI90

COV2U20o
Z=O.o COV2U210
ONE=1.0 COV2U220

C COV2U230
JJ=N*(N+I)/2 COV2U240
00 50 J=Np2p-1 COV2U250

ALPHA=Z COV2U260
IF (U(JJ)LLT.Z) U(JJ)=Z COV2U270
IF (U(JJ).GT.Z) ALPHA=ONE/J(JJ) COV2U288
JJ=JJ-J CoV2U290
KK=O COV2U300
KJ=JJ COV2U310
JMV±J-1 COV2U320
DO 40 K=IJMl COV2U330

KJ=KJ+1 COV2U340
BETA=U(KJ) COV2U350
U(KJ)=ALPHA*J(KJ) COV2U360
IJ=JJ COV2U37O
IK=KK COV2U3Bo
O0 30 I=IPK COV2U390
IK=IK+1 COV2U400
IJ=IJ+l COV2U41D

30 U(IK)=U(IK)-BETA*U(IJ) COV2U420
40 KK=KK+K CoV2U430
50 CONTINUE COV2U440

IF (U(1).LT.7) U()=7 COV2U450
RETURN CoV2U460
END COV2U470

69

kIE nflQDUXIBIIY OF THE

77-26

SUBROUTINE C2C (CPICLINAMi.LPPNAM2)
C CPC000O
C SUBROUTINE TO REARRANGE THE ROWS AND COLUMNS OF MATRIX C2C0002O
C C(LI#L1) IN NAM1 ORDER'AND PUT THE RESULT IN CPCO0030
C
C

C(L2tL2) IN NAM2 ORDER. ZERO COLUMNS AND ROWS ARE
ASSOCIATED WITH OUTPUT DEFINED NAMES THAT ARE NOT CONTAINED

C2COOO40
C2C00050

C IN NAMI.

C

C C(LIuli)

C IC

C Li

C NAM1(L)

C

C L2

C NAM2(L2)

C

CPC00060

C2C00070

INPUT MATRIX CCO0080

ROW DIMENSION OF Ct IC.GE.LrMAX(LiL2) C2C00090

No. OF PARAMETER NAMES ASSOCIATED WITH THE INPUT C C2C00100

PARAMETER NAMES ASSOCIATED WITH C ON INPUT. (ONLY C2COO1iO

THE FIRST Li FNTRIES APPLY To THE INPUT C) C2C00120

NO. OF PARAMETER NAMES ASSOCIATED WITH THE OUTPUT CCPCO0130

PARAMETER NAMES ASSOCIATED WITH THE OUTPUT C C2CO0140

C2C00150

C COGNIZANT PERSONS! G.J.BIERMAN/M.W.NEAD (JPL, SEPT. 1976) C2C00160

C CPCO017O

IMPLICIT DOUBLE PRECISION (A-HO-Z) C2C0O08O

DIMENSION C(ICpl) NAMX(i)} NAM2(1) C2Coo19o

C C2C00200

ZERO=O. C2Co0210

L=MAX(LvL2) C2C00220

IF (L.LE.L1) GO TO 5 C2C0O0230

NM=L+I CPCO0240

DO 1 K=NM#L C2C00250

1 NAM1(K)= ZFRO 9 ZERO REMAINING NAM1 LOCNS C2C00260

5 DO 90 J=lPL2 C2C00270

DO 10 I=IPL CC00280

IF (NAM1(I).EQ.NAM2(J)) GO TO 30 C2C00290

10 CONTINUE CPC00300

GO TO 90 CPC00310

30 IF (I.EG.J) GO TO 90 C2C00320

DO 40 K=iL
H=C(KJ)
C(KJ)ZC(K#I)

40 C(KpI)ZH
DO 80 K=IL
H=C(JK)
C(JuK)=C(IrK)

80 C(IK)=H
NM=NAMI(I)
NAMI(I)=NAMI(J)
NAMl(J)=NM

90 CONTINUE
C

C2CO0330

Q INTERCHANGE COLUMNq I AND J C2C00340

C2C00350

CPC00360

CPC00370

0 INTERCHANGE ROWS I AND J C2C00380

CPC00390

C2CO0400

9 INTERCHANGE LABELS I AND J CPC00410

C2C00420

C2C00430

C2C00440

C2C0450

C FIND NAM2 NAMES NOT IN NAM1 AND SET CORRESPONDING ROWS AND C2Co0460

C COLUMNS To ZERO C2C00470

C C2C00480

DO 120 J=1,L2 CPC00490

DO 100 IriL CCO0500

IF (NAMi(I).EQ.NAM2(J)) Go TO 120 C2C00510

100 CONTINUE CrC00520

DO 110 K=IL2 C2CO0530

C(JK)=ZFRO C2CO0540

110 C(KPJ)=ZERO C2Coosso

120 CONTINUE C2C00560

C 70 C2C00570

RETURN C2CO0580

END C2CO0590

C

77-26

SUBROUTINE INF2R (PN) INF2RO10
C INF2R020
C TO CHOLESKY FACTOR AN INFORMATION MATRIX INF2RO30
C INF2R04O
C COMPUTES A LOWER TRIANGULAR VECTOR STORED CHOLESKY FACTORIZATION INF2ROSO
C oF A POSITIVE SEMI-DFFINITE MATRIX. P:R(**T)R, R UPPER TRIANGULAR.INF2RO60
C BOTH MATRICES ARE VECTOR STORFn AND THE RESULTS OVERWRITES INF2RO70
C THE INPUT INF2ROBO
C INF2RO90
C P(N*(N+1)/2) ON INPUT THIS IS A POSITIVE SFMI-DEFINITE MATRIX, INF2RI00
C AND ON OUTPUT IT IS A TRIANGULAR FACTOR. IF THE INF2RI1IO
C INPUT MATRIX IS SINGULAR THE oUTPUT MATRIX WILL INF2RI20
C HAVE ZERO DIAGONAL ENTRIES INF2RI30
C N DIMENSION OF MATRICES INVOLVEn INF2RI40
C INF2Rt50
C COGNIZANT PERSON: G.J.BIERMAN/M.W.NEAD (JPLFEB.1977) INFPR160
C INF2RI7O

IMPLICIT DOUBLE PRECISION (A-HpO-Z) INF2RIAO
c INr2Rl9o

DIMENSION P(1) INF2R200
C INF2R210

Z=0.0 INF2R220
ONE=1.0 INF2R230
J=O INF2R240

NN=N*(N+I)/2 INF2R250
NMI=N-1 INF2R260
DO 10 J=PNMI INF2R270

JJ=JJ+J 9 jJ=(J,J) INF2R2AO
IF (P(JJ).LT.Z) P(JJ)=Z INF2R290
P(JJ)=SRT(P(JJ)) INFPR300
ALPHA=Z INF2R310
IF (P(JJ)*GT.Z) ALPHA=ONE/P(JJ) INF2R52O
JK=NN+J @ JK=(JK) INF2R330
JPl=J+1 INF2R340
JISzJK 0 JIS=(JI) START INF2R350
DO 10 K=NJPI,-1 INFPR360
JK=JK-K TNF2R370
P(JK)=ALPHA*P(JK) 1NF2R380
BETA=P(JK) INF2R390
KI=NN+K TNFPR40
JIrJIS INF2R410
DO 10 I=NPK,-1 INF2R420

KI=KI-I 1NF2R430
JI=JI-I INF2R440

10 P(KI)=P(KI)-P(JI)*BETA ImF2R450
C INF2R460

IF (P(NN)hLT.Z) P(NN)=Z
P(NN)=SRT(P(NN))

INF2R470
INF2R48

RETUR14 INF2R490
END INF2RSO0

71

is pOORPAGE OF THbQBK4NvtRRPUO1LBI1TY

77-26

SUBROUTINE PERMUT (A#IApIRvLiNAM1,L2rNAM2)

C
 PERMUOO

C SUBROUTINE TO REARRANGE PARAMETERS OF A(TRrL1) NAMI ORDER PERMU020

C TO A(IRtL2)p NAM2 ORDER. ZERO COLUMNS ARE INSERTED PERMU030

C CORRESPONDING TO THE NEWLY DEFINED NAMES. PERMUO40

C
 PERMUO50

C A(IRPL) INPUT RFCTANGULAR MATRIX# L=MAX(L1PL2) PERMUO60

C IA ROW DIMENSION OF AV IA.GE.IR PFRMU070

C IR NUMBER OF ROWS OF A THAT ARE TO BE REARRANGED PERMU080

C LI NUMBER OF PARAMETER NAMES ASSOCIATED WITH THE INPUT PERMU090

C A MATRIX PERMU100

C NAM1(L) PARAMETER NAMES ASSOCIATED WITH A ON INPUT PERMUIO

C (ONLY THE FIRST Li ENTRIES APPLY TO THE INPUT A) PERMUI20

C L2 NUMBER OF PARAMETER NAMES ASSOCIATED WITH THE OUTPUT PERMU130

C A MATRIX PFRMU140

C NAM2 PARAMETER NAMES ASSOCIATED WITH THE OUTPUT A PERMUISO

C
 PERMU160

C COGNIZANT PERSONS: G.J.BIERMAN/MW.NEAD (JPLP SEPT. 1976) PERMUi70

C PFRMU1BO

IMPLICIT DOURLE PRECISION (A-HO-Z) PERMU190

DIMENSION A(IA.1)t NAMI(1), NAM2(1) PERMU200

C
 PERMU210

ZERO=O, PFRMU220

L=MAX(LlpL2) PFRMU230

IF (L.LE.L1) GO TO 50 PERMU24O

NM=L+I
 PFRMU250

DO 40 K=NM.L
 PFRMU260

40 NAMI(K)=O g ZERO RFMAINING NAMI LOCS PERMU270

50 DO 100 J=,LP PFRMU280

DO 60 I=1L PFRMU290

IF (NAM1(I).EO.NAM2(J)) Go TO 65 PrRMU300

60 CONTINUE
 PFRMU310

GO TO 100 PERMU320

65 CONTINUE PERMU330

IF (I.EQ.J) GO TO 100 PERMU340

DO 70 KflrIR Q INTERCHANGE COLS I AND J PERMU350

W=A(KFJ) PERMU360

A(KtJ)=A(KI) PERMU370

70 A(KI)=W PFRMU3BO

NM=NAM1(I) M INTERCHANGE I AND J COL. LABELS PERMU390

NAM1(I)=NAM1(J) PFRMU400

NAMI(J)=NM PERMU410

100 CONTINUE PFRMU420

C REPEAT TO FILL NEW COLS PFRMU430

DO 200 J=lL2 PFRMU440

DO 160 I=lL PERMU450

IF (NAMI(I).EO.NAM2(J)) GO TO 200 PERMU460

160 CONTINUE
 PERMU470

DO 170 K=1,IR PERMU4BO

170 A(KPJ)=ZERO PERMU490

200 CONTINUE PERMUSO0

C
 PFRMUSO

RETURN
 PFRMU520

END
 PERMUS30

72

http:IA.GE.IR

C

77-26

SUBROUTINE RINCON IRTN*NPROUTPCNR) RYNCO010

C RINCO020

C TO COMPUTE THE INVERSE OF THE UPPER TRIANGULAR VECTOR STOREn RINCO030

C INPUT MATRIX RIN AND STORE THE RESULT IN ROUT. (RIN=ROUT IS RTNCO040

C PERMITTED) AND To COMPUTE A CONDITION NUMBER ESTIMATE. RINCO050

C CNB=FROB.NORM(R)*FROR.NORM(R**-I). RINCO060

C THE FROBENIUS NORM IS THE SQUARE ROOT oF THF SUM OF SQUARES RINCO0O7

C OF THE ELEMENTS. THIS CONDITION NUMBER BOUNn IS USED AS RINCOO80

C AN UPPER BOUND AND IT ACTS AS A LOWER ROUND'ON THE ACTUAL RINCO090

C CONDITION NUMBER OF THE PROBLFM. (SEE THE BOOK 'SOLVING LEAST RINCO1O0

t
C SQUARES , BY LAWSON AND HANSON) RINCO110

C RINCO120

C RIN(N*(N+I)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX RINCO130

C N DIMENSION OF R MATRICES RINCO140

C ROUT(N*(N+1)/2) OUTPUT VECTOR STORED UPPER TRIANGULAR MATRIX RINCO0SO

C INVERSE (RIN=ROUT IS PERMITTED) RINCO160

C CNB CONDITION NUMBFR BOUND RTNCO17O

C RINCO180

C COGNIZANT PERSONS: G.J.BIERMA/M.W.NEAD (JPLFFEB.1977) RINCO190

C RINCO200

C SUBROUTINES REQUIRED? UTINV RINCO210

C RINCO220

IMPLICIT DOUBLE PRECISION (A-HO-Z) RTNC0230

DIMENSION RIN(1), ROUT(I) RINC0240O

C RTNCO25O

Z=0.0 RINCO260

NTOT=N*(N+1)/2 RTNC0270

C RINCO280

RNM=Z RINCO290

D0 10 J=IPNTOT RINCO300

10 RNM=RNM+RIN(J)**2 RINCO31O

c RINC0320

CALL UTINV (RINrNPROJT) RINCO330

RNMOUT=Z RINC0340

DO 20 JmIeNTOT RINC0350

20 RNMOUT=RNMOUT+ROUT(J)**2 RINCO36O

C RINC0370

CNB=SQRT(RNM*RNMOUT) RINCO38O

C RINC0390

WRITE (6P30) CrB RINC0400

RETURN RINC0410

c RINCO420

30 FORMAT(1HO,5XpCONDITION NUMBFR ROUND=vpD8.1O,2XICNB/N.LE.CONnITRINCO430

lION NUMBER.LE.CNB''/) RINC044O

END RTNC0450

73

77-26

SUBROUTINE RI2COV (RINVrNFSIGCOVOUTPKOV)

RT2COO1O

C TO COMPUTE THE COVARIANCE MATRIX AND/OR THE STANDARD DEVTATIONSRI2CO020

C OF A VECTOR STORED UPPER TRIANGULAR SQUARE ROOT COVARIANCE R12CO030

C MATRIX. THE OUTPUT COVARIANCE MATRIX IS ALSO VECTOR STORED. RT2CO040

C

c

RI2C050

C RINV(N*(N+I)/2) INPUT VECTOR STORED UPPER TRIANGULAR COVARI- R12CO060

C ANCE SQUARE ROOT. (RINV=R INVERSE IS THE R12CO070

C INVERSE OF THE SRIF MATRIX) RI2COO80

C N DIMENSION OF THE RINV MATRIX R12CO090

C SIG(N) OUTPUT VECTOR OF STANDARD DEVIATIONS RT2CO100

c COVOUT(N*(N+1)/2) OUTPUT VFCTOR STORED COVARIANCE MATRIX RI2COIlO

C
C KOV *GT*O
C
C *LT.0
C
C .EQ.O
C
C
C COGNIZANT PERSONS:

C

(COVOUT = RINV IS ALLOWED) R12C0120

COMPUTE COVARIANCE AND SIGMAS USING KOv ROWS R12CO130

OF RINV. R!2CO140
COMPUTE ONLY THE SIGMAS USING KOV ROWS OF RI2COI5D
RINV. R12CO160
NO COVARIANCE, BUT ALL SIGMAS (E.G. USE RI2COI7O
N ROWS OF RINV). RI2CO1SO

RI2CO190
G.J.BIERMAN/M.W.NEAD (JPL. SEPT. 1976) R!2C0200

R12C0210
IMPLICIT DOUBLE PRECISION (A-HO-Z) R12C0220
DIMENSION RINV(1)t STG(1), COVOUT(1) R72C0230

C RT2C0240
ZERO=OO R12C0250
LIM=N R12C0260
IF (KOV.NE.O) LIM=IARS(KOV) R12C0270

C *** COMPUTE SIGMAS R12C0280
IKS=O R12C0290
Dd 2 JzI,LIM R72C0300

IKS=IKS+J R12C0310
SUM=ZERO RT2C0320
IK=IKS R12C0330
DO 1 K=JPN R2C0340

1
SUM=SUM+RINV(IK)**2
IK=IK+K

P12C0350
PT2C0360

2 SIG(J)=SORT(SUM) R12C0370
C R12C0380

IF (KOV.LE.O) RETURN R12C0390
C *** COMPUTE COVARIANCE R72C0400

JJ=O RIPCO410
NM1ZLIM-1 RT2C0420
DO 10 J=ZPNMI R12C0430

JJ=JJ+J R12C0440
COVOUT(JJ)ZSIG(J)**2
IJS=JJ+d

P12C0450
R2C0460

JPI:J+I R2C0470

00 10 I=JPIN R12C0480
IK=IJS RT2C0490
IMJ:I-d R2C0500
SUM=ZERO R72C0510
DO 5 KIPN P12C0520

IJK=IK+IMJ R12C0530
SUM=SUM+RINV[IK)*RTNV(I.sk) PT2CO54O

5 IK=IK+K RT2CO550

10
COVOUT(IJS)=SUM
IJSZIJS+T

R12CO560
RT2CO570

C
IF (KOV.EQ.N) COVOUT(JJN)=SIG(N)**2 R12C0580

RI2CO590

RETURN 74 RT2CO600

END RI2C0610

77-26

SUBROUTINE R2A(RLRNAMR,A,IALAiNAMA)
C R2AO0010
C TO PLACE THE TRIANGULAR VECTOR STORED MATRIX R INTO THE RPAO0020
C MATRIX A ANDWTO ARRANGE THE COLUMNS To MATCH THE DESIRED R2AO0030
C NAMA PARAMETER LIST. .NAMES IN THE NAMA LIST THAT DO NOT P2A00040
C CORRESPOND TO ANY NAME IN NAMR HAVE ZERO ENTRIES IN THE R2AOOOSO
C CORRESPONDING A COLUMN. P2A00060
C RAG0070
C R(LR*(LR+I)/2) INPUT UPPFR TRIANGULAR VFCTOR STORED ARRAY R2AO0080
C LR DIMENSION Of R/ RPAOOO O
C NAMR(L) PARAMETER NAMES ASSOCIATED'WITH R. ONLY THE RPAO0100
C FIRST LR FNTRIES APPLY To R, L=MAX(LRPLA). RPA00110
C A(IRPLA) MATRIX TO HOUSE THE REARRANGED R MATRIX R2AO0120
C IA ROW DIMENSION OF A' IA.GF.LR R2A00130
C LA NO. OF PARAMETER NAMES AqSOCIATEn WITH THE R2AO0140
C OUTPUT A MATRIX R2AO0150
C NAMA(LA) PARAMETER NAMES FOR THE OUTPUT A MATRIX R2AO0160
C RPA0017O
C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL, SEPT. 1976) RPAOO180
C R2A0019O

IMPLICIT DOUBLE PRECISION (A-H,O-Z) R2A00200
DIMENSION R(1)#NAMR(l),A(IAI),NAMA(1) RPA0O210

c RPA00220
ZEROZO. R2A00230

DO 5 JILA R2A00240
DO 5 K=lPLR R2A00250

5 A(KJ)=ZERO G ZERO A(LRLA) RPA00260
DO 40 J=ILA RPA90270

00 10 I=lLR R2AOD280
IF (NAMR(I).EQ.NAMA(J)) Go Td 2O R2A0P90

10 CONTINUE P2AO0300
GO TO 40 R2AC0310

20 uJI*(I-1)/2 RPA00320
DO 30 K:.II RPA00330

30 A(KPJ)=R(JJ+K) R2AO0340
40 CONTINUE RPAO0350

C RPAO0360
RETURN R2AO0370
END R2AQ0380

75

77"26

C
SUBROUTINE R2RA (RPNRPNAMPRAPNRANAMA)

R2RAOOIO
C
C

TO COPY THE UPPER LEFT (LoWFR RIGHT) PORTION OF A VECTOR
STORED UPPER TRIANGULAR MATRIX R INTO THE LOWER RIGHT

R2RAO020
R2RAO030

C (UPPER LEFT) PORTION .OF A VECTOR STORED TRIANGULAR R2RAO040
C MATRIX RA. R2RAO05O
C, RPRAO060
C
C

R(NR*(NR+I)/2)
NR

INPUT VECTOR STORED UPPER TRIANGULAR MATRIX
DIMENSION OF R

RPRAO070
R2RAOO80

C NAM(UR) NAMES ASSOCIATED wITH R RPRAO090
C RA(NRA*(NRA+I)/2) OUTPUT VFCTOR STORED UPPER TRIANGULAR MATRIX RPRA0100

C NRA DIMENSION ASSOCIATED WITH RA P2RAO1IO

C NAMA(NRA) NAMES ASSOCIATED WITH RA R2RA0120

C
 R2RAO13D

C IF NRA=O ON INPUt, THEN NAMA() SHOULD HAVE THE FIRST NAME OF THE RPRA01#O

C OUTPUT NAMLLIST AND THE NUMBFR OF NAMES IN TNAMA IS COMPUTED. R2RA0150

C
 THE LOWER RIGHT BLOCK OF R WILL BE THE UPPER LEFT BLOCK OF RA. R2RA0160

C
 R2RA0170

C IF NRA=LAST NAME OF THE UPPER LEFT BLOCK THAT IS TO BE MOVEn, RPRAO1A0

C THEN THE UPPFR BLOCK IS TO Br MOVED TO THE LOWER RIGHT POSITION. R2RA0190

C WHEN USED IN THIS MOnE NRA=NR ON OUTPUT. R2RA0200

C
 R2RA0210

C THE NAMES OF THE RELOCATED BLOCK ARE ALSO MOVED. THE RESULT R2RAO220

C CAN COINCIDE WITH R AND MAMA WITH NAM.
 R2RA0230

C
 R2RA0240

C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPLo SEPT. 1976) R2RA0250

C
 R2RA0260

IMPLICIT DOUBLE PRECISION (A-HPO-Z) R2RA0270

DIMENSION R()rRA(1)t NAM(1)p NAMA(I) R2RA0280

LOGICAL IS
 R2RA0290

c
 RPRA0300

16.t 2ALSE. RPRA0310
LOCN=NAMA(1) R2RA0320

C - IS=FALSE CORRESPONDS TO MOVING UPPER LFT. CORNER OF R TO R2RA0330
C 	 LOWER RT, CORNER OF RA R2RA0340

IF (NRA.EQsO) GO TO I RPRA0350

LOCN=NRA
 RPRA0360

IS=.TRUE.
 R2RA0370

C IS=TRUE CORRESPONDS TO MOVING LOWER LFT. CORNER OF R TO R2RA0380

C UPPER RT. CORNER OF RA R2RA0390

I DO 3 I=INR
 R2RA0400

IF (NAM(X).FQ.LOCN) GO TO 4 RPRA0410

3 CONTINUE
 RPRA0420

WRITE (6l00) PRRA0430

100 FORMAT (1HUp2OXt'NAMA(1) NOT IN NAMELIST OF R MATRIX') RPRAO44O

RETURN
 RPRAO450

C
 R2RA0460

4 K=I
 PPRA0470

KMI=K-1
 RPRA0480

IF (IS) GO TO 15 RPRA0490

C RpRA0500

IJS=K*(K+I)/2-1 P2RA0510

NRA=NR-K+
 R2PA0520

IJA=O
 R2RA0530

KOLA=O RRAO540

76

77-26
DO 10 KOL=KvNR RPRA0550

KOLA=KOLA+I R2RA0560
NAMA(KOL-KM1) NAM(KOL) R2RAO57O
DO-5 IR=1,KOLA RPRAO580

IJA=IJA+1 R2RA0590
5 RA(IJA)ZR(IJS+IR) RPRA0600
10 IJSIJSI-KOL, RPRA0610

RETURN RPRA0620
C R2RA0630

15 IJ=K*(K+1)/2 RPRA0640
IJA=NR*(NR+I)/2 RPRA0650
L=NR-KM1 RPRA0660
KOL=K P2RA0670

DO 25 KOLA=NRLP-1 RPRA0680
IJS=IJA PRRA0690
NAMA(KOLA)=NAM(KOL) R2RAO700

DO 20 !R=KOLAPL,-1 P2RA0710
RA(IJS)=R(IJ) RRA0720
IJS=IJS-i RPRA0730

20 IJ=IJ-1 RPRA0740
IJA=IJA-KOLA RPRAO750

25 KOL=KOL-1 RP2RA0760
NRA=NR R2RA0770

C - R2RA0780
RETURN RPRA0790
END RPRA080O

77

77-26

-" SUBROUTINE RtJDR(RIN,N,ROUTIS)

C R1DROO10

C FOR N.GT.O THIS SUBROUTINE TRANSFORMS AN UPPER TRIANGULAR VFCTOR RuDRO020

C STORED SRIF MATRIX TO U-D FORM, AND WHEN N.LT.O THE U-D VECTOR RUDRO030

C STORED ARRAY IS TRANSFORMED To A VECTOR STORED SRIF ARRAY - RIDRO040

C RUDRO050

C RIN((N+1)*(N+2)/2) INPUT VECTOR STORED SRIF OR U-n ARRAY RIDRO060

C ROUT((N+1)*(N+2)/2) OUTPUT IS THE CORRESPONDING U-C OR SRIF RIJDR0070

C ARRAY (RIN=ROUT IS PERMITTED) R11R0080

C N ABS(N)= MATRIX DIMENSION R1DR0090

C N.GT.O THE (INPUT) SRIF ARRAY IS OUTPUT IN.U-l FORM RJDROIOO

C N.LT.O THE (INPUT) U-D ARRAY IS OUTPUT IN SRIF FORM RUDRO1O

C IS = 0 THERE IS NO RT. SIDE OR ESTIMATE STORED IN RIJDROI0O

C COLUMN N+Iv AND RIN NEFD HAVE ONLY. PUDRO130

C N COLUMNS. I.E. RIN(N*(N+1)/2) RUDR0140

C IS =1 THERE IS A RT. SIDE INPUT TO THE SRIF AND RUDR0150

C AN ESTIMATE FOR THE U-n ARRAY. THESE RESIDE RUDR0160

C . IN COLUMN N+1. RUDR017O

C RUDR0180

C THIS SUBROUTINE USES SUBROUTINF UTINV RUDROl1O

-C RUDR0200

C COGIZANT PERSONS G.J.BIERMAN/M.W.NEAD (JPL. FEB.1977) RUDR0210

C RIDR0220

IMPLICIT DOUBLE PRECISION (A-HO-Z) RUDR0230

DIMENSION RIN(I)p ROIJT(1) RUDR0240

C RIJDR0250
ONE= 1.0 PUDR0260

NPI: IS + ABS(N) RtJDR027O

JJ=l INITIALIE DIAGONAL INDEX RUDRO28O
IDIMR= NPI*(NP1 +1)/P RUDR0290
IF (IS.EQ.1) RIN(IDIMR)= - ONF PRLDR0300

C RUDR0310

IF (N.LT.0) GO TO 30 RIJOR0320

CALL UTINV(RIN.NPlpROUT) RUDR0330

ROUT(1)= ROUT(I)**2 RUDR0340

IF (N.EQ.1) RETURN RIDR0350

DO 20 J=2,N RUDR0360

S=ONE/ROUI(JJ+J) RUDR03O7

ROUT(JJ+J)= ROUT(JJ+J)**2 RUDROA3O

JM1zJ-1 RIJDRO39n

DO 10 I=ltJM RUDR0400

10 ROUT(JJ+I)= ROUT(JJ+I)*S RUDRO410
20 JJ=JJ+ J RIJDR0420

RETURN RUDR0430
C RUDR0440

30 N=-N RLJDR0450
ROUT(i)= SQRT(RIN(U)) Tjrnb1TYOF' Ti RLJDR046O
IF(N.EQ.1) GO TO 60 UERODO RtJDR47O
DO 50 J=2#N oftINl PAOE IS POP RUDR04AO
ROUT(JJ J)= SQRT(RIN(JJ+J)) RUDRO490
S=ROUT(JJ+J) RUDR0500
JMlzJ-1 RUDR0510
DO 40 I=IPJMI RIDR0520

40 ROUT(JJ+I)= RIN(JJ+I)*S RUDR0530
50 JJ=JJ+J RUDR0540
60 CALL UTINV(ROLJTvNP1,ROUT) RUDR0550

C RIJDR0560

RUiDROSO7

RLTURN 78 RUDR0580
END RUDR0590

C

77-26

SUBROUTINE THH(RNFAtIApM'SOSNSTRT)

C THH00010

C THIS SUBROUTINE PERFORMS A DOUBLE PRECISION TRIANGULARIZATION THHOO020

C OF A RECTANGULAR MATRIX INTO A SINGLY-SUBSCRIPTED ARRAY By THHOO030

C APPLICATION OF HOUSEHOLDER ORTHONORMAL TRANSFORMATIONS. THHOO040

C THHOO050

C R(N*(N+3)/2) VECTOR STORED SQUARE ROOT INFORMATION MATRIX THHOO060

C (LAST N LOCATIONS MAY CONTAIN A RIGHT HAND SIDE) THHOO070

C N NUMBER OF PARAMFTERS THHOO080

C A(IAeN+1) MEASUREMENT MATRIX THHOO090

C IA ROW DIMENSION OF A THHO0100

C M NUMBER OF OBSFRVATIONS IN THIS BATCH THH010

C SOS ACCUMULATED SUM OF SQUARES OF THE RESIDUALS THHOO120

C (Z-A*X(EST)**2), INCLUDFS A PRIORI THHOO130

C NSTRT FIRST COL OF THF INPUT A MATRIX THAT HAS A NONZERO THHOO140

C ENTRY. IF NSTRT.LE.1, IT IS SET TO 1. THIS OPTION THHOO150

C IS CONVENIENT WHEN PACKING A PRIORI BY BATCHFS AND THHO0160

C THE A MATRIX HAS LEADING COLUMNS OF ZEROS, THHOO17D

C TIHOOB1O

C ON ENTRY R CONTAINS A PRIORI SoUARE ROOT INFORMATION FILTER (SRIF)THHOO190

C ARRAY# AND ON EXIT IT CONTAINS THE A POSTERIORI (PACKED) ARRAY.THH0200

C ON ENTRY A CONTAINS OBSERVATIONS WHICH ARE DESTROYED BY THE THHOOf10

C INTERNAL COMPUTATIONS. THH0220

C ON ENTRY IF SOS IS .LT. ZERO ,PROGRAM WILL ASSUME THERE IS NO THHOO230

C RIGHT HAND SIDE DATA AND WILL NOT CoMPUTF SOS OR USE LAST N THHOO240

C LOCATIONS OF VECTOR R. THH00250

C THHO0P60

C COGNIZANT PERSONS G.J.RIFRMAN/N.HAMATA (JPLr OCT.1975) THH00270

C THHO02AO

IMPLICIT DOUBLE PRECISION (A-HO-Z) THHO0290

DIMENSION A(IApl)PR(1)

DOUBLE PRECISION SUM

DATA ZERO/O.DO/p ONE/1.DO/

IF 	(NSTRT.LE.D) NSTRT=I

NPI=N+1

IF(SOS.LT.ZERO) NPIN

KK=NSTRT*(NSTRT-1)/2

DO 100 JNSTRTN

KK=KK+J

SUM=ZERO

DO 20 I1lM

20 	SUM=SUM+A(IrJ)**P

IF(SUM.LE.ZERO) GO TO 100

SUM=SUM+R(KK)**2

SUM=DSORT(SUM)

IF(R(KK).GT.7ERO) SUM=-SUM

DELTA=R(KK)-SUM

R(KK)=SUM

BLTA=ONE/(SUM*DELTA)

JJ=KK

L=J

Jl=J+l

THNO0300

THHO0310

THHOO320

THH0330

THH00340

2 NO. COLUMNS OF R 	 THHO0390

@ NO COLS. = N IF SOS.LT.O 	 THHO0360

THHO0370

0 J-TH STEP OF HOUSEHOLDFR REDUCTION 	 TIHo0380

THHn0390

THHO0400

THHO0410

THHn0420

9 IF J-TH CoL. OF A.EO.O GO TO STEP J+ITHHO430

THHOO440

THH00450

THH00460

THH00470

THH0O480

THHO0490

THHOO500

THHO05O

THHO0520

** READY TO APPLY J-TH HOtjSFHOLDER TRANS. THHOO530
DO 40 K=JlNPI THHOO540

79

C

http:ONE/1.DO

JJZJJ+L 77-26 THHOO550
L=L+1 THHOO560
SUMZDELTA*R(JJ) THHOO570
00 30 I=lIM THHO0580

30 SUM=SUM+A(ItJ)*A(I#K) THHOOS9
IF(SUM.EQ.ZERO) GO TO 40 THH00600
SUM=SUM*BETA THH00610
R(JJ)=R(JJ)+SUM*DELTA THH00620
00 35 I=1rM THH00630

35 A(I#K)=A(IK)+SUM*A(IJ) THHO064O
40 CONTINUE THHO0650
100 CONTINUE THH00660

IF(SOS.LT.ZERO) RETURN THHO0670
C THHOO6BO
C CALCULATE SOS THO0690
C T'H00700

SUM=ZERO THHO07IO
0o 110 I~lM THHO0720

110 SUM=SUM+A(I,NPI)**2 THH0O730
SOS=DSQRT(SOS**2+SUM) THH00740

c THHO0750
RETURN THO0760
END THHO0770

80

77-26

SUBROUTINE TRIMAT (ANCARTEXTNCHARNAMES)
c TRIMODID

C TO DISPLAY A VECTOR STORED UPPER TRIANGULAR MATRIX IN A TRIMO020
C TWO-DIMENSIONAL TRIANGULAR FORMAT TRIM0030
C TRIMDOO
C A(NQ(N+I)/2) VECTOR CONTAINING UPPER TRIANGULAR MATRIX (DP) TRIMOO50
C N DIMENSION OF MATRIX (I) TRIMOO6
C CAR(N) PARAMETER NAMES (I) TRIMDO7O
C TEXT(AN ARRAY OF FIELDATA CHARACTERS TO BE PRINTED AS TRIMO080
C A TITLE PRECEDING THE MATRIX TRIMOO90
C NCHAR NUMBER OF CHARACTERS, INCLUDING SPACES, THAT TRIMOIOD
c
C

ARE TO BE PRINTED IN TEXT()
ABSCNCHAR).LE,126. NCHAR NEGATIVE IS USED

TRIMOIIO
TRIMOI20

C TO AVOID SKIPPING To A NEW PAGE To START TRIMO13O
C PRINTING TRIMOIqO
C NAMES TRUE TO PRINT PARAMETER NAMES TRIMOISO
C TRIM0160
C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NLAD (JPL, OCT.1975) TRIMOI7O
C TRIMD180

DOUBLE PRECISION A(N) TRIM0190
INTEGER CAR(N), TEXT(I), L(7)s LIST(7) TRIMOO
LOGICAL NAMES TRIM0210
INTEGER V(),VFMT(7) TRIMOZ20
DATA V/'(2X,',*A6.IX,'.' 'tD17*8)'/, TRIMD230
I VFMT/'7',' 0o7X ,6' *3qx*

5 'OX 1 q',,'o6X,3','OaSX ,2','IOZXIl TRItO2O
C TRIM0250
C MIM2 ROW LIMITS FOR EACH PRINT SEQUENCE TRIMO260
C NIM2 COL LIMITS FOR EACH LINE OF PRINT TRIM0270
C Lil) LOC OF EACH COLUMN IN A ROW TRIM0280
C KT ROW COUNTER TRIM0290
C Kp PRINT COUNTER TRIM0300
C TRIM0310
C * * o * a INITIALIZE COUNTERS TRIM0320
C TRIM0330

M1=1 TRIM034O
M2=7 TRIM0350
NI=I TRIM0360
KT=O TRIM0370
KP=O TRIM0380
IF (.NOT.NAMES) V(2)= 1 Is,2X' TRIM0390

C TRIMOMOO
NC=IABS(NCHAR)/6 TRIMoID
IF (HOD(NCHAR,6),NE.O) NC=NC+l TRIMO20
IF (NCHAR.GE.D) WRITE (6,200) (TEXTC:)IfIINC) TRIMOq3Q
IF (NCHAR.LTD) WRITE (6,205) (TEXT(I),I=INC) TRIMOqqO

I0 IF (M2,GT.N) MZ=N TRIMOqS0
IF (.NOT.NAMES) GO To 20
WRITE (6,210) (CAR 1 I),InNIM2)

TRIMOq6
TRIMO 70

GO TO '0 TRIMOqBO
20 M=NI TRIMOq9O

L2=2-NI + TRIM0500
DO 3D I=IL2 TRIM0510
LIST(I)M TRIM0520

30 M=M+l TRIM0530
WRITE (6,220) (LIST(I)II=IL 2) TRIMOSqO

81

77-26
'O CONTINUE
 TRIMOSSO

C 0 0 * . 0* TRIM0560

DO 190 ICmMlMZ
 TRIM0570

Kai
 TR IM0580

IF (IC.LE.(KT*7)) Go TO 60
 TRIMO90

JJO
 TRIM0600

DO 50 JaIlC
 TRIMO610

50 JJwJJ j
 TRIM0620

L (K)JJ
 TRIM0630

I sIC-KT*7
 TRIM064O

IF (II.EQ,7) GO TO 90
 TRI0650

GO TO 70
 TRIM0660
60 CONTINUE
 TRI10670

C
 TRIM0680

11=1
 TRIM0690

L(K)"LiK} I
 TRIM0700
70 CONTINUE
 TRIM0710

00 80 1=I1,6
 TRIM0720

K-K+1
 TRIM0730

I11+KT.7
 TRIM07 O
8O L(K)-L(K-1)+II OBTAIN COL INDEX FOR ROW
 TRIM0750

90 CONTINUE
 TRIM0760

C
 TRIM0770

IZ-INO(Bp(MZ41-KT*7)}-I1
 TRIM0780

V(3)=VFMTIII)
 TRIM0790

IF (CNOT.NAMES)GO TO 180
 TRIM0800

WRITE (6,V) CAR(IC),(A(L1))PI=112)
 TRIM0810

GO TO 190 TRIM820

180 WRITE (6,V) ICiA(LCI)),IuII2) TRIM0830

190 CONTINUE
 TRIM0890

IF (H2.EQ.N) RETURN
 TRIM0850

NI=12+1
 TRIM0860

M2=M+7
 TRIM0870

KT=KT+I
 TRIM0880

KP=Kp+I
 TRIM0890

IF (KP.LT.3) GO TO 10
 TRIM0900
WRITE (6,200) (TEXT(I)sIMINC)
 TRIM0910

GO To 10
 TRIM0920

C
 TRIM0930

200 FORMAT (IHI,2X,21A6) 0 TITLE
 TRIMO9qO

20 FORMAT (IHO.2X,21A6) f TITLE
 TRIM0950

210 (IHOSX,7IllX.A6))(IHO3X,7(IIX,A6)) TRIM0960
220 FORMATFORMAT 0 HORIZONTAL NAMES
 TRIM0970
C
 TRIM0980

END
 TRIM0990

82

http:IHOSX,7IllX.A6

77-26

SUBROUTINE TTHH(RPRAN)
TTHHO010

,C- THIS SUBROUTINE COMBINES TWO SINGLE SUBSCRIPTED SRIF ARRAYS TTHHOO20
C USING HOUSEHOLDER ORTHOGONAL TRANSFORMATIONS TTHHOO30

C TTHHO040
C R(N*(N+I)/2) VECTOR STORED SRIF ARRAY. TTHHO05O
C RA(N*(N+1)/2) THF SECOND VFCTOR STORED SRIF ARRAY TTHHOO60
C N DIMENSION OF THE ESTIMATED PARAMETER VECTOR. TTHHOO7O
C A NEGATIVE VALUE FOR N IS USED TO NOTE THAT TTHHOO80
C R AND RA HAVF RT. HAND SIDES INCLUDED AND TTHH0090
C HAVE DIM=ARSN*(ABSN+3)/2. TTHH0100
C TTHH0110

C ON EXIT RA IS CHANGED AND R CONTAINS THE RESULTING SRIF ARRAY TTHH0120

C TTHHO130
C COGNIZANT PERSONS G.J.BIERMAN/M.W.NEAD JPL, JAN.1976) TTHH0140
C TTHHO150

iMPLICIT DOUBLE PRECISION(A-H,O-Z) TTHH0160
DIMENSION RA()v R(1) TTHH0170

C DOUBLE PRECISION SUM 0 FOR USE IN SINGLE PRECISION VERSION TTHH0180

C TTHH0190

ZERO=O. TTHH0200

ONE=l TTHH0210

NP1=N TTHH0220
IF (N.GT.0) GO TO 10 TTHH0230

N=-N TTHH024O
NPI=N+1 TTHH0250

10 lJS=l 0 IJ(START) TTHH0260
KK=O TTHH027O

DO 100 J=N 1 J-TH STEP OF HOUSEHOLDER REDUCTION TTHH0280

KK=KK+J TTHHO290
SUM=R(KK)**2 TTHH0300
DO 20 I=IJSKK TTHH031O

20 SUM=SUM+RA(I)**2 TTHH0320

IF (SUM.LE.ZERO) GO TO 100 TTHHO330

SUM=SQRT(SUM) TTHH0340
IF (R(KK).GT.ZERO) SUMZ-SUM TTHH0350

DELTA=R(KK)-SUM TTH0360

R(KK)=SUM
BETA=ONE/(SUM*DELTA)

TTHH037O
TTHH0380

uJ=KK TTHH0390
L=J TTHH0400

JPI=J+I TTHH0410
IKS=KK+1 TTHH0420

C * J-TH HOUSFHOLDER TRANS. DEFINED TTHH0430
C 40 LOOP APPLIES TRANSFORM. TO COLSo J+1 TO NP1 TTHH0440

DO 40 K=JPINP1 TTHHO0450
JJ=JJ+L TTHH0460
L=L+i TTHH0470
IK=IKS TTHH0480
SUM=DELTA*R (JJ)
00 30 I=IJSKK

TTHHOF490
TTHH0500

SUM=SUM+RA(IK)*RA(I) TTHH0510

30 IK=IK+1 TTHH0520

IF (SUM.EQ.?ERO) GO TO 40 TTHHO530
SUM=SUM*BETA TTHH0540

83

77-26

R(JJ)=R(JJ)+SUM*DELTA TTHH0550
IKzIKS TTHH0560
00 35 I=IJSPKK TTHH0570
RA(IK)=RA(IK)+SJM*RA(I) TTHH0580

35 IK=IK+1 TTHH0590
40 IKS=IKS+K TTHH0600
100 IJS=KK+1 TTHH0610

c TTHH0620
RETURN TTHH0630
END TTHH0640O

84

77-26

C
SUBROUTINE TERO (RrNpISIF)

TZERO010
C
C

TO ZERO OUT ROWS IS (ISTART) TO IF
STORED UPPER TRIANGULAR MATRIX

(IFINAL) OF A VECTOR TZERO020
TZERO030

C T7EROO40
C R(N*(N+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIY TZERO050
C N DIMENSION OF R TZERO060
C IS FIRqT ROW OF R THAT IS TO RE SET TO ZERO T7EROO7O
C IR LAST ROW OF R THAT IS To BF SET TO ZERO TZEROO80
C T7ERO090
C
C

COGNIZANT PERSONS: G.J.BIERMAN/C.F.PETERS (JPLr NOV. 1975) TZEROIO0
TIERO110

IMPLICIT DOURLE PRECISION (A-H,O-Z)
DIMENSION R(t)

TZER0120
TYERO130

C TZER014O
ZERO=O.O TZERO150

IJS=IS*(IS-1)/P TZEROI60
DO 10 I=ISIF T7EROI70
IJS=IJS+I T7ERO18S
IJ=IJS T7ERO190
DO 10 J=IpN
R(IJ)=ZERO

TZERO20
TZERO210

IJ=IJ+J TZER0220
10 CONTINUE TZERO230

C T7ERO240
RETURN T7FRO250
END TZER0260

85

77-26

SUBROUTINE UDMES (UNRrA'GALPHA) UDMES010

C UDMES020

C COMPUTES ESTIMATE AND U-D MEASUREMENT UPDATED UDMES030

C COVARIANCE. P=UDU**T UDMES040
C UDMES050
C *** INPUTS *** UDMES060
C UDMES070
C U UPPER TRIANGULAR MATRIX. WITH D ELEMENTS STORED AS THE UDMESO80
C DIAGONAL. U IS VECTOR STORED AND CORRESPONDS TO THE UDMES090
C A PRIORI COVARIANCE. IF STATE ESTIMATES ARE COMPUTED, UDMESIOD
C THE LAST COLUMN OF U CONTAINS X. UDMESIO
C N DIMENSION OF THE STATE ESTIMATE. UDMES120
C R MEASUREMENT VARIANCE UDMESI30
C A VECTOR OF MEASUREMENT COEFFICIENTS, IF DATA THEN A(N+I)=ZUDMES140
C ALPHA IF ALPHA LESS THAN ZERO NO ESTIMATES ARE COMPUTED UDMES150
C (AND X AND Z NEED NOT BE INCLUDED) UDMES160
C UDMES17O
C *** OUTPUTS *** UDMES180
C UDMESi90
C U UPDATED. VECTOR STORED FACTORS AND ESTIMATE AND UDMES200
C U((N+1)(N+2)/2) CONTAINS (Z-A**T*X) UDMES210

C UDMES220

C ALPHA INNOVATIONS VARIANCE OF THE MEASUREMENT RESIDUAL UDMES230

C G VECTOR OF UNWEIGHTED KALMAN GAINS. K=G/ALPHA UDMES240

C A CONTAINS U**TA AND (Z-A**T*X)/ALPHA UDMES250

C UDMES260

C COGNIZANT PERSONS: G.J. BIERMAN/M.W. NEAD (JPL, SEPT.1q76) UDMES270

C UDMES280

IMPLICIT DOUBLE PRECISION (A-HO-Z) UDMES290

DIMENSION U(1)r A(I), G(1) UDMES300

DOUBLE PRECISION SUM UDMES310

LOGICAL IEST UDMES320

C UDMES330

ZERO=OO UDMES340

IEST=.FALSE. UDMES350

ONE=I. UDMES360

NPI=N+ UDMES370

NTOT=N*NP1/2 UDMES380
IF (ALPHA.LT.ZERO) GO TO 3 UDMES390
SUM=A(NPI) UDMES400
DO 1 JZ1,N UDMES410

1 SUM=SUM-A(J)*U(NTOT+J) UDMES420
U(NTOT+NP1)=SUM 9 Z=Z-A**T*X UDMES430
ItST=.TRUE. UDMES440

C UDMES450

3 KJ=NTOT UDMES460

DO, 10 J=N,2,- UDMES470

SUM=A(J) UDMES480

UMi=J-1 UDMES490

DO 5 K=JM1,1,-1 UDMESSO0

KJ=KJ-1 UDMES510

5 SUM=SUM+U(KJ)*A(K) UDMES520

A(J)=SUM UDMES530

KJ=KJ-1 UDMES540

10 G(J)=SUM*U(KJ+J) UDMES550

86

77-26
G(1)=U(1)*A(1) UDMES560

C A=U**T*A AND GZD*(U**T*A) UDMES570
C UDMES580

SUM=R+G(1)*A(1) 0 SUM(l) UDMES590
C GAMMA=O 9 FOR R=O CASE UDMES600
C IF (G(1).E,.ZERO) GO TO 11 9 FOR R=O CASE UDMES610

GAMMA=ONE/SUM UDMES620
U(1)=U(1)*R*GAMMA 0D(1) UDMES630

C UDMES640
11 KJA2 UDMES650

DO 20 J=2,N UDMES660
BETA=SUM @ BETA=SUM(J-1) UOMES67O
SUM=SUM+G(J)*A(J) 0 SUM(J) UDMES680
P=-A(J)*GAMMA 9 P=-F(J)*(1/SUM(j-1)) EQN(21) UDMES690
JM1=J-1 UDMES7O0
DO 15 K=IpJM1 UDMES710

S=U(KJ) UDMES720
U(KJ)=S+P*G(K) 9 EON(22) UDMES730
G(K)=G(K)+G(J)*S 9 EQN(23) UDMES740

15 KJ=KJ+1 UDMES750
C IF (G(J).EO.ZERO) GO TO 20 n FOR R=O CASE UDMES760

GAMMA=ONE/SUM 9 GAMMA=I/SUM(J) UDMES77O
U(KJ)=U(KJ)*BETA*GAMMA 9 D(J) EQN(19) UOMES780

20 KJ=KJ+1 UDMES790
ALPHA=SUM UDMES800

C UDMES810
C EON. NOS. REFER TO IERMANIS 1975 cDC PAPER. PP. 337-346. UDMES820
C UDMES830

IF (.NOT.1EST) RETURN UDMES840
A(IqPl)=U(NTOT+NP1)*GAMMA UDMES850
DO 30 J=1,N UDMES860

C
30 U(NTOT+J)=U(NTOT+J)+G(J)*A(NP1) UDMES87O

UDMESS8O
RETURN UDMES890
END UDMES900

87

77-26

C
SUBROUTINE UD2COV (UINuPOUTpN) UD2COo1o

C U102CO020
C TO OBTAIN A COVARIANCE FROM ITS U-D FACTORI7ATION. BOTH MATRICES U02CO030
C ARE VECTOR STORED AND THE OUTPUT COVARIANCE CAN OVERWRITE THE Un2CO040
C INPUT U-D ARRAY. UIN=U-D IS RFLATED TO POUT VIA POUT=UDU(**T) Un2CO050
C UD2CO060
C UIN(N*(N+1)/2) INPUT U-D FACTORSv VECTOR STORED WITH THE D UD2CO070
C ENTRIES STORED ON THE DIAGONAL OF UIN Un2COOBO
C POUT(N*(N+1)/2) OUTPUT COVARTANCEr VECTOR STORED. UD2CO090
C (POUT=UIN IS PERMITTED) UD2COiOO
C N DIMENSION OF THE MATRICES INVOLVED UD2CO11O
C tn2CO120
C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPLu FEB. 1977) U2COI30
C UD2C0140

IMPLICIT DOUBLE PRECISION (A-H,O-Z) UD2COI5O
C Un2C0160

DIMENSION UIN(1)r POUT(1) Un2C0170
C Ur2CO1O

POUT(1)=UIN(1) UD2CO19o
JJ=l Uf2CO200
DO 20 J=2rN Uf2C0210
JJL=JJ @ (J-1FJ-) UD2CO220
JJ=JJ+J U02C0230
POUT(JJ)=UIN(JJ) U02CO240
S=POUT(JJ) U02C0250
II=O U02C0260
JM1=J-1 UO2CO270
DO 20 I=lJM1 UD2CO280

IIrII+I Un2CO290
ALPHA:S*IJIN(JJL+T) 9 JJL+I(IJ) Un2C0300
IKZII Un2C0310
DO 10 K=IJMI Un2C0320
POUT(IK)=POUT(IK)+ALPHAUIN(JJL+K) M JJL+K=(KJ) Un2CO330

10 IK=IK+K Un2C0340
20 POUT(JJL+I):ALPHA U02C0390

C Un2CO360
RETURN UD2C0370
END UD2CO380

88

C

77-26

SUBROUTINE UD2SIG(U,NSIGrTEXTNCT) Un2stolo
C UD2SI02O
C COMPUTE STANDARD DEVIATIONS (SIGMAS) FROM U-D COVARIANCE FACTORS UD2SI030
C Uf2SIO4O
C U(N*(N+I)/2) INPUT VECTOR STORED ARRAY CONTAINING THE U-D UD2SI050
C FACTORS. THE D (DIAGONAL) ELEMENTS ARE STORED Un2S1060
C ON THE DIAGONAL UD2SIO7O
C SIG(N) VECTOR OF OUTPUT STANDARD DEVIATIONS UD2SI080
C TEXT() ARRAY OF FIELDATA CHARACTERS TO BE PRINTED U02SI090
c PRECEDING THE VECTOR OF SIGMAS UD2SIIOO
C NCT NUMBER OF CHARACTERS IN TEXT, O.LE.NCT.LE.126 UD2SIllO
C IF NCT=O, NO SIGMAS ARE PRINTED UD2SI120
C UD2SI130
C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL. FEB. 1977) UD2SI140
C UD2SI150

IMPLICIT DOURLE PRECISION (A-H.O-Z) UD2SI160
INTEGER TEXT(I)
DIMENSION U(I), SIG(1)

UD2SI170
UD2SII8O

C UD2SI190
UD2SI200

SIG(1)=U(1) U025I210
DO 10 J=2,N UD2SI220
JJL=JJ i (J-1.J-1) UD2S1230
JJ=JJ+J Un2S1240

S=U(JJ) UD2SI250
SIG(J)=S UD2SI260
JMI=J-1 Un2SI270
DO 10 I=IJM1 Un2S1280

10 SIG(I)=SIG(I)+S*IJ(JJL+I)**P Un2SI290
C UD2SI300
C WE NOW HAVE VARIANCES UD2SI310
C Uf2SI320

DO 20 J=lN Uf2SI330
20 SIG(J)ZSQRT(SIG(J)) Un2SI340

IF (NCT.EQ.O) GO TO 30 UD2SI350
NCZNCT/6 Un2SI360
IF (MOD(NC.6).NE.O) NC=NC+1 UD2S1370
WRITE (6,40) (TEXT(I),IiPNC) UD2SI380
WRITE (6.50) (SIG(I)rI:1pN) Uf2SI390

30 RETURN Un2SI400
C 4UD2S1410

40 FORMAT (1HOp2Xp21A6) Un2S1420
50 FORMAT (lHO,(6DI8.10)) Uf2SI430

END UD2SI440

89

77-Z6

SUBROUTINE UTINV(RIN.NPROUT)
C UTINVOIO
C TO INVERT AN UPPER TRIANGULAR VECTOR STORED MATRIX AND STORE UTINVO2o
C THE RESULT IN VECTOR FORM. THE ALGORITHM IS SO ARRANGED THAT UTINVO30
C THE RESULT CAN OVERWRITE THF INPUT. UTINVO40
C IN ADDITION To SOLVE RX=Z, SET RIN(N*(N+1)/2+i)=Z(1), ETC.# UTINVO50
C AND SET RIN((N+1)*(N+2)/2)=-I. CALL THE SUBROUTINE USING N+1 UTINV060
C INSTEAD OF N. ON RETURN THE FIRST N ENTRIES OF COLUMN N+1 UTINVO70
C WILL CONTAIN X. UTINVOSO
C UTINVO90
C RIN(N*(N+I)/2) INPUT VECTON STORED UPPER TRIANGULAR MATRIX UTINVIOD
C N MATRIX DIMFNSION UTINVIIO
C ROUT(N*(N+I)/2) OUTPUT VECTOR STORED UPPFR TRIANGULAR MATRIX UTINVI20
C INVERSE UTINV130
C UTINV140
C COGNIZANT PERSONS! G.J.BTERMAN/J.ELLIS (JPL, SEPT. 1976) UTINVISO
C UTINVI60

DOUBLE PRECISION RIN(1). ROUT(1), WORK. ONF, ZERO *DIN UTINVI7O
DATA ONE/I.ODO/PZERO/ O.ODO/ UTINVIO
IPV = N*(N+1)/2 UTINV190
IN = IPV UTINV200
DO 6 I=1,N UTINV210
IF (RIN(IPV).NE.ZERO) GO TO I UTINV220
wRITE (6,10) I UTINV230
RETURN UTINV24O

I DIN Z ONE/ RIN(IPV) UTINV250
ROUT(IPV
MIN ZN

) DIN UTINV260
UTINV27O

KEND I-i UTINV280

LANF N -KEND UTINV29O
IF (I.EQ.1) GO TO 5 UTINV300

2 J= IN UTINV310
C UTINV320
C INITIALIZE ROW LOOP UTINV330
C UTINV340

DO 4 K=lPKEND UTINV350
WORK =ZERO UTINV360
MIN= MIN - UTINV370
LIN= IPV UTINV380
LOT= J UTINV390

C UTINV400
C START INNER LOOP UTINV410
c UTINV420

DO 3 L=LANF, MIN UTINV430
LIN= LIN+L UTINV440
LOT= LOT+1 UTTNV450

3 WORK = WORK + RIN(LIN)* ROUT(LOT) UTINV460
ROUT(J) = -WORK* nIN UTINV47O

4 J= J- MIN UTINV4RO
5 IPV = IPV -MIN UTINV490
6 IN= IN -i UTINV500
RETURN UTINV510

10 FORMAT (IHOPIOX.IUTINV DIAGONALt4,'IS ZERO') UTINV520
END UTINV530

90

77-26

C
,SUBROUTINE LITIROW (RINPNROJT,NRY) UTIRO010

C UT!RO020
C TO COMPUTE THE INVERSE OF AN UIPPER TRIANGULAR (VECTOR STOREn) UTIRO030
C MATRIX WHEN THE LOWER PORTION OF THE INVERSF IS GIVEN UTIRO040

C UTIRO050

C ON INPUT: UTIRO060

C UT!R0070

RX RXY * * RX RXY UTIROO80
C RIN: ROUT: WHERE R= UTIROOO
C * * 0 RY**-l 0 RY UTIR1OO0
C UTIRO110
C ON OUTPUT: RIN IS UNCHANGED AND ROUTzR**-1 UTIROI20
C 'THE RESULT CAN OVER-WRITE THE INPUT (I.E. RIN=ROUT) UTIRO130
C

C RIN(N*(N+I)/2)

C

C N

C ROUT(N*(N+I)/2)

C

C

C NRY

C

C

C

C COGNIZANT PERSONS:

C

DOUBLE PRECISION

UTIR0140

INPUT VECTOR STORED TRIANGULAR MATRIX UTIRO150

THE BOTTOM NRY ROWS ARE IGNORED UTIROl60

MATRIX DIMFNqION UTTRO170

OUTPUT VECTOR STORED MATRIX. ON INPUT THE UTIR0180

BOTTOM NRY ROWS CONTAIN THE LOWER PORTION UTIR0190

OF R**-I. ON OUTPUT ROUT=R**-1 UTIRO200

DIMENSION OF LOWER (ALREAnY INVERTED) UTIRO210

TPIANGULAR R. IF NRY=0, ORDINARY MATRIX UTTR0220

INVERSION RESULTS. UTIR0230

UTIRO240

G.J.BIERMAN/M.W.NEAD (JPL MARCH 1977) UTIP0250

UTIR0260

RIN(l)' ROUT(1), SUMP ZERO. ONE, DINV UTIR0270

DATA ONE/1.DO/, ZERO/O.DO/ 	 UTIRO28O

C 	 UTIROP09

C INITIALIZATION 	 UTIR0300

C UTIR0310

NR=N*(NtI)/2 Q NO. ELEMENTS IN R UTIR0320
ISTRT=N-NRY 0 FIRST ROW TO BE INVERTED UTIR0330
IRLST=ISTRT+l w IRLST=PREVIOuS IROW INDEX UiTIR0340
I1=ISTRT*IRLST/2 w IIZDIAGONAL 	 UTIR0350

DO 40 IROW=ISTRT,1,- UTIR0360

IF (RIN(II).NE.ZERO) GO TO in UTIR037O

WRITE (6P50) IROW UTIPO38O

RETURN ITIRO3qO

10 	 DINV=ONE/RIN(II) UTIR0400

ROUT(IT)UD1NV UTIR0410

KJSZNR+IROW 0 KJ(START) UTIRO420

IKS=II+IROW G IK(START) UTIRO430

C UTIR0440

IF (IRLST.GT.N) GO TO 35 UTIRO40

00 30 J=NpIRLST,-1 UTIR0460

KJS=KJS-J UTIRO4O

SUMZERO UTIR0480

IKIKS UTIRO4O

KJ=KJS UTIRO500

C 	 UTIRO91O

DO 20 K=IRLSTFJ UTIRO520

KJ=KJ+1 UTIR0530

SUM=SUM+RIN(IK)*ROUTKJ) 91 UTIR0540

"(7

http:ZERO/O.DO
http:ONE/1.DO

77-26

20 IK=IK+K UTIR0550
C UTIRO560

30 ROUT(KJS)=-SuM*DINV UTIR0570
35 IRLST=IROW UTIR0580
40 II=II-IROW UTIR0590

RETURN UTIR0600
50 FORMAT (IHOIOXeIRIN DIAGONALI,14,*IS ZERO t) UTIR0610

END UTIR0620

92

C

77-26

SUBROUTINE WGS (WDIMAXWPIW-PJwDLttJV) WeSOOOlo
C MODIFIED GRAMM-SCHMIDT ALGORITHM FOR REDUCING WDW(**T) TO UnU(nT)WGS00020

C FORM WHERE U IS A VECTOR STORED TRIANGULAR MATRIX WITH THE WAS00030

C RESULTING 0 FLEMENTS STORE ON THE DIAG6NAL WGS00040

C WGSOOOSO

C W(IW.JW) INPUT MATRIX TO RE REDUCED TO TRIANGULAR FORM. WGSO060

C THIS MATRIX Is nESTROYEO BY THE CALCULATION WGSn0070

C IW.LE.IMAXW, WGSooso

C D(IW) VECTOR OF NON-NFGATIVE WEIGHTS FOR THE WGSOOO90

C ORTHOCONALIZATION PROCESS. THE DIS ARE UNCHANGED WGSOolnO

C BY THF CALCULATION. wGSO0110

C U(IW*(IW+I)/P) OUTPUT UPPER TRTANGULAR VECTOR STOREP OUTPUT WGSO0120

C V(JW) WORK VECTOR WASO0130

C WGSO0140

C (SEE ROOK: WGSOO15O

C ' FACTORIZATION METHODS FOR DISCRETE SEQUENTIAL ESTIMATION it WGSO0160
C BY G.JBIERMAN) WASOOI70

C ESTIMATION WGSOOJA0

C WGSnO190

C COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPLt MARCH 1977) WGSO0200

C WGSoopIl

IMPLICIT DOUBLE PRECISION (A-H.O-Z) WGS00220

DIMENSION W(IMAXWrl)p D(j)t U(I)p V(l) WGSO0230

C WGS00240

Z=OGo
 WGSO0250

ONE=1.0 WGS00260

DO 100 JzlWul,-l WGSO0270

SUMAZ WGS00280

DO 40 Kzl.JW WGSD029O

V(K)=W(JK) WGSO0300

U(K)=D(K)*V(K) WU HERE IS USED AS A WORK VECTOR WGSO0310

40 SUM=V(K)*U(K)+SUM WGSO0320

w(JJ)=SUM 0,EO.(4.9) OF ROOK' NEW C(J) WGSn0330

IF (J.EQ.1) GO TO 100 W6SO0340

DINV=Z WGSOO350

IF (SUM.GT.Z) DINVZONE/SUM WGSO0360

JM=J-1 WGS00370

DO 70 K=lJMI WGS00380

SUM~z WGS00390
DO 50 I=zpJW WGS00400

50 SUM=W(KI)*U(I)+SUM WGS00410
SUMZSUM*DINV WGS00420

C WGSO0430
DO 60 =IJW WGSO0440

60 W(KI)=W(KI)-SUM*V(I) wrsn0450
70 - W(JK)=SJM EQ.(4.ln) OF BOOK WGS00460
100 CONTINUE Q U(K#J) sTOREn IN W(J.K) WGSP047O

C WGS0480
C THE LOWER PART OF W IS U TRANSPOSE WGSD0490
C WGSO0500

IJUo
 WGS0D510

nO 110 J%1pIW WGSAOSPO

00 110 I1#J WSSAO'3f

IdJIJ+l
 WGS0o940

110 U(IJ)=W(JuI) WGSof5'i

WGSO0560

WGSO0570

C

RETURN 93

END
 uSfOl5AO

http:EQ.(4.ln

77-26

References

[1] 	 Lawson, C. L., Hanson, R. J., Solving Least Squares Problems,

Prentice Hall, Englewood Cliffs, N. J. (1974).

[2] 	 JPL FORTRAN V Subprogram Directory, JPL Internal Document 1845-23,
Rev. A., Feb. 1, 1975.

[3] 	 Bierman, G. J., Factorization Methods for Discrete Sequential
Estimation, Academic Press, New York (1977).

94 	 NASA-JPL-Coml, LA Calif

4-jfI- ,PUBLiCATION 77-26

