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ABSTRACT

Linear least squares estimation and regression analyses continue
to play a major role in orbit determination and related areas. In
this report we document a library of FORTRAN subroutines that have
been developed to facilitate analyses of a variety of parameter
estimation problems. Our purpose is to present an easy to use multi-
purpose set of algorithms that are reasonably efficient and which use
a minimal fmount of computer storage. Subroutine inputs, outputs,
usage and listings are given, along with examples of how these routines
can be used. The following outline indicates the scope of this report:
Section I, introduction with reference tc¢ background material; Section
1L, examples and applications; Section III, a subroutine directory
summary; Section IV, the subroutine directory user description with
input, output and usage explained; and Section V, subroutine FORTRAN
listings. The routines are compact and efficient and are far superior
to the normal equation data processing algorithms that are often used

for least squares analyses.
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I. Introduction

Techniques related to least squares parameter estimation play a
prominent role 1n orbit determination and related analyses. HNumerical
and algorithmic aspects of least squares computation are documented
1in the excellent reference work by Lawson and Hanson, Ref. [1]. Their
algorithms, available from the JPL subroutine library, Ref. [2], are
very reliable and general. Experience has, however, shown that in
reasonably well posed problems one can streamline the least squares
algorithm codes and reduce both storage and computer times. In this
report, we document a collection of subroutines most of which we have
written that can be used to solve a variety of parameter estimation

problems.

The algorithms for the most part involve triangular and/or
symmetric matrices and to reduce storage requirements these are stored

in vector form, e.g., an upper triangular matrix U is written as

Uy, U, U Ty, U(l) U(2) Uy U@
Upp  Upg Uy _ Uy UG UG,
etc. =
U33 U34 u(6) U(9)
U, U(10)

Thus, the element from row i and column j of U, i < j, is stored in
vector ?omponent j(j~1)/2 + i. We hasten, to point out that the engineer,
with few exceptions, need have no direct contact with the vector sub-
scripting. By this we mean that the vector subscript related operations
are internal to the subroutines, vector arrays transmitted from one

1
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subroutine to another are compatible, and vector arrays displayed

using the print subroutine TRIMAT appear in a triangular matrix format.

Aside: The most notable exception is that matrix problems are generally
formulated using doubly subscripted arrays. Transforming a double

subscripted symmetric or upper triangular matrix A(-»-) to a vector

stored form, U(-) is quite simply accomplished in FORTRAN via

1T = 0
DO 1J=1,N
DO1T=1,J
IJ = TJ+1

17 U(1y) = A(L,T)

Similarly, transforming an initial vector D(*) of diagonal positions of

a vector stored form, U(-), i1s accomplished using

JI=0 JJ = N (N+1)/2
D01J=1,N or DO 1 J =N,1,-1
I3 = JI+J U(JT) = D(J)

1 U@JI) = D) 1 37 = J3-J

The conversion on the right has the modest advantage that D and U can
share common storage (i.e., U can overwrite D). These conversions
are too brief to be efficiently used as subroutines. 1t seems that when

such conversions are needed one can readily include them as in line code.

End of Aside

r
Although this package of subroutines is designeq'in the main, for
the analysis of parameter estimation problems one can use it to solwve
problems that involve process noise. With modest amounts of aéditional
programming one can even apply our package to filtering problems that
involve colored noise and mapping. In the la:‘:ter case, however, reduc-—

tions gained from our use of vector storage are for the most part lost.
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Mathematical background regarding Householder orthogonal trans-
formations for least squares analyses and U-D matrix factorization '
for covariance matrix analyses are discussed 1n references [1] and [3].
Our plan is to 1llustrate, in Section II, with examples how one can
use the basic algorithms and matrix manipulation to solve a variety
of important problems. The subroutines which comprise our estimation
subroutine package are described in Section III, and detailed input/

cutput descriptions are presented in Section IV.

Section V contains FORTRAN listings of the subroutines. There are
several reasons for including such listings. Making these listings
available to the engineer analyst allows him to assess algorithm
complexity for himself; and to appreciate the simplicity of the
routines he tends otherwise to use as a black box. The routines are
not truly portable, and users can, when necessary make modifications
so that the subroutine package can operate on systems other than the
UNIVAC 1108, When estimation problems arise to which our package does
not directly apply (or which can be made to apply by an awkward conca-
tenation of the routines) one may be able to modify the codes and widen

still further the class of problems that can be efficiently solved.
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Our purpose in this section is to illustrate, with a number of

examples, some of the problems that can be solved using this E§P. The

examples, 1n addition, serve to cataleogue certain estimation techniqgues that

are quite useful.

1)
2)
3)
4)
3)
6)
7)
8)
9)
10)
11)

12)

13)
14)
15)
16)
17)

To begin, let us catalogue the subroutines that comprise the ESP:

AGTRN
A2A1
COMBO
COVZRI
Cov2UuD
c2C
INF2R
PERMUT
RINCON
RIZCOV
R24A

R2RA

RUDR
THH
TRIMAT
TTHH

TZERO

(A G Turner)
(A to A one)
{(combo)

(cov to R 1)
(cov to U D)
(C to C)
{(inf to R)
{(permute)
(rin con)

(R I to cov)
(R to A)

(R to R A)

(rudder)
(T H 1)

(tri mat)
(T T H H)

(T zero)

Agee-Turner rank 1 update

Matrix A to matrix Al

Combine R and A namelists

Covariance to R inverse

Covariance to U-D factors

Permute the rows and columns of matrix C
Information matrix to (triangular) R
Permute the columns of matrix A

R inverse with condition number bound
R inverse to covariance

Triangular R to matrix A

Transfer a triangular block of R to trian-
gular RA

SRIF R to U-D factors or vice versa
Triangular Householder data processing
Triangular matrix print

Two triangular matrix Householder processing

Zero a horizontal segment of a triangular
matrix
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18) 1UDMES (U D measurement) U-D measurement updating

19) uUDb2COV {UD to cov) U-D factors to covariance

20) UD25IG (U D to sig) U-D factors to sigmas

21) UTINV (U T inverse) Upper triangular metrlx inverse

22) UTIROW Upper triangular inverse, inverting only

the upper rows

23) TGS (W G-8) Weighted Gram-Schmidt triangular reduction

These routines are described in succeedingly more detail in sections III,
IV, and V. The examples to follow are chosen to demonstrate how these
various subroutines can be used to solve orbit determination and other
parameter estimation problems. It is important to keep in wind that these
examples are not by any means all inclusive, and that this package of
subroutines has 'a wide scope of applicability.

IT.1 Simple Least Squares

Given data in the form of an overdetermined systems of linear
equations one may want a) the least squares solution; b) the estimate
error covariance, assuming that the data has normalized errors; and
c) the sum of squares of the residuals. The solution to this problem,
using the ESP can be symbolically depicted as

@ 4zl R 2], e
Remarks: The array [A 2] corresponds to the equations Ax = z-v, veN(0,I);

A~ A ~ A A

the array [R z] corresponds to the triangular data equation Rx = z-v,

veN(0,TI) and e = ||z-Ax]||
® (& 2] x1 o
N ~ A_l ~
Remark ; x =R z
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One may be concerned with the integrity of the computed inyerse

and the estimate. If ome uses subroutine RINCON instéad of UTINV then
in addition ome obtains an estimate (lower and upper bounds) for the
condition number R, If this condition number estimate is large the
computed 1nverse and estimate are to be regarded with suspicion. By
large, we mean considerable with the machine accuracy {(yiz. on an 18
decimal digit machine numbers larger than 1015). Note that the condi-
tion number estimate is obtained with negligible additional computation

and storage.

~=1. RI2COV
® [R 7] ——[C]
l\-_l A_.
Remarks: C= R~ R T estimate error covariance., Some computation can

be avoided in RIZCOV if only some (or all) of the standard deviations
are wanted.

J1.2 Least Squares With A Priori

If a priori information is given, it can be included as additional
equations (in the A array) or used to initialize the R array in subroutine
THH (see the subroutine argument description givenm in section IV). One is
sometimes interested in seeing how the estimate and/or the formal
statistics change corresponding to the use of different a priori
conditions. In this case one should compute [ﬁ Q] as in case II.1, and
then include the a priori [RO zo] using either sugroutine THH, or

subroutine TTHH when the a priori is diagonal or triamgular, e.g.,

[R 2]

TTHH w

9 -—h—IRZJ
[R z ]
(s e}

x
The new result overwrites the old.
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” ~ A

It 1s often good practice to process the data and form [R z] before

including the effects of a priori. When this 1s done one can analyze

the effect of different a priori, [R0 zo] without reprocessing the data.
Lf a priori is given in the form of an information matrix, #,

(as for example would be the case if the problem is being initialized

with data processed using normal equation data accumulatlon*) then one

can obtain R.0 from A using INF2R;

INF2R r
o]

A
. . T
If there were a normal equation estimate z = A™b, then Z, = R "z.

IT.3 Batch Sequential Data Processing

Prime reasons for batch sequential data processing are that many
problems are too large to fit in core, are too expensive in terms of core
cost, and for certain problems it is desirable to be able to incorporate
new data as it becomes available. Subroutines TTH and UDMES are specially
designed for this kind of problem. Both of these subroutines overwrite
the a priori with the result which then acts as a priori for the next
batch of data. If the data is stored on a file or tape as Al, 4> AZ’ Zyseo-
then the sequential process can be represented as follows:

SRIF Processing*®

a) Initialize [R z] with a-priori walues or zero

b) Read the next [A z] from the file

% . T " T. T
i.e., solving Ax = b-v with normal equations, A Axb =A"by A= ATA

is the information matrix.

k%
The acronym SRIF represents Square Root Information Filter. The SRIF is

discussed at length in reference [3].

7
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d) 1If there is more data go back to b)
e) Compute estimates and/or covariances using UTINV and RI2COV
(as in example TI.1l)

U-D*% Processing

A A~

a”’) TInmitialize [U~D x] with a priori U-D information and estimate
b”) Read the next [A z] scalar measurement from the file

A A A

<D 10D XN ypms o5 o7

[A 2]

d”) If there is more data go back to b7)

e”) Compute standard deviations or covariances using UD2SIG or
UD2C0V.

Note that subroutine THH is best {(most efficiently) used with
data batches of substantial size (say 5 or more) and that UDMES processes
measurement vectors one compounent at a time. If the dimension of the
state is small the cost of using either method is generally mnegligible.
The UDMES subroutine is best used in problems where estimates are
wanted with great frequency or where one wishes to monitor the effects
of each update. In a given application one might choose to process

data 1n batches for awhile and during critical periods it may be

%
The new result overwrites the old.

wk
U-D processing is a numerically stable algorithmic formulation of the Kalman
filter measurement update algorithm, cf reference [3]. The estimate exror
covariance is used in its UDUT factored form, where U is unit upper triangular
and D is diagonal.

8



7726

desirable to monitor the updating process on a point by point basis.

In cases such %s this, one may use RUDR to convert a SRIF array to U-D
form or wvice-versa.

Remarks: Another case where an R to U-D conversion can be useful occurs
in large order problems (with say 100 or more parameters) where after
data has been SRIF processed one wants to examine estimate and/or
covariance sensitivity to the a priori variances of only a few of the
variables. Here i1t may be more convenient to vpdate using the UDMES
subroutine.

11.4 Reduced State Hstimates and/or Covariances From a SRIF Array

Suppose, for example, that data has been processed and that we have a

AN
triangular SRIF array [R z] corresponding to the 14 parameter names, as

ay, X, ¥ 25 Voo vy, v GM, CU41, LO41, CU43, LO43 (constant spacecraft
accelerations, position and velocity, target body gravitational constant,
and spin axis and longitude station location errors).

Let us ask first what would the computed error covariance be of
a model containing only the first 10 variables, i.e., by ignoring the
effect of the station location errors. One would apply UTINV and RI2COV
just as in example II.1l, except here we would use N (the dimenéion of
the filter } = 10, instead of N=l4.

Next, suppose that we want the solution and associated covariance
of the model without the 3 acceleration errors. One ESP solution is to

use
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o (R 2] R24 4

NAME ORDER OF A

Xy Vs 2y VXa Vy’ Vz:

GM, CU4%1, 1041, CU43, L043,

RHS , a_, a_, a’,
r’ “x* %y

Remark: One could also have used subroutine COMBO, with the desired
namelist as simply a aX, ay. This would achieve the same A matrrix

form.

e [a]-TE. (R

Remark: R here can replace the original R and =z.

UTINV , -1 RI2COV
® [R] ——[R Xest] [cov Xest]
Remarks: Here, use only N=11, i.e., 11 variables and the RHS. x is

est

the 1l state estimate based on a model that does not contain acceleration
errors a_, 4, Or a .
r’ Tx y :
Note how triangularizing the rearranged R matrix produces the
desired lower dimensional SRIF array; and this is the same result one
would obtain if the original data had been fit using the 1l state model.
As the last subcase of this example suppose that one is only
interested in the SRIF array corresponding to the position and velocity

variables. The difference between this example and the one agbove is

that here we want to include the effects due to the other variables.

%
z is often given the label RHS (right hand side)

10
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One might want this sub-array to combine with a position-velocity SRIF

array obtained from, say, optical data. One method to use would be,

o° RZRA
R —_
& [R z] [RA ZA]
INPUT NAMES: OUTPUT NAMES:
ar, ax, ay, X, Vs Z, vx, vy, vz, GM X, ¥V, 2, VX, Vy’ vz, GM
CU41, LO41, CU43, LO43, RHS CU4l, LO41, CU43, 1043, RHS

Remark: The lower triangle starting with x is copied inte RA'

R2A .
® {RA ZA] [A, zA] (Reordering)

NAMES: €M, CU41l, LO4L, CU43, LO43,

X z, V v v RHS
2 Y, L] X’ y’ Z,

THH =~ ~ . .
® [A, ZA] [RA zA] (Triangularizing)
oo R2RA . .
-] [RA ZA] [RX zx] {Shifting array)

NAMES: x, ¥, 2, vk, vy, vz, RHS

Remark: The lower right triangle starting with x is copied into RX'

We note that one could have elected to use COMBO in place of the first
R2RA usage and R2A; this would have involved slightly more storage, but
a lesser number of 1nputsf The sequence of operatioms is in this case,

o [r z] LBy 4

ORIGINAL NAMES DESIRED NAMES: X, y, 2Z, Vs Vy, Vs RHS

Remark: By using COMBO the colummns of [R z] are ordered corresponding to
the names 8> as ay,GM; Cu41, LO41, CU43, and LO43, followed by the

desired names list.

11
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e [4 21— (R 2]

Remark: The [R z] array that is output from this procedure is

~ oA

equivalent but different from the [R z] array that we began with.

' ~ ", R2RA
® [R z}{—-———-—[RX zX]
Remark: As before, the lower right triangle starting with x is copied
into R .
X

To delete the last k parameters from a SRIF array, it is not
necessary to use subroutines R2A and THH. The first W - k = N columms
of the array already correspond to a square root information matrix of
the reduced system. If estimates are involved one can simply move the
z colum left using:

R (N*(N + 1)/2 + 1) = RON#(¥ +1)/2 + 1), 1 = 1,...,k.
Remark: We mention in passing that if one is only interested in estimates
and/or covariances corresponding to the last k parameters then one can use
R2RA to transform the lower right triangle of the SRIF array to an upper
left triangle after which UTINV and RI2COV can be applied.

I1.5 Sensitivity, Perturbation, Computed Covariance and Consider
Covariance Matrix Computation

Suppose that one is given a SRIF array

NX N 1
R R z }N (I1.5a)
p'd Xy x X
0 R z }N
¥y b ¥y
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in which the Ny variables are to be considered. (One can, of course, using
subroutines R2A and THH reorder and retriangularize an arbitrarily arranged
SRIF array so that a given set of variables fall at the end.) For various

reasons one may choose to ignore the y variables in the equation

Rxg + nyy =z, - “x R vXeN(O,I) {I1.5b)
and take as the estimate xC = R;l z_- It then follows that
_ -1 -1
I Rx ny v Rx v, o (L1.5¢)

and from this one obtains

5(x-x ) -1
Sen = —(—— = -R R (II.54d)
oy X Xy
(sensitivity of the estimate error to the unmodeled y parameters)
Pert = Sen Diag (¢ (1),...,0 (N )) II.5e)
g (0 (1), 050 (N (

where Uy(l),...,cy(Ny) are a priori v parameter uncertainties.

{The perturbations are a measure of how much the estimate erroxr could be

expected to change due to the unmodeled y parameters.)

=1 =T T
Pcon = RX RX + Sen Py Sen (II.56)

Pc + (Pert)(Pert)T if Py is diagonal*

where Pc 15 the estimate error covariance of the reduced model.
An easy way to compute Pc, Pert and Pcon is as follows: Use subroutine

1
R2RA to place the y wariable a priori {P;(O) 90]** into the lower right

*
Pert = Sen F

it

%ok L. ]
The a priori estimate Yo of consider parameters is generally zero.

13
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corner of (IL.5a), replacing Ry and Zy’ i.e.,

[R =] rR R Z
R2RA % A
1 A s A
P
[Py(O) yol 0 y(0) Yo

Now apply subroutine UTIROW to this system (with a -1 set in the lower right

corner®)

- —_ _ —_

R R z R_ Pert X

X Xy X X c

i A UTIROW 5 A

p* 2

0 P (0) Yo | = | 9 (0 Y,

0 8] -1 0 0 —1_

Note that the lower portion of the matrix is left unaltered, 1.e., the purpose
of UTIROW is to invert a triangular matrix, given that the lower rows have
already been inverted. From this array one can, using subroutine RI2COV,

get both P and P
c con

¢

-1

< C

computed covarlance

R 7]

RIZ2COV

[Rul Pert] [P ] consider covariance
X

con

Suppose now that one is dealing with a U-D factored Kalman filter for-

mulation. TIn this case estimate error sensitivities can be sequentially

%
»

To have estimates from the triangular inversion routines one sets a -1 in the

Tast column (below the right hand side).

sk
Strictly speaking this is not what we call the perturbation unless Ry(O) is

diagonal.
14
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T T
calculated as each scalar measurement (z = ax + ayy + v) 18 processed.

+ af)

T
Sen = Sen, - K.(a_ Sen
N j-1 J( X 1-1 y

where Senj__l 15 the sensitivity prior to processing this (j-th) measurement,

and Kj is the Kalman gain wvector. In this formulation one computes Pcon

in a manner analogous to that described in section L1.7;

IR 0 = D = i - 3
et Ul Uj R Dl- Dj (filter U-D factors)

[sl,..., s, ] = Senj (estimate error sensitivities)
v

then compute

AGIRN L5 k=1,..., 0

v et Pkt ¥

- 2
® Pk %k Sk

For the final U-D we have

con _ = con

Ud1 %41 2 %41 TP
y ¥

If Py(O) = UyDyU§ » dinstead of Py(O) = Diag (oi,..., ci }, then in the
¥y

U~D recursion one should replace the Senj columns by those of SenjUj and

0% should be replaced by the corresponding diagonal elements of Dy
K

IT.6 Combining Various Data Sets

In this example we collect several related problems involving data sets

with different parsmeter lists.

8uppose that the parameter namelist of the current data does not
correspond to that of the a prioxri SRIF array. If the new data involves

a permutation or a subset of the SRIF namelist then an application of

15



77-26

subroutine PERMUT w1ll create the desired data rearrangement. If the data
involves parameters not present in the SRIF namelist then one could use
subgputlne RZA to modify the SRIF array to include the new names and then
if necessary use PERMUT on the data, to rearrange it compatibly.

Suppose now that two data sets are to be combined and that each
contains parameters peculiar to 1t'(and of course there are common péra—
meters). For example let data set 1 contain names ABC and data set 2
contain names DEB, One could handle such a problem by noting that the list
ABCDE contains both name lists. Thus one could use subroutine PERMUT
on each data set comparing it to the master list, ABCDE, and then the
results could be combined using subroutine THH An alternative automated
method for handling this problem is to use subrtoutine COMBO with data
set 1 (assuming it is in triangular form) and namelist 2. ‘The result
would be data set 1 in double subscripted form and arranged to the name-
list ACDEB (names A and C are peculiar to datz set 1 and are put fairst).
Having determined the namelist one could apply subroutine PERMUT to data
set 2 and give it a compatible namelaist order:mg.

The process of increasing the namelist size to accommodate new
variables can lead to problems with excessively long namelists, i.e.,
with high dimension, If it is known that a certain set of variables
will not cccur in future data sets then these variables can be eliminated
and the problem dimension reduced. To eliminate a vector y from a SRIF
array, first use subroutine R2A to put the y names first in the namelisc;

then use subroutine THH to retriangularize aad finally use subroutine R2RA

to put the y independent subarray in position for further use; wviz.

1o
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R R z
¥ ¥yX ¥

[R] RZA (A] THH R2RA [RX z ]
0 R.x zx

The rows [Ry RYX zy] can be used to recover a y estimate (and its covariance)

when an estimate for x (and 1ts covariance) are determined. (See example
I1.4).

Still another application related to the combining of data sets involves
the combining of SRIF triangular data arrays. One might encounter such prob-
lems when combining data from different space missions (that involve common
parameters) or one might choose to process data of each type* or tracking
station separately and then combine the resultang SRIF arrays. Triangular
arrays can be combined using subroutine TTHH, assuming that subroutines
R2A, THH and RZRA have been used previously to formulate a common parameter

set for each of the sub problems.

1.7 Batch Sequential White Noise

It is not uncommon to have a problem where each data set contains a

set of parameters that apply only te that set and not to any other, viz.

the data is of the form

Ax+ By, =2, -V, i = 1,...,N
j 373 j h| J T

where there is generally a priori information on the vector yj variables.
Rather than form a concatenated state vector composed of x, L EERREE i
which might create a problem involving exhorbitant amounts of storage and
computation we solve the problem as follows. Apply subroutine THH to
[B, & 2,1,
resulting SRIF array is of the form

with the corresponding R initialized with the vy 2 priori., The

ta

“viz. range, doppler, optical, etc.

17
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Copy the top ¥ rows if one will later want an estimate oxr covariance of
1
the Yy parameters. Apply subroutine TZERO to zerc the top Ny rows and
wfa l
using subroutine R2ZRA get in the ¥y @ priori . This SRIF array is now

ready to be combined with the second set of data [B2 1-‘5.2 Z.] and the procedure

2
repeated.

A somewhat analogous situation 1s represented by the class of problems

that involve noisy model variations, i.e., the state at step j+l satisfies

341

= xj + Gj Wj

where matrix Gj is defined so that WJ is independent of xJ and wjeN(O,Qj).
Models of this type are used to reflect that the problem at hand is not
truly one of parameter estimation, and that sone (or all) of the components
vary ina random (or at least unknown) manner that is statistically

bounded. To solve this problem in a SRIF formulation suppese that a pricri

for Xj and wj are written in data equation form (cf ref. [3]),

Rx =2z =-wv 3 \)jeN(O,In ).

i3 T3 .
-} (w) (w
Qj W, = 0 - “j 3y )EN(O,I)

1 ) P
where Q2 is a Cholesky factor of Qj that is obtainable from COVZRI. Cowbining
3 ;

these two equations with the one for xj+1 gives

N
ate

In this example it is assumed that all of the y., variables have the same
dimension. This assumption, though not essential, simplifies our descriptaon
of the procedure.

i8
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T 0 o, o (w)
- 3 _ ) j
R G Ql/z R v
- . . X, Z,
1373 h| j+l 3 k]

1
2. = P : s . .
where ijj wj. This is the equation to be triangularized with subroutine

THH, i.e.,
Dim w Dim x 1
WX w
Dimw {| I 0 0 REW) R;'f ‘ “3
T THHE
Di { s 0 R Z
imx 4 RGGy Ry 2 41 71

If the problem is arranged so that QJ is diagonal one can reduce storage and

computation. The form of this algorithm is designed to allow the use of
singular Qj matrices.

When the a priori for x3 and Qj are given in U-D factored form,

one can obtain the U-D factors for xj+l as follows:

Let Q, = U(q) D(q) (U(q))T (use COV2UD if necessary)

;|

Set G = GJ U(q) = [gl,..., &, | D(Q) = Diag(dl,...,dn )
W w

Apply subroutine AGTRN n times, with ﬁl = ﬁj R 51 = Dj

= AGTRN = =
T T T KT Eety
L.e. OD Uy + 488y Uit 1Pht1 Ve !
Then U, ,, = U D,,, =D .
+1 nw’ j+1 n

19
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Certain filtering problems involve dynamic models of the form

x, = 0, x, + G, w,
T3 3 i3
- A
Given an estimate for xj, Xj’ the predicted estimate for Xj+l’ denoted
Xj+1 is simply

~ Fay
. =6, x,
T3

The U-D factors of the estimate error corresponding to the estimate §5+1

can be obtained using the weighted Gram-Schmidt triangularization

subroutine

[¢, 0.1 &, piag @0 ) EEE-G -5, )

I1I.8 WMiscellaneous Uses of the Various ESP Subroutines

In certain parameter analyses we may want to reprocess a set of data
suppressing different subsets of wvarisbles. 1In this case the original

-~

data should be left unaltered and subroutine /2A1 used to copy A into Al,
which then can be modified as dictated by tne analysis.

Covariance analyses sometimes are 1nitia:ized using a covariance
matrix from a different problem {or a diffcred phase of the same probleml:
In such cases it may be necessary to permute, delete or insert rows and
columns into the covariance matrix; and that can be achieved using sub-
routine C2C.

If a priori for the problem at hand is given as a covariance matris:

then one can compute the corresponding SRIF or U-D initializatlon using

* -
In statistical notation that is commonly used, one Writes

x(3+]5) = J x(3[3)

20
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subroutines COV2RI or COV2UD. Of course, if the covariance is diagonal
the appropriate R and U-D factors can be obtained more simply. To
convert a priori given in the form of an information matrix to a corres-—
ponding SRIF matrix one applies subroutine INF2R. To display covariance
results corresponding to the SRIF or U-D filter onme can use subroutines
UTINV, R1ZCOV and UD2COV. The vector stored covariance results are
displayed in a triangular format using subroutine TRIMAT.
Aside: After careful consideration it was decided that subroutines to
multiply matrices would not be included in our ESP. OQur reasons are
that parameter estimation does not, in the main, involve matrix
multiplication; and when such products occur they generally involve
matrices with special structures (viz. rectangle x triangle, triangle x
rectangle, diagonal x triangle, etc). To see that these computations
are not lengthy or complicated we illustrate how to compute z = Rx
where R is a triangular vector stored matrix and x is an N vector,

I1=0

DO 2I=1,N

STM=0.

II=TI+I @II=(1,I)

IK=1IL

DO 1 K=I,N

SUM=STUMHR(IK) *x(X) @IK=(I.K)
1 TK=TK+K

2 z(I)=SUM @z can overwrite x if desired.

21
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Mote that the IT and IK imcremental recursions are used to circumvent
the N(W+L)/2 calculations of IK=K(K-~1)/2+T1.

A later more encyclopedic subroutine directory may include the .
various matrix products that ocecur in linear algebra applications.

End of Asdide

22
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ITI. SUBROUTINE DIRECTORY SUMMARY

1. AGTRN - (Agee-Turner)

Computes updated U-D factors corresponding to a rank 1 matrix
modification; i.e., given U-D, a scalar c, and vector v, U and D are
computed so that U D UT =UD UT +cvw vT. Both ¢ and v are destroyed during
the computation, and the resultant (vector stored) U-D array replaces
the original one. Uses for this routine include (a) adding process
noise effects to a U-D factored Kalman filter; (b) computing consider
covariances (cf Section II.5); (c) computing "actual" covariance

factors resulting from the use of suboptimal Kalman filter gains; and

(d) adding measurements to a U~D factored information matrix.
2. A2A1 - (A to Al)

Reorders the columns of a rectangular matrix A, storing the
result in matrix Al. Columns can be deleted and new columns added.

Zero columns are inserted which correspond to new column name entries.

Matrices A and Al cannot share common storage.

Example ITT.1

¢« B C B F G C H
1 5 S 5 0 0 9 0 i
6 10 A2AL 6 0 0 10 O
7 11 7 0 0 11 0
- 8 12 8 0 0 1z O
A Al

The new namelist (BFGCH) contains F, @ and H as new columns and deletes
the column corresponding to name a.

23
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Example III.2

Suppose one 1is given an observation data file with regression

coefficients corresponding to a state vector with components say,

X, Y5 Zy Voo vy, v, and station location errors. Suppose further,
* & %

that the vector being estimated has components ar’ ax’ %y

X, vV, Z, Vs vy’ Vs GM and station location errors. A2A1 can be used

»

to reorder the matrix of regression coefficients to correspond to the
state belng estimated. Zero coefficients are set in-place for the

accelerations and GM which are not present in the original file.

3. COMBO ~ (combine R and A namelists)

The upper triangular vector stored matrix R has its columns
permuted and is copied into matrix A. The names associated with R
are to be combined with a second namelist. .

The namelist for A is arranged so that R names not contained in
the second list appear first (left most). These are then followed by
the second list. Names in the second list that do not appear din the
R namelist have columns of zeros associated with them.

Example III.3

NAM2 list
o A h]
o B C D C B E o F D
1 2 4 7 4 2 0 1 0 7]
0 3 5 3 5 3 0 0 0 8
—
0 0 6 9 6 0 0 it 0
0 0 0 10 L.O 0 0 0 0 10
R-Vector stored A-Double subscripted

%
in track and cross track accelerations
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A principal application of this subroutine is to the problem of
combining equation sets containing different variables, and automating
the process of combining name lists.
4, COV2RI - (Covariance to R inverse)

An input positive semi-definite vector stored matrix P is replaced by
its upper triangular wvector stored Cholesky factor U, P = UUT. The name RI
is used because when the input covariance is positive definite, U = R“l.
5. COV2UD - {Covariance to U-D factors)

An input positive semi-definite vector stored matrix P is re-
placed by 1ts upper triangular vector stored U-D factors. P = UDUT.

6. £€2C - (C to C)
Reorders the rows and columns of a sqguare (double subscripted)

matrix C and stores the result back in C. Rows and columns of zeros

are added when new column entries are added.

Example I1T.4

A B T [ P B Q

1 4 7 Tf{s o0 6 0

B{2 5 8|cac P|O0 0 0 0
——

3 9 E|8 0 5 0

a|lo o o o0

Names P and Q have been added and name A deleted. An important appli-
cation of this subroutine is to the rearranging of covariance matrices.
7. INF2R - (Information matrix to R)

Replaces a vector stored positive semi-definite information matrix
A by its lower triangular Cholesky factor Ri; A= RTR. The upper tri-
angular matrix R is in the form utilized by the SRIF algorithms. The

algorithm is designed to handle singular matrices because it is a
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common practice to omit a priori information on parameters that are

either poorly known or which will be well determined by the data.

8. PERMUT

Reorders the columns of matrix A, storing the result back im A.
This routine differs from AZAl principally in that here the result
overwrites A. PERMUT is especially useful in applications where

storage is at a premium or where the problem is of a recursive nature.

9. RINCON — (R inverse with condition number bound, CNB)

Computes the inverse of an upper triangular vector stored matrix R
using subroutine UTINV. A Frobenius bound (CNB) for the condition
number of R i1s computed too. This bound acts as both an upper and a
lower bound, because CNB/N < condition number <CNB. When this bound is
within several orders of magnitude of the machine accuracy the computed
inverse is not to be trusted, (viz if CNBE’:lO15 on an 18 decimal digit
machine R is ill-conditioned).

10. RI2COV - (RI to covariance)

This subroutine computes sigmas (standard deviztions) and/or the
covariance of a vector stored upper triangular square root covariance
matrix, RINV (SRIF inverse}. The result, stored in COVOUT (covariance

output) is also vector stored. COVOUT can overwrite RINV.

11. R2A - (R to A)
The columns of a vector stored upper triangular matrix R are per-
muted and variables are added and/or deleted. The result is stored in
the double subscripted matrix A. In other respects the subroutine 1s

like AZA1.
26
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Example ITI.5

@ B ¢ D E E F C B
2 4 8 14 227 22 0 8 4
0 6 10 16 24 24 0 10 6
0 0 12 18 26 | R2A (26 O 12 O

e ot
0O 0 0 20 28 28 0 0
0 0 0 30 30 0 O oJ

R A

R 1s vector stored as R = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)
with namelist (a,B,C,D,E) associated with it. Names o« and D are
not included in matrix A, and a column of zeros corresponding to name
F is added.

One trivial, but perhaps useful, application is to convert a
vector stored matrix to a double subscripted formf R2A is used most
often when one wants to rearrange the columns of a SRIF array so that

reduced order estimates, sensitivites, etc. can be vbtained; or so that

data sets containing different parameters can be combined.

12. R2RA - (Trianmgular block of R to triangular block of RA)
A triangular portion of the vector stored upper triangular matrix R
18 put into a triangular portion of the vector stored matrix RA. The
names corresponding to the relocated block are also moved. R can

coincide with RA.

%
see also the aside in the introduction
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Examples LII.6

qQ Z Q Z
i |
I
|

or

Note that an upper left triangular submatrix can slide to any lower
position along the diagomal, but that a submatrix moving up must go
to the upper leftmost corner. Upper shifting is used when one’is

interested in that subsystem; and the lower shifting is used, for

example, when inserting a priori information for consider analyses.

13. RUDR - (SRIF R converted to U-D form or vice wversa)

A vector stored SRIF array is replaced by a vector stored U-D

form or conversely. A point to be noted is that when data is involved

the right side of the SRIF data equation transforms to the estimate

in the U-D array.

28 -
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14. THH - (Triangular Householder data packing)
An upper triangular vector stored matrix R is combined with a rec-
tangular doubly subscripted matrix A by means of Householder orthogonal

transformations. The result overwrites R, and A is destroyed in the process.

THH

A N

L - L. -

15. TRIMAT -~ (Triangular matrix print)

Prints a vector stored upper triangular matrix, using a matrix

format.

Example III.7

R(1LO) = (2,4,6,8,10,12,14,16,18,20) with associated namelist
(A,B,C,D) is printed as

A B c D

A 2 4 8 14
B 10 16
) c 12 18
D 20

(The numbers are printed to 8 significant floating point
digits).
To appreciate the importance of this subroutine compare the vector

R{10) with the double subscript representation.

16, TTHH -~ (Two triangular arrays are combined using Householder
orthogonal transformations)

This subroutine combines two single subscripted upper triangular
SRIF arrays, R and RA using Householder orthogonal transformations.

The result overwrites R.

%
The elements are not explicitly set to zero.
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o
N |
X

\\RA 0%

L

17. TZERQ - (Zero a horizontal segment of a vector stored upper
triangular matrix)
Upper triangular vector stored matrix R has its rows between ISTART
and TFINAL set to zero.

Example III.8

To zero row 2 and 3 of R(15), in the example of subroutine 11.

R(15) = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)
R(15) = {(2,4,0,8,0,0,14,0,0,20,22,0,0,28,30)
i.e.,

2 4 8 14 22 2 4 8" 14 22

0 6 10 16 24 0 0 0

0 0 12 18 26 TZERQ ¢ 0 0

0 0 20 28 0 0 0 20 28

0 0 o 30 0 0 0 0 30

R—vector stored R—vector stored

%
The elements are not explicitly set to =zero.
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18, UDMES - (U-D measurement update)

Given the U-D factors of the a priori estimate error covariance
and the measurement, z = Ax + v this routine computes the updated
estimate and U-D covariance factors, the predicted residuzl, the
predicted residual variance, and the normalized Kalmam gain. This

is Bierman's U-D measurement update algorithm.

19. UD2CQV - (U-D factors to covariance)
The input vector stored U-D matrix (diagonal D elements are
stored as the diagonal entries of U) is replaced by the covariance P,

T .
also vector stored. P = UDU"., P can overwrite U to economize on storage.

20. UD2SIG - (U-D factors to sigmas)
Standard deviations corresponding to the diagonal elements of the

covariance are computed from the U-D factors. This subroutine, a restricted
version of UD2COV can print out the resulting sigmas and a title. The
input U-D matrix is unaltered.

21. UTINV - (Upper triangular matrix inversion)

An upper triangular vector stored matriz RIN(R in) is inverted and
the result, vector stored, is put in ROUT(R out). ROUT can overwrite
RIN to economize on storage. If a right hand side is included and the
bottommost tip of RIN has a -1 set in then ROUT will have the solution

in the place of the right hand side.
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22. UTIROW - (Upper triamgular inversion, inverting only the upper rows)

INPUT QUTPUT
- - -1
R R Rt xR R
X Xy x x xy ¥
___________ UTIROW -
a 0 R...]_ 0 R—l
y v Y

i

An 1nput vector stored R matrix with its lower left triangle assume@ to
have been already inverted is used to coustruct the upper rows of the
matrix inverse of the result. The result, vector stored, can overwrite
the input to economize on storage.

If the columns comprising ny represent consider terms then taking

Ry as the identity gives the sensitivity on the upper right portion of

the result. If R;l = Diag(dy,...,dn ) then the upper right portion of

y
the result represents the perturbation. Note that if z (the right hand

side of the data equation) dis included in ny then taking the corres-
ponding R;l diagonal as -1 results in the filter estimate appearing
as the corresponding column of the output array. When ny is zero this
subroutine is equivalent to UTINV,
23, WG5S - (Weighted Gram Schmidt matrix triangularization)
An input rectangular (possibly square) matrix W and a diagonal
weight matrix, DW, are transformed to (U-D) form; i.e.,

SD WT = UDUT
W

where U is unit upper triangular and D is diagonal., The weights Dw are
assumed nonnegative, and this characteristic is inherited by the

resulting D.
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IV. SUBRQUTINE DIRECTORY USER DESCRIPTION

1. AGTRN (Agee~Turner U-D rank one modification)

Purpose

To compute the (updated) U-D factors of UDUT + CVVT.

CALL AGTRN (UIN,UOUT,N,C,V)

Argument Definitions

UIN N+ (N+1) /2) Input vector stored positive semi-
definite U-D array (with the D entries
stored on the diagonal of U)

UOUT (N* (i+1)/2) Qutput vector stored result
POUT=UIN is allowed

N Matrix dimension
C Input scalar, destroyed by the algorithm
V(W) Input vector, destroyed by the algorithm

Remarks and Restrictions

If C negative is used the algorithm is numerically unstable,
and the result may be numerically unrelisble., Singular U matrices
are allowed, and these can result in singular output U matrices.

Functional Description

This rank one modification is based on a result published by
Agee and Turner (1972), White Sands Missile Range Tech. Report
No. 38. See also Ref. [3] where the algorithm is derived using

geometric arguments.
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A2A1 (A to Al)

Purpose

To rearrange the columns of a namelist indexed matrix to

conform to a desired namelist.

[ CALL A2A1(A,TA,IR,LA,NAMA,AL,TIAL,LAL,NAMAL)]

Argument Definitions

A(IR,LA) Input rectangular matrix

IA Row dimension of A, TA.GE.IR

IR Number of rows of A that are to be
arranged

LA Number of columns in A; this also

represents the number of parameter
names associated with A

NAMA(LA) - Parameter names associated with A
A1(IR,LAL) Output rectangular matrix

LAl Row dimension of Al, TAl.GE.IR

LAT Number of columns in Al; this also

represents the number of parameter
names associated with Al

NAMAL(LAL) Input list of patrameter names to be
associated with the output matrix Al

Remarks and Restrictions

Al cannot overwrite A. This subroutine can be used to add
on columns corresponding to new names and/or to delete variables

from an array.

Functional Deseription

The columns of A are copied into Al in an order corresponding
to the NAMAl parameter namelist. Columns of zeros are inserted
in those Al columns which do not correspond to names in the input

parameter namelist NAMA.
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COMBO {(Comwbine parameter namelists)
Purpose

To rearrange a vector stored triangular matrix and store
the result in matrix A. The difference between this subroutine
and R2A is that there the namelist for A is input; here it is

determined by combining the list for R with a list of desired names.

CALL COMBO (R,L1,NAM1,L2,NAM?,A,TA,TA,NAMA)

Argument Definitions

R(L1#(L14+1)/2) Input vector stored upper triangular matrix
Ll No. of parameters in R (and in NAM1)

NAMI (L1) Names associated with R

L2 No., of parameters in NAM2

NAMZ (1.2) Parameter names that are to be combined

with R (NAML list); these names may or
may not be in NAML

A(LL1,LA) OQutput array containing the rearranged
R matrix L1.LE.IA —_— ¢

IA Row dimension of A

LA No. of parameter names in NAMA, and the

column dimension of A. LA=L1+L2 -
No. names common to NAML and NAMZ2; LA
is computed and output

NAMA (LA) Parameter names associated with the out-
put A matrix ; consists of names in NAML
not in NAM2 followed by NAMZ2

Remarks and Restrictions

The column dimension of A is a result of this subroutine.
To avoid having A overwrite neighboring arrays ome can bound the

colum dimension of A by L1412,
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Functional Description

First the NAMI and NAM2 lists are compared and the names
appearing in NAMl 6énly have their corresponding R column entries
stored in A (e.g. if NAMi(2) and NAMi(6) are the only names not
appearing in the NAM? list then columns 2 and 6 of R are copied
into columns 1 and 2 of A). The remaining columns of A are
labeled with NAM?. The A namelist is recorded in NAMA. The
NAMI list is compared with NAM2 and matching mames have their R
column entries copied into the appropriate columns of A. NAM2

entries not appearing in NAML have columns of zero placed in A.
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COV2RI (Covariance to Cholesky Square Root, RI)
Purpose

To construct the upper triangular Cholesky factors of a
positive semi-definite watrix. Both the input covariance and
the output Cholesky factor (square root) are vector stored.
The output overwrites the input. Covariance (input) = UXU%*T

{output U= Rinverse).

CALL COV2RI(U,N)

Argument Definitions

T(Nx(N+1) /2) Contaings the input vector stored
covariance matrix (assumed positive
definite)and on output it contains
the upper triangular square root factor

N Dimension of the matrices involved

Remarks and Restrictions

No check is made that the input matrix is positive semi-
definite. Singular factors (with zero columns) are obtained if
the input is (1) in fact singular, (b) ill-conditioned, or (c) in
fact indefinite; and the latter two situations are cause for alarm.
Case (e) and possibly (b) can be identified by using RI2COV to
reconstruct the input matrix.

Functional Description

An upper triangular Cholesky reduction of the input matrix
is implemented using a geometric algorithm described im Ref. [31].
U(input) = U(output) *'U(output)T
At each step of the reduction diagonal testing is used and

negative terms are set to zero.
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COV2UD (Covariance to UD factors)
Purpose

To obtain the U-D factors of a positive semi-definite matrix.
The imput vector stored matrix is overwrittem by the output U~D

factors which are also vector stored.

| CALL cov2up(u,N)|

Argument Definitions

U(N* (N+1) /2) Contains the input vector stored covari-
ance matrix; on output it contains the
vector stored U-D covariance factors.

N Matrix dimension

Remarks and Restrictions

No checks are made in this routine to test that the input U matrix
is positive semi-definite. Singular results (with zero columms) are
obtained if the input is (a) in fact singular, (b) ill-conditioned,
or {e) in fact indefinite; and tﬁe latter two situations are cause for
alarm. Case (c) and possibly case (b) can be identified by using UD2-
COV to reconstruct the input matrix. Note that although indefinite
matrices have U-D factorizations, the algorithm here applies only to
matrices with non-negative eigenvalues.

Functional Description

‘An upper triangular U-D Cholesky factorization of the input matrix
is implemented using a geometric algorithm described in Ref. [3].
U(input)==U*D*UT . U-D stored in U on output
at each step of the reduction diagonal testing is used to zero negative

terms.
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C2C (C to ©)
Purpose
To rearrange the rows and columns of €, from NAML order to NAM2

order. Zero rows and columns are associated with output defined names

that are not contained in NAMI,

CALL C2C(C,IC,L1,NAM1,L2,NAM2)

Argument Definitions

c(1L1,L1) Input matrix

ic Row dimension of C
IC.GE.L = MAX(L1,L2)

L1 No. of parameter names associated with
the input C

NAMI (L) Parameter names associated with C on input.
(Only the first L1 entries apply to the
input C)

L2 Neo. of parameter names associated with the
output C

NAMZ2 (1.2) Parameter names associated with the output C

Remarks and Restrictrions

The WAMZ list need not contain all the original NAML names and
L1 can be .GE. or .LE. L2. The NAMI1 1ist is used for scratch and
appears permuted on ocutput. If L2.GT.L1 the user must be sure that
NAML has L2 entries available for scratch purposes.

Functional Description

The rows and columns of C and NAML are permuted pairwise to get
the names common to NAML and NAM2 to coalesce. Then the remaining rows

and columns of C(1.2,1L2) are set to zero.
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INF2R (Information matrix to R)
Purpose

To compute a lower trianguiar Cholesky factorization of the
input positive semi-definite matrix. The result transposed, is

vector stored; this is the form of an upper triangular SRIF matrix.

CALL INF2R(P,N)

Argument Definitions

S

P(N=(N+1)/2) Input vector stored positive semi-

definite (information) matrix; on output
it represents the transposed lower
triangular Cholesky factor (i.e. the SRIF
R matrix)

N Matrix dimension

Remarks and Restrictions

No checks are made on the input matrix to guard against negative
eigenvalues of the input, or to detect ill-conditioning. Singular
output matrices have one or more rows of zeros.

Functional Pescription

A Cholesky type lower triangular factorization of the input matrix
is implemented using thé geometric formulation described in Ref. [3].
TU{input) = [U(output)]T *[ ¥ (output) ]
At each step of the factorization diagonal testing is used to zero columns

corresponding to negative entries. The result is vector stored in the

form of a square root information matrix as it would be used for SRIF

analyses,
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PERMUT (Permute A4)

Purpose

To rearrange the columns of a namelist indexed matrix to conform

to a desired namelist. The resulting matrix is to overwrite the input.

CALL PERMUT(A,IA,TR,L1,NAM1,L2,NAM2)

Argument Definitions

A(IR,L) Input rectangular matrix, L=max(Ll,L2)

TA Row dimension of A, TA.GE.IR

IR Number of rows of A that are to be
rearranged

Ll Number of parameter names associated with
the input A matrix

NAMI (L) Parameter names associated with A on imput
{(only the first L1 entries apply to the
input A)

L2 Number of parameter names associated with

the output A matrix

NAMZ Parameter names associated with the output A

Remarks and Restrictions

This subroutine is similar to AZAl; but because the output matrix
in this case overwrites the input there are several differences. The
NAM1 vector is used for scratch, and on output it contains a permuta-

tion of the input NAML list. The user must allocate L=max(Ll,L2)

- elements of storage to NAML. The extra entries, when L2 > L1, are

used for scratch.

Functional Description

The columns of A are rearranged, a pair at a time, to match the
NAM2 parameter namelist. The NAML entries are permuted along with the
columns, and this is why dim (NAM1) must be larger tham L1 (when L2>L1}.
Columms of zeroes are inserted in A which correspond to output names

that do not appear in NAMI.
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RINCON (R inverse with condition number bound)

Purgose

To compute the inverse of an upper triangular vector stored

triangular matrix, and an estimate of its condition number.

CALL RINCON (RIN,N,ROUT, CNB)

Argument Definitions

RIN(N*(N+1)/2) Input vector stored upper triangular matrix
N Matrix dimension
ROUT (N*(N+1)/2) OQutput vector stored matrix inverse

(RIN = ROUT is permitted)

CNB Condition number bound. If k is the
condition number of RIN, then
CNB/N.ILE.x.LE CNB

Remarks and Restrictions

The condition number bound, CNB serves as an estimate of the actual
condition number. When it is large the prdblem is ili-conditioned. The
matrix inversion is computed using subroutine UTINV.

Functional Description

The matrix inversion, a triangular back substitution, is accomplisned
via subroutine UTINV. If any diagonal element of the input R matrix is

zero the inversion is not attempted; instead a message is printed. The

condition number bound 1s computed as follows:

NTOT
F.NORM R = Z R(3)>
=1
NTOT
F.NORM R © = Z R“l(J)2
=1
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where NTOT = N*(¥+1)/2 is the number of elements in the vector stored

triangular matrix. The condition number bound, CNB, is given by
CNBE = (F.NORM R * F.NORM R_l)l/2
F.NORM is the Probenius norm, squared. The inequality

CNB/Y < condition number R <CNB

is a simple consequence of the Frobenius norm inequalities given in

Lawson-Hanson "Solving Least Squares,' page 234.
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10. RIZCOV (BRI Triasngular to covariance) s

Purpose

To compute the covariance matrix and/or the standard deviation of

a vector stored upper triangular square root covariance matrix. The

outpul covariance matrix, also vector stored, may overwrite the input.

[CALL RI2COV(RINV,N,SIG,COVOUT,KOV) |

Argument Definitions

RINV(N*(W+1) /2)

N
SIG()

COVOUT (N* (¥+1) /2)

.GT.0

Kov .LT.0

EQ.O

Remarks and Restrictions

Input vector stored upper triangular
covariance square root (RINV=R. inverse
is the inverse of the SRIF matrix).
Dimension of the RINV matrix

Qutput vector of standard deviations

Output vector stored covariance matrix
(COVOUT = RINV is allowed)

Compute covariance and sigmas using the
first KOV rows of RINV

Compute only the sigmas using the first
KOV rows of RINV

No covariance, but all sigmas (e.g. use
all N rows of RINV)

Replacing N by |KOV| corresponds to computing the covariance of

a lower dimensional system.

Functional Description

COVOUT=RINV*RINV#*T,
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R2A (R to A)
Purpose

To place the upper triangular vector storved matrix R into the
matrix A and to arrange the columns to match the desired NAMA para-
meter list. WNames in the NAMA list that do not correspond to any

name in NAMR have zero entries in the corresponding A columns.

-

CALL R2A(R,LR,NAMR,A,TA,LA,NAMA)

Argument Definitions

R(LE*(LR+1)/2) Input upper triangular vector stored array
LR Row dimension of wvector stored R

NAMR(LR) Parameter names associated with R

A(LR,LA) Matrix to house the rearranged R matrix
1A Row dimension of A, IA.GE.LR.

LA No. of parameter names assoclated with the

output A matrix.

NAMA (LA) Parameter mames for the output A matrix.

Functicnal Description

The matrix A is set to zero and then the columns of R are copied

into A.
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12. R2RA (Permute a subportion RA of a vector stored triangular matrix)

Turpose

To copy the upper left (lower right) portion of a vector stéred

upper triangular matrix R into the lower right (upper left) portion of

a vector stored triangular matrix RA.

CALL R2RA(R,NR,NAM,RA,NRA,NAMA)

Argument Definitions

R(NR*(NR+1)/2) Input vector stored upper triangular matrix
NR Dimension of vector stored R matrixl
NAM(NR) Names associated with R.

RA (NRA* (NRA+1) /2) Output vector stored upper triangular matrix

NRA If NRA=0 on input, then NAMA(1l) should have
the first name of the output namelist. 1In
this case the number of names in NAMA, NRA,
will be computed. The lower right block of
R will be the upper left block of RA.

If NRA = last name of the upper left block
that is to be moved then this upper block
is to be moved to the lower right corner

of RA., When used in this mode NRA=NR omn

output!

NAMA (NRA) Names associated with RA. WNote that NRA
used here denotes the output value of NRA.

Remarks znd Restrictions

RA and NAMA can overwrite R and NAM., The meaning of the NRA=0

option is clarified by the following example:

A B ¢ D E C D E INPUT
— — B 5 NR = 5
2 4 6 15 22 12 18 26 NAM = 'A','B' 'C','D','E'
NRA = O
6 10 16 24 20 28 NAMA(1) = 'C’
_____ — R
|12 18 26 30 OUTPUT
- - HAMA = 'C? Tt TRt

i 20 28 ’ ?

]
. 30 R

R

Tsee the concluding paragraph of Remarks and Restrictions
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When NRA = 0 and NAMA(l) = 'C' we are asking that the lower triangular
portion of R, beginning at the column labeled C, be moved to form the
first (in this case 3) columns of RA. TIncidentally, RA could have
additional columns; these columns and their names wounld be unaltered

by the subroutine.

The meaning of the other NRA option is illustrated by the following

example;
' T T INPUT
A B clDp E A B A B C =5
u | T - NAM = 'A','BT,'C','D','E'
2 4 8 |14 22 2 4 8 14 22 NRA = 'C!
R
' 6 10 16 24
6 10 '16 24 0 16 2 OUTPUT
: & 8 NRA = 5
__-__._13_118 26 P !2 NAMA(3—5) - IAI’IBT,!cl
20 28 : 6 10 RA
L‘ 30 1 i2
- — t —d
R ' R

When NRA = 'C' we are asking that the upper left block of R, up to the
column labeled C, be moved to the lower left portion of RA and the cor-
responding names be moved too. If RA overwrites R, as in the example,
then the first two rows of R remain unchanged and since NAMA overwrites
NAM, the labels of the first two columns remain unaltered.

The remark that NRA=NR on output means, in this example, that the
cotumn with name C in R is moved over to column 5. If one wanted to
glide the upper left triangle corresponding to names ABC of R to columns
7-9 of an RA matrix (of unspecified dimension, > 9), then one should set
NR=9 in the subroutine call. Thus NR, when used in this siiding down

the diagonal mode, does not represent the dimension of R; but indicates

how far the slide will be.
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RUDR (R to U-D or U-D tec R)

Purpose
To transform an upper triangular vector stored SRIF array to U-D

form or vice wversa.

CALL RUDR(RIN,N,ROUE,IS)

Argument Definitions

RIN (NBAR®* (NBAR+1}/2) Input upper triangular vector stored SRIF
X or U-D array; NBAR = ABS(N) + 1

ROUT (NBAR* (NBARF1)/2) OQutput upper triangular vector stored
U-D or SRIF array (RIN = ROUT is
permitted) !

N Matrix dimension, N.GT.C represents an
R to U-D conversion and W.LT.0 represents
a U-D to R conversion.

Is . If IS = 0 the input array is assumed not
to contain a right side (or an estimate),
and IS = 1 means an appropriate additional
column is included. In the IS = 0 case
the last column of RIN is ignored and
NBAR = ABS(N) is used.

Subroutine used: UTIHV

Functional Description

Congider the N»0 case. RIN = R is transformed to RCUT = R inverse
using subroutine UTINV with dimension N+IS. If IS = 1 the subroutine
sets RIN((N+1) (N+2))/2) = -1. so that the Ntlst column of ROUT will be

the X estimate followed by -1. R_l = UDl/2

so that the diagonals
are square root scaled U columms. This information is used to con-
struct the U-D array which overwrites ROUT.

Tf N<O the input is assumed to be a U-N arvav., Thir array is
converted to ROU'I'=U])1/2 and then using UTINV, R is computed and stored in

ROUT. If IS = 1 the U-D matrix is assumed augmented by X (estimate},

and on output the right side term of the SRIF array is obtained.
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14. THH {Triangular Householder Orthogonalization)
Purpose
To compute [R z] such that
. ~ A N
R z R Z
T = T - orthogonal
A z 0 e

This is the key algoxrithm used in the square root information batch

sequential filter.

CALL THH(R,N,A,TIA,M,S08,NSTRT)

Arpgument Definitions

R(N*(N+3)/2) Input upper triangular vector storead
square root information matrix. If
estimates are involved S05.GE.0 and R
is augmented with the right hand side
(stored in the last N locations of R).
If S0S.LT.0 only the first N¥*(N+1)/2
locations of R are used. The result
of the subroutine overwrites the input R

N No. of parameters

AM L) Input measurement matrix, The N+lst
column is only used if SO0S.GE.O, in
which case it represents the right side
of the equation v + AX = z. A is
destroyed by the algorithm, but it 1s
not explicitly set to zero.

IA Row dimension of A

M The number of rows of A that are to be
combined with R \

508 Accumulated residual sum of squares
corresponding to the data processed
prior to this time. On exit SOS
represents the updated sum of s&uares

of the residuals §||zi-A.X
i

i“est 2

summed over the old and new data. It
also includes the a priori term

IlRoXést_zollz . Because 30S cannot

be used if data, z, is not included we
use S508.LT.0 to indicate when data is
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not included.

NSTRT ‘First column of the input A matrix
that has a nonzero entry. In certain
problems, especially those involving
the inclusion of a priori statistics,
it is known that the first NSTRT-1
colums of A all have zero entries.
This knowledge can be used to reduce
computation. If nothing is known
about A then NSTRT.LE.1l gives a default
value of 1, d.e. it is assumed that A
may have nonzero entries in the wvery
first columm,

Pemarks and Restrictions

Tt is trivial to arrange the code sc¢ that R output need not over-
write the input R, This was not done because, in the author's opinion,

there are too few times when one desires to have ROUT # RIN.

Functional Descriptaion

Assume for simplicity that NSTRT = 1. Then at step j, j = 1,...,N
(or N+1 if data is present)} the algorithm implicitly determines an
elementary Householder orthogonal transformation which updates row j
of R and all the columns of A to the right of the jth. At the
completion of this step column j of A is in theory zexo, but it ié .

not explicitly set to zero. The orthogonalization process is discussed

at length in the books by Lawson and Hanson, [1] and Bierman [3].
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TRIMAT (Triangular matrix print)

Purpose

To display a vecé%r stored upper triangular matrix in a two

dimensional 8-digit triangular format.

CALL TRIMAT(A,N,CAR, TEXT,NCHAR, NAMES)

Argument Definitions

A(NSN+1) /2)
N

CAR(N)

TEXT (NCHAR)

NCHAR

NAWES

Remarks and Restrictions

Vector stored upper triangular matrix
Dimension of A

Parameter names {(alphanumeric) associated
with A

An array of field data characters to
be printed as a title preceding the matrix

No. of characters (including spaces) that
are to be printed in text( )

ABS (NCHAR) .1E.126.NCHAR negative is used

to avoid skipping to a new page to start

printing

A logiecal flag, 1f NAMES=.F. the CAR
namelist is ignored and the columns
and rows of A on output appear with
numerical column heads

Using NCHAR nonnegative, and starting the print at the top of a

new page makes it easier to locate the printed result and is especially

recommended when dealing with large dimensioned arrays. Page economy

can, however, be achieved using the NCHAR negative option. In this case

the print begins on the next line.
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16, TTHH {Two triangular matrix Householder reduction)
Purpose
To combine two véctor stored upper f%langular matrices, R and RA
by applying Householder orthogonal tramsformations. The result over-—
writes R.
R R
T TTHH

N

L. L -

| CALL TTHH (R,RA,N) i

Argument Definaitions

R(N&(N+1)/2) Input vector stored upper triangular
matrix, which also houses the result

RA(H®(N+1)/2) Second input vector stored upper
triangular matrix. This matrix is
destroyed by the computation.

N Matrix dimension
N less than zero is used to indicate
that R and RA have right sides
(IN|+1 columns) and bave dimension
[w|*(|w|+3)/2),

Remarks and Restrictions

RA is theoretically zero on output, but is not set to zero.
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TZERO (Triangular matrix zero)
Purpose
To zero out rows IS(Istart) to IF(Ifinal) of the vectox stored

upper triangular matrix R.

CALL TZERO(R,N,I1S,.IF) 1

Argument Definition

RO (N+1)/2) Input vector stored upper triangular
matrix

N Row dimension of vector stored matrix

I8 First row of R that is to be set to zero

I1F Last row of R that is to be set to zero

Functional Description

IS

LF

R(input) — R{output)
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UDMES {(U-D measurement update)
Purpose
Kalman filter measurement updating using Bierman's U=D measure-
ment update algorithm, cf 1975 CONF. DEC. CONTROL paper. A scalar
measurement z = Aix + v is processed, the covariance U-D factors and
estimate (if included) are updated, and the Kalman gain énd innovations

variance are computed.

CALL UDMES(U,N,R,A,G,ALPHA)

Argument Definitions

INPUTS

U (1) /2) Upper triangular vector stored input
matrix., D elements are stored on the
diagonal. The U vector corresponds to
an a priori covariance, If state
estimates are involved the last column
of U contains X. In this case Dim U =
(1) (W+2) /2 and on output (U((N+1)*
(N+2) /2) = z-A%*T*X(a priori est).

] Dimension of the state vector
R Measurement variance

AN) Vector of Measurement coefficients;
if data then A(N+1l) = =z

ALPHA If ALPHA.LT.zero no estimates are
computed ( and X and z need not be
included)

QUTPUTS

U Updated vector stored U-D faectors. When
ALPHA (input) is nonnegative the (M+1)st
column contains the updated estimate
and the predicted zresidual.

ALPHA Innovations wvariance of the measurement
residual.

A Contains U**T*A(input) and when ALPHA

(input) is nonnegative A(N+l) =
z—-A**T*X(a priori est)/ALPHA.
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G (M) Vector of unweighted Kalman gains,
K = G/ALPHA.

Remaxrks and Restrictions

One can use this algorithm with R negative to delete a previously
processed data point. One should, however, note that data deletion
sometimes introduces numerical errors.

The algorithm holds for R = 0 (a perfect measurement) but the code
may fail (zero divides occur) if any of the AIPHA terms appearing in
the code vanish. Changes in the code which remove the zero divide
problems are commented in the code.

Functional Description

The algorithm updates the columns of U, from left to right, using
Bierman's algorithm, of Proc. 1975 Conf. Dec. Control, Houston, Texas,

pp 337-346.
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UD2CoV {(U-D factor to covariance)
Purpose

To obtain a covariance from its U-D factorization. Both matrices
are vector stored and the output covariance can overwrite the input

U-D array. U-D and P are related via P = UDUT.

f
CALL UD2COV(UIN,N,POUT)

Argument Definitions

UIN(*(+1) /2) Input vector stored U-D factors, with D
entries stored on the diagonal.

POUT (N*(N+1) /2) OQutput vector stored covariance matrix
{(POUT = UIN 1s permitted).

N Dimension of the matrices involved.
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20. UD28IG (II-D factors to sigmas)

PurEose

To compute variances from the U-D factors of a matrix.

. CALL UD25IG(U,N,SIG,TEXT,NCT)

Argument Definitions

U(N*(N+1)/2}

SIG(N)

TEXT ()

NCT

Functional Description

Input vector stored array containing
the U-D factors, The D (diagonal)
elements are stored on the diagonal
of U.

Dimension of the U matrix

Qutput vector of standard deviations

Qutput label of field data characters,
which precedes the printed vector of
standard deviations.

Number of characters of text,
O.LE.NCT.LE.126. If NCT = 0, no
sigmas are printed, i.e. nothing is
printed.

If U and D are written as doubly subscripted matrices then

N

STG(I) = (D(J,J) + Z D(K,K) [U(J,K)]z)z

K=J+1

If NCT.GT.0 a title is printed, followed by the sigmas.
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UTINV {Upper triangular matrix inverse)
Purpose
To invert an upper triangular vector stored matrix and store the
result in vector form. The algorithm is so arranged that the result

can overwrite the 1input.

CALL UTINV(RIN,N,ROUT)

Aroument Definitions

RIN(H*{(1¥+1) /2) Input vector stored upper triangular
matrix

N Matrix dimension

ROUT (N*(N+1)/2) f Output vector stored upper triangular
matrix inverse (ROUT = RIN is per-
mitted

Remarks and Restrictions

I11 conditioning is not tested, but for nonsingular systems the
result is as accurate as is the full rank singhlar value decomposition
inverse. Singularity occurs 1f a diagonal i1s zero. The subroutine
terminates when it reaches a zero diagonal. The columns to the left
of the zexro diagonal are, however, inverted and the result stored
in ROUT.

This routine can also be used to produce the solution to RX = Z.
Place Z in column N+1 (viz. RIN(N*(N+1)/2+1) = Z(1), etc.), define
RIN(C(N+1) (8+2)/2) = -1 and call the subroutine using ¥+l instead of
N, On return the first N entries of column N+1 contain the solution
(e.g. ROUT(W*(N+1)/2+1) = X(1), etc.).

Because matrix inversion is numerically sensitive we recoﬁmend

using this subroutine only in double precision.
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Functional Description

The matrix inversion is accomplished using the standard back
gsubstitution method for i1nverting triangular matrices, cf. the book

references by Lawson and Hanson, [1] or 3ierman [3].
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22, UTIROW (Upper triangular inverse, inverting only the upper rows)

Purpose

To compute the inverse of a vector stored upper triangular

matrix, when the lower right corner triangular inverse is given.

CALIL UTIROW(RIN,N,ROUT,NRY)

Argument Definitions

RIN(N* (N+1)/2) Input vector stored upper triangular
matrix. Only the first N - NRY rows
are altered by the algorithm.

\
N Matrix dimension.

ROUT (N* (+1) /2) Output vector stored upper triangular
matrix inverse. On input the lower
NRY dimensional right corner contains
the given (known) inverse. This lower
right corner matrix is left unchanged.

(ROUT = RIN is permitted.)

NRY Number of rows, starting at the bottom,
that are assumed already inverted,.

Remarks and Restrictions

The purpose of this subroutine is to complete the computation
of an upper triangular matrix inverse, given that the lower right
corner has already been inverted, Part of the input, the rows to
be inverted,; are inserted via the matrié RIN. The portion of the

matrix that has already been inverted is entered via the matrix ROUT.

It may seem odd that part of the input matrix is put into RIN and
part into ROUT. The reasoning behind this decision is that RIN
represents the input matrix to be inverted (it just happens that
we do not make use of the lower right triangular entries); ROUT
represente the inversion result, and therefore that portion of the

inversion that is given should be entered in this array.
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I11 conditioning is mot tested, but for nonsingular systems the
result is accurate. Singularity halts the algorithm if any of the
first N-NRY diagonal elements is zerc. If the first zero encountered
moving up the diagonal (starting at N-NRY) 1s at diagonal j then the
rows below this element will be correctly represented in ROUT.

To generate estimates do the following: put N+1 into the matrix
dimension argument; in the first N-NRY rows of the last column of
RIN put the right hand side elements of the egquation RXX +~nyy =z
(i.e., Rx’ ny, and 2 make up the first N-NRY rows of RIN); in the
next NRY entries of ROUT, beginning in the (N-NRY+l)st element, put
Yoot (1.e., R;l and Yast make up rows N-NRY+1,...,N of ROUT); and
ROUT ((N+1) (N+2)/2) = -1. On output, the last column of ROUT will
contain Xest’ yest and -1.

When NRY = 0 this algorithm is equivalent to subroutine UTINV.

Functional Description

The matrix inversion is accomplished using the standard back
substitution method. The computations are arranged row-wise, starting
at the bottom (from row N-NRY, since it is assumed that the last NRY

rows have already been inverted).
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WGS (Weighted Gram-Schmidt matrix triamgularization)

Purpose

To compute a vector stored U-D array from an input rectangular

matrix W, and a diagonal matrix DW so that W Dw WI = UDUT.

CALL WGS (W, IMAXW,IW,JW,DW,U,V)

Argument Definitions

W{IW,JW) Input rectangular matrix, destroyed by
the computations

IMAXW Row dimension of input W matrix,
IMARW.GE, IW
DW{IW) Diagonal input matrix; the entries

are assumed to be nonnegative. This
vector is unaltered by the computations

U(IW*(ITW+1)/2) Vector stored output U-D array
V{IW) Work vector in the computation

Remarks and Restrictions

The algorithm is not numerically stable when negative DW weights

are used; negative weights are, however, allowed. If JW is less than
IW {more rows than columns), the output U-D array is singular; with

IW-JW zero diagonal entries in the output U array.

Functional Description

A Dw—orthogonal set of row vectors, ¢1, ¢2,..., ¢IW’ are con-—
structed from the input rows of the W matrix, i.e., W=10U ¢, , ¢DW¢T = D,

The construction is accomplished using the modified Gram-Schmadt

orthogonal construction (see refs. [1l] or [3]1). This algorithm is
reputed to have excellent numerical properties. WNote that the ¢
vectors are not of interest in this routine, and they are overwritten;
The V vector used in the program houses vector IW-j+l of ¢ at step j of

algorithm. The fact that the computed ¢ vectors may not be D orthogonal

is of no import in regard to the U and D computed results.
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V. TFORTRAN Subroutine Listings
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SUBROUTINE AGTRN (UINsUOUT#NyC,V)
AGEE=-TURNER U=D FACTOR RANK 1 UPDATE
(UOUT )Y *DOUT* (UOUT ) =T (UIN) *DIN* (UTN) T+ VEVR%T
UIN(N*(N+1)/2) INPUT VECTOR STORED POSITIVE SEMI=-DEFINITE uU=D
ARRAY: WITH ) ELEMENTS STORED ON THE DIAGONAL

UOUT (N*(N+1)/2) oUTPUT VECTOR STORED POSITIVE (POSSIBLY) SEMI-
DEFINITE U=D RESULT. UQUT=UIN IS PERMITTED

N DIMENSION OF THE STATE
c SCALAR. SHOULD BE NON=NEGATIVE
¢ IS PESTROYED DURING THE PROCESS
ViN) INPUT VECTOR FOR RANK ONE MODIFICATION, V IS

DESTROYED DURING THE PROCESS
COGNIZANT PERSONS: GeJ«BIERMAN/M.W.NEAD (JPL»FEB.1977}

IMPLICIT DOUBLE PRECISION {A=H,0=2)
DIMENSION UIN(1}, UouT{1), V(1)

Z=0.0
IF (C.EQ.Z2) RETURN

JUZNk (N+1) /2

DO 50 J=Nr2e=}
s=vid)
D=UIN{JJ)+CxS*kS
IF (D) S5r10¢30
WRITE (&:100)
RETURN
Jd=Jd=J
WRITE {(6+110)
DO 20 K=1rJ
UOUT (JU+K)I=2
G0 TO 50
B=C/D
BETA=S*B
C=B*UIN{JJ}
uouT{JJI=D
Jd=Jd=J
JMi=J=1
DO 40 I=l.JM1

VII)=VIT) =S*UIN{JJI+I)
UOUT(JJ+I)=UIN{JJ+I)+BETAxV(T)

CONTINUE

UOUT(L)=UINCII+CHV (1) %2
RETURN

AGTRNO1D
AGTRNO20
AGTRNO30
AGTRNO&0
AGTRNQO50
AGTRNO&D
AGTRNOTO
AGTRNOBO
AGTRNOSO
AGTRN1OO
AGTRN110
AGTRN120
AGTRN130
AGTRN140
AGTRN150
AGTRN160
AGTRN170Q
AGTRN180
AGTRN190
AGTRN200
AGTRN210
AGTRN220
AGTRN2Z230
AGTRN24D
AGTRN250
AGTRN260
AGTRN270
AGTRN280D
AGTRN290
AGTRN300
AGTRN310
AGTRN320
AGTRN330
AGTRN340
AGTRN350
AGTRN360
AGTRN370
AGTRN380
AGTRN390
AGTRNZGO
AGTRN410O
AGTRNE20
AGTRNY430
AGTRN44O
AGTRN450
AGTRN4GE0
AGTRNYTO
AGTRN4B]
AGTRN490
AGTRNSO0

100 FORMAT (1HO+¢10Xrt* % % ERROR RETURN DUE TO A COMPUTED NEGATIVE COMAGTRNS510

110

1PUTED DIAGONAL IN AGTRN * ¥ x1t)
FORMAT (1HOr10Xst* * % NOTE: U=D RESULT IS SINGULAR * * *x')
END

64

AGTRNS520D
AGTRNS30
AGTRNS4D
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SUBROUTINE A2A1 (A:TA»IRs,LA/NAMA)AL»TA1+LAL,NAMAL)

OO0 O000O000OnO 000000

AzAl0010

SUBROUTINE TO REARRANGE THE COLUMNS OF A(IR,LA)» IN NAMA ORDER A2A10020

AND PUT THE RESULT 1IN A1(Ir.LAl} IN NAMA1 ORDER. ZERO COLUMNS AZ2A10030

ARE INSERTED IN A3 CORRESPONDING TO THE NEWLY DEFINED NAMES, A2A10040
A?A10050

A(IR!LA) INPUT RECTANGUL AR MATRIX A2A10060

Ta Row DIMENSION OF As IRWLELIA A2A10070

IR NO. OF ROWS OF A THAT ARE TO BE REARRANGED A2A10080

LA NO. OF PARAMETER MNAMES ASSOCIATED WITH A A2A10090

NAMA (LA) PARAMFTER NAMES ASSOCIATED WITH A A2A10100
A1(IReLAYY OQUTPUT RECTANGULAR MATRIX A2A10110

A AND Al CANNOT SHARE COMMON STORAGE A2510120

IAal Row DIMENSION orF Al, IR.LE.IAlL - A2A10130

Lal NO. OF PARAMETER NAMES ASSOCIATED WITH A1 AZ2A10140
NAMAL1(LALY INPUT LIST OF PARAMETER NAMES TQO BE ASSOCIATED A2A10150

WITH THE OUTPUT MATRIX al A2A10160

A2810170

COGNIZANT PERSONS?: G.J.BIERMAN/M,W.NEAD (JPL,» SEPT, 1978) A2A10180
A2A10190

DIMENSION A{IA»1)r NAMA(L)» A1({TA1,1) 9 NAMAL1(1) A2A10200
IMPLICIT DOURLE PRECISION {(A=H,0-Z) A2A10210
AZ2A10220

ZERO=0. AZ2A10230

D0 100 J=1rLA}L APAl0240

DO 60 I=1l.LA A2A10250

IF (NAMA(I)EQ.NAMAL(J)}) GO TO 80O A2A10260

60 CONTINUE A2A10270
DO 70 K=1rIR A2A102R0

70 AL{K+¢J}=ZERO @ ZERO coL. CORRFS. Tn NEW NAME APAL10290
60 TO 100 A2A10300

&0 D0 90 K=R1»1IR A2A10310
90 AL(K»JIZA(KPT) @ COPY CnL. ASSOC. WITH OLD NAME A>2R10320
100 CONTINUE A2A10330
AZA10340

RETURN A2A10350
END A2A10360

65
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SUBROUTINE COMBO (R,L1/NAMLrl 2,NAM27A»TANLASNAMA)

TO REARRANGE A VFCTOR STORED TRIANGULAR MATRIX AND STORF
THE RESULT IN MATRIX A. THE DIFFERENCE BETWEEN THIS SUR~-
ROUTINE AND R2A IS THAT THERE THE NAMELIST FOR A IS INPUT.
HERE IT 1S DETERMINED BY COMBINING THE LIST FOR R WITH

A LIST OF DESIREN NAMES.

R{L1#*(L1+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX

L1 NO. OF PARAMETERS IN R (AND IN NAM1)

NAML{L1) NAMES ASSOCTATED WITH R

L2 NO. OF PARAMETERS IN NAM?

NAM2 (L2) PARAMETER NAMES THAT ARE TO BE COMBINED wITH R
{NAM1 LIST), THESE NAMES MAY OR MAY NOT RE IN
NAML .

A(LL/LA) OUTPUT ARRAY CONTAINING THE REARRANGED
R MATRIX» L1.LE.IA.

1A ROW DIMENSION OF A

LA NO. OF PARAMETER NAMES IN NAMAe AND THE
COLUMN DIMENSION OF A. LAZL1+L2-NO, NAMFS
COMMON TO NAMI AND NAM2. LA IS COMPUTED AND
OUTPUT »

NAMA(LA) PARAMETER NAMES ASSOCIATED WITH THE OUTPUT A

MATRIX« CONSISTS OF NAMES IN NAM1 NOT IN
NAM2 FOLLOWED BY NAM2.
COGNIZANT PERSONS: G.J.BIERMAN/MJW.NEAD (JPL» SEPT. 1975}

IMPLICIT DOUBLE PRECISION (A=H,0~Z)
DIMENSION R{1)r ACIA+1)» NAML(3)» NAM2{1), NAMA(L)

ZERO:G o0
K=1
DO 100 I=1.11
DO 50 J=1,L2
IF (NAML(I)EQ.NAM2(J)) GO TO 100
CONTINUE
NAMA (K}=NAMI(I)
Ju=I*{(J=-1}/2
0O 60 L=1e1
A(LsKISRIJJHL)
IF {I.EGQ,.,L1) GO TO a0
1P1 = I+1
DO 70 L=IP1.L1
A(L+K) = ZERO
K=K+1
CONTINUE
NAMES UNIGQUF TO NAM1 ARE NOW
DO 200 J=l.L2
DO 150 I=1.L1
IF (NAMZ2(J)«EQ.NANMI(I}) 60 TO 170
CONTINUE
NAMA (K)=NAM2 (J)
DO 160 Lz=1.L1
A{L+K)=ZFRO

TN NAMA

66

CoMBOO10
COMB0OD20
CoMBOO030
COMRO04D
COMBOOSO
CoMBOOSO
COMBOO70
CoMBODBO
coMB0090Q
CoMBO100
coMRoiin
CoMBQ120
COMBO130
COMBO140
COMRO150
CoMRO160
coMBOL70
CoMB0180
CoMBO190
coMBpo200
CoMRO210
coMBo220
COMBO230
CoOMBROC240
cCoOMRO250
CoMRO260
CoMpo270
CoMBO280
COMRO290
CoMBO300
CoMBO310
CoMBO320
CoMBO330
COMBO340
CoMBO350
COoMBO360
CoMBO370
COMBO380
CoMBO3S0G
COMRO40D
CoMBQu10
CoMBO420
COMBOR 3G
CoMpOoLULQ
COMBOUSO
coMBous0
COMBOUT0
COMBOUBO
COMBO49Q0
COMBOSO00
CoMpOsio
CcomMBOS20
COMBOS530
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MAMES UNIQUE TO NAM» ARE NOW IN NAMA
G0 TO 190
NAMA (K)Y=NAM2 ()
LOCATE DIAGONAL OF PRECEDING COLUMN
JUSI(I=1)/2 i
‘DO 180 L=1.1 -
ALy KI=RTJIFL)
IF ([.E@.L1) GO TO 190
“IP1=I+1
DO 185 L=IP1eL1
A{LyK)=ZERO" )

TK=K+1
, CONTINUE
LAzK=1 ) . )
_NAMES MUTUAL TO NAME aAND NAM2 ARE NOW IN NAMA
RETURN " -
END

67

COMROS40
COMBOS50
CoMBO560
CoMROS70
CoMBO580
CoMROSe0
coMBO600
CoMRO610
coMBo6&20
CoMRO630
ComMB0B40
COMBOAS0
COMBO&6D
coMpO&70
coMBOB8D
CoMROBSO
COMBRO700
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SUBROUTINE COV2RI(UrN)

TO CONSTRUCT THE UPPER TRIANGULAR CHbLESKY FACTOR OF A
POSITIVE SEMI«DEFINITE MATRIX. BOTH THE INPUT COVARIANCE
AND THE QUTPUT CHOLESKY FACTOR (SQUARE R0OT) ARE VECTOR

STORED. THE OUTPUT OVERWRITFS THE INPUT.
COVARIANCE ( INPUT)=UxUx*T (U IS OUTPUT}.

IF THE INPUT COVARIANCE IS SINGULAR THE OQUTPUT FACTOR HAé'

ZERO COLUMNS.

U{N*(N+1)/2) CONTAINS THE INPUT VECTOR STORED COVARIANCE
MATRIX (ASSUMED POSITIVE DEFINITE) AND ON oUTPUT
IT CONTAINS THE UPPER TRIANGULAR SQUARE ROOT
FACTOR.

N DIMFNSION OF THE MATRICES INVOLVED

COGNIZANT PERSONS: G.J.BIFRMAN/M.W.NEAD {JPL.» FEB.
IMPLICIT DOURLE PRECYSION (A«H,0-2)
DIMENSION U(1)

ZERO=0.0
ONE=1.
JJENx{N+L1) /2
JIN=JJ

DO 5 J=Nr2e-]
IF (UGJJ) JLTLZEROG)Y U(JJ)=ZFRO
U{JJI= SARTIU(JII))
IF (U(JD) 6TLZERO} ALPHAZONE/U(UJ)

KK=9

SUN=JJd=J

JM1=J=-1

DO 4 K=1.,JM1
UJJUN+K Y =ALPHA*U { JUN+K)
S=U{JUNHK)
DO 3 I=1:K
U(KK+IISUKK+I) =S*{) (JJIN+T)

KKSKK+K

@ NEXT DIAGONAL

B JUN+KS (K J}

M KK+I={(I,K)
JJ=JJin

IF (U(1).LT.ZERD) U(1)=ZERO

ulll= SGRTI(U(1))

RETURN
END

68

1977)

Cov2R010
CoVaRro20
CoV2R030
CaV2RO4D
CoVaRo50
CoOV2R060
COV2R070
COV2R0B0
COV2R090
CovVzeR100
COV2R110
COV2R120
CnV2R130
CoV2R140
CoVZR150
COV2R160
COV2R170
CoVv2R1a0
COV2R190
COV2R200
CoV2R210
CovV2R220
COV2R230
COV2R240
COV2R2%50
Cov2R260
CoV2ra270
Cov2RrR280
CoVzR290
CoveR300
COV2R310
COV2R320
COV2R330
COV2R340
CoV2R350
COV2R360
COVZR370
Cav2r3a0
CoVvV2R390
Covari00
COV2RELD
CoV2R420
COV2R430
CoVzR440
CoV2RE50
Cov2Rruno
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SUBROUTINE COV2UD (UeN)

TO OBTAIN THE U=D FACTORS oF A POSITIVE SEMI-DEFINITE MATRIX,
THE INPUT MATRIX VECTOR STORED IS OVERWRITTEN BY THE OUTPUT
U-D FACTORS WHICH ARE ALS0 VECTOR STORED,

UiN¥k{N+1}/2) CONTAINS INPUT VECTOR STORFD COVARIANCE MATRIX.
ON OUTPUT IT CONTAINS THE VECTOR STORED U=D
COVARIANCE FACTORS.

N MATRIX DIMENSION

SINGULAR INPUT COVARIANCES RESULT IN oOUTPUT MATRICES WITH 2ERO
COLUMNS

COGNIZANT PERSONS: G.J«BIFRMAN/R«A.JACORSON (JPL» FEB. 1977)
IMPLICIT DOUBLE PRECISION (A=H,0-2)
DIMENSION U(1)

Z=0.0
ONE=1.0

JUNx (NEL) /2
DO 50 J=Nr2r=1
ALPHAZ=?
IF (U{JJd}.LT.2) Utug)r=z
IF (U(JJ) «GT.Z) ALPHAZONE/I{JJ)
Jddz=dd=d
KK=0
KJd=Jd
JMlEJ=1
DO 40 K=1rJM1
KJd=KJtl .
BETA=U(KJ)
UCKJ) =ALPHAXU{KJY
IJd=JdJ
IK=KK
DO 30 I=1,K
IK=IK+1
1J=Id+l
30 UCIK)YSU(IKY-BETAxU(IJ)
4o KK=KK+K
50 CONTINUE
IF (U{1}.LTeZ) Ull)=?
RETURN
END

69

covauolo
cavauonzg
covauozo
covauouan
covauosn
cova2upean
Covauo7o
Cov2UD8BD
covaupsn
covaulon
covaulilo
covaul2o
covaul3g
covaulug
covaulso
cova2Ula0
Cavaulro
cavaulso
Covzulag
covzauzo0
CovzU21io
covauzan
Cnvzuz3o
tovauzin
Covau2sg
Cov2U26E0
Covzu270
covaU280
covzu2agp
covau3oon
covauzilo
Cov2uzag
Cavau3lon
covauigg
Covauiso
coveu3an
covauiro
Covaulson
Covau3990
cavausoo
Covausio
covauy2qn
covausso
Covauaup
covauusn
Covaulten
covzusyo
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SUBROUTINE €2C (CrICrL1rNAMI, L2 /NAM2)
C2C00010
SUBROUTINE TO REARRANGE THE ROWS AND COLUMNS OF MATRIX €2C00020
C(l.1+L1} IN NAMI ORDER 'AND PUT THE RESULT IN C2C00030
C(L2sL2) IN NAM2 ORDER« ZERO COLUMNS AND ROWS ARE €2C00040
ASSOCIATED WITH OUTPUT DEFINED NAMES THAT ARE NOT CONTAINED C2C00050
IN NAMI, C2C00060
C2C00070
C(L1sLL) INPUT MATRIX C2C00080
Ic ROW DIMENSION OF Cr IC.GE.L=MAX(L1:L2) CaC0n0090
L1 NO. OF PARAMETER NAMES ASSOCTATED WITH THE INPUT € C2C00100
NAML (L) PARAMETER NAMES ASSOCIATED WITH € ON INPUT. {ONLY C2C00110
THE FIRST L1 ENTRIES APPLY To THE INPUT €) C2C00120
L2 NO. OF PARAMETER NAMES ASSOCTIATED WITH THE OUTPUT CC2CO0130
NAM2 (L.2) PARAMETER NAMES ASSOCIATED WITH THE OUTPUT C C2C00140
€2€00150
COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPL, SEPT, 1978) C2C00160
. €2C00170
IMPLICIT DOUBLE PRECISION (A=,0~2) €2€00180
DIMENSION C(ICe1)r NAMI(1)» nAM2(1) €2C00190
€2C00200
ZERO=0, €2C00210
LEMAX(L1sL2) C2C006220
IF (Le.LE.L1) GO TO 5 €2¢00230
NM=L1+1 C2C00240
DO 1 K=NMsL C2C00250
NAML(K)= ZFRO P ZERO REMAINING NAM1 LOCNS C2C00260
DO 90 J=1/sL2 C2C00270
DO 10 I=isL C2C00280
IF (NAML(I).EQ.NAM2(J)) GO TO 30 C2C00290
CONTINUE C2C00300
G0 TO 90 C2C00310
IF (1.EQ.J) 60 TO 90 C2C00320
DO 40 K=1rL C2C00330
H=C (K¢ dJ) @ INTERCHANGE COLUMNG I AND J C2C00340
CIKrJ)ZC(K,1) C2C00350
C(Kr1)=H C2C00360
DO 80 K=1rL CoC00370
H=C{JrK) @ INTERCHANGE ROWS I AND J C2C00380
C(JrKI=CLI,K) C2C00390
C{Is+KI=H C2C00400
NM=NAMZL (1) B INTERCHANGE LABELS I AND J CpCO0410
NAML (I)=NAML (J) C2C00420
NAML (J}=NM C2C00430
CONTINUE C2C00840
C2C00450
FIND NAM2 NAMES NOT IN NAM1 AND SET CORRESPONDING ROWS AND C2C00460
COLUMNS TO ZERO C2C00470
C2C00480
DO 120 J=i.L2 C2C00490
DO 100 I=1sL C2C00500
IF (NAML(I).EQ.NAM2(J}) GO TO 120 C2C00510
CONT INUE C2CN0520
DO 110 K=1,L2 £2C00530
ClJrK)=ZFRO €2C00540
C{KrJI=ZERO C2C00550
CONTINUE C2C00560
10 C2C00570
RETURN C2Cc00580
END C2C00590
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SUBROUTINE INF2R (PeN)
TO CHOLESKY FACTOR AN INFORMATION MATRIX

COMPUTES A LOWER TRIANGULAR VECTOR STORED CHOLESKY FACTORIZATION
OF A POSITIVE SEMI-DFFINITE MATRIX. P=R{**T}Rs» R UPPER TRIANGULAR.
BOTH MATRICES ARE VECTOR STOREN AND THFE RESULTS OVERWRITES

THE INPUT

PIN*(N+1)/72) ON INPUT THIS 1S A POSITIVE SFMI-DEFINITE MATRIX.
AND ON OUTPUT IT IS A TRIANGULAR FACTOR. IF THE
INPUT MATRIX IS SINGULAR THE OUTPUT MATRIX WILL
HAVE ZFRO DIAGONAL ENTRIES

N DIMENSION OF MATRICES INVOLVED

COGNIZANT PERSON! G.J.BIERMAN/M.W.NEAD {JPL(FEB.1977)
IMPLICIT DOUBLE PRECISION (A=Hs0-2)
DIMENSION P(1)

Z=0.0
ONE=1.0
JJ=0
NN=Nx (N+1}/2
NM1SN=~1
DO 10 J=1,NM1 )
JdldzdJd+d R JJI=(Jr )
IF (P(J).LT.2) PGISI=Z
PIJJIZSART (P (JJ))
ALPHA=Z
IF (P{JJ)+GT.2)} ALPHA=ONE/P(JJ)
JK=NN+J R JK=(JsK}
JP1=J+1
JISTJK R JIS=(Jr1I) START
DO 10 K=NrJPlr=1
JKZJK=K
B {JK) ZALPHA*P{JK)
RETA=P (JK)
KIZNN+K
JI=JIS
DO 10 I=NyKr=1
KI=KI=~I
JizJdI=1
PIKI})=P(KI)Y~P{JI}+*BETA

IF (P{NN).LT.Z) PI{NN)=Z
PINN)=SART(P{NN))
RETURI

END

71

INF2RO10
INF2R020
INF2RO30
INF2ROU0
INF2RO50
INF2ROG0
INF2ROT7O
INF2RO8B0
INFZ2R090
INF2R100
INF2RY10
INF2RI20
INF2R130
INF2RI1LO0
INF2R150
INF2R160
INF2R170
INFZRIAD
INF2R19D
INF2R200
INF2R210
INF2R220

_INF2R230

INF2R240
INF2R250
INF2R260
INF2R270
INF2R2R0
INF2R260
INF2R300
INF2R310
INF2R320
IMNF2R3 30
INF2R3U0
INF2R350
INF2R360
INF2R370
INF2R3A0
INF2R390
INF2RU00
INF2RL10
INF2RE20
INF2ZRLE30
INF2RG40
INF2RU50
INF2RUGB0
INF2RYT0
INF2R480
INF2R890
INF2R500



OOOaOOOOO000000000

40
50

60

65

70

100

150

170
200

THE
“RBDUGEB}LITY OF
?}%{@m al PAGE B PGOR

77-26

SUBROUTINE PERMUT (A+TA¢IRrL1sNAMIPL2 s NAM2)

SUBROUTINE TO REARRANGE PARAMETERS OF A(TRrL1)» NAM1 ORDER

To A{IRsL2)+, NAM2 ORDER.

ZERD COLUMNS ARE INSERTED

CORRESPONDING TO THE NEWLY NEFINED NAMES,

AUIRL)
IA
IR
L1
NAMLI(L)
L2

NAM2

INPUT RFCTANGULAR MATRIXs L=MAX{L1rLZ2)

ROW DIMFNSION OF A¢

NUMBER OF
NUMBER OF
A MATRIX

PARAMETER
(ONLY THE
NUMBER OF
A MATRIX

PARAMETER

COGNIZANT PERSONS?

IA.GE.IR
ROWS OF A THAT ARE To BE REARRANGED
PARAMETER NAMES ASSOCIATED WITH THE INPUT

NAMES ASSOCIATED WITH A ON INPUT
FIRST L1 ENTRIES APPLY TO THE INPUT A)
PARAMETER NAMES ASSOCIATED WITH THE oUTPUT

NAMES ASSOCIATED WITH THE OUTPUT A
SEPT,

G+J.BIERMAN/M,W.NEAD (JPL» 1978)

IMPLICIT DOUBLE PRECISION (A=H,0=Z)
DIMENSION A{TA,1)r NAML{1)» NaM2(1)

ZERO=0.
L=MAX(L1.,L2)
IF (L.LE.L1) 6C TO 50
NM=L1+1
nO 40 K=NMrL
NAML(K)=0
DO 100 J=1,L2
DO 60 I=1.L
IF (NAML(I).EQ.NAM2(J)) GO TO 65
CONTINUE
G0 To 1400
CONTINUE
IF (I.EG.J)
DO 70 K=1rIR
W=A(Krd)
AKe JISAIK,T)
AlKeI)=W
NM=NAMI (1)
NAMIL {1 }=NAML (J)
NAM1 {J)SNM
CONTINUE

M ZERC RFMAINING NAM1 LOCS

G0 TO 100
@ INTERCHANGE COLS I AND J

M INTERCHANGE I AND J COL.

REPEAT TO FILL NEW COLS
DO 200 J=1rL2
DO 160 I=1.L
IF (NAML({I}.EQ.NAM2(J)) O TO 200D
CONTINUE
DO 170 K=1,IR
Al{Kr»J}=ZERO
CONTINUE

RETURN
END

72

LABELS

PERMUDLD
PERMUO20
PERMUO30D
PERMUDHD
PFRMUOS0
PERMUOBGD
PFRMUO70
PERMUDBD
PERMUOS0
PERMUL00O
PERMU110
PERMUL20D
PERMU130
PFRMUL L&D
PERMU150
PERMU160
PERMULTO
PFRMU180
PERMU190
PERMUZ00
PERMUZ210
PFRMU2240
PFRMUZ30
PERMU240
PFRMU250
PERMU260
PERMU270
PFRMUZ280
PERMU290
PERMU300
PFRMU310
PERMU320
PERMU330
PERMU3LO
PERMU350
PERMU360
PERMU3T0
PERMU380
PERMU390
PFRMUL OO
PERMUH410
PFRMUH 20
PFRMUL3D
PFRMULLO
PERMU450
PERMUL4KD
PERMU4TD
PERMULBO
PERMU4S0
PERMUSO0
PFRMUS1D
PERMUS20
PERMUSB30
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SUBROUTINE RINCON (RIN2N+ROUT.CNB)

TO COMPUTE THE INVERSE OF THE UPPER TRIANGULAR VECTOR STORED
INPUT MATRIX RIN AND STORE THE RESULT IN ROUT. (RIN=ROUT IS
PERMITTED} AND To COMPUTE A CONDITION NUMBER ESTIMATE.
CNBZ=FROB+NORM{R) *FRORB+NORM(Rx%=1) .

THE FROBENIUS NORM IS THE SQUARE R0OOT oF THF SUM OF SQUARES
OF THE ELEMENTS. THIS CONDITION NUMBER BOUND IS USED AS

AN UPPER BOUND AND IT ACTS A5 A LOWER ROUND ON THE ACTUAL
CONDITION NUMBER OF THE PROBLFM. (SEE THE BOOK *SOLVING LEAST
SQUARES'» BY LAWSON AND HANSON)

RIN(N*(N+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX

N DIMENSION OF R MATRICES

ROUT (N*{N+1)/2) OUTPUT VECTOR STORED UPPER TRIANGULAR MATRIY
INVERSE (RINzROUT IS PERMITTED)

CNB CONDITION NUMRBFR BOUND

COGNIZANT PERSONS: GeJ«BIERMAN/M.W.NEAD (JPLYFEB.1977)

SUBROUTINES REQUIRED: UTINV

IMPLICIT DOUBLE PRECISION
DIMENSION RIN(1), ROUTI(1)

(A=Lr0=2)

Z=0.0
NTOT=N*(N+1)/2

RNM=Z
DO 16 J=1.NTOT
RNM=RNM+RIN(J) **2

CALL UTINV (RIN'N/sROUT)

RNMOUT=Z

BC 20 J=1!NTOT
RINMOUT=RNMOUT+ROUT (4} k%2

CNB=SQRT (RNM*RNMOUT)

WRITE (6+30)
RETURN

ciB

RINCOD10
RINCQO020
RINC0OO39
RINCODH0
RINCOG50
RINCOO60
RINCOO70
RINCOO&O
RINCO090
RINCO1040
RINCO110
RINCO120
RINCO130
RINCO140
RINCO150
RINCO1&0
RINCO170
RINCO180
RINCO190
RINCO200
RINCO210
RINCO220
RINCO230
RINCO2u0
RINCO250
RINCO260
RINCO270
RINCO288
RINCO290
RINCO30Q
RINCO310
RINCO320
RINCO330
RINCO340
RINCO350
RINCO360
RINCO370
RINCO380
RYNCO390
RINCOLOD
RINCO41D
RINCOH20

30 FORMAT(1HO»5X»*CONDITION NUMBFR ROUND='+D18,10,2Xr 'CNB/N.LE,CONNTTRINCOUID

170N NUMBERWLE.CNB':/)
END

13

RINCO44D
RINCO45D
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SUBROUTINE RI2COV (RINVeNrsSIG,COVOUT:KOV)
RI2C0010
TO COMPUTE THE COVARIANCE MATRIX AND/OR THE STANDARD DEVTATIONSRI2C0020

OF A VECTOR STOREN UPPER TRIANGULAR SQUARE ROOT COVARIANCE RI2C0030
MATRIX. THE OUTPUT COVARIANCE MATRIX IS ALSO VECTOR STORED, Rra2conyp
RI2CQ050

RINVIN*(N+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR COVARI- RI2C0060
ANCE SGQUARE ROOT. (RINVER INVERSE IS THE R12C0070

INVERSE oF THE SRIF MATRIX) RyY2€C0080

N DIMENSION OF THE RINV MATRIX RI2C0O090
SIG(N) OUTPUT VECTOR OF STANDARD DEVIATIONS R12C0100
COVOUT(N®(N+1)/2) OUTPUT vFcTOR STORED COVARIANCE MATRIX RI2CC110
{COVOUT = RINV IS ALLOWED) RrR12CC120

OO0 O0O000O000O00O00O0000000

O

KOV  LGT.0 COMPUTE COVARIANCE AND SIGMAS USING KOv ROWS RTI2C0130

OF RINV. RIZ2CO140

WLTe0 COMPUTE oNLY THE SIGMAS USING KOV ROWS OF RIZCOL50

RINV. RI2C0160

sEQ.0 MO COVARIANCEs BUT ALL SIGMAS (E.G, USF RI2CO170

N ROWS OF RINV). RT2C0180

RI2C0190

COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD {(JPL. SEPT., 197s) RT2C0200
RT2C0210

IMPLLICIT DOURLE PRECTSION (A=Hy0~2) R12C0220
DIMENSION RINV(1)s SIG(L)» COVOUTI(1) RT2C0230
RY2C0240

ZER0=0.0 RI2C0250
LIM=N RIZ2C0260
IF (KOVeNE.D) LIM=IARS(KOV) R12C0270
*x*% COMPUTE SIGMAS RI2C0280
IKS=0D RI2C0290
D¢ 2 J=1,LIM RY2C0300
IKS=IKS+J RI2C0O310
SUM=ZERD RT2C0320
IK=IKS RI2C0330
DO 1 K=J#N RIZCO340
SUMSSUM+RINV (IK) %2 RI2CO350
IK=IK+K R12C0360
SIG{J)=SORT (SUM) RIZ2C0370
RIZCO380

IF (KOV.LE.0) RETURN RI2C0390
k% COMPUTE COVARIANCE RY2C040D

JJ=0 RIZCO4L0O
NM1=LIM-1 RIZCOL20
DO 10 J=1,NM1 RI2C0430
Jd=Jdd+d RIZ2CO440
COVOUT{JJIZSTIG (J) %%2 RI2C0O450
IUS=JJ+d RIZ2CO46K0
JPizJ+1 RIZCO4TO
DO 10 I=JP1sN RI2C0O480
IK=IJS RI2C0490
IMU=I-J RTIZ2CO500
SUM=ZERO RT2C0510

DO 5 K=IN RI2C0520
IJK=IK+IMJ R12C0530
SUMZSUM+RINV{IK)I*RINV{ Lk} RT2CO54D
IK=IK+K RT2C0550
COVOUT (IJS)=SUM RI2C0560
1J5=1JS+1 RY2C05710

IF {KOV.EQ.N} COVOUT(JJHNIZSTG(NY*%2 RI2CO580
RT2C0590

RETURN 74 R12C0600
END RI2C0610
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SUBROUTINE R2A(RILReNAMR2ArTA,LAPNAMA)

TO PLACE THE TRIANGULAR VECTOR STORED MATRIX R INTO THE

MATRIX A AND.TO ARRANGE THE COLUMNS TO MATCH THE DESIRED
NAMA PARAMETER LIST. .NAMES IN THE NAMA LIST THAT DO NOT
CORRESPOND TO ANY NAME IN naMR HAVE ZERO ENTRIES IN THE

CORRESPONDING A COLUMNe

R(LR*(LR+#1)72) INPUT UPPFR TRIANGULAR VFCTOR STORED ARRAY
LR DIMENSION OF R.

NAMR(L) RARAMETER NAMES ASSOCIATED WITH Rs ONLY THE
FIRST LR FNTRIES APPLY To Re L=MAX(LR(LAY.
ACIR LAY MATRIX TO HOUSE THE REARRANGED R MATRIX
. Ia ROW DIMENSION OF Ar IALGF.LR

LA MO. OF PARAMETER NAMES ASSOCIATER WITH THE
OUTPUT A MATRIX
NAMA (LA) PARAMETER NAMES FOR THE oUTPUT A MATRIX

IMPLICIT DOURLE PRECTISION (A-=M,0=2Z)

NEMENSION R{1)NAMR{L),A(IAr1) NAMA(L)

ZERO=0.
DO S J=1,LA
DO 5 K=1»LR
A{K s J)ZZERO -
DO 40 JS1sLA
D0 10 I=1,LR .
IF (NAMR(I).EQ.NAMA(J)) GO TO 290
CONTINUE
GO TO 4D
JIZIx(I=1)/2
D0 30 K=1r1
ACKrJIZRIJIHK)
CONTINUE

B ZERO A(LRrLA}

RETURN
END

75

R2AD0010
R2ANOD20
R2A00030
R2A00040
R2A00050
R2A00060
R2A00070
R2A00080
R2A00090
RPAC0100
R2A00110
R2A00120
R2A00130
R2A00140
R2A00150
R2A00160
R2A00170
R2AQ00180
R2A00190
R2A00200
RPADG210
RPAQ0220
R2A00230
R2A00240
R2A00250
Rz2AD0260
R2AN0270
R2A0QD280
R2AN0290
R2AGD300
R2AQ0310
R2A00320
R2A00330
R2A00340
R2AND0350
R2A00360
R2A00370
R2AMN0O380
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SUBROUTINE R2RA (RyNRrNAM/RAJNRAINAMA)

OOCOOOO0000000C00OO00000000

. R2RA0010

TO COPY THE UPPER LEFT (LowrFR RIGHT) PORTION OF A VECTOR . R2RAQ020
STORED UPPER TRIANGULAR MATRIX R INTO THF LOWER RIGHT R2RADO3D
(UPPER LEFT) PORTION OF A VECTOR STORED TRIAMNGULAR R2RAD040
MATRIX RA. R2RA0050
R2RADORD

R{NR*{NR+1)/2) INPUT VECTOR STORFD UPPER TRIANGULAR MATRIX RO2RAQDTD

NR DIMENSInN OF R R2RA0080

T NAM(HR) NAMES ASSOCIATED wITH R RPRAONQ0D

. RAINRA*(NRA+1L)/2) QUTPUT yreTOR STORED UPPER TRIANGULAR MATRIX R2RA0100
NRA DIMENSION ASSOCIATED WITH RA R2RAG11D
NAMA (NRA) MAMES ASSOCIATED WITH RA R2RAD120
R2RA0130

IF NRA=0 ON INPUT. THEN NAMA(i) SHOULD HAVE THE FIRST NAME oF THE R2RAQ1%0
OUTPUT NAMELIST AND THE NUMBER OF NAMES IN .NAMA IS COMPUTED. RPRA0150
THE LOWER RIGHT BLOCK OF R WILL RE THE UPPER LEFT BLOCK OF RA. °~ R2RA0160
R2RA0170

IF NRA=LAST NAME OF THE UPPER LEFT BLOCK THAT IS TO BE MOVED: R2RA0180
THEN THE UPPFR BLOCK IS TO BF MOVED TO THE LOWER RIGHT POSITION. R2ZRA0190
WHEN USED IN THIS MODE NRA=NR ON OUTPUT. R2RAG200
) R2RA0210

THE NAMES OF THE RELOCATED BLocK ARE ALLSO MoVED. THE RESULT R2RAD220
CAN COINCIDE WITH R AND NAMA WITH NAM. R2RA0230
R2RAR240

COGNIZANT PERSONSG! G.J BIERMAN/M.W.NEAD (JPL+ SEPT, 1978) R2RA0250
R2RAOQ260

IMPLICIT DOURLE PRECTSION {a=H10=~2) " R2RA0270
DIMENSION ROLYeRACL) r NAM{Y)» NAMA(L) R2RA02B0
LOGICAL 433 R2RA0290
R2RA0300

I5=.FALSE. RPRA0310
LOCNENAMA{L) R2RA0320
IS=FALSE CORRESPONDS TO MovIMG UPPER LFT, CORNER OF R TO R2RA0330
LOWER RT« CORNER OF RA R2RAD340

IF {NRAEG.0) &0 TO 1 R2RAD350
LOCNZNRA R2RAG360
152, TRUE, R2RAD370
ISRTRUE CORRESPONDS To MOVIMG LOWER LFT. CORNER OF R TO R2RA0380
UPPER RT. CORNER OF RA R2RAG39D

1 DO 3 I=1sNR R2RAOL00
IF (NAM{I).F@.LOCN) GO TO 4 R2RADH10
3 CONTINUE R2RADYZ20
WRITE (&ricm R2RADHZNO
100 FORMAT {1HOr20Xr tNAMA(L) NOT IM NAMELIST OF R MATRIX?') R2RADUYLD
RETURN RPRAGUSO
R2RAGLHAED

4 K=1 R2RACHTO
KM1zK=1 R2RADHB0
XF (IS) GO TO 15 RP2RAOU90
RPRAOSO0

TJSEK*(K+1)/2=1 P2RAD510
NRASNR=K+1 R2RA0520
IJA=D R2RA0530D
KOLAZO RPRADS40

76



DO 10 KOLZKsNR
KOLA=KOLA+1

NAMA (KOL-KMI }=NAM{KOL)
DO -5 IR=1rKOLA

TJAZIJA+L
5 RA(IJAIZR(IJS+IR)
10 IJS=IJSHKOL,
RETURN

15 IJ=K*(K+1)/2
IJASNRE{NR+1) /2
L=NR=KM1
KOL=K

N0 25 KOLA=NRrL =1

IJS=1JA

NAMA (KOLA)Y=NAM{KOL }

DO 20 IR=KOLAjsL »=1
RA(LIJS)=R(IN
IJS=1J5~1
20 Tdz=Td=-1

IJASIJA~KOLA

25 KOLZKOL~1
NRAZNR

RETURN
END

77-26

77

R2RAO0550
R2RA0560
R2RAD5T0
RPRADSA0
R2RAO590
R2RADE00
RPRADB1LIO
RPRAO0620
R2RA0630
R2RADG4LD
R?RAQ650
RPRADE6D
R2RAGET7D
RPARADE8B0
R2RA0690
R2RA0700
R2RA0710
RPRAOQT20
R2RAD730
R2RADT40O
R2RA0750
R2RA0760
R2RAQ0770
R2RAD780
R2RADT90
R2RADB0D
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SUBROQUTINE RUDR{RIN+N,ROUT+IS)

FOR N+GT.0 THIS SUBROUTINE TRANSFORMS AN UPPER TRIANGULAR VFCTOR

STORED SRIF MATRIX TO U-D FORM,

AND WHEN N.LT.0 THE U=D VECTOR

STORED ARRAY IS TRANSFORMED To A VECTOR STORED SRIF ARRAY

RIN(IN+1)®(N+2)/2)
ROUTI{ {N+1)%(N+2)/2)

INPUT VECTOR STORED SRIF OR U-D ARRAY
OUTPUT IS5 THE CORRESPONDING U«C OR SRIF
ARRAY {(RIN=ROUT IS PERMITTED)

N ABS (N}= MATRIX DIMENSION
’ MNeGT,0 THE (INPUT) SRIF ARRAY IS OUTPUT IN- U-n FORM
NebLT.0 THE (INPUT) U«D ARRAY IS OUTPUT IN SRIF FORM
IS 0 THERE IS MO RT. SIDE OR ESTIMATE STORED IN
COLUMN N+1» AND RIN NEFD HAVE ONLY,
N COLUMNS, T+Es RIN(N:(N+1}/2)
IS = 1 THERE IS A RT. SINE INPUT TO THE SRIF AND
AN ESTIMATE FOR THE U=n ARRAY. THESE RESIDE
. IN COLUMN N+1.

THIS SUBROUTINE USES SUBROUTINE UTINV

COGIZANT PERSONS G.J.BIERMAN/M.W.NEAD (JPL. FEB.1977)
IMPLICIT DOUBLE PRECISION (A=H,0-2)

DIMENSION RIN(1)» ROUT(1)

1.0
IS + ABS{N)

ONE=
NP1=
JJd=1
IDIMRT NPL1*(NP1 +1)/?

IF (IS.EQs1) RIN{IDIMR)= = ONF

@ INITIALIZE DIAGONAL INDEX

IF (N.LT.0) 60 TO 30

CALL UTINVI(RINSNPLl+ ROUT)
ROUT(1)= ROUT{1)**2

IF (N.EQ.1) RETURN

DO 20 J=2¢N

S=ONE/ROUT (JuJ+4}

ROUT (JJ+J)= ROUT(JJ+J) #*2
JM1ZJ=-1

DO 10 I=1,JMmi

ROUT(JJHIIZ ROUT (JJ+T) %S

JJ=Jd+ J

RETURN

ROUT (1) IN(1)) OF THEB
ROUT(1)= SGRT(RIN(1) ‘ 1Y
FIN.EG.1) GO TO 60 rODUCIBIL,

tI)o ;o J=20N %&:Gm Al PAGE B POOR:

ROUT (JU+J)= SERTIRINIJJI+I))
SSROUT (Ju+ld)

JMli=Jd=-1

DO 40 I=1irJdMmi

ROUT(JJ+I)= RIN(JIFII%S
JJd=JdJ+d

CALL UTINV(ROUTeNPLl,ROUT)

RETURN 78
END

RUDROO1D
RUDRC020
RUDROO30
RUDRDO4D
RUDROOSN
RUDROOAO
RUDRBOTO
RUDRKROOAD
R1UIDRODON
RUDRD10D
RUDRO110
RUDROL20
RUDRO130
RUDRO140
RUDRO1S0
RtIDRO160D
RUDRD170
RUDRO180
RUDRO1SO
RUDRO260
RUDRO210
RiIDRO220
RUDRO230
RUDROZ240
RIIDRO25D
RUDRO260
RUDRO270
RUNRD280
RUDRD290
RUDRO300
RUDRO310
RUDPG320
RUDRO330
RUDRO340
RUIDR0O350
RUDROD360
RUDRO370
RUDRO3AN
R{IGRO320D
RUDRO4OD
RUDRD&10D
RUDRO420
RUDRDO43N
RUDROXYHO
RUDRO4SB(N
RUDROYAD
RUDRO4T70
RUDRO4 KO
RUDRO490
RUDROS00
RUDRDS10
RUIDROSZ20
RUDROB30
RUDROS40
RUDROSSB0D
RUIDROS60
RUDROSTO
RUDROBAD
RUDROSQ0
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SUBROUTINE THH{RsNrAv+IArMrSOS,NSTRT)

THHODO0LO

THIS SUBROUTINE PERFORMS A DOURLE PRECISION TRIANGULARIZATION THHOGO20
OF A RECTANGULAR MATRIX INTO A SINGLY-SURSCRIPTEDRD ARRAY BY THHOOO 3D
APPLICATION OF HOUSEHOLDER ORTHONORMAL TRANSFORMATIONS, THHOOOUWO
THHODB050

RIN*(N+3}/2) VECTOR STORED SQUARE ROOT INFORMATION MATRIX THHOOOB0
(LAST N LOCATIONS MAY CONTAIN A RIGHT HAND STDE) THHQODT7D

N NUMBER OF PARAMFTERS . THHOOO80
A{TArN+1) MEASUREMENT MATRIX THHNO090
Ia Row DIMENSION oF A THHOD0100

M NUMBER OF ORSFRVATIONS IN THIS BATCH THHBOL10
S0S ACCUMUILATED Stim OF SQUARES OF THE RESIDUALS THHOGO120
(Z2=AxX(EST)I*%2), INCLUDFS A PRIOR? THHOO130

NSTRT FIRST COL OF THF INPUT & MATRIX THAT HAS A NONZERO THHOO0140
ENTRY. IF NSTRT.LF.1s IT IS SET TO 1. THIS OPTION THHOO1SO

Is COMVENIENT wWHEN PACKING A PRIORI RY BATCHFS AND THHOO0160

THE A MATRIX Has LEADING COLUMNS OF ZERQOS. THHOG170

THHOO180

ON ENTRY R CONTAINS A PRIORI SQUARE ROOT INFORMATION FILTER (SRIF)THHOD1SD
ARRAY, AND ON EXIT IT COMTATNS THE A POSTERIORI (PACKED) ARRAY.THHNOZ200

ON ENTRY A CONTAINS OBSERVATIONS WHICH ARE PESTROYED BY THE THHNO0210
INTERNAL COMPUTATTIONS, THHRO0220

oIl ENTRY IF SOS IS L7, ZERO PROGRAM WILL ASSUME THERE IS NO THHO0230
RIGHT HAND SIDE DATA AND WILL NOT COMPUTF S0S OR USE LAST N THHOO240
LOCATIONS OF VECTOR R. THHRD250
THHRO260

COGNIZANT PERSOKRS GeJeRIFRMAN/N.HAMATA (JPL» 0CT.1075) THHOD270
THHOO28R0

IMPLICIT DQURLE PRECISION (A=H:0=-2} THHOO0290
DIMENSION ACIA»L)eR(L) THHOC300
DOUBLE PRECISION SUM THHOO310
DATA ZERO/0D.D0/» ONE/1.DO/ THHO0320
THHNO330

IF (NSTRT.LE-D) NSTRT=1 THHOO034D
NP1z=N+1 2 nNo. COLUMNS OF R THHR 0350
IF{S0S.LT.ZERQ) NP1=N @ NQ COLS. = N IF S0S.LT.O THHN 0360
KKINSTRT* (NSTRT=1)/2 THHQO0370
DO 100 J=NSTRT.N @ J=TH STEP OF HOUSEHOLDFR REDUCTIOM THHOO380
KK=KK+J THHO0320
SUM=ZEROQ THHO o400
DO 20. I=1¢/M THHNO410
SUMZSUMHA (T r ) *%kp THHOOQU20
IF{SUMLE.ZERD) GO TO 100 B JF J=TH Col.e OF AJEQ.0 GO TO STEP JHITHHOOH30
SUMZSUMFR (KK ) #%2 THHOBL40
SUMTDSORT (SUM) THHOD450
IF{R(KK) ,GT.7ERD0} SUMz=SUM THHODL4ED
NELTAZR(KK) =SUM THHOOHTO
R{KK)=SUM THHOOUROD
BETAZONE/ (SUMkDELTA} THHNDLSO
JUZKK THHO0S00
L=d THHOOS10
Jl=J+1i THHG0B20
*x READY T0 APPLY J-TH HOUSFHOLDER TRANS. THHOOS30

PO 40 K=J1/NP1 THHOO5u0

79


http:ONE/1.DO

30

35
4o
100

s R e Ny

lic

JUSJUHL

L=L+1

SUM=DELTA*R (JJ)

DO 30 I=1rM
SUM=SUM+A (T 1 J)*A (1K)
IF(SUMJ.EQ.ZERO) GO TO 40
SUMz=SUM*BETA

R(JJISR(JJ) +SUM*DELTA
DO 35 I=1eM
A(T/KISACIeK)+SUMKALT ¢ )
CONTINUE

CONTINUE

1F(S0S.LT.ZERO) RETURN

CALCULATE S0S

SUM=ZEROQ

DO 110 I=1:M
SUMZSUM+A (I o NP1 Y k%2
SOSZDSERT(SOS*¥2+5UM)

RETURN
END

77-26

80

THHO 0550
THHO0E60
THHOO0570
THHOOS580
THHO0590
THHO0&00
THHOOA10
THHODAR20
THHOD6&30
THHOO0640
THHOC650
THHOO066A0
THHOO0670
THHOD&RD
THHOD6S0
TuHOO0700
THHOO0710
THHOG720
THHNO730
THHOO740
THHDO750
THHOO760
THHOO770
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SUBROUTINE TRIMAT (A,NsCAR,TEXT ,NCHAR,NANES)

70 DISPLAY A VECTOR STORED UpPER TRIANGULAR MATRIX IN A

TWO-DIMENSIGNAL TRIANGULAR FoRMAT

A(N®(N+13/72) VECTOR CONTAINING UPPER TRIANGULAR MATRIX

N DIMENSION OF MATRIX
CAR(N) PARAMETER NAMES
TEXTL ) AN ARRAY OF FIELDATA CHARACTERS TO BE PRINTED AS

A TITLE PRECEDING THE MATRIX

NCHAR NUMBER OF CHARACTERS, INCLUDING SPACES,

ARE 10 BE PRINTED IN TEXT( )

ABS(NCHARY+LE 124, NCHAR NEGATIVE 1S ySgD
TO AyplID SKIPPING To A NEW PAGE TO START

PRINTING
NAMES TRUE TO PRINT PARAMETER NAMES

COGNIZAMT PERSAONS: GeJeBIERMAN/MoW.NEAD (JPL,

DOUBLE PRECISION A(N)

INTEGER CAR(M)y TEXT(1), L{7), LIST(7)
LOGICAL NAMES

INTEGER V(4),VFMT(7)

DATA V/* 12X, y'hé6,1%,"," "+'Dl7.8)'/,

L VEMT/* 7% ,°017X,67,°034X,5° 3 051X,47,°068K,3%,%085%,2¢,°102X. 1
+ ] »

M1.M2 ROW LIMITS FOR EACH PRINT SEQUENCE
Nj M2 coL LIMITS FOR EACH LINE OF PRINT
Ll £L0C OF EaACH COLUMN N A ROW

KT RO¥ COUNTER

Kp PRINT (COUNTER

L IR INITIALIZE COUNTERS

1o

24

30

Mi=1
M2=7
Ni=j
KT=0Q
KP=g
IF { NOT,NAMES) V(2)=m*15,2X*

NC=1ABS(NCHAR) /&
IF {MOD{NCHAR,4)+sNEWsD) NCRNCHg
IF (NCHAR,GE,0) WRITE (6,200) (TEXT{1),1=§,NC)
IF (NCHAR,LT.0) WRITE (4,205) (TEXT(I},I=1,NC)
IF (MZ4GT,N) M2=N
IF (JNOT.NAMES) GO To 20
WRITE (86,2100 {(CAR(1),1uNi, M2,
GO To 40
M=N1
L2={2=N1+]
po 3p I=1,L2
LISTUI) &M
M=H+ ]
WRITE (4,220) {(LIST(1),121,L2)

81

0CT+1975)

TRINODOID
TRIMODG20O
TRIMOO30
TRIMDO4O
TRIMDGS0
TRIMOD&D
TRIMDOD70O
TRIMOODBD
TRIMOGTO
TRIMO10D
TRIMOILO
TRIMOLI20
TRIMO130
TRIMO140
TRIMODISD
TRIKOLGD
TRIMD170
TRIMO180
TRIMD19D
TRINO200
TRIMOZ10
TRIMD220
TRIMDZ230
TRIMDZ240
TRIMDZ50
TRIMD240D
TRIMD27D
TRIMG280
TRIMOZ90O
TRIMO300
TRIMO310
TRIMD3IZ20
TRIMDA33D
TRIMO3H0
TRIMDASD
TRIMO3SGD
TRIMOATO
TRIMO238BOD
TRIMO390
TRIND400
TRIMO41D
TRIMO420
TRIMD430
TRIMO440
TRIMOY50
TRIMO4&D
TRIMO470Q
TRIMO480
TRINMGY490
TRIMOS00
TRIMOS1D
TRIKOS2D
TRIMOS530
TRIMOSH4O



40
»

50

60

70

80
90

180
190

200
205
210
220

CONTINUE
* 2 s * 2
DO 1902 1CmM{,M2
Kmg ) .
IF {ICeLE.(KT*7)) &0 TO 6D
JJmD
00 50 J=1,1cC
JdEJJ e d
LiKimJgd
I1=]1C~KTay
IF (11sEQ.7} 60 TO 90
GO TO 7p
CONTINUE -

Il=sl

LIKI®™L (K)+1

CONTINUE

00 80 Im]l,é
K=K+1
1121+KTe7
LIKI®L (Kal)+]1]

CONT INUE

I12=MINO (8, (M241=KTs7))=11
VI3)=VFMT (I L)
IF {«NOT,NAMES) GO TO 180

77-26

® QBTAIN CcOL INDEX FQR RgW

WRITE {4,V} CAR{IC),(A{L{I)),1m1,12)

GO TO 190

WRITE (6,v) ICy(A(L(I)oI=11

CONTINUE
IF (M2.£EQ,N}) RETURN

NisM2+1

M2=Mp+7

KT=KT+1

KPaKp+]

IF (XP.,LT,3) G0 TO 1q

WRITE (&,200) (TEXT{1),[%1,NC)
60 To 10

FORMAT (1H1,2X,21484)
FORMAT (1HO,2X,21A4)
FORMAT (1HO,5X,7(11X A6))
FORMAT (1HO,3X,7(11X,16))

END

2) -

@ TITLE
@ TITLE
@ HORIZONTAL NAMES

82

TRIMDSS50
TRINOSSD
TRIMOS7Q
TRIWOS58D
TRIMOE9D
TRIMO&OG
TRIMBAIQ
TRIMDA20
TRIMDA3O
TRIMD&4D
TRIMOASD
TRIMO&&O
TRIMO&7G
TRIMD&8D
TRINDS&?0
TRIMD7GO
TRIMDZ710
TRIMD720
TRIMD73Q
TRIMOD730
TRIMOY750
TRIMD74D
TRIMO770
TRIMG780
TRIMO790
TRIMOBOD
TRINGA1D
TRIMDB20
TRIMOSB30
TRIMDBYG
TRIMOSBS5D
TRIMODBGD
TRIMOS70
TRIMDBSD
TRINDBID
TRIMD?OD
TRIMQ91D
TRINMD920D
TRIMO®30
TRINDY40
TRIMO950
TRIMD94D
TRIMO970D
TRIMO98D
TRIMO®70
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SUBROUTINE TTHH(RrRAN)

< TRHIS SUBROUTINE COMBINES Two SINGLE SUBSCRIPTED SRIF ARRAYS
USING HOUSEHOLDER QRTHOGONAL TRANSFORMATIONS

R{N={N+1)/2) VECTOR STORED SRIF ARRAY.

RA(N®(N+1}/2) THF SECOND VFCTOR STORED SRIF ARRAY

N DIMENSION oF THE ESTIMATED PARAMETER VECTONR.
A NEGATIVE vaLUE FOR N IS USEN TO NOTE THAT
R AND RA HaVF RT. HAND SINES INCLUDED AND
HAVE DIMZARSN*(ABSN+3)/2,

ON EXIT RA IS CHAMGED AND R CONTAINS THE RESHLTING SRIF ARRAY

COGNIZANT PERSONS G,J«BIERMAN/MJW.NEAD (JPL, JAN,1976)
IMPLICIT DOUBLE PRECISION(A~H,0=Z)
DIMENSION RA(L)» R{1)
DOURLE PRECISION StIM R FOR ysSE IN SINGLE PRECISION VERSIONM
ZERO=0.
DNE=1.
NP1=N
IF (NeGT.0) GO TO 10
N==N
NPI=N+1
1Js=1
KK=0
DO 100 J=1eN
KK=KK+.J
SUM=R (KK ) ®%2
DO 20 I=IJS(KK
SUM=SUMH+RA(T) %2
IF (SUMJLE.ZFRO} GO TO 100
SUMZSART (SUM)
IF (R{KK).GT.ZERO} SUM==SUM
DELTA=R (KK} =SUM
R{KK)=5UM
LETA=ONE/ (SUM*DELTA)
GI=ZKK
L=y
JPizJ+l
IKS=KK+1
* % * J=TiH{ HOUSFHOLDER TRANS. DEFINED
40 LOOP APPLIES TRANSFORMe. TO COLS. J+1 TO NP1
U0 40 K=JP1lenNP1
Jdz=JJd+
L=+l
IK=IKS
SUM=UELTA*R (JU)
DO 30 I=1JSeKK
SUM=SUM+RA(TK)*RA(I)
IK=IK+1
IF (SUM,EQ.ZERO) 60 TO 40
SUM=SUM*BETA

R IJ{START)

R J=-TH STEP OF HOUSEHOLDER RFEDUCTION

&3

TTHHOO10
TTHHOO20
TTHHORID
TTHHOO40
TTHHOOSD
TTHHOO60
TTHHROT7O
TTHHOO&0
TTHHOD90
TTHHO100
TTHHO110
TTHHO120
TTHHO130
TTHHO140
TTHHO1S0
TTHHO160
TTHHOL70
TTHHO180
TTHHO190
TTHHOZ200
TTHHO210
TTHHO220Q
TTHHE230
TTHHO240
TTHHO250
TTHHO260
TTHHO270
TTHHOZ280
TTHHOZ9N
TTHHO300
TTHHO310
TTHHO320
TTHHO330
TTHRO3440
TTHHO350
TTHHO360
TTHHO370
TTHHO 380
TTHHO390
TTHHO400
TTHHOW10
TTHHOB20
TTHHOL30
TTHHOL4D
TTHHC450
TTHHO46D
TTHHOU70
TTHHOL 80
TTHHOL4SG
TTHHOEOD
TTHHOB10
TTHHOS320
TTHHGS30
TTHHOS40



R{JJIZR{JJ)+SUMXDELTA
IK=IKS
DO 35 I=1TJSrKK
RA(IK)SRA{IK)Y+SUM*RA(T)

35 IK=IK+1i

4 IKSSIKSHK

100 IJS=KK+1

c

RETURN
END

77-26
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TTHHOS50
TTHHOS560
TTHHOST0
TTHHOSA0
TTHHO590
TTHHOG&00
TTHHO610
TTHHC620
TTHHO630
TTHHO640
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SUBROQUTINE TZERO (ReNsISeIF)

TZEROQD10

TO ZERO OUT RoOWS TS (ISTART) TO IF (IFINAL) OF A VECTOR TZEROD20
STORED UPPER TRIANGULAR MATRIX TZERQO30
T7EROO4Q

R{N*{N+1)/2) INPUT VECTOR STORED UPPER TRIANMGULAR MATRIY TZERGO50

N DIMENSION OF R TZERDD60

Is5 FIRST ROW OF R THAT IS TO RE SET 70 ZERO T7EROG70

IR LAST ROW OF r THAT IS To BF 5ET To ZERO TZEROQQBO
TZEROD90

COGNIZANT PERSONS: G.J.BIERMAN/C.F.PETERS (JPL» NOV, 1975) TZERO1GD
TZERD110

IMPLICIT DOURLE PRECISION (A~H,0-2) TZERO120
DIMENSION R(1) TZERO130
TZEROC140

ZERO=0.0 TZERQ150
IJSZIS*(1IS=~1)/2 TZERO0160
DO 10 I=IS»IF T7EROL70
IJSSIJS+I T7ZERO180
IJ=1ds TZ7ERQ190
DO 10 J=IN TZERGZ200
R{IJ)=ZERO TZEROZ210
IJd=Id+y TZERO220
10 CONTINUE TZER0230
TZERO240

RETURN T7EFRO250
END TZERO260

85
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SUBROUTINE UDMES (UsNsRrA?G2ALPHA)

COMPUTES ESTIMATE AND U~D MEASUREMENT UPDATED
COVARIANCE» PZ=UDU*xT

*k¥ INPUTS *xk

U UPPER TRIANGULAR MATRIX» WITH D ELEMENTS STORED AS THE
DIAGOMAL. U IS VECTOR STORED AND CORRESPONDS TO THE
A PRIORI COVARIANCE, IF STATE ESTIMATES ARE COMPUTED,
THE LAST COLUMN OF J CONTAINS X,
DIMENSION OF THE STATE ESTIMATE.

UDMES010
UDMES020
UDMES (30
UDMESO40
UDMESOS50
UDMESO060
UDMES070
UDMESO080
UDMESO90
UDMES100
UDMES110
UDMES120
UDMES130

VECTOR OF MEASUREMENT COEFFICIENTS, IF 'DATA THEN A(N+1)=ZUDMES140

N
R MEASUREMENT VARIANCE
A
A

LPHA IF ALPHA LESS THAN ZERO NO ESTIMATES ARE COMPUTED
(AND X AND Z NEED MoT BE INCLUDED)

ks QUTPUTS *kk%

U UPDATEDr VECTOR STORED FACTORS AND ESTIMATE AND
UCIN+1)Y (N+2)/72) CONTAINS {(Z~aA*xTxX)

ALPHA INNOVATIONS VARIANCE OF THE MEASUREMENT RESIDUAL
G VECTOR OF UNWEIGHTED KALMAN GAINS, K=G/ALPHA
A CONTAINS U*+TA AND {(Z=-A#¥T*X)/ALPHA

COGNIZANT PERSONS! G.J. BIERMAN/M,W. NEAD {(JPL, SEPT.1976)

IMPLICIT DOUBLE PRECISION (A=H,0=2)
DIMENSION U(1)y ACL)» G(1)

DOUBLE PRECISIOM SUM

LOGICAL IEST

ZERO=0.0

IEST=-FALSE.

0”E=lo

NP1=p+1

NTOT=N*:NPL/2

IF (ALPHAWLT.ZERO) 60 TO 3

sUmMz=4a (NP1)

DO 1 J=1sN
SUMSSUM=A (J) *U(NTOT+J)

UCNTOTHNPL1)=SUM P Z=Z-AxxT4X

JEST=+.TRUE.

KJ=NTOT
0O 10 J=hr2r=1
SUM=A{(J)
JMiz=J=-1
DO 5 KaJdMirl,—-1
KJd=kd=-1
SUMSSUM+ 1 (KJ) %A (K)
A (J)=5UM
KJ=KJ=1
G{JY=SUM*U(KJ+J]) "

UDMES1S50
UDMES160
UDMES170
UpDMES180
UDMES190
UpDMES200
UDMES210
UpMES220
UDMES230
UpMES240
UDMES250
UDMES260
UDMES270
UnMESZ280
UpMES290
UDMES300
UDMES310
UpMES320
UDMES330
UDMES340
UNMES350
UDMES360
UPMES370
UDMES380
UDMES390
UDMESH400
UDMES410
UDMES420)
UDMESH30
UDMESLH0
UDMESH450
UDMESS60
UDMESSH70
UNDMES480
UpMES49Q
UDMESS00
UDMESS10
UDMESS20
UDMESSE30
UDMESS540
UDMESES0
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6{1I=UCL)I*A(1)

ASUx%T*A AND G=D¥ (U¥xT*A)

SUMZR+G(1)*A (1)

GAMMA=Q

IF (6(1).EQ.ZERO) GO TO 11l
GAMMA=ONE/SUM
UL1)=U (1) *R*GAMMA

KJ=2
DO 20 J=2+N
BETA=SUM
SUMSSUMHG {J)Y =A ()
P==A(J)xGAMMA
JMl=J~-1
DO 15 K=1edM1
STUKJD
U{KJI=S+PxG (K}
GIKI=G(KI+G (U %S
KJd=KJ+1
IF (G{J).EQ.ZERD) GO TO 20
GAMMA=ONE /SUM
JIKJ)FU(KJ) *BETAXGAMMA
KJzKJ+1
ALPHASSUM
EGN. NOS.
IF (JNOT.IEST) RETURN
ACWPLYSU (NTOT+MPL) *GAMMA
DO 30 J=I1eN

UINTOT+J) =UINTOT+I) +6 (JY A (NPL)

RETURN
END

77-26
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REFER TO BIERMAN'S 1975 CDC PAPER.

87

Sum{1)
® FOR R=0 CASE
@ FOR R=0 CASE

D(1)

BETA=SUM(J=1)
SumMJ)
P=<F{J)*(1/5UM(J=1})) E@n(21)

EQn(22)
EQu(23)

s FOR R=0 CASE

GAMMA=L /SUM (J)
D{y) EaN{19)

PP, 337-34gp.

UDMESS60
UDMESS70
UDMESS80
UNMESS30
UDMES600
UpMES610
UDMES620
UDMES630
UDMES6H0
UDMES650
UDMESE60
UDMESE70
UDMES6E80
UDMESE90
UpMEST00
UDMEST10
UDMEST720
UDMEST30
UDMEST40
UDMEST750
UDMES760
UDMEST770
UDMEST80
UDMES790
UNMES800
UNMES810
UpMESS820
UDMESB30
UDMESA40
UDMESR50
UDMESS860
UDMES870
UDMESRS0
UDMESB30
UNDMESS00
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SUBROUTINE UD2COV {(UIN(POUT!N)

TO OBTAIN A COVARIANCE FROM 1TS U-D FACTORIZATION, BOTH MATRICES
ARE VECTOR STORED AND THE QUTPUT COVARIANCE CAN OVERWRITE THE
INPUT U=D ARRAY. UINzU=D IS RFLATED TO POUT VIA POUT=UDU(*%T)

UIN{N*(N+1)/2)
ENTRIES STORED ON THE DIAGONAL OF UIN

POUT (N*(N+1)/72) OUTPUT COVARTANCE+s VECTOR STORED.
(POUTZUIN IS PFRMITTED)

N DIMENSION OF THE MATRICES INVOLVED

COGNIZANT PERSONS: G.J.BIERMAN/M.W.NEAD (JPLes FEB. 1977}

IMPLICIT DOUBRLE PRECISION (A=H,0=Z)

DIMENSION UIn(1) POUT (1)
POUT({1)=UIN{I}
JJ=1
RO 20 J=2¢N
JulzJdd
JI=JJd+d
POUT (JJIZUIN(JI)
S=POUT(JJ)
1I1I=0
JMiSJ=1
DO 20 I=1lsJM1
1I=I1+1
ALPHA=S*UIN(JJL+T)
IK=I1
DO 10 K=I,JM1
POUT(IK) =PQUT{ TK) +ALPHAxUIN (JJULAK)
IKZIK+K
POUT (JJL+I)=ALPHA

M (J=1rd=1)

B JJL+I=(1,J)

B JIL+K=(K,sJ)

RETURN
END

88

INPUT U=D FACTORSe VECTOR STORED WITH THE D

Uun2co010
un2cooae
Un2con3o
Un2coo40
un2Cco050
un2coosn
Un2coo7o
Unzcooso
Un2¢coo9n
Un2co100
un2co1io
un2co120
Una2co13o
unz2coiao
Uh2C0150
un2co160
Unaco17o
Un2co180
Ln2co13s0
Un2C0200
unzco2lo
una2co220
unzco23o
unzco2u0
Un2co250
unzcoz2en
unacoz7o
uUna2co2a0
unzcoz290
Upz2co3oo
un2Co31io
unz2co324a
Un2co33o
un2co3an
up2co3sg
Unz2co3a0
unzaco3ro
Unz2CO0380
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SUBROUTINE UD2SIG(UsN,SIGrTEXT,NCT)
COMPUTE STANDARD DEVIATIONS (SIGMAS) FROM U=D COVARIANCE FACTORS
UIN*(N+1)/2) INPUT VECTOR STORED ARRAY CONTAINING THE U~D

FACTORS. THE D (DIAGONAL) ELEMENTS ARE STORED
ON THE DIAGONAL

SIGnN) VECTOR OF OUTPUT STANDARD DEVIATIONS

TEXT( ) ARRAY OF FIELDATA CHARACTERS TO BE PRINTED
PRECEDING THE VECTOR OF SIGMAS

NCT . NUMBER OF CHARACTERS IN TEXTr 0J.LE.NCT.LE.126

IF NCT=0r NO SIGMAS ARE PRINTED
COGNIZANT PERSONS! G.J.BIERMAN/M,W.NEAD {(JPL,» FEB. 1977)

IMPLICIT DOUBLE PRECISION (A=H,0-=2)
INTEGER TEXT(1)
DIMENSION U{1), SIG(1)

JJ=1
sie{1i=u(l)
DO 1o J=2/N
JUL=Jdd R (J=1lsJ=1)
Jd=Jddtd
S=utud)
SiG{Ji=s
JM1=J=1
DO 10 I=1.dM1
SIGIII=SIG(IY+SxU{JJIL+T )%z

WE NOW HAVE VARIANCES

DU 20 J=1N
SI16(J)=5QRT(SIG(J))

IF (NCT.EQ.0) GO TO 30D

NC=NCT/6

IF (MODI(NC+6).NE.O) NCINCH1

WRITE (6,40) (TEXT{IY»I=1eNC)

WRITE (6¢50) (SIGLIXYrIZ1eN)

RETURN

FORMAT (1HO2X.21A6)

FORMAT {(1HOr(6D18.10))
END

89

Unaslolo
up2s1ozo
Up2SI030
Unasiogo
Un2s1ioso
Un2SIoa0
Un2sio7o
up2siogan
Up2SI0%0
Up2SIi00
Up2sIiic
Unasiizo
Un2sI1130
Un2sIi40
Up2s1150
Un251160
Un2sIi7e
Una2sIigo
uUnas1199d
up2sizno
Up2siaio
un2s1220
Un2s1230
una2sia2uo
unasia2sso
Un2sizeo
Un2s1270
unasIizao
Un281290
Unz2s1300
Unasi3io
unzsi3ao
Un2sI330
Un2s81340
Un2s1350
Un2sI360
Un2sSI37a
Up251380
Un2si3o
Up2sisoo
Unasiaio
Un2sis2o
Un2si430

Un2sI4us
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SUBROUTINE UTINV(RINsNsROUT)

To INVERT AN UPPER TRIANGULAR VECTOR STORED MATRIX AND STORE
THE RESULT IN VECTOR FORM, THE ALGORITHM IS S0 ARRANGED THAT
THE RESULT CAN OVERWRITE THF INPUT.

IN ADDITION To SOLVE RX=z, SET RIN(N*(N+1)/2+1)=Z(1)s ETC.:s
AND SET RIN({N+1)*(M+2)/2)=~1. CALL THE SUBROUTIME USING N+1
INSTEAD OF Ne. ON RETURN THE FIRST N ENTRTES OF COLUMN N+1

WILL CONTAIN X

RIN{N*(N+1)/2)
N MATRIX DIMFNSION
ROUT(N*{N+1)}/2) OUTRPUT VECTOR STORED UPPFR TRIANGULAR MATRIX

INVERSE

COGNIZANT PERSONS! 6G.J.BTERMAN/JLELLIS (JPLe SEPT. 1976)
DOUBLE PRECISION RIN(1L)» ROUT(1)r WORK»

DATA ONE/1.0D0/.ZEROQ/ 0,000/

ONFe ZERO »DIN

PV = N*(N+1)/2
IN = IPV
DO & I=1:N

IF (RIN(IPV).NE.ZERO) GO TO 1
WRITE {(6+10) I

RETURN

DIN = ONE/ RIN(IPV}
ROUT( IPV } = DIN

MIN =N

KEND = I=1

LANF = N = KEND

IF {(I1.EQ.1) GO To 5

J= IN

INITIALIZE ROW LOOP

Do 4 K=1rKEND
WORK =ZEROQ
MIN= MIN - 1
LIN= IPV
LOT= J

START INNER tOOP
DO 3 L=LANF»
LIN= LIN+L
LOT= LOT+1
WORK = WORK
ROUT(J) =
J=  J= MIN
IPV = IPV =MIN
INZ IN =1
RETURN
FORMAT (1HO»10Xr 'UTINV DIAGOMNAL ' I4»'IS ZEROY)
END

MIN

+ RIN(LIN)* ROUT(LLOT)
-~WORK* DIN

90

INPUT VECTOR STORED UPPER TRIANGULAR MATRIX

UTINVO10
UTINVO20
UTINVO30
UTINVOLD
UTINVOSO0
UTINVOGD
UTINVOTO
UTINVOSO
UTINVOSO
UTINVIOD
UTINVIL1O
UTIMNVIZ2O
UTINV13O
UTINVI&O
UTINV1EO
UTINVIiAEO
UTINV1TO
UTINV1AO0
UTINV1IOO
UTINV200
UTINV210
UTINV220
UTINV230
UTINVZ240
UTINVZ250
UTINV260
UTINVZ2T70
UTINV28B0
UTINVZ2SD
UTINVIO00
UTINV310
UTINV320
UTINV33Q
UTINV340
UTINV3SO
UTIMV360
UTINV370
UTINV380
UTINV390
UTINVUOO0
UTINVELD
UTINV420
UTINVL3ED
UTINVELD
UTINVLSO
UTINVE6D
UTINVLT0
UTINVGAD
UTInNV4SH
UTINVS00
UTINVE10
UTINVS20
UTINVS30
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UTIROW (RIN'NsROUTNRY)

TO COMPUTE THE INVERSE OF AN (IPPER TRIANGULAR (VECTOR STOREN}
MATRIX WHEN THE LOWER PORTION OF THE INVERSF IS GIVFN

r

ON INPUT?
RX RXY * * RY RXY
RIN= ROUT= WHERE R=
* * 0 RYdkkm] ¢ 0 RY

ON QUTPUT: RIN IS UNCHANGER AND ROUT=R#x=1
t THE RESULT CAN OVER=WRITE THE INPUT (I.F. RIN=ROUT)}

RIN(N*(N+1}/2) INPUT VECTOR STORED TRIANGULAR MATRIX

THE BOTTOM NRY ROWS ARE IGMORED

MATRIX DIMFNSION

QUTPUT VECTOR STORED MATRTIX. ON INPUT THE

BOTTOM NRY goOWS CONTAIN THE LOWER PORTION

OF Rx**wl, ON QUTPUT ROUT=R*%=1

NRY DIMENSTION nF LOWER (ALREADY INVERTED)
TRTIANGULAR R. IF NRY=O, ORDINARY MATRIX
IMVERSION RESULTS.

N
ROUT{N*(N+1}/2)

COGNIZANT PERSONS? GaJBIERMAN/M.W.NEAD (JPL MARCH 1977)
DOURLE PRECISION

DATA

RIN(1}+ RoOuT(1)» SUmMes ZERO» ONEs DINV
ONE/1.00/y ZEROQ/0.D0O/

INITIALIZATION

NR=N*x(N+1)} /2 ®w MO. ELEMENTS IN R
ISTRT=N-NRY & FIRST ROW 70O BE INVERTED
IRLST=ISTRT+1 % IRLST=PREVIOHS TROW INDEX
ILZISTRT*IRLST/2 W II=DIAGONAL

DO 40 IROWSISTRT,1.-1
IF (RIN(II).NE,ZERO) GO TO 1n
WRITE (6050) IROW
RETURN
CINVZONE/ZRTIN(IT)
ROUT(ITI=DTINY
KJS=NR+IROW
IKS=II+IROW

B KJ{START!
@ IK(START)

IF (IRLST.GT.N} GO TO 35
CO 30 J=NrIRLSTr=1
KJS=KJS=J
SUMZZERO
IK=ZIKS
KJ=KJS

DO 20 K=IRLST+d
Kd=KJ+1
SUMZSUM+RIN(IKY*ROUT (K

91

UTIROO10
UTIROO20
UTIROO30
UTIROO4D
UTIRCOS0
UTIROO060
UTIRO07O
UTIROOSD
UTIRQO90
UTIRO100
UTIRO110
UTIRG120
UTIRC130
UTIRO140
UTIRO150
UTIRO160
UTIROL70
UTIRO180
UTIRO1ISO
UTIRO200
UTIRO210
UTIROZ220
UTIRO230
UTIR0240
UTIR0250
UTIRO260
UTIR0270
UTIR0280
UTIRO290
UTIRO300
Uriro31o
UTIRG320
UTIRO330
UTIRO340
UTIRO0350
UTIRC360
UTIRO370
UTIPO380
HUTIR0330
UTIRO400
UTIROLID
UTIRO420
UTIRO430
UTIRO440
UTIRO450
UTIROU46K0
UTIROWTO
UTIROURO
UTIROHSO
UTIRO500
UTIROS10
UTIROS520
UTIRO530
UTIROS40


http:ZERO/O.DO
http:ONE/1.DO

20

30
35
40

50 FORMAT (1HO»10XeyRIN DIAGONALY,I4,*IS ZEROM)

IK=IK+K

ROUT{KJS )} ==SuM*DINV
IRLST=IROW
II=II-IROW
RETURN

END

77-26
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UTIRO550
UTIRO560
UTIRO570
UTIRO580
UTIROSS0
UTIRO600
UTIRC610
UTIR0620
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SUBROUTINE W6S (W IMAXWeIWsJWaT2UsV) w6500010
MODIFIED GRAMM=SCHMINT ALGORITHM FOR REDUCING WDW (#xT) TO UnU (+»T }WGS00020
FORM WHERE U IS A VECTOR STORED TRIANGULAR MATRIX wITH THE wasS000340
RESULTING D FLEMENTS STORE ON THE DIAGONAL wGS000uD
WGS00050

WlIwedw) INPUT MATRIX To BE REDUCER To TRIANGULAR FORw, WGSNo0s60
‘ THIS MATRIX I§ DESTROYED BY THE CALCULATION - wWeSN0070
IeLE.IMAXW, - WGSN00RD

piIw) VECTOR OF NON~NFGATIVE hEIGHTS FOR THE WeSnonoo
ORTHOGONALIZATION PROCESS. THE D'S ARE UNCHANGED  WGS00100

BY THF CALCULATION. WG6S00110

pOIWx{IW+11/2) OUTPUT UPPER TRTANGULAR VECTOR STORED OQUTPUT ¥es00120
vidw) WORK VECTOR WGSN0130
WASNGIL0
{(SEE ROOK:? Wesnoiso

' FACTORTIZATIOM METHODS FOR HISCRETE SEQUENTIAL ESTIMATION WES00160
B8Y G.J.B8IERMAN) Wasnal17o

ESTIMATION WGSDO1ARD
¥GSNa199

COGNIZANT PERSONS: G.J.BIERMAN/M.WJ.NEAD (JPLs MARCH 1977) Weson200
i wWGs00210

IMPLICIT DOUBLE PRECTSION (A<H,0-Z) wesSn0220
DIMENSION WOIMAXwel)e D{1)y» U{1)s V(1) waSnO23an
WGS00240

2=0.0 WGSH0250
ONE=140 W3S00260
D0 100 J=Iwels=l WG6S00270
SUM=Z ¥GS00280
DO 40 K=1ledW wG5500290
VIKIZW{JrK) WGS00300
U(KISD (K %V(K) MU HERE IS USED AS A WORK VECTOR WGSD0310
SUMZV (K ) *U (K)+5UM WeS00320
WlJdeJ)=5UM M EQ.{(4.9) OF BOOKs NEW C(JS) WGSN0330
IF {(J.EQ.1) 60O TO 100 YeS00340
DINV=Z ¥6500350
IF {SUM«GT«2) DINV=ONE/SUM WGSN0360
JMiz=J=-1 wesS00370
DO 70 K=l,Jdul WESN0380
suM=2 W5500390

No 50 1I=1,J¥ WsSno4nn
SUMSWIK» T1+U(T)+SUM WGS00H10
SUMZSUMKD INY WGS00420
We500430

DO B0 I=1sJ¥W WGSNoLUY0
WKy II=W (K I)=SUM*Y(T) WESNE4So
WlJrKI=SuUM R EQ.(4.1n) OF BOOK WES00LAD
CONTINUE @ UlKrJ)} STORED IN WlJWK) wGSN0470
WGS00480

THE LOWER PART OF W IS U TRANMSPOSE WGSNoLkaOD
WGSNOS00

1J=0 wWGS00510
PO 110 J=1/,1W WESN0520
PO 110 I=1l.d WGSNOK3N
TJ=IJd+1 WGSNDS40
UlTJ)=wids 1) WESANS50
wGSNOSA0

RETURN 93 WGSHO%?0

END i WGESNOSAD


http:EQ.(4.ln
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