
N A S A TECHNICAL

MEMORANDUM

CM

CO

><

NASA TM X-3512

EFFECT OF VIRTUAL MEMORY
ON EFFICIENT SOLUTION
OF TWO MODEL PROBLEMS

Jules J. Lambiotte, Jr.

Langley Research Center
Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JULY 1977

https://ntrs.nasa.gov/search.jsp?R=19770021886 2020-03-22T07:59:41+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42877797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Report No.

NASA TM X-3512

2. Government Accession No.

4. Title and Subtitle

EFFECT OF VIRTUAL MEMORY ON EFFICIENT SOLUTION

OF TWO MODEL PROBLEMS

7. Author(s)

Jules J. Lambiotte, Jr.

9. Performing Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546

3. Recipient's Catalog No.

5. Report Date

July 1977

6. Performing Organization Code

8. Performing Organization Report

L-11UQO

No.

10. Work Unit No.

505-15-37-04

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Computers with virtual memory architecture allow programs to be written as if
they were small enough to be contained in memory. Two types of problems are inves-
tigated to show that this luxury can lead to quite inefficient performance if the
programer does not interact strongly with the characteristics of the operating
system when developing the program. The two problems considered are the simulta-
neous solution of a large linear system of equations by Gaussian elimination and
a model three-dimensional finite-difference problem. The Control Data STAR-100
computer runs are made to demonstrate the inefficiencies of programing the prob-
lems in the manner one would naturally do if the problems were, indeed, small
enough to be contained in memory. Program redesigns are presented which achieve
large improvements in performance through changes in the computational procedure
and the data base arrangement.

17. Key Words (Suggested by Author(s))

Virtual memory
Page faulting
Linear equations
Data management
Vector computers

19. Security Ctassif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

Subject

20. Security Classif. (of this page) 21 . No. of Pages

Unclassified. 12

Category 61
22. Price*

$3.50

* For sate by the National Technical Information Service, Springfield. Virginia 22161

EFFECT OF VIRTUAL MEMORY ON.EFFICIENT SOLUTION OF TWO MODEL PROBLEMS

Jules J. Lambiotte, Jr.
Langley Research Center

SUMMARY

Computers with virtual memory architecture allow programs to be written as
if they were small enough to be contained in memory. Two types of problems are
investigated to show that this luxury can lead to quite inefficient performance
if the programer does not interact strongly with the characteristics of the
operating system when developing the program.

The two problems considered are the simultaneous solution of a large linear
system of equations by Gaussian elimination and a model three-dimensional finite-
difference problem. The Control Data STAR-100 computer runs are made to demon-
strate the inefficiencies of programing the problems in the manner one would nat-
urally do if the problems were, indeed, small enough to be contained in memory.
Program redesigns are presented which achieve large improvements in performance
through changes in the computational procedure and the data base arrangement.

INTRODUCTION

The introduction of virtual memory into computer architecture can be viewed
as a mixed blessing. On the one hand, it eliminates the requirement that the
programer explicitly bring data from backing store into fast memory. The oper-
ating system does this automatically whenever a piece of data which does not
reside in fast memory is referenced; this is particularly helpful where "small"
problems are ultimately made "big" by changing a few parameters in the program.
In this situation, the tedious job of adding new software becomes unnecessary.
On the other hand, it is easy to demonstrate programs which are quite ineffi-
cient in a virtual memory system once they become large.

The inefficiency can stem from several sources:

(1) Careless programing; Often minor changes in the order in which data
are accessed and quantities are computed can have significant effects in reduc-
ing paging.

(2) Use of an inefficient algorithm: The most popular algorithm for a prob-
lem which is small enough to be contained in memory can be quite inferior to an
algorithm carefully designed for a virtual memory system.

(3) Inefficient data base layout: The natural way to organize data in a
program can be quite inefficient in that it can require, depending upon the page
size selected, a large amount of unneeded data to be brought into memory. The
effect is also, of course, to force data out that may be needed in a subsequent
calculation.

This report describes the effect of virtual memory upon the efficient
implementation of two types of problems:

(1) The solution of Ax = b by Gaussian elimination

(2) The solution of partial differential equations by means of finite-
difference equations

The first problem demonstrates the advantage of using an algorithm designed
specifically for a virtual memory system. The second problem demonstrates the
effect on paging of an inefficient (but natural) data base layout. Instances of
minor programing changes which can cause significant paging reduction are pointed
out in the discussion of both problems.

The computer model used is the Control Data STAR-100 computer. The diffi-
culties a virtual system can present are particularly evident herein because of
the limited selection of page size and because the speed of the STAR-100 central
processing unit (CPU) makes inefficiency in the input/output (I/O) all the more
noticeable. Timings from programs executed on this computer are given to quan-
tify the concepts in this report.

STAR-100 VIRTUAL MEMORY SYSTEM

The Control Data STAR-100 computer at the Langley Research Center has a
main memory of 524 288 64-bit words. The two page sizes are "small" pages con-
taining 512 64-bit words and "large" pages containing 65 536 words (128 small
pages). Main memory contains eight large pages and since the system requires
nearly a large page, the user has about seven large pages of code and data in
memory at any one time.

When a reference is made to an address which is not contained on a page
currently in memory, the system will automatically replace one of the current
pages with the desired page. This data movement is termed a "page fault." The
page to be removed is selected by the system using a procedure called the "least
recently used" (LRU) paging procedure. It determines that the page to be
removed from memory is the one which has had the longest time since it has been
referenced.

The choice of page size is very important and can affect program perfor-
mance dramatically. The time required to transfer the two different size pages
of data from disk to memory is analogous to computation on the STAR-100 with
short and long vectors. There is a start-up time for the disk to locate and
position itself to transmit the needed page. This start-up is the same for both
small and large pages. Thus, a large page of 65 536 words of data is brought in
with only one start-up, whereas there are 128 start-ups if small pages are used.
Numerical experiments, discussed later, show that large pages are transmitted at
about 200 000 words per second, whereas small pages are transmitted at about
10 000 words per second. Although it is clear that it is desirable to obtain
the faster transfer rates associated with large pages, this report demonstrates
that it is necessary to consider the interaction of the page size with the com-

putational algorithm, the data base arrangement, and the paging algorithm in
order to achieve an efficient implementation.

SOLUTION OF SIMULTANEOUS EQUATIONS

The solution to the N x N system of equations Ax = b can be obtained
through the factorization of the N x N matrix A as A = LU where L is a
unit lower triangular matrix and U is an upper triangular matrix. Then, solu-
tion x is obtained by solving Ly = b and Ux = y. There are many variants
to this procedure which is commonly called Gaussian elimination. One such fac-
torization procedure is described herein. The pivoting strategy which is usu-
ally included for numerical stability has been omitted but is discussed later in
the report.

Algorithm A1 :

(a) For J«-1,2, ...,N-1

(b) For I«-J+1 ,J+2 N

(c) For K«-J+1,J+2, . .. ,N

(d) For I«-J+1,J+2,...,N
A(I,KHA(I,K)-A(I,J)*A(J,K)

When describing the algorithm, it is said that at step (b), the Jth column of L
is computed, and at step (d) , the Kth column of A is modified. Note that
L(I,J), I = J + 1, J + 2, .. ., N, and U(J,K), K = J, J + 1 N, are stored
back into the corresponding locations of A. The matrices A, L, and U are
all stored columnwise and the vectorization is accomplished by collapsing the
DO loops at step (b) and at step (d). For more details, see reference 1.

The paging for this algorithm can be determined quite easily since the data
are accessed in a sequential manner which allows the interaction with the LRU
paging procedure to be predicted. To derive equation (1), assume N^ exceeds
S, the available storage, and that N equals the page size. In this case,
every column of A resides on a different page. Now, referring to algorithm A1
when J = 1, column 1 of L is computed and used to modify columns 2 to N.
Assume M columns of A will fit into memory. Hence, an attempt to modify col-
umn M + 1 causes a page fault and the LRU paging procedure selects the page con-
taining column 2 to be removed. Similarly, when column M + 2 is modified, col-
umn 3 is removed. After all N - 1 columns have been modified, the algorithm
proceeds to J = 2 and references columns 2 to N, sequentially. It is clear
that each reference to a column to be modified requires a page fault. At the
Jth step, there are N - J + 1 columns referenced. Each reference gives a page
fault except that there are no page faults for the last S/N steps since during
those steps the submatrix of A fits into memory. The number of column refer-
ences is

MS/N) N2 _ (S2/N2)
>> (N - i + 1) * - -

1=1 2

This quantity can be converted to page faults for general N by

N2 . (S2/N2)
F-| = p - - (1)

where p is the number of pages required for each column. The. value of F^
can be extraordinarily large; for example, for N = 1000, S = 450 000, and
p = 1000/65536, F-j = 12 170 large page faults. This would require about
60 minutes of I/O time for a problem which would require only about 45 seconds
of CPU time on the STAR- 100.

Consider another approach to Gaussian elimination. Since the multipliers
L(I,J) are saved at each step, one could compute M columns of L without ever
referencing columns M + 1, M+2,..., N and then do M modifications to column
M + 1, then M modifications to M + 2, and so forth. The advantage of this tech-
nique is that after computing M columns of L and modifying columns M + 1 ,
M + 2,..., N, M steps of Gaussian elimination have been completed and there are
only N references to columns not in memory; however, the usual algorithm would
have made (NM - M̂)/2 at this point. To describe the procedure, partition N
into i blocks, each consisting of M columns.

Algorithm A2;

(a) For II-<-0,1 JM
C FACTOR THE NEXT M COLUMNS

(b) For J«-II*M+1,II*M+2,...,II*M+M

(c) For r*-J+1,J+2,...,N

(d) For K«-J+1,J+2,...,II*M+M

(e) For I«-J+1,J+2,.. . ,N
A(I,K)<-A(I,K)-A(I,J)*A(J,K)

C MODIFY THE REMAINING COLUMNS OF A

(f) For K«-(II+1)*M+1,(II+1)»M+2,...,N

(g) For J«-II»M+1>II«M+2,...,II»M+M

(h) For I<-J+1,J+2,...,N
A(I,K)<-A(I,K)-A(I,J)*A(J,K)

Note that steps (b) to (e) are similar to the usual algorithm except that only
M columns of L are being computed; steps (f) to (h) then apply all of those

M modifications to each of the remaining columns. This algorithm is similar in
intent to an algorithm described by Pavkovich (ref. 2'), which was designed for
use with magnetic tape as a backing store for systems too large to be contained
in central memory.

The number of page faults for algorithm A2 is sensitive to the choice of M.
The value of M should be chosen as large as possible but under the constraint
that no portion of the M columns in the block factored in steps (b) to (e) will
be paged out during the subsequent modification of the remaining columns in
steps (f) to (h). This implies that the choice of M should leave room for two
pages of columns to be modified so that the LRU paging procedure will remove a
page of previously modified columns when it needs to bring in the next page of
columns. Roughly, this says that for large pages, NM should be about 250 000
or less.

Under these assumptions, compute the page faults F^ as follows: Let
H = N/M be the number of blocks. At the ith step of 5,, there are N - M(i - 1)
column references requiring paging. Hence,

JL. r , -, N + M
FM = P 2- LN * M(i - 1)J = P £ (2)

Using equation (1) to compare F-\ and F^ gives

F1 N2 - (S2/N2)

FM ". (N

Now, assume S « NM,

(3)

Table I shows some paging results of runs for the two algorithms on the
STAR-TOO. The page faults are for the entire test program which includes page
faults not associated with the kernel algorithms described here. However, the
great difference between the two algorithms is clearly demonstrated. (There is
a factor of 30 at N = 750.)

For simplicity, the pivoting strategy for the algorithms has been omitted,
but mention should be made about its implementation which directly affects the
number of page faults. The point is more simply made with reference to algo-
rithm A1. Prior to step (b) for algorithm A1, one must search column J, diago-
nal and below, for the maximum element in absolute value. If this occurs in
row IP, then rows J and IP are interchanged. Note that, however, if one per-
forms the row interchange prior to proceeding to steps (b) to (d), twice the
number of page faults given by F-j are generated since the interchange requires
indexing through the entire array A. The correct way to proceed is to inter-
change elements J and IP of column K between steps (c) and (d). This forces
column K into memory. Then modify column K as in step (d) and proceed to col-

umn K + 1. The value for F-\ is still valid with this approach and similar
modifications can be made for algorithm A2.

TABLE I.- COMPARISON OF PAGE FAULTING IN REGULAR

AND BLOCK GAUSSIAN ELIMINATION

N

600
625
650
700
750
800
850
900

Algorithm A1 (regular)

Large page faults

15
17
17

691
1350

Algorithm A2 (block)

Large page faults

15
17
18
37
45
50
65
72

Block size

400
300
300
300
250
250

SOLVING LARGE FINITE-DIFFERENCE PROBLEMS

One of the most efficient uses of the STAR-100 computer is the solution
of partial differential equations by finite-difference techniques in which an
explicit approximation to the equations is made. This use leads to an implemen-
tation in which the vector lengths can be as large as the number of mesh points;
thus, efficient use is made of the vector instructions of the computer. How-
ever, if the problem is programed as one might naturally do for a problem size
which does not exceed available memory, extreme paging inefficiencies can result
if the problem size is expanded so that its data base cannot be contained in
memory.

A reasonable I/O goal in program design would be that data be referenced
so that once the data are paged into memory during a particular iteration, all
computations for that iteration involving data on that page are performed before
it is paged out again. If this is achieved, then the total number of words
paged in per iteration is the size of the data base. However, it is easy to
demonstrate that for the STAR-100 large page size, the usual data base arrange-
ment can lead to far more I/O activity than this. To illustrate, consider as a
model problem a three-dimensional finite-difference grid consisting of NLAY
planes each of size NSZ with NV variables Vj (I = 1,2,...,NV) required at each
point with the data flow for one iteration or time step shown in figure 1. The
usual data base (UDB) design is indicated in figure 2 where NSZ = 10 000,
NLAY = 50, and NV = 20. The 500 000 words reserved for each variable require
about eight large pages and, as shown in the figure, each variable at a level L
resides on a separate large page. Since only seven large pages can be in memory
at any one time, any computation for Vj which involves seven or more other
variables must result in extra paging. The paging increases as a function of the

Figure 1.- Model problem program flow.

number of variables involved in the computation and the number of times each is
referenced. In fact, when computing Vj at level L, it is possible for each
reference to any of the other variables at that level to require a page fault.

The excessive paging results from the fact that whereas only the 10 000
words associated with some Vj at level L are required, an additional 55 536
unusable words are paged in also. These additional words affect the I/O time
in two ways:

(1) They increase the I/O time because the unneeded pieces of data repre-
sent about 85 percent of the data transferred during each page fault.

(2) More importantly, they increase the subsequent I/O activity since the
unwanted data reduce the effective size of memory to only 7*NSZ locations.

A solution to the problem is to have an interleaved data base (IDE) design
where Vi at level 1 is stored, followed by ^2 a^ level 1, followed by V^
at level 1, and so forth, until all NV variables at level 1 are exhausted. Then
level 2 data are stored and so forth. For the model problem, for instance, the
200 000 memory locations required for all variables at a particular level would
require only about three large pages and, unlike the UDB design, once paged in

DIMENSION VI(10000,50),V2(10000,50),...,V20(10000,50)

pages

pages

pages

Level 1

Level 2

•

•

•

Level 50

Level 1

Level 2

•

•

•

Level 50

•

•

•

Level 1

Level 2

•

•

•

Level 50

Variable 1

Variable 2

Variable 20

Figure 2.- Usual data base for NV = 20 and NLAY = 50.

would remain in no matter how much computation is required with each variable at
that level. This arrangement is illustrated in figure 3- The difficulty with
using this approach lies in the implementation. How does one conveniently store
and reference the data with this organization? In FORTRAN, the desired data
storage can be obtained by the DIMENSION statement (for the model problem)

DIMENSION A(10000,20,50)

Then, if the programer wishes to reference Vj(J,L), he specifies A(J,I,L).
Although this approach does work, there are several drawbacks:

(1) This type of reference is awkward and makes the program hard to write
and even harder to read. For instance, the name of an array such as DENS(J,L)
for density makes debugging much easier and is more meaningful later than a ref-
erence such as A(J,I,L).

8

DIMENSION A(10000,20,50)

A(l,20,2)-

VI Level 1

V2 Level 1

V20 Level 1

VI Level 2

V2 Level 2

V3 Level 2

V20 Level 2

VI Level 50

V2 Level 50

V3 Level 50

V20 Level 50

T
3

pages

3
pages

T
3 -

pages

Figure 3.- Interleaved data base for NV = 20 and NLAY = 50.

(2) Many problems start out "small" and become "large" through the change
of a few parameters. A programer not expecting the problem to become large is
not likely to go to the extra effort of using the interleaved approach.

(3) A program being converted to the vector computer may convert quite sim-
ply if its usual data base layout is kept intact, but it requires complete
rewriting if the interleaved approach is used.

From a user standpoint, the simplest solution would be a compiler 'construct
which would allow a group of arrays to be dimensioned and referenced in the
usual way but to be stored internally in an interleaved fashion. No such con-
struct in any compiler is known to be available at this time. An approach which
is less simple for the user, but perhaps more realistic, is to dynamically
assign a more meaningfully named variable to the appropriate portion of array A.
For instance, STAR FORTRAN allows the use of a descriptor to specify a vector

starting at a designated location within an array,
one might write

Hence, if V5 is density,

DIMENSION A(10000,20,50)
DESCRIPTOR DENS
DO 1 L=1,50
ASSIGN DENS,A(1,5,L;10000)
etc.

Now, meaningful code can be written in terms of DENS.

In order to test the effectiveness of the IDE design, some numerical exper-
imentation was carried out on the STAR-100. Three variations of a program,
which follows the logic of the flow chart in figure 1, were executed for
NLAY = 1 5 , NV = 20, and various values for NSZ. Program A used the UDB design
(fig. 2) with large pages; program B was the same as program A except small
pages were used; program C used the IDE layout with large pages (fig. 3). The
results for a time step are given in table II. Program A gave the poorest
results. It exhibited the extraordinary increase in paging and elapsed time
predicted for it. Program B had much less I/O activity because of its smaller
page sizes but nevertheless was inferior to the interleaved approach in pro-
gram C because of the poorer transfer time associated with small pages. The IDE
layout has both the fast transfer associated with large pages and a moderate
amount of I/O activity so that it proved superior to the other two. (In the
largest cases run, the elapsed time for program C is better than that for pro-
gram A by a factor of approximately 110 and better than that for program B. by a
factor of approximately 8.)

TABLE II.- PAGING STATISTICS FOR THREE-DIMENSIONAL MODEL PROBLEM

NSZ
(total data base)

1500
(450 000)

1600
(480 000)

1700
(510 000)

1800
(540 000)

Program A (UDB)
large pages

CPU
time ,
sec

0.22

.25

Elapsed
time,
sec

0.23

347.10

Page
faults

0

1899

Program B (UDB)
small pages

CPU
time,
sec

0.39

.40

.44

.46

Elapsed
time,
sec

0.40

5.09

17.57

26.02

Page
faults

0

102

333

471

Program C (IDB)
large pages

CPU
time,
sec

0.22

.23

.25

.26

Elapsed
time,
sec

0.23

3 - 1 1

3.12

3.44

Page
faults

0

8

8

9

10

The number of large pages faulted for in program C (8 or 9) does reflect
the total data base for the problem. It is reasonable to ask, "Is it possible
to have the I/O activity reflect the amount by which the data base exceeds
memory?" The answer for the IDE arrangement is yes. Because the data are
accessed in such a predictable fashion, it is known reasonably well what pages
are in memory at any time. For instance, for NSZ = 1700, a data base of about
eight large pages is required. When layers L = 14 or 15 are to be processed,
a page fault occurs for that data. The LRU algorithm removes the page contain-
ing L = 1 and L = 2. Now, on the second iteration, if it is possible to go
through the NLAY levels in reverse order as it would be for this model problem,
there will not be a page fault until level 2 is reached. Here, the LRU algo-
rithm will remove L = 14 and 15. Hence, if one proceeds forward and then back-
wards through the data base, the I/O activity reflects only the one page by
which the data base exceeds available memory. Table III includes the time for
the alternating IDE approach and repeats the IDE data from table II. The
improvement factors of 110 and 8, mentioned earlier, increase to approximately
575 and 26, respectively.

TABLE III.- PAGING STATISTICS FOR FORWARD-BACKWARD AND

FORWARD-ONLY ACCESS OF IDE DESIGN

NSZ
(total data base)

1600
(480 000)

1700
(510 000)

1800
(540 000)

Forward-backward
access

CPU
time ,
sec

0.23

.25

.26

Elapsed
time ,
sec

0.60

.60

.99

Large
page
faults

1

1

2

Forward-only
access

CPU
time,
sec

0.23

.25

.26

Elapsed
time,
sec

3.11

3.12

3.W

Large
page
faults .

8

8

9

The effective use of virtual memory requires that the programer make the
most use of the data while the data are in memory. This includes program design
features which may not be nearly as .dramatic as reorganizing the data base as
described previously. Some very minor changes can have important effects. For
instance, in the model three-dimensional problem, if the boundary equations are
not evaluated until after all the interior equations, twice as much paging
results as in a program which evaluates the boundaries at level L immediately
after evaluating the interior equations at level L.

11*

CONCLUDING REMARKS

Two problems have been investigated to demonstrate that some very natural
programing practices can result in catastrophic program performance in a virtual
memory operating environment. The fact that the programer does not have to
explicitly perform the input/output (I/O) from backing store can lull him into
the belief that his usual programing procedures will suffice regardless pf prob-
lem size.

The usual Gaussian elimination algorithm pointed out the need to redesign
the calculations so that once a block of data is brought into .memory, as much
computation as possible is performed with it before it is paged out. The block
Gaussian elimination program exhibited improvements in page faulting of a factor
as high as 30.

The three-dimensional finite-difference model problem pointed out the inad-
equacy of the limited page sizes available on the Control Data STAR-100 computer.
In order to take advantage of the high transfer rates associated with large
pages, it was necessary to interleave the data base. This arrangement can make
programing somewhat awkward, but use of descriptors in STAR FORTRAN can reduce
this problem. Although the overly large page size of 65 536 words forces the
redesign of the data base, the resulting interleaved data base (IDB) is quite
efficient since very large blocks of data are involved each time an I/O opera-
tion is required. For the model problem, the elapsed time for the IDB design
exhibited an improvement over that for the UDB (usual data base) design by a
factor of approximately 110 when the latter used large pages and a factor of
approximately 8 when small pages were used. These factors increased to approxi-
mately 575 and 26 when the interleaved data base was accessed in a backward
direction on alternate iterations.

These algorithms are believed to have some relevance for problems which do
not exceed memory if the operating system is run in a multiprograming mode. The
interaction of several programs sharing memory can have the effect of reducing
the effective size of memory available for each program. Hence, it is important
that the algorithms for these small problems have efficient paging characteris-
tics also.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
May 11, 1977

REFERENCES

1. Howser, Lona M.; and Lambiotte, Jules J., Jr.: STAR Adaptation for Two Algo-
rithms Used on Serial Computers. NASA TM X-3003, 1974.

2. Pavkovich, John M.: The Solution of Large Systems of Algebraic Equations.
Tech. Rep. No. 33 (Contract Nonr-225(37)), Comput. Sci. Div., Stanford
Univ., Dec. 6, 1963. (Available from DDC as AD 427 753.)

12 NASA-Langley, 1977 L-1 1 490

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON. D.C. 2OS46

OFFICIAL. BUSINESS

PENALTY FOR PRIVATE USE S3OO SPECIAL FOURTH-CLASS RATE
BOOK

POSTAGE AND FEES PAID
IATIONAL AERONAUTICS AND

SPACE ADMINISTRATION
431

POSTMASTER : If Undeliverable (Section 158
Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

' SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL A E R O N A U T I C S AND S P A C E ADMINISTRATION

Washington, D.C. 20546

