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ABSTRACT 

Tensors provide a compact way of writing partial differ
ential equations in a form valid in all coordinate systems. 
However, in order to find solutions df the equations with 
their boundary conditions they must be expressed in terms of 
the coordinate system under consideration. For complicated 
coordinates the expressions are very long and are tedious to 
calculate. The process of arriving at them from the tensor 
formulation has been automated by a software system, TENSR, 
described in this paper. An allied system that analyzes the 
resulting expressions term by term and drops those that are 
negligible is also described. 
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1. INTRODUCTION 

It is natural when computing the flowfield about a cone 

to use a conical coordinate system. The description of the 

body surface in that system is simply the statement that one 

of the coordinates is equal to a constant, for example 

This makes the application of the boundary conditions to the 

equations of motion straightforward at the cost of compli

cating the equations themselves. The extra complication is 

worthwhile compared to the computational problems that arise 

when boundaries cut across coordinate surfaces. 

Such a scheme can be regarded in two ways. In one view 

the conical coordinate system is an entity in Euclidean space 

which is more convenient than the Cartesian system for the 

problem at hand. In another vie,l"!----it is a mapping of the body 

and the flowfield around it into a r~:.ctangular grid. To 

illustrate with a two-dimensional example, a polar coordinate 

system can be viewed as a way of l~cating points in physical 

space, as in this sketch: 
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or as a mapping from that space to this: 

A B~--------____ __ 

• p 

C~-------------------
D 

xl = r 

The mathematics is the same in both cases, but the mapping 

interpretation makes it manifest that one gets the advantages 

of finite-difference methods for a rectangular grid along 

with simple boundary conditions. 

Coordinate systems or mappings can also be devised so 

that points are unevenly spaced in physical space (so as to 

be concentrated near a body, for example) but mapped to evenly 

spaced points in the rectangular grid, again gaining an advan

tage for finite-difference·computations. 

The gains, however, are generally at the cost of more 

complicated equations to be solved. Nevertheless, the advan

tages of such a procedure for computation are so great that 

Thompson, Shanks, and Walker (Reference 1) use a time-dependent 

version that keeps a free surface, in the problem they consider, 

mapped into a fixed coordinate line. Thus at each time step 

of their calculation they recompute the mapping as an aid in 

computing the flow. 

So far~ only transformation of the independent variables 

of a problem has been mentioned. It is often desirable to 
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transform the dependent variables, in the sense that the repre
sentation of vectors changes from components aligned with the 
original coordinates to components aligned with the new coordi
nates. For example, in transforming from Cartesian to polar 
coordinates in the plane, the representation of velocities 
would change from horizontal and vertical components to radial 
and tangential components. This also is ordinarily advantageous 
for the expression of boundary conditions. Its effect on the 
complexity of the equations is varied. There is a gain in 
unifying the representation of dependent and independent vari
ables, but on the other hand new terms arise. The prototype 
of such terms is the centripetal acceleration term which turns 
up when radial and tangential velocity components are used. 

At first glance it would seem that the transformation of 
the dependent variables as well as the independent variables 
would greatly complicate the task. However, the techniques of 
tensor analysis accomplish both transformations in one step 
with great economy. On the other hand, the compact tensor 
notation can disguise very long expressions which must be ex
panded before much can be accomplished numerically. (For tensor 
expressions which involve known quantities there is no problem 
in writing programs to calculate them. It is expressions 
involving unknowns that are principally considered here.) 

As the body shapes considered grow more complicated, the 
coordinate systems adapted to them grow more complicated, the 
equations of motion expressed in terms of them grow longer, and 
the likelihood of getting them written down correctly decreases 
if the operation is done by hand. But the process at this 
stage is purely mechanical and so can be done by c.omputer. The 
software system TENSR accomplishes just that. 
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The original version of TENSR, though, was produced to 

answer a different need. Since 1967 A.R.A.P. has been engaged 

in second-order closure techniques for calculating turbulent 

flows, and since 1968 the modeling has been done in the frame

work of tensor analysis in order to eliminate the bias that 

can easily be introduced when working in a fixed coordinate 

system. The principal unknown in our system of equations for 

turbulent flow, besides the variables describing the mean flow, 

is a tensor of second rank, namely the correlation of components 

of the velocity fluctuations, <uiuJ> The governing equa-

tions are quite complex even in Cartesian coordinates. We 

achieved good results solving these equations for incompress

ible flows (Reference 2) but not without considerable problems 

in accurately developing computer programs for the purpose. 

Therefore, when we approached the task of solving the 

equations of turbulent compressible flows-- for which fluctu

ations of density, temperature, viscosity, and so forth, as 

well as of velocity, must be taken into account -- we decided 

to automate the process even though only Cartesian coordinates 

were to be used, since the study involved the boundary layer 

on a flat plate (Reference 3). Thus, TENSR was born able to 

ha.ndle only Cartesian cool'dinates. 

The output of the original TENSR was edited by hand to 

remove terms that are small in the context of boundary-layer 

theory. After TENSR was extended to be able to handle arbi

trary systems, more complicated coordinates were processed 

and the output grew so much that it was desirable to make the 

dropping of terms automatic. For this purpose, a follow-on 

system, TATTR (for Term ATTRibutes), was written. The use of' 

this program not only eased the burden of dropping terms but 

also forced the process to be more uniform and logical than 

had sometimes been the cas~ in our work. 

4 



• :1 u . t 

U 
[J . n 

It 
. .j 

[ • il 
1 tl 

D 

f1! 
t n 
~ if " fJ-.!J 

r:1! 
~ j. , ~ 
~ 

ffl1 ~ 

·UTI 'lilJ .. ~'. 

V1 :1 ,.,.. 

Another software system, DIFFR, uses the edited output 

of TENSR or of TATTR to create Fortran statements which become 
a main part of programs that solve the equations by finite

difference techniques. 

This paper reports the operation and characteristics of 

TENSR and TATTR. Since the present version of DIFFR is tied 
to a specific finite-difference scheme, it is not further 

described here. 

In the next section the notation used to handle tensors 

on the computer is introduced in the course of a brief lesson 
on tensor concepts. Sections 3 and 4 show some examples of 

what TENSR and TATTR do. These are followed by a section on 
possible future developments and on related efforts by others. 
Some characteristics of TENSR that may interest tensor experts 

are considered in Section 6. Finally there is a brief bibli

ography. 
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2. TENSORS: A QUICK LESSON 

One view of tensors, sufficient for the understanding of 

TENSR, is given here. Readers already familiar with the sub
ject are advised to skim the section to gain familiarity with 

the notation we have devised to communicate tensor expressions 
with computers. As is explaiend in Section 6, TENSR is not 

restricted in the type of space it deals with (except for the 

upper limit of ten dimensions) but applications such as those 

mentioned in Section 1 are met with in an ordinary three
dimensional Euclidean space so this lesson is confined to 

that case or a two-dimensional subset of it. The treatment 

here is expository; proofs may be found in the works cited in 
the bibliography. 

In the powerful index notation used in tensor analysis 

the equation 

n 
Ci = A iBn 

stands (in three dimensions) for three equations each with 
three terms on the right: 

Cl 
1 + 2 3 = A IBI A IB2 + A IB3 

C2 = 1 
A 2Bl + 2 

A 2B2 + 3 
A 2B3 

C = 1 2 + 3 
3 A 3Bl + A 3B2 A ]B3 

The rules governing symbolic indices (that is, non-numeric 

indices) a're these: 

(1) 

(2) 

• A symbolic index appearing alone in a term, known as 

a free index, takes on the range of values in separate 

instances. 
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• A symbolic index appearing twice in a term, known as 
a dummy index, implies a summation over the range of 

values (the Einstein summation convention). 

• A symbolic index doesn't appear three or more times 

in a single term without a special indication of the 
meaning to be assigned to the expression. 

Thus, the usual apparatus that would accompany the con

densation of equations (2), for example: 

(i = 1,2,3) 

is eliminated, leaving just equation (1). 

Some additional rules, important in the general case, but 

unnecessary and therefore often disregarded when only Cartesian 

coordinates are considered, are: 

• Dummy indices in a term appear once up (as a super
script) and once down (as a subscript or in a 

derivative) for each pair. 

• Free indices appear in the same position in each 

term in an equation. 

The comparison of equations (1) and (2) gives only a hint 

of the economy of this notation. In three dimensions an equa

tion with three free indices, e.g., equation (7) below, stands 

for 27 equations (not necessarily all independent) and a term 

with four pairs of dummy indices, e.g., in equation (8) below, 

stands for the sum of 81 terms. 

In devising a notation to use on the computer, we decided 

to adopt conventions like those of Fortran in many respects, 
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but the Fortran subscript representation was discarded since 

it lacked a means of representing superscripts and since it is 

unwieldly when expressions teem with indices. Instead, we 

decided that indices would consist of only one letter or digit 

and that superscripts would be preceded by " and subscripts 

by • Thus, equation (1) appears as 

C'I = A"N'I*B'N 

Since variables are not restricted to one character) this might 

appear as 

CRS'I = AAAl"N'I*BS'N 

Several superscripts or subscripts need not have separate " 
or Thus, Aij is represented by A"IJ. 

Let a Cartesian coordinate system be denoted by yi and 

some other system by xi . Functions relating one to the other 

are assumed to exist and in most applications are known in 

advance. For an example in two dimensions, polar coordinates 

are related to Cartesian coordinates by 

Actually, the xi 

convenient to use 

are 

r 

y2 = xl sin x 2 

seldom used in 

and <P 

yl = r cos <P 

y2 = r sin <P 

this context; it is more 

But in speaking of the coordinates collectively, or especially 

in speaking of coordinate systems generally, the notation xi 

is used. 

8 
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Scalar fields, that is, scalars which are functions of 
position, such as density, are tensors of rank zero. The 
gradient of such a field is a tensor of rank one, that is, a 
vectoro Vectors, like scalars, are invariant with respect to 
coordinate transformations. However, the representation of 
a vector in components does vary with the coordinate system. 
A representation in components which transform as do the 
partial derivatives of a scalar field is called a covariant 
representation of the vector and the indices appear as sub
scripts. For example, we might set 

C. = a'l' 'l' 
l axi = :i 

(The colon is used to denote partial differentiation both in 
normal notation and in TENSR notation: C'I = PSI:I.) A 
representation in components which transform as do differential 
displacement components is called a contravariant representa
tion of the vector and the indices appear as superscripts. 
For example 

Covariant representations can be calculated from contra
variant representations and vice versa by the formulas 

or A'I = @'IN*A"N 

or @"J = @"JM*A'M 

This is called lowering or raising the index. In place of the 
phrase covariant (contravariant) representation of a vector, 
one often speaks boncisely of a covariant (contravariant) 
vector. Also, an index is often called covariant or contra
variant according to its position as a subscript or superscript. 

10 
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As a mnemonic, note that sub- and c,'J- are short, whereas 
super- and contra- are long. It should be clear that covariant 
representations of vectors are not necessarily partial deriv
atives of scalars nor are contravariant representations of 
vectors neces,sarily differentials or velocities. 

Higher rank tensors may have representations which are 
covariant (all subscripts), contravariant (all superscripts), 
and mixed (some of each) and the indices may be raised and 
lowered individually. For example: 

Ti. = ginT . or T"I'J = @"IN*T'NJ J nJ 

T j 
i = gjtTit or T'I"J = @"JL*T'IL 

Tij = gjtginT 
nt or T"IJ = @"JL*@"IN*T'NL 

Equation (3) can be looked at as raising the first index of 
gij or lowering the second of gij ; in either case, we 
conclude that 

or @"I'J = &"I'J 

That is, the value of the mixed representation of the metric 
tensor is the Kronecker delta in any coordinate system. This 
contrasts with t~e fact ~~at the value of gij is 0ij and 
the value of giJ is OlJ in Cartesian coordinates only. 

If a superscript and a subscript of a tensor are made the 
same, thus implying summation, anew tensor is formed of rank 
two less than the original-- a process called contraction. 
Thus, the two vectors 

or A'I = T"N'NI 

or B'I = T"N'IN 

11 



p 
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are different (in general) contractions of Tijk or T"I'JK. 
Some tensors are the product of tensors. A tensor of rank p 
multiplied by one of rank q yields a tensor of rank p + q • 
The contraction of the product of two vectors, AnBn or 
A"N*B'N is the scalar product of the vectors. 

In addition to covariant and contravariant components 
of tensors there are also physical components, that is, com
ponents in the elementary sense. Velocity in polar coordinates 
provides an instructive example. The physical components are 
denoted by u for radial and v for tangential, the covariant 
and contravariant components by ui and ui • In this system 
the radial component is the same in all three versions, 
covariant, contravariant, or physical: 

U - u l = u 1 - (4 ) 

On the other hand, the three types of tangential component are 
quite different. The contravariant component can be desCribed 
as an angular velocity, since 

(5) 

whereas the covariant component is more a circulation, since 

u = rv 2 

See References 4 and 5, in particular, for more on physical 
component s. 

(6 ) 

The representation in polar coordinates of the velocity 
of a body moving in a circle at constant speed is unchanging. 
That is, the radial component is constant (at zero) and the 
tangential component is constant. Nevertheless, as is well 
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known, the body is accelerating toward the center and the equa
tions of motion in polar coordinates represent the situation 
by the centripetal accelerat~on term. The generalization of 

this term to situations involving arbitrary changes in tensors 
using arbitrary coordinate systems is embodied in Christoffel 

symbols. The Christoffel symbol of the first kind is given by 

1 
= 2 (gij:k + gik:j 

or (7) 
$'IJK = (@'IJ:K + @'IK:J - @'JK:I)/2 

(The 'first choice for TENSR notation for the Christoffel symbols 

was ¢, but A.R.A.P.'s line printer didn't have it available 
so $ was chosen as the next best thing. Since the literature 

is not in agreement on notation for them and since the ordering 

of indices that I find convenient - that is, such that $ijk is 
symmetric with respect to j and k - is unorthodox, I have 
adopted the practice of using $ in ordinary as well as TENSR 

notation.) The Christoffel symbol of the second kind is 

$i _ gin$ 
jk - njk or $"I'JK = @"IN*$'NJK 

For our purposes, the first kind has no function except to allow 

the calculation of the second kind. Neither ki.n(~ of Christoffel 

symbol is a tensor. 

Covariant differentiation, denoted by a comma preceding an 

index, is an operation that produces tensors from tensors. When 
applied to a contravariant vector (to slip into that terminology) 

its rule for calculation is 

13 



Neither term on the right is a tensor, but the sum is. The 
covariant derivative of a covariant vector is 

The generalization to tensors of higher rank is straightforward. 
For example: 

The rule is not difficult. Each index in the original tensor 

is replaced by a dummy in one of the extra terms. The rest of 

the index juggling is automatic by the rules for indices. The 
only aspect that is not automatic is the sign that accompanies 
each extra term. (The user of TENSR need not bother with any 

of this-- TENSR does it all automatically.) 

Since a scalar has no indices, its covariant derivative 
is simply its partial derivative: 

This agrees with the previous assertion that the gradient of 

a scalar is a tensor. In Cartesian coordinates the Christoffel 
symbols are all zero; therefore, partial derivatives in 

Cartesian coordinates are also covariant derivatives. 

It is convenient to have a notation for what might be 

called a contravariant derivative, that is, a covariant 
derivative with the index raised. Again, the literature is 

not consistent; TENSR uses an exclamation point: 

PSI!K = @"KM*PSI,M 

14 



This brief lesson misses much of the splendor and impor

tance of tensors. The reader is urged to consult some of the 
works cited in the bibliography for a better view. It should 
be noted that many of those books start by considering abstract 
spaces for which a metric does not exist. In that case there 
can be no raising or lowering of indices, and so covariant 
and contravariant vectors are truly different types of entities, 
unrelated to each other. Once spaces with metrics are con

sidered, however, the viewpoint becomes closer to that presented 
here. 
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3. SOME TENSR SAMPLES 

In ordinary applications, TENSR accepts information con

cerning the metric tensor and Christoffel symbols for a coordi

nate system, along with symbol substitutions to be made, and 

one or more equations in general tensor form. It proceeds to 

expand (internally) covariant derivatives into the sum of 

partial derivatives and Christoffel-symbol terms, to expand 

implied summations, to drop terms which are zero, to make sub

stitutions specified, and to print the results and store them 

on disk. 

For a short example, consider the transformation to polar 

coordinates of the Navier-Stokes equations for the steady flow 

of a fluid of constant density. Figure 1 shows the printout 

from such a run. The first seven lines are exact images_of 

input cards. The symbol # is used to indicate comments; any

thing to the right of it is ignored by TENSR. The first card 

sets the range of dummy index summations as 1 and 2, and hence 

establishes that a two-dimensional space is to be considered. 

The next two cards define the metric; since the metric tensor 

is symmetric only three of the four elements need be supplied 

in each case. A blank followed by the separator ; suffices 

to indicate a zero element. Fortran conventions concerning the 

order of operations are observed; thus l/R/R = (l/R)/R stands 

for r-2. The fourth card supplies values for the Christoffel 

symbol of the second kind. Again because of symmetry, only six 

of the eight values are specified. Symbol substitutions are 

designated by the next card. In this case expressions involving 

physical components are to be substituted for covariant and 

contravariant components [compare equations (4)-(6)J. The 

second DEFINE INDEX card identifies K as a free index; in the 

absence of other indication the range of the free index is the 

same as the range of dummy indices. Finally, the equation to 

16 
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DEFINE INDEX 1, 2 

DEFINE @" 1; ; 1/R/R # POLAR 

DEFINE @I 1; ; R*R II POLAR 

; ; -R; , 1/R; ; # POLAR 

DEFINE SYM130L U"1 = U; U"2 = VIR; U I 1 = U; u ' 2 = R*V 1/ POLAR 

DEFINE INDEX K 

# NAVIER-STOKES 

j U"L*U'K,L = -P,K + NU*@"LN*U'K,UJ 

J 

J U*(U):1 + V/R*(U):2 - V/R*1/R*R*V = -(P):1 + NU*«U):1):1 

+ NU*1/R/R*«U):2):2 - NU*1/R/R*(1/R*R*V):2 - NU*1/R/R*1/R*(R*V):2 

- NlJ*1/R/R*1/R*R*U + NU*1/R/R*R*(U):1 

U*(R*V):1 + V/R*(R*V):2 - IJ*1/R*R*V + V/R*R*U = .... (P):2 

+ NlJ*«R*V):1):1 + NU*1/R/I~*«R*V):2):2 - NU*(1/R*R*V):1 

+ NU*1/R*1/R*R*V - NU*1/R/R*R*1/R*R*V + NU*1/R/R*R*(R*V):1 

Figure 1. The Navier-Stokes equations in polar coordinates. 
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be expanded appears. 

by the density and 
Here P stands for the pressure divided 

NU for the kinematic viscosity. 

After TENSR checks for errors such as unbalanced paren

theses, it confirms its verification by reprinting the equation. 
Then the results appear: the radial momentum equation and the 

tangential momentum equation, that is to say the Navier-Stokes 

equations in polar coordinates. There in a nutshell is the 

action of TENSR. 

That TENSR is weak algebraically is evident. Some of 

these terms can be combined and many can be simplified. For 

example, the third term in the radial equation is hardly recog
nizable as the centripetal acceleration term since it appears 

as a transcription of the original form, -U"2*$"2'12*U'2, 
without simplification to -V*V/R. In the original appli

cations of TENSR, involving Cartesian coordinates, this short

coming was very minor and so was allowed to stand. When it 
later became a problem, it was more convenient to deal with it 

in TATTR, the follow-on to TENSR, rather than in TENSR itself 

(see Section 4). 

To illustrate the functions of the DEFINE cards, Figure 2 
shows the output of a run with all but the first omitted. The 
equation to be expanded is the same but the result is quite 

different. Here, there are none of the replacements and 
dropping of terms that took place in the run illustrated in 

Figure 1. The free index, K, appears as such in each term. 
For each value of K (1 and 2), this represents one of the 

two-dimensional Navier-Stokes equations for arbitrary coordi~ 

nates. 

The explosion of terms that can occur begins to show here. 
Applying the rules for covariant derivatives given in Section 2, 

the viscosity term can be written 

18 



DEFINe INDEX 1, 2 

U"L*U'K,L = -P,K + NU*iil"LN*U'K,LN 1/ NAVIER-STOKES 

U"L*U'K,L = -P,K + NU*@"LN*U'K,LN 

U"1*<.U'K):1 + U"2*<U'K):2 - U"1*$"1'K1*U'1 - U"1*$"Z'K1*U'2 

- U"Z*$"1'K2*U'1 - U"Z*$"2'K2*U'Z = -(P):K + NU*@"11*«U'K):1):1 

+ NU*nl"12*«U'-K):1>:2 + NU*@"Z1*«U'K):Z):1 + NU*8"2Z*«U'K):Z):2 

- NU*ii)"1Z*C5"1'K1*U'1):2 - NU*@"1Z*($"Z'K1*U'Z):Z 

- NU*@"Z1*($"1'KZ*U'1):1 - NU*@"Z1*($"Z'K2*U'2):1 

,.. NLl*@"22*($"1 'K2*U' 1):2 - NU*@"22*($"2' K2*U' 2):Z 

- NU*@"11*$"1'K1*(U'1):1 - rJU*;,)"11*$"2'K1*(ll'?):1 

- NU*@"1Z*$"1'KZ*(U'1):1 N U *@ "1 2* $" 2 ' K 2 * ( U ' 2): 1 

- N U * ii.l" ? 1 * $ "1 ' K 1 * ( U ' 1) : 2 - N U * @ " 2 1 * $ "2 ' K 1 ';;( U ' 2 ) : 2 

+ NU*ci!"11*$"1'K1*$"1'11*U'1 + NU*@"11*$"1'K1*$"Z'11*U'Z 

+ NU*@"11*$"Z'K1*$"1'Z1*U'1 + NU*@"11*$"2'K1*$"Z'Z1*1.I'2 

+ N U * ill " 1 2 * $ "z ' K 2 * $ "1 ' 2 1 * U '1 + til U * @" 1 Z * $ " 2 ' K 2 * :I> "2 ' 2 1 * 1I ' 2 

+ NU*@"21*$"Z'K1*$"1'Z2*U'1 + NU*@"Z1*$"Z'K1*$"Z'2Z*U'Z 

+ NU*@"22*$"Z'K2*$"1'2Z*U'1 + NU*@"22*$"Z'K2*$"2'2Z*U'? 

Figure 2. The Navier-Stokes equations for general coordinates 
in two dimensions. (Continued on next page) 
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- NU*@"11*$"1'11*{U'K):1 - NU*1l"11*$"~'11*,<U'K):2 

- NU*p1"12*$"1'12*<U'K):1 - NU*@"12*$"2'12*<U'K):2 

- NU*@"22*$"1'~2*(U'K):1 - NU*@"Z2*$"Z I 22*(U'K):2 
! I 

+ NU*@"1111;$"1'11*$"1'K1*U'1 + NU*@"11*$"1'11*$"2'K1*U'2 

+ NU*@"11*$"2'11*$"1'K2*U'1 + NU*@"11*$"2'11*$"2'K2*U'2 
I , + N U *: @ " 12* $ "1 ' 1 2 *: $ " 1 ' K 1 * U '1 + N U * Q)" 1':2 * $ "', 1 2 * $ " 2 'K 1* LI ' 2 

+ NU*ciJ"21*$"1'21*$"1'K1*U'1 + NU*@"21*$"1'21*$"Z'K1*U'2 

+ NU*ii"21*$"2'21*$"1'K2*U'1 + NU*@"21*$"2'Z'1*$"Z'K2*U'Z 

+ NU*o.l"22*$11'22*$"1;K1*U'1 + NU*@"?2*$"1'22*$"2'K1*U'? 

+ r\lU*a;"22*$"Z'Z2*$"1'KZ*U'1 + NU*:@"22*$"2'ZZ*$"Z'KZ*U'2 

Figure 2. The Navier-Stokes equations for general coordinates in two dimensions. (Continued from preceding page) 
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(8) 

When the implied summations are expanded in the two-dimensional 
case, two of these terms yield 16 terms each, three yield 8 
terms each, and the first yields 4 terms for a total of 60 out 
of the 67 terms in the equation. (The equations of Figure 1 
are very much shorter because all of the Christoffel symbols 
except $122 = -r and $212 = $221 = l/r are zero for the 
simple polar coordinate system.) If the first card in this 
example had been omitted too, the 
1, 2, and 3, would have applied. 
an equation of 265 terms (252 of 

default range for dummies, 
The result would have been 

them viscosity terms): one 
of the Navier-Stokes equations in arbitrary coordinates for 
three dimensions. Since this is one of the simplest of the 
equations used to study fluid flows, the usefulness of TENSR 
can be appreciated. 

Another example introduces some more features. Figure 3 
shows a run deriving the axial momentum equation for an axisym
metric jet with no swirl. The cylindrical coordinate system 
given by X"l = R, X"2 = ~, X"3 = Z is used and the 
corresponding physical velocity components are denoted U, V, 
W. The differences between the input to this run and that of 
Figure 1 are: (1) The range of the dummy indices is set by 
d~fau1t. (2) There are more elements of the metric tensor and 
of the Christoffel symbol to establish, and there are more 
substitutions to be specified. (3) The continuation of the 
preceding line is indicated by a character in eo1umn 6 as in 
Fortran. (4) The DEFINE NULL card establishes axisymmetry by 
indicating that derivatives with respect to ~ (:2) are zero 
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DEFINE @" 1; · , ; 1/R/R; ; 1 

DEFINE @' 1; · , 

DEFINE 
C 
C 

$" ; ; 
; 1/R; 
; · , 

; R*R; ; 1 

; -R; ; . , . . . . , , , , . . . . , , , , 

DEFINE SYMBOL U"1 = U; U"2 = VIR; 
C U~1 = U; U'2 = R*V ; 

DEFINE NULL :2; U"2; U'2 

DEFINE INDEX K = 2, 3 

U"L*U'K,L = -P,K + NU*U'K!L,L 

UtI 3 = W ; 
U'3 = W 

II CYLINDRICAL 

II CYLINDRICAL 

II CYLINDRICAL 
II CYLINDRICAL 
# CYLINDRICAL 

1/ CYLINDRICAL 
1/ CYLINDRICAL 

II NAVIER-STOKES 

U*(W):1 + W*(W):3 : -(p):3 + NU*«W):1):1 + NU*«W):3):3 

+ NU*1/R*<V/):1 

Figure 3. The axial momentum equation in cylindrical coordinates. 
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and specifies no swirl by indicating that U"2 and U'2 are 
zero. (This being the case the presence of U"2 and Ui2 

on the DEFINE SYMBOL cards is superfluous, but it is convenient 
to have them there for other applications.) (5) Since not all 
three values of K are desired, the DEFINE INDEX card specifies 
which are. For the axial equation only, K = 3 would appear, 
but the value 2 has been included to show that TENSR handles 
this extreme case, 0 = 0, correctly. (6) The viscosity term 
has been written with the "contravariant derivative" symbol, 

, instead of explicitly using the metric tensor as in Fifvr~e 

1 and 2. 

These examples show the general features of TENSR and 
demonstrate that it produces correct results. They only hint 
at its necessity; the modeled equations for turbulence in use 
at A.R.A.P. generate thousands of terms for quite simple 
orthogonal coordinate systems (Reference 6). 
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4. SOME TATTR SAMPLES 

The equations of Figure 1 were submitted to TATTR with the 

results shown in Figure 4. In addition to the equations, TATTR 
was given the following information regarding the dimensions 

(in the sense of dimensional analysis) of the quantities that 
appear as factors in those equations: U and V are velocities, 

P (being pressure divided by density) is a velocity squared; 

NU is a velocity times a length; R is a length; differenti
ation with respect to R (:1) is equivalent to dividing by a 
length; and differentiation with respect to ~ (:2) is dimen
sionless. These were supplied as the exponents to be attached 

to a length and a velocity: 1 and 1 for NU, 0 and 2 for P, 

and so forth. TATTR has simplified and combined terms, as can 
be seen by comparing Figures 1 and 4. However, the simplifi

cation is not complete since TATTR does not recognize that R 

can be taken out of a 4> derivative; for example, the seventh 

and eighth terms in the first equation could be combined. 

Nevertheless,' the improvement is significant. 

TATTR has also printed the exponents giving the dimensions 

of each term next to it. It is seen that both equations are 
dimensionally consistent. This is rather trivial in such a 
simple example, but the ability of TATTR to make this check has 
uncovered errors in long equations that might otherwise have 

gone undetected. 

The dimensions of a term are examples of one type of 

attribute that TATTR can evaluate. Any concept that can be 
quantified by integers attached to the factors that appear, 
such that the integers add (or subtract) when the factors 
multiply (or divide) to form a term, is valid as an attribute 
for the purposes of TATTR. The type of attribute which motivated 

the design of TATTR is order-of-magnitude information. To 

illustrate, the axial-momentum equation of Figure 3 was used" 
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U
· 
~ 

o 
U*(U):1 

+ 1/R*V*(U):2 
- lIR*V*V 
= -(p):1 

+ NU*«U):1):1 
+ NU/R/R*«U) :2):2 
- NU/R/R*(V):2 
- NU/R/R/R*(R*V):2 
- NU/R/R*U 
+ NU/R*(U):1 

U*(R*V):1 
+ 1/R*V*(R*V):2 
= -(P):2 

+ NU*«R*V):1):1 
+ NU/R/R*«R*V):2):2 
- NU*(V):1 
+ NU/R/R*(R*U):2 
+ NU/R*(U):2 
- NU/R*V 

LENGTH VELOCITY 

-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 
-1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

LENGTH VELOCITY 

o 
o 
o 
o 
o 
a 
o 
o 
o 

2 
2 
2 
2 
2 
2 
2 
2 
2 

Figure 4. The Navier-Stokes equations in polar coordinates. 
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In addition to the equation, TATTR was supplied with attribute 

information similar to that for the run of Figure 4 plus data 

on an order of magnitude attribute, as follows: 

Length Velocit~ Delta 

U 0 1 1 

W 0 1 0 

p 0 2 0 

NU 1 1 2 

R 1 0 1 

:1 -1 0 -1 

: 3 -1 0 0 

To understand the last column it is easiest to reinterpret the 

equation as nondimen&ional, NU standing for the reciprocal of 

the Reynolds number. (It seems strange at first to assign 

dimensions to the factors and at the same time to consider them 

nondimensional, but it is perfectly legal for both interpre

tations to coexist.) It is recognized that in a jet at high 

Reynolds number the radial component of velocity is small com

pared to the axial. Further, the radial extent of the flow due 

to the jet is small compared to its axial extent, so that changes 

(derivatives) in the radial direction are large compared to 

changes in the axial direction. Elementary boundary layer theory 

teaches us that if the reciprocal of the Reynolds number is of 

order 02 where 0 is small, then the radial velocity and 

extent are of order 0 compared to the corresponding axial 

quantities. The last column above, then, gives the exponents of 

o that indicate the order of the various quantities. 

The result of the TATTR run is shown in Figure 5; it is 

seen that the terms are dimensionally consistent but that one is 

small (of order 82 ) compared to the others. In a succeeding 
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U*<W):1 
+ W* ( W) : 3 
= -(P):3 

+ NU*«(I,J):1):1 
+ NU*«W) :3):3 
+ NU/R*(W):1 

LENGTH VELOCITY 

-1 2 
-1 2 
-1 2 
-1 2 
-1 2 
-1 2 

1 TERMS DROPPED DUE TO DELTA CRITERIA, LEAVING 

U*<W):1 
+ w* (w) : 3 

= -(p):3 
+ NU*«W):1):1 
+ NU/R*(W):1 

LENGTH VELOCITY 

-1 
-1 
-1 
-1 
-1 

2 
2 
2 
2 
2 

DELTA 

a 
0 
a 
0 
2 
0 

5 

DELTA 

o 
" tJ 

o 
o 
o 

Figure 5. The axial momentum equation in cylindrical coordinates. 
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(optional) stage TATTR dropped the small term. If the relative 
orders of the factors were not known, the run could have been 
set up with separate "deltas" for various factors (TATTR can 

handle up to sixteen attributes at once). Various linear 
combinations could then have been tried as criteria for dropping 

terms. With a modicum of physics guiding the combinations to 

be used, this approach would have led to the same results. 

Again, only a hint of the usefulness of TATTR is possible 

here. For the problem considered in Reference 6 the 9843 terms 

(in 18 equations) produced by TENSR were reduced to 529 terms 
by TATTR. These statistics are somewhat misleading-- if the 
job had been attempted by hand, most of the negligible terms 

would have been easily spotted. Only the last few hundred 

would have been difficult, but that's plenty to justify the use 

of TATTR. 
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5. OUTLOOK 

A.R.A.P. is in the midst of switching computers. Our old 
one, a DSC META-4, uses, basically, IBM 1130 software. Our 
new one, a PDP 11/70, uses DEC software. The IBM software is 
geared to the EBCDIC code for character handling, the DEC soft
ware to the ASCII code. For TENSR and TATTR, which mainly 
manipulate strings of characters, the difference is significant; 
the conversion will be somewhat more laborious than for ordinary 
A.R.A.P. programs such as the ones that have been developed 
with the help of TENSR and TATTR. 

However, while converting, we will use the opportunity to 
make several improvements. The principal ones contemplated 
are: 

(1) TENSR and TATTR will be combined. This will allow 
greater convenience for the user and greater efficiency 
of operation. 

(2) The specification of different ranges on different 
dummies will be made possible. 

(3) Conversion to physical coordinates, if desired, will 
be made automatic. In this case, specification of 
symbol substitutions will only be needed in terms of 
physical components instead of in terms of contra
variant components, covariant components, and combi
nations thereof. 

(4) The oper~tion of the system will be speeded up and 
thus made more convenient. This will occur partly 
because of the switch to a faster machine, but also 
because of' the implementation of ways of making it 
more efficient which have been recognized since the 
last major revision. 
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An additional improvement would be to allow substitutions 

before expansion. For example, given 

C'IJK = A"L'IJ*B'LK + D'IK,J 

and another expression where, say, C"JL'L,K occurs, the 

right-hand side of the former could be substituted in the 

latter with proper shuffling of the indices. This addition 

is quite feasible but is more involved than the other changes 

mentioned. For one thing, a means of handling conflicts in 

indices, as in the example just given, must be devised. 

Another possibility is to provide output using true super

scripts and subscripts. This would depend on the availability 

of suitable output devices and proper software. 

Although TENSR and TATTR were developed largely with NASA 

and Air Force support, they were intended to help in developing 

programs. In some cases these programs were delivered to the 

Government; in other cases the programs were run by A.R.A.P. 

and the results delivered. In any case, TENSR and TATTR were 

not designed for export. The fact that they can be moved to a 

different machine is about to be proved, but whether portability 

will be improved in the process remains to be seen. 

The usage of the combined system is not expected to become 

high in comparison with more general-purpose software, or in 

comparison with programs that churn out numbers. Therefore, 

it is doubtful that the effort tn make it portable and, in 

particular, to prepare documentation sufficient to guide a 
remote user would be worthwhile. Instead, I would suggest that 

potential users communicate with A.R.A.P. concerning their 

needs. 
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As far as I know, no one else has attempted anything like 

TENSR and TATTR. Coordinate transformations to aid in f1ow

field computations, with varying degrees of automation, are 

plentiful. Reference 1, already mentioned, and Reference 7, 
which proposes conformal transformations in the cross-flow 

plane for computing supersonic flows, are just two recent 
examples of many papers describing many approaches. 

Formac and similar systems do algebra and calculus auto

matically - and are much better at it than TENSR and TATTR
but have no provision for incorporating tensor notation. 

Howard (References 8 and 9, among other papers) has used such 

systems for doing tensor analysis, but he must write out 

covariant derivatives in terms of Christoffel symbols (for 

example, the right side of equation (8) instead of the left), 
and he uses explicit nested DO loops for each pair of dummy 

indices. But he recognizes the need for making such processes 

automatic, not only for conserving manpower, but also for 

drastically reducing the likelihood of making mistakes. 
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6. NOTE FOR TENSOR EXPERTS 

This section covers some points that may be of interest 

to those with a relatively thorough knowledge of tensors. 

First, TENSR is misnamed. It operates on the symbols 

supplied to it, as described in Section 3, whether they 

represent tensors or not. In fact, as soon as it introduces 

the Christoffel symbols it operates on the various terms 

separately, and the separate terms are not tensors. In other 

words, TENSR is not restricted to tensors. 

Second, there is no need for the space involved to have 

~. a metric. The metric is relevant only if it appears in the 

input equations, either explicitly or implicitly through the 

use of ! • This is one reason the Christoffel symbols (more 

properly interpreted as affine connections when there is no 

metric) are separate inputs to TENSR. (The other reason is 

that to be able to determine them from a metric, TENSR would 

have to be taught to differentiate.) 

Third, expressions can be expanded without anything being 

known about the space except its dimensions and that it has 

affine connections and, if used, a metric (but not the values 

of the affine connections or the metric), as is illustrated 

in Figure 2. Further, it is possible to suppress the intro

duction of the affine connections (Christoffel symbols), or 

to suppress the expansion of dummy indices, or both. Thus, 

there is great flexibility in determining what is to be done. 

Fourth, the number of dimensions is limited to ten solely 

because that is the number of numerical digits available in 

computer output devices. The user may select any set out of 

the ten for dummy expansions and for free indices. In particular, 

for runs involving four-dimensional space-time, the user is free 

to let whim guide the choice rather than being forced to use 

0,1,2,3 or 1,2,3,4 or even being forced to choose between 

them. 
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7. BIBLIOGRAPHY 

This section contains a few suggestions for those who 

wish to pursue the subject of tensors. I have made no effort 

to inspect everything that is available; I report only on some 

works that I have chanced upon or that have been brought to 
my attention by others. 

The first group considers tensors as tools useful in 
various branches of applied mathematics; if they consider 
general relativity, it is as one of several applications. 

The rest are all devoted to general relativity and develop 

the theory of tensors for that application only. 

Michal, Reference 10, was a pioneer in making tensors 

accessible to engineers, but Sokolnikoff, Reference 4, is more 

thorough both in the basics and in the applications. A modern 
treatment by Aris, Reference 5, is very readable; the appli

cations are restricted, as the title indicates, to fluid 
mechanics. Budiansky provides a remarkably thorough treatment 

in less than 50 pages (Reference 11). He includes just a 
taste Qf applications by considering mechanical deformations. 

It is no wonder that much of what is written on tensors 

is in works on gravitation. Although they are extremely useful 
in many other fields, tensors are deemed indispensable in 

general relativity. Consider first three short works by men 
whose names have become bywords. Foremost among'these is the 
monograph, Reference 12, by Einstein. Fear not! The parts 

dealing with mathematics are clear and straightforward. (I'll 
make no comment on the physics.) Schrodinger, Reference 13, 
is dry and elegant with barely a hint of what it's all about. 

By contrast, Dirac is discussing blapk holes by page 32 of 

Reference 14. 
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Two more thorough treatises worth looking into are 

Anderson, Reference 15, and Weinberg, Reference 16. 

Finally, there is the magni-:f.icent Gravitation (Reference 

17) by Misner, Thorne, and Wheeler. This book has exhaustive 
treatments of a multitude of subjects (the discussion of 

black holes doesn't start until page 872). It includes, of 
course, a thorough study of tensors, but also includes a 
parallel development of the mathematics from the viewpoint 
of differential geometry, along with discussions of the 

relationships between these two subjects. In spite of its 
bulk and comprehensiveness it is lively and accessible. 
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