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PREFACE 

The NSEG program  was  originally  constructed  by Mr. L. H.  Leet of the 
United  States  Air  Force  Aeronautical  Systems  Division,  Wright-Patterson 
Air  Force  Base.  .The  code  was  subsequently  modified  and  extended  by 
Aerophysics  Research  Corporation  under  contract  F33615-73-C-3039.  The 
current  version of  the NSEG (Version 111) extends  the  program  appli- 
cability  to  higher  speed  (hypersonic  turbo-ramjet)  aircraft.  It  also 
includes  various  improvements  generated  by Mr. David T. Johnson of the 
Air  Force  Flight  Dynamics  Laboratory.  The  authors  wish  to  extend  their 
thanks  to  Mr.  Walter  Vahl of N F A '  for  his  extensive  assistance  during 
formulation  and  checkout of  the  turbo-ramjet  propulsion  system  model  now 
available  in NSEG. The  analytic  basis  of  the  turbo-ramjet  model  is 
due  to  Mr.  Vahl. 

Mr. D. S. Hague of Aerophysics  Research  Corporation  served  as  project 
leader  for  the  present  study.  Dr.  H. L. Rozendaal  provided  specialist 
support  in  the  fields  of  propulsion  system  analysis  and  computer  sciences. 
Mr. R. T. Jones,  formerly of Aerophysics  Research  Corporation,  has  also 
made  significant  contributions  to  the NSEG code  in  studies  preceding  the 
present  one. 

Additional  details  and  copies  of  the  program  deck  can  be  obtained  from 
NASA Langley  Research  Center. 
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NSEG - A SEGMENTED  MISSION  ANALYSIS  PROGRAM  FOR 

LOW AND  HIGH  SPEED  AIRCRAFT 

D. S. Hague  and H. L.  Rozendaal 

AEROPHYSICS RESEARCH  CORPORATION 

SUMMARY 

Program  NSEG  is a rapid  mission  analysis  code  based  on  the  use of approximate 
flight  path  equations of motion.  Equation  form  varies  with  the  segment  type, 
for  example,  accelerations,  climbs,  cruises,  descents,  and  decelerations. 
Realistic  and  detailed  vehicle  characteristics  are  specified  in  tabular  form 
and a variety of layered  atmosphere  options  are  available.  The  mission 
specification  is  open-ended  in  that  the  upper  limit  on  the  number  of  flight 
segments  to  be  included  in a mission  profile  (currently  one  hundred  and 
forty-nine)  can  be  increased  by  increasing  the  size  of'a  single  common  block 
(CJdMTAB)  above  its  current  size  of 3000 words.  The  code  contains  an  English 
language  oriented  input  procedure  for  describing  the  mission  segment  sequence 
to  be  employed.  In  addition  to  its  mission  performance  calculation  capa- 
bilities  the  code  also  contains  extensive  flight  envelope  performance  mapping 
capabilities.  For  example,  rate-of-climb,  turn  rates,  and.energy  maneuver- 
ability  parameter  values  may  be  mapped  in  the  Mach-altitude  plane.  Where 
suitable  graphics  capabilities  exist  these  maps  may be drawn  by  machine  in 
the  form  of  contour  plots. 

The  code.contains  several  approximate  flight  path  optimization  capabilities 
based  on  Rutowski  energy-like  criteria.  These  flight  path  optimization 
formulations  permit  inclusion  of  minimum  time  or  fuel  flight  segments 
and  maximum  range  segments  during  climb  or  descent  segments.  Approximate 
take  off  and  landing  analyses  are  also  performed.  At  high  speeds  centri- 
fugal  lift  effects  are  accounted  for.  Extensive  turbojet  and  ramjet  engine 
scaling  procedures  are  incorporated  in  the  code.  Take  off  and  landing 
analyses  are  also  available  which  employ a high  lift  aerodynamic  analysis 
model  based  on  the  Air  Force  Flight  Dynamics  Laboratory  DATCOM  method. 
Alternatively,  user  supplied  high  lift  aerodynamics  can  be  employed. 

This  report  is  Volume I of 3 volumes.  Total  program  documentation  consists 
of: 

Volume I .  Theoretical  Development 
Volume  11.  Program  User's  Manual 
Volume  111.  Test  Problems 
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1. INTRODUCTION 

The  NSEG  code  was  originally  developed  by  the  Air  Force  and 
then  modified  under  Air  Force  Contract  F33615-71-C-1480  and  subsequently 
extended  to  higher  speed  flight  under  the  present  study.  Major  changes 
made  to  NSEG  are a complete  code  reorganization,  more  general  vehicle 
specification,  addition  of  energy  maneuverability  concepts,  addition of 
plotting  capabiIity,  development  of  new  data  input  procedures,  introduction 
of turbojet  and  ramjet  scaling  procedures  and  the  accounting  for  centri- 
fugal  lift  effect. 

NSEG  provides a generalized  mission  performance  analysis  capability  based  on 
approximate  equations of motion  for  the  state  components.- 

In  all  flight  modes  the  equations  of  motion 

{Xi) = {fi(V, h, Y ,  W,  R, t; a, BA, N)) (21 

are of an approximate  nature.  For  example,  in  climbs, i. is  neglected. 
Approximate  equations of motion  are  available for 

1. Take-off 
2.  Acceleration 
3 .  Climb 
4 .  Cruise  and  loiter, 
5 .  Descent 
6 .  Deceleration 
7. Landing 

Any  number  of  mission  segments  may  be  pieced  together  to  form a complete 
mission.  Segments  may  be  flown in either  forward  or  reverse  direction  in 
any  sequence  specified  by  the  user.  This  feature  allows a direct  solution 
to  many  two- or N-point  boundary  condition  problems. 
A typical.complete  mission  profile  is  illustrated  in  Figure .(l).. The  program 
may  also  be  .us.ed t o  generate  performance  contour  plots of the  type  illustrated 
in  Figure (2).. NSEG contains a variety  of  operating  modes  to  aid  in 
mission  analysis  which  include 

1. Point perfommace characteristic  evaluation  where  given 
' {k) = {Xi) , the function 

is  evaluated. 



the vector 

{4? = {$I.? -= I f . .  ., Xi,  Xj, .. .? j = 1, 2, . . .,Nj (5) 
J 

is  evaluated  and  the  maximum or minimum  value of $I in  the  region 

is  found  by  interpolation.  That  is, 

* * $I. = f( ..., xi,  xj, ...) 
J 

3. M a p  performance evaluation  where  given 

IUij = I . .  ., xi,  xj, ... 1 i = 1, 2,  ..., Ni 
j = 1, 2,  ..., N j  (8) 

the performance  array 

[ e .  .] = [f(. . . , 'Xi,  xj, . . .)] 
1J 

(9) 

is  evaluated  over  a  rectangular  mesh of points  in  the  (Xi,  X ) lane 
and  the  resulting  contours  obtained  in  the  manner of Figure j ($. 

4.  Mission segment perfommce where  given  a  state 1x1 , an approximate 
state  equation,  and  a  segment  termination  criteria,  the  state 
transformation,  Tij,  which  transform  state  i  into  state j according 
to 

{X?, +. Tij +. {j}j (10) 

is  accomplished. 

5. Mission  performance  where  given  a  sequence of mission  segments,  the 
.Mccessive state  transformations 

are  completed. 

The  analytic  basis of program  NSEG  is  presented  below.  Section 2 describes 
the  propulsion  system  characterizations  available.  Aerodynamics  are  described 
in  Section 3.  Sections 4 and 5 present  the  vehicle  weight  model  and  the 
planetary  representation.  Section 6 describes  the  mission  segment  transformation 
calculation  and  Section 7 the  mission  segment  options  which  use  the  transfonna- 
tions.  Program  mapping  capabilities  are  described  in  Section 8 .  

Constants  utilized  in  the  NSEG  code  employ  English  Units  (lb.,  ft.,  sec.,  naut. 
mi.,  and  degrees  Rankine)  exclusively.  It  is  imperative  therefore  that  input 
quantities  employ  English  Units;  constants  utilized  in  the  illustrations 
reproduced  in  the  text  reflect  this  convention.  Provisions of NASA  Policy 
Directive  (NPD 220.4) have  been  waived  for  those  portions of this  report  that 
pertain  to  the  NSEG  computer  code. 
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2.1 

All  propulsive  representat 

2.  PROPULSION 

Simplified  Propulsion  Systems 

ions  compute  the  vehicle  fuel  flow  rate  given a 
flight  condition -ad the  required  thrust.  Vehicle  required  thrust  is  computed 
internally  by  NSEG  on  the  basis  of  instantaneous  flight  conditions. 

The m a x i m u m  thrust, T m a ,  i s  given  by 

Tmaxl, Tmax2* or Tmax3 
where 

- 
T m a x j  .- T m a x j  (MD h, 

A throttle  parameter, N, is  determined  by 

N =  Treqd /T m a x j  j = 1, 2 ,  3 (14) 

where T is  the  required  thrust.  Fuel  flow  is  given  by reqd 
Wl = k Wl(N, M, h)  (151 

W2 = k i2(N, M, h)  (16) or 

or 
W3 = k W3(M, h) 

The  parameter k is a scalar  for  adjusting  fuel  flow  to  meet  various  specifi- 
cation  requirements.  Vehicle  thrust, T, is  determined  by 

Treqd 

Within  the  program  the  simplified  propulsion  system  input  is  scaled  by 
appropriate  factors  to  produce  the  following  modified  thrust  and  fuel  flow 
data 

(T)i = Ti/a ; i = 1, 2, 3 (19) 

m t  

(W)i = Wi/(lOO x 0 ) ; i = 1, 2 1.5 (20) 

(i)j = W3/0 - 1.5 

where (J is  the  atmospheric  density  ratio  and 0 is  the  atmospheric 
temperature  ratio. 
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In the  dry  and  wet  options (i = 1  and 2, respectively), the power  setting is 
specified as a percentage of maximum;  hence,  the  factor of 100 in the  scaling 
equations  for  fuel  flow  in  the  cases i = 1  and 2. Again,  in  the  dry  and  wet 
options,  three  power  setting  options  are  possible.  These  correspond  to 

Maximum  available in system ......... 1 
Required  to  equal  drag .............. 2 
Specified  value of power  setting .... 3 

The  corresponding  fuel  flows  are  determined  from  the  power  setting 

PS = FN/(FN Maximum  Available)  (22) 

I t  shou'ld  be noted that power setting data i s  specified i n   t h e  mission 
segment options  of  Section 6 and hence do not form ppt ,o f   the   bas ic  
propu'lsion  system input. 

2.2  Turbojet,  Ramjet  and/or  Combined  Engines 
with  Inlet  Precompression  Effects  (Combined  Engine  Option) 

The  turbojet,  ramjet,  and /or combined  engine  simulation  option  provided  in  NSEG 
by  the  ENGINS  subroutine  provides  a  more  realistic  engine  simulation  option  for 
high  speed  flight  than  those  described  in  Section  2.1  due  to  the  following 
features: 

1.  Inlet  flow  field  precompression  effects  due  to  airstream  flow  deflec- 
tion  are  accounted  for  in  thrust  calculations. 

2. A more  accurate  description of engine  performance  is  provided  by 
tabular  engine  data. 

3 .  Turbojet  only,  ramjet  only, or turbojet/ramjet  combination  engine 
options  are  provided;  in-flight  option  selection  as  a  function of 
Mach  number  can  be  employed. 

4.  Engine-related  lift  and  drag  forces  are  computed  and  accounted  for  in 
the  net  thrust  and  the  desired  vehicle  lift. 

5. High  altitude  and  Mach  number  real  gas  atmospheric  properties  related 
to  engine  performance  are  described  by  tabular  data. 

The  following  sections  provide  analytical  description  of  the  turbojet, 
ramjet  and/or  combined  engine  propulsion  option  and  user-related  information. 

2.2.1  Analytical  Description 

The  basic  assumption of two-dimensional  inlet  flow  is  employed  in  the  turbojet, 
ramjet,  and/or  combined  engine  simulation  subroutine.  The  geometry  and  various 
flow  regions  relevant  to  the  simulation  are  shown  in  Figure (3) .  The  computations 
performed  are  divided  into  seven  main  categories  as  follows. 

4 



1. 

2. 

3.  

4. 

5. 

6. 

7. 

Details 

Free  stream  properties  at  Station 0 which  are  a  function of 
aircraft  Mach  number  and  altitude. 

Flow  field  conditions  at  Station  1,  aft of the  wing  shock. 

Inlet  computations  which  yield  the  turbojet  inlet  recovery  ratio 
and  ram  drag. 

Flow  field  Conditions  at  Station 2,  aft of the  engine  inlet  wedge 
shock. 

Turbojet  thrust,  airflow,  and  fuel  flow  computations,  a  function 
of flow  field  conditions  at  Stations  1  and 3 (at the  turbojet 
compressor  face)  and  throttle  setting. 

Ramjet  thrust  and  fuel  flow  computations,  a  function of flow 
field  conditions  at  Station 2 and  Mo. 

Spillage  drag  computations,  if  any,  are  performed  either  in  the 
turbojet  iteration  loop  for  the  turbojet  alone  engine  option o r  
in  the  ramjet  iteration  loop  for  the  ramjet  alone  engine  option, 
o r  the  combined  engine  option,  Figure 4 .  

of these  computations  are  described  in  the  following  text. 

2.2.2  Freestream  Properties 

For  freestream  conditions  where M23.5 and  altitude  exceeds  19812 m (65000 ft), 
real  gas  freestream  total  pressure.  @‘to>  and  total  tsmperature  (Tt 1 values are 
determined  by  the  two-dimensional  table  lookup  subroutine  DISEOT.  Linear 
interpolation  is  utilized.  Plots  typical  of  these  data  appear  in  Figure (5). 
Freestream  total  pressure  in  p.s.f.  is  then  given  by 

If  the  above  Mach-altitude  conditions  are  not  satisfied,  total  temperature 
and  total  pressure  values are computed  by  first  determining  freestream 
static  conditions  (po,To)  from  the  1962  Standard  Atmosphere  Subroutine 
ATMS62.  Static  enthalpy (H) and  pressure  ratio  (pro)  are  then  determined 
from  Table  11,  given  the  static  temperature.  Tota1,enthalpy (Ht)  can  next 
be  computed  by  the  expression 

HI. - ” + ofo ao) /50073.2 
2 

Given  total  enthalpy,  the  freestream  total  temperature  and  total  pressure 
ratio (Pr ) can  be  determined  from  Table  11.  Freestream  total  pressure 
is  then  to  given  by 

5 



_. . . .. .. . . - 

2 . 2 . 3  Flowfield  Conditions  at  Station  1 

Given  the  freestream-flowfield  parameters  at  Station 0, their  counterparts  at  Station 1 
aft of the  wing  shock  are  determined  by  the  two-dimensional  isentropic  shock 
relations (NASA Report  1135).  These  relationships  are  mechanized  in  the 
subroutine  OBSHOK  which  performs  oblique  shock  computations  for  wedge  angles 
below  the  critical  value  and  normal  shock  computations  at  higher  wedge  angle 
values. 

. 2 . 2 . 4  Inlet  and  Ram  Force  Computations 

Given  flowfield  parameters  at  Station  1  and  the  engine  streamtube  area,  the 
ram  drag  is  computed  from  the  equation 

where 'J turbojet.  Ramjet  ram  forces  are  accounted  for  a  priori  in  the  ramjet  specific 
impulse  data.  The  ram  force  computed  above,  parallel  to  the  vehicle  wing 
under  surface,  is  subsequently  resolved  into  components  in  the  lift  and  drag 
directions. 

The  engine  capture  ratio  (Ac/AFsLL)  is  determined  from  Figure 6 ,  Table  111, 
given  M1.  The  air  flow  rate  captured  by  the  inlet  then  becomes 

is  the  area of the  stream  tube of  the  airflow  utilized  by  the 

Capture  ratio  less  than 1.0 indicates  operation  at  a  below  design  Mach  number. 
As seen  in  Figure (3) the  result  of  below  design  operation  is  that  the 
wedge  shock  faiis  to  intersect  the  inlet  cowl  resulting  in  inlet  air 
spillage.  This  spillage  produces  forces  (inlet  spillage  lift  and  drag) 
which  are  computed  using  a  combination of continuity  relationships  and  geometry 
as shown  in  Figure ( 4 ) .  

2 . 2 . 5  Flowfield  Conditions  at  Station 2 

Given  the  flowfield  parameters  at  Station 1, conditions  at  Station 2 are 
computed  using  subroutine  OBSHOK  as  in 2.2.3 above.  That  is  the  two-dimensional 
flow  behind  the  precompression  (wing)  surface  shock  is  turned  again  through  the 
inlet  wedge  angle  (61). 

2 . 2 . 6  Turbojet  Airflow,  Fuel  Flow  and  Thrust  Computations 

For  a  base  size  turbojet,  airflow  and  fuel  flow  requirements  at  full  throttle 
are  first  determined  via  the  one-dimensional  table  lookup  routine  FTLUP.  The 
corresponding  maximum  thrust  is  determined  via  the  two-dimensional  table  lookup 
routine  DISCOT.  The  corrected  airflow (Wa/G) requirement  is  determined  from 
Table V, given  the  total  temperature  at  Station 3 (Tt ) .  This  value  is  then . 
used  to  determine  the  turbojet  airflow  at  any  flight  sondition  by  the  equation: 

6 



uA = CWA) 
corrected * a'm * F?J 

where 

(W 1 , = . the .~ " _  base - engine . . - - . . - . corrected - - . . - . . airflow  rate. 
Acorrected 

d = P /2116.22,  ratio of compressor  face  total  pressure to (29) 
t3 ' sea  level  static  pressure.' 

e I 'T /518.67,  ratio of compressor  face  total  temperature (30) 
t3 to  sea  level  static  temperature. 

F T ~  = the turbojet scaling  factor obtained by specifying 
(1) desired  net thrust at sea level standard conditions 
or (2) desired turbojet airflow a t  sea level standard 
conditions 

Note: It is assumed  that Tt = Tt2 - - Ttl - - TtO (Figure 3). 
3 

The  fuel  flow  rate  to  air-  flow  ratio  is  determined  from  Figure 7, Table VII, 
given  Tt . The  maximum  turbojet  thrust  to  air  flow  rate  is  found  from 
Table VI3 using  the  two-dimensional  table  lookup  routine DISCOT, given Tt 
and  the  log  to  the  base  ten of the  ratio of total  pressure  at  Station  3 
at  the  compressor  face  and  a  reference  turbojet  discharge  region  static  pressure 
PN  which  may  either  be  the  underwing  pressure  or  the  freestream  static  pressure, 
The  above  pressure  ratio  is  obtained  by  first  determining Pt / P  from  Table IV, 
given M and  multipyling  by  Pt  /P  3 tl 1, 1 N' 

The  fuel  flow  rate,  maximum  thrust  and  specific  fuel  consumption  are  then 
computed ab follows : 
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Note  that  the  specific/fuel  consumption  given  above  has  units  of [Lb.  FueJ/ 
Sec)/Lb.  Thrust.  The  non-standard  time  unit ... is  :employed  to  be  compatible 
with,  subsequent  weight  computations  in NSEG. The  fuel/air  ratio WF/WA is 
obtained  from  Table VII, given T . 
The  program  is  constructed  to  allow  thrust  required in the  flight'  direction 
to'.be  de-termined  either  by  a  turbojet  throttle  setting  input  or  a  thrus-t  required 
input.  If  the  throttle  setting  option  is  exercised  thrust  required  is  computed  as 

tj 

FR = TJ * F  N 0 5 1  

where TJ is the  turbojet  throttle setting input. If FR is input greater 
than the net  thrust which the  turbojet can provide in the combined  engine 
mode, the excess thrust  will  be  provided  by the ramjet, if possible. 
Prior to entering  the  turbojet  iteration loop the  maximum turbojet net 
thrust  is  computed 

( F N ) w  FMAX - RAM DRAG 

and  miscellaneous  iteration 

The  purpose of the  turbojet 

parameters  are  initialized. 

iteration  loop  is to provide  the  net  thrust 
required,  if  possible,  totally  by  throttling  the  turbojet. . n i s  procedure 
requires  that  spillage  drag, a function of turbojet  throttle  setting,  be 
accounted  for in the net thrust,  i.e., 

F FR (Fm)TJ COSY - RAM DRAG - SPILLAGE DRAG (37) 
*J 

In the  above  expression y is  the  angle  between  the  wing  under  surface 
and the  freestream  direction, RAM DRAG is the component of RAM FORCE 
in the freestream  direction  and SPILLAGE DRAG includes  drag  components 
due to  inlet  spillage  and  excess  captured  air  spillage, if any. 

The logic  within  this  loop  first  tests the turbojet  throttle  setting. 
I f  this  value  is  less  than  one,  iteration  commences.  Otherwise,  turbo- 
jet  throttle  setting  and  total  thrust  are  adjusted  to  their  maximum 
values  and  a  check for thecombined  engine  option  is  made. If the  combined 
engine  option  is  not  requested,  an  optional  message will indicate that 
the thrust  requested  is  higher  ttian  that  which  can  be  provided.  Within 
the iteration  loop,  throttled  turbojet  performance  parameters  are  computed 
by  first  determining  the  throttled engine SFC ratio  from  Table VIII, 
given  the  throttled  net  thrust to maximum  net  thrust  ratio. The throttled 
SFC, fuel flow rate,  and  airflow  rate  then  become simply 
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SFC - 
('f)TJ 

CWAITJ 

(SFC)- SFC/(SFC))lLy( 
1 

Since the throttled net  thrust to maximum net  thrust  ratio  required  to 
compute  turbojet airflow'rate is a function of turbojet ?am force which 
itself is a function of turbojet airflow rate, an iteration  loop 
encompassing the  above computations  is  required to ensure  that  the 
turbojet  airflow rate used to  compute  the net  thrust  ratio  is  equal t o  
that used  to compute  the ram  drag. 

If WA as  computed above is less than  the previously  computed in le t   cap tured  
airflow  rate, the excess is spilled by the turbojet and results in  either 
a spillage drag, a ramjet  thrust, or both. If WA is greater  than t h e i n l e t  
captured  airflow  rate;  the  excess is assumed to be  available from suck-in 
doors. 

If, (1) the turbojet  throttle  setting  equals one and thecombined  engine 
option  is  selected or (2) a desired  turbojet  throttle  setting  has been 
specified by the  subroutine input  data the net  turbojet  thrust  available 
in the freestream  direction  is  computed by the expression: 

F T ~  = ( F T ~ T ) ~ ~  cosy RAM DRAG - INLET SPILLAGE DRAG f4.1)' 

and logic   f low  exi ts   to   ramjet   calculat ions.  

I f  the  turbojet throttle setting  is  less  than  one, the spilled  air lift and 
drag  components due  to  spillage of excess  captured  air  (engine  spillage) 
are computed as shown  in  Figure 4 .  The' ava i l ab le   t u rbo je t   t h rus t  
is updated t o  account for engine spillage drag by the equation 

F~~ ( F ~ ~ ) T J  COSY - RAM DRAG - INLET SPILLAGE DRAG (42) - ENGINE  SPILLAGE DRAG 

A maximum throttle setting  check  followed by a satisfactory  thrust  level 
check are perfoned; satisfaction of either  results in a return to  the 
calling  routine. The iteration  loop  following no exit  is a simple 
application of Newton's method which  attempts to satisfy the required 
thrust  level  within one tenth of one per  cent. A maximum of ten iterations 
is allowed to  complete  this requirement. The independent variable in 
this process  is  the total  turbojet  thrust. In  the  event  convergence is no€ 
achieved i n   t e n   i t e r a t i o n s ,   a n   e r r o r  message i s - p r i n t e d  . a n i f  a re€uin -€o t h e  
c a l l i n g  program is executed  with  the  engine  parameters computed on the  last 
i t e r a t i o n .  

9 



2 .2 .7  Ramjet  Airflow,  Fuel  Flow,  and  Thrust  Computations 

The  ramjet  computation  sequence  is  constructed  similar  to  that  for  the 
turbojet.  The  maximum  ramjet  air  flow  rate  to  the  full  capture  inlet 
air  flow  rate is computed.from  Table X given  the  total  temperature  at 
Station 2, Tt . The  maximum  ramjet  air  flow  is  then,  simply, 

2 

The  ramjet  actual  fuel/air  ratio  divided  by  the  stoichiometric 
fuel/air ratio,and ramjet  specific  impulse  are  determined  from 
Table  IX  as a function of freestream  Mach  number.  Engine  spillage  drag, 
if  any,  ramjet  and  total  fuel  flow  rates,  air  flow  rates,  and  net  available 
thrust  levels  are  computed  in the ramjet  iteration  loop  via.  the  equations: 

@'P"' R . J wf)RrJ = (wf/wA) ('dRJ (Wf/WA)Stoichiometric 
(44) 

Stoichiometric 

Whcre t h e  ramjet a i r  flow r a t e  above is e i the r  due t o  t h e  a i r  flow 
spil led from the  turbojet  or t h e  maximum ramjet a i r  flow r a t e ,  which 
ever is less .  I n  the   l a t te r   case ,   the   excess   a i r  is sp i l led   a t   p ressure  
P and engine  spi l lage  forces   are  computed. The term SPILLAGE DRAG 
akve  consists  of  only  engine  spil lage  drag i n  the combined  engine  option 
but  includes  inlet   spi l lage  drag i n  the  ramjet  only  option, The ramjet 
i teration  loop  again  applies Newton's method t o   s a t i s f y ,  if  possible,  
the  thrust  level  requested wi th in  .1 per  cent  using  the  ramjet air  
flow r a t e  as t h e  independent  variable. If t h i s  condition  cannot be 
sa t i s f ied ,  an appropriate message is printed and a returp t o  t h e  calling 
routine  is  exeeuted  with  the  engine  parameters  last  computed. 
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3. VEHICLE  AERODYNAMIC  REPRESENTATION 

All  aerodynamic  representations  compute  the  vehicle  drag  given a flight 
condition  and  lift  coefficient.  Vehicle  lift  coefficient  re  uired  is 
determined  internally  by  NSEG  on  the  basis . .  of %LstantaneOUs .%light. 
conditions. 

. . . . .  

3.1  Clean  .fircraft 

Either of two  aerodynamic  representations  may  be  employed  for  the  clean 
aircraft  as  described  below. 

3.1.1  General Form 

The  clean  aircraft  drag  is  computed  in  the  form 

cD = CDo + CDi 

where  CD,  is  the  zero  lift  drag,  and C D ~  is  the  induced  drag. 

Qoj = Qoj(h, M); j = 1, 2 ,  3 

3.1.2  Polynomial Form 

In  this  aerodynamic  option  the  drag  is  computed  in  the  component  summation 
form 

j = 1, 2, 3 (551 
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and 

%IN = %IN (M), t h e  minimum drag lift 
coe f f i c i en t  

3 .2  Store  and  Pylon Drag 

Store  and  pylon  drag is computed i n   t h e  form 

cDS = C D ~  + cD2 + CDg 

where 

In  Equation  (7.2.25)  the  drag  of a s ingle   type  j s . tore   pair  i s  

CDspj = CDspj (M) 

The  number of type j s tore   py lon   pa i r s  is Nsp j 

3 - 3  Tank and  Pylon Drag 

Tank and  pylon  drag is computed i.n the  fonn 

C D j  = C D T ~  NTj + C D T P ~  NTpj j = 1 ,  2 ,  3 (66) 

In  Equation  (7.2.29)  the  drag  of  a  single  type j tank   pa i r  is 



The  number  .of..type j tank  pairs is NT The  drag  of a single  type j tank 
pylon  pair 5s j'  

3.4 Centrifugal  Lift 

Centrifugal  lift  accounts  for  the  earth's  curvature.  In  flight  at  constant 
altitude  about a circular  earth  a.vehicle  is  effectively  falling  to  follow 
the  earth's  surface.  In  consequence  the  full  vehicle  weight  is  not  supported 
during  constant  altitude  cruise.  It  can  be  shown  that  the  relieving 
centrifugal  lift  term  is  given  by 

W(V cos y) 2 

C - - 
'cent qs 

4. VEHICLE MASS REPRESENTATION 
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3 3 

where 

3 3 

'OWE = overall   weight empty 

= bare  weight  without  stores,   tanks,   or  pylons 'BARE 

'Si = number of  store pa i r s   t ype  i 

'Si = weight o f  one s t o r e p a i r   t y p e  i 

Nspi = number of   s tore   py lon   pa i r s  type i 

Wspi = weight  of  one  store  pylon  pair  type i 

NTi = number of   tank  pairs  type i 

'Ti = weight  of one t ank   pa i r   t ype  i 

N T P ~  = number of  tank  pylon  pairs  type i 

'TP i = weight  of a tank  pylon  pair type i 

The suff ix   f ixed  indicates   that   only  f ixed  tanks,   s tores   or   pylons which a r e  
not  included  in  the  payload must be  included i n   t h e  summations. 

4 .2  Fuel Load 

The to t a l   veh ic l e   fue l   l oad  is given  by 
3 

i=l 

where 
WFUEL = total   useable   fuel   weight  

'F INT 
N T ~  = number of   tank  pairs   type i 

W F T ~  = weight  of  fuel  in one tank  pair  type i 

= weight of  i n t e rna l   fue l  
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The su f f ix   u sab le   i nd ica t e s   t ha t   t he  summation only  extends  over  tank  pairs 
which are not  included  in  the  payload. 

The t o t a l  non-payload f u e l  on board a t  miss ion   in i t ia t ion  is given by 

3 

I= 1 

where 
W F T ~  = i n i t i a l   f u e l   l o a d  

W F ~ ~  = i n i t i a l   i n t e r n a l   f u e l   l o a d  

N T ~  = number of  tank  pairs  type i 

W F T ~  = weight  of  fuel  in one  tank  pair  type i 

and the   su f f ix  NPL ind ica tes   the  summation extends  only  over  tanks which are 
not  assigned  to  payload. I t  should  be  noted  that   the  total   fuel is spec i f ied  
d i r e c t l y  by da ta   input ,  and the   in te rna l   fue l   load  is  a computed quant i ty .  

4.3 Payload 

The total   vehicle   payload on board a t  mi s s ion   i n i t i a t ion  i s  given by 

3 3 

3 3 

i=l i=l 

where 
WPL = t o t a l  payload 

'PLint 
and the  remaining  quantit ies  in  Equation (72) are   def ined in Section 4.1. 

= to ta l   in te rna l   payload  
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- 5. . PLANETARY RE.fW.SENTATION . -  

A f l a t  ear th   p lane tary  model i s  employed. The g rav i t a t iona l   fo rce  i s  
a simple  inverse  square  f ield.  A layered  atmosphere  provides the following 
opt  ions : 

1. Tabular 1962. U.  S. Standard Atmosphere 
2.  Analytic 1962 U.  S. Standard Atmosphere 
3.  1963 Patr ick Air Force Base Atmosphere 
4. 1959 U. S. Standard Atmosphere 
5. January 1966 NASA Atmosphere, 30' North 
6. Ju ly  1966, NASA Atmosphere, 30° North 
7. Arbitrary Atmosphere Generated from Temperature  and/or 

Pressure  Variation  with  Alti tude 

'The N.SEG program . .basically computes a pl-anar f l i g h t .  pa th  .. However time 
to   t u rn   ca l cu la t ions  are available;   hence,  a three-dimensional  path  can be 
analyzed by "folding"  the  path  into a plane, Figure'.S'. 

6 -  FLIGHT PATH ANALYSIS 

Fl ight   path  analyses   for   take-off ,   c l imb,   cruise ,   descent ,  and landing are 
included  in NSEG. The analyses are a l l  based on r e l a t i v e l y   r a p i d  approx- 
imate methods. Each f l i gh t   pa th   ana lys i s  model employed is described below. 

6.1 Take-Off 

The take-off  analysis  performs  the  transfer 

where the   su f f ix  TO ind ica tes  state a t  beginning  of  take-off, and t h e   s u f f i x  
50 i n d i c a t e s   s t a t e  a t  the  15.24.m (50 f t . )  obstacle .  

The take-off model was o r i g i n a l l y  developed by Mr. Louis J. Williams of NASA's 
Advanced Concepts  and  Missions  Division, OART, Ames Research  Center. The 
program provides : 

1. Simplified  high l i f t  aerodynamics  based on t h e  USAF DATCOM 
2. A ground r o l l   a n a l y s i s  
3.  Rotation  logic 
4.  Climb ou t   t o   c l ea r  a 15.24 m (50 f t . )  obs tac le  

The take-off  analysis is a l so   ava i l ab le  as a stand-alone  code, program TOLAND. 
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6.1.1 Take-Off  High L i f t  Aerodynamics 

The take-off model uses a self-contained aerodynamics  package  based 
pr imari ly  on. t he  DATCOM methods. Angle of a t tack   in   the  ground  fun  and 
ro t a t ion  maneuvers is determined  from  the  vehicle  geometry.  In  the ground 
ro 21 

uG = aBG + a WB (74) 

where 
aG = wing 
agG= body 
aWB= wing 

In  the r o  

incidence 
incidence 
incidence 

ta ted  a t t i  

i n  ground r o l l  
i n  ground r o l l  
r e l a t i v e   t o  body 

tude 

aR = aBw - 1 .O + aWB 

The addi t ional  symbols a re  

aR = wing incidence  following  rotation 
a&wc = maximum body rotation,  usually  determined by the  t a i l  dragging 

condition 

6.1.1.1 Take-Off L i f t  and Drag 

6.1.1.1  (a) Maximum L i f t  and Drag 

The wing maximum l i f t  coef f ic ien t  is given by 

CLMAX - - (CLmX)B*sE + A C L W  + ACLFLAp 

a' = (acLwIBAsE 

with a corresponding  angle  of attack 

During  take-aff  the m a x i m u m  m g l e  of attack,cr.w, is limit& t o  

OMAX 0 .8  a' 

In these two expressions 

ck 
b x ) B A S E  

%AX 

=wing l i f t  coef f ic ien t  a t  t he  first peak, Figure ,9 

=basic wing maximum l i f t  coef f ic ien t  

=maximum l i f t  coefficient  increment  due  to  taper and  sweep 

=maximum l i f t  coefficient  increment from f l ap   de f l ec t ion  . ACLFLAP 
=basic wing angle of gttack at maximum lift coefficient based on. 

17 
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The  high  lift  aerodynamic  model  is a simplified  DATCOM  method  for  subsonic 
low  aspect  ratio,  untwisted,  symmetric  section  wings. Due to  the low speeds 
encountered  in  take-off  and  landing,  the  DATCOM  method  is  modified  by  the 
approximation 

B = m 2  = 1.0 (791 

Clean  wing  contributions  to  Equations (76) and (78) are  obtained  from 
Figures  10  and  11.  Figure 10 provides  (QwX)BASE;  Figure  11  gives ACmx. 
The  wing  taper  ratio  correction  factors  C1  and C2 of  Figures 10 and  11  are 
obtained  from  Figure  12.  In  Figure  10,  the  take-off  model  is  limited  to  the 
lowest  curve,  and  the  curve  for M40.2 is used  in  Figure  11.  Angle  of  attack 
at  maximuw  lift  coefficient  is  obtained  from  Figure  13. 

Flap  maximum lift coefficient  increment  is  based  on  the  expression 

where 
(‘LA) BASE = linear  lift  coefficient  slope/degrees 

BF = flap  span 

%E 

EF = average  flap  chord 

EWE = average  exposed  wing  chord 

JF = flap  deflection 

= exposed  wing  span 

6.‘ l.l.l(b) Ground Roll  Lift  and  Drag 

During  the  ground  roll,  the  lift  coefficient  is  determined by 



where 

k = induced  drag  factor 
CDO = zero  lift  drag  coefficient 

CLO = lift  coefficient  at  zero  wing  incidence 
CDLG = landing  gear  drag  coefficient 

‘,6.,1.1.  (c)  Rotation  Lift  and  Drag 

The  lift  coefficient  after  rotation., CLR, is  given  by  Equation (81) with  aR 
replacing  aG;  that  is, 

CLR = F(~G) 

The  lift  coefficient  is  subject  to  the  condition  that 

CLR ,< ( c L ~ )  / (1  1) 

.This  inequality  constraint  is  imposed  to  prevent  buffet  or  pitch-up  problems. 

The  drag  coefficient  after  rotation  is  given  by 

CDR = cDo + kcLR[cLR - cLo - AcLFLAp] + CDLG (8-5) 

6.1.1.1  (d) Lift and  Drag  at 15-24 m (50 feet)  Obstacle 

ne lift  coefficient  at a 15.24 m (.SO ‘feet) obstacle i s  based on the  rotation  lift 
coefficient. 

6.1.2 Ground  Roll  and  Rotation 

The  ground  roll  distance,  XG,  is  based  on  the  expression 

where 
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and 
Fm = take-off  thrust 

Wm = take-off  weight 

FIG' = vehicle  rolling  friction  coefficient 

Time  to  reach  the  rotation  point  is  given  by 

TG = 1.1842 XG/VR 

where  the  velocity  at  rotation,  VR,  is  given  by 

Rotation is assumed  to  occur  instantaneously. 

6.1.3  Flight  to  Clear  15.24 m (50  feet)  obstacle 

The average  drag  coefficient  between  rotation  and  15.24 m (50 feet) obstacle  clearance 
points  is  assumed  to  be 

The distance  covered  in  clearing  the  obstacle  is  given  by 

50.0+2.745 (- 
S -CLR wTo 1 

- - 
'50 FTO cDR50) (-) - 1.105(- 

'TO cLR 

Time  to  clear  the  obstacle  after  rotation is 

Tsb = Xso/ (1.6889 X VR) 

Thus, total  distance for take-off over 15.24 m (50 feet)  obstacle is 

193) 

The  elapsed time is 

Total fuel used is 
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ii At the  15.24 rn (50 feet)  obstacle  the  flight  path  angle  is  obtained  from 

FTO 'D50 sin(Yso) = - - - 
'50 cL50 

where 

'SO 'To - 
The corresponding ra te  of  climb 

RCS0 = 1.6889 

(993 

. .. 
6 .2  Landing  High L i f t  Aerodynamics 

The landing  analysis  closely  follows  the  take-off  analysis but in reverse  
sequence  s tar t ing from t he  15.24 m ( 5 0  feet)  obstacle.  The  angle  of  attack  at 
touchdown  is 

and in  the  subsequent ground r o l l  

where 'LR = a~~~ + QWB 
QI.D = wing incidence a t  touch down 

a,TD= body incidence a t  touch down 

aLR = wing incidence  during  landing ground r o l l  

= body incidence  in   landing ground r o l l  a~~~ 

6 . 2 . 1  Landing  Lift  and  Drag 

The  wing  maximum  lift  coefficient  during  landing  and  the  corresponding  angle 
of  attack  are  given  by  Equations (76) to (78). Flap  incremental  lift  is 
given  by  Equation (SO). It  should  be  noted  that  the  landing  configuration 
parameters  such  as  flap  angle  and  permissible  body  angle  of  attack  will 
normally  differ  significantly  between  the  take-off  and  landing  configurations. 
At  the  15.24 m (50 feet)  obstacle,  configuration  lift  is  assumed  tolbe 

'LLSO x cLTD/(1*1)2 

A t  touchdown, C L ~ > ,  is based on Equation,. (80) . using a m ;  t h a t  is 

(104) 
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where A C L F ~  i s  given  by  Equation  (80)  using  the  landing  f lap  sett ing.  
The inequal i ty  

Similarly,   during  the  subsequent  landing ground r o l l ,  

Drag coeff ic ient  a t  the 15.24 m (50 feet)  obstacle,  cDL50, is given by Equation (82) 
using  appropriate  landing  coefficients.  Drag a t  touchdown, CDTD, i s  given 
by Equation  (7.1.8)  using touchdown coef f ic ien ts .  Drag during  the  landing 
ground' r o l l  is given by 

CDCHUT = landing  parachute  drag 

A l l  o ther  symbols are def ined  in   Sect ion  6 , l .  1. 

6,2.2 Flight  from  15.24 in (50 f e e t ) O b s t a c l e   t o  Touchdown 

Velocity at touchdown is assumed to   be  

= 17.16 dr S *CLTD 

X I 

L50 

50.0 + 2.745( 
S%D 
wL 1 

where 
X L 5 0  = f l i gh t   d i s t ance  from 15.24 m (50 f e e t ) o b s t a c l e   t o  touchdown 

WL = landing  weight 

cDTD50 

FL = approach th rus t  

= =(Qs0 + C D ~ ) ,  the  average  drag  coefficient 1 
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Rate of sink at the 15.24 m (50 feet)  obstacle  is 

cDL50) - (-)I FLSO 
RS50 so QLSO WL 

= 1.69 V [(- 

Flight  path  angle a t  the  35.24 m (50 feet) is given  by 

The ground r o l l   d i s t a n c e  is given by 

. Total  landing  distance is  

* x~ = 'LSO + 'GL 

6 . 3  Alternative  High  Lift  Aerodynamics 

Where  detailed  high lift aerodynamic  values  are  known  the  DATCOM  calcula- 
tions  may  be  bypassed.  In  this  case  the  values  of  CLa, C L ~ ~  and  aMAx 
(CLATgT, CLMXTJd,  ALMXTJd)  are  specified  directly  in 
program.  input. 

6.3.1 - Acceleration at Constant  Altitude 

The  level  flight  acceleration  segment  performs  the  operation 

where { A X l i  is the  state change i n  acce lera t ing  from M t o  M + hM. 

Given {XIi = {V, h,  y ,  W, R, t I i ,  T i  and Di, then the velocity change is 

. .  

V = a s M  (1153 
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where a, is the 

V. 
1 

me approximate 

speed of sound a t  the  acceleration  alt i tude and 

T- D 
= I+ [ T I  

i 
time to   acce le ra te  from M i  t o  Mi + A  M i s  1 

The corresponding  approximate  weight change is 

AW' = Wi A t '  

and 
Wi+l = Wi - AW' 

and to   the  first order 

T- D 
= 8, ["ni- 1 

i+l 

Wi+l can  be  obtained a t   t h e  new  Mach number. ?he mean acceleration is now 

- 1 -  v = $Vi + vi+l) 

which gives a weight  change of 
AW = 7(Wi 1 + W i + l ) A t  

and  a range  increment 

AR = $Vi + Vi+l)At. 1 

The 'state incremental  vector IAXIi is therefore  given by 

'(122) 
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6.4 Accelerating  Climbs 

All  accelerating  climb  paths  are  formed  by  a  sequence of elemental  straight 
line  arcs  in  the  Mach-altitude  plane. On any  arc  the  vehicle  flies  from 
(Mi, hi) to (Mi+l,  hi+l).  Since  the  vehicle  is  climbing 

hi+l > hi  (1261 
The  typical  arc. for a  climb  path  is  shown  below,  The  Mach-altitude  plane 

can  be  transformed  into  the  velocity-altitude  plahe  as  follows: 

V = V(h,  M) (127) 

so that 

o r  

av  av AV = - - 6h + m6bf ah 

dv av av aM 
dh 

av dM 
- a h  + a -  
- 

dh 
where  a  is  the  local  speed  of  sound 

v = a M  

Now aV/ah  is  the  change  in  velocity  with  altitude  at  constant  Mach  number, 
and  from  Equation  (131)  with M constant 

c 
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where  TR  is  temperature  ratio, 

and  from  the  atmospheric  model 

T/TsL, so that 

1/2 
a = 1116.45(T~) 

aa a - = -  
aTR 2 TR 

Substituting  into  Equation (133) 

" av v ~ T R  
ah 2 TR dh 

".- 
Substituting  Equation. (136) into  Equation (130) 

Equation (137) is  used  to  define  the  required  variation of velocity  with 
altitude  over  an  elemental  climbing  arc. 

Now the  rate of climb is 

" dh - RC dt 
or 

dh 
RC - = dt (1391 

Assw/ling rate of climb varies  linearly w i t h  alt i tude in  the  elemental  arc 

RC = a + bh (1401 

Substituting  into  Equation 

fh2 dh 

(139) and  integrating - 

or 
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where 

a = RCi 

The  vehicle  rate of climb  is  computed  under  the  assumption  that  thrust is 
aligned  along  the  velocity  vector  as  'shown  below. 

Now 

but 

D c 
iv 

dV  dh W dV mV = m =.-- - V sinY 
g dh 

Combining  Equations (145) and (146) 

and 

so that 

T-D siny = 
W[- - +1 .O ]  V dV 
g a  

COSY = K Z z Y  (148j 

.(.149) 



Equation  (149)  can  be  evaluated  at  each  end  of  the  elemental  arc  to  obtain 
RCi+l  and  RCi.  Hence, At, the  time  to  traverse  the  elemental  arc,  is  given 
by  Equation  (143).  Similarly,  the  flight  path  angle  at  each  end  of  the 
arc  can  be  obtained  from  Equation  (147).  It  should  be  noted  that  if  siny, 
Equation  (148),  is  greater  than  1.0,  the  approximate  climb  analysis  is 
invalid.  If  this  condition  occurs,  the  thrust  is  reduced  to  produce a 
climb  along  the  elemental  arc  at 89.5 degrees. 

Summarizing,  the  state  incremental  vector  for an accelerating  climb  is 
given  by 

w 

AV 

Ah 

AY 

- - 

AR 

AW 

At - 
6 . 4 . 1  Cruise  Flight 

Cruise  flight  performance  is  computed  by  the  Breguet  equation.  With  constant 
velocity  the  distance  travelled  in  time At is 

Now 
w SFC = - T 

so that 

At = AW 
(SFC) T 

Substituting  in  Equation  (7.2.82) 

AR = V 
0.T AW 

In  cruise  flight 
L W  
D T  
-I - 

(155) 
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and 
AR = - (-1.7 V L AVJ 

SFC D 1J 

On in tegra t ing  

Several   cruise modes are   contained  in   the program including 

1. Constant   a l t i tude,   constant  Mach number c ru i se  

2.. Constant   a l t i tude,   constant  CL c ru i se  

3.  Constant Mach number, constant CL 

Each of the   t h ree -c ru i se  modes may be  performed i n  the  manner 

1. From R i  t o  R i + l  = A R i  

2. From T i  to T i + l  = ATi 

3. From Wi t o  Wi+1 = ANi 

A c ru i se  f l i g h t  is computed by summing over N i  s t eps .  Thus, 

'Rcruise =  CAR^ i 

or 
'*cruise = ' lhTi 1 
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In a l l   cases   the   to ta l   s ta te   increments   a re  summed i n  the  manner 

CAX1cruise = C { A X l i  i (160) 

A mean range  factor  i s  used i n  a l l  c ru ise   ca lcu la t ions .  The mean range 

determined by an appropriate  weighting  of  the  range  factors R C i  and R C i + ]  
f ac to r ,  (RCi), i n  each  elemental  arc bounded by C X l i  and { X l i + l  is 

which bound the   a rc .  

6. S Descent 

The climb  analysis o f  Section 6.4 i s  also  used f o r  the  descent   analysis  
If the s ize  of the   f l igh t   pa th  angle becomes too  small  (sinY < -I), the  
engine i s  t h r o t t l e d  back t o  maintain a rea l i s t ic   f l igh t   pa th   approximat ion .  

6.6 Level Flight  Acceleration 

The approximate time t o   a c c e l e r a t e  from M i  t o  Mi+l i n  l e v e l   f l i g h t  is 

A t :  = aS(Mi+l - hii)/i'i 
1 

w i t h  a corresponding we igh t  change 

An' = ili A t '  

s o  t h a t  

w! = n. - w. A t 1  
191 1 1 

Therefore,  to  the first order  

(163) 

The fue l  flow a t  th i s   po in t ,  iVi+l, can  be  obtained from the   vehic le   aero-  
dynamic  and propuls ion  representat ion.  

- v .  = - (Vi + v. ) 1 '  
1 2  1+1 

(165) 

and an improved estimate of the  t ime  to   accelerate  from M i  t o  Mi+l is 

A t .  = a (M. - Mi)/Ci 
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This gives an  improved estimate o f  the  weight change 

and the  corresponding range change 

1 
1 2 1  

AR. = -(V. + Vi+1) Ati 

Sumasiaing,t.he level  acceleration  state increment is  

6R 

31 



7. MISSION  SEGMENTS 

The  state  incremental  methods of Section 6 are  used  to  create  a  variety 

option  is  briefly  described  below.  All  mission  climbs,  cruises,  acceler- 
of  optional  mission  segments  in  NSEG.  Each  availablc  mission  segment 

ations,  and  decelerations  may  be  performed  in  forward or reverse  direction. 
Each  mission  segment  described  below  is  performed  as  a  distinct  option  in 
NSEG.  There  is  some  degree  of  overlapping  capability  in  the  available 
mission  options.  The  mission  option  within  NSEG  is  indicated  for  each 
mission  segment  for  reference  purposes. 

7.1  Generalized  Climb o r  Descent  (Mission  Option 1) 

The  generalized  climb  descent  option  incorporates  several  alternative 
flight  path  estimation  methods.  These  methods  include: 

Linear  El-h  path 
Constant  dynamic  pressure  path 
Approximate  optimal  paths 

Each  of  the  available  paths  is  described  below. 
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.7.1.'1 Linear Climb 

This  option  climbs  l inearily from (Mi, hi) t o  (Mz, h2) using a spec i f ied  
number.of l i n e a r  climb s teps  from (Mi, h i )   t o  (Mi+l, h i + l ) .  The path is 
i l l u s t r a t e d  i n  Figure14. 

7.1.2 Climb a t   Spec i f i ed  Dynamic Pressure 

This option  climbs  along a spec i f ied  dynamic pressure   l ine  from (MI h l )  
t o  (M2 h2)  with  appropriate  terminal maneuvers. Along the  constant  
dynamic pressure   l ine  a spec i f ied  number of  l inear  Mach-alt i tude segments 
are  flown.  Appropriate i n i t i a l  and f i n a l  maneuvers are  used when  (MI h l )  

may specify a climb a t  the  terminal end poin t  dynamic pressure.  In t h i s  
or (M2 h2)  do not l i e  on the   spec i f ied  dynamic pressure  l ine.  The user 

case ,   the   f ina l  maneuver is not  required.   ,This  path i s  i l l u s t r a t e d  i n  
Figure 15. 

7.1.3 Rutowski Climb 

The Rutowslci climb,  Reference I P l i e s  from (MI h l )   t o  (M2 h2) along  the 
path which  must rap id ly   bu i ld  up specific  energy. If e i t h e r  of the   po in ts  

maneuver is.employed. The  Rutowslci path i s  found by the  following  procedure. 
(MI h l )  and T& h2) do n o t   l i e  on th i s   pa th ,  an appropriate  terminal 

1. Compute the   in i t ia l   po in t   spec i f ic   energy  

E 1  = VI2/2g + h i  (170) 

and f ind  specif ic   energy 

E2 = Vz2/2g + h2 (171) 

and divide  the  energy change (E2 - E l )  i n t o  N equal  increments 

2. Search a t  each  incremental  energy  level 

E i  = E 1  + i * AE i = 1, 2 ,  . . ., N (172) 

t o   f i nd   t he   po in t   o f  maximum specif ic   energy  der ivat ive,  
(Mi, h i )  where 

i- 1 -  - (Ti  --Di)Vi/Wi (173) 

The calculat ion is carr ied  out   for   specif ied  weight  and 
load  factor .  
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3. Fly a sequence  of  linear  Mach-altitude  flight  increments 
joining  the  point (Mi hi) and  (Mi+l h i+ l )  

A typical  Rutowski path  obtained from the program i s  i l l u s t r a t e d  in  Figure 
16. The i n i t i a l   a c q u i s i t i o n  o f  t f e  Rutowski path a t  

h - h  + A h  1 
(174)  

veloc i ty  loss if  t h i s  i s  required.  The f i n a l  maneuver may be e i t h e r  a 
takes a vehicle  from i ts  i n i t i a l   c o n d i t i o n   t o   t h e  Rutowski path w i t h  a 

t ransfer   a long a constant  energy  l ine from the Rutowski point a t  t he   f i na l  
energy t o  t h e  point  Mzh2. Alternat ively,  an a l t i t u d e  limit may be  placed 
on the  path  such  that  when a Rutowski point l ies  above the   f i na l   po in t ,  a 
t r ans fe r   t o   t he   f i na l   po in t  M2h2 occurs.  These  terminal maneuvers a r e  
sketched below. 

t 

I 
I 

c I 

h 

towski Climb 

DM 
(a )   In i t i a l  Maneuvers 

DM 

(b)  Final Maneuvers 

The Rutowski path will observe  both Qmax and maximum dynamic pressure con- 
s t r a i n t s   a t   t h e   u s e r ' s   o p t i o n .  The thrust   levels,   vehicle  weight,  and load 
fac tors  employed i n  t h e  E calculat ion  are   specif ied by the  user .   Further  
d e t a i l s  of this   mission segment option may be  found in  Reference 2.  
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7.1.4 Maximum Rate of Climb 

A m a x i m u m  r a t e  of climb  path  between M 1  h l  and M2 h2 i s  generated  in  a 

maximum r a t e   o f  climb path  the  search f o r  maximum E is ca r r i ed   ou t   a t   t he  
similar manner t o  the Rutowski path of Section  7.1.3. However, i n   t h e  

cons t an t   a l t i t udes  

h = h   + i * A h  i = 1, 2, . . ., N (175) 1 .  

where the  a l t i tude  different ia l   (h2-hl)   has   been  divided  into N equal 
increments. A t yp ica l  m a x i m u m  r a t e  of climb  path is shown in  Figure 
16. 

7.1.5 M a x i m u m  Acceleration 

A maximum accelerat ion  path between MI h l  and M2 h2 is generated  in a s imi la r  
manner t o   t h e  Rutowski path of Section  7:1.3. However, i n   t h e  maximum 

a l t i t u d e s  
accelerat ion  path  the  search  for  maximum E i s  carr ied  out  a t  the  constant 

M = M 1  + i AM i = 1, 2 ,  . . ., N (176) 

where the  Mach number d i f f e r e n t i a l  (M2 - MI) has  been  divided  into N equal 
increments. A typ ica l  maximum acceleration  path is shown in  Figure 
16. 
pressure  constraints   of   the  Rutowski path.   In  addition,  the  condition 

The maximum acce le ra t ion   pa th   s a t i s f i e s   t he  and m a x i m u m  dynamic 

AEi+l >, AE. 
1 

is  imposed.  That is, the  sequence of po in t s ,  Mi hi   u sed  in  the accelerat ion 
will never  produce a loss of  specific  energy.  This i s  i l l u s t r a t e d   i n  
P igure ' l7 .  

:7.1.6 Minimum Fuel  Paths 

Hinimum fuel  path for given  energy,  al t i tude,  and Mach number are  obtained 
i n  a 'manner  similar  to  Sections 7.1.: through  7.1.5,  respectively. However, 
the   search   op t imiza t ion   c r i te r ia  on E i s  replaced by t h e   c r i t e r i a  

4 = Maximum [E/M] = M w [  dE/dt dE -1 = Maxtal 
When the search i s  carried  out  along  l ines  of  constant  energy,  the minimum 
fuel energy  build  up i s  found. Then the   search   occurs   a t   cons tan t   a l t i tude ,  
t he  minimum f u e l  climb is found. Nhen the   search  occurs   a t   constant  Mach 
number t h e   m i n i m   f u e l   a c c e l e r a t i o n  is found. A l l  appropriate  terminal 
maneuvers  and constraints   descr ibed  in   Sect ions 7.1.3 t o  7.1.5 are  included 
i n   t h e  minimum fue l   pa ths .  
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7.1 .7  Maximum Range Glide 

The m a x i m u m  range  glide  path i s  obtained when the  vehicle f l ies along 
t h e  laws of  t he  L/D contours  tangency  points  to an appropriate  path gen- 
erating  surface  such  as  constant  energy,  constant  al t i tude,  o r  constant 
Mach number. The maneuvers are   thus  s imilar   to   those  of   Sect ions  7 .1 .3  
t o  7.1.5  using  the  opt imizat ion  cr i ter ia  

4 = Maximum [L/D] (179) 

When the  search i s  carried  out  along  lines  of  constant  energy,  the maximum 
range  gl ide  for  a given  energy loss i s  found,  Reference 1. When the  search 
occurs a t   cons t an t   a l t i t ude ,   t he  maximum range  glide  for a given  a l t i tude 
loss i s  found. When the  search  occurs a t  constant Mach number, the maximum 
range  gl ide  for  a given  velocity  loss i s  found. Some typical  paths  obtained 
from the NSEG program a r e   i l l u s t r a t e d  i n  Figure 19.  

7.1.8 Range Biased  Ascents 

Range biased  ascents  can  be  obtained when the  vehicle  f l ies  along  the  locus 
of t he  T/(L-D) contours  tangency  points t o  an  appropriate  path  generating 
surface.  This can  be  seen as follows: 

and 

Now 

E = h + V2/2g 

m(-) = T - D - W sinY dv 
d t  

R = I d R = I - d E = I - - - - - d E  dR dE dR d t  d t  dE 

There  from  Equation (180) 

R = J d h  V dV 
d t  g d t  

V cosY . dE 
- + - . -  

- - cosY . dE 
sinY + -- 1 dV 

g d t  
But from Equation (181) 
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So t h a t  

= T-D 
W COSY dE 

Assuming that  range  biased  ascents.occur a t  small f l ight   path  angles   with 
L W, Equation (188) becomes . 

R = $ &  dE 

Therefore, an energy-like  approximation  for a range  biased  ascent when 
(L/(T-D) is a maximum a t  each  energy  level. It should  be  noted  that  when 
T - D . =  0, no  energy  gain i s  possible;   therefore ,   th is   s ingular   condi t ion 
must be  avoided.  In NSEG the  per  cent  excess  of  thrust   over  drag which 
is acceptable is a program input.  

In a manner similar to   Sec t ions .7 .1 .3   to   7 .1 .5  a range  biased  ascent 
between  two-energy levels occurs when the  points  of  tangency  between  constant 
energy  and T/(L-D) contours i s  flown. A range  biased  climb between two 
a l t i t u d e s  w i l l  f ly   the  points   of   tangency between  constant  altitude and 
constant T/(L-D) contours. A range  biased  acceleration will f ly   t he   po in t s  
of  tangency  between  constant Mach number and constant T/(L-D) contours. 

7.1.9 Range Biased  Ascents Based On 
Range Factor 

A second s e r i e s  of range  biased  ascents  can  be found on the  basis   of   the  
range  factor  contours.  These  ascents are similar to   t hose  of Section  7.1.8 
with  range  factor  replacing T/ (L-D) . 

7.. 2 Maximum L i f t  Coeff ic ient  
Climb o r  Descent  (Mission  Option  2) 

The m a x i m u m  l i f t  coefficient  path  climbs from M 1  h l   t o  M2 h2 i n  N increments 
of a1 t i t u d e  

h i  = h l  + i Ah i = 1, 2,  . . ., N -(187) 

A t  each   a l t i tude   the  Mach number f o r  maximum rate   of   c l imb  using  the  angle  
of  attack f o r  C L ~  is found 

M i  = RC (188) 

The vehic le  uses the  linear  Mach-altitude  path  path  follAwer  to  climb  between 
Mihi  and Mi+l h i + l .  

Descents follow  the same procedure as cl imbs,   but   in   reverse   order .  
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7.3  Radius  Adjustment  (Mission  Option 3) 

This  mission segment option  performs  an  i teration on the  range  of one 
cruise segment t o  make the   to ta l   range   over   the  combined mission  segments 
SI; j = J1, J2 . . ., JN equal   to   the  total   range  over   the combined 
mission  segments Sk; k = K 1 ,  K2, . . ., KN. That is 

R =  c R j =  
j k 

1 Rk 

7.4 Cruise Climb to   Spec i f i ed  Weight (Mission  Option 4) 

As an aircraft c ru i se s   a t   t he  Mach number and a l t i t u d e   f o r  m a x i m u m  range 
factor,  Equation (151), the  weight  reduces. As the  weight.changes,  the 
a l t i t ude   fo r   bes t   r ange   f ac to r  changes  while  the Mach number remains  approx- 
imately  constant.  The a l t i t u d e  change r e s u l t s  from the  requirement  to 
maintain  the  angle   of   a t tack  for  maximum l i f t / d r a g   r a t i o .  Thus, a s   t he  
cruise progresses   the   a l t i tude   increases .  

The c ru i se  may be  performed i n  one s t e p . o r  it may be  reduced t o  a sequence 
o f   f i ve   s t eps  between la t te r  case W = W 1  and W = W2, Section  6.4.1. 
A t  t he  start  o f   t h e   i t h  segment i n   t h i s  

'i 1 = W  + i * A W  i = 1, 2, . . ., 5 (1901 

Each  segment is flown at  constant Mach number and l i f t  coe f f i c i en t  and,  hence, 
involves a climbing cruise. A t  the  beginning  of  each  cruise  step  the  weight 
is instantaneously  adjusted  to   the  best   a l t i tude  for   the  current   weight .  

7.5 Cruise Climb for  Specified  Distance  or Time (Mission  Option 5) 

This  mission segment option  performs a cruise  climb,  Section  6.4 
for   spec i f ied   d i s tance   o r  time. The cruise may be  performed  with or  without 
range  credit .   This form of cruise f l i g h t  is performed i n  one s t ep .  

7.6  Constant  Altitude Cruise Between 
Two Weights,  (Mission Opt5on 6 )  

This mission segment  performs e i t h e r  

1. Constant   a l t i tude,  constant Mach number cruise 
2. Constant   a l t i tude,  constant l i f t  coe f f i c i en t   c ru i se  
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between two weights W 1  .and W2. The c ru i se  is performed i n  one  step, 
see Section 6.4 

7.7 Constant  Altitude Cruise f o r  
Given Distance  (Mission  Option 7) 

This  mission segment  performs e i t h e r  

1. Constant   a l t i tude,  constant Mach number cruise 
2. Constant   a l t i tude,  constant l i f t  coef f ic ien t  cruise 

between two dis tances  R1  and R2.  The c ru i se  i s  performed i n  one s t ep ,  
see Section 6.4 

7.8. Constant  Altitude Cruise f o r  
Given Time (Mission  Option 8 )  

This mission segment  performs e i t h e r  

1 .  Constant   a l t i tude,  constant Mach number c ru ise  
2. Constant   a l t i tude,  constant li€t coe f f i c i en t  cruise 

between two times T and T2. The cruise i s  performed i n  one s t ep ,  see 
Section ' 6.4.  his segment may be  performed  with or  without  range 
c r e d i t .  

7 .9  Buddy Refuel Cruise (Mission  Option 9) 

This  mission segment determines  the optimum in - f l i gh t   r e fue l l i ng   po in t  and 
how  much fue l  w i l l  be   t ransferred.  The tanker   fuel   off   load  capabi l i ty  i s  
specified  at   three  range/fuel  combinations and a pa rabo l i c   va r i a t ion   i n  
ava i lab le   fue l  as a function  of  range is assumed.  That is, 

Wf = a + bR + cR? 

Cruise f l i g h t  i s  assumed i n  any  one of  the  three  forms 

1. Constant Mach number, constant l i f t  coe f f i c i en t  
2 .  Constant Mach number, cons t an t   a l t i t ude   c ru i se  
3. Constant l i f t  coef f ic ien t ,   cons tan t   a l t i tude   c ru ise  

A maximum range   for   re fue l l ing  may be  specif ied.   Refuel l ing w i l l  occur a t  
any point  on t h e  segment  where 

1. Fuel  receivable is greater   than or equal t o   f u e l   a v a i l a b l e  
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2. Distance flown i s  equal   to  maximum refuel l ing-   range 

3. Minimum in-f l ight   weight   of   the   vehicle   re .ceiving fuel is 
reached  where 

w~~~ - + w p ~  + w~ kF - 
(193) 

where kF is  the  unusable   res idual  fuel i n   t h e  non-payload f u e l .  
For refuel l ing  purposes   the m a x i m u m  weight is taken t o  be  the 
tUe-off   weight  

'MAX = 'TO (1 94). 

7 . 1 0  Mach-Altitude-Weight  Transfer  (Mission  Option  10) 

This  mission segment opt ion   re t r ieves  state components a t  the  end o f   f l i g h t  
segment i and makes them' ava i l ab le   a s   t he   i n i t i a l   cond i t ions  fo r  f l i g h t  
segment j .  The in i t i a l   cond i t ions   fo r  segment j are   thus a l i nea r   t r ans -  
formation  of  the  f inal   condition  of segment i, 

Currently,  the NSEG program is  l imi t ed   t o  a simple state component t r ans fe r  
on any  combination of. the   th ree  components: Mach number, a l t i t u d e ,   o r  
weight. 

7 . 1 1  Alternate  Mission  Selection  Option 

(Mission  Option 11) 

This   mission  opt ion  re t r ieves   e i ther   of  two mission  segments on the   bas i s  
of  terminal Mach number,- a l t i t ude   o r   we igh t .   Re t r i eva l   c r i t e r i a  may be 
based on any one of s i x  p o s s i b i l i t i e s :  

The segment to   be   re ta ined  is  the  one which sat isf ies   the  selected  performance 
c r i t e r i a .  
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7.12 Instantaneous Weight Change (Mission Option 12) 

wi+l = wi - AW 

is. performed. 

(26.2) 

7.13  Instantaneous  Mach/Altitude Change :(Mission  Option 13) 

This mission segment option  provides.  an  instantaneous  change  in  vehicle Mach 
number, AM, and  an  instantaneous  altitude  change, Ah. The new  Mach number, 
Mi+l, and a l t i t u d e ,   h i + l ,  are spec i f ied   d i rec t ly ;   thus  

7.14  General  Purpose and Point  Condition  Calculation 
(Mission  Option  14) 

This  mission segment option  provides  any o f  a   var ie ty  o f  calculat ions 
described  below: 

1. Best  cruise  altitude  for  given Mach  number  and weight 
based on range factor 

Max[RF; M, W] 
h 

2. Ceiting  for a specified  rate  of climb a t  given Mach 
number  and weight 

3. Mach  number for  mascimwn l i f t  coeff icient  at   given weight 
and alt i tude 

4. Mach number for specified Z i f t  coefficient  given  weight 
and alt i tude 

Find[CL; W, h] (208) 
M 
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5. M d m u m  endurvmce Mach  number given  attitude,  weight, and 
dmum lift coe f f iden t  

Min[W; W ,  h , C b a x ]  
M 

6 .  M m h u n  Mach number at  given  weight and aZtZtude 

M=[M; W, h]  (210) 
M 

7a. Maeh  number for maximum rate of cZirnb a t  giL.on weight- and 
aZtitude 

Max[RC; W ,  h] 
M (211) 

7b. Mach  number for ma;cimum rate of cZimb per pound of fuel a t  
given  weight and altitude 

Max  [dh/dW; W, h] 
M 

8 .  Approximate Mach  number and aZtitude  for m&mwn.range factor 
given  weight 

9 .  Mach  nunrber for  m&mwn range factor  given  aZtitude and weight 

Max(RF; h , W] 
M 

(214) 

10. Various energy maneuverability parameters a t  specified load 
factor given Mach, attitude, and weight 

a. The required lift coefficient 

b.  Specific  excess power 

Ps = E = (T-D)V/W 

c.  Specific  excess power divided by fuel flow 

Ps/W = h/W = (T-D)V/(W W) 

d .  Specific  excess power divided by fuel flow and multiplied 
by fuel remaining (AE capability) measure 
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e. Specific  energy 

Es = h + V2/2g 

f .  Load f a c t o r  at Ps=O.O 

g.  Steady state turn   rad ius  computed as  follows: 

CL = CL, for  given  load  factor 

Now for  given bank angle, BA 

W = qSCL COS(BA) 

and the   cen t r i fuga l   force  is 

but from  Equation  (7.2.149) 

t a n B A  = d ( F )  - 1 . O  

Substituting  Equation  (7.2.153) and (7.2.151 

- v2 I 1.0 R = -  g J  (-) w -1.0 
qscL 2 

I 

It  should  be  noted  that   this  mission se ent  option may employ d i r e c t l y  
specified  values  of Mach number, a l t i t u g  and  welght o r  these state components 
may be  picked up from the  previous  mission segment termination. The option 
t o  reset Mach number, a l t i t u d e ,  and  weight  from  any  previous  segment termi- 
nation is  also  avai lable   within  the  opt ion.  
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7-15 Iteration to Fly a Specified  Distance  (Mission  Option  15) 

This  mission  segment  option  perturbs  the  range  increment  in  segment i to 
provide a specified  total  range  (from  mission  initiation)  in  segment j 

ARi 
I I 

\ Segment i 

Segment j 
1 b 

I-" *Rj 
* R  

Rj 
. fi. 

This  is  illustrated  above  where 

within  an  error of one  nautical 

ARi  is  perturbed  to  satisfy  the  condition 

mile. 

7.16 Climb  or  Accelerate  (Mission  Option 16) 

This  mission  segment  option  provides a climb or acceleration  between  two 
Mach  number-altitude  points  (MI  hl)  and (M2  h2). These  two  flight  conditions 
must  be  defined  in  two  mission  segments,  segment i and  segment j. The 
climb or acceleration  will,  then  join  the  two  points.  Climb  or  acceleration 
paths  may  be  performed in either a forward  or  reverse  time  direction. Descents 
are  not  permitted.  The  mission  segment  option  may  be  performed  with  or  without 
range  credit. 

Fuel  burning  decisions  are  made  according  to  Mil-C  rules  while  going  from 
condition I to 2. Thus,  fuel  is  burned  if 
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or if 

M2 > M1 and h2 = hl 

This behavior is illustrated below. 

A 4 
h h 

1 
2 

* )M I )M 

Burn Fuel 

\ 
1-2 

I 
! 
! 

i 
I Don It Burn Fuel 

i 2.f 
\ 

-1 
! 

! 
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7.17  Fuel Weight Change.(Mission  Option  17) 

A computed or spec i f ied  fuel weight  change is introduced  through  this 
mission segment option. The operation  performed is 

= Hi - AW 

Ti+l = Ti + AT 

The option  can  be  used t o  compute 

1. Loiter  fuel  requirements 

2.  Warm up and take-off  fuel 

3. Combat fue l  

Take-off fue l  when computed i s  carried  out  throughthe  take-off  analysis  of  Section 
6.1. If a detai led  take-off   analysis  i s  not  required  the  option  of  Section 
7.18 is used. Wamn up fue l   ca lcu la t ion  i s  computed for   given power 

s e t t i n g  and time. Loiter fue l   ca lcu la t ion  i s  f o r   f l i g h t  a t  spec i f ied  Mach 
number, alt . i tude,   weight,  and  a  given time. Combat fue l   ca lcu la t ion  i s  f o r  
specified  t ime or degrees  of  turn a t  a given  load  factor.  If the  degree  of 
turn  opt ion is used,  the  following  calculation i s  performed. 

L = i i . W  (226) 

where 6 is the  load  factor .  The cent r i fuga l   force  i s  

F R = d E  
and the   tu rn   rad ius  is 

The th rus t   fo rce  i s  set t o   d r a g  a t  the   tu rn  CL 

T = D  

7.18  Fuel  Allowance  (Mission  Option 20) 

This  mission segment option computes the  fuel  al lowance  for a spec i f ied  time 
at  

1. Given  power s e t t i n g  
2 .  Given thrust/weight 

7.19  Engine  Scaling  (Mission  Option 21) 

When using  the  turbojet ,   ramjet  and/or combined engine  option of Section 2 . 2 ,  
the  engines may be res ized  a t  any poin t   in   the   miss ion  by spec i fy ing   t h i s  
option. 
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7.20 Generalized  Iteration  Control  Option  (Mission  Option 22) 

Option 22. can  be  used  to  provide  an  automatic  iteration  loop  within  the  total 
mission  starting  and  finishing  with  arbitrary  segments  input  in  Option 22 
segment  data.  The  purpose  of  the  iteration  is  to  vary a specified  quantity 
in  the  starting  segment  until a specified  quantity  in  the  final  segment 
specified  achieves a desired  value. 
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7.21;.,  Thrust  Specification  in  Mission  Segment  Options 

The  vehicle  propulsive  representations  have  been  discussed  in  Section  2. 
In  the  first  option of Section  2.1  there  are  three  available  maximum  thrust 
tables, Tmaxj; j = 1, 2 ,  3. These  tables  are  referenced  -as  follows: 

Tmaxl 

Tmax2 

= maximum  dry  thrust 

= maximum  wet  thrust C230) 

Tmax3 = maximum  power J 
Throttling  may  only  be  used  for Tmaxl and  Tmax2.  In  using  the  various  mission 
segment  options  an  appropriate  choice  of  thrust  must  be  made.  The  options  are 

1. T = D  1 
2. T = maximum  dry 

3.  T = maximum  wet 

4.  T = maximum  power I 
5 .  T = thrust  for  given  power  setting,  dry. _I 

Several  gross  flight  envelope  calculations  may  be  performed. All flight 
envelope  computations  are  subject  to  the  conditions 

CL 4 CLlim , lift  coefficient  limit 

M d Mlim , Mach  number  limit 

' q1im , dynamic  pressure  limit. 

Propulsive  and  aerodynamic  characteristics  must  be  specified. 

8.1  Climb  Path  History 

Given an initial  weight,  warm up, and  take-off  fuel  allowance, a maximum 
rate  of  climb  path  is  performed  from 
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t o  

( 2 33.) 

where 
hW RF = a l t i tude   for   bes t   range   fac tor  at M2 

Alternat ively,  P2 may be  selected as 

The ca lcu la t ion  is performed in   ten  equal   a l t i tude  increments  from P1 t o  
P2. Climb paths are generated  for N dis t inc t   weights  

wi = Wo + i - AW; i = 0 ,  1, . . ., N-1  (235) 

8.2 Endurance  versus Weight a t  Various  Altitudes 

The endurance is  ca l cu la t ed   a t  a g iven   a l t i tude   for   the   weights  W i  = W o + i - A W ;  
i = 1, 1, . . ., N-1. . Mach number se lec ted  is  for  best  endurance. 

The ca lcu la t ion  may be  repeated  for any number o f   a l t i t udes ;  h = ho+i*Ah; 
i = O , l , .  . . . 

8.3 Optimum Cruise Climb a t  Various Mach  Numbers 

An optimum cruise  climb  between W1 and W2 i n  a specif ied number of  weight 
increments. The .path i s  repeated  for   an  array  of  Mach numbers and a l t i t u d e s  

Mi o = M  + i  * A M ;  i = O ,  1, 2,  ....... 
h = ho + j * Ah; j = 0, 1, 2, ....... 

(236) 

j (237) 
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8 . 4  Contour  Presentation  Capabilities 

A set of point   calculat ions  (vehicle   capabi l i ty  a t  given  f l ight   condi t ions)  . 

are .carried  out  over a two-dimensional  array  of.Mach-altitudes, M i ,  h j .  
The r e su l t i ng  matrix of   capabi l i t i es , ,  F$j, i s  then  supplied  automatically  to  the 

In  the  Mach-aytitude  plane are obtained  in   the form of  CALCOMP, Houston 
p l o t t e r ,  or CRT display  device  output .  A t  the   present  time twelve  functions, 
F l  t o  F12, may be  output  in  contour form. Each contour   plot  i s  described 
b r i e f l y  below. 

,NSEG contour   lots ing  rout ine CONPLOT,. and the  contours of the  funct ion Fk 

8 . 4 . 1  Specif ic  Energy Time Derivative,  k,  (INDMAP=l] 

The specific  energy time der iva t ive  i s  computed according  to  the  expression 

!here 
E = energy t o t a l  time der iva t ive  

T = thrust   obtained at a spec i f ied  power s e t t i n g  or a t  T = D ;  
wet,  dry, or m a x i m u m  power options are ava i lab le  

D = drag computed f o r  a specif ied  load  factor  

V = f l i gh t   ve loc i ty  

W = a i r c r a f t  weight 

Some typical   energy  der ivat ive  contours ' for  a large  four-engine  transport  are 
presented  in  Figure 19. The minimum  contour  shown  is for the,condition 
T - D = 0. Hence, the  f l ight   envelope is a by-product  of  the E map  when 
sui table   constraints   such as C , and dynamic pressure limits are added. hax 

8 . 4 . 2  Specific  Energy/Fuel Flow, E/m, (INDMAP=Z) 

The E/; contour  presents  the  specific  energy time derivative  over  the  fuel 
flow map. Since 

dE/dt dE i / m  = d/ = dm m d t  (239) 

The map i l l u s t r a t e s  an aircraft 's  ab i l i t y   t o   conve r t   fue l   i n to   ene rgy  a t  
spec i f ied   f l igh t   condi t ions .  

The point   calculat ion employed is 

F 2 = k/m = (? - D)V/ (k) 

so 



i 

where m is the  fuel  f low rate. The var ious  thrust  and drag  options  discussed 
in   Sec t ions  2 and 3 may be employed t o  produce a family of maps. A 
typical example for   the  large  subsonic   t ransport  a t  maximum t h r u s t  and l g  
f l i g h t  i s  shown in  Figure 20. 

8 . 4 . 3  Lift/Drag, L/D, (INDMAP=3) 

Lift/drag  contours  present a measure  of t he   a i rp l ane ’ s  aerodynamic eff ic iency.  
The L/D maps ind ica t e  i t s  . range   capabi l i ty   in  unpowered f l i g h t  and p a r t i a l l y  
r e f l e c t   t h e  cruise range  capabili ty.  Mass can  be  produced f o r  any  specified 
load  factor.  A typical  contour  for  the  large  subsonic  transport   in  level 
f l i g h t  i s  presented  in  Figure 21. 

F3 = L/D 

824.4  Range Factor,  RF, (INDMAP=4) 

Range factor   contours   present  a measure o f  vehicle   cruise   range  capabi l i ty .  
Maps are produced fo r   l eve l   f l i gh t   w i th   t h rus t   equa l   t o   d rag  a t  a spec i f ied  
a i rc raf t   weight .  

where SFC i s  the   spec i f i c   fue l  consumption. The user  may e l e c t   t o   c o n s t r u c t  
maps for   o ther   than   leve l   unacce lera ted   f l igh t .  However, t he   i n t e rp re t a t ion  
of these   char t s  is not   c lear .  A typical   unaccelerated  f l ight   range  factor  
contour map for   the   l a rge   subsonic   a i rc raf t  is presented  in   Figure 22.  

8 . 4 . 5  Thrust (INDMAP=5) 

The th rus t  map is avai lable   as  a device  for  examining thrus t   input   da ta   o r  
the   th rus t  component of  other mapped functions.  The map can  be  obtained  for 
wet,  dry, maximum, o r   t h r o t t l e d  power s e t t i n g .  The  maximum power th rus t  
map for   the  large  subsonic   t ransport  i s  presented  in  Figure 23. 

8 . 4 . 6  Drag Map  (INDMAP=6) 

The drag map provides a device  for   inspect ing-drag  data .   input   or   the   drag 
component of any o ther  map. Drag maps are produced f o r  a specified  load 
f ac to r .  A l g   d rag  map for   the   l a rge   subsonic   t ranspor t  is presented  in  
Figure 24. 

F = D  1 6 
g = g  

8 . 4 . 7  Specific  Fuel Consumption, SFC, (INDMAP=7) 

Speci f ic   fue l  consumption maps are  provided  as a data   input   inspect ion 
o r  as an   a id   to   v i sua l iz ing   the   spec i f ic   fue l  consumption component of  

device 
o ther  
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maps. Maps  may be  obtained  for  wet, dry ,  maximum, or t h r o t t l e d  power s e t t i n g s .  
M a x i m u m  power s p e c i f i c   f u e l  consumption of   the   l a rge   subsonic   t ranspor t  is 
presented  in  Figure 25. 

8.4.8Fuel Flow Rate, i, (INDMAP=8) 

The fuel   f low maps are provided  as a data   input   inspect ion  device or as an 
a id   t o   v i sua l i z ing   t he   fue l   f l ow component of   o ther  maps. Maps  may be  obtained 
f o r  wet, dry,  maximum or t h r o t t l e d  power s e t t i n g s .  M a x i m u m  power fuel  flow 
for   the   l a rge   subsonic   t ranspor t   in   l eve l   unacce lera ted   f l igh t  i s  presented 
in   F igure  26.. 

8 .4 .9   Specif ic  Energy (INDMAP=9) 

The specific  energy map 

F9 = E = h + V2/2g (246) 

i s  provided as a user ' s   convenience   in   v i sua l iz ing   the   t ra jec tory   po in ts  
between  constant  energy  lines and  any other   set   of   contours .  An example is 
presented  in   Figure 27. 

8.4.10  Lift/(Thrust - Drag), L/(T-D) (INDMAP=lO) 

The l i f t / ( t h r u s t  - drag)  cont0ur.s  are  useful  for  determination  of maximum range 
powered f l i g h t .  

Assuming t h a t  maximum range   f l igh t   occurs  at  small   f l ight   path  angles  

R 2 -dE L 
T-D 

Therefore,   the  energy-like  approximation  to m a x i m u m  range   f l igh t   occurs  when 
L/ (T-D) i s  a maximum a t  each  energy  level. I t  should  be  noted  that  when 
T - D = 0, no energy  gain i s  poss ib le ;   therefore ,   th i s   s ingular   condi t ion  must 
be  avoided.  In NSEG the  per   cent   excess   of   thrust   over   drag which i s  
acceptable i s  a program input .  A t yp ica l  L/(T-D) map for   the   l a rge   subsonic  
t ranspor t  is presented   in   F igure  28. 

FIO = 
(L/CT-D)specified  excess  thrust  (248) 

8.4.11 Turn Radius  (INDW-11) 

Turn  radius maps give a g ross   i nd ica t ion   o f   a i r c ra f t ' s  combat capab i l i t y .  
Turn rad ius  i s  computed by  equat ing  the  a i rcraf t ' s  l i f t  capabi l i ty   in   s teady  
s t a t e  of   decelerat ing  f l ight   using  the  fol lowing  expression 
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where CL is  determined so that  (a)  thrust  equals  drag  for  steady  state 
flight  and (b) CL equals CL maximum  for  minimum  instantaneous  turn  radius. 

Typical radius.of turn  map for the  subsonic  transport  are  presented  in  Figure 
29. 

8 - 4 - 1 2  Time  to Turn (INDMAP=12) 

Time  to  turn  through 180 degrees  is  presented  as  a  supplement  to  the  turn 
radius  map.  When  the  minimum  instantaneous  turn  radius  calculation  is  employed, 
the  maps  do  not  give  a  true  time  to  turn.  They  merely  indicate  how  long  a 
time the aircraft  would  take  to  turn if it could maintain  its  current  turn  rate. 
When  steady  state  turns  are  considered,  true  time  to  turn  is  obtained which 
will frequently  be  much  longer than is  required  for a decelerating turn. 
Typical  time to turn  maps for the  subsonic  transport  are  illustrated  in  Figure30. 

F12 = TR/V 
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FIGURE 1. TYPICAL NSEG  MISSION PROFILE 
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FIGURE 9 .  TYPICAL  FIRST PEAKS IN  LIFT  COEFFICIENT  VERSUS ANGLE 
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5 F I G U R E : - 1 9 .  MAPS FOR 
VARIOUS  ACCELERATIONS 
THRUSTS AND WEIGHTS'  
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FIGURE 20. EDbT/MDOT  MAP  (COMPUTER DRAWN) 
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FIGURE 21. LIFT/DRAG MAP (COMPUTER  DRAWN) 
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FIGURE 22. RANGE  FACTOR  MAP  (COMPUTER DRAWN) 
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FIGURE 23. THRUST MAP  (COMPUTER DRAWN) 
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FIGURE 24. ,DRAG MAP (COMPUTER DRAWN) 
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FIGURE 2 6 .  FUEL FLOW RATE MAP (COMPUTER DRAlllh') 
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FIGURE 27. SPECIFIC ENERGY MAP (COMPUTER D"N) 
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FIGURE 28. LIFT/ (THRUST-DRAG) (COMPUTER  DRAWN) 
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F I G ~ R E  29.  KADIUS OF TURN WP (COMPUTER DRAWN) 
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FIGURE 3 0 .  MAP OF TIME TO TURN 180 DEGREES (COMPUTER DRAWN) 
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