One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Final Report

A Comparison of Lyman α and Hel $\lambda 10830$
Line Structure and Variations in Early-Type Star Atmospheres

NGR 33-219-002

Submitted by
D. D. Meisel

Dept. Physics and Astronomy State University of New York GENESEO, New York, 14454
and
The Rescarch Foundation of State University of New York
to

Nancy G. Roman
Chief, Astronomy/Relativity/Astrophysics Programs NASA Headquarters
(NASA-CR-154269) A CCMPARISON OF LYMAN ALPHA AND HeI LAMBLA 10830 LINE STBUCTUAEE AND VARIATIONS IN EABLY-TYPE STAB ATMOSPHERES Final Report (State Univ. of New York, Geneseo.) 13 p HC A02/MF A01

N77-30045

Unclas
G3/89 40827

Introduction

The profile behavior and form of light element resonance lines such as HI Lyman $\alpha, \operatorname{HeI} 10830 \AA$, OI $1302-6$ and OI $7774 / 8446$ provide important diagnostic information concerning the atmospheric structure of early-type stars. Because Ly α and 10830 occur in widely separated spectral regions, the constraints upon model atmosphere calculations these two lines provide are more severe than usually available, particularly when non-LTE effects are included. With this end in mind, the Vaughn pressure.-scanned Fabry-Perot interferometer was modified for use as a narrow-band, single-order, near-infrared scanner. The modified device has been used on the 0.6 m telescope at the Universi.ty of Rochester, C.E.K. Mees Observatory and most recently on the Kitt Peak National Observatory 0.9 m telescopes. The Copernicus Space Telescope of The Princeton University Observatory has been used to obtain Ly α as well as OI l302-6 profiles in a number of stars in the 10830 observing program. In addition to the interest in the $10830 \AA$ line as an indicator of stellar non-LTE conditions, the recently discovered correlation between solar $10830 \AA$ emission ard the lack of solar coronal X-ray emission (coronal holes) has sparked renewed discussion of resonance line formation mechanisms in turbulent regimes.

Starting in September 1977, the principal investigator will be spending a one-year sabbatical at the Goddard Space Flight Center as a NRC-NAS Senior Research Associate. During this time, effort will be concentrated upon final. 10830 and UV line profile reductions, qualitative interpretations, and an initial start on quantitative aspects of an eventual model atmosphere analysis.

The Observational Frograms - Current Status

To date appros:imately 80 scans of 10830 have been obtained in 50 "northern" OBA stars with a photometric accuracy of between 3% and 10% dependirg on the apparent infrared magnitudes of the stars. A wide variety of objects have now been surveyed between 05-A2 in spectral type and $I-V$ in luminosity class. In audition to normal standard stars, particular attention has been paid to stars likely to show time-variations including
(a) Supergiants
(b) Be and Shell stars
(c) $B p$ and $A p$ stars
(d) Eclipsing and spectroscopic binaries.

Although the early 10830 observations were plagued by weather and instrumentation problems, since moving the instrumentation to Kitt Peak satisfactory results have been obtained. While the FW-118 sensitivity is not as high as when Vaughn used it, storage in the dry Arizona climate has produced an unexpected ten-fold reduction in the tube noise level. It was therefore possible to attempt moderate precision ($3-5 \%$ counting accuracy) surveys of a number of stars not a part of the originally proposed program.

Some exploratory work on the HI Paschen 10938 and OI 7774/8443 lines has also been performed using the F-P interferometer. Limited wide-band narrow-band interference filter photometry of 10830 and 10938 has been obtained for a limited number of the brighter program stars. A photographic survey of the OI 7774/8443 lines in the program stars of later spectral types (B3-A5) and using I-N hypersensitized plates is continuing with the C.E.K. Mees 0.6 m telescope (University of Rochester). When the initial photographic survey is complete, observing time to obtain high accuracy Fabry-Perot profiles will be requested, probably at Kitt Peak.

As a sumnary of the curnent status of the observation program, Table I lists (according to right ascension) all stars for which raw F-P scans have been obtained with notes concerning the availability of Copernicus telescope UV scans. For stars for which Copernicus scans are either poor or not available, a conment in square brackets is given. Copernicus time for γ Ori, 13 Mon, - Pup, β UMa, and $\alpha \operatorname{CrB}$ during late 1977 and 1978 is being requested.

In Table II, the stars presented in Table I are rearranged by special interest group. Those stars on the original observational list are indicated in Toble II by a single asterisk. of the original stars only three stars do not have satisfactory 1.0830 profiles available-- α Col, σ Sco, and γ Peg. This is counterbalanced by the fact that twenty-four additional stars were obtained. Unfortunately, because of the instrumentation problems to be discussed later, the profiles deconvolution has become a more timeconsuming task than originally envisioned and so even "quick-iook" reductions are available only for about 30% of the stars listed.

Instrumentation - Current Status

In spite of early instrumentation setbacks, it has now become alnost routine to obtain raw $\mathrm{F}-\mathrm{P}$ profiles at 10830 A . Our original goal of real-time data reduction, however, was not realized. In particular, the use of CO_{2} as the scanning gas introduces reduction complications of non-linear scanning intervals as well as zero point drifts due to CO_{2} condensation in the $\mathrm{F}-\mathrm{P}$ chamber. Instrumental modifications which will alleviate the CO_{2} condensation problem are currently being incorporated into the Fup design.

Table I

Right Ascension List of Stars for Which 10830 Profiles Have Been Obtained Using the Vaughn Fabry-Perot Interferometer (by June 1977) under NASA Grant NGR 33-219-002.

α And	B9p (Mn)	1 scan	$\mathrm{SB}, \phi=.96$	Copernicus St:ar
γ Cas	BOIV : e	2 scans		Copernicus Star
ϕ Per	Mone: shell	1 scan	$\mathrm{SB}, \phi=.23$	Copernicus Star
β Per	B8V	6 scans	$\mathrm{EB}, \phi=$ various	Copernicus Star
ψ Per	B5ne: shell	1 scan		Copernicus Star
n Tau	B7III	1 scan		Copernicus Staz:
ζ Per	B1Tab	1 scan		Copernicus Star
ε Aur	A8Ia/FOIap	1. scan		[Too Faint for Copernicus]
B Ori	B8Ia	3 scans		Copernicus Star
Y Ori.	B2IIT	1 scan		[No U2 scans?]
β Tau	B7III	1 scan		Copernicus Star (DDM)
λ Or1	08, 0e5	I-1/2 scans		Copernicus Star
θ Ori	06	1 scan		[Multiple, Poor Guiding]
ζ Tau	B2IVp (*)	2 scans ($\phi=.74$)		Copernicus Star
δ Ori	09.5III	1 scan		Copernicus Star
I Ori	0915I	1 scan		Copernicus Star
ع Ori	BOIa	1-1/2 scans		Copernicus Star
ζ Ori	09.5Ia	$1-1 / 2$ scans		Copernicus Star
κ Ori	B0.5Ia (*)	1-1/2 scans		Copernicus Star
θ Aur	B9.5pv (Si)	1 scan		Copernicus Star
17 Lep	Aeq (shell)	1 scan		[Too Faint for Copernicus?]
$\beta \mathrm{CMa}$	B1II-ITI	1-1/2 scans		Copernicus Star
β Mon	B3Ve, B47	1. scan		[Multiple, Poor Guiding]
13 Mon	AOIb	1 scan		[Copernicus Time Requested]
γ Gem	AOIV	1. scan		Copernicus Star (DDM)
a CMa A\&B	$11 \mathrm{l}+\mathrm{wd}$	1 scan		Copernicus Star
E CMa	B2II	1 scan		Copernicus Star
$\bigcirc^{2} \mathrm{cma}$	B3Ia	1-1/2 scans		Copernicus Star
n OM	B5ía	1 scan		Copernicus Star
β CMi	B7V (*)	1 scan		Copernicus Star (DDM)
- pup	BOpe	1. scan		[Copernicus Time Requested]
a Hoo	B7V	2 scans		Copernicus Star
It heo	A01b	1 scan		[U2 selected lines]

Table I (continued)

B UNa	AlV	1 scan	[Copernicus Time Requested]
ρ Leo	B1Ib	1 scan	Copernicus Star
γ UMa	AOVn	1 scan	Copernicus Star (DDM)
γ Crv	B8III	1 scan	Copernicus Star (DDM;
δ Crv	B9.5V	1 scan	Copernicus Star (DDM)
κ Dra	B7Ve (*)	1 scan	Copernicus Star
ε UMa	A0p (Cr)	3 scans	Copernicus Star
α^{2} CVn	Ap	2 scans	Copernicus Star
α Vir	BlV	2 scans	Copernicus Star (DDM)
η UMa	B3V	1 scan	Copernicus Star
B Lib	B8V	1 scan	Copernicus Star
α CrB	A0V	1 scan	Copernicus Time Requested]
ζ Dra	B6III	1 scan	Copernicus Star
α Lyr	A0V	2 scans	Copernicus Star
PCyg	Ble	1 scan	Copernicus Star
δ Cyg	B9.5III	1 scan	Copernicus Star (DDM)
α Cyg	A2Ia	2 scans	Copernicus Star

Table II
F-P 10830 Stars Arranged According to Special Interest or Spectral Type Groups

Supergiants

ζ Per	B1Iab	$*_{k}$ Ori	BO.5Ia (**)	o^{2} CMa	B3Ia
ε Aur	A8Ia/FOIap	$*_{\varepsilon}$ Ori	BOIa	η CMa	B5Ia
$* \beta$ Ori	B8Ia	13 Mon	AOIb	η Leo	AOIb
$* \zeta$ Ori	$09.5 I a$	$*_{\alpha}$ Cyg	A2Ib	ρ Leo	BIIb

Early Be/Shell Stars

$*^{*} \gamma$ Cas	BOIV:e	B Mon	B3V
ϕ Per	BOne: shell	o Pup	B0pe
ψ Per	B5ne: shelI	P Cyg	B1e
$* \zeta$ Tau	B2IVp ($* *)$		

Late B Peculiar Stars

$\therefore \alpha$ And	B9p (Mn)	K Dra	B7Ve (**)
θ Aur	B9.5p (Si)	$* \in \operatorname{EMa}$	A0p (Cr)
17 Lep	Aeq (shell)	α^{2} CVn	Ap

OB Stars

γ	Ori	B2III	i Ori	O9III	e CMa
λ Ori	08, B2II				
θ Ori	06	$* \alpha$ Vir	BIV		
$* \delta$ Ori	$09.5 I I I$	η UMa	B3V		
$* \beta$ CMa	BIII-TII				

Late B Stars

* β Per	B8V	* α CMa	Alv	${ }^{*} \gamma \mathrm{UMa}$	AOV
*n Tau	B7III	* $\mathrm{B}_{\text {CMi }}$	B7V (\%**)	* $\gamma \mathrm{CrV}$	B8III
* ${ }^{\text {r Tau }}$	B7III	$*_{\alpha}$ Leo	B7V	* $\delta \mathrm{CrV}$	B9.5V
* γ Gem	AOIV	B UMa	Alv	* β Lib	B8V
$\alpha \mathrm{CrB}$	AOV	* α Lyr	AOV	ζ Dra	B6III
				* δ Cyg	B9.5III

[^0]These modifications should eliminate all zero-point drifts from future F-P 10830 observations. They, however, cannot alter the reduction problems already present in the data now on hand. The F-P is currently being stored at Kitt Peak in case additional observing time becomes available. No plans exist for use elsewhere as appropriate shipping funds are not available.

Theoretical Analyses - Current Status
Initial. modifications of computer codes of standand LTE model atmosphere programs for running on the University of Buffalo CYBER computer system have been made with the kind cooperation of Dr. H. van Horn of the University of Rochester and Dr. L. Auer of NCAR, Boulder, Colorado. Work on non-LTE problems will commence after LTE predictions have been generated.

Future Goals and Aims
During 1977-78, the principal investigator will be a NAS-NRC research associate at the Goddard Space Flight Center where work on the available 10830 and Lyman α profiles will, hopefully, be completed. Therefore no follow-on proposal to this grant will be possible until the fall of 1978. Present plans call for semiqualitative discussions of the availabie observational material to be published during 1977-78. The time-scale required before quantitative theoretical discussions can be attempted is difficult to predict, but $3-5$ years is not unrealistic. Thus while the formal financial NASA support terminates with this report, work on the 10830 profile and related problems will continue. It seems appropriate to conclude this final renort with a sumnary of intended future extensions of the grant work.
A. Observational Tasks (1977-80)
(a) During 1978-80 an effort will be made to complete the 10830 survey of all OBA stars up to $\mathrm{m}_{\text {IR }}=3^{m_{5}}$ both northern and southern. NASA or NSF support will be solicited.
(b) During 1977-78, Copernicus UV observations will be proposed and hopefully completed using travel available as an NRC-Senior Associate. Observing proposals for guestinvestigator status on the I.U.E. will be generated for the 1978-80 period.
(c) Completion of the photographic OI 7774/8443 survey will be attempted during 1977-78 by D. Kelly of SUNY-Geneseo. A photoelectric survey will be planned for 1978-80 once the results of the photographic survey are available.

B. Data Reduction ard Publication

During 1977-78, final deconvolved E-P 10830 A profiles will be constructed for all available data. It remains to be determined whether a single atlas or several specialized group atlases will be produced. Final UV profiles of Copernicus data will also be completed.
C. Theoretical Calculations and Model Atmospheres

In preparation for line profile calculations on the University of Buffalo CYBER system, the Computer Center staff of SUNY-Geneseo will modify as necessary several existing atmosphere programs inclucling those made available by the University of Rochester and the Goduard Space Flight Center. By 1978, some non-LTE work may begin, either at Goddard or upon return to Geneseo.

Summary

The preliminary conclusions given in the AAS abstract accurately describe the present status of the work. Some additional details are given in the progress report dated January 1977. Time has not permitted generating a similar description here for the profiles obtained in March 1977. It can be stated, however, that the interactions of doppler-shifted $10830 \AA$ components and the SiI 10827 A appear to be real and represent a serious complication that was not previously suspected. Even when there is no apparent l0830/10827 interaction, profile changes on time scales short compared to the scan time are so serious that for some stars, it may be impossible to ever obtain a satisfactory final deconvolved contour. Although progress was much delayed by instrumentation difficulties, it js felt that the available 10830 raw data certainly satisfies the originally stated objectives of the ground-based part of the grant proposal. The concentration on the 10830 problem seemed obligatory and timely. Hence progress on the OI lines and the model atmosphere calculations was very limited. It is hoped that the NAS-NRC Senior Associateship will enable the principal investigator time to complete the data analysis as well as initiate several publications on the 10830 problem. In this sense, the 1977-78 period is envisioned as a period of "no-cost" extension of the present work. Copies of the publications produced while on the Goddard staff will be transmitted to NASA headquarters to be kept on file as appendices to this final report.

Publications Under This Grant
Meisel, D. D., Saunders, B. A., and Kelly, D. R. 1977, "Helium 10830 in Errly-Type Stars," Bull. Am. Astron. Soc. 9, 366.

Feeney, M. T. 1976, "A Study of Ly α and OI $\lambda 1306$ Line Profiles in Early Type Stars," M.A. Physics Theris, SUNY-Geneseo.

Meisel, D. D. and Berg, R. A. I975, "Helium $\lambda 10830$ in Alpha Virginis A and B," Ap. J. 198, 553.

Meisel, D. D. and Berg, R. A. 1974, "High Resolution Spectrophotometry of Selected Features in the $1.1 \mu \mathrm{~m}$ Spectrum of Comet Kohoutek (1973f)," Icarus 23, 454.

The Jse/SRL features a $40-\mathrm{cm}$ aplanatic reflector with a dual star-tracking system and a detector system cunsisting of an sehelle spectrograph and an SLC Vidicon. The spectrum longward of about 2800 exhibits numerous emission features attributable to the extended atrospheres of this late-typs supergiant (N2 lab). Df partcular interest is the asyraetry in one of the ${ }^{\circ} \mathrm{II}$ II resonance dcublet emissions (2795. 523 and 2802.698 A). As reported earlier (Kondo et al., 1972, AD. J., 176, 153; Kondo, Forgan and Modisette, 1975, AD.J., 196, LI25; and Bernat and Lambert, 1976, Ap. J, 204, 830), the 2795 emission is asymetris d to the selective absorption ocsurring in the cool shell surrounding Eetelseuse. Nodisette, Nicholas and Kondo (1973, AP. J., 186, 219) attributed the asymetry to the selective absorption by Fe 1 ($2795.006 A$) white Bernat and Lambert attributed it to Mn 1 (2794.817 A) and Fe I. In the current results we are able to delineate the absorption due to the neutral metal as a distinct absorption feature rether than merely as asymetry in the Hg II 2795 emission. The central wavelength of this absorption feature tends to favor Fel.
33.08.05 Low excitation early-type emissions and late-type absorptions in the refectrum of RX Puppis M, KLUTZ, O. SIMONETTO, and J. P. SWINGS, Univ. Liege, Belpium. The high excitation emission lines typical of a true symbiotic star that were reported by P. Swings and Struve in 1941 are now absent. Spectrograms obtained in 1972, 1975, 1976 show essentially emission lines of H (with rapidly variable P Cygni structure) and permitted and forbiden emissions of singly ionized metals, mainly Fell. In addition sharp absorptions aredetected in 1977 on $20 \AA \mathrm{~mm}^{-1}$ spectra tizl are now sbtainable because of the inerease in Lraghtness of RX Puppis. An analysis of these new data will be presented.
33.09.05 Balmer Lines Near the Serles Limit in A-Type Specra. R. J. PANEK, Penn State U. For seven bilghe, A-type stars, the absolute flux at $3600-4200 \mathrm{~A}$ has been measured with 10 A resolvion, using a photoclectric scanning spectrometer. An attempt was made to directly determine the instrumental line proflle. The program stars are well suited to comparison with models because they have a well determined angular dhameter and emplyical
effective temperane. The effective temperatures range from sood-100uth, and the surfane grovity from $\log g=3.5-4$. 5 . Ner synthetle spectra in this wavelength Interval have been computed using reently pulished, line blanketed model atmospheres. These malculations explicitly include the detailed line absorption profiles of thire Balmer lines. The quasistatis approximation which is used for the Sart broadening should be accurate for these high sevies lines. The theortheil spectra were convolved with the instrumental profile for direct comparison with the observations. Each star is compared to a model on the basis of effective temperuture. The model continum fiuses for the hotter stars tend to be faint near 4000 §. After allowance for the absorption of metal lines not Included in the theoretical spectra, the converging Batmer lines are quantitatively seen to be well reproducad by these theoretical spectra.
33.10.05 Moderate Resolution Ultraviolet Rocket Observat lons $912-3100$ of Scen Early-Type Stars. W. h. GRUNE, G. H. HOTMT, and P. D. FELDMAN, The Johns Hopkins Univeqity. - Vitraviolet spectra in the wavelength region 12 to 3100% of seven hot stars were obtained at 15 民 resolution with three scanning spectromaters. The spectrometers were aboard an Aerobee 170 rocket, which was launched from Austialia on February 17, 1977, at 13:30 U.T. Stellar fluxes have been determined with high photometric accuracy. Stars observed ware γ Vel (C7), ζ Pup (05), a Eri (B5 IV), β Cen (B1 II), a Vir (Bl V), a CMa (ALV). The data will be presented and compared with the predictions of stellar model-atmosphere calculations. Possible detection of the white dwarf companion of Strius will also be discussed. This work was supported by NASA under grant NGR 21-001-001.
33.11.05 llelium 10830 in Early-Type Stars I. D. D. Meluel, * B. A. Saunders, ind D. R. Kelly, SUNY-Geneseo. - Fabry-perot incerferometric profiles for fifty of the brighter early-type stars including supergiants, eclipsing binaries, Bp and Ap stars, Be and shell stare, and variable stars have been obtained usirg the Kitt Peak 0.9 m telescopes and the C.E.K. Mees 0.6 m telescope. Results for 6 persel (Algol) just before primary and secondary eclipses show strong emission profiles lasting about 0.1 phase. An absorption line was seen during secondary eclipse. A sampling of bright supergiant starg ($09-\mathrm{A} 2$) show time-variable, enmplicated absorption/enission profiles similar in many reaperta to those obtalned for the Be/shell stars. Ohservations to complete at least one proftle of all b stars brighter than myel north of $\delta=-25^{\circ}$ will continue. Ultimatcly these

30830 prefiles will be compared to lya and OI 1306 profiles in the same stars.

This work was supported by NASA Grant NGR 33-219-002.
*Associate C.E.K. Mees Observatory, University of Rochester.
+Visiting Astronomer Kitt Peak National Observators, Operated by Associated Universitics for Research in Astronony and Guest Investipator, Copernfeus Telescope, Princeton University Observatory.
33.12.05 The Infrared Eelitse of V444 Cyond and the str eture of holf-Rayet Stars. L. Hartman, GiA Observations of the eclipse of the wh. 5 component of the V444 Cyy oriten at 2.2 and 3.40 corfimm the idea that free-free ission is the soure: of the infrare ${ }^{\text {f }}$ excess. The optical and infrared ecltpses have been investiget: ? with a stellar atmospheres prorgam; the results stiport the medzl of llartmann and Cassinelli (1977, Ap. J., in press) of the Wis star HD ©0896, in which the optical photosphere is not accelerating. The uniqueness of the model is discu-sed, along with implications for theories of radiatively driven winds.
33.13.05 The absolute spectril energy distrifution of
 STFwGytis, wiv. The absolute sfectral energy jistribation of the star n UR'a (BJV) has been obsarved in the ultraviolet with the OAC-2, TDI-52/6B and Agolla 17 experiments, and by Bohlin and St, oher with rockets. This tasic collection of observations shows a maximum seatter of 35\% near 1500%. Lontward of 1700 合these data have a typieal scatter cf only 4.5q. A new model atrospheze from hurucz with $T_{0}=17000 \mathrm{~K}$ and $\log \mathrm{g} 4.4$. On ajrees well with the collected uftraviolet ubservations an the visual flux distributions on the Hayes and fathatn scale. The unredlened model is within 20 of all observations in the 1200 to 1700 \& reqion and within 52 lomward of 1700 A. A slightly modified version of the model that accounts for the lire blocking observed by the cowernicus satellite is proposed as the absolut 2 flux standard in the uluravialet and the visual This statrlara can be uibed for in-flight calibrations and to derive revised absolute nalikrations for any experimenc, thus placing all abselute flux measurements on a common scali. Neat the jeak of ti,e interstellar extinction curve at 2160 , there is a max. mutn of sit difference betwern the nodel and the observations.

> It orier to
aderess the question of whether lie rapid zotation of
 the shape of the uitraviolet continuth, the TDI-5". 6 . flux distributions of $\frac{7}{}$ una and the slow retator i llar (B3IV, $v \sin i=8 \mathrm{~km} \mathrm{~s}^{-i}$) werc compared in t.se 1.900 to

2500 Aregion. The observed differences in shape can be explained to $2 t$ by a reasonable amout of extinction with $E(B-V)=0.02$, plus a small difterence in tentreratile of $\Delta T=1400 \mathrm{~K}$. Thus, the non-rotating model that fits best Ete olservations of H_{I} Una in the ultravielat has an error in the proposed flux of less than 23 , attrabutable to ratational eriects.
33.14.05 The Superposition of Layers Method Applied to Emitting Atnospneres. K. W, WITAKEK and T1. G. rivim. Gniversity of diffornia, los kiamos scientific
Laboratory. - The superposition af Tayers metho is applied to plane-paraliel atmospheres with given source distributions. The procedure is based on the direct application of the principles of invariance condinea with required symetry relations.* Tine method is discussed for source distributions that are polynomid or exponential functions of optical depth. Wurerical results are presented.
*Tre Transfer of Radiation by an Emittíng Atmosphere.
11. H. Horak and C. Lundquist, Ap. J. 119, 42, (1954).
IV. C. Lundquist and H. Horak, Ap, 11. 121, 175, (1955).

WEDNESDAY, 15 JUNE

Session 34: Room 500, General Classroom B: ilding
1400-1730

PS. 01.03 Energetics of Newly Formed Corom! Enon Systems. G. W. PNEUMN, NCAR. - Followhin Tir ilares and mijor coronal transient events, newl. \cdots oded nagtetic loope ate oiten obscrved in x-rays, XVV liues, and sit Ho. The loop system rises intu the corona from the bisw at velorities of the order of $10 \mathrm{~km} / \mathrm{sec}$. This upward motion does not reelect the expansion of single loops but, ruther, the formation of new loops at successivel; greater heights. According to the theory of kopp and Pneumen, this phenowenon is the result of the recennestlon of fleld lines previously torn upen 'y the lovee of the transtent event, f.e., the relaxation of the manatetic ficld to its original closed rquilibrium contiguration prior to the flare. Onc important observed proper cy of these systems is that very high temperaturemater fal ($\mathrm{F} \approx 7 \times 10^{\circ} \mathrm{K}$) is seen at the top of the twos recentiy formed loops - indicating a large arrey input at this location. Since the closed loop gevertry following reconnection possesses a lower enusgy conteat than that of the open geometry imadiately tollowing

[^0]: Notes: \quad Original program star
 ** Classification in doubt or controversial
 *** May be a Be star

