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I. INTRODUCTION

This report presents the results of an analytical study

of the MSPC Holographic Correlation Techniques Facility

carried out under Contract No. NAS8-32362 by personnel of

Montevallo Research Associates, Montevallo, Alabama during

the period 12 Janmary, 1977 to 12 June, 1977. Participating

in the study were Dr. J. William Foreman, Jr. {(Principal

Investigator) and Mr. Joseph M. Cardone.

The

follows:

(1}

2}

(31

(4)

(5)

objects of the study were originally stated as

To examine the existing MSFC experimental Holo-
graphic Correlation Techniques Facility and to
become familiar with existing theory pertaining
to its operation.

To determine the theoretical effect, if any, on
the correlation signal caused by insertion of a
variable aperture into the object beam.

To examine theoretically the existence of a
secondary correlation peak.

To determine theoret;cally the effect, if any,
on the correlation signal caused by varying the
surface roughness of the test objeét.

To explain theoretically why the object can be



2

translated in the object plane over distances large
compared to a wavelength of light with negligible

loss of correlation signal.

It was anticipated from the beginning that it would
probably not be possible to complete all five tasks during
the present contract, and this turned out to be correct.

A thorough theoretical understanding of the system, like
a comprehensive experimental investigation’of the system,
will have to be developed as part of an ongoing study.

Task (3) above was eliminated from the list when Dr.
Robert B. Owen, our technical contact during the study,
advised us that the secondary correlation peaks which had
been obsefved earlier were apparently spurious. Tasks (1)
and (5) have been completed, and a wvariation of Task (5)
involving translation of the object along the optical axis
of the system was begun. Time did not allow us to undertake
Tasks (2) or (4) during the present study.

It is suggested that the reader examine the Appendix
hefore attempting to read the main body of this report,
since many results which are used in developing the theory
of the holographic correlation system are derived or summariééd

in the Appendix.



I7. BASIC THEORY OF THE HOLOGRAPHIC
CORRELATION SYSTEM

The basic theory of the holographic correlation system
is developed in a number of commonly available references.
However, the usual treatment is somewhat abbreviated, and
therefore difficult to follow in detail. We present here a
treatment of the basic theory which is worked out in sufficient
detail so that it can be readily followed. Our treatment
1

follows the general approach used by Goodman™ in his dis-

cussion of the Vander Lugt filter?.
Fig. 1 shows a schematic arrangement of a holographic
correlation system. The operation of the system proceeds
as follows:
(1) An object mask with a certain desired transmission
function is placed in the object plane, one focal
length £ in front of the transform lens. A
photographic plate is placed in the hologram plane,
which is one focal length f behind the transform
lens, The photographic plate is exposed simul-
tanéously to the reference beam and the object
beam. The exposure and development of the plate
are controlled so that the transmission function
of the developed plate is proportional to the

total irradiance striking the plate during exposure.
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Figure 1. Schematic diagram of a holographic correlation system.
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(2) The developed plate, or hologram, is then replaced
in the hologram plane, the reference beam is
blocked off, and the hologram is illuminated with
a new cbject mask placed in the object plane.

The light throughput from the hologram passes
through a correlation lens of focal length £
'(identical to the focal length of the transform
lens)}, and is examined in the correlation plane,
which coincides with the back focal plane of the
correlation lens. In general, four patches of
light appear in the correlation plane, two of
which overlap in the vicinity of the optical axis.
One of the non-overlapping patches represents the
cross—correlation of the original light amplitude
distribution in the object plane (used to expose
the plate) with the final light amplitude dis-
tribution in the object plane (used to illumi-
nate the hologram). This is the term of interest
here. Of course, if the hologram is illuminated
with the same light amplitude distribution used
to expose the photographic plate, the light patch
represents the auto-correlation of this distri-

bution with itself.

Incidentally, the light distributions in the object



plane may not always be set up by passing a collimated
light beam through a planar mask. They can also be set up
by illuminating a planar reflector of some sort placed in
the object plane in such a way that the reflected light is
captured and processed by the transform lens. This is the
way the MSFC holographic correlation setup operates at the
present time.

Tn order to set up the basic theory of the system,
use will be made of the coordinate systems shown in
Fig. 2. Coordinates in the object plane are denoted by
(‘Ki,ga‘) , in the hologram plane by (‘Xz,%z) , and in the
correlation plane by (%;2%3). Note that an inverted coor-
dinate system (ﬂ;’%;) has also been defined in the corre-
lation plane. The reason for introducing this inverted coor-

dinate system will be made clear later.

Making the Hologram

The first step in the theory is to describe the pro-
perties of the hologram. Suppose the original distribution
of light amplitude in the object plane is defined by the

complex function

é‘CPP (xl, la')
2u) = A (K, u) e
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Figure 2. Coordinate systems for analysis of the holographic correlation system.



where A? ("\,'31) and ‘?P(‘K\,lgl) are the amplitude and phase,
respectively, of the light vibration at a point in the object
plane with coordinates (%4,%4). The transform lens operates
on the light leaving the object plane and, according to

Eq. {A-17), produces a light amplitude distribution

-_L-. - \ 2 2
A7 fiz [ 20ug)) = o F Uy

in the hologram plane, where f‘zis the "lens operator"
defined in Eq. (A-16).

A plane-wave reference beam is also incident on the
hologram plane. As indicated in Fig. 2, we will choose the
direction of propagation of the reference beam to lie in the
f.2-plane and to make an angle © with the -axis. A unit
vectoxra_ig the direction of propagation of the reference
beam would have a negative xi-component, as can be seen from
Fig. 2. According to Eqg. (A-48), the light amplitude dis-
tribution in the hologram plane produced by the reference
beam will be L TR, sl B

noe N
where R° is the (constant)amplitude of the reference beam.

Since we are dealing here with coherent laser 1light,

the light amplitudes are additive, so that the resultant

light amplitude distribution in the hologram plane will be



— 4 ZTRy O 8 .

N, € + "';'.'5 3 Fa,m.) .

The irradiance distribution in the hologram plane, ]E(quﬁgz),

is thus
_?'jz'n"x-&ai.-,.e \ =
I('f"-)'g‘&\ = Noe A - Wﬁ;(x%‘}z)
R
2
\
= 0, (%{-)t lk('ﬁz, Maz\\
. © AW Ry 2 &
v Do 4 lkyua) e A
B R Oy
+ Do j:('*z '5-3& - ;M
EYy ’ .

To make the hologram, a photographic plate with suitable
sensitivity and spatial resolution is placed in the hologram
plane, and its exposure and development are controlled

in such a way that the transmission TT(KZ’%F)Of the developed
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plate is proportional to the irradiance I(Xz,%{)during
‘exposure. We thus obtain a hologram with a transmission

function

E('Xz-,kq,a.) = C lela‘éz) 1 (2)

where Eiis a complex constant.

r

Illuminating the Hologram

After the hologram has been made, it is replaced in
the hologram plane, the reference beam is blocked off, and
a3 new light amplitude distribution E_.(%\,Aa.) is established
in the object plane. The transform lens operates on this

light distribution, producing a light amplitude distribution

-%ii.,_{,r:(m,»&,)-_\ = —?-E:-%— _,S_(%z)»a.,_)

in the heologram plane. When the light wave producing this
distribution passes through the hologram, the resulting

light amplitude distribution in the hologram plane will be

&(7‘1) "31-\ = "&L-'?"‘ ..S-.(V‘z, '37.) T ('Xz, 53:.) .

Using Egs. (1) and (2) we then have

&('\(z, I%-,_) = .Lg‘_r S (7\1,&}2) L (Xz, laz)

>
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E‘ f\: ) (x?. % + "E :
aE ~ ‘e ‘9- ) (;F_)ug E.. (?(z,, ‘él.) \ %('3(1., “92.) \

é’ 2X K, o B

+ %('Mﬂgzj ] ['ﬂz,lgz,) e A

(m#)‘

WAL

A . @

L

g fo 3;(7\1, ‘}z) ,_5_ (7‘1-) ”a‘l-) <

Finally, the correlation lens operates on this light amplitude

distribution and produces a new light amplitude distribution

W (13‘,,&3) in the correlation plane given by

W (%3, 53) —’:3‘ Las [-&“"‘“ﬂ- (4)

Putting Eg. (3) into Eq. (4} gives

x13 [ S (7‘12., 43-1.)]

W (%3 "9-3} =
’ (m 5

+ "S':"" IZB ‘_2(7‘1:”}&) ﬁ(%%“}?—) %(mz:'ﬁm)]

. 2'1\.“1__44\:\ 8

¢

) fk:)bs i“‘{f’:("" we) 5 (k2 40) €

)
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"3.’ 2T, b 8

L3 { 3:(7‘27 B2) 5 (X, ‘3?—) e A

A SNy

()*

(5)

For convenience, let us label the four terms in Eq. (5) as

follows:
W, (s, “9-53 - Z%;;:. :(7-3 ‘.E(h’ '3")] (6)

%
ety ga) = ;"i o 2oz [ 2 0o ) g0, ) g e

(M)

,} raiy MY
W3 (%3, 1) = é_’lf_.. u\ﬂ;“’-’ B Elap) e -
(»)?
(8)
...9' ZWKLAJMB
Wq—(?b,».};\ (‘}&)3 xzs{%l"zs‘};) s(""-:"}z € ?\_ ]

(9)
Eg. (5) then becomes

_\:,4_(7'\3,«53) s Wy Ry, 03) + Walls, ys) + Wg (Xs, :9,) + Wy (%, 1),
(10)
We will now investigate the individual terms in Eq.(10) in

detail.
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First Term, W ("3) "3‘5)

From Eq. (6), this term is

LS
Yi\ L'&‘!,k&ﬂ = EE’)\:‘.‘)L \&P?_g YE_ (‘h, ‘&z\] . (6)

S (%2, 4,) = :\z [,{}; “"'3")] )

Eq. (6) therefore becomes

Wi(%3,m3) = £ 0, 23 wa. [-riwb‘alﬂ]'

But

(W)™

(11)
But from Eq. (A-37) we have
CO NN PRI
%or | % [ 20y 40 = RO
Eg. (11) thus becomes
N
Wilts,m3) = S0, ;}_(-x;,_.a_,). (13)

From here on, it will be convenient to work in terms of the
. . ! . .
inverted coordinate system (ﬂs,lh) in the correlation plane
in order to avoid negative arguments. Since 7\3-:.-')(3 and

,9' .._,.}3 , we can write Egq. (13) as

T /
Wity = & 00 &R, u5) - (14)
The light amplitude distribution in the correlation plane
represented by this term is centered at the origin and is
proportional to an inverted version of the light amplitude

distribution rl-b(h Aa,\) used to illuminate the hologram.
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This term is of no interest in the present context.

Second Term, Wa (7{37 "53)

From Eg. (7) we have

( =k MR E TR TC) s

Using the convolution theorem stated in Egq. (A-32) we can write

%(13 3 "33) =

izg {E_ ("‘ta"a-z) j:.('ﬁz, “gz) jgw‘l:*a-z)]

= (':\-ﬂz das [E‘.(?(t, ‘34.)-_\ % izg Y_ﬁ“’-a‘é’-) LW‘J "}"j]

( nof :613‘. e, “}“-ﬂ * Los [3:(%;,»},_)] & Log { 4, ke, %Q] .
(15)

But from Eg. (A-37) we have

L [ F000) = i { L Yﬁ("‘wﬁﬂ

(?\'ﬂz ﬁ(- 3, -*}3)

- () :g(‘?l-,{,u}';) , (16)
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and from Eg. (A-43) we also have

Las [g(’h,igq—& = %u [{:\‘l [4’-(7‘\: ‘}iﬂ }* ]

(7\-")1 :?.-.* (%3, 43)

2 (%Lﬁtgg*(nqt;,-?;), L an

Putting the results of Egs. (12), (16), and (17) into Eq. (153}

yields
\:13\3(7\19 "31.) j;(h, ‘}z.) _%:('h, II&Q-X
('H') r\.('R,, "‘}3) & P (-9‘3, "&3) % f.(’xs;‘és)

(18)
We will now evaluate the convolution ﬁ‘ (-43,-&&3)# i(%;,).aaj

using the procedure outlined in Sec. B of the Appendix.
*, *
Change variable names: @_ (-'K;,-af{,g) ——p ﬁ_ (- 5,"”1)

*(’Kg: ”a\lz) — % (5m) .

Fold f?-*('s"@: 3?-*(-5-"0 — :ﬁ*(ga"\) :

Transla,te fg_ (§; \ by amounts

‘Xg and 133 in the § andM
directions, respectively: i (S,‘Y\_) - f?_ (§ “3;% “@3)
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Multiply the functions

and integrate: L oee

n 27 (505, ) 2.(5,M) A5 .
- 00
QCur final result is thus

+ 00
geriri)s 2t) = [ 2Gmnenh) e s,
(19)

Comparing Eg. (19) with Eg. (A-4a) we see that the integral
in Eg. (19) 1s just the auto-correlation of ﬁﬁ(ﬂ;,%g)with
itself:
i L l ! ! T !/
2 (-"‘37"”}3)* .#w.’n "&3) = fu-h‘a%) ® $[‘7‘3, ‘93) .

20
Putting Eq. {20) into Eg. (18) we then have (20)

i‘a’& [E_ (%15 '*aa.\ g:("ta M) %_(%‘h ‘}t\]

= (M) nlihyh) % | 0, y) ® 20d, 4]

(21)
Finally, putting Eq. (21) into Eq. {(7) gives

(o) A |
Bz_{"g,k}g\ = (:;;)2. &(*3)"}3)*[@_“’3)%)@ g(%;,%)] '(22)

The light amplitude distribution in the correlation plane
represented by this term is centered at the origin and is

!
proportional to the convolution of &(‘)(3,%’3) with the auto-
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. / . . .
correlation function of :@(‘7\3116’3) . This term is not of direct

interest in the present context.

Third Term, WalXsz, ”&3)

From Eg. (8) we have
* Z'W‘x-;_ﬁ-:m e

We(%sy43) = %?:;3 Los S_%(’ij%,_) E.(ﬁz%*gz) ear A ] (8)

The terms within the square brackets in Eq. (8) represent

the light amplitude distribution in the (?Q,%;) plane caused
by the light wave leaviné the (ﬁzﬁwz)plane on its way to
the correlation lens, It follows from the discussion in
Sec. E of the Appendix that this light wave is travelling
in the same general direction as a plane wave which w?uld
cause an amplitude distribution of the form eﬁ'ﬂ%ﬂ

in the (“{ﬂ%;) plane, This direction, according to Sec. E
of the Appendix, is along a unit vector M which lieg in
the ﬁf&-plané, makes an angle & with the #- axis, and has
a positive x, component. This information is summarized
in Fig, 3., §8ince this light wave is travelling at an angle
@ with the optical axis, we would expect the patch of light
formed in the correlation plane by the correlation lens
acting on this light wave to be centered off-axis in the
" coxrelation plane, This is the case, as the theoxry will show

and as Fig, 3 indicates.
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Using the convolution theorem stated in Eq. (A-32)

ve bave
Lea | &00s0) 5 (aymya) € g
- L o e gt 2ty 8 2, [ e e e]
© o e [atemls L2teno] s ) H75°]
: oo [t Tptgil] & %o [ Lateyd]]

ngmé]

% \i?.s ‘C

zw._.,me ]

¥

2(-Xaymny3) % B (Ko=) Kz@& &

Putting Eq., (A-46) into Eg. (23) gives
¢ UMKy 2w §

L2 X 5 Usya) ZUeyy,) o _l

(AR s ma)# (e, y) 8 (kg 4Ktk 0,13

(’)\) (= ,u}’;%n('xs,%)% S(lxa-;u-%‘-me,%) (24)
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Putting Eg. (24) into Eg. (8) gives

Walhs,ns) = ;@_(’7(3-,"3-3)% 10, u0a) % 8 (X +Bain e, ).

If we write the last equation in the form

N;{'fx},%;) = (q\{.) K-$.(%33'33)‘*‘ 8 ("33‘3'3)] % S (7\3 +“gﬂm 3, 235));

then, in light of the discussion in Sec. C of the Appendix
and Eq. (A-12) in particular, we can interpret Eg. (25) as

the convolution function
S N,

=5 PN ALY NN

centered at the location of the delta function g ('1(3 -\--QMG N&;);

which is at '}(3-—-?%6,1133 =0- This term is sometimes of
interest in optical filtering applications, but it is not

of direct interest here.

" Fourth Term, ."&.*‘(’K% "433

From Eq. {(9) we have
Z'W'Xg,m )

w’:“}s) ('7\“3 z%‘_%( 31”3'1) 5 (X, "gﬂ E ] . (9)

Proceeding as usual, we have
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:2_-5\3:(‘11, lla.z\ S (Xa.-,"}ﬂ t a A —}

t T o tvn © ]

= (;&)z izs‘f;(ha“}z) 3(7(17“32-)‘] ¥ ;fz,a [e‘} Pl

2’“‘7(2% 5]

= 0\ -F)"" {as {35:("?-1 ‘gﬂ] % Lpa [ S ('Kz.,t}z)] % Efg_-;[ 5

T,\;E)'q. fzax_gi\z{ ﬁ('ﬁn '-3.0]}* ] % I ":(lz Lo ('X\,?;)‘]]
* Faa Y_ e..?‘ranrx ;’.«e]

= g*m,«&g% 0 (ths,-m3) %(WLS (3= Roine, -my3)

where use has been made of Eg. (A-47) in the last step.

/
Changing the arguments over to 'f\3 and p‘_g we then have

Tes | Llhay0) 500e, ma) F
= (A8) 20, -0 ) A (ks ) S (%3-Fom, 05). (26

Now from Eg. (20), we see that

?.T'Xg,&dw\ ) ]

ff.*('“:,h"’g‘-,s)"& _l\_-('ﬁ;,%f;) = fe_('x-_f’,u}fs) @ o W‘:,h '{;'3) . (27)

Putting Eqg. (27) into Eg. (26) gives
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AT e O
Las L’g“‘% w) S 0eypa) € ¢ A ]

- (W 204,58 @ 5] % € (Rg-t o0, ).

(28)

Putting Eg. (28) into Eg. (9) then gives

! < / / ! . !
Wi(R3,40) = -‘:E-‘;A-%%— {f{iﬁsa‘?—’z) ® (%, *3’3)] # § {308, W),
(29)
The light amplitude distribution in Eq. (29) may be inter-

preted as the cross-correlation function
S Ny
(%)

! ' A
centered at the location of the delta function S('Kg-'?m.\ b, U}s),

@ ('K;#‘}g) ® n (%;») ‘3.'3)

/ . !
which is at '/\3=‘Fs’m9,ka.3=o. This is, of course, the term

of interest in holographic correlation systems.

_,a',z'ﬁ‘xgm:“ﬁ
The term € A in the square brackets in

Eq. (9) implies that the light wave leaving the (1(1,1,}7_)
plane on its way to the corxrelation lens, and which will
eventually produce the light amplitude distribution in

Bg. (29) in the correlation plane, is moving generally along
a direction specified by a unit vector ;':l:.which lies in

the Kzé-plane, makes an angle © with the ®-axis, and has

a negative X, —component, As shown in Fig. 3, this wave
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(called the "correlation beam®) leaves the hologram plane
travelling generally parallel to the original reference beam.
The correlation lens processes this wave to produce the
"correlation spot" Wu ('3’\3, V}g) centered at 'J(;= -Fy}h 6, AQ!; = 0.
In order to separate the correlation spot _V:J'q. [';(3, 4}3)
from the two spots W, (.7(;., La,a') and w_;_[%g, ;,3_3) centered at
the origin, it is necessary that the angle § at which the
reference beam comes in with respect to the g-~axis be made
sufficiently large. In the present MSFC holographic corre-
lation system, the functions @(‘K\,U&i) andﬁ('ﬁ\,b};) are very
small patches of light in the object plane, so that the
spots W (%3,03) « Wa (R, 4a) 5 W3(%s,y3) 5 and Wu (Xs,43)
are very small in size (less than one millimeter diameter).
Consequently, if —Fﬂ»}né Z 1l cm, there would be plenty of separa-
tion between the correlation spot and the two central spots
which are of no interest. Since £ is approximately 15 cm

in the MSFC setup, the condition on & would be

(15em) Pt 2 (1ew),

which gives
°

L AR
a;.pm(—lg.- = 38 .

Conversely, the angle © cannot be made too large, or
else the correlation beam will miss the correlation lens

and the system cannot operate properly. With reference to
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Fig. 4 it will be seen that in order for the correlation
beam to just strike the outer edge of the correlation lens,

we must have

*bﬂ\e 'S 11::“5 )

or

6 < Yo ___-“;“5).

In the MSFC system, n’LENS is about 10 cm, so we must require

that

6 < Fons (-‘1-95-) = #n",

In the present MSFC setup, the reference beam angle
therefore should lie in the approximate range
° -]
W< o £ B,
Finglly, it should be mentioned that the photodetector

which monitors the correlation spot in the correlation plane

responds to the irradiance in the spot, not to the amplitude

of the light vibration. The photodetector output current

i will therefore be proportional to

|JECECLECNAL viv:
A
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Figure 4. Geometry to determine the maximum
possible value for the reference
beam angle 8



where A is the area of the photodetector aperture, under-

stood to be centered at Q(é = £ b:me, Na!._,. =0,

26
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ITI. TRANSLATION OF THE OBJECT
IN TEE OBJECT PLANE

We now want to investigate the effect of translating
the object distribution '&('{\\‘%\) in the object plane when the
hologram is illuminated. The plate is exposed using the
distribution jg(’x\.}\a,h , so that Egs. (1) and (2) remain valid.
Suppose now, however, that the hologram is illuminated with
the functiong_(’x\-&,u}l..b) centered at '7\\'.:&,'.}‘=b instead
of the function‘_f_\._('xh%,) centered at the origin. When
the transform lens operates on the distribution ﬂf}_(’ﬂ\ua,ﬁl—h)
the resulting light amplitude distribution in the hologram
* plane will be ’
e Y {2 (e, Y]
But using the shift theorem for the operator i expressed

in Eq. (A-26), we have
2 2T (atg + burg)
Y RE (M(e.*- M2
Lo | xlhea, w-b)] = e da {2000 ] -

The light amplitude distribution in the hologram plane thus

becomes
2 (aRaaby,) ‘ -3 3L (wrotbiy2)
e L Lo latymd] = = s LICW

When the light wave producing this distribution passes

through the hologram, the resulting light amplitude
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distribution in the hologram plane will be given by Eq.

(3) with _g('h,xa.,,) replaced by

..%, oy (M(z"rb%‘a’-) E('Xt,ﬁa.:.) '

The result will thus be

* -5 B (ay+bys)
,_”_'W\Z;“Q-z) = < No E(xz,»\g&) e & .T‘E

M

A
+ .(':Q..)- 3('1(2.,'«}7.) \,%(“za‘g'z)l

L | %o (Lainb-0) =b
( \ 53(“2‘%") 3 (’Kg,l%a,) e % [ 2in 8~ 0.) ”}11
MY

Ko (B o2 0) + bu,
< (\b %U{a’l};\ ) ('X?.;*g.:.) e %T K kg. ] , (30)

™

The fourth term of Eg. (30) leads to the correlation spot,

so the only term of interest to us in Eq. (30) is

‘__\‘- (7\7,1 Va;) = ( .) EW ('Kt, '»a.z) S ('ﬁa, "}'i.)

ﬁ-% Y"\zuﬁme -\-0..) "‘b%-z]

« (31)
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When the correlation lens operates on this term, the resulting

light amplitude distribution in the correlation plane will bhe

Wy (%3, 4) = ( }3 Ras ‘,-%.(“%‘6\’-) 2 (ha,)
) e 4 5% e (Boim 040) +B'g.a.]] . (32)

Use of the convolution theorem [Eq. (A-SZ)] as usual then gives

5’.‘-\-“3,'@.3) = -{'}\{.)3 @_ (-'?\3-,-‘\3.3) %R ("3: '93)

A EL [ (Romb o) ebuy s
*iﬁ\ }T[ﬁ((m& &)-%-Ag,'j']

» (33)

From Eg. (27) we have

/ Fy / I} aul )
2%""31""33)% ﬁw‘%‘a,s) = @W?«,%g) @ JAS ('ﬂ&,lg.g) . (34)
In order to handle the last factor in Eg. (33), we can make

use of an obvious generalization of Egq. (a-47),
* 2-
izz‘:e“} E%(C'Xz-'ré\’ﬁ.a.)] = (‘X.@\ S("‘«S“';c) ..%3-#&3, (35)
Comparing Egs. {(35) and (33) we see that
Cz= b &
£
iz &
£

sothat we have

iﬁ ‘.e—} % L2 (Roim & +4) + b‘t)}z]]

= (M) § (%5860, —ips —b)
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= (M) S (#a=Ram b=, s =b) . (36,

Putting Egs. (34} and (36) into Eg. (33) gives

Wy (%3, 03) = ("‘; [;ﬁ(’ﬁs,\gg)® n(m;,%ﬂ%g A3 Foumd - A 93=b).
(37)

Eg. (37) states that the light amplitude distribution
39%(%3,@3) consists of the cross-correlation function
ff-( 39"}33 ® N (g ;*}3)

centered at the coordlnates X; n%m“9+aﬂ?§ﬂ . Comparing
this result with our previous result in Eg. (29), we see
that the only change has been a translation of the function
Eﬁ*kw'amounts a and b in the x; and y; directions, respectively.
Thus, translation of the object distribution in the object
piane merely translates the cross-correlation function in
the correlation plane, Movement of the photodetector to
the new location of the cross-correlation function should
then produce the same output current.

The effect of translating the object distribution in
the object plane is summarized in Fig. 5 for convenient

reference.
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(a) Situation when the hologram is
illuminated with the object
distribution D(%,y).
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(b) Situation when the hologram is
11luminated with the tramslated
object distribution - (%o, %]_b).

Figure 5. Effect of translating the object distribution
f- (%1, 0,) in the object plane.
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IV. TRANSLATION OF THE OBJECT
ALONG THE OPTICAL AXIS

As the final task in the present study, we started
to look at the effect of translating the object distribution
along the optical axis of the system (i.e., along the
Z-axis in Fig. 2). We were not able to complete this task,
but we report here the partial results we have obtained.

Here again we suppose that the photographic plate is
exposed using the distribution _{@('ﬁ\,y}ﬂ  So that Egs. (1)
and (2) are valid. Suppose, however, that when the hologram
is illuminated with the distribution .&w“)"ﬁ\) . the object
plane is at a distance £+4% from the hologram plane, instead
of the usual distance f£. Then, according to Egs. (A-13) and
(A~16), the light amplitude distribution in the hologram

plane will be

_%%_ ‘-‘ - (£4-a2) :\ ('X:-\-n.z;_
: ¢ - i\z ‘lﬁ;(x\, *g.lﬂ

e
WE X N
e'e"z'.;"f‘ ("t*‘“?fi)

- iw'h'g-z) 3
A T
\ A &
where the constant phase shift g _%_= e has been dropped

in Eg. (A-13) as usual. When the hologram is illuminated
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with this light amplitude distribution, the resulting light
amplitude distribution in the hologram plane will be given
by Eg. (3) with _5_('59_,0}9,) replaced by

- . kd% (’At 1\
e Vok™ 't E("z,l}z).

The result is

*K('Kz: o) = 7\-; ('Kz Lh)

T -(%“z .-5»(%,,"}9\%(%,%3\ e a-{== s (atna)

L T
+ 2l g,y 5( Kz,gg)e a-tn- ("‘F’*‘?Q (RULLY —atht

()

+ =N .%:[""“*‘%‘*) S (%2, o) e («‘4"?‘1) "9’ m“;\m ¢

(M-\‘

The fourth term of this eqguation is the correlation term,

so let us concentrate on this term:

ARAZ 12 2 y, 0%y w8
Dy (e, g = %—-a—(“‘ ) - paim®
..-.q.( ?-)"}) (?&)l 3;.“*:'%05"7‘2;'@73@ 24 B N Y (a8)
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When the correlation lens operates on this term, the resulting

light amplitude distribution in the correlation plane will be

t

23[ i_('Xz, Aé,) S (e, %a) e 9‘{,‘%‘:‘.“ (%24 ag,,_)
—a E0% i 8
x e 3“_771-_' ]

Application of Egs. (A-32), (A-37), (A-43), and (A-47) then gives

!.J‘%'(x?‘: "3\3) = (H-)

= She
Wy (%3, 1) = m 4)3 f@(’is,%s)% R (-¥3,-43)

-éééﬁ Lot
N im[e 24 = (‘Ka'l-‘h)]# S(-K;—-Fa»fme,-‘@.g)' (39)

We have to pause now and calculate the third factor in Egq. (39),
-é Aa% %
iZ?’I g Vi wa‘“}ﬂ] .

By definition of the operator i given in Eg. (A-16),

we have
400
ARl H SRR () “45E ety
X ‘\7&3»'9.:'
- (40)

Now since &;—. 3_1.[ ¢ we have

R e - 120

n
o



AR :

Thus Eg. (40) hecomes

a0
mhb A 0w A TAR g 2N AT (%, Ky &
x,_3Xe%_-z-t% (m,,wg,g)] ] “ e Trn (haia) (VA %%3)0\%;&;;_
- %

+oo

-.&Wﬁ% ; 3 Y ;
= Sg e ?\{_z['xz'?"'}z*‘ -}g(ﬁzxz"“%&'}i)l 9\7(33\*};.(41)

- ol

Completing the sguare in the argument of the exponential

term in Eg. (41} gives
—a AR
e —3‘--7\'F7‘ K_‘x’;"""é—:’"— -Ei—("ﬂfﬁ;-%- 49.2_-!.3_3)]
B z
= e %"-—;T_Y_z. [(‘K—.‘_-\‘- %ﬂ(g) 4 (’gz—i- f‘gl};)z]

™ (2. z
%z 4
" e‘&?% 3‘&3).

Eg. (41) can thus be written as
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%: Az ;3: 2
fa‘&‘_ 23¢ (x ""3?—)]

%(ﬁ‘;““ﬁg TF iwas PRY &
— e S g '&l_'ﬁ_z— Y_(xz“"é—i?&s} +(l9,z+ j—éb}s) ]

e Nz daye
(42)

The integral in Eg. (42) is just a constant, the wvalue of
which is obtained in Sec. F of the Appendix, Eg. (A-65).
We thus have
0-“_ 2_ 1_
Y YV > —%— (%3
Az

252 (43)

Putting Eg. (43) into Eq. (39) gives

R lia,ng) = =D — % ("{3:*5\3) %0 %5m00) & e% (havas)
?\ -f- Az

¥ ‘E(—mg-—hcne, -43_3)
< A, \ T

oo G ) % 0005 o e

z
(% +4y5

/
% § (X3 -$sine, a3) - (48)



Use of Eq. (27) then gives

. (.%3, - < ("3“"‘}
W ’)E-.\: — [.?.“37 ws) @ n ("‘3#33)-]% € aL_

% $(%- S aimo, wa). @5

The light amplitude distribution in Eq. (45) may be interpreted as the

function

)

c (‘X +
;\;;m PICAL nwa,w] % e’%_% ’

centered at xj = f sin 8 , y3 = 0. This function represents the

!
usual cross-correlation function, [ ﬁ(‘ﬁ;,l&g) ® o (’ﬁ;’%;)] 3

conwolved with_the spherical phase factor
’ T - %
T (,‘l !
+ 43
e %A-?-_ shys)

Unfortunately, this is as far as we have been able to develop the

theory within the time frame of the present contract.

37

)
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V. CONCILUSIONS AND RECOMMENDATIONS

We regret that the study of the effect of translating
the object along the optical axis reported in Sec. IV could
not be completed during the present contract. In practical
holographic correlation systems used to examine thiee—dimen—
sional objects, it is certainly possible for the objects to
change size, or to undergo small translations, along the
optical axis. We would recommend that this study be brought
to completion eventually.

An observation which strikes us as being very impor-
tant is the fact that while the theory of the holographic
correlation system is always developed on the assumption that
the object plane, the hologram plane, and the correlation
plane are all parallel to each other, in practical setups
this is usually not the case. The effect of having these
three planes slanted with respect to each other has not been
analyzed in the literature, as far as we have been able to
determine. We feel that this is an important study which

ought to be given highest priority.
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APPENDIX

The purpose of this appendix is to summarize some impor-
tant results which will be needed in developing the theory

of the holographic correlation system.

A. The Fourier Transform

Let ﬁ_(’ﬁ, ) be a complex-valued function of two indepen-
dent real variables, x and y. (NOTE: In this report, complex-
valued functions will be indicated by an underline.)} The

two-dimensional Fourier transform of @(«,%,) is defined as
oo

Flotw)] = 2t = H:a('x.,.z.)g?'f”mx**&%

- 00
where x'.xand-?.é,are spatial freguencies with dimensions of

-}-x— and A . respectively, andé:l!-l . The inverse Fourier

J&‘)ﬁ&g, 5 (B=1)

transform of __1; (—t—x,:-%) is defined as

+ 00

-1 J&_,Z'W (% Lu +'3;F‘3)

g- S_:!_@K,-t.a)] = g(ﬂ,lﬁ) = KEE@-}{,L& e A’le A‘C‘}, (A-2)
-l

B. The Convolution and Correlation Integrals

The convolution integral of two functions ’?(‘X,%) and

_%(’K, ) is denoted by g(ﬁ,%,\a% %(_x’,‘aj , and is defined as

follows:



oo

Prap* gl = Xg 2(5,m) ,%(’K@, w-m)Adg An. @-3)

- 0

40

It will be observed that the result of the convolution operation
is a function of the original wvariables x and y. This function
is called the convolution function of ’Jg_ and ,% . The wvariables
€ andM in Eq. (A-3) are just dummy variables of integra-
tion,
The convolution operation is both commutative and associative.

That is,

qg(x‘%g e iFUK“%) = 1;UK,29‘§ i?.@!ﬁ%)

and

2o ] g Y] = [pog e glg)]e nooy).

Since the convolution operation is both commutative and
assoctative, it follows that the individual operations in
a string of convolutions can be performed in any order whatever.
In order to set up the convolution integral of two
functions ﬁ('x,w) and %(‘}(’%}, the following steps are taken:
(1) Change the names of the variables from (x,y) to
(5' ,‘Y]_) . The functions then become fg(‘s‘,'fo and _%(g,ﬂ) .
(2) Fold _‘k(?,"{) about the origin to get _%(—g)-*'fl).
{3) Translatel%&rgiJQ) by amounts x and y in the

g and ] directions, respectively, to get ,%(“‘_gj'?"q‘-)«



41
(NOTE: Since convolution is commutative, steps
(2} and (3) could equally well have been applied
to the function p(X,y). The final results would
be identical either way.)
(4) Multiply the folded and translated function

35(1(—5,1.3__'\1_) by the other function x(g','.n , and

integrate over all space to get the final result,
% 00

20 o) = | [ pG) (55, mon) a5

. — o
The cgross-correlation integral of two functions ;?_('}()19,)

and _%U&).,a) is denoted by fg(x,%) ®%_(X,Aé,) , and is defined as
follows:

400

ﬂ‘%)‘%ﬁ@ 55_(7()"3—) = Sg {ﬁ#(g_x,ﬂ-la_) %(g, ) J\S A’FL . (A-4)

-8
Notice that the resulting function, called the cross-corre-

lation function of ;g and k ; is a function of the original
variables x and y.
The cross-correlation operation is not commutative.

That is,

REND THa) £ Ly @ LX) .

However,, the translation operation which has been applied to
%
the function 42 in Eg. (A-4) can be applied instead to the

function'iiin the opposite sense without changing the value



42
of the integral. That is,

+ o

XM @ g K = “ :{’.*('i,‘*\} k(g-l-’x,’qa-kg,) Agd. @-5)
— o0

(NOTE: If the functions P(x,4) and 4 (%X,4)are identical,

then the operation

400

2R @ LK) = g[ ﬁ%@—ﬂ,“‘t-—‘a-) 2 (5,1) A5 AN (a-sa)

—_—d

is called the auto-correlation function of;ﬁwith itself.)

The cross—correlation integral of two functions ;p\(x},a_)
and‘kixﬂaj can be set up by use of the following steps:

(1) Change the names of the variables from (x,y) to (g,ﬂ),
obtaining the functions R(g,4) andi_(?,"fl_} .

(2) Take the complex conjugate of the first function
_g(g,nﬂ named in the operation, obtalnlng fg(f,"fl)

(3) Translate the function 49_ (5,11_) by amounts x and y
in the § and’q directions, respectively, to get

¥ (5%, M-u) -

{(4) Multiply the conjugated and translated function

:f(g-"‘a“l-'a) by theé second function L(g,n) , and
integrate over all space to obtain the final result,
4 o0

RN @ ) = “ £ (5-%1-1) . (3,) Az 4.

-
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Notice that convolution and cross-—correlation differ
in two respects, folding (done in convolution but not in
cross—-correlation) and complex conjugation {(done in cross-

correlation but not in convolution).

C. The Dirac Delta Punction

The well known Dirac delta function has several impor-
tant properties which we wish to summarize here for convenient
reference. For purposes of this report we are interested in
the two-dimensional version of the delta function. In the
equations which follow, a and b represent arbitrary real

constants.

Basic Definition

e if x=y=0
S(m1%) = !

o otherwise

400

H S(a\-‘x,b-A}B Medn = 1, (3-6)

-
" gifting Property

400
gg ?.(”(1"3) S(G-‘K; b-kg.) A.‘x.&ka_ = ?\(a,b) » (A=7)

Whereja(er) is an arbitrary function of x and vy.
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Scaling Property

S(ovx,b%.,) = {:b\ 5(x,4) . a-8)

NOTE: It follows from the scaling property expressed

in Eq. (A-8) that

S ('x-a, u&-b)

"

§ [ -0, C1Xby))
1 -
|co-0]

S (a-%,b-) = § (a-%,b-4),

so that the delta function is a symmetrical
function of its arguments, and Egs. (A-6) and

(A-7) can equally well be written
A o0

,ﬂ S(ﬁ-—a,:u}-b) Axo\ag, = 1 (2a-9)
—od
4 od

“ R (Xn) §(%-a, ..}_b) Ax,;\.\a_ = g (a, b) . (a-10)

-l

Integral Representation

o0 'y o0
(0T sy - el
— ot

— R

= S(J;,(,J;,g\, (a-11)
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Convolution of a Given Function with & Delta Function

Suppose a function ﬁ(x,g}) is convolved with a delta
function S('&-a\‘ L}_b) located at ‘X:a.,:e,—.:b . Following the four
steps listed earlier for setting up a convolution integral,
we have:

(1) Functions become _Q(;','q) and S(g—a,‘!\—b).

(2) Either function can be folded and translated;

we choose to fold and translate _g(g,q) . Folding
produces g_(— S,-’VO .
(3) Translation produces ﬁ(’)(—-?, '-g.""’L) .
(4) Multiplication of the functions and integration
over all space gives
+ed
LALOSEY (fx-a,%-b) = H 2.(%-5, %_«L) §(5-a,M-b) As an.
- o0
Using the sifting property of the delta function expressed

in Eg. (A-10),-we now have

2% §(x-0,8-b) = 2 (-3, L&_n)‘
s=a

WL: b
= _{E_(‘X—-ag., Aa_—b) . {(A-12)
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The result, according to Egq. (A-12), is a translation of the
function 2(X,4) by an amount a in the x-direction and an
amount b in the y-direction. Stated another way, we can say
that the function has been translated to the location of the
delta function, x=a and y=b,

It is difficult to indicate graphically the effect of
this operation in two dimensions, but a one-dimensional picture
is feasible. The diagram shown below indicates graphically
the result of convolving a real function IP('X) with the delta

function S(’X—a) located at x=a.
(%
P Pix-a)

PR3 § (%~a)

———

(c0)
§(%-a)

&
>
X S—

D. The Transformation Properties of a Lens

Suppose a light wave advancing along the Z-axis gives
rise to a light amplitude distribution ﬁ(ﬂhkg‘) in an object
plane at a distance { in front of a lens of focal length £,

as shown below. When the light wave is acted upon by the lens,
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W, LIGHT wave %a

0BJECT a3
PLANE

/ %, LENS

%2

P

BACK Focal.
PLANE oOF
LENS

X
\ \
UK

- —é ('X?., ‘-2»2-)

the resulting light amplitude distribution.g&(ﬂz,%};)in the

back focal plane of the lens is

- DU .

—'} %(ﬁ“xz-\-g.xg,z)
$lhe ) = ¥ f K 2%y e M by,
- {(a-13)

where &z Z“'/’)\
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In the special case where the object plane coincides
with the front focal plane of the lens, so thatf=¥§, the
factor (\-—-_‘%—) in the exponential in front of the integral
in Eq. (A-13) wvanishes, so that the exponential becomes egual

to unity, and Eg. (A-13) becomes

Teo -éf % (% X+ '6"2"")

_ |\
AlKayge) = vy SX'@(*H‘Z")e Mk day - (a-14)
&
—oQ
3%
Now the factor -L _-;...;S': e in front of the integral in
Eg. (A-14) represents a constant phase shift of-—iz‘:- ; which

is of no practical importance. We can thus drop this factor

and write
+ oo i (a4 )
3, M 1A, '?IAG-Z
;‘.&(‘K?.,*gz) ="'7;T_€" i g!a?(“\)!g:) e Ax‘a\aa‘ . {A-15)
-t

The integral in Egq. (A-15) can, of course, be written
in the form of a Fourier transform by defining spatial
frequencies J‘:'K= “2-/ AL and ';“9; Ba/2% . However, it is our
opinion that when this is done and the theory of the holo-
graph:ic correlation system is developed using Fourier trans-
form notation, congiderable confusion can result about the
arguments of the functions involved,and constant factors of

'M;- tend to be dropped indiscriminantly.
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The theory of the holographic correlation system can also
be carried through using the integral operation in Eq. (A-15)
directly. This is the approach used by Smith3. However, this
Procedure becomes very cumbersome, and in the process of using
this approach one essentially derives anew many of the commonly
known properties of the Fourier transform.

Because of these problems, we will use a somewhat
different approach here. Iet us define an integral operator
afﬁ based” on Eg. (A-15), as follows:

l oo . “’év ‘% (X.'Xﬁ—&g, ‘a-z)

_qg—.(xz-:"é?-\ = ;flz. [ﬁ(’xt-,ﬂgsﬂ = X{?.('Xl,t}:) e : ot u,

' L (A—i?)
The symbol "$" stands for "lens operator,” and the subscript
"12" indicates that this operator transforms a light amplitude
distribution ﬁ(‘%\,;},) in a plane (‘)(‘.’»a_,) at a distance f in
front of the lens into a light amplitude distribution.jEQxiﬁ%z)
in a plane (Kzﬁqya) at a distance f behind the lens. From
Egs. (A=l5) and (A-16), we can write the distribution !&(*z,%a)

in the back focal plane of the lens as

_é(xz,ka-z) = —\'—' ;C\z { ﬁ(.xbt}‘).] = L %L’Ka,lg,z) . [(RA=17)
M M
We will now proceed to establish those properties of the

operator Ef tz. which will be needed in developing the theory

of the optical correlation system. These properties, of
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course, are analogous to the corresponding properties of the
standard Fourier transform.

-1
The Inverse Operator, g\z.

-\
To establish the form of the inverse operator i!?. .

we will first convert Egq. (A~16) over into a standard Fourier

transform. If, as indicated earlier, we define spatial
frequencies
£, = =
. A% (A-18)
Lo = 2= (2-19)
?
K M
then Egq. (A-16) can be written in the form of a standard

Fourier transform,

+o0 ,
..7 ﬂ(ﬁ@fx "Haftﬁa,)
f‘z_ {g(ﬁ,'ﬁli\ = %(-K?-,“}z\ = g‘[?(*lg%lﬂ = _@_ (';X,‘gla) = I X1(K‘)la\) € (3-20) A‘X| A-la,l
-— oy A-

From Eg. (A-2), the inverse operator would be

48 -
-\ -1 3.2'5(‘31-211(-“3\%&)
Lo ltond] = 2tmd < 3 [20085Y] = [[2eny)e A AL

9’.
—ob (A-21)
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Now from Egs. (A-18) and (A-19) we have

i, = & (5%

My, = A(-‘ﬁ),

and we also observe from Eg. (A—-20) that %_(‘Kz,ua.,) and _‘_E‘(-Cx,-c‘})
are just different names for the same function. It then

follows that Eg. (A-21) can be rewritten in the form

-1 + o0 %_.2-'..[ (fxg(z_{_.a,%z)
Xm (% ‘-3-7..) = 2, ) = (Kz,m2) € At e, .
[yn] - - ] g (&) 3(3)
+ o0 ot
S5 (ke tuane)
(’Peﬂ?‘ H Fom e A’K,_o\.},_ . (3-22)

-1
" Eg. (A-22) establishes the form of the inverse operator :fl.‘,. .

Shift Theorem

Suppose that

40
-5 55 Bitatyne)
Lz [ $(x“'3")]' = %('Kz, Ya) = Xj $(x\1"24) e AK, A‘Q—l i

e (A=-23)
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Then if f\z. operates on the translated function ﬁ(fx.—a, lg;--b)

we have
+o0
9» T (XKatmn,)
Ro\z.[ﬁwl—“a ‘ai-b)] = H;g('x‘-a, lg,\-b) € AX, ,\,a_‘ .
- ol {A-24)
If we introduce new variables
A = ‘X‘—a_
ﬁ = -
then we have
x‘ = A+ O
lg,‘ = F + b
A%y = M
A’?\ = AF 7

and Eg. (A-24) becomes

400
5 (o) %, +(B+b)n,
;f\,_he(x‘-a,»g.-bﬂ ) ﬁ»?(ozqﬁ)e ”[& e ‘a-]a\do\‘ﬁ’

—~ed

d—
-

peupre ALAB.
- pa (A-25)

_? A (&’Xz-\-bdaz) E X ) "‘3 " (v('xz -\-Fba.z)

Comparing Egs. {(A-25} and (A-23), we see that
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-n 2L (%, +
¥ 2 Watfue)
”ﬁ(‘*vﬁ)e Adg = gl = Lo [20,90]5

since the name of the dummy variable of integration is

irrelevant. Eg. {A-25) therefore becomes

ar ("*'Kz-l—ha_z)
fw_ [ fg('x;-o., M -—b)—_‘ ;f‘z [¢ (%, ,ﬁd)] «{A-26)

Convolution Theorem

Suppose that :f\z_ [ ﬁ[ﬁ(\, t@.,)]: jF(.‘Xz,La,z,) and ;f\'z. n [9(\,)‘94)]
= E_ (‘Xz, u}z) . Then consider what happens when ;f‘z_ operates
on the product function ﬁu(h“ﬁ}) __IE('XHA}‘) . By definition
of the :’(\1— operator in Eq. (A-16), we have
+o00 -4 53¢ ZL (Xt tpigz )
f\z\._j‘rz(m,xw g:m,tg.;ﬂ = g X 2 Buydnt,y.) e oA, -

—ed (a-27)
But from Egq. (A-22) we can write

+ od ¢ 2T
355 (i)
Al = % [0, = sp)e 3o &
o0 S’& N &

where we have written the dummy variables of integration
as o(.;ﬁ instead of %, My to avoid confusion with the variables
xz,;}z_ in Eq. (A-27). Putting Eg. (A-28) into Eq. (A-27)

we have



o0
y & ('x\*"‘"yF)
c‘f\z &4’.(7‘17 "}\) (%, '31)] = g § qe(w,u&.) [aﬁz [ {,__ (oa,g) e MO\F
o -0
- *} % (%l'xa.'l‘"gl ‘3"’-)
A’Kg Aia,l
Interchanging the order of integration gives
+ o0
(i 1) n(Kpu)l = \
:fvzlﬁ ¥ " ] 0)* [E S e,p) Adt A‘Q
- oA
+e0 v 2T
-5 B [0k 41y, (e 2))
X ﬁ Ahm) e f Moy,
—~eb (Aa-29)

Comparing the final integration in Eq. (A-29) with Eg. (A-16)

we see that

+ o0 _é, 3%‘{:—['1(1 (Ko -ol) + »h (%&F))
n.’ﬁ“‘b‘é‘)t drduy, = i (%ot ‘%z-F) .
—b

Putting this resuit into Egqg. (A-29) then yields
+od

:&Aﬁ(ﬁ%a),& (7&\,'\5-0] = (—‘ﬁ" X S s(d, F) %(m,,_a, Y- 'g) Aot AP'

-cd (A-30)
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Comparing Eq. (A-30) with Eg. (A-3) we observe that

Jn_ [,’g(ﬁ,%ﬂ&(xl, Aa.lfl = BI:E-S'L --(‘xz-,*a.z) * i(xz, ‘a.z)

%(’Kz,cz,) ¥ 3 (Xe,4,) , (2-31)

(a-'e)“
where the interchange in order is legal because the con-
volution operation is commutative. But, by our original

assumption,

k(‘xz‘, M) = i\z Y_ 2., )]

and
5 () = & Y LAV ‘B')] '

Eq. {(A-31) can therefore be written in the form

Lz, Y__’p (%ia 1) E(%e,ng\ﬂ s )"" L Ifgb&‘,»&‘ﬂ %4, [ R(’thg‘)‘]

(a-32)

Double-Transform Theorem

Suppose again that \i\?. g_fﬁ(%ls”}\\-} = g‘__(xz, .,}_D
What is 3(23 [ g('xz.,%ﬂ] = 17_3 [i\,_[qo_(x‘,a&.)n 7
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From Eq. (A-16) we have

400
~5 30 (xtatay,)
kth,%ﬁ) = ;&2 {@(ﬁl,%y}] = XS ﬁ(‘ﬁhpﬁl) e A‘Kl .
and —ob (A_Bg?
;(23 {%(x‘&“ﬂﬂ)] = :tzs ‘.;\’\z 1?(“‘:"30-“
- 4 - (Ratgtu,
= “ % (Feyme) @ 2 % ey %B)Axv\
-t (A-54)
Putting Eg. (A-34) into Eg. (A-33) then gives
$oo ( +o00
- My .
L3 X.i"'[fﬁu"‘?‘ﬂ = “ ¥ 5r (R +man) grﬂx.,‘g,)
_ e
A T (Kt v iy )
X e 3 e ‘3 “3 G\'K\A'g.] Mzo\‘\g_z .
Interchanging the order of integration gives -
+ o 406
—a 2T
:\’13 "i\ztg ('ﬁ\}u“)].] = XS xtxl’%l) XS e 4 AL Y,xz.('xl‘\-’xs‘)""‘g'Z(?i'l'“}S)]
- &
-l

X m,_at},_] dxyday, . (B-35)

Now upon comparing the inner integral in Eqg. (A-35) with

Eg. (A-11) we see that



+ 00

[K - 3 % [xz('x\-i- X3) + B2y, + %.3}]

—-od

M,_o\n@,,_

= s{ﬁ-\f& _'al“' ﬁB]
A% 3

= (')cf')‘- S(‘Xl-i-’}(g,xél.\..a_g) ’ (A-36)

where the second step follows from the scaling property
of the delta function expressed in Eq. (A-8). Putting Eq.

{(A-36) into Eg. (A-35) we obtain

400

‘fz%{i\z[ .‘g(‘ﬁ\,ug.\ﬂ‘k = (W) n—?m\a’%i} S (xi+%, '31*-'3.3) A%y duy, .

- o

Using the sifting property of the delta function in Eq.

(A-10), we £finally obtain

Los [Rp\z [@(‘xta%hﬂ = (%) 2 ¥s-03) . (a-37)

We will also have need for the double transform in

a somewhat different case. In particular, if

.J;Q*zy%:) 2 aazi;QQUQdaﬂii’
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* . .
we need to evaluate 23[ _%‘ (’x‘l,l&,_) . To begin with, from
Eg. (A-16) we have

+ %0 ._é' %\-‘-r-‘—_ (‘%"Xz -I-Aa_‘;a_?)

_‘E:U&z,q.z) = “ ,?_('K\,u.}.) e Axs&y . (A-38)
—-od
It follows from Eg. (A-38) that

. S 3 &% (hxigma)
%("%‘57) = “ $(7‘\a'~an) ¢ o\x.g\-a, . (2-39)
- ol -
From Eg. (A~16) we then have
+ o0 -
~x, ZE (KaXg £ 420 5)
N _ % & BT
izs K_% ('ﬁ?-;'ﬁ-a-)-l = g‘ f'?_ (%eru.) Aﬁzﬂ\g.z- (A~40)
— o0
Putting Eg. '(A-39) into Eg. (A-40) gives
T LB (ReXgtmen,) [ 1%
% - 23
fz&,’\_ k(‘hﬂgﬂ] = H e * oo {v “ gf(xl,-}.)
- —~ ot

é, % (“!"7_*"3-\‘3—1)

X e o\q(‘aha.} J\'X,_&-a,z_ .

Interchanging the order of integration gives

+o0 + o0 -
I,_!,‘_ 3:“’-:‘3&)] = X S gm,%‘) [ X e-a'ﬁ[x;(mg- %) e (»}3_,3,)]



By use of Egs. (A~1l1l) and (A~8) we then have

veo
X‘ o ¢ M {7‘1.('33-9‘;) -':-‘3:.('9-3—154)] A, by

-ob

- s]BR

= (’M—)L 6 (Ra-x, "3-3-'31) - (A-42)

Putting Egq., (A-42) into Eq. {(A~41l) we obtain
+ od

;{;_3[ ﬁmz-ﬂa;ﬂ = ('kﬂl XE .Jf('ﬁh‘}l) $(Kz-nti, 493—13.) A’K.a\sa‘ .

— ot
Finally, use of Eq. (A-7) gives

;rz;‘ %_&('!\z,l@,)—‘\ = U\-t-)t .?.%(W“?%-s) .

Going back to the definition of _k(’h,;éz) , we can then

write this result in the form

I::; \' { iz [-’# ('x"l"}!)].g*x = (M'Y_ ;’g* (X3,43) . (a-43)

59
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Effect on Complex Exponentials

3" 2WC K2
Consider the operation i—;_z [ e N ] 3 where
c is a real constant. From Eq. {(A-16) we have
4 e
s ZRCKq . . 2T
fale? % | - 3 IR o Pefavieys)
~ o

+o0 » I
“ It | K%t £ 4 galys)]
v o= e
Aody, -
o e
(A-44)
Comparing Eg. (A~44} with Eq. (A-11) we see that

400

§ [ e'} %R*v—(-*s*rm 1 (3]

Madg = S|, g ]

=N
8
= (M)S(-%xtc, -ua) 5 (A-45)

where the last step follows from Eq. (A-8). Putting Eg.

(A~45) into Egq. (A-44) gives

. % 1.
Izg“e} EWCTL'X = (m't') S(—ﬂ;‘!‘;C, —'?3). (A-46)
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—3, %

To obtain the result for ;ng operating on €
it is only necessary to change the sign of c¢ on both sides

of Eg. (A-46). We then have

A 2TrEK

I?.‘.&‘_ e'? A 1‘] = (M) 1) (-—-‘Kg— fe, -'3'3)‘ (A-47)

E. Some Properties of Plane Waves

Consider a plane wave propagating in a direction
defined by a unit vector & . We will take :L to lie in the
¥2- plane, as shown below, and we will suppose that A’i makes
an angle ® with the®2-axis and that the x-component of R

is negative. We now want to determine

g (7»,%,, 0)

the light amplitude distribution é('[\,be.\ in the xy-plane

N
due to the incident plane wave moving in the direction i .



62
The equation of a general plane wave is
l--—"—’
bR
N, €
where R, is a constant amplitude and

o A
£- g8
where 9\ is the wavelength of the light (assumed mono-

chromatic). From the figure above it will be seen that

W = (=smb,0, cab)

™ = (‘7‘1"}1 0) )

so that for any point (x,y) in the xy-plane we have

BR = "%‘“-Q-’;{' = 2‘.%\‘.(-9(;:%9) = ~2WXGO

The light amplitude distribution in the xy-plane due to

the plane wave in question is thus

- 3', ZX o &
,é_('ﬁ.,%) = 0\, © A . (A-48)

Conversely, if a plane wave sets up a light amplitude
distribution é(‘ﬁ,&&) in the xy-plane given by Eq. (A-48),

it follows that the unit wvector g. which describes the
direction of propagation of the plane wave makes an angle &
with the2-axis, lies in the %2~ plane, and has a negative

¥—component.
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Following through the same reasoning for the case
where ﬁ, lies in the %2—plane, makes an angle © with the
2-axis, but has a positive x-component, one finds the light
amplitude distribution set up in the xy=~plane to be

5, 204 24 8

é&(‘ﬁq%) = N, e » (A-49)
Conversely, if a plane wave sets up a light amplitude
distribution é('x,.a,) in the xy-plane given by Eq. (4-49),
it follows that the unit vector a.describing the direction
of propagation of the wave makes an angle & with the
2= axis, lies in the #R-plane, and has a positive x-compo-~
nent,
By way of generalization of these ideas, Smith4

shows that if a light wave sets up a light amplitude

distribution

2 2K e &

A(%,y) = 9. (%) € A (A-50)

in the xy-plane, where _%:('x,!.}) is a general complex function,
then the light wave causing this amplitude distributiocn

is travelling generally in the same direction as the plane
wave which caused the distribution in Eg. (A-48), except
that the wavefronts in the case of Eq. (A-50) are not planes,
but rather curved surfaces of some type. Similarly, if a

light wave sets up a light amplitude distribution
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A 8

,‘3.\:(“;‘3) = 3.X,u) e

in the xy-plane, then this wave is travelling generally
in the same direction as the plane wave which caused the
distribution in Eqg. (A-49), but the wavefronts are curved

rather than planar.

F. Evaluation of the Integral in Eg. (42)

e

Let us denote the integral in Eg. (42) by _’_X_
+ o0

—a TAR - - £ 2
- H e ? P [(’K;-\- yre %3) + (.‘3.1.-':' Z%-'g-z)] 0\“-:.&‘3.:.-@’»-

51)
- o0
et us also introduce a new constant
— TwAZ
Q ')\.g.‘- {(A-52)
and new variables of integration
A= %4 % _
et e 3 (A-53)
£ .
(? et e W3

Sincexz and Y3 are constants as far as the integral in Eq.

{A-51) is concerned, we have from Egs. (A-53) and (A-54) that
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Ak = Mg

ae = Jh'a.z .

Furthermore, the limits of integration in terms of of and F
are the same as the limits of integration in terms of gz

and ;}.‘_. Eg. (A-51) therefore becomes

4 o0

1= “ e'éQ(ﬁFL) durg
-
+ob
- SX ‘_ca-_ti(&%—(f‘) —jd»&(&'}ﬁ")] da A8
- .
= SX o (oﬁ-f') Ao Af, - ? E\ fron QU{*FL) Aot AF
= n‘.“’—ﬁ*tm—@f"— o QK e Q‘a"] Mok AF
~ch
& oh

-:('} H{ Der Qdf'cn.af" roem QR mm QF’] el *F- (B-55)

-
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Now let us write, for convenience,

1 = Y- 3"'5‘?— ? (A-56)
where
4 o0
¥, = Sg Y_m.&&"cn_&e"— e O QPL-\ MM (5T
-~ ob
and
-0
Yz = “[w th ca.&FL + cn QA aam fo.\ daldp. (B9
—od
We then have
+ ot ot 4 od
Y, = Xa\@ Xm.&?kg cnGh i — maf,"x‘a@a&"‘?\&] .
-0 -t = (A-59)

Now consider the integrals

+ ot +ed
I = Smacﬂ' Ak = 2 X ca QA" Ad
2. .
and
400 + 00
I, - ga;“aua“ A = 2 Sp;..&-?' Mot
—gh ©



67
Then M ={Q ¥, «‘d=4.—;,.‘L—- o,

[
Introduce a new variable 'q‘z: QL .

and we have

+ oo
I = -E—[‘&"\z'\'ﬂ.
& o
+ ob
12 = _z'—x Mp{\?‘éﬂl
NS,
But, we have5
o0 o0
Kco:.'t\".\%\ = X@.«Lm = 1|x
2 2
0 0
Thus
+ oo + 00
I = §ca.Qo<?'3\d = I, = gmag‘Ad = |2, (A-60)
2R
- el -l

Putting Eq. (A-60) into Eq. (A-59) we have

B e
= E’E\:{ f‘c;af“ag - i: Qfszaf;}.
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Eg. (A-60) then gives

N " T SR I G -61
W NZQ »\lz&} ° b

Going back to Eg. (A-58), we have in a similar manner

+ 0 + 0d 4+ 08
% = Xadm&f"ja«kw‘c\qt + &mQFLme"M]
~od Ted —ot

Invoking Eq. (A-60) gives

T, = SAMQ.QF'\E{J&- mag‘-ﬁ‘g]

+ o0 + o0

= --2% {jm&ﬁ"&fz + Xmaf‘ae}

_ﬁ _ﬂ.

- | i.".‘_‘_ + | - w (4-62)
T\ 28 2 2q ®

Putting Egs. (4-61) and (A-62) into Eg. (A-56) gives

7 = -3’.‘1?‘_. (A-63)
-~ Q
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The result in Eg. (A-63) assumes that > ¢ since otherwise
the change of variable 'Yc' = Q%L would not be wvalid. From
Eg. (A-52), in turn, this requires that 4270 .

1f, on the other hand,&2< 0, then §<0 . ZILet us then

. /
define a positive real number @ such that

6\'=-Q- . (a-64)
We would then have
4 2 . .a
TYCETY)
- 3] et T g,
-0

which following the same steps as before, would lead to

the result

?

= 3%
L Ay

But in view of Eq. (A-64), this becomes

1 -— - . 1 [ ]
2 A
which is our previous result. In other words, Eq. (A-63)

is valid whether §)6 or £ 0 . We thus have as our general

result

' . mw . -
1 = -—3‘15—: "3 TAZ = .-.3' %"'
& —{J';‘,_') Fa¥

Now “‘5’= e is a constant phase factor of no interest,

so we will drop it and write

-

9 = M

S ————— »

o

(A-65)
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