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I. 	INTRODUCTION
 

This report presents the results of an analytical study
 

of the MSFC Holographic Correlation Techniques Facility
 

carried out under Contract No. NAS8-32362 by personnel of
 

Montevallo Research Associates, Montevallo, Alabama during
 

the period 12 January, 1977 to 12 June, 1977. Participating 

in the study were Dr. J. William Foreman, Jr. (Principal 

Investigator) and Mr. Joseph M. Cardone. 

The objects of the study were originally stated as
 

follows:
 

(1) 	To examine the existing MSFC experimental Holo­

graphic Correlation Techniques Facility and to
 

become familiar with existing theory pertaining
 

to its operation.
 

C21 	 To determine the theoretical effect, if any, on
 

the correlation signal caused by insertion of a
 

variable aperture into the object beam.
 

C31 To examine theoretically the existence of a
 

secondary correlation peak.
 

(4) 	To determine theoretically the effect, if any,
 

on the correlation signal caused by varying the
 

surface roughness of the test object.
 

C5) 	 To explain theoretically why the object can be
 



2
 

translated in the object plane over distances large
 

compared to a wavelength of light with negligible
 

loss of correlation signal.
 

It was anticipated from the beginning that it would
 

probably not be possible to complete all five tasks during
 

the present contract, and this turned out to be correct.
 

A thorough theoretical understanding of the system, like
 

a comprehensive experimental investigation of the system,
 

will have to be developed as part of an ongoing study.
 

Task (3) above was eliminated from the list when Dr.
 

Robert B. Owen, our technical contact during the study,
 

advised us that the secondary correlation peaks which had
 

been observed earlier were apparently spurious. Tasks (1)
 

and (5) have been completed, and a variation of Task (5)
 

involving translation of the object along the optical axis
 

of the system was begun. Time did not allow us to undertake
 

Tasks (2) or (4) during the present study.
 

It is suggested that the reader examine the Appendix
 

before attempting to read the main body of this report,
 

since many results which are used in developing the theory
 

of the holographic correlation system are derived or summarized
 

in the Appendix.
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II. 	 BASIC THEORY OF THE HOLOGRAPHIC
 
CORRELATION SYSTEM
 

The basic theory of the holographic correlation system
 

is developed in a number of commonly available references.
 

However, the usual treatment is somewhat abbreviated, and
 

therefore difficult to follow in detail. We present here a
 

treatment of the basic theory which is worked out in sufficient
 

detail so that it can be readily followed. Our treatment
 

follows the general approach used by GoodmanI in his dis­

cussion of the Vander Lugt filter2 .
 

Fig. 1 shows a schematic arrangement of a holographic
 

correlation system. The operation of the system proceeds
 

as follows:
 

(1) 	An object mask with a certain desired transmission
 

function is placed in the object plane, one focal
 

length f in front of the transform lens. A
 

photographic plate is placed in the hologram plane,
 

which is one focal length f behind the transform
 

lens, The photographic plate is exposed simul­

taneously to the reference beam and the object
 

beam. The exposure and development of the plate
 

are controlled so that the transmission function
 

of the developed plate is proportional to the
 

total irradiance striking the plate during exposure.
 



DENIM U 
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Figure 1. Schematic diagram of a holographic correlation system.
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(2) 	The developed plate, or hologram, is then replaced
 

in the hologram plane, the reference beam is
 

blocked off, and the hologram is illuminated with
 

a new object mask placed in the object plane.
 

The light throughput from the hologram passes
 

through a correlation lens of focal length f
 

'(identical to the focal length of the transform
 

lens), and is examined in the correlation plane,
 

which coincides with the back focal plane of the
 

correlation lens. In general, four patches of
 

light appear in the correlation plane, two of
 

which overlap in the vicinity of the optical axis.
 

One of the non-overlapping patches represents the
 

cross-correlation of the original light amplitude
 

distribution in the object plane (used to expose
 

the plate) with the final light amplitude dis­

tribution in the object plane (used to illumi­

nate the hologram). This is the term of interest
 

here. Of course, if the hologram is illuminated
 

with the same light amplitude distribution used
 

to expose the photographic plate, the light patch
 

represents the auto-correlation of this distri­

bution with itself.
 

Incidentally, the light distributions in the object
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plane may not always be set up by passing a collimated
 

light beam through a planar mask, They can also be set up
 

by illuminating a planar reflector of some sort placed in
 

the object plane in such a way that the reflected light is
 

captured and processed by the transform lens. This is the
 

way the MSFC holographic correlation setup operates at the
 

present time.
 

In order to set up the basic theory of the system,
 

use will be made of the coordinate systems shown in
 

Fig. 2. Coordinates in the object plane are denoted by
 

in the hologram plane by ('z'z), and in the
 

correlation plane by (%9t). Note that an inverted coor­

dinate system ( I) has also been defined in the corre­

lation plane. The reason for introducing this inverted coor­

dinate system will be made clear later.
 

Making the Hologram
 

The first step in the theory is to describe the pro­

perties of the hologram. Suppose the original distribution
 

of light amplitude in the object plane is defined by the
 

complex function
 

e 



0/ 
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Figure 2. Coordinate systems for analysis of the holographic correlation system.
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where and Tp['X, are the amplitude and phase, 

respectively, of the light vibration at a point in the object
 

plane with coordinates ($MV). The transform lens operates
 

on the light leaving the object plane and, according to
 

Eq. (A-17), produces a light amplitude distribution
 

in the hologram plane, where o is the "lens operator"
 

defined in Eq. (A-16).
 

A plane-wave reference beam is also incident on the 

hologram plane. As indicated in Fig. 2, we will choose the 

direction of propagation of the reference beam to lie in the 

C1.:-plane and to make an angle B with the 4-axis. A unit 

vector)pin the direction of propagation of the reference 

beam would have a negative %A-component,as can be seen from 

FPg, 2, According to Eq, (A-48), the light amplitude dis­

tribution in the hologram plane produced by the reference 

bdam will be - T% A 

R.e 

where ft, is the tconstantlamplitude of the reference beam. 

Since we are dealing here with coherent laser light,
 

the light amplitudes are additive, so that the resultant
 

light amplitude distribution in the hologram plane will be
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The irradiance distribution in the hologram plane, kp-) 

is thus 

2­

(1,t . \6 J E.%-4& - 0 +- k %'A'Z I-. 

- A 4- N 

+ 

To make the hologram, a photographic plate with suitable
 

sensitivity and spatial resolution is placed in the hologram
 

plane, and its exposure and development are controlled
 

in such a way that the transmission t(,21 of the developed
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plate is proportional to the irradiance 3(Xt, I%')during 

'exposure. We thus obtain a hologram with a transmission
 

function 

£ I-btA~L)~(2) 

where C is a complex constant.
 

Illuminating the Hologram
 

After the hologram has been made, it is replaced in 

the hologram plane, the reference beam is blocked off, and 

a new light amplitude distribution M is established 

in the object plane. The transform lens operates on this 

light distribution, producing a light amplitude distribution 

in the hologram plane. When the light wave producing this
 

distribution passes through the hologram, the resulting
 

light amplitude distribution in the hologram plane will be
 

Using Eqs. (1) and (2) we then have
 

C f e 
- - ~ I ~ k1fl-=rJ&. v'&LIZ/ 



N,
 

(A?, ) . 7±5 (3
 

Finally, the correlation lens operates on this light amplitude
 

distribution and produces a new light amplitude distribution
 

in the correlation plane given by
 

(4) 

Putting Eq. (3) into Eq. (4) gives
 

~L
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(5)
 

For convenience, let us label the four terms in Eq. (5) as
 

follows:
 

2.2. 


(6)
 

t%.; 3i %t,4t 
(7) 

(9)
 

Eq. C51 then becomes
 

\P W1 (Yj&A,) 4- ttfs)4W 3 (,A.)­

(10)
 

We will now investigate the individual terms in Eq.(10) in
 

detail.
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I 

,First Term, W 

From Eq. (6), this term is
 

'ft 

(6)

= .. & L.xS;%)uf1 

But
 

Eq. (6) therefore becomes
 

But from Eq. (A-37) we have
 

Eq. (11) thus becomes
 

1. $1%N3, 4 ). (13) 

From here on, it will be convenient to work in terms of the
 

Si
inverted coordinate system (~3,%) in the correlation plane
 

I 3 -and
 in order to avoid negative arguments. Since 


13' we can write Eq. (13) as
 

W 1 13 (14) 

The light amplitude distribution in the correlation plane 

represented by this term is centered at the origin and is 

proportional to an inverted version of the light amplitude 

distribution -(V4,1") used to illuminate the hologram. 
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This term is of no interest in the present context.
 

Second Term, L40,3 

From Eq. (7) we have 

W2 - 7 h'M ,at x74tt1 (7) 

Using the convolution theorem stated in Eq. (A-32) we can write
 

(A '(15) 

But from Eq. (A-37) we have
 

= (;)zU44's)(16) 
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and from Eq. (A-43) we also have
 

Putting the results of Eqs. (12), (16), and (17) into Eq. (15)
 

yields
 

- (",t-5"5t.(,,Iw,'f *:-',-N, c',,,''5 
4D 1,.-0 '$)II'A C t. (43f-13) 3)

(18)
 

We will now evaluate the convolution - ,S) 

using the procedure outlined in Sec. B of the Appendix. 

Change variable names: -


Fold *-3-t): 4 a~)~ ~ ;{ 

Translate 4 by amounts 

%43 and in the 3 and .
 

directions, respectively; 

I 
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Multiply the functions
 

and integrate: +
 

Our final result is thus
 

(-S~ 

(19)
 

Comparing Eq. (19) with Eq. (A-4a) we see that the integral
I / 
in Eq. (19) is just the auto-correlation of ( k,}with 

itself: 

into Eq. (18) we then have (20)
Putting Eq. C201 


= * P 3] .(21) 

Finally, putting Eq. (21) into Eq. (7) gives 

= 3"43W~.~I'39~Jf- .. t 3sJ0(22) 

The light amplitude distribution in the correlation plane
 

represented by this term is centered at the origin and is
 

proportional to the convolution of with the auto­
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correlation function of This term is not of direct
 

interest in the present context.
 

Third Term, Wijflr) 

From Eq. (8) we have
 

~jsrs, n\G~2 ( 2 )7-' (8)At. 

The terms within the square brackets in Eq. (8) represent 

the light amplitude distribution in the (%t%) plane caused 

by the light wave leaving the (IJz,&j)plane on its way to 

the correlation lens. It follows from the discussion in
 

Sec. E of the Appendix that this light wave is travelling
 

in the same general direction as a plane wave which would
 

cause an amplitude distribution of the form eA
 

in the (%z) z) plane. This direction, according to Sec. E
 

of the Appendix, is along a unit vector 0.which lies in
 

the %%-plane, makes an angle 9 with the 4- axis, and has
 

a positive x2 component. This information is summarized
 

in Fig. 3. Since this light wave is travelling at an angle
 

a with the optical axis, we would expect the patch of light
 

ormed in the correlation plane by the correlation lens
 

acting on this light wave to be centered off-axis in the 

correlation plane. This is the case, as the theory will show
 

and as Fig. 3 indicates.
 



-- 

w 0 

9.Er. S~flf 

- I ' a 

13= 0 

Figure 3. Geometry of the light beams forming the various light
 

patches in the correlation plane.
 

Co 



19 

Using the convolution theorem stated in Eq. (A-32)
 

we have
 

%SLqmlKt) j tf 0A 

- hdV~~~t~t S#S.. i-\V(L44 4 e t
 
, en,
 

Putting Eq, (A-46) into Eq. (23) gives
 

;%i ",. 

'%. e 

13)) 4) -* (,' +(2 4) 
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Putting Eq. (24) into Eq. (8) gives
 

(vr) 
If we write the last equation in the form
 

r25) 

then, in light of the discussion in Sec. C of the Appendix
 

and Eq. (A-12) in particular, we can interpret Eq. (25) as
 

the convolution function
 

centered at the locationI of the delta functionI 

which is at % -;A;4,, = o. This term is sometimes of 

interest in optical filtering applications, but it is not 

of direct interest here. 

Fourth Term, V(4 

From Eq. (9) we have
 

oe
 

Proceeding as usual, we have
 



a.. 12 V A 


where use has been made of Eq. (A-47) in the last step. 

Changing the arguments over to # and D we then have 

,( 6) 

Now from Eq. (20), we see that
 

PuTting 44N (27) 

Putting Eq. C27) into Eq. C26) gives 
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(28) 

Putting Eq. (28) into Eq. (9) then gives
 

-. - (29) 

The light amplitude distribution in Eq. (29) may be inter­

preted as the cross-correlation function
 

centered at the location of the delta function
 

which is atIat*A'-O;A 9 cO. This is, of course, the term
 

of interest in holographic correlation systems.
 

The term e in the square brackets in 

Eq. C91 implies that the light wave leaving the (t,) 

plane on its way to the correlation lens, and which will 

eventually produce the light amplitude distribution in 

Eq. (29) in the correlation plane, is moving generally along 

a direction specified by a unit vector p-which lies in 

the '& -plane, makes an angle $ with the %-axis, and has 

a negative x,-component. As shown in Fig. 3, this wave 
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(called the "correlation beam") leaves the hologram plane
 

travelling generally parallel to the original reference beam.
 

The correlation lens processes this wave to produce the
 

"correlation spot" W (%,, %) centered at X/ =; 6 0.b.
 3 


In order to separate the correlation spot 

from the two spots WLj (%, A ) and V j. 43,S centered at 

the origin, it is necessary that the angle G at which the 
reference beam comes in with respect to the a-axis be made 

sufficiently large. In the present MSFC holographic corre­

lation system, the functions b(,L4' and are very 

small patches of light in the object plane, so that the 

spots W%('X,&.f ,(4k3 I and W+%,$ 

are very small in size (less than one millimeter diameter).
 

Consequently, if t4A6 1 cm, there would be plenty of separa­

tion between the correlation spot and the two central spots
 

which are of no interest. Since f is approximately 15 cm
 

in the MSFC setup, the condition on l would be
 

which gives
 

Conversely, the angle S cannot be made too large, or 

else the correlation beam will miss the correlation lens 

and the system cannot operate properly. With reference to 
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Fig. 4 it will be seen that in order for the correlation
 

beam to just strike the outer edge of the correlation lens,
 

we must have
 

4­
or
 

In the MSFC system, R LENS is about 10 cm, so we must require 

that 

In the present MSFC setup, the reference bean angle
 

therefore should lie in the approximate range
 

Finally, it should be mentioned that the photodetector
 

which monitors the correlation spot in the correlation plane
 

responds to the irradiance in the spot, not to the amplitude
 

of the light vibration. The photodetector output current
 

i will therefore be proportional to
 

I I I-
I 


A 
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Figure "4.	Geometry to determine the maximum 
possible value for the reference 
beam angle G 
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where A is the area of the photodetector aperture, under­

stood to be centered at / t.4e, % =-
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III. 	 TRANSLATION OF THE OBJECT 
IN THE OBJECT PLANE 

We now want to investigate the effect of translating 

the object distribution in the object plkane when the 

hologram is illuminated. The plate is exposed using the 

distribution ( y%2) , so that Eqs. (1) and (2) remain valid. 

Suppose now, however; that the hologram is illuminated with
 

the function M(%%-,%1.0) centered at %,6%M instead 

of the function M centered at the origin. When 

the transform lens operates on the distribution M 

the resulting light amplitude distribution in the hologram 

plane will be 

But using the shift theorem for the operator expressed
 

in Eq. (A-26)r we have
 

The light amplitude distribution in the hologram plane thus
 

becomes
 

When the light wave producing this distribution passes
 

through the hologram, the resulting light amplitude
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distribution in the hologram plane will be given by Eq.
 

(3) with S(%(L replaced by
 

e 3X 

The result will thus be
 

.(30)
 

The fourth term of Eq. (30) leads to the correlation spot,
 

so the only term of interest to us in Eq. (30) is
 

* (31)
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When the correlation lens'operates on this term, the resulting
 

light amplitude distribution in the correlation plane will be
 

A
 
= 


(.
 

Use of the convolution theorem [Eq. (A-32] as usual then gives 

From Eq. (27) we have
 

In order to handle the last factor in Eq. (33), we can make
 

use of an obvious generalization of Eq. (A-4 7),
 

23 ((-4)~ .- C, -AS-) (35) 

Comparing Eqs. (35) and (33) we see that
 

C A"A4eo' 

so that we have
 

443
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= t I*~3-~r~ %-b)t$& (3 6) 

Putting Eqs. (34) and (36) into Eq. (33) gives
 

(37)
 
Eq. (37) states that the light amplitude distribution
 

4q-$%Aa) consists of the cross-correlation function 

\, 1 

centered at the coordinates = . Comparing 

this result with our previous result in Eq. (29), we see
 

that the only change has been a translation of the function
 

W 4 by amounts a and b in the x and y/ directions, respectively.
 

Thus, translation of the ob3ect distribution in the object
 

plane merely translates the cross-correlation function in
 

the correlation plane, Movement of the photodetector to
 

the new location of the cross-correlation function should
 

then produce the same output current.
 

The effect of translating the object distribution in
 

the object plane is summarized in Fig. 5 for convenient
 

reference.
 



31OkECT 

//
 

(a) Situation when the hologram is
 
illuminated with the object
 
distribution [1 

5$396f SIVA/b/
 

ebf- LT 10 f4 

(b) Situation when the hologram is
 
illuminated with the translated

object distributiont'.-

Figure 5. Effect of translating the object distribution
 
t%,11 x in object plane.(,) the 
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IV. 	TRANSLATION OF THE OBJECT
 
ALONG THE OPTICAL AXIS
 

As the final task in the present study, we started
 

to look at the effect of translating the object distribution
 

along the optical axis of the system (i.e., along the
 

Z-axis in Fig. 2). We were not able to complete this task,
 

but we report here the partial results we have obtained.
 

Here again we suppose that the photographic plate is 

exposed using the distribution(% & ), so that Eqs. (1) 

and (2) are valid. Suppose, however, that when the hologram 

is illuminated with the distribution , the object 

plane is at a distance f+&i from the hologram plane, instead 

of the usual distance f. Then, according to Eqs. (A-13) and 

(A-16), the light amplitude distribution in the hologram
 

plane will be
 

evz;t 	 a(7,tII 

where the constant phase shift 	 has been dropped
 

in Eq. (A-13) as usual. When the hologram is illuminated
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with this light amplitude distribution, the resulting light
 

amplitude distribution in the hologram plane will be given
 

by Eq. (3) with (%t4) replaced by 

The result is
 

+~~2.O~ a.a ;ax)5V 


The fourth term of this equation is the correlation term,
 

so let us concentrate on this term:
 

z t' ~rte(38) 
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When the correlation lens operates on this term, the resulting
 

light amplitude distribution in the correlation plane will be
 

Application of Eqs. (A-32) , (A-37), (A-43), and (A-47) then gives 

We have to pause now and calculate the third factor in Eq. (39),
 

By definition of the operator J given in Eq. (A-16),
 

we have
 

0(40)
 

Now since 2= we have
 

e z4t = e z4 12. 



Thus Eq. (40) becomes
 

t et L. r r 
e _ 

4-co 

Completing the square in the argument of the exponential
 

term in Eq. (41) gives
 

WAAe
 

ne 

Eq, (41) can thus be written as
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-~ (42) 

2lt Iz J-~ 

The integral in Eq. (42) is just a constant, the value of
 

which is obtained in Sec. F of the Appendix, Eq. (A-65).
 

We thus have
 

e*'--,... (43) 

Putting Eq. (43) into Eq. (391 gives
 

(44))
 

= * *
 
ir 
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Use of Eq. (27) then gives
 

(X* (45) 

The light amplitude distribution in Eq. (45) may be interpreted as the
 

function
 

centered at x' = f sin ,y = 0. This function represents the 

usual cross-correlation function, [ v4,&4) s l'o',)71 
convolved with the spherical phase factor 

Unfortunately, this is as far as we have been able to develop the
 

theory within the time frame of the present contract.
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V. CONCLUSIONS AND RECOMMENDATIONS
 

We regret that the study of the effect of translating
 

the object along the optical axis reported in Sec. IV could
 

not be completed during the present contract. In practical
 

holographic correlation systems used to examine three-dimen­

sional objects, it is certainly possible for the objects to
 

change sizer or to undergo small translations, along the
 

optical axis. We would recommend that this study be brought
 

to completion eventually.
 

An observation which strikes us as being very impor­

tant is the fact that while the theory of the holographic
 

correlation system is always developed on the assumption that
 

the object plane, the hologram plane, and the correlation
 

plane are all parallel to each other, in practical setups
 

this is usually not the case. The effect of having these
 

three planes slanted with respect to each other has not been
 

analyzed in the literature, as far as we have been able to
 

determine. We feel that this is an important study which
 

ought to be given highest priority.
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APPENDIX
 

The purpose of this appendix is to summarize some impor­

tant results which will be needed in developing the theory
 

of the holographic correlation system.
 

A. The Fourier Transform
 

Let) be a complex-valued function of two indepen­

dent real variables, x and y. (NOTE: In this report, complex­

valued functions will be indicated by an underline.) The
 

two-dimensional Fourier transform of $0(LA,) is defined as
 

C4
 

whr and $ are sail­
where_ spatial frequencies with dimensions of 

and A_ respectively, andi=171. The inverse Fourier 

transform of T is defined as 

c0
 

-00 
B. The Convolution and Correlation Integrals
 

The convolution integral of two functions ;Q,)and
 

is denoted by * and is defined as 

follows:
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It will be observed that the result of the convolution operation
 

is a function of the original variables x and y. This function
 

is called the convolution function of t and 5. The variables
 

g andYh in Eq. (A-3) are just dummy variables of integra­

tion, 

The convolution operation is'both commutative and associative. 

That is, 

and
 

W'"(V& '.%, k).OT~'. N-)r 

Since the convolution operation is both commutative and
 

associative, it follows that the individual operations in
 

a string of convolutions can be performed in any order whatever.
 

In order to set up the convolution integral of two
 

functions j(K)and the following steps are taken: 

(1) Change the names of the variables from (x,y) to
 

(,)13 •The functions then become (%,11 and q ) 

(2) Fold about the origin to get Ak-)-0. 

(3) Translate J by amounts x and y in the 

and Y directions, respectively, to get 
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(NOTE: Since convolution is commutative, steps
 

(2) and (3) could equally well have been applied 

to the function (%,L. The final results would 

be identical either way.) 

(4) Multiply the folded and translated function
 

by the other function &,) and 

integrate over all space to get the final result,
 

cooc 

t-tO 

The cross-correlation integral of two functions
 

and,W is denoted by (, .) %) , and is defined as 

follows;
 

Notice that the resulting function, called the cross-corre­

lation function oft andf , is a function of the original
 

variables x and y.
 

The cross-correlation operation is not commutative.
 

That is,
 

However, the translation operation which has been applied to
 

the function fin Eq. (A-4) can be applied instead to the
 

function in the opposite sense without changing the value
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of the integral. That is,
 

+ 00 

S00 

(NOTE: If the functions _f(,j) and 4N,)are identical, 

then the operation 

--	 A A-4a 

is called the auto-correlation function of E with itself.) 

The cross-correlation integral of two functions *ix 

and VIAA) can be set up by use of the following steps: 

(1) 	Change the names of the variables from (x,y) to (8,701 

obtaining the functions and _(,)ni . 

(2) Take the complex conjugate of the first function
 

(' named in the operation, obtaining 

(3) 	 Translate the function i( )I()by amounts x and y 

in the 5 andq1 directions, respectively, to get 

(4) Multiply the conjugated and translated function
 

-	 -- ) by the second function , and 

integrate over all space to obtain the final result,
 

C 	 0@ (X, d-co 
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Notice that convolution and cross-correlation differ
 

in two respects, folding (done in convolution but not in
 

cross-correlation) and complex conjugation (done in cross­

correlation but not in convolution).
 

C. The Dirac Delta Function
 

The well known Dirac delta function has several impor­

tant properties which we wish to summarize here for convenient
 

reference. For purposes of this report we are interested in
 

the two-dimensional version of the delta function. In the
 

equations which follow, a and b represent arbitrary real
 

constants.
 

Basic Definition
 

{ 
 00 if x=y=O
 

o otherwise
 

&Q-'X76-J)(A-6) 

Sifting Property
 

where.Z(xY) is an arbitrary function of x and y.
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Scaling 	Property
 

(ox 	 (\,a.A-8) 

NOTE: 	 It follows from the scaling property expressed
 

in Eq. (A-8) that
 

so that the delta function is a symmetrical
 

function of its arguments, and Eqs. (A-6) and
 

(A-7) can equally well be written
 

- %)f)~ X-d6_). = j. (A-9) 

06
 

+06
 

Integral Representation
 

l) 
-
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Convolution of a Given Function with a.Delta Function
 

Suppose a function fCX,&)is convolved with a delta
 
function located at 'X=sA 
 . Following the four
 

steps listed earlier for setting up a convolution integral,
 

we have:
 

(1) 	Functions become and 

(2) 
Either function can be folded and translated;
 

we choose to fold and translate Folding
 

produces C- ­

(3) 	Translation produces f.Qx-;, t-'. 

(4) 	Multiplication of the functions and integration
 

over all space gives
 

Using the sifting property of the delta function expressed
 

in Eq. (A-10),,'we now have
 

S(= ( 
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The result, according to Eq. (A-12). is a translation of the
 

function(, by an amount a in the x-direction and an
 

amount b in the y-direction. Stated another way, we can say
 

that the function has been translated to the location of the
 

delta function, x=a and y=b.
 

It is difficult to indicate graphically the effect of
 

this operation in two dimensions, but a one-dimensional picture
 

is feasible. The diagram shown below indicates graphically
 

the result of convolving a real function with the delta
 

function g(-)located at x=a.
 

D. The Transformation Properties of a Lens
 

Suppose a light wave advancing along the -- axis gives
 

rise to a light amplitude distribution in an object
 

plane at a distance 9 in front of a lens of focal length f,
 
as shown below. When the light wave is acted upon by the lens,
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LIGWAT WNVE 

PLANE 

the resulting light amplitude distribution ct~xz)in 

back focal plane of the lens is 

the 

where CW/$. 

(A-13) 
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In the special case where the object plane coincides
 

with the front focal plane of the lens, so thatfc9, the
 

-factor (l-- ) in the exponential in front of the integral 

in Eq. (A-13) vanishes, so that the exponential becomes equal 

to unity, and Eq. (A-13) becomes 

x -4 (A-14) 

Now the factor e in front of the integral in 

Eq..Eq. (A-14) represents a constant phase shift of-M, which
 

is of no practical importance. We can thus drop this factor
 

and write
 

=N,2 e0 .j(A-15)4i~ 

The integral in Eq. (A-15) can, of course, be written
 

in the form of a Fourier transform by defining spatial
 

frequencies - = and = A41X.However, it is our 

opinion that when this is done and the theory of the holo­

graphic correlation system is developed using Fourier trans­

form notation, considerable confusion can result about the
 

arguments of the functions involvedand constant factors of
 

tend to be dropped indiscriminantly.
 V 
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The theory of the holographic correlation system can also
 

be carried through using the integral operation in Eq. (A-15)
 

directly. This is the approach used by Smith3 However, this
.
 

procedure becomes very cumbersome, and in the process of using
 

this approach one essentially derives anew many of the commonly
 

known properties of the Fourier transform.
 

Because of these problems, we will use a somewhat
 

different approach here. Let us define an integral operator
 

based on Eq. (A-151, as follows;
 

The symbol "I" stands for "lens operator," and the subscript
 
"t12" indicates that this operator transforms a light amplitude
 

distribution (%,j,) in a plane at distance f ina 

front of the lens into a light amplitude distribution -([7.12 

in a plane (%ta.) at a distance f behind the lens. From 

Eqs, CAI51 and (A-161, we can write the distribution tL,(%2 
in the back focal plane of the lens as 

rj pftj]= -Lj~S~,A~.l.(A-173 

We will now proceed to establish those properties of the
 

operator XLwhich will be needed in developing the theory
 

of thd optical correlation system. These properties, of
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course, are analogous to the corresponding properties of the
 

standard Fourier transform.
 

-I 
The Inverse Operator, efl.
 

-1
 
To establish the form of the inverse operator 4? r
 

we will first convert Eq. (A-16) over into a standard Fourier
 

transform. If, as indicated earlier, we define spatial
 

frequencies
 

(A-18) 

(A-19)
 

then Eq. (A-16) can be written in the form of a standard
 

Fourier transform,
 

- (A-20)
 

From Eq. (A-2), the inverse operator would be
 

(A-21) 
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Now from Eqs. (A-18) and (A-19) we have
 

,L.0AA.x = , 

and we also observe from Eq. (A-20) that and
 

are just different names for the same function. It then
 

follows that Eq. (A-21) can be rewritten in the form
 

+00 

-c-1
 

Eq. (A-22) establishes the form of the inverse operator
 

Shift Theorem
 

Suppose that
 

-,0 (A-23)
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Then if t,,_ operates on the translated function - 10) 

we have 

-- (A-24) 
If we introduce new variables
 

0(= %1-4 

then we have
 

and Eq. (A-24) becomes
 

-- (A-25) 

Comparing Eqs. (A-25) and (A-23), we see that 
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since the name of the dummy variable of integration is
 

irrelevant. Eq. (A-25) therefore becomes
 

Convolution Theorem
 

Suppose that =.Vz.t and LA%,a] 
= s (%2.,Z . Then consider what happens when CY1_ operates 

on the product function g(%,Ij1 _ . By definition 

of the 42_ operator in Eq. (A-16), we have 

-0 (A-27)
 
But from Eq. (A-22) we can write
 

(A-28) 

where we have written the dummy variables of integration 

as instead of K 1_to avoid confusion with the variables 

%zTjz. in Eq. (A-27). Putting Eq. (A-28) into Eq. (A-27) 

we have
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Interchanging the order of integration gives
 

Wt [,X (%Z-4 ( 

-- a (A-29) 

Comparing the final integration in Eq. (A-29) with Eq. (A-16)
 

we see that
 

-i 14[1 h-4 + (V&-) 

Putting this result into Eq. (A-29) then yields
 

- (A-30)
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Comparing Eq. (A-30) with Eq. (A-3) we observe that
 

- S..V%~ ~ t&,(A-31) 

where the interchange in order is legal because the con­

volution operation is commutative. But, by our original
 

assumption,
 

and
 

Eq. (A-31) can therefore be written in the form
 

(A-32)
 

Double-Transform Theorem
 

Suppose again that (2; 

W~hat is 
 [ ('? 
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From Eq. (A-16) we have
 

(A-33

and 


Putting Eq. (A-34) into Eq. (A-33) then gives
 

-0 

eJ %, zA 

Interchanging the order of integration gives
 

x (A-35) 

Now upon comparing the inner integral in Eq. (A-35) with
 

Eq. (A-II) we see that
 



+r0 57 

o0
 

= W (MXl 'Xja , (A-36) 

where the second step follows from the scaling property
 

of the delta function expressed in Eq. (A-8). Putting Eq.
 

(A-36) into Eq. (A-35) we obtain
 

Using the sifting property of the delta function in Eq.
 

(A-10), we finally obtain
 

We will also have need for the double transform in
 

a somewhat different case. In particular, if
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.To
we need to evaluate begin with, from
 

Eq. (A-16) we have
 

= Uf .''1 (A-38) 

0 

It follows from Eq. (A-38) that
 

(A-39) 

From Eq. (A-16) we then have
 

XJa.2A2. (A-40) 

Putting Eq. (A-39) into Eq. (A-40) gives
 

interchanging the order of integration gives
 

+.0+C -
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Y X~k,(A-41) 

By use of Eqs. (A-il) and (A-8) we then have
 

=~~ ~ (*3U(s.%,f.-1bs)(A-42)~~ . 

Putting Eq, (A-42) into Eq. (A-41) we obtain
 

Finally, use of Eq. (A-7) gives
 

Going back to the definition of S(7zl4'5) , we can then 

write this result in the form 

04( 1-V (~~ (A-43) 
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Effect on Complex Exponentials 

Consider the operation 23 t where 

c is a real constant. From Eq. (A-16) we have 

. KCt ZyTCxt. ­

-6
 

(A-441
 

Comparing Eq. (A-44) with Eq. (A-Il) we see that
 

+ t rMtL= 
7
Vd ­+t1~ ssc)4 & cO-.3) , -I 

= I A-45)C-3A 

where the last step follows from Eq. (A-8). Putting Eq.
 

(A-45) into Eq. (A-44) gives
 

= ('e4=s(-ic;cC..(AA,') (A-46) 



tjl~t 61 

To obtain the result for 43 operating on 

it is only necessary to change the sign of c on both sides 

of Eq. (A-46). We then have 

44] 0 =(-'K-;c-'as). (A-47) 

E. Some Properties of Plane Waves
 

Consider a plane wave propagating in a direction
 
A A 

defined by a unit vector t . We will take a to lie in the 
A 

%- plane, as shown below, and we will suppose that Ax makes 

an angle B with thee-axis and that the x-component of A 

is negative. We now want to determine 

the light amplitude distribution 1%, in the xy-plane
 

due to the incident plane wave moving in the direction L..
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The equation of a general plane wave is
 

where ft is a constant amplitude and
 

where ) is the wavelength of the light (assumed mono­

chromatic). From the figure above it will be seen that
 

tL
 

so that for any point (x,y) in the xy-plane we have
 

_____0V.(L.R 2,T
A 

The light amplitude distribution in the xy-plane due to
 

the plane wave in question is thus
 

=, &0Sb I'0 (A-48) 

Conversely, if a plane wave sets up a light amplitude 

distribution tn,&W) in the xy-plane given by Eq. (A-48),
A 

it follows that the unit vector A which describes the
 

direction of propagation of the plane wave makes an angle B
 

with thet-axis, lies in the 'A-plane, and has a negative
 

x-component.
 



63 

Following through the same reasoning for the case
 

A
 
where A.lies in the U-plane, makes an angle 9 with the 

e-axis, but has a positive x-component, one finds the light 

amplitude distribution set up in the xy-plane to be 

= rte (A-49) 

Conversely, if a plane wave sets up a light amplitude
 

distribution ) in the xy-plane given by Eq. (A-49),
 
A
 

it follows that the unit vector M describing the direction
 

of propagation of the wave makes an angle 0 with the
 

e- axis, lies in the M%-plane, and has a positive x-compo­

nent.
 

By way of generalization of these ideas, Smith
4
 

shows that if a light wave sets up a light amplitude
 

distribution
 

AC'Yg) =e Ix (A-50) 

in the xy-plane, where is a general complex function,
 

then the light wave causing this amplitude distribution
 

is travelling generally in the same direction as the plane
 

wave which caused the distribution in Eq. (A-48), except
 

that the wavefronts in the case of Eq. (A-50) are not planes,
 

but rather curved surfaces of some type. Similarly, if a
 

light wave sets up a light amplitude distribution
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e 

in the xy-plane, then this wave is travelling generally
 

in the same direction as the plane wave which caused the
 

distribution in Eq. (A-49), but the wavefronts are curved
 

rather than planar.
 

F. Evaluation of the Integral in Eq. (42)
 

Let us denote the integral in Eq. (42) by 't 

&I­tML-0 t 

Let us also introduce a new constant
 

'* l-(A-52) 

and new variables of integration
 

= + % (A-53)
 

.- 13 (A-54) 

Since C and %a are constants as far as the integral in Eq. 

(A-51) is concerned, we have from Eqs. (A-53) and (A-54) that 
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Furthermore, 

are the same 

and *L. Eq. 

the limits of integration in 

as the limits of integration 

(A-51) therefore becomes 

terms of 

in terms 

a( and 

of 'A2 

+ 0 6 

=~~Q\\ \ __ t)p4.~9) 0,X 

OnA 

-dL 1\A,~ L)A 

* 0,(- cL-fl (A-55)
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Now let us write, for convenience,
 

%% %V 56)4. ,(A-

where
 

and
 

4-e6 

rt%= C>%etQn.r (A58.AV^Q&B2 
-WO 

We then have
 

4Ob 

j 9 cV 2XG - ArGLOW] 
-- -6 (A-59) 

Now consider the integrals
 

+aa&
 

and
 

+06 4-aG 

A;,vO.OkL 
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4 
Introduce a new variable Then.
 

and we have 


But, we have
5
 

Thus
 

4.04
 

Putting Eq. (A-60) into Eq. (A-59) we have
 

+.8 

+ o 
2-

C& A-;^& 

2A6 
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Eq. (A-60) then gives
 

(A-6i)I, 4Fz7{4NI7X0-
Going back to Eq. (A-58), we have in a similar manner
 

+06 +06 +06 

Invoking Eq. (A-60) gives
 

+06 

~06 

- It (A-62) 

Putting Eqs. (A-61) and (A-62) into Eq. (A-56) gives 

S - .(A-63) 
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The result in Eq. (A-63) assumes that >* since otherwise 

the change of variable T.-( would not be valid. From 

Eq. (A-52), in turn, this requires that A>0) . 

If, on the other hand,&Z<0 , then Let us then.<0 


define a positive real number / such that
 

=-* .(A-64) 

We would then have
 

which following the same steps as before, would lead to
 

the result
 

But in view of Eq. (A-64) , this becomes 

which is our previous result. In other words, Eq. (A-63) 

is valid whether (>t or 0$ 0 . We thus have as our general 

result 

Now .jc t is a constant phase factor of no interest, 

so we will drop it and write 

(A-65)
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