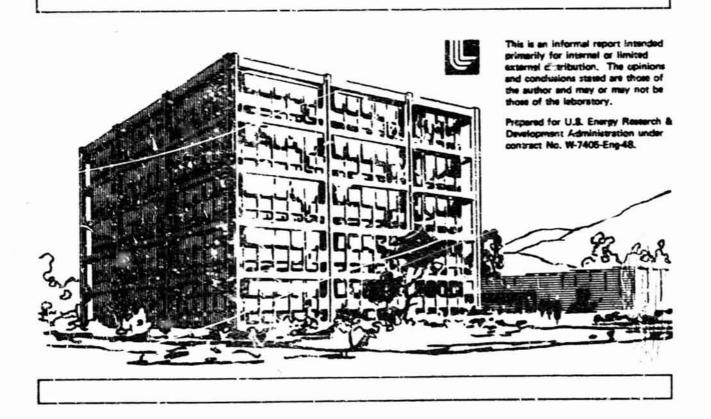
provided by NASA Technical Reports Serve

UCID-17399

Lawrence Livermore Laboratory


ADVANCED TECHNOLOGY FOP MUNIMUM WEIGHT PRESSURE VESSEL SYSTEM

H. A. Hamstad
E. S. Jessop
B. H. Toland

107ITIS

February, 1377

MASTER

CISTRIBUTION OF THIS DOCUMENT IS UNI IMITED

65

1.1

The report we prepared as an answer of work space-on by the United State Conversion Parties the United State Conversion Parties the United Condepared Administration, or any of these coupleyant, nor any of the content rate, administration, or these coupleyant, makes any united on a sequentially for the sciences, units, nor holders or sequentially for the sciences on legal balders or sequentially for the science units, and present duckand, or reporters of as an orient acpresent duckand, or reporters that as on world acrelating proparity count ages.

ADVANCED TECHNOLOGY FOR MINIMUM WEIGHT PRESSURE VESSEL SYSTEM⁴

M. A. Hamstad, E. S. Jessop and R. H. Toland

ABSTRACT

Bosses were made of fiber/resin composite materials to evaluate their potential in lightweight pressure vessels. An approximate 25% weight savings over the standard aluminum boss was achieved without boss failures during burst tests. Polymer liners and metal liners are used in fiber composite pressure vessels for containment of gases. The internal support of these liners required during the filament winding process has previously been provided by dissolvable salt mandrels. An internal pressurization technique has been developed which allows overwinding the liner without other means of support and without collapse. An earlier study of polymer liners for fiber composite pressure vessels was unsuccessful in scaling up to full-scale vessels. Study was made of several additional concepts including styrene/Saran, styrene/flexible epoxy and ABS. Use of these materials still did not produce a successful large-scale polymer-lined vessel.

INTRODUCTION

Filament-wound fiber composite pressure vessels offer performance gains and significant weight savings over conventional metal pressure vessels. Much of the technology associated with Kevlar/epory composite vessels with metal liners and polymer liners has been developed under the sponsorship of NASA/Lewis Research Center. As part of the FY '76 Lawrence Livermore Laboratory effort for NASA/LeRC, three advanced technology problems were studied: (a) the replacement of metal bosses by lighter weight composite bosses; (b) the use of internal air pressure to replace salt mandrels as support for polymer and thin metal liners during filament winding; (c) additional polymer liner concepts for their suitability in large-scale vessels. This report discusses the results of these studies.

Wo-k performed under the joint auspices of NASA/Lewis Research Center, Ray Lark, Program Manager (Interagency Contract No. C-13980-C) and the U. S. Energy Research and Development Administration (Contract No. W-7405-Eng-48).

COMPOSITE BOSSES

All fiber composite pressure vessels have used metal bosses. These have been integrally formed with or welded into the liner in metal-lined vessels, and have been discrete interference fitting in polymer-lined vessels (fig. la,b). The bosses represent a sizable percentage of the total vessel system weight, especially the small-scale vessels. For a 10cm-diameter Kevlar/epoxy polymer-lined vessel with a total weight of 162 grams, the weight of two aluminum fittings¹ is 19 grams each. Fittings made of composite materials were developed principally to effect a weight savings, but also to better match thermal expansion characteristics of the boss and the composite vessel.

Materials

۲

Three materials were considered for this application: (a) a special order 3-D quartz/phenolic; (b) a commercial grade 2-D glass cloth/epoxy; and (c) a molded chopped glass/epoxy. Table 1 gives vendor-type information on these materials.

TABLE 1. Materials Information for Composite Bosses

Supplier	3-Dquartz phenolic AVCO Corp. Lowell, MA	<u>2-D glass cloth/epory</u> Formica Corp. Cincinnati, OH	Molded Chopped glass/epoxy Unknown
Designation	None given	Grade PF-91 (Nema Grade G-10)	
Specific Gravity	1.75	1.80	∿1.7
Shear Strength [*] (punching)	69-76 MPa	∿41 MPa	∿14 MPa
Cost	\$80/blank	<\$1/blank	<\$1/blank
Form	Rod	Thick plate	Partially formed

LLL test of composite bosses, shear across flange thickness

Design

. ...

The bosses were machined from the composite blanks to the dimensions noted in Fig. 2. The Z-axis direction of the 3-D blank and the through thickness direction of the 2-D blank were oriented to the vessel polar axis. Three methods of producing threads were considered: (a) direct threading of the composite material; (b) a threaded aluminum insert; and (c) a stainless steel helicoil insert epoxied onto the threaded composite. The choice of thread wear and strength and positive scaling as design criteria resulted in the decision to use the helicoil insert.

The final manufactured weight of the composite fitting was 14 grams as compared to the aluminum weight of 19 grams, a 26% weight reduction. Pigures 3a and b show the 3-D quartz/phenolic boss in a failed polymer-lined Kevlar/epoxy vessel. Four 10-cm-diameter Kevlar 49/epoxy vessels with a 1.5 mm polymer liner were manufactured with the 2-D glass cloth/epoxy bosses. Fifteen similar vessels with air mandrels and 3-D quartz/phenolic bosses were manufactured. The bosses were bonded with urethane adhesive 8089, 0.25 mm bondline thickness, and room temperature cured.

Performance

Vessels with the 3-D quartz/phenolic and 2-D glass cloth/epoxy bosses were tested without any failures in the bosses. A maximum pressure of 35.8 MPa was sustained by the quartz/phenolic system, and 19.3 MPa was the maximum pressure seen by the 2-D glass cloth/epoxy system. Failures were in the hoop windings of the vessels. The molded glass/epoxy bosses were of questionable quality and were eliminated from consideration on the basis of low shear strength (see Table 1).

Conclusions

A significant 26% weight savings over aluminum bosses was achieved with composite bosses. A commercially available, inexpensive material was used successfully in this application as well as a very expensive, \$80/blank specialty material.

No permeation tests were conducted with composite bosses.

AIR MANDRELS

The use of a soluble salt mandrel for internal support of the polymerlined and thin metal-lined vessels can produce problems of corrosion. It is possible to avoid this by using internal air pressure to provide the required

- 3 -

د• .

mandrel support during filament winding. The necessary pressures and a pressurization/fiber tension sequence for polymer-lined vessels were developed in this study.

Procedure

Pressurization of the mandrel was provided by compressed air ducted through the spindle shaft. The 10-cm-diameter cylindrical vessel was sealed at the fittings with 0-ring seals. Two types of polymer liners were used as air randrels: ABS and styrene/epoxy with thickness of 0.75 mm and 0.50 mm, respectively. Two winding patterns were used with the ABS liners: a single pattern and a double pattern. The pressurization sequence of both ABS vessels is given in Table 2. Pressure was maintained through the curing of the matrix. A similar procedure was used with the styrene air mandrels.

Liner <u>Material</u>	Liner Thickness	Winding Pattern	Fiber Tension	Pressurization Schedule (Mfa)	Composite Thickness
ABS	0.75 📾	2н	4.5 N	0.07	1.8 mm
		2L		0.165	
		2L		0.23	
		24		0.30	
		2H		0.30	
ABS	0.75 🚥	28		0.07	3.6 🚥
		2H		0.14	
		2L		0.21	
		2L		0.28	
		2L		0.35	
		2L		0.41	
		28		0.41	
		2H		0.41	
		2H		0.41	
		28		0.41	

TABLE 2. Air Pressurization Sequence for ABS Air Mandrels

Performance

All vessels were successfully wound using the internal pressurization procedure. There were no questions about the resulting liner integrity for the ABS air mandrels. The vessels wound on the styrene/epoxy all leaked during sttempted burst testing. The leakage or fred due to cracks in the liner. One possible explanation was the occurrence of micro-buckling in the liner during fabrication. This explanation could not be proven or disproven.

Conclusions

The air mandrel concept appears to be a viable alternate to an internal soluble mandrel in composite pressure vessel fabrication. Corrosion problems associated with the salt are avoided.

IMPROVED POLYMER LINERS

Previous study of polymer-lined Kevlar/epoxy pressure vessels,^{1,2} demonstrated high performance in static burst and cyclic tarigue tests. The systems which gave the high performance were the subreale 10-cm-dismeter vessels. Attempts to scale up these vessels to 20-cm- and 38-cm-diameters were unsuccessful because of liner leakage. Problems associated with lack of the uniformity of the large polymer mandrels and with insufficient strain capability of some of the materials were the principal causes. Various repair techniques noted in Ref. 2 were attempted. However, the systems which resulted in successful burst results still gave poor cyclic farigue performance. In this study, consideration was given to additional material systems in an effort to improve the performance of large-scale vessels.

New Concepts

Three material "stems and four design concepts were studied: (a) a styrene mandrel with a 0.20 to 0.28 mm coat of Saran; (b) a styrene mandrel with a 0.075 to 0.13 mm coat of flexible epoxy; (c) a one-piece, 0.75 mm thick ABS mandrel/liner; and (d) a joined two-piece, 0.75 mm thick ABS mandrel/liner. All vessels were 10-cm-diameter vessels conforming to the previous study. The styrene/epoxy and two-piece ABS mandrels were also used as the experimental air mandrels of the previous section. Fiber Science was contracted to supply the ABS mandrels. They were not able to fabricate the one-piece mandrel, so this concept has not been evaluated.

Performance

The coated styrene mandrels gave poor performance. Leaks developed in four vessels at pressures less than 10.3 MPa. Liner cracks were evident in the tested vessels. The general quality of these mandrels was considered to be poor. The mandrels seemed to possess insufficient flexibility for the application. Four additional vessels burst during pressurization at pressures below 14 MPa. The failures were in the end or knuckle regions. These failures may have originated near the edge of the boss flange or at non-symmetrical regions of the mandrels.

Seven vessels with two-plece ABS were manufactured. The first two used a fingle pattern and the last five used a double pattern. Both are noted in Table 2 of the preceding section. One of the first two vessels was burst at 15 MPa for a performance factor PV/V = 0.138 MJ/kg. Failure was in the hoop winding. The second vessel leaked. The cause was thought to be poor alignment between the two liner halves. The double pattern was decided upon in order to improve the vessel performance and to evaluate the liner at higher pressures. The best performing vessel burst in the hoop windings at 36.8 MPa for a PV/W of 0.23 MV/kg. The total vessel weight was 148 grams, of which liner and bosses comprised 61 grams (30 grams for the liner). Figure 4 shows a burst ABS lined vessel.

Conclusions

Of these new liner systems considered, only the ABS liner produced a high performance vessel. These liners, however, are heavier than earlier polymer liner systems. No permeation or fatigue cycling tests were performed. No larger vessels were fabricated.

SUMMARY

Composite bosses are able to produce a 7 to 8% weight savings for small pressure vessels without degrading the vessel burst strength. A 3-D quartz/ phenolic boss was successfully demonstrated in a vessel at 36.8 MPa pressure. A 2-D woven glass/epoxy boss also was successfully demonstrated. The 3-D material is very expensive while the 2-D material is a readily available, inexpensive, commercial grade. Stainless steel helicoil inserts were bonded in place to provide the necessary fitting thread strength.

An air mandrel technology was successfully demonstrated with polymer liners. An internal pressurization and fiber winding tension sequence was developed which did not collapse the liner/mandrel. This procedure eliminates the corrosion problems associated with soluble salt mandrels.

One new concept for a polymer liner was a limited success. A two-piece ABS liner with a double pattern overwind resulted in good vessel performance without leakage during pressurization. No fatigue cycling or permeation tests were conducted. Also, the vessel was the 10-cm-dismeter size. The vendor was not able to successfully fabricate a one-piece ARS liner. Liners of pure Parylene C leak. Styrene mandrels were of poor quality and not flexible enough with resulting leakage during pressurization. At the present time there is still no proven polymer liner system with the required low pc.meability and high flexibility. Further, the thickness necessary to obtain liners which do not leak is three times as thick as successful titaniumlined vessels³. Hence, there are no significant weight savings. The lack of consistency of the polymer liners as leak-free systems also indicates that with present technology they are unreliable. Further, they are of limited use since they only prevent permeation of N₂ gas. Recent fatigue results with thin titanium liners indicates that sufficient fatigue life can be obtained.³ Hence, the main driving force for the polymer liner has been removed.

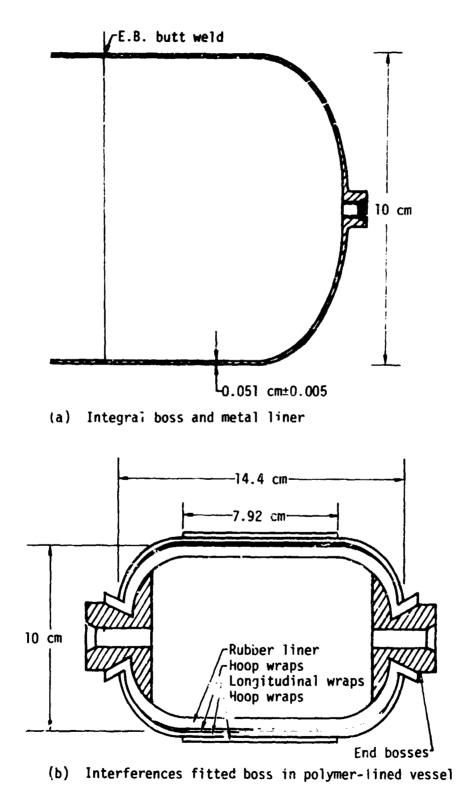
ACKNOWLEDGEMENTS

The work of Robert G. Patterson in the fabrication and testing aspects of this program is acknowledged.

-

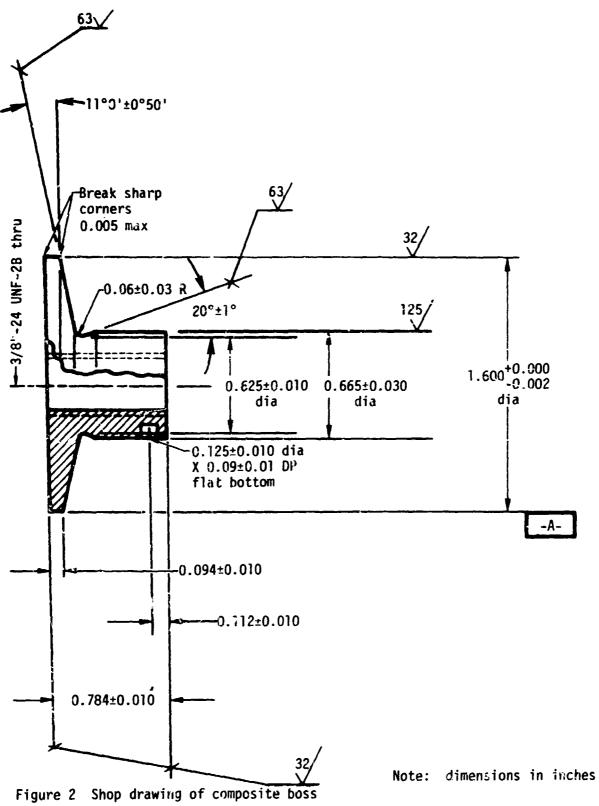
-7 -

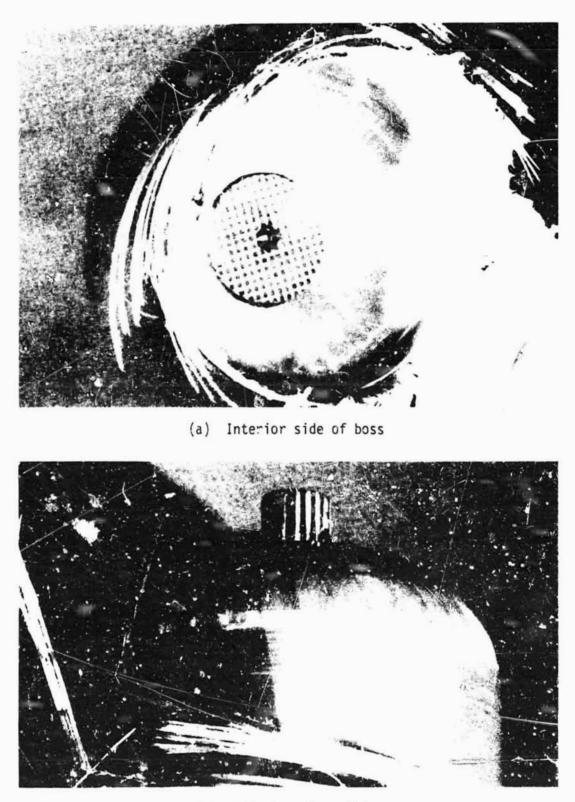
REFERENCES


- M. A. Hamstad, T. T. Chiao, and R. G. Patterson, "Fatigue Life of Organic Fiber/Epoxy Pressure Vessels," 7th National SAMPE Conference, Albuquerque, NM, October 14-16, 1975.
- 2. M. A. Hamstad, T. T. Chiao, and E. S. Jessop, "Polymer-Lined Filament-Wound Pressure Vessels for Nitrogen Containment," AIME Meeting, Pittsburgh, PA, May 1974.
- 3. M. A. Hamstad and T. T. Chiao. "Graphite/Epoxy Pressure Vessels Lined with Ultra-thin Titanium," for presentation at the 23rd National SAMPE Symposium, San Diego. CA, April 26-28, 1977.

ž

5.5


. : 3.


.

(b) Exterior view of boss

Figure 3. Three-dimensional quartz/phenolic boss in an ABS-lined pressure vessel.

Figure 4. ABS-lined pressure vessel; double winding pattern; hoop failure at 36.8 MPa.

NOTICE

. ·

-

4

į

 This supert was popered as an account of work sponsored by the Undeel States Government. Heider the United States nor the United States Banage Branarch & Dovelopment Administration, new may of their supplying, nor may of their contextures, advancements, or their completence, andres may warranty, sequence implied, or anymous any logil lability or responsedility for the occurrer, completences or moletane of any information, approxim, product or process disclassed, or represents that its non would not lability privately-oward rights.

NOTICE

Reference to a company or product mans, even not imply approval or recommonistics of the postact by the University of California or the U.S. Barry, Reserve A. Development Administration to the exclusion of others that may be autuble.

> Printed in the United States of America Available from National Technical Information Service U.S. Department of Computers 5285 Port Royal Road Springfiele, VA 22161 Price. Printed Copy S : M5-rofiche \$3.00

	Demante		Demostic
Page Rende	Prime	Page Runge	Price
00;625	\$ 3.50	326-390	10.00
036-050	4.00	351-375	10.50
051-075	4.50	376-400	10.7*
076-100	5.00	401 -425	11.00
101-125	3.50	425-450	11.75
126-150	6.00	451-475	12.50
151-175	6.75	476500	12.50
: 76-290	7.50	501-525	12.75
201-225	7.75	526-550	13.00
226-250	8.00	551-575	13.50
251-275	9.00	576-600	13.75
276-300	9.25	601-m	•
301-375	9.75		

*Add \$2.50 for each additional 100 page immunet from 001 to 1,000 pages; add 34.50 for each additional 100 page immunet over 1,000 pages.

÷