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S i l i c o n  w a s  produced by a l t e r n a t e  p u l s e  feeding of t h e  r e a c t a n t s  

S i F  gas  and l i q u i d  sodium. The average temperature i n  t h e  r e a c t o r  

could be c o n t r o l l e d  t o  wi th in  f 2o°C i n  t h e  temperature range 400-60O0C, 

by r e g u l a t i n g  t h e  amount o f  r e a c t a n t  i n  each pulse .  Batches of r eac t ion  

product (NaF, N a  SiF6' S i )  as l a r g e  as 250 g ,  containing 25 t o  30 g of 

s i l i c o n ,  were prepared by t h e  alternate p u l s e  feeding technique. 

4 

2 

S i l i c o n  t e t r a f l u o r i d e  gas was analyzed by mass spectrometry t o  

determine t h e  na tu re  and amount of contained v o l a t i l e  impur i t i e s .  The 

major i m p u r i t i e s  were found t o  be s i l i c o n  oxyf luo r ides  (l 4.070)~ s u l f u r  

oxyfluorides  (- 0.15) and s u l f u r  d iox ide  (0.05%). Sodium metal was 

analyzed by emission spectrography, and it  was found t o  con ta in  on ly  

ca l c ium (100 ppm wt) and copper (8  ppm w t )  as impur i t i e s .  

The decomposition of Na SiF to  NaF and S i F  was s t u d i e s  by an 

e f f u s i o n  method t o  determine t h e  equi l ibr ium p res su re  of S i F  a t  temper- 

a t u r e s  ranging from 585 to 650 K (312 to  377OC). 
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INTRODUCTION 

A t  SRI I n t e r n a t i o n a l ,  s i l i con  has been 

of  S i F  gas  with l i q u i d  sodium according 192 
4 

produced by t h e  reduct ion 

t o  t h e  r e a c t i o n  

SiF4(g) + 4 N a ( 1 )  + S i ( c )  + 4 h'aF(c) (1) 

3 
I n  a s i d e  reaction, sodium f l u o s i l i c a t e  ( N a  S iF  ) is  a l s o  produced from 

t h e  r e a c t i o n  of NaF wi th  S i F  according t o  
2 6  

4 

2 NaF(c) + S i F  (g) -+ Ka2SiF6(c) ( 2 )  4 

The reaction products ,  t h e r e f o r e ,  cons is t  of S i ,  Sa? and Xa S i F  The 2 6. 
SiF4 - N a  reaction (Equation 1) is performed i n  a r e a c t i o n  k e t t l e  

providing an atmosphere of  SIF, gas over  t h e  s u r f a c e  of l i q u i d  sodium. 

The reaction k e t t l e  is heated t o  aw-iit 200°C i n  order t o  i n i t i a t e  t h e  

rc_rction shown i n  Equation 1. Once t h e  r e a c t i o n  has s t a r t e d ,  a l a r g e  

amount of hea t  is l i b e r a t e d ,  which speeds t h e  r e a c t i o n  t o  completion. 

However, i n  a s i m p l i f i e d  cons idera t ion ,  as t h e  r e a c t i o n  proceeds,  t h e  

s o l i d  r e a c t i o n  products S i ,  NaF and Na S i F  covzr t h e  s u r f a c e  of t h e  

l i q u i d  sodium, thus decreasifig t h e  a c c e s s i b i l i t y  of S i F  gas. For t h e  

reaction t o  cont inue f u r t h e r ,  SIF gzs has t o  d i f f u s e  through an 

increas ingly  t h i c k  layer  o f  r e a c t i o n  pmduc t s  t o  reach c l e a n  sodium. I t  

i s  postulated t h a t ,  a f t e r  a while ,  t h e  suisface of the l i q u i d  sodium 

becomes so heavi ly  coated with r e a c t i o n  products  t h a t  a d i f f u s i o n  

l i m i t a t i o n  of  t h e  r e a c t i o n  i s  e s t a b l i s h e d ,  which i s  cont ro l led  b y  t h e  

th ickness  and t h e  p o r o s i t y  of t h e  product l a y e r ,  as w e l l  as b y  temper- 

a t u r e  and pressure  of S i F  As a consequence, some unreacted s d i u n :  i s  

4 
by 
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l e f t  buried i n  t h e  reaction products.  The presence of sodium metal i n  

t h e  r e a c t i o n  products is undesirable  because i t  r e a c t s  vigorously wi th  

HC1 s o l u t i o n s  used f o r  leaching o u t  t h e  sodium f l u o r i d e s .  O f  cou r se ,  

t h e  ac id  leachout  i s  i t s e l f  d e s i r a b l e ,  because,  w i th  water. as l eachan t ,  

a l k a l i n e  s o l u t i o n  i s  formed, which causes  t h e  unwanted d i s s o l u t i o n  o f  

s i l i c o n .  To minimize t h e  amount of unreacted sodium i n  t h e  r e a c t i o n  

products,  i t  was decided t o  perform t h e  S i F  -Na r e a c t i o n  (Equation 1) 

by a l t e r n a t e l y  pu l se  feeding t h e  r e a c t a n t s  i n  t h e  sequence: l i q u i d  

sodium pulse followed by S i F  gas pulse.  

4 

4 

The pulse  feeding technique used f o r  t h e  S iF  -Na r e a c t i o n  is  des- 
4 

cribeci i n  t h e  following s e c t i o n  of t h i s  r e p o r t .  T o  pinpoint  p o s s i b l e  

sources  of impurity pickup, w e  analyzed both t h e  S i F  gas and t h e  sodium 

metal used i n  t h e  reaction (1) .  SiF gas  i s  known t o  con ta in  oxygen 
4 

and s c l f u r  dioxide as impur i t i e s ,  but t o  check f o r  poss ib l e  contamination 

of v o l a t i l e  metal h a l i d e s ,  S i F  gas w a s  analyzed by mass spectrometry.  

Sodium metal a l s o  w a s  analyzed by emission spectrography. The resul ts  of 

t h e s e  analyses  are discussed i n  t h i s  r e p o r t .  

4 

4 

Because of t h e  importance of sodium f l u o s i l i c a t e  t o  t h i s  p r o j e c t ,  

both as a r eac t ion  product (Equation 1 ,2 )  and as a p o s s i b l e  intermediate  

material f o r  SiF gene ra t ion ,  a study w a s  undertaken t o  determine t h e  

equi l ibr ium p a r t i a l  p re s su re  of SiF ( g )  above h'a S i F  ( c )  and i ts  de- 

composition products SiF4(g) and NaF(c). 

are widely d i f f e r e n t  f o r  t h e  r eac t ion  which is  the  reverse of Equation 2 ,  

namely 

4 

4 2 6  
Data a v a i l a b l e  i n  the l i t e r a t u r e  

N a  S i F  ( c )  2 SiF4(g) + 2 KaF(c) 
2 6  (3) 

The compound Na S i F  has been detected as a product of t h e  r e a c t i o n  

between Na and S iF  Since s i l i c o n  i s  t h e  des i r ed  product ,  experiments 
2 6  

4' 
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t o  minimize t h e  foimation of N a  S i F  are i n  progress .  I t  is expected 

t h a t  an  i n c r e a s e  i n  r e a c t i o n  temperature w i l l  hasten t h e  decomposition 

of N a  SiF6. 2 
r eac t ion  temperature. However, the lowest poss ib l e  temperature is 

d e s i r a b l e  i n  order t o  dec rease  impurity pickup from con ta ine r  materials. 

2 6  

The a l t e rna te  pu l se  feed method i s  being used t o  c o n t r o l  

A l t e r n a t i v e l y ,  a s i l i c o n  p u r i f i c a t i o n  scheme i s  a l s o  poss ib l e  

i n  which t h e  product s i l icon is anod ica l ly  dissolved i n  a f l u o r i d e  m e l t  

and c a t h o d i c a l l y  deposi ted t o  accomplish e l e c t r o l y t i c  r e f i n i n g ,  u t i l i z i n g  

N a  S i F  and NaF t o  form a s u i t a b l e  molten e l e c t r o l y t e .  I n  t h i s  case, 

condi t ions for t h e  r e a c t o r  ope ra t ion  might be c o n t r o l l e d  so as t o  

encourage t h e  formation of N a  S iF  during t h e  reduct ion of S i F  by N a .  

2 6  

2 6  4 

The decomposition of N a  S i F  takes on added s i g n i f i c a n c e  as a 2 6  
source of S i F  f o r  r e a c t i o n  w i t h  N a ,  because inexpensive sources  of 

s i l i c o n  (H25iF ) may be used t o  form Na2SiF6. 

chemistry Group i n  our  Materials Research Center (D. Hildenbrand, K. Lau) 

performed t h e  e f f u s i o n  vapor p re s su re  measurements presented i n  t h i s  

r epor t ,  which e s t a b l i s h  t h e  temperature-pressure r e l a t i o n s h i p  f o r  S i F  

for the  r e a c t i o n  i n  Equation 3. 

4 
Members of the Thermo- 
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SODIUM PULSE FEEDER 

To in t roduce  pulses  of l i q u i d  sodium i n t o  t h e  r e a c t i o n  k e t t l e ,  we 

constructed 9 sodium pulse  f eede r  (Fig. 1) from a c y l i n d r i c a l  s t a i n l e s s  

steel conta iner ,  54 inches long, 3 inches i n  diameter ,  with 1 inch t h i c k  

walls. The top  of t h e  feeder  is closed by bo l t ing  on a s t a i n l e s s  steel 

l i d  w i t h  an O-ring seal. A thermocouple (TCl ) ,  i n s e r t e d  through t h e  

l i d ,  is used t o  measure t h e  temperature  of l i q u i d  sodium. The sodium 

feeder  can be evacuated through a needle  valve (V ) and it can a l s o  be 

f i l l e d  with an i n e r t  gas  through another  needle  va lve  (V 1. 

gauge (PG) is used t o  measure the back-up pressure  of t h e  i n e r t  gas  i n  

t h e  feeder. The i n s i d e  f l o o r  of t h e  feeder  is con ica l ly  tapered t o  

a s s i s t  t h e  flow of l i q u i d  sodium. A h o l e  i n  t h e  c e n t e r  of t h e  f l o o r  

connects t o  a welded stainless steel  tube  (3/8 i n  O.D.) , t h r o e h  which 

l i q u i d  sodium is drawn out .  T h e  capac i ty  of t h e  sodium feeder  is about 

300 m l  and it can e a s i l y  conta in  250 g of sodium. The outflow of l i q u i d  

sodium can be regula ted  by a s t a i n l e s s  steel  bellows valve V 

1 
The p res su re  

2 

3' 

4 
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I 

FIGURE 1 SODIUM FEEDER 
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PULSE FEEDING OF REACTANTS 

To perform t h e  SiF -Na r e a c t i o n  by pulse  feeding t h e  r e a c t a n t s ,  
4 

w e  connecced t h e  r eac t ion  k e t t l e  (descr ibed i n  Q u a r t e r l y  Progress  

Report 2 and 3) t o  the sodium pu l se  feeder  conta in ing  l i q u i d  sodium 

and a l s o  t o  t h e  S i F  s to rage  through a pre- reservoi r  of S iF  gas ,  as 

shown i n  Fig. 2. The r eac t ion  kettle- (c) was first evacuated v i a  a 

needle  valve,  V To perform the S i F  -Na r eac t ion  (Equation l ) ,  w e  

introduced pulses  of l i q u i d  sodium and SiF  

and V as required.  During t h e  r eac t ion ,  t h e  p re s su re  of S i F  gas i n  
4 4 

t h e  system,measured by t h e  pressure  t ransducer  (PT), and t h e  average 

r eac t ion  temperature,measured by the  thermocouple (TC2), were cont inuously 

recorded. 

4 4 

6' 4 
gas by opening valves  V g  

4 
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P U I S E  FEEDING OF S i F  GAS ONLY (MONOPUISING) 
4 

4 
I n  o u r  f i r s t  a t tempt  t o  use t h e  pulse  feeding technique,  on ly  S i F  

gas  was pulse  fed over  a pool of l i q u i d  sodium. To start t h e  experiment,  

w e  first evacuated the  r e a c t i o n  k e t t l e  (C, Fig. 2) and introduced l i q u i d  

sodium (12.08 p) from the sodium feede r  by opening t h e  bellows valve,  

V3 (Fig. 2).  As shown i n  the  temperature trace of Fig. 3, sodium w a s  

f u r t h e r  heated a t  305OC (a tempera tuE w e l l  above t h e  i n i t i a t i o n  temper- 

a t u r e  of the N a S i F  reac t ion)  before  pu l ses  of SIF  gas  were fed i n t o  
4 4 

t h e  r eac t ion  k e t t l e .  S i F  gas pu l ses  were introduced by opening s top-  

cock V (Fig. 2) connecting t h e  r e a c t i o n  ke t t le  t o  t h e  S iF  gas pre- 

r e se rvo i r .  Pressure  i n  t h e  system was measured by a pressure  t ransducer  

(PT) connected t o  t h e  S i F  gas  pre-reservoir .  Traces of t h e  pressure  

and temperature of a t y p i c a l  monopulse expcriment are shown i n  Fig. 3. 

The trace of S iF  p res su re  recorded a g a i n t  t i m e  :an be divided i n t o  

fou r  t i m e  i n t e r v a l s ,  as shown schematical ly  i n  Fig. 4. 

4 

4 4 

I 

4 

During t h e  t i m e  i n t e r v a l  t the  SiF  pre- reservoi r  w a s  f i l l e d  

with S iF  gas and w a s  kept  i s o l a t e d  from t h e  r eac t ion  k e t t l e  conta in ing  

l i q u i d  sodium. The pressure  t ransducer  showed the  pressure  i n  t h e  

pre- reservoi r  i nc reas ing  t o  P Towards t h e  end of t h e  holding per iod ,  

t2, the  stopcock V 

introduced i n t o  the  r eac t ion  k e t t l e .  Because of t h e  l a r g e r  volume of 

l i n e s  and conta iner  now a v a i l a b l e  t o  SiF 

dropped from P t o  P dur ing  the  b r i e f  t i m e  i n t e r v a l  t Since t h e  

sodium metal was a l ready  a t  305OC, t h e  S iF  -Na r eac t ion  s t a r t e d  ins tan-  

taneously and consumed SiF  gas ,  causing a f u r t h e r  slower drop of P 

from P t o  vacuum. During the  t i m e  i n t e r v a l  t P decreased a s  

1' 4 

4 

1. 
(Fig. 2) was opened and a pulse  of S iF  gas was 

4 4 

gas ,  i t s  pressure  suddenly 
4 

1 2 3 '  

4 

4 SiF4 

2 4 '  SIP4 
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FIGURE 4 MONOPULSING Si F, PRESSURE VERSUS TIME (SCHEMATIC) 
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con t ro l l ed  by t h e  k i n e t i c s  of t h e  r eac t ion .  4 

reac ted  w i t h  N a ,  t h e  hea t  of t h e  r eac t ion  produced a corresponding 

increase i n  t h e  r eac t ion  temperature ,as  observed in t h e  temperature 

trace shown i n  Fig. 3. Following r e a c t i o n ,  t h e  k e t t l e  was again  d i s -  

connected from the  S iF  pre- reservoi r  by c los ing  t h e  stopcock V t h u s  

again commencing t h e  cycle shown i n  Fig. 4. A f t e r  a f e w  pu lses  of S i F  

had been fed ,  t h e  r eac t ion  products  covered t h e  su r face  of t h e  l i q u i d  

sodium. When t h e  in t roduc t ion  of an S i F  pulse  produced no corresponding 

inc rease  i n  r eac t ion  temperature,  i t  w a s  assumed t h a t  a l l  of t h e  a v a i l a b l e  

sodium had reacted.  

A s  each pu l se  of S i F  gas 

4 4 ' 
4 

4 

Subs tan t i a l  amounts of  unreacted sodium ( g r e a t e r  than 20%) were 

found i n  t h e  r e a c t i o n  products of monopulsing experiments. Therefore ,  

w e  adopted a procedur-. f o r  pu l se  feeding both SIF gas and l i q u i d  sodium 

(b ipuls ing) .  The sodium feeder  descr ibed above (Fig. 1) was used i n  

b ipu l s ing  experiments. 

4 

11 



PULSE FEEDING OF LIQUID SODIUM AND SiF4 GAS (b ipu l s ing )  

Liquid sodium and S i F  gas  were both pu l se  fed i n t o  the  r e a c t i o n  4 
ke t t le  t o  avoid c a r r y i n g  over  unreacted sodium i n  t h e  r e a c t i o n  products.  

Typical  p re s su re  and temperature recordings are shown i n  Fig. 5. Every 

p u l s e  of sodium added a f r e s h  layer  of sodium on t o p  of t h e  e x i s t i n g  

r e a c t i o n  products  so t ha t  t h e  following pu l se  of incoming S i F  gas  

d i r e c t l y  contacted l i q u i d  sodium. T h e  average amount o f  l i q u i d  sodium 

i n  each p u l s e  was 3 g and each sodium pu l se  was followed by 8 to  10 pu l ses  

of S i F  gas  t o  produce complete r eac t ion .  The S i F  pu l ses  were fed 

d i r e c t l y  i n t o  the r e a c t i o n  ke t t le ,  w i t h o u t  going through the in t e rmed ia t e  

step o f  f i l l i n g  t h e  pre-reservoir  (as i n  monopulsing experiments).  During 

t h e  course of r e a c t i o n  following a pulse ,  t h e  p re s su re  of S i F  i n  t h e  

r e a c t i o n  ke t t l e  decreased from a maximum of 580 mm Hg t o  vacuum. For 

each pu l se  of S i F  a rapid p re s su re  inc rease  w a s  followed by t h e  ex- 

ponent ia l  decay of P SiF4 
detai l  i n  Fig. 6. 

4 

4 4 

4 

4’ 
due t o  the S i F  -Xa r e a c t i o n ,  as shown i n  enlarged 

4 
An average temperature of 600% was maintained for t h e  

r e a c t i o n  whose h i s t o r y  i s  p a r t l y  shown i n  Fig. 5. 

An extremely u s e f u l  f e a t u r e  of t h e  b ipu l s ing  technique is t h a t  the  

average temperature i n s i d e  t h e  r e a c t o r  can be maintained n e a r l y  cons t an t  

by r egu la t ing  t h e  amounts of sociiuni and S i F  i n  each pulse.  Since t h e  

tci:iperature was held cons t an t  by r eac t ion  c o n t r o l ,  it could not serve 

as an i n d i c a t o r  of t h e  complete consumption of sadium i n  t h e  S i F  -Na 

r eac t ion ,  as was possible i n  t h e  monopulsing mode. I t  was assumed t h a t  

about 8 t o  10 pu l ses  of SiF4 were enough to  completely react w i t h  an 

average sodium pu l se  amount of 3 g. A f t e r  feeding about 10 pu l ses  of 

S i F  gas ,  w e  fed another  pu l se  of l i q u i d  sodium (Fig. 5) and then repeated 

the  S i F  pu l s ing  process.  

4 

4 

4 
Batches of r e a c t i o n  products weighing 250 g ,  

‘1 
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540 mmHg 

I \  SiF4 PRESSURE 
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FIGURE 6 BIPULSING - Si F4 PRESSURE VERSUS TIME (SCHEhlATIC) 

14 



and containing 25 to 30 g of silicon, were produced. 

unreacted sodium in the reaction products was negligibly low for the 

bipulsing mode. A present limitation is the size of the reaction 

kettle; however, it should be possible to produce batches containing 

100 to 150 g of silicon by scaling up to a larger size kettle, 

The amount of 

15 



* 
ANALYSIS OF SILICON TETRAFLUORIDE BY MASS SPECTROMETRY 

As a convenient method of r a p i d l y  surveying t h e  impurity con ten t  

i n  t h e  S iF  used i n  r e a c t i o n  1, mass spectrometry was used. Two d i f f e r e n t  
4 

samples w e r e  analyzed. 

supplied by Linde Div i s ion ,  Union Carbide. Sample No. 2 was obtained 

from t h e  pyrex storage bulb of t he  r e a c t i o n  system used f o r  t h e  Na-SiF 

r eac t ion .  From t h e  mass t o  charge r a t i o ,  i s o t o p i c  d i s t r i b u t i o n ,  gas 

beam s h u t t e r a b i l i t y ,  and i o n i z a t i o n  p o t e n t i a l ,  va r ious  mass peaks were 

assigned t o  n e u t r a l  precursors .  From t h e  peak i n t e n s i t i e s ,  the  r e l a t i v e  

abundance of the  var ious v o l a t i l e  compounds were c a l c u l a t e d .  

Sample N o .  1 was taken d i r e c t l y  from t h e  c y l i n d e r  

4 

Ewer imen t a l  

The samples were analyzed by a N u c l i d e  12-60-€E (12" r ad ius ,  60' 

s e c t o r ,  high temperature source) mass spectrometer.  Wi th  a 4500-volt 

i on  a c c e l e r a t i n g  p o t e n t i a l ,  ions  w i t h  a mass-to-charge r a t i o  of up t o  

1000 can be detected.  Ions were produced by e l e c t r o n  bombardment i n  a 

Nier-Inghram ion  source.  T h e  i o n  s i g n a l  was amplif ied by an e l e c t r o n  

m u l t i p l i e r  and detected w i t h  e i t h e r  a v i b r a t i n g  reed e l ec t rome te r  (VRE), 

o r  by counting i o n  pu l ses  with an Ortec 9315 counter.  K i t h  t h i s  d e t e c t i o n  

system, ion i n t e n s i t i e s  as l o w  as 0.001% of the  major peak are nmmally 

mezsured. 

The sample gas i n  a s ta in less  stecl r e s e r v o i r  a t  20.0 f 0.3 mm Hg 

pres su re  was introduced i n t o  t h e  i o n  source through an o r i f i c e  (0.013 i n .  

diameter) ad jacen t  t o  the  i n l e t  of t h e  ion  source.  A t  the i n l e t  w a s  a 
~~ _ _  - * 

The wnrk reported i n  t h i s  section was performed by P .  Kleinschmidt and 
D . Hildenbrand . 
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movable s l i t  which al lows one to  determine t h a t  po r t ion  of  t h e  s i g n a l  

coming d i r e c t l y  from t h e  o r i f i c e  and t h a t  po r t ion  due t o  background gases .  

The procedure used f o r  analyzing t h e  sample was to  monitor t h e  

SiFQ (major i on  of S i F  ) s i g n a l  and a d j u s t  t h e  f l o w  rate u n t i l  t h e  

ion i n t e n s i t y  was nea r  t h e  maximum l e v e l  ( t h a t  is, a t  molecular flow 

condi t ions  and wi thou t  damaging t h e  de t ec t ion  s y s t e m ) .  The magnetic 

f i e l d  was scanned from a mass t o  charge r a t i o  of 19 to  370. The ion iz ing  

e l e c t r o n  energy was set t o  20 eV t o  reduce t h e  ex tens ive  fragmentat ion 

of  S i F  occurr ing  a t  h igher  energ ies .  This  mass spectrum was then 

compared w i t h  a background mass spectrum, Those masses present  i n  the 

sample but  n o t  i n  t h e  background were then  examined t o  determine i f  t h e  

s i g n a l  was s h u t t e r a b l e ,  A l s o ,  t h e  flow r a t e  could be regula ted  w i t h  

t h e  metering valve.  If t h e  s i g n a l  showed a response t o  t h i s  change i n  

flow rate,  w e  concluded t h a t  the  s igna l  was caused by riolecules i n  t h e  

sample. 

t 
4 

4 

R e s u l t s  

Ions formed from t h e  sample gas  were i d e n t i f i e d  from t h e  observed 

mass numbers, t h e  i s o t o p i c  d i s t r i b u t i o n ,  and t h e  th re sho ld  appearance 

p o t e n t i a l s .  Gaseous impur i t i e s  p o s i t i v e l y  i d e n t i f i e d  i n  the sample were 

SO2, SiOF2, S02F2, CC14, Si 2 2 4  0 $' and Si20F6. 

The p res su re  r a t i o s  of a l l  molecules r e l a t i v e  t o  S i F  were c a l -  
4 

cula ted  from t h e  peak he ights  of t h e  ion  i n  t h e  mass Fpcctrum. The 

i n t e n s i t y  was corrected f o r  t h e  I s o t o p i c  d i s t r i b u t i o n  and f o r  fragmenta- 

t i on  t o  g ive  t h e  to ta l  iLn y i e l d  of a given molecule a t  20 eV. Fur ther  

co r rec t ions  were made t o  t h e  i o n  i n t e n s i t y  to account for t h e  d i f f e r e n c e  

In i o n i z a t i o n  c r o s s  sec t ions  between S iF  and t h e  impure g a s c , .  This  

co r rec t ion  ranged between 0.7 t o  1.9 and was ca l cu la t ed  by adding atomic 

c r o s s  sec t ions .  The cor rec ted  i n t e n s i t i e s  were added and t h e  r e l a t i v e  

4 
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pressures  of t h e  var ious gases were ca l cu la t ed  (see Table  1). No s ig -  

n i f i c a n t  d i f f e rence  was de tec ted  between t h e  two samples s tud ied .  

Discussion and Conclusions 

In  t h i s  a n a l y s i s ,  impur i t i e s  with concent ra t ions  less than 0.02% 

were not  examined. An unassigned ion  was found a t  mass peak 49. T h i s  

could be BF The concent ra t ion  of t h i s  molecule was less than 0.0%. 

Other  unassigned peaks were found a t  masses 40 and 45. 

+ 
2 '  

The p r i n c i p a l  r e s u l t  of t h i s  a n a l y s i s  i s  t h a t  t h e  s i l i c o n  oxy- 

f luo r ides  are major impur i t i e s  incommercial S iF  No evidence w a s  

found of phosphorus, t i tanium, zirconium, vanadium, i r o n  o r  chromium 

impur i t ies  i n  concent ra t ions  g r e a t e r  than 0.02%. The ex tens ive  frag-  

mentation and i s o t o p i c  s p e c t r a  of t h a  major impur i t i e s ,  of course,  

overlapped a s u b s t a n t i a l  por t ion  of t h e  mass spectrum, so t h a t  minor 

impur i t i e s  a t  t hese  mass numbers could not  be de tec ted .  Although 

v o l a t i l e  impur i t i e s  of elements such as T i ,  V ,  Z r ,  Fe, C r ,  A 1  and P i n  

amounts g r e a t e r  than 200 ppm (0.02%) were no t  de tec ted ,  t h i s  a n a l y s i s  

does not preclude t h e i r  presence i n  S iF  gas. Methods f o r  de t ec t ion  

of low l e v e l s  of these  impur i t i e s  and their removal from SiF  gas w i l l  

be inves t iga ted .  

4. 

4 

4 
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E SiOF2 

As 
Recorded 

20 

37 

39 
+ 

S02F2 

CC13 
+ 

+ 
Si202F4 

+ 
Si20F6 

SiF3 
+ 

Corrected 

14 

709 

39 

Table 1 

MASS SPECTROMETRIC ANALYSIS OF COMMERCIAL S i F 4  

15 

500 

Mass 
$umber 

32 

16 81 

64 

82 

102 

11 8 

164 

186 

85 

l6 I 63 

33000 I 37066 

Neutral 
Precursor 

- 
s02 

S iOF2 

s02F2 

cc14 

' 2°2F4 

s i 20F6 

S i F 4  

- 1 

Relative 
Abundance 

7 

0.035 

1.79 

0.098 

0.159 

0.081 
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ANALYSIS OF SODIUM METAL BY EMISSION SPECTROGRAPHY 

Sodium metal used i n  the  S i F  -Na react ion was analyzcd by emission 

The only  i n p u r i t i e s  that  could be detected were calcium 
4 

spectrography. 

(100 ppm w t ) ,  the most commonly found impurity i n  sodium, and copper 

(8 ppm w t )  , However, the  a n a l y s i s  indicated that the  sodium was q u i t e  

pure, and i t d i d  not contain  undesirable impuri t ies  such as  Ti, V ,  Zr, 

F e ,  C r ,  Mn. 
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* 
DISSOCIATION PRESSURE AND THERMODYNAMIC STABILITY 01 Na2SiF6(c) 

The condi t ions  of  temperature and pressure  under which N a  S i F  (c) 

is thermodynamically stable arz of  i n t e r e s t  i n  opt imizing the y ie ld  of 

elemental silicon from the reaction of si l icon t e t r a f l u o r i d e  and sodium, 

and also for t h e  genera t ion  of S iF  

to the r eve r se  of t h e  reaction previously ind ica ted  as Equation 2, that 

is 

2 6  

by thermal decomposition according 4 

(3) N a  S iF  (c) = 2NaF(c) + SiF4(g) 
2 6  

Optimization of  product y i e l d  can genera l ly  be predicted from standard 

thermodynamic ca l cu la t ions .  However, i n  t h e  NaSi -F  system, such 

ca l cu la t ions  are precluded by t h e  l ack  of adequate d a t a  on t h e  standard 

enthalpy of  formation 

perti-at  experimental  s t u d i e s  on N e  S i F  (c), inc iuding  r eac t ion  ca lor -  

imetry 

r a t h e r  d i scordant  and of uncer ta in  accuracy. 

is known from hea t  capac i ty  data .  

0 of N a  SiF6(c). 

2 6  
and d i s s o c i a t i o n  pressure   measurement^^'^ but  t h e  r e s u l t s  are 

There have been s e v e r a l  
@ @fZSS' 2 

5 

The entropy of N a  S i F  (c) 2 6  
From t h i s  information,  an estimate of 

0 
(Na  S i F  ,c) = -695.4 kcal/mol "f298 2 6 

has been derived. Using t h i s  r e s u l t  and o the r  a v a i l a b l e  thermochemical 
9 10 

d a t a  for NaF(c),* S iF  (g& and NaZSiF6(c), 

equi l ibr ium d i s s o c i a t i o n  pressure  f o r  t h e  r eac t ion  given i n  Equation 3 

over  a wide  temperature range. 

one can calculate the  
4 

The measured d i s s o c i a t i o n  pressures  

- 
* 
This  ieacticm is based on work perfonned by D. I , .  iI '.denbrand, K. H. Lau, 
and A. Sanjurjo.  
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scatter widely about t h e  ca lcu la td  pressures ,  w i t h  t h e  d i f f e r e n c e s  

amounting t o  as much a s  an order of magnitude o r  more. 

Because of these s u b s t a n t i a l  d i sc repanc ie s ,  a new de termina t ion  of 

t h e  Na,SiF, d i s s o c i a t i o n  p res su re  aas i n i t i a t e d  a t  SRI by t h e  torsion- 
L O  

e f fus ion  method. 11'12 To d a t e ,  w e  have measured t h e  d i s s o c i a t i o n  
* 

pres su re  of commercially obtained 

c e l l s  having 1.0 and 1.5 mm diameter  o r i f i c e s  i n  t h e  range 585 to  650 K. 

The r e s u l t s  are shown i n  F igure  7 .  

with t h e  t w o  cells are i n  close agreement, but  t h e r e  is a d e f i n i t e  t rend  

such t h a t  higher  abso lu t e  p re s su res  a r e  obtained with t h e  1.0 n8n diameter 

orifice. T h i s  e f f e c t  is q u i t e  caamnon i n  solid decomposition r e a c t i o n s ,  

and is taken t o  i n d i c a t e  t h e  ex i s t ence  of a s u b s t a n t i a l  k i n e t i c  b a r r i e r  

NaZSiF ( s )  w i t b  two alumina effusion 
6 

The s lopes  of t he  log P vs. 1 / T  p l o t s  

t o  t h e  transfer of vaporizing spec ie s  from a latt ice s i t e  t o  t h e  gas  

phase. I t  is poss ib l e ,  however, t o  e x t r a p o l a t e  the  s t eady- s t a t e  

p re s su re  d a t a  t o  t h e  ze ro  o r i f i c e  a rea ,  as suggested by a t h e o r e t i c a l  

model of the  e f f u s i o n  process ,  and to  d e r i v e  equi l ibr ium p res su re  

f m  t h e  r e su l t s .  The ex t rapola ted  equi l ibr ium p res su re  d a t a  a r e  a l s o  

shown i n  Figure 7 .  

13 

14,15 

From least squares  f i t t i n g ,  t h e  following expressions f o r  t h e  d i s -  

s o c i a t i o n  p res su re  were obtained:  

1.0 mm diam. o r i f i c e :  l og  P(atm) = (9.31 * 0.11) - (9180 & 70)/T 

1.5 mm diam. o r i f i c e :  log  P(atm) = (9.55 f 0.43) - (9440 * 27) /T  

The corresponding equat ion f o r  t h e  ex t rapola ted  equi l ibr ium p res su re  

is log  P (atm) = 9.11 - (918O/T). 
eq 

I t  is assumed t h a t  t h e  observed d i s s o c i a t i o n  process  is given by 

Equation 3, but  t h i s  w i l l  be checked by determining t h e  molecular weight 

* 
99% Na,SiF obtained from VentrOn Corporation, Masachusetts. L 6  

22 



4 . 4  

-4.8 

-5.2 

-5.6 

-6.0 

-6.4 
1.52 156  1.60 

lOOO/T 

FIGURE 7 TORSION EFFUSION MEASUREMENTS OF PslF 
.1 

1.68 

SA-4980-22 

23 



of t h e  e f fus ing  vapor from simultaneous torque-angle and weight-loss 

measurements. 

Examination of the cell r e s idues  by x-ray d i f f r a c t i m  showed t h e  

presence of NaZSiF (9) and NaF(s) on ly ,  so that t h e  decomposition process 

appears to be correct as written i n  Equation 3. 

w a s  no evidence o f  additional compounds such as (NaF.4Na2SiF4), t h e  

presence of which would s u b s t a n t i a l l y  alter t h e  i n t e r p r e t a t i o n .  

6 
In p a r t i c u l a r , t h e r e  

The second l a w  s lopes  of t h e  d i s s o c i a t i o n  p res su re  d a t a  ( t h a t  I s  

s lopes  of t h e  p l o t s  of l og  P vs. 1 / T  y i e l d  va lues  of 42.0 axxi 32.2 k c a l h o l  

for t h e  en tha lpy  change of t h e  decomposition process  at  t h e  average 

temperature of t h e  measurements, us ing  t h e  1.0 atrd 1.5 mm dim. orifices, 

respec t ive ly .  

Data obtained w i t h  t h e  smaller e f fus ion  o r i f i c e  are bel ieved to  be 

t h e  more r e l i a b l e  because of t h e  h ighe r  prec is ion .  

42.0 kcal/mol can be combined with hea t  c a p a c i t y  d a t a  t o  y i e l d  AHo 

44.0 kcal/mol for t h e  decamposition r e a c t i o n  (Equation 3) . 
t h i r d  l a w  c a l c u l a t i o n ,  based on t h e  abso lu te  pressure  and est imated 

entropy for Na2SiF (c) y i e l d s  AH 

ca lcu la t ed  by t h e  secorrl law and the  t h i r d  l a w  d i f f e r  by 3.6 kcal/mol . 
However, t h e  e f f u s i o n  ciata show N a  S iF  ( c )  t o  have a s i g n i f i c a n t l y  higher  

Tt? slope hea t  of 

= 
298 

A prel iminary 

0 = 40.4 kcal/mol. The &iZg8 values  
6 298 

2 6  
thermodynamic s t a b i l i t y  than ind ica ted  by previous da ta .  (AH:g8 = 36.4 

5 
kcal/mol .) Measured d i s s o c i a t i o n  pressures  are t w o  o rde r s  of magnitude 

less than values  ca l cu la t ed  from h’BS da ta .  
8 

In  Figure 8 ,  t h e  equi l ibr ium pressures  der ived fzum t h e  e f f u s i o n  
6 7 

s t u d i e s  a r e  p lo t t ed  along wi th  t h e  da t a  of Hantke and Caillat obtained 

a t  h igher  temperatures.  

ex t r apo la t ion  of SRI e f fus ion  d a t a  appears  c o n s i s t e n t  wi th  them a t  t h e  

h ighes t  temperatures.  

The l i t e r a t u r e  d a t a  a r e  q u i t e  s c a t t e r e d ,  bu t  tbe 
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According to the presently obtained extrapolated re lat ion for the 

pressure of SIF, i n  Equation 3 ,  an equilibrium pressure of 1 atm of 
12 

4 

SiF should be reached at  734'C. Far a dynamic system, Yaws et a1 
4 

have shown that N a  SiF 

the highest temperature studied. 

on the  temperature region 350-7Oo0C. 

d issoc iates  rapidly and completely a t  600°C, 
2 6  

mrther  studies a t  SRI w i l l  concentrate 
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FUTURE WORK 

During the  next  q u a r t e r ,  we in tend  t o  s tudy  the  leaching  process  

i n  f u r t h e r  detail i n  order t o  es tab l i sh  t h e  most s u i t a b l e  condi t ions  

for sepa ra t ing  s i l i c o n  from t h e  r eac t ion  products  NaF and NaZSiF We 

a l s o  plan to  examine candida te  methods f o r  t h e  prepara t ion  of S i F  gas 

from commercially obtained H2SiF6 (ag). 

t h e  most s u i t a b l e  process  for ob ta in ing  pure S i F  

economically. 

6' 

4 
Our o b j e c t i v e  w i l l  be t o  select 

gas  from 3 S i F  
6 4 
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