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ABSTRACT

A Fourier technique for cloud motion estimation from pairs of pictures is
described. This technique makes use of the phase of the cross spectral density;
it allows motion estimates fo be made for individual spatial frequenecies, which
are rela'fed to cloud pattern dimensions. Results obtained using this technigque
are .presented and are compared with the results of a Tourier-domain cross-
correlation scheme, usiné both artificial and real cloud data, Itis concluded
that this technique is relatively sensitive fo the presence of mixtures of motions,

changes in cloud shape, and edge effects,
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A TOURIER APPROACIH TO CLOUD MOTION ESTIMATION

I, INTRODUCTION

Sequences of high resolution photo‘grap'hs from satellites in geosynchronous
orbit have been utilized by many investigators to measure cloud motion and de~
rive winds, The techniques for extracting such information range from a
manual analysis of closed "movie loops! (Fujita et al., 1969; Hubert and
Whitney, 1971) to completely atitomated methods in whieh the images and/or
data are computer processed but selection of cloud targets is controlled manu-
ally from an interactive display console (Serebreny et al., 1969; Smith and
Phillips, 1972).

The main advantage of manual and semi-automatic methods is in target
selection, making it possible to incorporate a wide variety of criteria, not
necessarily defined beforehand, for choosing cloud elements representative of
atmospheric motion, These criteria are somefimes related to the size of the
cloud element, the idea being that small elements move with the wind, while
massive elements may disguise the actual motion of the atmosphere due to
cloud formation and deformation processes.

Early studles by Leese and Epstein (1963) have shown that one can identify
the predominant dimensions of cloud patterns by a spectral analysis of satellite
photographs, Subsequently, Leese et al, (1971) used the Fourier transform as
an efficient computational tool for obtaining the cross-correlation between éuc-

cessive cloud cover pictures, from which cloud displacements are derived,
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The fact that displacement information appears separately for each spectral
component in the Fourier transform of the cross-covariance function was
pointed out by Weinstein (1972), The combined advantages of the Fourier trans-
form — as an efficient computational tool for measuring displacement and as a
means for extracting cloud pattern dimensional information — have motivated
the present study of the Fourier {ransform properties of real and simulated
sequences of satellite cloud cover pictures and their cr-3s~correlations. Spe-
cifically, we describe an attempt to derive winds from cloud motion, while dis~
criminaiing with respect to cloud size.

The mathematicai aspects of the Fourier transform method are outlined in
Section 2; the results of a simulation study are presented in Section 3; a pre~
liminazry experiment with real pictures Is described in Section 4; and finally,

the oullook is discussed and conelusions drawn in Section 5,

II. PROPERTIES OF THE FOURIER TRANSI'ORM

A Tunction defined in the space domain, say i(x,y), where x and y are co-
ordinates in a two-dimensional Cartesian space, can be transformed into a
function in the frequency domain by using the Fourier transform, F, as follows:

i

FIE(x,y)] = § [(x,y) eMW) gx gy = Fu.v) @

o

where i =7\/~1; u and v are frequency domain variables, Conversely, a function



in the frequency domain can be transformed into the space domain by using the

inverse Fourier transform:

FU[F @] = ﬁ‘ F(u,v) 208 dudy = f(x,y) @)

TFor application to discrete data, the Fourier transform process is re-

defined as

| M Nl ~2ai (53 + 5'-)
F(u,v) = N f(x,y)e M N 3)
x=0 y=0
‘ 1 Mzl Nel . (ﬁ . y_) | .
f(x,y) = N F(u,v)e M N (4)
M u=0  y=0

where M and N are the sawmple sizes in the x and ¥ directions, respectively,
One indication of the relative displacement between successive pictures is

by the location of the peak of the cross-covariance of the two images (Leess et

al,, 1971). Letting f(x,y) and g(x,y) represent the brightness distribution of

the two images, the cross-covariance is defined as

Cre(ty) = 55 F(&.m) g(E—x,n-y) dEdn )

The Fourier transform provides a fast way to calculate the cross-covariance
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function, TFrom equations (1) and (2), it follows that

Urg(x,y) = F‘l [F’I:(U,V) . G(lI,V)] {6)

where I'*(u, v) is the complex conjugate of I'(u, v) while G(u,v) is the Fourier
transform of g(x,y). The Fourier {ransform of C;,, namely F*G, is called the

cross speciral density of f and g. The positions of the maxima of the cross-

covariance function determine the relative displacement between the two pic-
tures, The ratio of the computer tiines required for the Fourier {ransform
method and the conventional method of calculating the cross-covariance is ap-
proximately (N/2)N (Brigham and Morrow, 1967), where N is the linear size
of the array,

If the discrete version of the Fourier {ransform is used to compute the
cross-covariance, as in (6}, the resulting function is cyelic, which is equivalent
to assuming that the functions in the space domain are periodic. In other words,
the IMourier transform method assumes that when movement of ohjects takes
place, what moves out of the picture at one boundary must enter at the opposite
boundary, TIurther examination and discussion of this asswnption is presented
in Section III,

The Fourier transform possesses still another property which makes it
possible to take a different approach to the estimation of motion, Assume that
uniform translation is the only d.ifference hetween the two functions, i, e .

g(x,y) = {(x-a, y-h), Then from the definition of the Fourier transform in
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equation (1) it follows (Briggs, 1968) that

G(u,v) = F(u,v) e-2nifuatwb) o
The Fourier transform at a specific frequency (u, v) can be represented by

its amplitude and phase angle in the following manner:
Fu,v) = IF(u,v)| elev) ®)

where |F| is the amplitude and p is the phase angle. Applying the same repre-

senfation to G{u,v), we have

Gu,v) = [F(u,v) | ele(us)~2ni(uatb) 9)
Thus,
F*u,v) Glu,v) = {F(u,v){? g-2rituvb) (10)
The term F# (u, v)G(u, v) is complex witk amplitude |F|> and phase angle
-27 (ua+vh), for all u's and v's, The differences hetween the phase angles of
two neighboring irequencies have the following properties:
e, v) —g(u+i.v) = 2mqa (11)

and

v, v) =~ o(u,v+1) = 27b (12)

We thus find that the difference in phase angle between neighboring terms in the

F*G matrix yields the x and y components of displacement,



In the case where the two images differ only in that one is a uniform trans-
lation of the other, the phase differences are the same between all neighboring
frequencies, However, when the displacement between the two images is not
uniform — and, specifically, when disp’acement is different for feature: with
different characteristic dimensions — then the phase angle difference will be a
function of frequency. In the following sections, we will examine to what extent
the phase angle differences continue to yield estimates of the displacement and

how these estimates are related to the size of features in the image,

tf. SIMULATION STUDIES
A number of simulation studies were conducted to investigate the compara-
tive effectiveness of cross-correlation und phase difference technigues for es-
timating motion (Lo and Parikh, 1973; Lo et al., 1974). In particular, cases
were siudied that involved
a. Distortions such as rotation, scale change, brightness chénge, and
noise, in addition to simple translation
b. Mixtures of motion
c. Edge effects: objects nloving off one boundur& without coniing back
in at the opposite boundary, so that the displacements are non-cyclic.
It v-as found that if these conditions were not too strongly present, both tech~
niques yielded reasonable estimates of the motion (or, in mixture cases, esti-

mates of the predominant motion), However, as the distortion, mixture, or
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edge factors become stronger, performance began to deteriorate, This situation
is illustrated in the simulations shown in Figures 1 and 2,

In Figure 1, a large mass of relatively dim cloud is moving at a compara-
tively slow speed (displacement components X = 2 and Y = 1) relative to
smaller clouds of higher brightness (X =4, Y = 6), Iigure la shows the two
pictures, I'igure 1b shows their power spectra, and Figure lc shows their
crosis—-covariance, which has a peak corresponriing to the displacement (4, 6)
of the higher-contrast clouds. TFigure 1d shows the phase angles of the Fourier
transform product, and Figure le shows the resulting X and Y displacement
estimates from the phase difference method (obtained by taking horizontal and
vertical differences in TFigure 1d). Figure 1f is a scatter plot of these esti-
mates, which cluster around the displacement (4, 6).

Figure 2 is analogous to Figure 1 for a pair of pictures (shown in Figure 2a)
containing two sets of clouds with the same hrightness but di:l’_'E_erent velocities,
represented by the displacements (6,0) and (2,2). Here the cross-covariance
(Figure 2¢) corresponds to the displacement (2,2) of the larger cloud mass; but
the phase difference estimates (Figure 2e) show little tendency to cluster (Figure 2f).

It would seem from these examples that the phase difference estimation
approach is more sensitive to the presence of mixtures of motions than the
cross—covariance approach, Simila_lj results can be obtained by studying simula-
tions involving edge effects and other distortions, The details can be found in

the two references cited at the beginning of the section,
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IV. EIPERIMENTS WITH REAL DATA

Several experiments with pairs of real cloud windows were also carried
out, as described by Lo et al. (1974). The windows used were selected from
ATS-1 geosynchronous satellite images, taken at intervals of 47 minutes, Hach
window is 64 by 64 pixels, and has been scaled to the gray level range 0 to 63,

The two windows shown in Figure 3a contain relatively smﬁll clouds, In
order to hetter evaluate the synoptic environment in which these cloud patterns
are embedded, two larger windows (256 by 256 pixels) containing the smaller
windows at their centers are shown in Figure 3b. It is evident that the clouds
in this scene tend to dissipate and re-form relatively fast, so that considerahle

distortion has occurred between the frames, Nevertheless, many of the cloud

‘patterns in the first window are easily recognizable in the second, Based on

such patterns, a hand astimate of the relative displacement was made using
computer printouts c_)_f the nictures so that the displacement could be accu-
rately measured. The estimated displacement, averaged over several cloud
elements, was X = -5, ¥ = -3,

The phase difference method appiied to the pair of windows in Figure 3a
gave rise to a displacemént estimate of (-12, -4), Thiz estimate was ob-
tained as follows: X and Y displacement estimates were obtained for each
spatial frequency component. The means and standard deviations of these es-

timates were compuied, and estimates deviating from the mean by more than



one standard deviation were discarded. The mean was then recomputed for the
surviving estimates, and was used as the final estimate.

The eross-covariance method, on the other hand, yielded a displacement es~
timate of (-G, -3), as determined by the position of the cross-covariance peak.
In this example, therefore, the cross-covariance method yields better results
(assuming the hand estimate to be most reliable).

An attempt was made fo improve the results obtained from the phase differ~
ence method by applying it to selected bands of spatial frequencies, rather than

to all frequencies. The following resulis were obtained:

Band Frequency Range X Y
a 0< Yul+v2i< s -8 2
b | 5 < yul+vy?<io -13 16
c 10 < ‘\fuZ +v? <64 -12 -4

Note that the last result is the same as that obtained when all frequencies were
used, and that those results still do not agree very well with the hand estimate,
The cross~covariance estimates were also re-evaluated using only selected
spatial frequencies (i, e, , the cross spectral density I'*G was computed, the
frequencies outside the selected band were suppressed, and the inverse Fourier
transform. of the result was computed to yield a "filtered" cross—covairia.uce).

The results were as follows:
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Frequency Band X Y
a -6 -3, 5
b -5 -3
c No clearcut peak

Results (a~b) are quite close to the result (-6, ~3) obtained when no filtering was

used, and also agree well with the hand estimate (-5, -3).

V. DISCUSSION AND CONCLUSIONS

The resulls of the experiments reported here indicate that both the cross-
covariance and phase difference methods can he good estimators of motion when
the objects being tracked do not change their shape, size and orientaliﬁn to more
than a limited degree. These techniques are less effective when a mixture of
motions exists, unless one of the motions is strongly dominant. These prop-
egrties indicate that the Fourier transform phase difference estimation methods
should be reliable in problems such as landmark matching, where the features
do not change appreciably as viewed in satellite photographs.

In the atmosphere, wheré the clouds grow, dissipate, rotate, and move
relative to each other, the estimation of ﬂlese motions using Fourier transfoi:m
methods is not always reliable,

The main obstacle to accurate cloud motion estimation is believed to be the
presence of mixtures of motions. One possible way to solve this problem is to

use spatial frequency filtering to separate the motions of different types of
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cloud features, since cloud size is closely related on the one hand to spatial fre-

queney and on the other hand to cloud motion, The effort to separate clouds by
their sizes through frequency filtering is, however, thwarted by the fact that for
real pictures each component in the frequency domain is a complicated function
of the features in the space domain. Cloud pé.tterns are not perfect sinusoidal

g functions., More than one frequency component is always needed to represent a

- cloud element, and conversely a high frequency component may receive contri-

butions from small cloud elements, and also from sharp corners of a large
cloud element, To further complicate the matter, the small cloud element or
sharp corner may not exist in the second picture with which the first picture is
bciﬁg correlated, It is not found possible to effectively separate cloud types by
sprtial frequency filtering,

Another possible approach to separating cloud types for motion estimation
purposes is to segment the cloud cover windows using thresholding or pattern
classification techniques (Lo and Mohr, 1974; Lo, 1975). The brightness, the
equivalent black body temperature in various regions of the infrared spectrum,
and the size of clouds are lall closely related to the altitude of the clouds., Since
u clouds at cértain altitudes in a limited region tend to move at the same velocity,
thresholding techniques qould be designed to sepaxrate clouds according o their
brightness and/or spectral equivalent black body temperatures. Picture analy-
sis techniques which determine cloud size should also be investigated for the

separation of clouds.

ORI S ot g
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It can be concluded from this study that a technique which separates clouds
according to their motions must be designed and utilized to pre-process a pic-
ture before applying Fourier transform motion estimation techniques such as
the cross-covariance and phase difference methods. The cross-covariance
method appears o he somewhat more reliable than the phase difference method,
and should be preferred, even though the latter does present the advantages of

providing multiple estimates and relative economy in computer time.
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CAPTIONS

Tigure 1

a. Gray levels of a pair of images simulating cloud motion: a large mass of
relatively dim cloud undergoing a displacement (in pixels) of X = 2 and
Y = 1, on which are superimposed smaller but brighter clouds under~
going a displacement of X = 4, ¥ = 6.

L. Power spectra of the images in a. The (0, 0) component is in the upper
left corner, with wave number increasing downward and to the right,

c. Cross-covariance of the images in a, Zero displacement corresponds to
the upper left corner; X displacement increases to the right and Y dis-
placement increases downward,

d., Phase angles of the cross spectral density of the two images. The (0,0)
component is in the upper left corner, with wave number increasing down-
ward and to the right.

e. Xand Y displacement estimates derived from the cross spectral density.

f.  Scatter plot of the estimates in e.

Tigure 2 (a-f)

Analogous to Figure 1, but for images simulating the motion of two sets of clouds
with the same brightness but different velocities (i.e., displaced by different

amounts).

Figure 3
A pair of images selected as an example from the ATS-1 satellite. (a) The

G4 x G4 pixel portion of each image from which cloud motion is to be determined,
(h) The surrounding area (256 by 256 pixels) in which the images in a are

centrally imbedded,
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CROSS-COVARIANCE FUNCTION
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PHASE ANGLES OF CROSS SPECTRAL DENSITY
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Figure 3, A pair of images selected as an example from the ATS-1
satellite, (a) The 64 x 64 pixel portion of each iinage from which
cloud modion is to be determined, (b) The surrounding area (256 by
256 pixels) in which the images in a are centrally imbedded.

(3]

=1



	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A01_.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf



