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NOMENCLATURE

a

v

1	

ih

a Speed of sound

a,b,c Least-squares coefficients for crossflow shock upstream
surface pressure

a,S,c Ratio of	 ^ ,	 , and 1 to	 r

I-:

A,B,C Ellipse shape parameters for initial bow shock estimate
,i

a

A3 Vector of flow variables in the nonconservation-law form
of the Euler equations

[Al ] e-derivative coefficient matrix in the nonconservation-law
form of the Euler equations

[A2] -derivative coefficient matrix in the nonconservation-law
form of the Euler equations

a	 b,c Coefficients in surface total energy as a function of

i

pressure equation

B Parameter in meridional clustering transformation

[B l ] X-derivative coefficient matrix in the discontinuity aligned
nonconservation-law form of the Euler equations -

^a i
[B 2 ] Y-derivative coefficient matrix in the discontinuity aligned

nonconservation-law form of the Euler equations

CN Courantparameter

d Vector of dependent variables in the nonconservation-law
form of the Euler equations

d,e,f Least-squares coefficients for crossflow shock downstream
surface pressure

!	 e;
i

Total energy per unit volume f

E R-dependent vector of conservation-law variables
o

E' z-dependent vector of conservation-law variables

F X-dependent vector of conservation-law variables

F X-dependent vector of conservation-law variables



i

\3

S

i	 t	 ,

1

vi
(

F	 e-dependent vector of conservation-law variables
a

F'	 r-dependent vector of conservation-law variables

E-dependent vector of conservation-law variables

Least-squares coefficients for crossflow shock upstream
surface Mach number

Y-dependent vector of conservation-law variables

Y-dependent vector of conservation-law variables

^-dependent vector of conservation-law variables, spherical
polar coordinate system

^-dependent vector of conservation-law variables, cylindri-
cal polar coordinate system

0-dependent vector of conservation-law variables

(T,X,Y) source term vector of conservation-law variables

source term vector of conservation-law variables

(t,R,e,^) source term vector of conservation-law variables

(z,r,^) source term vector of conservation-law variables

F*

g,h,i

G

G

G

G'

G*

H

H

H

H'

f

3

1 H* ((D,E) source term vector of conservation-law variables

Unit vectors in spherical polar (R,e,f) directions1R' le ,1^

1	 ,1	 ,l Unit vectors in cylindrical polar (z,r,^) directions
z	 r

[I] Identity matrix

k Nondimensionalization parameter

t L ^-function in Newton-Raphson iteration for

min Minimum
} r

max Maximum

M Crossflow Mach number
c 

M 1 Crossflow shock upstream normal relative Mach number
rel j

M Free-stream Mach number

e"t

1

`	 5c



e vii r.

nc Unit vector normal to cone surface

n^ Unit vector normal to crossflow shock
s

n 6-component of unit vector normal to crossflow shock

n ^-component of unit vector normal to crossflow shock i

N Scalar in the equation for the cone surface tangent vector,

p Pressure

1	 p,p,u,v,w,q Surface flow variables in the corrector step following the
nonisentropic Abbett scheme turn

q Velocity modulus

qg
s

Crossflow shock speed normal to the shock

qg_ Crossflow shock acceleration normal to the shock
a

S.^

qvs
Vortical singularity speed

gvsT Vortical singularity acceleration

r Cone cylindrical radius
c

•	 r Bow shock cylindrical radius
z

s

rs Slope of the bow shock in the 	 ^-direction

R,6,^ -Spherical polar coordinates

R Terms in the crossflow-shock acceleration equation

'	 S Entropy
-s

t Time

t Unit _vector tangent to cone surface in 	 z,r-plane
c

}
T Vector tangent to cone surface in	 z,r-plane

u,v,w- Velocity components in spherical polar (R,e,y) directions

u,v,w Velocity components in cylindrical polar -(z,r,^) directions

ul Upstream velocity component normal to a shock

u,

i^



u2 Downstream velocity component normal to a shock

U T-dependent vector of conservation-law variables

(] T-dependent vector of conservation-law variables

U t-dependent vector of conservation-law variables 4

X,Y,T Reference mesh transformed independent variables
k

X,Y,T Clustered reference mesh transformed independent variables

z,r,^ Cylindrical polar coordinates
e

a Angle of attack
s	 :

Ratio of specific heats
f

a

8 L Dimensionless bow shock standoff distance at the windward 9
symmetry plane

d SH Dimensionless bow shock standoff distance at the cone
shoulder

-y

S Dimensionless bow shock standoff distance at the leeward
u symmetry plane

6X,AY Computational reference mesh spacing a

`	 OX,AY
i

Computational clustered reference mesh spacing

A8,A^ Physical plane mesh spacing t

A(D Shoulder region integration marching step size

a

Ov Incremental turning angle

AE Shoulder region computational mesh spacing h'

y	

AT Time step for reference mesh integration

AT Time step for clustered reference mesh integration

E Fraction of computational mesh spacing

Bow shock aligned, cylindrical polar transformed independent
variables

8 Cone half-angle
C r

r

r



ix

e Bow shock shape
s

Vortical singularity position
vs

K Parameter in	 rs,	 equation

}	 u Magnitude of the gradient of the crossflow shock equation

P Density
i

Q Projection of the slope of the characteristics

^L
Lower meridional boundary

^.
s

Crossflow shock shape

S
T̂

Crossflow shock speed -Ln the 	 ^-direction k

t,
u

Upper meridional boundary

Meridional independent variablein reference mesh clustering
' transformation

Meridional clustering parameter

w Theta clustering parameter r 	 i
i

Subscripts:
3 {

c Cone surface

cf Crossflow component F

i Index for discontinuity alignment transformation

J MacCormack algorithm index for transformed 	 e-direction
differencing in reference mesh

K MacCormack algorithm index for transformed	 ^-direction
differencing in reference mesh

L,' Lower meridional boundary

max Maximum

o Circular theta outer boundary

o Meridional plane at center of meridional clustering

rel Relative to a moving discontinuity

i



X

s Bow shock
i

s Crossflow shock
j

-	 S MacCormack algorithm index for floating shock mesh point

SH Cone shoulder
z

SL MacCormack algorithm index for floating shock mesh point t
lying below floating shock mesh point S	 and reference
mesh point	 J

u Upper meridional boundary

vs Vortical singularity'

X Unequally spaced mesh in 	 X-direction

X T-step size in	 T, X-plane

Y Unequally spaced mesh in	 Y-direction a
f

Y T-step size in	 T, Y-plane

-'	 CO Free-stream conditions
r..

1 Shock upstream conditions

1 Vortical singularity, conditions on bow shock side
{

1,2,3,4,5 Discontinuity alignment transformation -
^i

2 Shock downstream conditions

2 Vortical singularity, conditions on cone surface side i,>

* Windward crossflow sonic line meridional location

Superscripts:

m Newton-Raphson iteration index

n Current level in MacCormack algorithm a

n+1 Predictor-level;in MacCormack algorithm
P

n+l Corrector level in MacCormack algorithm
E	 JI
b

(1) Surface flow variables following corrector step of
MacCormack algorithm

r

^	 rl ,
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CHAPTER I. INTRODUCTION

Aircraft and missile fuselage geometry can often be approximated by

circular or elliptical cones and thus designers have sought methods for

computing the inviscid supersonic flow about these shapes. In addition,

studies based on simple conical geometry provide a clearer insight into

fundamental physical processes for both the experimental and computational

investigator.

Husemann (1) pioneered the concept of conical flow defined as a self-

similar flow in which fluid properties remain constant along rays emanating'

from the conical origin. This reduces'from three to two the number of

independent spatial dimensions in the governing nonlinear partial differ-

ential equations.	 Taylor and Maccoll (2) considered the case of a 3

circular cone at zero angle of attack.	 The flowfield, being axisymmetric,
a

is determined by only one independent variable thus resulting in a system

of ordinary differential equations.

Inclined cones were first treated by Stone (3) as perturbations about'

the Taylor-Maccoll solutions.	 Using this method, which is applicable only

for small angles of attack, Kopal (4) compiled tables of numerical results.

Ferri (5), however, recognized, that Stone's method was conceptually wrong

near the surface of the cone in that it yields values for the surface

entropy that are periodic in the meridional angle. 	 Instead, since the cone

surface is a streamline of the flow, the entropy must be invariant. 	 Ferri e

amended Stone's results by showing that there exists a thin layer of

rapidly changing entropy near the cone Surface which he lobeled the vor-
j

tical layer.	 His analysis of the crisssflow velocity (the projection of

^ r

^^Tl



the velocity vector (Figure la) onto the surface of a unit sphere centered

at the cone apex (Figure lb)) revealed that for inviscid conical flow all

streamlines must converge to a conical stagnation point in the leeward

symmetry plane; the so-called vortical singularity. 	 Since each streamline I

converging on the vortical singularity has passed through different por-

tions of the bow shock, the entropy, density; and spherical radial velocity

component	 u	 are multivalaed at the singularity.

Based on this theoretical background and early numerical studies a

'	 considerable volume of research on nonaxisymmetric conical flows has
a

evolved.- Numerous surveys of this work have been presented.	 of these,

Reference 6 offers the most detailed discussion of many of the methods that

have been developed and Reference ? contains a representative bibliography
s	

9

s

of the work prior to 1972.

Until recently, however, all techniques have been limited. 	 Even for

}	 the simplest conical body, the circular cone, the methods are restricted

to cases in which the angle of attack	 a	 does not greatly exceed the cone

half-angle	 e	 or are restricted to solving only the windward portion of
c

the flowfield;

Inverse methoc,s (8, 9), the method of integral relations (10), vari-

ations of the method of lines (7, 11 -14),  the method of characteristics

(13, 15), as well as the BVLR finite-difference (16, 17) and nonconserva- }

tive finite-difference formulations (18, 19), encounter difficulties at

large angles of attack ( a/6C >1).	 The numerical problems are attributable

to the appearance of new flow features on the leeward side of the cone.

3

A
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Mm

BOW SHOCK

VORTICAL SINGULARITY

CROSSFLOW SHOCK

Ir	 ,

V .	 ..

(a) SPHERICAL POLAR COORDINATE SYSTEM AND VELOCITIES

I

BOW SHOCK

VORTICAL SINGULARITY

CONICAL STAGNATION
POINTS v=w=0

LARD SONIC LINE

CROSSFLOW SHOCK

WINDWARD SONIC LINE

(b) CONICAL STREAMLINES (UNIT SPHERE PROJECTION)

Figure 1. Supersonic flow about a circular cone at large angle of attack,

a/6 c > 1

L---
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At moderate angles of attack the crossflow velocity is everywhere

subsonic.	 At large incidence the crossflow accelerates from the windward fi

symmetry plane to supersonic velocities in the shoulder region of the cone.

In order to satisfy the leeward symmetry plane boundary conditions, an em-

bedded conical crossflow shock (not present at smaller angles of attack)

,f

forms to decelerate the crossflow (Figure la, b). 9

`	 With increasing angle of attack the bow shock gains strength in the
-z

windward symmetry plane while becoming weaker on the leeward side, thus

the jump in entropy at the vortical singularity intensifies.
i

The nature of the vortical singularity for cones at large angles of

attack has been investigated in several -theoretical (5, -20 -22) and some

recent numerical (23, 24) studies. 	 Experimental evidence (25 -28) indi-

cates that an analogous feature may even be present in viscous flows. 	 The f	 `

theoretical predictions for the behavior of the vortical singularity are
r`

t.	 based upon linear theory or localized solutions and thus cannot account

for the effects of the crossflow shock. 	 However, the conjecture that the

vortical singularity will, at large angles of attack,, lift off the cone

surface in the leeward symmetry plane (as shown in Figure 1) has been

supported by the numerical results (23, 24).

Explicit finite-difference techniques; (23, 29- 31) utilizing the

conservation-law form of the governing equations provided the first evi-

dence for the inviscid, nonlinear flow pattern in the leeward region of

highly inclined cones.	 The success of this approach is ascribed to the

use of the conservation-law dependent variables. 	 The internal crossflow
i

.'	 shock is then automatically, captured to within a few mesh intervals;.

. .,	 ,...4 ..e<.._za..Ls,.:.ecr.,.,...,^..^i-..s+h.:..r.$	 _	 — ^,S: Jarx.heoT.'..3iiYus.«.3Y. rr.xva^:,tiWis 	 y•_..a.^V"
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Improved accuracy is obtained by treatii3 the peripheral bow shock as a

sharp discontinuity forming the outer boundary of the computational domain,

but the captured vortical singularity remains difficult to resolve. Fur-

ther, the ability to capture the internal shock is bounded by an upper

limit on the range of parameters a/6 c and the free-stream Mach number

X
	

M., 	 which the growing strength of the crossflow shock leads to

numerical instability. This range has recently been extended by altering

the circular shape of the cone on the leeward side (32) or through stress

terms added to the governing equations (32, 33). The resulting solutions,

however, no longer represent the_inviscid cone flowfield.

An investigation preliminary to this study indicated that modifica-

tions to the shock-capturing approach, such as the patching of the shock k

jump conditions at the crossflow shock-cone surface intersection or the

selective use of dissipation, affords only limited improvements in resolu-

tion and stability.

!:
In contrast to the finite-difference approach, _a modification of the

r
r

method of lines (24, 34) has been used to solve the leeward flow` region

provided the windward and leeward crossflow sonic lines extend to the

bow shock (Figure 2a). 	 The method iterates on the internal shock location u
Y

.i
but utilizes a bow shock shape extrapolated from the shoulder region. 	 The

solutions obtained have been the most extensive to date, particularly in
*

regard to the vortical singularity.;	 The accuracy of the procedure is dif-
r

ficult to assess since there is considerable disagreement with the shock- ({ a
,t

captured finite-difference results.	 In addition, it is expected that at I

large angles of attack the possible nonmonotonic shape of the bow shock
i

i1
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OUTER BOUNDARY	 F E D	 MARCHING

WINDWARD

	

r°	 WINDWARD REGION
SONIC LINE-̂ .,^.^.•.A B C D E F

K:-	 Mcf ^i

	

BOW SHOCK A	 -ELLIPTIC	 _ x
B low	 -UNSTEADY

WINDWARD REGION

	

OUTER BOUNDARY C ?e
' v	 RELAXATION

(p) ZONE OF SUPERSONIC CROSSFLOW EXTENDS TO THE BCW SHOCK. 	 I:
HALF-PLANE PARTITIONED INTO THREE SUBPROBLEMS

tF

	C 	 ?
SYMMETRICAL

	

f	

HALF-PLANE	 :. s

I},.	 VORTICAL	 Mcf`1	 A B C D
^1.	 SINGULARITY p

-ELLIPTIC

	

CROSSFLOW SHOCK	 "	 `^^	 -UNSTEADY
'	 RELAXATIONF	 SONIC LINE

Mcf'I

M <I:,^	 h	 cf	 N

A

BOW SHOCK

	

OUTER BOUNDARY	 i	 a

r_

	

g	 a

(b) ENCLOSED: ZONE OF SUPERSONIC CROSSFLOW.
HALF-PLANE PARTITIONING NOT POSSIBLE

Figure 2. Numerical approach determined by the extent of the zone of

supersonic crossflow, MC f = [(V2 + w2 ) /a2]
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(35) (the maximum shock standoff distance occurring away from the leeward

symmetry plane) and its vanishingly weak strength, will dictate a more

accurate shock boundary treatment.

An alternative finite-difference method which does not rely on the

shock-capturing ability inherent in the conservation -law formulation has

I?i! J
j	 {

4 been ,developed in a , recent series of•eports (36 - 42) , 	 Moretti refers to

the technique as floating shock fitting to distinguish it from other sharp

ji shock schemes which treat shocks as boundaries of computational domains.

i{
In the floating-fitting procedure shocks propagate in the computational

domain as discontinuity surfaces.	 The finite-difference mesh fox the

computation of the smooth flow regions is fixed and not forced to follow

i the shocks.	 Topological problems associated with fitting shocks as boun-

daries are thereby avoided. 	 However, the di;f,ferencing scheme must be mod- f,

ified to prevent forming differences across discontinuities and thus

involves unequally spaced mesh intervals.' S

Questions have been raised about the stability and programming com-

plexity of the floating-fitting method for multidimensional flows (43- 46)

and all of the details of the algorithm have not yet been established. =

Successful applications of the technique, however, have demonstrated the r

feasibility of the floating-fitting approach. 	 In particular, the method

has been tested on the cone at zero incidence problem (37) and gave

excellent results.

This present study describes a numerical method which applies the

concept of floating shock fitting to the cone at large incidence problem.
i

The bow shock, the embedded crossflow shock, and the vortical singularity
A

r

J
"

r .<

1
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are treated as sharp discontinuities which float simultaneously through

the computational mesh. Use is made of the conservation-law form of the

governing equations in the flowfield interior to aid in the detection and

monitoring of the crossflow shock. 	 The fitting of the crossflow shock

avoids the stability problems encountered with the shock-capturing ap-

proach.	 Further, in r,ontrast to the numerical method of References 24 and

fj 34, shock layers with limited zones of supersonic crossflow adjacent to

the cone surface -(Figure 2b) can be computed. 	 The present method is

formulated to be applicable over the complete range of parameters	 Mme , a,

r and 8	 for which the flow remains conical (bow shock wave attached). }
c t

it

Along with the floating-fitting method, a technique in which the bow
a

shock forms a boundary of the computational mesh has been developed. 	 Aside

from serving as a check on the floating-fitting approach, this "shock-as-

a-boundary" code provides a convenient means of supplying initial condi-

V tions for the floating algorithm.

Several boundary condition schemes have been tested in conjunction

with the floating-fitting method.	 Comparisons of these floating-fitting
r

solutions with shock-as-a-boundary results are presented together with

numerical results obtained in References 13, 31, and 34 and with 'experi-

mental measurements (47). i
3

z
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CHAPTER II.	 GOVERNING EQUATIONS—CHOICE OF VARIABLES

The selection of appropriate dependent and independent variables can !

simplify the application of a numerical technique and result in improved

accuracy.	 For example, enhanced shock-capturing properties are obtained
'i

through the choice 	 the 	 form of the dependent9	 P i; 

in a coordinate system that closely parallels the shock. 	 The implementa-

tion of boundary condition schemes, however, may often best be achieved
h

through the use of the primitive dependent variables in a boundary oriented u

coordinate frame.

Several forms of the governing equations, each chosen with regard to

it

its application and the flow region being computed, are used in the cone

T
at angle of attack problem.

t
4The equations governing the flow of an inviscid, nonconducting, com-

pressible fluid in spherical polar coordinates (Figure la) may be arranged r
7

into weak conservation-law form as

U 	 T ' ER + F6 + G^ + H = 0	 (1)

where	 U, E, F, G, and H	 are the five-component vectors,

P	 Pu	 PV

3

' Pu p + pu 2 l puv
t

U = P v ,	 E = F - R p + pv2 , s
i

pw

Ipuv
puw pvw

e	 (e +p)u	 (e +p) v

E

4

P w p(2u+v cot 0)
pwu p (2u2 _w2 - v2 + uv cote),1

G
_

P wv

	 H = 1 P[ 3uv  + ( v2 - w2 )	 cot 0] (2)
R sin 8 P + Pw2

R	 pw (3w + 2v cot 6)
(e+p)w (e+P)`(2u+v cot 0)

r

r:
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For an ideal gas the system is completed using the equation ofstate to

relate the total energy perunit volume e to the pressure p, density p,

and velocity components u, v, and .wt by

e = p/(y-1) '+ p(u'+v2 +w2 )/2	 (3)

where	 Y	 is the ratio of specific heats. 	 The pressure and density are
y	 A

referenced to free-stream static conditions. 	 The velocity components are

thus normalized by	 aCO/^	 where	 a^	 is the free-stream speed of sound.

If the flow is assumed to be steady (Ut = 0), the integrated form of

the energy equation replaces the last row of Equation (1) with the alge-

braic relation k
r

p = P{ L1+ (Y-i)M002 /2]	 -	 [(Y-1) (u2+v 2 +w2 ) 1/2Y} 	 (4)

If _ the flowfield is further assumed to be conical (E R = 0) , the govern-
ri

i	 J

ing equations in the self-similar 'crossflow plane (R= 1) become

Fe +G	 +H= 0	 (5)
t`
t,

Equation (5) is elliptic for cones at _small or moderate angles of

attack.	 With increasing incidence a small zone of supersonic crossflow

forms adjacent to the surface on the side of the cone (Figure 2b). 	 At
i
s

still larger angles of attack, the region of supersonic crossflow,extends

to the bow shock.	 This enables partitioning of the crossflow'plane into
s

windward and leewardelliptic regions separated by the hyperb(.)lic shoulder

region (Figure 2a). r	 3
ry

In the application of the floating-fitting method, Equation (5) is 9j

h

rendered hyperbolic bythe addition of the unsteady derivative term.

Alternatively, in the algorithm which fits the bow shock as a boundary,
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the spherical radially-asymptotic approach (addition of the conical

derivative term) is followed. The unsteady approach is preferred since

the hyperbolic nature is preserved over the entire range of parameters

MCO, a, and 8 c for which the bow shock remains attached. Thus, unlike

the radially-asymptotic method, the unsteady approach allows computation

of radially subsonic flows (u <a, where a= local speed of sound) which

can occur at large angles of attack (23).

An a priori assumption (based upon previously obtained solutions) can

often be made regarding the size of the region of supersonic crossflow.

When partitioning of the crossflow plane is possible (Figure 2a), maximum

)
efficiency is achieved by solving each region separately. In addition,

for a given number of computational plane grid points resolution is

improved since the mesh point density in each region increases. More

importantly, the leeward region is freed from the small step size imposed

by the stability condition (presented in Chapter III) in the windward

symmetry plane. Another benefit of partitioning is that a substantial

part of the shoulder region can be computed in one less dimension by a

^-direction marching code which integrates the crossflow plane equations.

The shoulder region algorithm (described in Appendix A) starts from the

windward region outflow boundary (with w >a) and sweeps around the cone

until the meridional'Mach number approaches unity.	 i

Reference Mesh

The floating-fitting procedure utilizes a fixed reference mesh de-

fined by	 =_constant meridional boundaries and a circular outer boundary

e = @o. An independent variable transformation

i

}

. g
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e-e cX	 e	 -a
o	 c

I

Y (6)

i
T = t 7

I
I

I
normalizes the cone-to-outer boundary distance. The reference mesh for

I

the leeward region calculation is illustrated in Figure 3.

fs
The transformation Equation (6) distinguishes the floating-fitting

technique from shock-as-a-boundary methods (cf. Equation (A4)) and reduces
_a

the complexity of the flowfield interior tr;:: Gformed governing equations.
a

This simplification is important in the leeward region where the shock-as-

a-boundary approach requires normalizations in two directions.
r

A further transformation (X,'Y , T), which permits clustering points" 4

near the cone surface and about a chosen meridional location (48), may be

used to concentrate points near the crossflow shock. 	 Clustering is also

useful in keeping the number of reference mesh points that lie outside of

the shock layer (where no calculations take place) to a minimum. 	 This is

especially helpful when solving the symmetrical half plane (Figure 2b) 1	 i

problem since the bow shock is often far from being_ circular.	 The clus-
s

tered reference mesh independent variables are defined by

X = R(X) _	 sinh-1 [X Binh w]
a

^

Y - 
Y(Y) - 

Amax
B + sink

-1
- 1 sink B (7)

i

Ll,o

T = TM = T

7

where a
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j

Y

-	 L

Amax	 ^u - ^L

j (Do=	 -	 Lo q

(8)
q

^ o

I+ (e^ - 1)

B = l In
max20

1	 -^ - 1)
j

+ (e ^

max

with

¢ L _ lower meridional boundary f

_ upper meridional boundary i
u

meridional clustering parameter, clustering about
Q

? 1

w = theta clustering parameter, clustering about	 8 c

Application of the clustering transformation (Equation (7)) to the

conical Euler equations in spherical polar coordinates (Equation (1) with
j:

R = 0) and rearrangement into weak conservation-law form yields the system

I	

,

j
UT+FX+GY+H= 0 (9)

ti

where
A

'

U - U,

1_
F	 8 - 8	

XXF
o	

c
(10)

-G YYG

H	 H -	 1

	

(R) 	 - (Y )-GX	 Y V

:

= ^'60_ec	 X

p^

Y c^

tt

3
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The first, derivatives of the clustered mesh independent variables appearing

in Equation (10) are

-	 sinh w }=
XX	 w cosh(wR) t

r

u
sinh B (11) $

^
t	

3
Y	 =
Y

° e

2
1 sinh B	 + 1

+	 o
i

and the second derivatives required to form the 	 H	 vector are
i

sinh w sinh (wX)
(XX ) X	

-cosh2 ( w x) #	 _

^o

-'l I sinh2 B (1Z)
l JJJJJJ_

(Yy)Y	 (^^ 2
i.	 j

1 + 1 -- 1 sinh

The number of reference mesh points in the	 X and 7-directions, the

outer boundary location 	 e° , and the clustering parameters 	 w, ^, and
k

of
i

are specified in a separate code as part of the initialization procedure

for the floating-fitting code (initial conditions are discussed in Chapter

IV).	 This mesh generation code offers an interactive option in which the

mesh variables may be iteratively adjusted. 	 The resulting distribution of

grid points in the physical domain is displayed on a cathode ray tube

(C.R.T.) following each mesh specification (IBM 360/67 time-sharing system
i
i

linked to an IBM 2250 C.R.T.).

a

Once an initial reference mesh is selected, it remains fixed in the

t

unsteady relaxation procedure.	 Thus the geometric derivatives, which f
t

{
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appear as coefficients of the F and G vectors in Equation (10), need

only be evaluated initially for each mesh point.

Floating Discontinuity Points`

fi

The floating-fitting technique also employs discontinuity oriented

^k coordinate systems, each normalizing the distance between a fixed boundary Y

and a moving discontinuity (Figure 3). 	 The necessary transformations are

presented in Table 1.

The governing equations are integrated on one side of each discontin-

uity.	 At embedded shock discontinuities, the integration is performed on

the low pressure side.	 At the vortical singularity, the integration is

performed on the low entropy side (either side may be used). 	 The low

pressure side integration, however, is not required at the peripheral bow

I shock since the flowfield is the known free stream. 	 The flow values on
s

the remaining side of each discontinuity are obtained, once ti-e new dis-

x

continuity geometry has been determined, from the discontinuity jump con-

ditions.

k The form of the Euler'equations suitable for all discontinuity'

alignment transformations on the unit sphere is J

( dT +	 [B1) dX +	 [B2] dY + A3 = 0 ,	(13)

where
f

p a2P (2u + v cot 6)'
u _ (v2 + w2)

d _ Ag = - w2 cot  (14)iv ,

w
Juv
w(u+v cot 8)

' e ('e + p) (2u + v cot 8)

I _

Y
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Table 1. Discontinuity alignment transformations

Coordinate system	 A-direction	 ^-direction

e—e
Reference mesh	 X _	 „ x

A-A

Bow shock, high-pressure sided 	
X, = 8--A Y1 - Y r:

s	 c

Crossflow shock, low-pressure side ' 	 X2 = X Y2 =

Crossflow shock, high-pressure side b'
c
	X3

u
= X Y3 -

_ ^u -^s

d e-so -	 -
Vortical singularity, bow shock side 	 X4 = Y4 = Y

6	 _ 0
o	 vs

e -AC

r

Vortical singularity, body side 	 X5
0	 -8 Y5 = Y
vs	 c

a A	 = A	 t)	 bow shock shape
s	 s

b
y

w

= Q^S (6,t)	 crossflow shock shape
s

n
L' ^u	

lower and upper meridional boundaries

d0 	 = A	 (t)	 vortical singularity position
vs	 vs

Z

r



f'

18

with

[B1]	 _ {Xe [A 1 ]	 + X^ [A2]	 + Xt [I] IXX
(15)

[8 2 ]	 _ lye [ A l ]	 + Y^ [A2 1	 + Y t [I] }YY

where [I]	 is the identity matrix and

v	 0	 a lp	 0	 0
0	 v	

0	 0	
0

[All	 = 1/p	 0	 v	 0	 0
0	 0	 0	 v	 0 rI,
v	 0	 e+p	 0	 v

E
w	 0	 0	 alp	 0
0	 w	 0	 0	 0

_
[A2]

esin
0	 0	 w	 0	 0 (16)

1/A	 0	 0	 w	 0
w	 0	 0	 e+p	 w t

The derivatives of the reference mesh independent variables are evaluated r

for each alignment transformation 'i	 1, 2, 3, 4, 5 (Table 1) by applica-

tion of the chain rule where
a

X^ _ Xe exi Xi

Xt = Xe 0 Xi Xit
(17)

Ye _ Y^yl Yie

Yt _ Y^ ^Yi Yit

with X. = 1/(e- e c ) and	 Y ^ = 1.0

To integrate Equation (13), the reference mesh derivatives (listed in
3

Table 2) are evaluated at each discontinuity. 	 The coefficients of:	 es^,

e st , evst , use , and Est	
in Table 2, then reduce to	 -1.

The nonconservative form of the governing equations (Equation (13))

does not require evaluation of the second derivatives of the transformed



^I

Table 2,	 Reference mesh independent variable derivatives;
Y

a

Coordinate System	 X-direction	 Y-direction

X A 	X	 Xt	 YA	 Y^	 Yt	
I

lj
Spherical polar	 1	 0	 0	 0	 1	 0	 J

Reference mesh	 e	 1 A
	

0	 0	 0	 1	 0	 j1

o	 c

Bow shock, high-	 1	 -X	
e	

-X 	
A	

0	 1	 0

pressure side,	 8- A	 A- A	 s^	 A- A	 st
o	 c	 s	 c	 s	 c

Crossflow shock,	 - (Y -	 ) 

low-pressure side	 8	
l 

8	 0	 0	 ^.. -L	 ^sA	 1^ N - ^L	

^St	 r
3

o	 c	 s	 L	 s	 L	 i,

Crossf low- shock, 
	

u )
	

_(Y - ¢

high-pressure side	 A	
l 

A	 0	 0^ -	 ¢8	 1	 ^^ - ^u	Esto	 c	 s	 u	 s	 u	 !.

Vortical singularity, 	 1
bow shock side	 8	 -0	 A	 - A	Avst 

0	 - (X - 1)	 0	 1	 0	 )	 s

o	 c	 vs	 o	 a

Vortical singularity,	 1	 0	 -X	 A	
1

body side	 A- A	 A	 - A	 vst	 0	 1	 0
o	 c	 vs	 c

i

^x	
4i

b

_...sfd,..,r..	 a•,..a_,.mw.,..^.	 ..•ssn.o...v.... ....J4	 -	 w.., a ....	 aaa	 ra	 a	 .3mr...	 T^	 l-	 -	 a	 _.. _.. 	 .uu..,-...	 ..v.••. .....,, 	 ...ma	 s ^. ds^.y^...aa,n::.irw..^^—r....xrL...•r,.._ 	 .v..^aa.-.. ..... ,. ^...^....u.vs .,h.w '!i_.^«SS..r.. u..u...u. _-._....cr.....a .,,.. 	 ..... ,.....	 _.,w o-_ _	 -	 ,
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	 ti
independent variables. These terms, which contribute to the source vector 	 r

of the conservation-law system (see, for example, Equation (10)), are
r

absent in the nonconservative system.

The choice of circular geometry for the reference mesh is responsible

for the simple scaling which relates derivatives along discontinuities and

derivatives in the discontinuity normalized direction to the reference mesh

system. The finite-difference representation of Equation (13) for a dis-

continuity integration. : does not require grid paints located at AX. and AY.

(Table I) intervals. Each discontinuity mesh consists solely of points lia;
lying on the discontinuity and being tracked along one of the reference	 r{

mesh directions (Figure 3). 	 k

'	 _ 9

i

If	 1

w

u

a

'	 r

C



21	

j

CHAPTER III. FINITE-DIFFERENCE METHOD

MacCormack's explicit, second-order, noncentered, predictor-corrector

algorithm (49)	 (presented in Appendix B) is used to advance the flowfield

in the time-asymptotic relaxation process. 	 The algorithm's low storage

requirements and ease of programming make it readily adaptable to a_'
v

floating-fitting approach. 	 With floating-fitting, the standard MacCormack

scheme is modified for mesh points which lie on the boundaries and float-

k

f ing discontinuities; and for points neighboring (in time or space) the v:

floating discontinuities. 	 In the reference mesh interior the forward-

predictor, backward-corrector sequence is followed provided the computa-

tional molecule is not crossed by a discontinuity. j

Special Discretization Formulas }

The floating-fitting technique introduces unequally spaced mesh inter- A

vials.	 Special differencing approximations (36), formulated to maintain

stability and accuracy, replace the two-point uniformly spaced approxima-

tions used at each level in the MacCormack algorithm. 	 The derivation of
4

these differencing approximations is based upon weighting the contributions
t

` of neighboring mesh points (on the same side of a discontinuity) in such a

way that the truncation error varies smoothly as the discontinuity cuts

through the mesh.

Reference mesh points

At a given time level, the presence of a discontinuity adjacent to a

reference mesh point will prevent forming the standard spatial difference.

i In addition, the temporal derivative must be discarded if, in advancing

i

-yf^
pill



. 9

L

to the next level, the reference mesh point passes from one side of the

discontinuity to the other.

Temporal derivatives	 The floating-fitting algorithm keeps track

of the location of moving discontinuities relative to the fixed reference

mesh.	 Movement of discontinuities over reference mesh points generally

occurs only during the early transient phase.	 Consider the integration of

UT + FX + GY + H - 0	 (18) $

where a

U = U

1
,;

F

G = G
N

H	 H

using MacCormack's scheme. 	 Referring to Figure 4, if the shock point	 S
r

is located between reference mesh points 	 J and J-1	 at time level	 n	 and
a

.	 crosses point 	 J (moving in the	 X-direction) while advancing to time level

n+l, then	
UJf1	 is computed by the linear interpolation

n+1	 i	 n+1 + 
E 

Un+1U	 U	
,	 (20)

S	 X J-1J	 2
+E X

,
j

Spatial derivatives	 The replacement of reference mesh spatial

s	 -:c
derivatives is illustrated in Figure 4.	 The approximation (Salas, M., ;-

private communication, NASA-Langley Research Center, 1976) shown for	 FXJ

was found to yield results equivalent to those obtained using a formula

that involved an additional point in the reference mesh (37). 	 The removal

of even one point offers coding simplifications.

g
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DIFFERENCE APPROXIMATION FOR dX
	 1

FLOATING AT SHOCK POINT S:
SHOCK POINTS	 lR
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Figure 4. Spatial differencing approximations for floating-fitting
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If the shock in Figure 4 also cuts the mesh interval J to J-1, so

that FJ-1 is not available for the computation of FXJ , then FXJ is

approximated by

F - FS - FSL
XJ 

XS - XSL

where S and SL represent shock points lying above and below the reference

mesh point J.

If point	 J	 is on an	 X-boundary, so that no points are below it,

then	 FXJ	 is computed using

rS -
_FJ	 for	 E	 >_FX 	=J	 EXAX	 X	 2

for	 E X < 1/2, FXJ	 is obtained by extrapolation of 	 FX	 in the	 Y-

direction.

Similar discretization formulas apply to the required 	 Y-derivatives`

at point	 J.	 However, since shock points are tracked only along	 Y = con- t

stant lines (for the example shown in Figure 4) interpolation is required

to obtain	 GS	 ,values where the shock cuts a 	 AY	 mesh interval.	 Linear

interpolation has been found to be sufficient.

If the independent variable clustering transformation (X, Y, T)	 (Equa-•

tion (7)) has been applied to the reference mesh, then interpolations are

performed in the unequally spaced physical_ plane.	 The conservation-law

vector in the computational plane 	 G	 (Equation (10) ` ) is obtained byS

multiplying the interpolated GS 	vector by the clustered mesh 	 YY	 geo-

metric deri ative.	 The geometric derivative is computed analytically

a
r

i

a

(21)
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(Equation (11)) using the interpolated location of the intersection of the

shock with the physical plane 	 A^	 mesh interval.	 Interpolated distances )'

are transformed to the computational plane and the appropriate special
t

differencing formula applied,

Discontinuity mesh points	 Derivatives along the shock in Figure 4 it
t

are computed using the usual MacCormack scheme.	 Derivatives in the shock''

normalized direction, obtainable in terms of 	 X-derivatives, are computed

using the	 FXS	 Equation (42) shown in Figure 4.

The same derivative approximations are used at the crossflow shock and

at the bow shock except that the roles of 	 X and Y	 are interchanged.	 Bow a

shock points are tracked in the 	 X-direction while crossflow shock points
g

move in the	 Y-direction.

X-derivatives at the vortical singularity are similar to those at bow r

shock points since the vortical :singularity is also tracked in the 	 X-

direction.	 For the	 Y-derivative at the vortical singularity (wY	
being

the only nonzero	 Y-derivative), interpolated reference me !h values must
i;

be used.
T

Stability Analysis
r

Although ,'a two-dimensional analysis is appropriate, one-dimensional 1'

amplification matrix theory yields a larger, yet stable, estimate for the
i
{i	 s
r

step size.	 The influence of the discontinuity alignment transformations is

reflected by the derivatives of	 X and Y `(Equation (17)) appearing in the

C-F-L condition (Couranc-Friedrichs-Lewy) H

^T = min(4TX ,,AT	 (23)
r:
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where

(CN) AX
pTX =

i

lQmax([B11)I
(24) 1

(CN) AY
p T^ _

Y	
I

CF	
( [B2 1 H

max

1

with

(amax([B1])(	 = max (a([B11)(i
(25) °

(Q	 (1921)(	 = max(c([B21)max	 i	 t

l

where	 i	 1, 2, 3, `4, 5 (Table 1), and with the projections of the char-
r

4

acteristic slopes (e 4 genvalues) determined by
t

2(c([sl]){	 = XX (Xev + e + Xt( + a	 X2 + --^'—
8	 sin 8 k

(26)

/y2( o ([ B 2 1)1	 = YY (Y e v + 8 + Yt ( + a +
s 8

The Courant parameter, CN	 in Equation (24), by linear analysis must be
ri

1.	 For most floating-fitting applications	 CN	 is set to 0.9.

Accuracy and Convergence

In the unsteady analysis, the total enthalpy (which should approach

that of the free stream in the converged solution) serves as a convenient

measure of accuracy.	 For example, for a typical leeward region calcula-

tion with a reference mesh containing 17 points in the	 X-direction and 19E
,f

points in	 Y-direction the total enthalpy at interior mesh points differs
l

from the free-stream total enthalpy by much less than 0.1%. 	 Larger errors
r

generally are found on the cone surface or near the vortical singularity

J

- -A
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(results are presented in Chapter VI). However, the total enthalpy error

at these boundary points stays well below 1%.

The total enthalpy is also used to verify the achievement of a steady

state by testing for negligible charge between current values and those

computed 10 iterations before. Due to the extensive use of interactive

r'*

	

	 graphics and a time-sharing system, meaningful convergence times are dif-

ficult to obtain. Roughly, a 17 x 19 mesh requires less than 15 minutes on
s

an IBM 360/67 to achieve convergence.

j

r'
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CHAPTER IV. INITIAL CONDITIONS

Free-stream conditions or very approximate initial guesses are often

sufficient to initiate a shock-capturing relaxation procedure. Somewhat

more care is required in specifying the initial flowfield when a peripheral

shock is computed by a shock fitting approach. If all discontinuities are
b

to be fitted, the determination of initial conditions can become very in-
,t

volved.	 In the case of a cone at large angle of attack the problem is

further complicated: by the difficulty of obtaining a physically relevant
^	 r

flowfield that can evolve into the desired conical flow. 	 For many cases

of interest, the idea of starting with a sphere-cone solution is ruled out
ii

by the failure of existing sphere-cone codes at large angles of attack.	 At

smaller angles of attack, where solutions can be obtained, the presence of

strong entropy gradients from the blunt nose may require special treatment.

The initialization procedure for the floating-fitting algorithm is
ji

illustrated schematically in Figure 5. 	 Essentially, the strategy is to
r

start from-a flowfield obtained by choosing shock shape and surface dis-
is	 '3

tribution parameters or by using previously computed solutions with nearly

the samevalues of	 Mme , e	 and a.	 This starting flow is then further 1;'
c .

a

refined by iterating with the code which fits the 'bow shock as a boundary

and captures embedded discontinuities.	 Only a few iterations are required

to establish a flowfield that is suitable for the floating-fitting tech-
t;

`	 nique to adequately detect the forming embedded discontinuities. 	 Insta-

bilities that may arise with the capturing code, if strong crossflow shocks

areresent, are avoided b 	 beginning the -floatin	 fittin	 techn ique in thep	 Y	 g	 g floating-fitting	 q fi-

early stages of shock formation,
t
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Figure 5.	 Determination of initial conditions for the floating-fitting scheme
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As shown in Figure 5, initialization of the windward and leeward re-

gions requires an estimate for the bow shock shape. Some empirical cor-

relation formulas have been proposed for the windward region bow shock

shape (see, for example, Reference 9), however, a more convenient estimate

is provided by a scheme suggested in Reference 18. 	 The shape of the bow
tI

shock, of which only the windward portion is used, is assumed to be an
p:

r
r

off-:centered ellipse when projected onto the cylindrical (r, ^) 	 plane per- h
1

pendicular to the cone centerline (the 	 z-axis).	 In the cylindrical polar
i

coordinate system, as adopted in Appendix A, ^ 	 is measured from the wind-

ward symmetry plane.	 Denoting the bow shock cylindrical radius as	 rs

and the cone surface as	 r , the initial bow shock shape (at	 z =1) is

t

(B2A2C2 )'-C Cos	 + B	 sing ^ + cost

(T

B] 2
sin g 	 + cost

3

where the parameter	 C	 is the distance in the symmetry plane that the

center of the ellipse is offset from the center of the coordinate system 1

(r= 0).	 The parameters	 A and B	 are, respectively, the semiminor and
F

semimajor axes of the ellipse.	 to terms of the dimensionless shock stand-
}

off distance in the windward symmetry plane 	 6 L , at the cone shoulder 	 a 5H , M

and in the .leeward symmetry plane 	 d u , the ellipse parameters are

f

l

I

1
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aL + du
src 1+	 2

rc
C	

2 (du - d L )	 (28)

rc ( d SH + 1)
A -

C 2C 2

l	 1

where the standoff distances are normalized by the cone radius.

The number of parameters that must be guessed is reduced from three to

two by the introduction of the empirical correlation (18), known to be {

valid over a wide range of Mach numbers and angles of attack (though un-

tested at angles of attack exceeding the cone half-angle),

tan_
1
 [ (1 + d u ) tan 6 c ] = 28 s 	- tan 1 L (1 +d SH ) tan 6	 (29)

a=0

A

i

where	 8is the bow shock angle corresponding to the zero angle of attacks

Taylor-Maccoll	 (2) solution.

The leeward region initial bow shock may be determined without guess-

ing shape parameters.	 A quadratic extension of the shoulder region bow

shock is ` completely determined by the conditions of matching the known

shock slope and standoff distance at the lower meridional boundary and by

satisfying the zero slope condition at the leeward symmetry plane. 	 For
i

some cases, this quadratic shock may intersect the free-stream Mach cone.

I	
If a test reveals that bow shock mesh points lie within the free-stream

I

Mach cone, an incremental_ shock standoff distance is added.	 The bow shock
^

is moved outward a trial amount in the leeward symmetry plane. 	 The incre-

mental function is specified as `a cubic in	 ¢	 satisfying zero slope con-

x f,r«
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straints at both leeward region meridional boundaries. The function de -

creases from the trial value in the leeward symmetry plane to zero at the

lower meridional (shoulder) boundary.

Distribution of Flow Variables

As indicated, the difficult task of specifying an initial flowfield

for the floating-fitting code that may include embedded discontinuities is

alleviated by first iterating on a rough initial flowfield approximation 	 h
i M

utilizing the capturing capabilities of the shock-as-a-boundary code.

z The procedure used to obtain the rough initial flowfield approximation

-	 may be illustrated by considering the windward region problem. 	 Here the

nondimensionalizations are those used in the shock-as-a-boundary code and

described in Appendix A.

At the bow shock, the analytically prescribed bow shock shape together

#.i

r	 with the known free-stream conditions and an assumed zero shock speed are 	 j!

a?	 sufficient to determine all downstream shock values. 	 The appropriate shock
h

jump conditions are given in the Shock Boundary section of.Appendix A.

At the Gone surface, a guess of the windward stagnation point pressure
(!

PC
 (0)is the only parameter that is required. 	 Based on previous windward

s

solutions, the pressure decrease around the cone may be approximated by

r	

_	

l
P	 W 2 I (P C ( 0 ) + P ) +	 (PC 	 -p^)cos ^

J	
(30)

LLL	 {

s	 ;:
f$	 where	 p.	 is the free-stream pressure.

t

The surface entropy is constant and assumed to equal that behind the 	 A'

j t	 bow shock	 in the windward symmetry plane, denoted as	 S C .	 Thus, surface
rrit

l	
,

wi	 _ _,-+^r_^----r---.._ ._	 _ -...	 _ .^.z_-•a...::e• vttr.:^.	 ^a^wrac^r _.^.4.xn,.h	 .	 ...p.,.u........,..W..-	 .	 --	 _.
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density is given by

1 4

p W Y

p c O =	 S (31) <
c

The velocity modulus is obtained from the condition of constant total

enthalpy as

(^)

qc (^^
fcc

(32)

The windward region meridional outflow boundary^
u 	is assumed to be

t
positioned downstream of the crossflow sonic line. 	 On the cone surface the

w-velocity component must satisfy the s upersonic outflow condition asY	 p	 Y	 P well fr^

as the symmetry plane condition that	 w = 0	 at	 = 0.

A linear increase in	 w	 is assumed according to {
-a

I	 (Y - 1) p (^*)
f	 we O (33)2 p (	 )

_	 where the crossflow sonic line intersects the body at 	 ¢ _ c *	which is

specified as	 ¢*	 6 ^U.

Combining constant total enthalpy (Equation (32)) with the tangency

condition yields the 'remaining cylindrical polar velocity components (Ap-

pendix A)

qc(')2O2

cc z

and
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vc (^)	 uc ($) rc, (35)

Linear interpolation between the surface and bow shock furnishes the
i

interior flowfield pressure, density, w- and v-velocity components with the
p

i
u-velocity component calculated to satisfy total enthalpy.

In the windward symmetry plane the linear density distribution is re-
1

placed in order to maintain the streamline entropy S c . The symmetry plane 	
ff

n	 l
linear pressure distribution is accepted with the density determined as in^	

^SS
Equation ( 3 1).	 1

1

A similar procedure is followed to obtain a rough initial flowfield
i

approximation for the leeward region problem (Figure 5). The main differ- 	 !
1
f

ence with the windward region technique is that the inflow meridional plane	 1
i

flow values are known. The leeward interior flowfield is computed as an
t

average of a linear interpolation between assumed shock and surface dis-

tributions and a linear interpolation in the meridional direction between
' 	a

assumed symmetry plane values and known inflow conditions.
i

t
t
j

^t

i^

4

1Y	 ..-	 ^^ `: ;tom	 _	 ..	 ^ 7c^`., d•: ^a•1NXaar^/stL:..aS..n^r = . ^r^t.c: f̂^a:.^LtYWtd.Yt.n-'
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CHAPTER V. BOUNDARY CONDITIONS

In the shock-as-a-boundary approach, which captures embedded discon-

ii
tinuities, the physical plane bow shock layer boundaries are mapped onto

L rectangular computational plane boundaries.	 The flow tangency condition is
,= a
ri imposed on the impermeable cone surface and symmetry planes. 	 As a part of

the relaxation process, use is made of the asymptotic condition that the

;i
surface and symmetry plane entropy can vary only through discontinuous

l
jumps at the vortical singularity and at the crossflow shock -cone surface

E
intersection.	 Of the permeable boundaries, the shock-as-a-boundary bow	 y

[ shock is governing by the Rankine-Hugoniot shock jump relations while the

t meridional boundaries encountered in the windward, shoulder, and leeward

region subproblems are either known inflow boundaries or boundaries where
t

the flow is assumed to be outflowing supersonically.

a The floating-fitting approach is distingui-hed from the capturing ap-

proach by imposing jump conditions across discontinuities that do not form

reference mesh computational plane bv..3aries (Figure 3).	 The floating

vortical singularity is an impermeable point in the crossflow plane projec-

tion while the floating bow and crossflow shocks are permeable surfacesn

with, respect i vely, known and unknown upstream flow conditions.

S
One--Sided Differencing

The implementation of boundary condition schemes at reference mesh

points on the'cone surface and the symmetry plane involves the evaluation

of derivatives normal to these surfaces.	 Similarly, at floating mesh

points on each side of a discontinuity, derivatives in the discontinuity

r



36

normalized direction are required. 	 The normalized direction, as defined in

f

t:

Table 1, is not necessarily the normal direction since the alignment trans-
r

formations are nonorthogonal.

At the reference mesh boundaries the normal direction derivatives are i
f

evaluated using equally spaced, three-point, one-sided approximations in

both the . predicto.r and corrector steps of MacCormack's algorithm provided

a discontinuity is not encountered. 	 The use of three-point difference ap-

proximations is in keeping with the second-order of the algorithm.	 Suit-

able one-sided approximations at reference mesh boundary points in the

vicinity of discontinuities, and for floating mesh points, have been given

in the Special Discretization Formulas section of Chapter III.

Cone Surface

The shock-as-a-boundary code employs Abbett's (50) Euler predictor/ (^

simple wave corrector procedure at the cone surface. 	 The application of .t

the scheme for the shoulder, region problem is presented in Appendix A. $;

Reference 31 outlines a version of Abbett's scheme similar to that adapted

in the shock-as-a-boundary, radially-asymptotic, windward region code where ,

the surface entropy is assigned the value behind the bow shock in the _sym-

metry plane.

..
A modification to Abbett's scheme has been devised to account for the T

jump in entropy at the crossflow'shock occurring in the leeward and sym-

metrical half--plane problems. 	 The technique falls short of the accuracy

obtainable with a properly formulated shock fitting procedure but is a

vast improvement over the isentropic Abbett scheme. 	 The modified scheme

1
L `

f	
^ _

r,



,. fs .0 +ustlwi^sx^'xi.T^ltdm_rr-valt`ava`n w-v:rrr>.-ro-.n ^e».---.^Y^ ,wv ..b^.^^ ;_^.-,....._..^^••• .__ 	 ..^^..^.W.._^»..r^_

	

h ^ 3	

37
	

f

I

also eliminates the entropy oscillations neighboring the crossflow shock

that occur using the nonisentropic Abbett scheme presented in Reference 51.

In the radially-asymptotic, shock-as-a-boundary approach, the modifi-

cation to Abbett's scheme is applied following the corrector step of the

nonisentropic Abbett procedure (51). 	 Denote these corrected surface flow
s a

values as	
,.	 ,.	 v
p, p, U. v, and w.	 Here the veloc ity components are in the

cylindrical polar coordinate (z, r, ^) directions and the nondimensionaliza-

tions are asresented in A 	 sp	 Appendix A.	 Let the modified surface flow valuer

be denoted by	 p, p, u, v, and w- and let the subscripts 1 and 2 designate,

respectively, the crossflow shock upstream and downstream conditions.

The pressure from the Abbett scheme expansion or compression is not yr

+laltered by the modification procedure, that is, at the	 zn step, }	 a

P(o = PO	 (36)
f

I

This surface pressure distribution is scanned Bird the crossflow shock is

assumed to lie within the mesh interval containing the maximum compressive`
If

F
^

d	 pressure gradient.{ k

Least-squares fit polynomials (2nd-degree) are _passed through the
s`

pressure data lying on the crossflow upstream and downstream sides of this ?

mesh interval providing approximations for the pressures at the crossflow {

shock of the form

p1 (^)	 a¢2 + be	 + c	 (37)

P2 M = d02_ + e^ + f	 (38) t

The crossflow upstream density distribution follows, once the upstream

side has been identified, by imposing on the cone surface the value of

-	 n	 _,t_. _ ^
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t

entropy obtained at the bow shock in the windward symmetry plane, denoted x
a

as	 S 1 .	 Thus,

1 ^

p(^h)1Y
P ( ^)	 = L

(39)
S1	 J

i

The velocity components, which satisfy surface tangency after the turn'

in Abbett's scheme, are proportioned to satisfy constant total enthalpy by

the relations

u=u
q

v = v (40)
q

w=w
q

where the velocity moduli are

q	 1 - P

(41)

q=	 1 -?
P

The upstream surface crossflow Mach number
a

14
w

(42)

'f

Y^2 p

is computed at each mesh point and a least-squares fit quadratic approxima-

tion is obtained for the upstream Mach n ,=iber at the Grossflow shack as

M	 g^2 + he	 + i. (43)
cfl

{

t;
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The location of the crossflow shock within the mesh interval, contain-

ing the maximum compressive pressure gradient is computed by solving for

that	 _ ^S	which satisfies the normal shock Rankine-Hugoniot jump condi-

tion

1
2,y  

Mc£1 (^)	 -	 Cy	 1)
P2 M = PI( ) (44)

lY +l
zI}	 ^ Equation (44) is solved iteratively using the Newton-Ra hson techniqueq	 y	 g	 p	 q

^	 s

,

ke

-1
L ^m

^m _ ^5 	
(45)m-1

,.

S t.

where	 m	 is the iteration index and
t.

L($)	 _	 (1' + 1) (d^	 + e^ + f)	 +	 (a^2 +b¢ + c) [ (Y - 1) - 2y (g^2 + h^ + i) 2 )	 (46)

The mesh interval mid-point serves as the initial guess for

'k With	
s	 determined, the crossflow shock entropy jump is given by

;

2y Mcf 	- (Y - 1)l-	
_

62 _ S1
Y + 1

cfl	 y	
(47)

(y + 1)M2

(y - 1)M2fl + 2I
x

i

; The crossflow downstream modified surface density and velocity distri-

butions are computed, in the same manner as on the upstream side, but with

the value of entropy	 S 2	being imposed.

The floating-fitting code uses Kentzer's surface boundary conditions r`

(52) in conjunction with the MacCormack algorithm in a two-step procedure

analogous to that proposed in Reference 19. 	 Also, included as an option`

f

.. .:.  	 ^	 ^	 ..t_m:,	 x.r tr.5..'m-a-	 ' rail-A3..f..	 r. _ 3e' vtSan.	 r
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in the floating-fitting code, is a simple boundary condition scheme termed

a one-sided differencing approach.

In the one-sided differencing scheme the conservation -law .'form of the

gas dynamic equations (Equation (9)), with the tangency condition v = 0,

is integrated on the cone surface. The resulting values for total energy

e and the velocity components u and w are accepted. Recall that in the

I

	

	 floating-fitting, time-asymptotic code the velocity components u, v, and w

are with respect to a spherical polar (R,6,) coordinate system and the

nondimensionalizations are as described in Chapter II. Surface pressure is

_ computed by iteratively solving (using Newton-Raphson) the nonlinear equa-

tion relating p to the total energy e

e=by+cpY	(48)

where

1	 a
b = Y-1

U2 +w2	
(49)

c	
1	

^,

2SY

The value of entropy S appearing in the e coefficient is set to the 	 x.-

appropriate crossflow shock upstream or downstream value. This surface

entropy at the new time level is determined in a preliminary calculation

which advances the floating bow shock only in the windward symmetry plane

(not required if solving just the leeward region) and the floating cross-'

flow shock only at the cone surface. With p and S known, a new density

}	 E
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is obtained (see Equation (39)) and used to recompute all but the last row

of the	 U	 vector (Equation (2)).

Kentzer`s surface boundary scheme is an approximation of exact charac-

teristics theory which eliminates the interpolations and iterations

required in following characteristic directions in a fixed mesh.
k

The approach combines the differentiated surface tangency condition

4	 (vT = 0) with the compatibility relation along the down-running character-

is-tic in the	 X, T-plane resulting in a differential equation for the sur-

face pressure

X	 YX	 Y °
PT = (apX - YPvX)	 - aP (2au +w 2 cot 6 c )	 (50)6	 - (wPY + YPwY)6	

-	 no

o	 c	 c

With	 v = 0, the remaining velocity components 	 u and w	 are computed usings

respectively the 'R and ^-momentum 	 equations, the second and fourth rows

of Equation (13)

Y
t

;

uT	
w	

8	
uy + w2	 (51)

sin
c

}

and

Y

WT
	 - ^p PY + WwY1

- uw	 (52)
sinY6

c #	 `.
t

Derivatives along the cone surface (Y-direction) are approximated by
i

the MacCormack forward-backward sequence or, if neighboring a discontin-
s	 ;a

uity, by special discretization formulas (Chapter III). 	 The only exception

being the	 wY	 derivative in Equation (52) which is always approximated by

backward differences (19).
z

f:

<

r^

y

MW



42

	

As in the one-sided scheme, the surface entropy at the new time level	 >'
1p

:Ls obtained in a preparatory step by advancing the floating shocks. The 	 }'

updated density is computed with the specified entropy and the pressure?

from Equation ( 39). Equation ( 13), for the total energy, need not be inte-

grated, instead, e is obtained from Equation (3).

Kentzer's scheme is modified for surface mesh points in the symmetry

lanes (which are conical stagnation (v = w = 0) points). The symmetryp	 g	 - -	 ymm y con-

ditions	 9

w = 0

(53)

pY =uY= vy =eY=_0

4

are applied and thus Equation (52) is discarded. Note that u cannot be

obtained directly by integration since, upon substitution of w = 0, Equa-

tion ( 51) reduces to

1

uT - 0	 (54)	
ti

i

{

One method to allow for relaxation of the u-velocity component is to

introduce the eT equation, the last row of Equation (13). Further, at 	 "?

the conical stagnation points e _ is related to p- byT	 T

r

e-	 (e—	 p	 (at	 = 0, 7r)	 (55)
T	 Yp	 T

With e known, u follows from Equation (3). 	 s

Inflow and Outflow Meridional Boundaries

The three subproblems making up the partitioned half-plane (Figure 2a)

are joined by meridional inflow and outflow boundaries.

p

3

t	
L

.t

r

^G
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i

i

In the windward region the outflow boundary must be selected a priori

such that it lies beyond the limiting characteristic in the crossflow plane.

Extrapolation then provides flow values along the boundary. 	 Where possible,

second-order, equally-spaced extrapolation is used. 	 However, since the

- floating bow shock may cut across the reference mesh it is necessary to

also allow for unequally spaced data obtained by interpolating bow shock

values.

The shoulder region	 ^-marching code (Appendix A) obtains initial data

$' from the converged windward solution.	 The	 w-velocity must be supersonic

all along the initial data line.	 The	 ^-direction sweep around the cone is

terminated when the	 w-velocity drops to sonic speed.	 In practice, a cut-
f

9	
j

off of	 w = 1.05a	 is used since the	 ^-step size approaches zero as '_w

"	 - approaches	 a.

r
The leeward region inflow boundary flow variables are held fixed at

i

f values prescribed by the shoulder region code. The initial meridional

plane is selected such that the crossflow Mach number always exceeds unity.

Symmetry Planesf	 ,

k	 j Imposing the symmetry conditions, ; Equations (53), on the first four

` rows of Equation (13) yields the three equations to be integrated at the

windward and leeward symmetry planes. 	 The symmetry conditions are also

applied in the calculation of the vortical singularity and in the calcula-

tion of the body and bow shock points at the symmetry planes.

As with the	 wi	derivative in Equation (52,), the differencing of	 vX -

in the	 yr	
equation should be made in 'accordance with the sign of the

i

i

F

^	 _
T	 p

.r#tasahk_
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v-velocity (19). Additionally, special discretization is required at

points neighboring the -ortical singularity in the leeward symmetry plane.

The updated entropy is specified above and below the vortical singu-

larity and e computed as in the body boundary calculation.

Symmetry conditions may also be applied to the conservation-law form

of the governing equations (Equation (9)). If the conservation-law form is

integrated in the leeward symmetry plane, no special treatment is given to

the vortical singularity.

Discontinuities

	

The bow shock in the shock-as -a-boundary code is calculated following	 x
3

Thomas' "pressure approach" (48). Its adaptation to the shoulder region

problem is detailed in Appendix A. In the windward, leeward, and symmetri-

cal half-plane problems the use of Thomas' scheme is similar to the appli-

cation discussed in Reference 31_
7

The floating-fitting technique utilizes Kentzer's characteristics

based approach (52) to propagate the bow shock, the embedded crossflow

shock, and the vortical singularity.

Detection and monitoring

Embedded discontinuities are searched for in the flowfield provided

by the initial condition procedure (Chapter IV). The floating vortical'

singularity is initially positioned at a weighted location within the mesh

	

interval having the maximum density gradient in the leeward symmetry plane. 	 '.

i

I
`f

......... w..... .: qtr  	 J	 _	 '.`«.+,._.''.."•'^"'j
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Crossflow shock points are detected by continually scanning the

pressure distribution along 6 = constant lines. Trial floating shock

points are positioned at a weighted location within the mesh interval

having the maximum compressive gradient (as computed by the conservation-

law form of the governing equations). With extrapolated upstream flow

values and a finite-difference approximation for the shock slope, a

r
normal Mach number is computed. If the normal Mach number is greater

than one, then tracking of the trail shock point as a shock point

begins.

A check for embedded shock points is made after each advancement,
)

with points being added or discarded. The embedded shock forms early

and locks into place near the cone surface. However,, the end-point of

the embedded shock tends to oscillate. In order to eliminate this

problem, without the complications of treating the true shock tip

(41),, an artificial cutoff of the fitted shock is made. Some small

overshoots and undershoots, typical of shock-captured solutions, are

observed at the truncated shock tip. However, these small errors do
z,
E:

not propagate away from the tip region.' }

In practice, the simplest of several schemes used to terminate the
•

crossflow shock is to specify a priori a 6-boundary beyond which the

crossflow shock is captured.

r
x
r

j
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Propagation

Combining a characteristic compatibility relation with the differen-

tiated discontinuity jump conditions yields an equation for the accelera-

tion of the discontinuity. 	 The updated discontinuity speed and position is

obtained by integrating its acceleration using a second-order Euler pre-

dictor/modified Euler corrector method.

The updated flow values on one side of the discontinuity are obtained

by integrating the nonconservative form of the discontinuity aligned gov-

erning equations (Equation (13)), with the exception of the bow shock where

one side is the known free stream.	 At the crossflow shock, the governing i

equations are integrated on the low pressure (crossflow upstream) side.
i'

At the vortical singularity, the integration is performed on the low en- }

tropy (bow shock) side.
js

`. With the updated geometry and flow values known on one side, the up- 1

L dated flow values on the opposite side of the discontinuity are determined

by the jump conditions.

The implementation of Kentzer's scheme may be illustrated by consider-

ing the propagation of the crossflow shock.	 Crossflow shock points are i

tracked in the	 Y--direction.	 Using the notation and definitions shown in

Figure 6, qs-	 represents the acceleration of the crossflow shock) normal

to the shock and pointing towards the high pressure side. 	 The equation for

the crossflow shock acceleration (with clustering in the reference mesh) 's

obtained by combining the compatibility relation along the down-running

characteristic in the	 Y 3 , 7-plane (Table 1) with the	 T-differentiated f

Rankine-Hugoniot jump conditions, is <<<,,
4
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qST = Rl (R2# R3 + bR4 + R5 + R6)	 (56)

i

where

1 =	
Y + 1

Y

2{ 2p 1 ill	 + aprel f
Ll +

(	 l

2

JlMl̂  Jrel k

W2 y+1 {4plulrel-ap	 ('y-1) -2	 11	 l2
J

{
relJ

P1 T 4a,,, i

+	 -Y+l [ 2 Y M 1 	 (Y - 1)1
rel	 J

aP
-	 ( P l u l	 M 1 	 )Y +1	 rel	 rel+	 1	 1

r

R3 P	 + w= a	 vn	 n^^	
6T T^

a	 5
{

R4 = [pY - ap (PI8 vY + n WY-) 7YY
 j

R5 6	 1 6
	

i (v - ane)pX + ap [ (a - vne )vX - vn WR I ^R.
l

r	 a
o	 c ;

R6 = ap {a (2u + v cote) - [ne (uv - w2 cot 6) + n w (u + v cot 6) l }

!

!:

0

In Equation (56), the down-running characteristic is defined by

c	 Os8 y + sin 6 	
au	 (57)

i

the upstream normal relative Mach, number is Y

ul 1'	 (58)Ml rel
r

al

and the nonsubscripted flow values represent the crossflow shock downstream

conditions. b

The crossflow shock acceleration (Equation (56)) is used to update the 4

normal component of the shock velocity and theshock position according to

a

F	 -
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i--

x

Predictor:	 qn+l	 qn + qn AT (59)
S	 S	

sT

^n+1 = ^n + ¢ n DT (60)
s	 STS

Corrector:	 n+1	 n	 1
qg	 q	 + n+l	 n lI A;I qs_ + qs_ (61)

2 T	 T

s+l	
^S + 2

+1 + S AT
1^s

(62)
-Jl	 T	 T `:

I
As is shown in Figure 6, the component of the shock velocity in the

¢-direction is related to the normal component by

^sint 	 qs (63)

With the updated crossflow shock low pressure side flow values, the
i

`	 upstream velocity component normal to the crossflow shock is given by

ul = vl n6 + wl n (64)

and, relative to a shock moving with velocity	 q,,,,
s

U1 rel- 
u 	 - qs (65)

Application of the Rankine-Hugoniot relations yields ;

2y lrel	 ('Y - 1)
P2- +1 P1 (66) r

a 2
rel	 Y + 1 Mlrel	

rel

P2 _ 
u2 rel 

Pl (68)
rel i-

t

33
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I

The	 u-velocity component (velocity in	 R-direction) is tangential to ;r

the crossflow shock and hence remains unchanged
^1.

t

u2 _ u l 	 (69)

The remaining downstream velocity components are
i

V2	 (u2rel - ul rel ) ill  + 
v l 	(70)

k

W2	 (u2rel ^ uirel) n^ + wl	 (71)

)
With the velocity components determined, the total energy is obtained from rt

Equation (3). n

The propagation of the bow shock is analogous to, but much simpler

than, that described for the embedded crossflow shock.

The motion of the vortical singularity in the leeward symmetry plane {:1

is, following Kentzer's approach, governed by

x __	 1	 { [ ( a l + a2 ) PR + YP ( v2 X - v1 X)) x	 + 2YP (u2 - ul)q	
e	 _ 8

vsT	 P1 a l +p 2 a2	 o	 c

i	 qvs (al p1 u l + a2 P2 u2) }	 (72)

where	 qv	 is the speed of the vortical singularity, positive pointing
o-

towards the body, and where the subscripts	 1`and 2	 represent, respec-

tively, the bow shock and body sides of the singularity. r d
,

Prior to advancing the vortical singularity, the bow shock in the lee-

ward symmetry plane and the crossflow shock at the cone 'surface are advanced

to 'make available the updated values of leeward symmetry plane entropy,

denoted as	 S1 and S2.

r
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1

i

With the updated position and speed of the vortical singularity, to-

gether with the bow shock side (side 1) flow values, the body side pressure L

is given by the continuity of pressure across the singularity

P2 = P1	 (73)

and the absence of a normal relative velocity component yields the body

side	 v-velocity
1

v2 - vl _ - qvs	 (74) t

Equating total enthalpy across the singularity yields an equation for
f

~the	 R-direction velocity component f

?^	
P1	 P2	 2 i^

(— _^lU2 _
p 2J

+u2]
J i

then Equation (3) is used to compute	 e2.

Alternatively, the total enthalpy need not be equated across the sing-

ularity provided the 	 eT or uT	equation is integrated on the body side of

- the singularity.
s

Variable area effect

As noted in References 39 and 41, shock acceleration equations can be

very sensitive to the manner in which they are discretized. 	 The crossflow`

' shock acceleration Equation (56) is no exception.
_

4

z

Following the suggestions in Reference 39, the 	 R	 terms in Equation

(56) have been grouped according to their differing physical roles. 	 The

accurate calculation of 	 I25	 requires that the	 vX and wX	 difference ap-

proximations include discontinuity mesh points which lie midway between the

f
;M
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mesh points being tracked.	 The inclusion of this so-called "variable-area"
A

effect thus doubles the number of discontinuity mesh points.	 The location
k

of these intermediate mesh points is determined by the points being tracked.

The evaluation of side 1 temporal derivatives at the intermediate mesh
1

points introduces the further complication of obtaining upstream flow values 1

by interpolation in the reference mesh. 	 However, with these added mesh -	 !

points the tendency of the crossflow shock to develop kinks is removed.,

}

t

I
z

t
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u
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x
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CHAPTER VI. RESULTS AND DISCUSSION

The partitioning of the crossflow plane into separate windward, shoul-

der, and leeward region problems (Figure 2a) is demonstrated by solving the

case: M
co 

= 7, 6 c = 20°, and a = 30 1 . With this choice of parameters, re-

sults of the floating-fitting method can be compared with those obtained in

Reference 34 using the GTT modified method of lines approach.

}Additional windward region results are obtained for the case: M
)

7.95, A	 _ 10°, and a = 16° to compare the numerical floating-fitting solu- t
c

r
tion with experimental measurements .reported in Reference 47.	 The compari-

son is made on the windward side of the cone where viscous effects are
3

small.	 Experimental data on the leeward side cannot be used to verify the v

numerical method since discrepancies would be due primarily to the inappro-

priateness of the inviscid model to describe the viscous dominated region"

near the cone surface and in the symmetry plane.
f

The symmetrical half-plane problem (Figure 2b), where partitioning of

the crossflow plane is riot possible, is demonstrated by computing the case:

M	 =3, e= 7.5 1 , and a	 15°.	 In Reference 31,-a solution obtained using
co	 c

a finite--difference method based on the shock-capturing approach (for

embedded discontinuities) is available for comparison. s

The stability and accuracy of the floating-fitting technique was first
r	 ;

tested on the windward region problem, thus avoiding the additional com-

plexity of embedded discontinuities. 	 Also, several boundary condition

schemes were assessed using windward region calculations.

x

{

w3 `	 ^. x ^.,^ ^_._^, b_	 _ .b	 .z	 y^
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i

Figure 7 shows the solution for the floated bow shock shape in the

reference mesh compared with the shock-as -a-boundary results and a method

of lines solution (34). 	 The corresponding density distribution behind the

bow shock is plotted in Figure 8 with the method of lines solution from ^a

Reference 13.	 The floating -fitting, shock-as-a-boundary, and method of
i t

lines results are in excellent agreement. 	 Numerous crossings of the refer- _	 ;t

ence mesh	 0	 constant grid lines (Figure 7) are demonstrated to have no

adverse effect on the floating-fitting solution, &

Body boundary condition methods are compared in Figure 9 for a wind- 2

ward region case where experimental values are also available (47).	 The

numerical methods all tend to produce the same result. 	 The differences be-

i tween the numerical and experimental pressures are primarily due to experi-
j

$

I

mental errors (12, 52) with viscous effects being negligible (53).
;	 ,,	

a

{	 it

It might be expected that Kentzer's body boundary scheme, based on the 1

theory of characteristics, will yield the most accurate solution. 	 However, {

^
the windward region results in Figure 9 do not distinguish one body boun-

r

dary procedure as being superior. 	 This close agreement of the various

{ techniques is most likely due to the use of coordinates and velocity com-
r

4 ponents (independent and dependent variables) which are in the surface

normal and tangential directions.

In Figure 10, the solution from the shoulder region	 ¢ -marching code

is shown together with the ,windward ,region results in the form of crossflow
z

plane contour plots. 	 The acceleration around the cone shoulder is demon-

strated by the crossflow Mach number levels in Figure 10a. 	 The windward i
}

^
;ry
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crossflow sonic lines lies well upstream of the windward outflow boundary

located at ^ = 90 0.

The constant entropy `ontours in Figure 10b represent the streamline

pattern. The shoulder region contours match precisely those obtained by

the method of characteristics (13, 34).

Results for the leeward region flowfield are prese=nted in Figure 11.

The floating bow shock dips slightly in the leeward symmetry plane (Figure

ll.a).	 The shock shape thus represents the so-called "anomalous" position

(23, 35) and differs from the "regular_" position of the extrapolated bow

,r	
shock.

The analysis presented in Reference 35 lends support to the floating-.	 i

fitting solution for the bow shock shape. 	 In Reference 35 an expression is

derived;, based on the assumption of small incidence, for the angle of at-

tack at which the bow shock transitions from the regular to the anomalous

^.,	 position.	 For	 M	 - 7, a c = 20 0 , and	 = 1.4	 the maximum shock standoff

distance moves out of the leeward symmetry plane when 	 a > 4.1 1 .	 The for-

mation of the crossflow shock and the lift off of the vortical singularity

at large angles of attack is not accounted for in this analysis. 	 Results

presented in Reference 54, however, do verify the change to the anomalous

position for	 a = 5°	 and the movement of	
esmax	

increasingly away from

the symmetry plane for angles of attack up to 150.

The density distribution behind the bow shock is shown in Figure llb.

The solution verifies the conjecture (13) that for relatively "thick" cones

with "moderate" or large free-stream Mach numbers it might be expected that

the bow shock will retain nonzero intensity in the leeward symmetry plane.

f f
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That is, although the bow shock dips in the leeward symmetry plane, it does

not reach the free-stream Mach cone (Figure lla). The density behind the

bow shock in Figure llb drops to about 1 . 2 times the free -stream value.

The crossflow shock, in Figure lla, is perpendicular to the surface at

its base. Away from the surface, the crossflow shock bends very slightly

towards the crossflow upstream direction. The normal intersection of the

crossflow shock with the cone surface is not imposed in the floating-

fitting code, but evolves as the steady state conical solution is approached.

The length of the crossflow shock in Figure lla is the length of the
4

i}
fitted portion only. As described in Chapter V, `-he fitting scheme is not

F{	 applied all the way to the crossflow shock tip _(where the upstream normal

'	 Mach number is one).

YThe pressure and density distributions on the downstream side of thef	
^ 

crossflow shock are shown in Figure llc. Tentative evidence for the pre-

} Bence of aconical logarithmic singularity, analogous to that found in two-

dimensional flow, is provided by noting the difference between the Rankine-

Hugoniot determined p 0  slope at the cone surface with that from the
_	 sa

normal momentum equation with v = b:r
z

,I	pe = Pw2 cot @	 (at - 0 = 6 )r	 (76)

(plotted as a dashed line in Figure 11c).

This numerical + vidence is, of course, only speculative. In lieu of

E
an analytical proof, further numerical parametric studies are needed to

support this conjecture on the existence of a logarithmic singularity.

^s
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The leeward symmetry plane density distribution, obtained by solving

f
fi!
i

the conservation-law form of the governing equations without any special r

treatment of the vortical singularity, is compared with a modified GTT
i

method solution (34) in Figure lld.	 The strong density discontinuity at r4

the vortical singularity is spread out over several 	 6-degrees in the

singularity-captured solution. From the leeward symmetry plane density

(and	 u-velocity) distributions it may be inferred that the singularity-

captured soiution demonstrates, at least qualitatively, lift off of the

vortical singularity.	 However, the smearing out of the singularity, which

closely resembles the viscous behavior observed experimentally, gives rise

to the largest total enthalpy errors (^- 0 (1%) ) _ in the f_lowfield (see Accu-

racy and Convergence Section of Chapter III). 	 The	 ©-direction velocity i

component in the leeward symmetryymmetry plane (v-velocity) is negative at the bow

shock, stagnates at the vortical singularity and again at the cone surface,

and should be positive between the singularity and the surface.	 With a t

singularity- captured solution small oscillations in the 	 v-velocity distri-

bution between the singularity and the surface (where the magnitude of	 v

is small) can cause negative 	 v-velocities.	 Thus, some flow features near

the singularity are not resolved using the singularity-capturing approach.

Implementation of the fl.oatinq-fitting procedure for the vortical
a

singularity, presented in Chapter V, does not improve the resolution of the
9

singularity.	 The fitting technique requires accurate information from the
K

flowfield interior (transmitted by the 	 wy	 derivative) which is computed
_

using the conservation-law dependent variables.	 However, large gradients
n

in the flowfield, but not discontinuities, exist adjacent to the leeward
i

L

l'
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symmetry plane.	 Thus, unlike the flow regions on each side of floating- };
it

fitted shocks, the neighborhood of the singularity is not smooth, especially t1
li

I N

-lawin the	 6-direction.	 The conservationformulation tends to smooth these

gradients.	 The floating-fitting scheme, in turn, moves the singularity and

imposes jump conditions based on the smoothed interior flowfield values.

The result of this complicated interplay between the singularity, the sym-
y,

metry plane boundary conditions, and the flowfield interior is that a small
r

1
vortical singularity velocity remains (nonconvergence) while the neighboring

flowfield still resembles the singularity-captured solution. 	 A new set of

dependent variables for the flowfield interior, similar to those suggested

in Reference 55	 might help to resolve the singularity. 	 However, the

conservation-law form has proven to be very convenient in regards to the
1

crossflow shock end-point treatment; such benefits would be lost with a

change of dependent variables.

A symmetrical half-plane solution is presented in Figure 12. 	 The bow

shock loses its strength on the leeward side as it approaches tangency with i

the free-stream Mach cone (Figure 12a). 	 The density behind the bow shock,
k

plotted in Figure 12b, thus becomes equal to that of the free stream on the

'leeward side.	 Kentzer's shock boundary scheme accurately maintains the

zero strength shock solution. #
E
^

yt The floating.-fitting. result is in agreement with the conclusion in

s

3

} Reference 16 that for relatively "thin" cones or small free-stream Mach

numbers the 'bow shock will degenerate into a Mach wave in the leeward
S

symmetry plane.

'(
}
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As shown in Figure 12a, the crossflow shock (fitted portion) does not

extend very far into the flowfi.eld interior. The pressure jump across the

crossflow shock is apparent in Figure 12c where the surface pressure dis-

tribution is shown. The floating-fitting results in Figure 12c match those,'

obtained by a shock-capturing approach with slight differences occurring

I	 downstream of the crossflow shock. The captured internal shock appears as

a sharp jump due to the alignment of the shock with the mesh, the clustering

of points near shock, and its relatively weak strength.
1	 €
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Complicated flowfields occur about the geometrically simple circular

cone at large angles of attack in a supersonic free stream. 	 The cone prob- }

lem serves as convenient test of numerical techniques intended for the com-
a

putation of multidimensional flowfields containing embedded discontinuities.

The conical nature of the problem provides a clear accuracy assessment that

is not available in the calculation of flows about complex nonconical cone
i

figurations.
i;

All of theestablished numerical methods have encountered difficulties

with cone at large angle of attack calculations. 	 The most successful tech-

nique to date, a modification of the method of lines, is restricted to cases
i

in which the crossflow sonic lines extend to the bow shock.

U

In this study an explicit finite-difference technique, based on the ` "a

concept of floating-fitting discon i.nuities, has been described. 	 Results

have been presented which demonstrate the capability of the method over a

_range of _Mach numbers, cone angles, and angles of attack.	 The technique

has been shown to accurately compute both strong embedded shocks and van-

ishingly weak peripheral shocks. 	 The method does not resolve the structure k

of the`flowfield in the immediate vicinity of the vortical singularity.
G

From a pragmatic standpoint, the 'computer code for the floating-fitting

algorithm, which must include logic for numerous discontinuity crossings of

the computational mesh, is necessarily lengthy. 	 However, the execution ^t

titles are not excessive since most mesh points require no special treatment.
,y

The necessity to input several a priori estimates and generate initial con-

x

,
I

i
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ditions coupled with the overall complexity of the code makes each case a

trial and error process.

From a theoretical viewpoint, it is recommended that future efforts

miah+- ha Airarted tnwards refinina the shnr.k tin calculatinn_ Alsn. the
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APPENDIX A. SHOULDER REGION CALCULATION

The shoulder region flowfield about highly inclined cones is most ef-

ficiently calculated by a two-dimensional meridional marching algorithm

rather than a three-dimensional iterative relaxation approach. The proce-

dure requires that the parameters	 M., a, and a	 are such that there exists

a region.of supersonic meridional velocity component extending from the cone

surface to the bow shock (Figure 2a).	 The principle features of the tech-

nique are outlined below.

Dependent and Independent Variables _.
1-

The steady Euler equations in cylindrical polar coordinates (z, r,f)

' with the	 z-axis coincident with the cone centerline, r	 the cylindrical

radial. direction, and	 the meridional angle measured from the windward

symmetry plane, may be written in weak conservation-law form as

tE'	 + F'	 + G' + H' _ 0	 (Al)
z	 r

where	 E', F', G', and H'	 are the four-component vectors

Pu Pv }-

E 
1	 -

-
kp+put _

F	 -
puv.

puv kP + pv2
,

puw pvw

-pw pv !

G ,	r
H'	 r (v2 _ w 2) 

^.	 (A2) -
Pw	 pkp + pw2	 2pvw

The velocity components 	 u, v, and w	 are in, respectively, the 	 z, r,
.r

¢-directions.	 The pressure	 p	 and density p	 are nondimensionalized with

respect to their free-stream stagnation values and the reference speed is

_

^J
.	 Y,' Y	 .w.... v _n.cv..:eltt 2x. _..	

.. s	 __.



IP

i

the maximum adiardtic speed. The constant k is related to the ratio of	 d

specific heats 1 by

k = Y-1 	 (A3)

The governing equations are made complete by the steady flow conserva-

tion of energy relation

p = p (1 - u 2 - v2 - w2 )	 (A4)ii

1
In order to treat the bow shock as an outer boundary of the computa-

tional domain, the independent variable transformation,

= z

r - r (z)
=	

c	
(A5)

r s ( z) - rd (z)
z

i

4	 where

r	 z tan 8	 cone radiusc	 c

rs ( z)	 bow shock radius	 r

is applied to Egnation (Al). With the assumption of conical flow, Equation

(A5) represents a self -similar transformation and all ,flow derivatives with

respect to	 vanish. The transformed conical governing equations are 	 -t

G* + E* + H* = 0	 (A6)

where

a

}



^T

i
fi
l

i

76

G* = G'

F*=E'Z+_F'r,+G'^	 (A7)

H* = H' - E'(E Z )
E
 - F'(Cr )

C
 - G^(^^)

with

-rCZ - E (r sZ - rcZ)

^z -	-rr
s	 c

r	 r	 - r
f	 s	 c

- rs^

r	 - rs	 c (AS) ^.
-rs	 + rC

z	 z
(CZ) 	 -r	 r t

s	 c -

x

(fir)	 = 0
r

i

Finite-Difference Method i.

With initial conditions specified along a 	 _ constant line (provided

by a windward region solution), MacCormack's predictor-corrector algorithm

'	 (Appendix B) is applied to Equation (A6) to advance the solution in the
r^

?.

meridional direction.	 The calculation is terminated when the minimum Mach

number in the hyperbolic marching direction falls below 1.05.

The	 F*	 derivative at interior mesh points is approximated using the

forward-predictor, backward-corrector version of MacCormack's algorithm.

At the cone surface, F* 	 is always approximated by forward differences

j

p

L
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(two-point) with all dependent variables being overwritten by the body

boundary condition procedure following the corrector step. At the bow shock

boundary, F* is calculated using backward differences (two-point) in both

the predictor and corrector steps. With given free-strearn conditions, in

conjunction with a sharp shock boundary procedure, information is trans-

mitted across the bow shock only through the Rankine-Hugoniot relations.

The shock boundary condition scheme is applied following both the predictor

and corrector steps. The finite-difference value for pressure is accepted

with the remaining flow variables being overwritten by the sharp shock pro-

cedure.

Stability Analysis

An estimate of a stable step size for the explicit MacCormack algorithm

is provided by the C-F-L (Courant-Friedrichs-Lewy) condition

(CN)AC (A9)
JamaxI

where

-r w (au V) (w2 -a2 ) (b/r) + av(au v) 2 + (w a2	 2) (a2+1)  
(AlO)

	

w	 CLmax	 C	 2	 -2

represents the slope of a characteristic projected onto the	 0-plane

with

a r

b (All)
r

C

r



and with the local speed of sound

/^kyjp

From linear theory, the Courant parameter CN should be less than or equal

to 1.0; typically, for shoulder region calculations CN is set to 0.9.

Surface Boundary

Surface tangency, constant total, enthalpy, and known surface entropy

are imposed according to Abbett's (50) body boundary scheme.

Let a superscript (1) denote the surface flow values obtained from the

finite-difference algorithm following the corrector step. In order for the
r'.

i

velocity vector

q(l? = u (1) lz + V(1) lr + 
w(l) 

1^	 (A13)

t	 to satisfy surface tangency, the flow is turned through a small isentropic

'	 compression or expansion where the turning angle is

i	
q(^) .n

	

AVsin-1  Iq(1) c
	 (A14)

l

with

-rc l + 1

	

nC = /z^^^^ r
	 (A15)

3 _C + t
^	 z

the unit vector normal, to the cone surface.
"x

The series .relations for the pressure following a turn through an

r
oblique shock wave or an expansion through the small angle AV

Y	
ryryi

i

yy

2 ...._v..	 -	 .  ... _'t4 . ^t..t ....ca. _ d...,,...'be6tiaiSa ^ cr•Dm Y	 1.....e	 .a. 	 ^	

'----x^.:_^"..°°°,e...'e.-	
+. ^^j.
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r

equivalent if terms	 0(dv 3 ) are neglected.	 With	 Av	 from Equation (A14)

and the Mach number !`

(1) #

M	 M
(1) =

(A16)
aq(1)

the pressure resulting from the tangency requirement is approximated by

i

=	 (1)	 l _P	 p	 YM2 v	 -	 (Y + 1)M4 - 4 (M21)
Dv 2

[;M=A (A17)
 4(M2 - 1)

Since surface entropy is specified in the initial meridional plane and

remains constant along the body streamline, the surface density follows

from

i
l

(	 Y
" p = (AlB)

r

l	 J

The velocity modulus satisfying constant total enthalpy is obtained

. through the energy relation (Equation (A4))

q	 - P	 (A19)

With the magnitude	 q	 and direction	 tc	known (where	 tC 	denotes a unit

vector tangent to the cone surface), the finite-difference velocity"com-

v (1)
,ponents	 u(l)^ and w(1) are replaced by

i

—qU
r	 l

+u (1)

( T

N^CZI

l	
JJ 3

-
3

V = -- v (1) - N (A20) i

k T'

3 - ^_ w (1) t	 ;w

(TI

)

x^
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a

where	 N	 is the scalar

q	 ncN =

r^	 + 1
i 	 y

z ix

(1)	 (1) j-u	 r	 + vcz= (A21) !;
rcz + 1

w

)

and	 T	 the tangent vector l

{1) , (1) ii
lq	 c1 n	 T t

^	 r
q	

-
Il

=	 (,I ^CC

- q(1) - N(-rcz 1	 + 1 (A22)
a  z	 r

i

with magnitude`

ITI	 d- Nrcz ^ 2
lu(1)

+	 (v (1) -Nl2 + (w (1)12 (A23)
i^ JI Il J

Shock Boundary

The two-dimensional shoulder region calculation is performed in the

plane perpendicular to the cylindrical	 z-axis.	 Since the flowfield is a'

self-similar, the slope of the bow shock in the 	 z-direction is simply {

a r,
sz

k

z

The slope of the bow shock in the marching meridional direction rs^

is obtained by inverting the relation for the componcTit of the free-stream

velocity normal to the bow shock 	 al, where the subscript 	 1 ; refers to ?'?
?	 1

the bow shock upstream conditions.	 The resulting two roots are

i#

;E

Hf
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E

rs	 + 1
rs^ 

= rs

_
Wl K 

± u
l 	 K2 

i	 wi - a (A25)
r
F

'r

where }
r

V 1 - ul.rSz
` K -	 (A26)

{ w2 _ u2
1	 1

i

with the free-stream velocity components

ul = q l cos ct
i

vl = -ql sin a cos ( (A27)
i
' wl = ql sin a sin

{

I In Equation (A25) the appropriate root when 	 wi > u2	 contains the	 +	 sign
i

while the	 -	 sign is used if	 w2 < u 2i	 1.	 The exact equality	 w	 = u2 , which-	 1
2
	i

would lead to a zero in the denominator of 	 K, is not encountered numeri-

cally.	 In typical shoulder region calculations the switch in sign occurs x

without any difficulties at those meridional stations bounding the 	 ^-

location at which 	 w l2 _ ui. s

The bow 'shock computational plane boundary in the shoulder region code
t

is computed following a "pressure approach" (48). 	 With the known initial

bow shock downstream pressure 	 p2 (where	
n

P2 = p2	 prior to the predictor

step and	 p2	 P2+1	 prior to the corrector step), the -corresponding ̀up-

stream normal velocity is given by the shock jump condition N

u2 = y2
	

1 P1 ( + x--1	 (A28)
1	 4'y	 R1	 (P1	 y+1^

b	 1

r	 ,

7r:

t '

S :3
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Substitution of u l into Equation (A25) gives the rate of change of

the bow shock radius in the marching direction. The bow shock is advanced

using the Euler predictor
J

	

rs+1 = rs + A^ rso
	

(A29)

and modified. Euler corrector

	

rn+l r
n + L lr

s^
n+ r

n+1	
(A30)s	 s	 2 	 s^

sequence.

At the advanced ^-level the pressure behind the bow shock, obtained

from the MacCormack algorithm with one-sided differencing in the C-direc-

Lion, is the only flow variable accepted. The finite difference density

result is discarded in favor of the Rankine-Hugoniot value

P2 + Y - 1

	

P2 = 
P1 P1±p12	

(A31)
l+ Y+l p.1

,k

Equation (A28) gives the updated u l and Equation (A25) supplies the up-

dated shock slope rsC Finally, the updated velocity components, computed

from the shock jump relations applied at the updated shock position, are

(the shock having been propagated by Equation (A29) or Equation (A30))

al (1-P1/A2)^^
v2 = v l +

	

	 (A32)

r + (rsVrs) 2

u2	 u l - rsz (v2 - vl )	 (A33)

rs

W2	 wl -	 (v2 - v z)	 (A34)
s
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APPENDIX B. INTEGRATION ALGORITHM

The gas dynamic equations written in nonconservation--law form as

	

dT + [Blldx + [B2 1dY + A 3 = 0	 (Bl)
i[

or cast in weak conservation-law form as

UT +FX +GY +H= 0	 (B2)

are integrated at each point of the finite-difference mesh by the explicit,

^•	 two-step Euler predictor/modified Euler corrector sequence

Predictor

J+K = fn + ATf	 (B3)
1	

,.

i

Corrector:

fJ+K = 2rf	 +fn+ln +AT fT+ll	(B4)
r	 J

1

where f represents eitherthe d or U vector. The mesh point indices

r	
(J,K) for, respectively, the X- and Y -directions have been omitted from

the right side of Equations (B3) and (B4). The superscripts n, n+1, and

i
n+l refer to in order the current, predicted, and advanced time levels

(Tn+l
 = T  + AT).

The MacCormack (49) variant of the Lax-Wendroff method-, in which spa-

tial derivatives are approximated by equally spaced, two-point, one-sided

differences of altering direction in the predictor and corrector stages, is

used at all mesh points not lying on boundaries or neighboring (in time or

space) discontinuities. The resulting noncentered algorithm is second

order in both time and space.	 r
r

s

y
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For all floating-fitting applications forward differencing in 't-he pre

dictor is followed by backward differencing in the corrector (several per-

mutations of the differencing direction sequence were tested and found to

yield substantially the same results for -the windward region of the flow-

field about a cone at large angle of attack).

To illustrate; the MacCormack algorithm applied to Equation (B2) to

advance the point (J,K) to time leve T
n+l approximates UT in Equation	

t.

	
1

(B3) by

UTJ, K	 AX [.Fj+l — FJ]	
AY [GK+1 GK] - H
	

(B5)

and UT+l in Equation (B4) by

UTJ, K	
— 

DX [ 	 FJ-1]	 0Y (GK 
w GK-1] — H
	

(B6)
	

1

where the nonvarying sub- and superscripts on the right sides of Equations

`.	 (B5) and (B6) have been deleted.

on boundary points, where only one direction is available for forming

differences in both the predictor and corrector stages, equally-spaced

three-point approximations (which are consistent with the overall second-
1

order of the scheme) are used.

In the presenco of discontinuities the usual MacCormack algorithm is

modified to prevent forming differences in time or space that would cross a

discontinuity surface. Where required, unequally spaced one-sided spatial

derivative approximations replace the approximations in Equations (B5) and
a

(S6). These modifications to MacCormack's scheme, necessitated by a

floating-fitting approach, are dealt with in Chapter III.

1
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