
N A S A  C O N T R A C T O R - -  

R E P O R T  

*o 
h 
00 
ey 

I 

U 

U 
Ln 
U 
z 

VIBROACOUSTIC  RESPONSE OF STRUCTURES 
AND  PERTURBATION  REYNOLDS STRESS 
NEAR  STRUCTURE-TURBULENCE  INTERFACE 

S. Muekawu und Y. K .  Lin 

Prepared by 

UNIVERSITY OF ILLINOIS 
Urbana-Champaign, Ill. 
f o r  Langley  Research  Center 

NATIONAL  AERONAUTICS  AND  SPACE  ADMINISTRATION W A S H I N G T O N ,  D. C. SEPTEMBER 1977 

https://ntrs.nasa.gov/search.jsp?R=19770024599 2020-03-22T07:26:22+00:00Z



TECH LIBRARY KAFB, NM 

00bL723 
1. Report No. 3. Recipients ..". 2. Government Accession No. 

NASA CR-2876 
4. Title and Subtitle 

~- 
5. Report Date 

September  1977 
Vibroacoust ic  Response o f  S t r u c t u r e s  and Per tu rba t ion   Reyno lds  
S t ress   Near   S t ruc tu re -Tu rbu lence   I n te r face  

6. Performing Orqanization Code 

I 
7. Authorlr) 8. Performing Orqanlzation Report No. 

S .  Maekawa and Y. K. L i n  
10. Work Unit  No. 

9. Performing Organization Name and Address 505-03-1  1-02 

I U n i v e r s i t y   o f   I l l i n o i s  
Urbana-Champaign, I L  

I .  

11. Contract or Grant No. 

NSG-1264 

13.  Type of Report and  Period  Covered 

12. Sponsoring  Agency Name and Address 

Nat iona l   Aeronaut ics  & Space A d m i n i s t r a t i o n  
Con t rac to r   Repor t  

Washington, DC 20546 14. Sponsoring  Agency  Code 

15. Supplementary Notes 

L a n g l e y   t e c h n i c a l   m o n i t o r :   L u c i o   M a e s t r e l l o   F i n a l   R e p o r t  

~~~~ ~ 

16. Abstract T h i s   i n v e s t i g a t i o n   i s   c o n c e r n e d   w i t h   t h e   i n t e r a c t i o n   b e t w e e n  a t u r b u l e n t   f l o w  and c e r t a i n  
t y p e s   o f   s t r u c t u r e   r e s p o n s i n g   t o   i t s   e x c i t a t i o n .  The tu rbu lence  is t y p i c a l   o f   t h o s e   a s s o c i a t e d   w i t h  
a boundary   layer ,   hav ing  a c r o s s - s p e c t r a l   d e n s i t y   i n d i c a t i v e   o f   c o n v e c t i o n  and s t a t i s t i c a l  decay. A 
number o f   s t r u c t u r a l   m o d e l s   a r e   c o n s i d e r e d   i n   t h e   i n v e s t i g a t i o n .  Among the  one-dimensional  models 
a r e  an  unsupported i n f i n i t e  beam and a p e r i o d i c a l l y   s u p p o r t e d   i n f i n i t e  beam. The f i r s t  model i s  used 
t o   d e v e l o p   t h e   b a s i c   i d e a s   w h i c h   a r e   t h e n   a p p l i e d   t o   t h e   m o r e   r e a l i s t i c   s e c o n d  model   resembl ing  the 
f u s e l a g e   c o n s t r u c t i o n   o f   a n   a i r c r a f t .   F o r   t h e   t w o - d i m e n s i o n a l   c a s e  a s imp le  membrane i s  used t o  
i l l u s t r a t e   t h e   t y p e   o f   f o r m u l a t i o n   a p p l l ' c a b l e   t o   m o s t   t w o - d i m e n s i o n a l   s t r u c t u r e s .  However, a smal l  
random v a r i a t i o n  in t h e  membrane t e n s i o n  is i n c l u d e d   i n   t h e   a n a l y s i s   s i n c e   i d e a l l y   u n i f o r m   t e n s i o n  
neve r   ex i s t s   i n   p rac t i ce .   Moreover ,   t he   ma themat i ca l   app roach   used  i n  d e a l i n g   w i t h  random  membrane 
tension  can  be  adapted t o   t r e a t   o t h e r  random s t r u c t u r a l   p r o p e r t i e s   i n   g e n e r a l .   B o t h   t h e  one-dimen- 
s i o n a l  and two-d imens iona l   s t ruc tu res  mentl'oned  above a r e  backed  by a c a v i t y   f i l l e d   w i t h   a n   i n i t i a l l y  
q u i e s c e n t   f l u i d   t o   s i m u l a t e   t h e   a c o u s t i c   e n v i r o n m e n t  when t h e   s t r u c t u r e   f o r m s  one s i d e   o f  a c a b i n   o f  
a sea- or a i r - c r a f t .  

It i s  shown t h a t  a decay ing   t u rbu lence   can   be   cons t ruc ted   f rom  superpos ing   i n f i n i t e l y  many 
components,each o f   w h i c h   i s   c o n v e c t e d  as a f r o z e n - p a t t e r n   a t  a d i f f e r e n t   v e l o c i t y .   T h i s   s u p e r p o s i t i o  
scheme reduces   g rea t l y   t he   compu ta t i on   t ime  by  reducTng t o   o n e - h a l p   t h e  number o f   i n t e g r a t i o n   w h i c h  
must be performed on a computer.   Furthermore,  the scheme p rov ides  a conven ien t  way i n  wh ich   exper i -  
m e n t a l l y  m e a s u r e d   c r o s s - s p e c t r a l   d e n s i t y   o f   t h e   t u r b u l e n c e   p r e s s u r e   f l u c t u a t i o n   c a n   b e   i n c o r p o r a t e d  
d i r e c t l y   i n   t h e   c o m p u t a t i o n .  

d e n s i t i e s   o f   t h e   s t r u c t u r a l   r e s p o n s e  and t h e   p e r t u r b a t i o n   R e y n o l d s   s t r e s s   i n   t h e   f l u i d   a t   t h e   v i c i n i t  
o f   t h e   i n t e r f a c e .  It i s  found   tha t   impor tan t   spec t ra l   peaks  of  t h e   s t r u c t u r a l   r e s p o n s e  will n o t  
appear i f  decays i n  t h e   t u r b u l e n c e a r e n e g l e c t e d   i n   t h e   a n a l y s i s .  Thus, t h e   u s u a l   T a y l o r ' s   h y p o t h e s i s  
o f   f r o z e n - p a t t e r n   t u r b u l e n c e   i s   u n c o n s e r v a t i v e  as f a r  a s   t h e   a s s e s s m e n t   o f   s t r u c t u r a l   r e l i a b i l i t y   i s  ' concerned. The p e r t u r b a t i o n   R e y n o l d s   s t r e s s   i s   i n d i c a t i v e  of  t h e  change i n   t h e   s k i n - f r i c t i o n   d r a g   d u  

p o t e n t i a l l y   u s e f u l   f o r   d e s i g n i n g   f . l l g h ?   o r   m a r i n e   s t r u c -  

The r e s u l t s   o f   t h e   s t r u c t u r e - t u r b u l e n c e   i n t e r a t t i o n   a r e   p r e s e n t e d   i n   t e r m s   o f   t h e   s p e c t r a l  

en t h e   s t a t i s t i c a l   i n f o r m a t i o n   o f   t h e   b o u n d a r y - l a y e r  
eyno lds   s t ress   can   be   changed  by   vary in   the   s t ruc tu ra l  

*y * 18. Distribution Statement 
Panel  Response 
Noise  Radiated 
Boundary   Layer   Pressure   F luc tua t ion  

U n c l a s s i f i e d  - U n l i m i t e d  

Subject   Category 39 

19. Security Classif. (of this report1 20. Security Classif. (of this page) 

U n c l a s s i f i e d  I U n c l a s s i f i e d  $5.50 116 

*For  sale by the  National  Technical  Information Service,  Springfield, Virginia  22161 



FOREWORD 

The report  is  based  essentially on a Ph.D. thesis  prepared by 

Shoji  Maekawa  under  the  supervision of Y. K. Lin.  The research 

grant is administered  by  the  Acoustics  and  Noise  Reduction 

Division, NASA at  Langley  Research  Center. 



SUMMARY 

This  investigation is concerned with the  interaction 

between a turbulent flow and  certain  types of structure re- 

sponding to its excitation.  The  turbulence is tyyiczl of 

those  associated with a boundary  layer,  having a cross-spectral 

density  indicative of convection  and  statistical decay. A 

number of structural  models  are  considered in the investigation. 

Among  the  one-dimensional  models  are an unsupported  infinite 

beam  and a periodically  supported  infinite  beam. The first 

model is used  to  develope  the  basic  ideas  which a r e  then 

applied  to  the  more  realistic  second  model  resembling 

the fuselage  construction of an aircraft. For  the  two-dimen- 

sional case a simple  membrane is used to illustrate  the  type 

of formulation  applicable  to most two-disnensional  structures. 

However, a small random  variation in the  membrane  tension is 

included in the  aralysis  since  ideally  uniform  tension never 

exists in practice.  Moreover,  the mathewtical approach  used 

in dealing  with  random  membrane  tension can be adapted to 

treat other  random  structural  properties in general. Both  the 

one-dimensional  and  two-dimensional  structures  mentioned  above 

are  backed by a cavity  filled with an initially  quiescent 

fluid to simulate  the  acoustic  environment when the  structure 

forms one side of a cabin of a sea- or air-craft. 

It is shown  that a decaying  turbulence can be  con- 



structed from superposing  infinitely  many  components,  each of 

which  is  convected  as a frozen-pattern  at a different  velocity. 

This  superposition  scheme  reduces  greatly the computation  time 

by  reducing  to  one-half  the number of  integration  which  must 

be performed  on a computer.  Furthermore,  the  scheme  provides 

a convenient way in  which  experimentally  measured  cross- 

spectral  density.of  the  turbulence  pressure  fluctuation  can 

be incorporated  directly  in  the  computation. 

. The  resuits of the  structure-turbulence  interaction 

are presented  in  terms  of  the  spectral  densities  of  the  struc- 

tural  response  and  the  perturbation  Reynolds  stress  in  the 

fluid  at  the  vicinity of the  interface.  It is found  that 

important  spectral  peaks  of  the  structural  response  will  not 

appear  if  decays  in  the  turbulence is neglected  in  the  analysis. 

Thus, the usual  Taylor's  hypothesis of frozen-pattern  turbulence 

is  unconservative as far  as  the  assessment  of  structural 

reliability  is  concerned.  The  perturbation  Reynolds  stress 

is  indicative  of  the  change  in  the  skin-friction  drag  due  to 

structural  motion.  It  is.shown  that,  given  the  statistical 

information of the  boundary-layer  turbulent  pressure  field,  the 

perturbation  Reynolds  stress  can be changed  by  varying  the 

structural  parameters.  Therefore,  the  present  stddy  is  poten- 

tially  useful  for  designing  flight  or  marine  structures  to 

minimize  the  total  skin-friction  drag. 
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I . IN!I?RODUCTION 

In recent  years,  there  has  been  considerable interest 

in the  response of panel  systems to random  pressure fields. 

A n  aircraft  fuselage  excited  by  boundary-layer  turbulence  or 

by the efflux of a jet  engine is a good example. The-objec-. 

tives of such  investigations [l-91 vary  from  minimizing  struc- 

tural  fatigue  damage to reducing  noise  radiation  from  the 

panel system to either  outside or  inside  of  the  cabin. 

Recently,  another  important  application has been  suggested, 

namely, to design  a  panel  system for the  exterior of a vehicle 

such  that  the  total  skin-friction  drag  force over the  vehicle 

is  a minimum. 

The  typical  panel  system  of an aircraft  fuselage  is  a 

multi-span  structure  which is characterized  by  close  clustering 

of natural frequencies  in.wel1-defined  frequency bands. The 

usual  normal  mode  formulation  does not  lead to practical 

results in this case,  since  it is almost  impossible to calcu- 

late  the normal modes  of  structures  with  a large number of 

spans due to  close  proximity  of  natural  frequencies in each 

frequency band. However,  if all the  panels in a system  are 

identically  constructed, then the  structural  configu;ration.is 

spatially  periodic and the  analysis can be greatly simplified. 

Two  alternative  methods are available  to  solve  the  response 

problem  of  such  a  spatially  periodic  structure:  the  transfer 

matrix  technique [10-16] and the  wave-propagation  approach 

[17-211. The  computational  simplicity of both  methods  is 
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achieved  by  utilizing  the  fact  that the entire  system  is 

composed  of  identical subunits. Although  these  two  methods 

are  related c22], the  transfer  matrix  technique is more 

suitable  for  analyzing  a  periodic  structure  with  finite ' total 

length  whereas  the  wave-propagation  approach  is  more  suitable 

for an infinite  periodic  structure. 

In general,  the  spatial  periodicity  is  no  longer 

preserved when the  excitation  is  included  in  the  formulation, 

especially  when  the  excitation is a  random field. In princi- 

ple,  it is possible to express  the total response  under 

arbitrary  excitation in terms of a  fundamental  solution  which 

is  the  response due to one  point-load  on  the  structure, 

Mathematically,  this f'undamental solution  is  the Green's 

function  and  the  total  response can be represented as a  convo- 

lution  integral,  but  the  actual  calculation can become  extreme- 

ly tedious. One type  of  random  excitation  which  does  not 

destroy  the  spatial  periodicity  of  the  system  is  that  which 

is convected as a frozen-pattern  at a given  velocity [14,19]. 

Known as Taylor's hypothesis, this is an assumption  frequently 

made in the  analysis of airplane  response to atmospheric 

turbulence.  Unfortunately,  significant  decays in the  corre- 

lation  of  pressure  field  have  been  found in experimental 

measurements  of  boundary-layer  turbulences [23-28]. Thus, 

calculations  based  on  frozen-pattern  models are just  crude 

estimates  as  far as structural  response to boundary-layer 

turbulence is concerned.  Recently a scheme  has been proposed 

C29-301 in which  a  decaying  turbulence  field  is  constructed 
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from frozen-pattern  components, thus retaining  the  computa- 

tional  advantage of periodic  structure  models. This scheme 

(which  we  shall call the  "turbulence  decomposition  scheme") 

will be  used in this thesis and  applications to structural 

response  analyses will be  discussed. 

More specifically,  the  advantages  of  the  turbulence 

decomposition  scheme will be  discussed in Chapter I1 by 

comparing  to  the  conventional  point-load  analysis. In Chapter 

I11 the  basic  concepts  of  the  turbulence  decomposition  scheme 

and  its  application to the  structural  response  spectrum 

calculation will be  developed  using a simple model of an 

infinite  unsupported  beam  exposed to a supersonic bound.ary- 

layer  turbulence  excitation. The e.fTects of surrounding 

fluid will be taken  into  consideration. In Chapter IV the 

unsupported beam will be replaced by an infinite beam on 

evenly  spaced  supports  which  is a more  realistic  model  of an 

actual  aircraft  panel system.  The  solutions will be compared 

with  the  experimental  results. In Chapter V the  case of a 

membrane  with  random  structural  properties w i l l  be  considered 

and the  effects on the  spectral  densities of the  structural 

responses will be  discussed,  With  potential  applications to 

skin-friction  drag reduction designs in mind,  Chapter VI will 

be  devoted to the  analysis of the  Reynolds  stress in the 

boundary layer. 
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11. SPECTRAL ANALYSIS 

Introduction 

Measured  cross-spectra  of a turbulence  field  usually 

show  some  decay in the  statistical  correlation in addition to 

convection at a characteristic  velocity [23-28). Under  such 

a  random  excitation  the  computation  of  structural  response 

statistics  becomes  much  more  tedious than that  which  would be 

the  case  if  the  turbulence  were  convected  without  decay; i.e., 

convected  as  a  frozen-pattern [14-19], The  conventional  method 

of analysis .is a  point-load  approach. As it will be shown  in 

the  next  section, this method  requires  a  numerical  double 

integration to compute  the  cross-spectral  density  of  the 

response  of  a  one-dimensional  structure. If the  forcing  field 

is a  convected  frozen.-pattern  field, then an alternative 

formulation will allow  the  cross-spectral  density  of  the 

structural  response to be computed  without  numerical  fntegra- 

tions. However,  because of the  spatial  decay  in  the  measured 

turbulence  spectra,  the  analysis  for  structural  response  based 

on the  frozen-pattern  assumption  is  just  a  crude  estimate. 

The  method to be  discussed in this  thesis  retains  the  maximum 

computational  benefits of the  frozen-pattern  analysis but at 

the  same  time  the  actually  measured  spectrum of turbulence 

field  can be incorporated in the  calculation, In this  method 

a decaying  turbulence  will be treated  as  a  superposition of 

frozen-pattern:components so that  the  structural  response  can 

be  superposed  similarly. In the  case  of  a  one-dimensional 
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model, this method requires. -only-  a . .  single 

of a double  integration in the  point-load 

$ntegration  instead 

analysis. The  method 

will be called  the  "turbulence  decomposition  scheme" in the 

sequel. 

To extend  the  turbulence  decomposition  scheme to a  two- 

dimensional  problem,  the  actual  turbulence  field is divided 

into  strips  which are running  parallel to the x-axis, the 

direction  of  the mean flow. Each  strip can then be decomposed 

into  infinitely many frozen-pattern  components as in the  one- 

dimensional case. The  total  structural  response  is  obtained 

by  summing up the  responses due to all the  loading strips. 

In essense  the  point-load  scheme is used in the  across-flow . 

direction  whereas  the  frozen-pattern  scheme is used in the 

along-flow  direction. 

In the  following  sections  the  one-dimensional  case  will 

be  discussed  first  and  then  the  two-dimensional  structure. 

Furthermore,  a  general  treatment of random  structural  properties 

will be included  in  the  formulation  of  the  two-dimensional 

problem. 

2.2 The  Statistical  Properties of the  Excitation 

Measured  frequency  cross-spectra for pressure  varia- 

tions in a  turbulent  boundary  layer  with  respect to a  fixed 

frame  of  reference  have  the  general  form of 

- 
@p(E,V,W) = iPp(o,o,W)gl(€)gz(~)exP(-iw~/Uc) 

- 
(2.1) 
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where U is a  characteristic  velocity, and $ and (r2 are non- 

negative  definite  even  functions  of f and 7 ,  respectively. 
These  two  functions  have an absolute  maximum  equal to one  at 

the  origin  and they approach  to  zero at  large  absolute  values 

of  the  argument.  The general  form, Eq. (2.1), is sometimes 

attributed to C.orcos [23]. A number of researchers  have 

reported  curve-fitted  results  for 5 (O,O,a) , Jll (E) and q2 (7) .  
For  representative  works  we  cite  the  papers  by  Bull [24], 

Willmarth  and  Wooldridge [25], and Maestrello, et a1 C26-281. 

Implicit in Eq. (2.1) is that  a real turbulence  is  not  a  frozen 

one. We note  that  the  above  pressure  spectrum  reduces to that 

of .a  plane  wave  field  if $2 (7) = 1, and .it  would  correspond  to 

a  frozen-pattern  turbulence  if $,(E) = 1. 

C 1 

P 

For  additional  physical  insight and later  use in sample 

calculations,  two  measured  spectra are given below: 

For a subsonic  boundary  layer [26,27]: 
r* 

J t ( ) = e x p ( - -  2 9  d S" 
171 ) 

AI = 0.240 

A2 = 1.08 

A3 = 1.80 
d = 2  



8 = - (1.24 x 10 

Uc= 0.8 U, 

-3 

7 

) ( u a l )  + 1.15 x 10 8ec -3 

where U , i s  the  free-stream  velocity,  al  denotes  the  speed  of 

sound in the  field, S* represents  the  boundary-layer  displace- 

ment  thickness, and 8 is the  average  eddy  lifetime. 

For a supersonic  boundary  layer  C28Jr 

Al = 4.4 x 10 

A2 = 7.5 x 10 

-2 

-2 

A3 = -9 .3 x 10 
-2 

= 3 

K3 = 1.12 

K4 = 11.57 

d 2  = 0.26 

Where S is  the  boundary-layer  thickness  which is defined as 

the  distance from the  boundary  at  which  the  average  value o f  

the  turbulence  velocity reaches 0.99 U,. 
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2.3 Point-Load  Analysis 

Consider a unit  concentrated  load  at x = on  a one- 

dimensional  structure  where x is  measured a l o n g  the  structure, 

parallel to the flow direction. We obtain a frequency  response 

function x(x,f ,w) by solving  the  equation 

where } represents a linear  differential 

and t, and S( ) is a Dirac  delta  function. 

spectral  density of the  structural  response 

calculated  from 

J l  

operator  in x 

Then,  the  cross- 

QW(X1 ,% ,a) is 

0 0  

QipE1-t2 ru) d G p 2  ( 2 . 9 )  

where Qi ( E  4 ,a) is  the  cross-spectrum of the pressure field, 

1 is  the  length  of  the  structure  under  consideration,  and an 

asterisk  denotes  the  complex  conjugate.  It  is  assumed  that 

the  loading  is a spatially  homogeneous  random  process:  there- 

fore,  the  cross-spectrum @ depends  on El-€,. Although  this 

method  is  quite  straightforward,  long  computer  time  is  required 

to carry out the  double  integration in Eq. ( 2 . 9 ) .  

p 1. 2 

P 

2.4 Frozen-Pattern  Analysis 

If the  pressure is truly of a frozen  type and is 

convected at a constant  velocity Uc in the  positive  x-direc- 
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tion, then it is a rddom function of x - UCt. Such a random 

function can be  expressed  as a Fourier-Stieltjes  integral as 

follows 1 

-" 
whereGthe frequencyw and the  wave-number k are related to the 

convection  speed Uc as w/k = U,. It  is known from  the  random 

process  theory  that 

where E{ 3 represents  the  ensemble  average, and Sp(k) is  the 

wave-number  spectrum in a coordinate  frame  moving  at  the 

velocity  Uc  (referred  to as the  moving  frame  in  the sequel). 

The  cross-correlation  function E{p(xl-Uctl)  p(x2-Uct2)} 

of the  pressure,  referred to  the fixed  frame, can be calculated 

simply  by  use of Eqs.  (2.10) and (2.11). This  function, 

denoted  by R depends  only on E - UcT where E = xl - xz and 
f = tl - t2, and it is  related to the  moving-frame  wave-number 
spectrum Sp(k) as follows: 

P' 

(2.12) 

If a Riemann-Fourier  transform  is taken of Eq.  (2.12)  we 

obtain  the  fixed-frame  frequency  cross-spectrum  of p: 
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Equation (2.13) shows  that  the  fixed-frame  frequency cross- 

spectrum of a frozen-pattern  turbulence  has a special form 

where E appears  only in the  imaginary exponent.  This  equation 
also provides a simple formula  to  convert  from S (k) to 

QP(S,W) . Conversely,  to  convert  from (Pp(e ,W) to  Sp(k) x 
P 

Evaluated at $i = 0 the  cross-spectrum  Qp(f,o)  reduces, of course, 

to the  usual  spectrum. We emphasize  that Eqs, (2.13)  and (2.14) 

are  valid o n l y  if the  turbulence is strictly of a frozen- 

pattern, and is convected at  speed U,. 

Equation (2.10) suggests  that  the  structural  response 

to a frozen-pattern  turbulence can be constructed  from a 

fundamental  solution  where the excitation is just a convected 

sinusoidal  pattern of unit  amplitude.  Thus,  let  H(x,k)  exp(iot) 

be the  steady-state  solution  for 

Of course,  this solution  must  satisfy all the  necessary 

boundary  conditions.  Then  the  solution to 
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after  reaching  stochastic  stationality, may be  expressed as 

w(x,t) = I H(x,k)  exp(iot)  dF(k) 
." 

H(x,k) exp(iUckt)  dF(k) 
"00 

It  follows  that  the  cross-correlation  function of the  structural 

response is 

As expected, this  correlation  function  is  dependent o n l y  on 

tl - t2. If it is desired  to  calculate  this  correlation func- 

tion in  the  frequency  domain, we may  substitute Eq. (2.14) 

int-o"Eq. (2.Z.8) gnd change  Uck  to w; 

In terms of the input and output  spectra  the  relations are 

extremely  simple and illuminativet they arer  
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.in the wave-number  domain: 

( 2 . 2 0 )  

in the  frequency domain: 

When  x1 = x2 these  formulas  reduce  to  those  for  the usual 

spectra, and they  have  the  same  form  as  the  well-known  result 

for a single  degree of freedom  system  in  the  random  vibration 

-theory. 

It is appropriate  to  call  the H function in  Eqs. 

(2.20) and (2.21) the  wave-number  response  function  for 

convected  frozen  load to distinguish it from  the x function 
in Eq. (2.9) which is  the  frequency  response  function  for 

point  load . 
The  advantage of  the frozen-pattern  assumption is 

clear. To obtain  the  cross-spectrum of the  response, no 

integration  is  required  under  this assurpption  while a double 

integration is needed  in  the  point-load  analysis, Eq. ( 2 . 9 ) .  

Unfortunately,  significant  decays in the  correlation  have 

been found in  experimental  measurements of boundary-layer 

turbulences.  Thus,  correlations  based on frozen-pattern 

models are  just  crude  estimates,  at  least  for  the  calculation 

of structural  responses to the  boundary-layer  turbulence. 
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2.5 Turbulence  Decomposition  Scheme - One-Dimensional  Case 
In the  one-dimensional  case  measured  frequency  cross- 

spectra  have  the  general form o f  

which is reduced  from Eq. (2.1). Implicit in Eq. (2.22) is 

that a real turbulence  is  not a frozen-pattern one. 

To obtain a theoretical  spectrum  consistent  with Eq. 
(2.22) the  following  representation of a general  turbulence 

pressure  is  proposed: 

Eq.  (2.23) implies  that p(x,t) is a superposition of infinitely 

many frozen-pattern  components,  each  having a real random 

amplitude  dG(u)  and  a  convection  velocity U. Such  velocities 

can assume  either  positive or negative  values. Of course, 

each  frozen-pattern  component  can,  again, be decomposed  into 

sinusoids.  Thus 

and  its  fixed-frame  correlation  is 
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In order  that this correlation  function  may  depend only on 

5 = x1 - x2 and f = ti - t2,  which we shall  assume  to be true, 
the  ensemble  average  under  the  integral sign in Eq. (2.25) 

must  have  the  form 

Substitution of 

Rp(E s o  

We now  apply a Fourier  transformation  to  obtain the fixed- 

frame  frequency  spectrum 

-0Q 

Clearly Eq.  (2.28)  is a generalization of Eq. (2.13). 

To compare Eqs. (2.28) and (2.22), the  latter is 

Fourier-transformed to yield 



I 

where 
m 

“00 

Therefore, 
90 

Letting d, = du, we obtain 

Then -equatw Q) and 5 we  find a formula. to compute 
s,(W/u,u) as f o l l o w s  t 

P P 

The frequency  cross-spectrum for the structural 

response can be  obtained  by a similar  superposition.  Thus 

by a generalization of Eq.  (2.21) , 

Or, letting k = w/u, 
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Now, since 

we  obtain a very  simple  result - 

As a  check we  note  that  when  the  turbulence  is  frozen-pattern, 

$(E) = 1  and 

*en Eq. (2.36) reduces to the  same  form as Eq.(2.21), 

In the  case  when  the  structural  acceleration  response  is 

the main concern of  the  problem, Eq. (2.36) is  changed to 

m 

2,6 Turbulence  Decomposition  Scheme - Two-Dimensio.nal.  Cage 
Generalization of  the  results  obtained in the  last 

section to a two-dimensional  pressure  field  is  straightforward. 
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Assuming  that  such a pressure  field b a n  be decomposed  into 

frozen-pattern  components, we  have 
. .  

where  both $ and G are  random  functions and 8 is a frozen- 
pattern  component of p. Each  component  pressure $ can  again 
be constructed  from  frozen-pattern  sinusoids.  Thus 

. .  

In order  that  the  cross-correlation of the random pressure 

EEP(5,Jrl,tl) ~ ( % ~ y ~ ~ t ~ ) ]  is dependent o n l y  on E = 

'1 = yl - y2 , and T = tl - t2,  the  cross-correlation 
must  have  the  form 

Then, it can be shown that  the  cross-spectrum of p has  the 

f o m  

Equating Eq, (2.42 ) with  the  general  form of the  measured 

turbulent  pressure  spectra, Eq. (2.1), results in 



Ql 

(2 . 44) 

It  is  clear  from Eq. (2.40) that,  in  this  case,  the 

structural  response can also be constructed  from  a  fundamental 

solution  which  is  obtained  by  letting  the  excitation be some 

suitable  frozen-pattern  sinusoid.  Denote  this  fundamental 

solution  by H(x,k,y,y',w) and  let  H exp(iwt)  be the  steady- 

state  solution  for 

where  represents  a  linear  operator  in x, y and t. The 

physical  meaning  of H is  self-explanatory; it is  the  complex 

amplitude  of  the  steady-state  structural  response  at  (x,y) 

due to a  strip  of  excitation  along  y = y' which  is  convecting 

in the  x-direction.  Then, the  solution  to 

after  reaching  the  stochastic  stationality, may be expressed 

as 

dF(k,U,y*  dG(5) 
k 
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0 -00 

where b is  the  width of the  structure in the  y-direction.  The 

cross-correlation of the  response is,  therefore,  obtained as 

follows t 

Substituting Eq. (2.43) into Eq. (2.48) and applying a Fourier 

transformation, we obtain  the  cross-spectrum of the  structural 

response 
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The  reason  for  not using the  same  decomposition  scheme in the 

y-direction as that for the  x-direction is the  absence  of  true 

trend of convection  which can be  seen in Eq. (2.1). Therefore, 

the  correlation length . -.. of  the  r,andom  forcing  field in the.y- 

direction  seldom  extends  beyond  one  panel and the  structural 

response can be  computed  quite  accurately  using a structural 

model  consisting  of  just one row of  panels  running in the x- 

direction.  For  such a model  the usual Levy  series  represental. 

tion of the  y-direction  response is adequate and the  double 

integration on yi - v d  yi- in Eq0'-(2.49),can  be  carried  out 

without  difficulty. 

Thus far, the  structural  properties  are  assumed  to be 

deterministic:  therefore,  the  frequency  response  function H 

is a deterninistic  function.  Sometimes  it  may be of interest 

to include  the  effects of random  variability  of  the  structural 

properties in the  calculation,  then H becomes a random  process, 

In this  case  the  cross-correlation  of  the  structural  response 

becomes 

(2 50) 
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If the  structural  properties  and  the  turbulence  properties are 

independent of each  other, which  is  a  reasonable  assumption, 

the ensemble  average  inside  the  integral of Eq. (2.50) is 

separable.  Again, using Eq. (2.41) we  have 

The  cross-spectrum of the  structural  response is obtained  by 

a Fourier  transformation of Eq. (2.51), resulting  in 

2.7 Conclusion 

, The  turbulence  decomposition  scheme  has  been  discussed 

and compared  with  the  conventional  point-load  approach.  It 

has been shown  that  a  decaying and convecting  turbulence 

pressure  field can be  constructed  from  frozen-pattern  components, 

each  having  a  different  convection  velocity, and that this new 

scheme  simplifies  greatly  the  analyses of random  properties of 

structural  responses  under  the  excitation of boundary-layer 

turbulence  pressure. In paticular,  only  a  single  integration 
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I 

is required to compute the cross-spectrum  of the structural 

response  instead  of  a  double  integration in the point-load 

approach. The integration  involves a wave-number  response 

function  which  is the response  of the structure to a unit 

convected  sinusoid. In the  following  chapters  applications 

of this scheme will be  discussed for some  structural  configu- 

rations and  flow  field  problems. 



111. UNSUPPORTED  INFINITE BEAM 

3.1 Introduction 

A simple  model  which,  nevertheless,  retains  most 

importgnt . .  features . .  . of  aircraft - . .  panels in a  boundary-layer 

environment  is  the  infinite  beam shown in Fig.3.1. The 

beam is backed on the  lower  side  by  a  space  of  depth  d  which 

is filled  with an initially  quiescent  fluid  of  density p an-d 

sound  speed a2. On the  upper  side  the  beam  is  exposed to the 

excitation of a  supersonic  boundary-layer  turbulent  pressure 

p. The  fluid on the  upper  side of the  beam  which  carries 

the  turbulence  has a free-stream  velocity U,, density p l ,  and 
sound  speed 81 A n  a c t u a l  panel  system of.. a n .  aircraft is 

reinforced  by  stringers  and  frames so that  this  unsupported 

beam  is  not a good  representation at low frequency  range, 

However,  at  high  frequencies,  the  turbulence  eddy  size  is 

much  smaller than individual panels. Then  the  effect  of  the 

constraints  at  the  stringers and frames  becomes  negligible. 

In any  case  the  infinite  beam  model is an ideal one which can 

be  used to show the  utility  of  the  turbulence  decomposition 

method  as  well as the  structure-fluid  interaction  without  the 

'burden of mathematical  complexities. 

2 

3.2 Wave-Number  Response  Function of the  Infinite  Unsupported 

Beam 

As the  beam  responds to the  excitation  pressure p(x,t.) 



3 p ( turbulent pressure) 
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Fig, 3.1 An unsupported  infinite  beam under the exoifation 
of boundary-layer  turbulenoe 



its motion  will  generate  additional  pressures in the  fluid 

media on the  upper  and  lower sides. Denoting  these  generated 

pressures  by p1 and p2, respectively,  the  governing  equation 

of the  beam motion is  given  by 

where E denotes  the Young's modulus, I is the  moment of 

inertia, m is  the mas8 per  unit  length of the beam. 

For  the  purpose of determining  the  wave-number 

response  function, H(x,k), the  turbulent  pressure  p  should 

be  replaced  by exp[i(wt - kx)] and  the  structural  response  w 
equated  with H(x,k) exp(iwt) = A(k) exp(-ikx) exp(iot). 

Furthermore,  we  shall make the  usual  approximation  that pi 

can be  calculated  without  regard to the  presence of the 

turbulence.  Then p1 is governed  by  the  equation . 

and  subject to the  conditions  that p1 can  propagate  only  in 

the  positive  z-domain,  and  that 

The  solution for 

c311 

pl, when  evaluated  at z = 0, is known to be 
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Some comments about Eq. (3.4) a re  i n  order: (1) o/k is the 

speed a t  which the  s t ructural   motion A(k) exp[i(wt - kx)] is 
propagated  along  the beam. (2) A structural   motion  generates 

no pressure in  the   ad jacent   f lu id  medium if it is  propagated 

a t  the same veloc i ty  as t h a t  of t h e   f l u i d  medium ( the case of 

a/k = U-). (3)  Theoretically,   the  generated  pressure attains 

an inf ini te   ampli tude when the  propagation  velocity of the 

s t ruc tu ra l   mo t ion   r e l a t ive   t o  the  medium is equal   to   the  speed 

of sound (the. .case of lm/k - U-1 = aln the  shock-wave e f f e c t )  . 
(4) When t h i s  r e l a t ive   ve loc i ty  is  less than the  speed of 

sound; . i .e .  IW/k - U, 1 < a1 , the  generated  pressure  should 

provide  addi t ional   iner t ia  f o r  t he   s t ruc tu ra l  motion  (the 

apparent mass ef fec t ) ;   therefore ,  a negative  imaginary  value 

should be given  to  the  square-root [(o/k - U,) * - al 2]3 i n  the 

calculation. 

The pressure  generated on the  lower  side of the  beam 

is  governed by the  equation 

and subjec t   to   the  conditions 

ap2 
az 
” - 0  at  e = -d 

and 

The so lu t ion   fo r  p2, when evaluated a t  L = 0, is  given by 



For small d (shallow 

additional  stiffness 

ranges of d value  it 
n 

cavity) and X 7 0, this pressure  provides 

on the  structural motion but f o r  certain 

can change to an added mass. When 

2 

Y L  < 0, T becomes  imaginary in which  case 

Again,  the p2 term  has  the  effect  of an added.mass on the 

structural  response. 

Eqs. (3.4) and (3.8) can now be  substituted  into Eq. 
(381) to find A(k) and, therefore, H(x,k) ,  recalling  that . .  p 

must be replaced  by exp[i(wt - kx)] and w by  A(k)expCi(wt-kx)]. 
The  result may be  expressed as 

H(x,k) = A(k) e 
-ikx 

This wave-number  response  function H can now be  substituted 

into Eq. (2.36) to obtain  the  cross-spectral  density  of  the 
structural  displacement  response. 
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3.3 Numerical  Example 

Numerical  computations have been  carried  out for the 

frequency  spectrum (i.e., when 3 = 9 in Eq. (2.36) ) of the 

structural  response  using  the  following  physical data: 

properti& 'of .the beam.: ..L 

E1 .(bending rigidity) = .3.935 x 10. N-m . . 

m (mass per  unit  length) = 9.746 Kg/m 

properties of the  surrounding  fluid  media: 

4 2  

fj = ez = f' (air density) = 0.11015 Kg/in3 

81 = a2 = a (speed of sound) = 261.6  m/sec 

U, (free-stream  velocity  on  upper  side of beam) 

= 575.6 m/sec 

d (cavity  depth) = 0,1178 m 

properties of the  supersonic  boundary-layer  turbulence 

pressure [ 2 8 ] t  

$(E) = decay  factor = exp ( - 4 g .  M) 

U ..,(characteristic convection  velocity of the 
C 

turbulence). = 0 . 75 U, 

s .(boundary-layer thickness) = 0.279 m 

experimentally  determined  constants 



4 = 3  

Ai = 4.4 X 10 
0;2 

kl = 5.78 x loo2 
4 = 7.5 x $ = 2.43 x 10" 

A3 = -9.3 x loo2 IC3 = 1 .I2 

A4 = -2.5 x 10 
-2 

11.57 

Fig.3.2 shows the  computed  displacement  frequency 

spectrum  of  the  structural  response  under  the  assumption of 

a truly  frozen-pattern  turbulence ( $ ( E )  = 1). There  appears 

only one peak  around 475 Hz and  the  value of spectrum  decreases 

rapidly as the  frequency  increases.  The  existence  of  the  peak 

can be explained as follows; In the  absence  of  surrounding 

fluids,  the  wave  number  of  the  free  structural  motion would 

be (mw /EI) . The wave number of the  frozen-pattern  turbulence, 
k,. is related to the  circular  frequency 61 by k = a&. A 

-rasonanca.(called coincidence)  occurs  when  these two wave 

numbers are equal [32]. In the  present  case  this  coincidence 

frequency  is  found at 466 Hz. Therefore,  the  peak  in Fig. 3.2 

results from the  coincidence of the  wave  numbers of the  frozen- 

pattern  turbulence  and  the free structural motion. The &all 

difference  between  the  peak  frequency in Fig. 3.2 and  the 

estimated  value  above  comes  from  the  effect of the  surrounding 

fluids on the  structural  response. 

2 +  

F.ig, 3.3 shows the  spectrum of the  structural  displace- 

ment  response  when  the  measured  spectrum of the  turbulence 

pressure  field is used in the  computation,  This  spectral 

density  has  many  peaks in contrast  with  only  one  peak in the 



0 

frequency, He 

Pig. 3.2 Frequency  spectrum of structural  displacement 
under  frozen-pattern  turbulence  excitation 
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Fig, 3.3 F’raquency  epectrum of structural  displacement 
under the  excitation of the decaying turbulence 



frozen-pattern  case.  Since infinitely  many  frozen-pattern 

components  are  present in the  turbulence,  the  turbulence 

spectrum has also  infinitely  many  wave-number'components 

at  each  frequency.  Thus,  the  coincidence  (if  we may use 

this terminology in this case)  occurs  at  each  frequency. 

However,  the  response  magnitude  may  be small if  a  frozen- 

Pattern  component  which  generates  a  coinc.idence  wave in the 

structure  has  little  contribution to the  turbulence  spectrum 

at  that  frequency.  Therefore, even the  coincidence  is  present 

at  each  frequency,  its  magnitude  varies as the  frequency 

changes and some  of  them  appear as peaks in the  response 

spectrum, 

A comparison of  Figs. 3.2 and 3.3 shows  that  the 

frozen-pattern  assumption  is  unconservative  which  leads to 

lower  estimates  for  the  structural  response  and  the  radiated 

noise  level 

3.4 Conclusion 

The  theory  developed in Chapter I1 has  been  applied 

to the  simple  example of an unsupported  beam  exposed  to 

boundary-layer  excitations,  The  effect of a  cavity and the 

effeet  of  the  free-stream  velocity are included in the 

analysis.  The spectral  density of the  structural  displace- 

ment  response  was  calculated  using  the  measured  turbulence 

pressure  spectrum  of  a  supersonic  boundary  layer and the 

result  was  compared  with  the  solution  obtained  for  the  ideal 

frozen-pattern  turbulence.  This  comparison  has  shown  that 



the froeen-pattern  assumption  leads  to  considerably  lower 

estimates  for  the  structural response.  Thus, we may conclude 

that the frozen-pattern assumption should  not be used  in  the 

computation of the  structural  response  spectrum  under  the 

excitation of a boundary-layer  turbulence pressure. 
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IV. PERIODICALLY  SUPPORTED  INFINITE BEAM 

4.1 Introduction 

In this.chapter the  turbulence  decomposition  scheme 
will  be  applied to the  analysis  of an infinite  beam  supported 

at uniformly  spaced  intervals  by  elastic  springs.  The  elastic 

supports  are  simplified  versions  of  reinforcing  stringers  of 

an aircraft  fuselage.  Although an aircraft  fuselage  is a very 

complicated  multi-panel  system  its  dynamic  behavior  is  similar 

t o  that  of  the  periodically  supported  beam  described  above. 

The  one-dimensional beam problem,  however, is more  suitable 

for  fundamental  studies  since  basic  concepts can be developed 

without  the  burden  of  mathematical  details.  Thus,  the  analysis 

of  the  present  chapter  will be restricted  again to one  spatial 

coordinate. 

At the  first  sight  the  problem  of a periodic  beam may 

not  appear  more  difficult  than  that  of any other  structure  if 

one  accepts  the  linearity  assumption and uses a normal-mode 

formulation, In practice,  however,  the  normal  mode  of a 

periodic  beam  of  many  spans  cannot  be  calculated  accurately 

due to close  clustering  of  natural  frequencies in frequency 

bands.  The  futility of the  normal  mode  approach in dealing 

with a large  number  of  spans has led  to  two  alternatives:  the 

wave  propagation  approach  (space-harmonic  analysis) [17-211 

and the  transfer  matrix  approach [1046]. The  two  alternative 

methods  are  closely  related,  however,  The  so-called free wave 

propagation  constants in the first method  are  the natural 
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logarithms  of  the  eigenvalues  of  the  basic  transfar matrix in 

the  second  method [22]. The  computational  simplicity in both 

methods is  obtained by utilizing  the  fact  that  the  entire 

system  is  composed of identical  sub-units in the  formulation. 

The  fundamental  solution  required  for  the  construction of  the 

total structural  response  is  one  corresponding to the  excita- 

tion of a frozen-pattern  sinusoid. To obtain this fundamental 

solution  the  formulation will follow Mead's  wave  propagation 

method,  but will take in to  account  the  effect of free-stream 

velocity on the  same  side  of  the  turbulence  excitation and the 

effect  of a caQity on the  opposite  side  of  the  excitation. As 

a numerical  example,  the  spectral  density of the  structural 

response will be  computed and the results will be  compared  with 

experimental  measurements. 

4.2 Wave-Number  Response  Function of the  Infinite  Periodic 

Beam 

A sketch of the  structural model is  shown in Fig.  4.1, 

surrounded  by  the  same  acoustic  environment as that  assumed in 

Chapter 111. 

The  governing  equation of the  beam  motion  not  directly 

over an elastic  support is given by 

where D denotes  the  bending rigidity and m is  the mass per 

unit  length  of  the beam. The additional  pressure  fields 

denoted by pi and p2 are generated in the  fluid media on  the 
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Fig. 4.1 A n  infinite  periodio beam under the excitation 
of boundary-layer  turbulence 
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upper  and  lower  sides,  respectively,  due to the  beam  motion. 

For the  purpose  of  determining  the wave’4mber.fesponse 

function, H(x,k), the  turbulent  pressure p should  be  replaced 

by exp[i(ot - kx)] and  the  structural  response w by  H(x,k) 

exp(iwt), Thus, Eq. (4.1) becomes 

The forcing  function exp[i(wt - kx)] gives every span the  same 
excitation  but  with a phase-lagPO = kl from  one  span to the 

next. In this sensePo may be  considered  as  the  imposed  phase- 

lag  of  the  excitation. To satisfy  the  spatial  periodicity in 

the  structural  response  Mead  suggested  the  following  series 

form E1.81: 

where 

Without  the  elastic  supports  the  wave-number  response  function 

would  be  just  the  one  term  associated  with  the  forcing  phase- 

la$/UO.  The  elastic  supports  give  rise to multiple reflec;: 

tions,  thereby  admitting otherpn values. 

For the  induced  additional  pressure p , we  apply  the 
1 

same  assumption  used  in  the  preceding  chapter. Then p is 

governed  by  the  equation 
1 



and  subject to the  conditions  that p can propagate  only in 

the region z > d, and  that 
1 

The  solution  for p corresponding to each  component in the 

wave-number  response function exp(-i)Inx/.)  is known. The 

total p can then be  obtained  by  superposition. This pressme, 

when evaluated  at z = 'd, is  given  by [31] 

1 

1 

where 

The same comments  which  were  made  previously  relative to Eq. 

(3.4) apply in this case to each  term in Eq. (4.7). Each 

component now has a different  propagation  speed un  instead 

of  the  one  propagation  speed W/k in Eq. (3.4) . For  emphasis 
and  clarity  these  comments are restated as followsr  (1) is 

the  speed at  which  the  component  structural motion exp[i(ot 

-ynq&.)] is propagated  along  the  beam. (2) A component 

structural  motion  generates no pressure in the  adjacent  fluid 

medium  if  it  is  propagated  at  the  same  velocity as that of the 
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f l u i d  medim- ( the  case of tan = U,) . (3). Theoretically,   the 

generated  pressure attains an infinite amplitude when the 

propagation  velocity of t he   s t ruc tu ra l  motion r e l a t i v e   t o  

the  medium is equal t o  the  speed of sound (the  case of tun - 
U-1 = ai, t he  shock wave e f f ec t ) .  (4) When t h i s  r e l a t i v e  

ve loc i ty  is l e s s  than the  speed of  sound;  i.e. , 1% - Uo,l< alB 
the generated  pressure  should  provide  additional  inertia f o r  

the structural   motion  ( the.   apparent mass effect) ;  therefore ,  

a negative  imaginary  value  should be given t o  the square-root 
2 2 3  

U# - u,) - al ] i n  the  calculat ion.  
The induced  pressure p2 i n  t h e   f l u i d  medium 0 s z < d 

is governed by 
m 

and sub jec t   t o  

a2 . 2  ( , . +  a 7). a2 -pz =-0 
ax az 

the  conditions 

(4.9) 

The so lu t ion  f o r  p2, when evaluated a t  z = d, is given by 

where 
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For a small d and a positive '6;1 the  n-th  component  of this 

transmitted  pressure p2 gives rise to additional  stiffness 

on the  structural motion and for certain ranges of d value 

it can become an added mass to the system. When Vn2 is 

negative, rn becomes  imaginary in which  case 

2 

cot ( rnd) coth lrndl 

'n 
= -  

Irn I (4.14) 

and  the  component  always  contributes to the  system  inertia 

regardless  of  the  value of d. 

Equations (4.3),  (4.7) and (4.12) can now be substi- 

tuted  into Eq. (4.2) to obtain 

where 

To determine  the  amplitude  An  we  follow Mead's 

procedure [19] and calculate  the  virtual work done  by  the 

external  forces  acting  on  the  structure and by  the  internal 

forces in the  structure  through a virtual  displacement 
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Excluding the elastic  supports,  the virhal work  done  within 

one span of the  beam is 

0 

The  elastic  supports  are  characterized  by a translational 

spring  constant Kt, a translational  inertia M, a torsional 

spring  constant Q, and a torsional  inertia I. Thus the 

virtual  work  contributed by each  elastic  spring  is 

swe = swt + swr 

Since the  structural  motion is spatially  periodic  the  virtual 

work done throughout  the  entire  structure  is  proportional  to 

that of a periodic  unit.  Therefore,  the  principle of virtual 

work can be stated for a periodic  unit  as  follows: 

which  leads to the simultaneous  algebraic  equations: 
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= t  1, if j = 0 

0, if j # 0 
(4.20) 

In actual  computations  the  number of simultaneous  equations 

must be  truncated. One can, f o r  example,  solve  a  system  of 

2N + 1 equations  corresponding to -N 5 j < N. The  choice  of 

N must  be  such  that  the  truncated  version  of  the  wave-number 

response, Eq. (4 .3) ,  do  not  change  appreciably  by  further 

increase  of  the  number of terms  used in the  computation. 
2 Equations (4.20) are derived  for  finite - Mu and 

finite - Iw , and  these  equations  cannot be reduced to 
those  for  supports  rigid in translation or  rotation.  For 

example,  if  the  supports are rigid in translation then 

becomes  infinitely  large,  but  the  summation of all  the k, 
must be zero  since  the  deflection at each  support  is  zero, 

and  the  product  of  these  two  becomes  indefinite. To deal 

with  this  case,  substitute 

2 

into Eq. (4.3) to obtain 

n#O 

Correspondingly,  virtual  displacements  are  chosen in the 

form of 
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Then,  instead of Eq. (4.20), one  obtains from a  similar 

derivation 

= -1, j # 0 (4.23) 

It is Anteresting to note  that  if  the  supports are rigid in 

translation  but  without  constraints in rotation  (the  case of 

hinge  supports)  the  equations f o r  A i  can be decoupled. For 

such a case, Eq. (4.23) reduces to 

Ajq(J )  + 'P(O)~~-~+, = -1 , j # 0 
oa 

(4.24) 
n#O 

Eq. (4.24) shows  that  the  product A . c $ ( j )  is independent of j, 

i.e., 
J 

Thus,  substituting 

into Eq. (4.24), one  obtains  equations  involving o n l y  one 

unknown1 

which is solved  readily to give 
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Uncoupled  solutions  such  as Eq. (4.28) are not . : 

restricted to the  case of hinge  supports. In fact, if one 

of the two infinite sums in Eq. (4.20) can be dropped, a 

substitution of  the  type  of Eq. (4.26) is  possible  which  is 

the  key  for  reducing Eq. (4.24) to Eq. (4.27) containing o n l y  

one A j  in each  equation. This is  the  case when  either 

- Mo2 = 0 or - Iu' = 0 :  i. e , when the  elastic  supports 
offer  no  translational  constraint or no  rotational constraint. 

If  the rotational  constraint  is  infinite,  one  again 

cannot  obtain a reduced  equation from Eq. (4.20) whieh is 

valid  only  for  finite  support  constraints.  To  derive a reduced 

equation one must use  the  zero  slope condition at  the  supports 

The  remaining  procedure  is  very  similar  to  that  leading  to 

Eqm  (4.24) 

Now, we  are ready to  compute  the  spectral  density of 

the  structural  response.  Once A j  are  determined  by  either 

one  of Eqs.  (4.20), (4.23) or (4.28) depending on the  problem, 

they can be substituted  into Eq. (4.3) to  obtain  the  wave- 

number  response  function, He Further  substitution of this 

H function into  Eq. (2.36) along  with  the  statistical  proper- 

ties of  the  turbulence  pressure  gives  the  cross-spectral 
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density of the  structural  displacement response. 

4.3 Numerical  Example 

To illustrate  the  application of the  present  theory, 

the spectral  densities of the  acceleration  response at a mid- 

span location (i. e. , x1 = 3 = 1 / 2 )  have been computed  based 

on the  following  physical data: 

properties of the beams 

D (bendin&  rigiclity). .= 3.935 x 10 N-m 

I (span-length) = 0.508 m 

m (mass per  unit length) = 9.746 Kg/m 

properties of the-surrounding fluid  medial 

pl = p2 = p (density) = 0.11015  Kg/m3 

a1 = 9 = a (speed  of  sound) = 261.6 m/sec 

U, (free-stream  velocity  on  upper  side  of  beam) 

4 2  

= 575.6 m/sec 

d (cavity  depth) = 0.1178 m 

properties of the  turbulent  pressure [ Z S ] :  

$ ( E . )  =: decay  factor = exp(-") 15 I d b  

U, (characteristic  convection  velocity of the 

turbulence) = 0.75 U, 

S (boundary-layer  thickness) = 0.279 m 

d = 3  



46 

A, = 4.4 x 10 
-2 

Except  for  the  additional  information  about  the span length 1 
the  above  physical  data are the  same as those  used  previously 

for  the  unsupported beam, and they  were taken from a recent 

experiment  on a multi-panel  system .[28]. The structural 

specimen  used  in this experiment was actually a two-dimensional 

panel  array  as shown in Fig. 4.2. Therefore,  some  data  have 

been  converted  to  their  one-dimensional  equivalents.  For 

example,  the  bending  rigidity D of the  beam  was the average 

value  for  the  skin  and  the  reinforcing  stringers  over a unit 

width, and the  specific mass m was  obtained  similarly. 

Although  the  actual  structural  specimen had  only seven  spans 

and the  two  end-spans were somewhat  shorter, it  was  felt that 

the theory of an infinite  periodic  beam  on  evenly  spaced 

supports  should  give a reasonable  result  for the  response 

spectrum  at  the  center  of  the  middle span where  acceler.orneter 

A20 was located  (referred  to Fig. 4.2), and where  the  effects 

of the end spans  were  least  important.  The  translational 

constraints  provided by the  supporting  frames  were  sufficiently 

strong  to  justify  taking  the  translational spring constant Kt 

of the  supports to be infinite (i.e., the  deflections  at  the 

supports  were  assumed  to be zero).  For the  rotational con- 

straints we selected & = 60 N-m/rad and I = 3.3 x loo4 Kg-rn . 
These are the  one-dimensional  equivalents of the  torsional 

2 
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constraints of the frames if the torsional mode of each  frame 

is a half-sine  curve. 

In order to minimize  the  computer  cost,  the  computation 

was carried  out  only to 3000 Hz and  at  the  intervals of every 

50 Hz. The resolution of the  computed  spectrum was compromised 

somewhat by the  use  of  coarse  intervals,  but our main objective 

was to find  the  general  trend  which  could  be  revealed  by  the 

values  at 50 Hz intervals. 

In Fig. 4.3 the  computed  spectrum  is shown along with 

the  experimental spectrum. As it is  customary,  the  experimen- 

tal spectrum  is  one-sided  (restricted to the  positive  frequen- 

cy domain):  therefore,  the  theoretical  spectrum  has  been 

converted by multiplying  the  computed  two-sided  values by 

two.  It  also  should  be  noted  that  the  experimental results 

were  obtained  using a filter  of 1 Hz bandwidth, This accounts 

for  its  much  more  rugged  appearance than the  theoretical one 

computed  at much larger  intervals of 50 Hz. Furthermore, 

experimentally  obtained signals may contain  noise  other than 

the  structural  response. ' Although  the  theoretical and the 

experimental  curves show the  same  general  trend,  the  former 

is  lower than the  latter  throughout  the  entire  frequency 

range  investigated. This is to be  expected  since  the  theo- 

retical curve  represents  the  average  between  the  panel  response 

and  the  stringer  response,  whereas  the  experimental  curve 

shows the  panel  response alone. 
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4.4 Conclusion 

The  case  of  fluid-loaded  infinite  periodic  beam, 

considered in this  chapter, is one  of the  very few where 

a mathematically  exact  solution  for  the  wave-number  response 

function, H, can be  obtained. If  the  beam  is  finite  in  length 

then the  method  of  transfer  matrix  may be more  preferable; 

however,  the  effect  of  fluid  loading  cannot be accounted  for 

exactly (in the  mathematical  sense) at the  present time. 

Further  extensions to the  two-dimensional  case of 

panel  systems  are obvious. If  only  one row of  panels is 

considered, and if the  two  parallel  edges of the  panel row 

are assumed to be simply  supported, then separation of spatial 

variables  is  possible in expressing  the  structural  response, 

This  is  the  well-known Levy's type  solution  for  plate 

problems.  With small modifications,  the  solution  for  the 

one-dimensional  beam  case can be changed to suit  such  a  panel 

row problem. When  more than one row of  panels are included 

in the  structural  model  the  separation of spatial  variables 

in the  structural  motion  is  no  longer  mathematically  exact, 

but a separable  form can still be used as an approximation. 

Although new concepts are not  required in,:treating such  two- 

dimensional  problems,  the  machine  computation  time Can become 

extremely  excessive and burdensome to small research budgets. 
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V. MEMBRANE WITH RANDOM TENSION 

5.1 Introduction 

The  unsupported  infinite  beam and the  periodically 

supported infinite beam  discussed in the  preceding  chapters 

are idealized  models.  However, actual structures  cannot be 

constructed in ideal  manners.  The  material  properties  vary 

randomly throughout  the  entire  structure and manufacturing 

errors  always  exist in size and shape  such as the  span  length 

and  the  cross-section  of a beam,  the  pre-tension in a membrane, 

etc.  It has  been  shown  by Lin and Yang'[33-35] that in the 

case  of a periodic  beam  the  randomness  in  the  structure 

properties  causes  appreciable  variations in the  structural . 

response  from  the  ideal  model  results. In this chapter,  the 

structural  response of a membrane to the  subsonic  boundary- 

layer  turbulence  will  be  investigated.  The  pre-tension in 

the  membrane  will  be  treated  as a  random  process in space, 

and the  membrane is surrounded by an acoustic  environment 

similar  to  that in the  preceding  chapters. 

5.2 Wave-Number  Response  Function  of  Membrane 

The  structural model chosen  for  the  present  study  is 

a membrane  which  is  infinitely long in the  x-direction and is 

fixed  along y = 0 and y = b as shown in Fig. 5.1. This 

membrane  is  backed on the  lower  side  by a cavity  of  depth 

d which is  filled  with an initially  quiescent  fluid  of  density 

p2 and  sound  speed a2. On the  upper  side  the  membrane is 



Fig, 5.1 An infinite  membrane with random tension under the 

excitation of boundary-layer turbulence 



53 

exposed to the  excitation of a subsonic  boundary-layer  turbu- 

lent  pressure p. The  fluid on the  upper  side of the  membrane 

which  carries  the  turbulence has a  free-stream  velocity U,, 

density pi and sound  speed  ai,  The  design  pre-tension  in  the 
membr1ane is To1 however, it will be assumed  that this uniform 

tension can o n l y  be achieved in the  x-direction  but  in  the 

manufac%uring process  a small; random  variation Ef.(x) has 

developed in the  y-direction  where € << 1. 

As the  membrane  responds to the  excitation  its  motion 

will  generate  additional  pressures in the  fluid  media on the 

upper and the  lower sides. Denoting  such  pressures  by  PI  and 

p2, respectively,  the  geverning  equation of the  membrane  is 

given  by 

= P + (P, 

where m 

viscous 

is  the mass of the  membrane  per  unit  area, 'd is the 

damping  coefficient. 

As discussed  in  Chapter 11, the  turbulent  pressure 

p should be replaced by expCi(ot - kx)] s(y - y') and  the 

structural  response w by H(x,k,y,y',w)  exp(iot) for  the 

purpose of determining  the  wave-number  response  function 

H(x,~,Y,Y' ,a> Thus, Eq. (5.1) becomes 
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The boundary  conditions  for  the  wave-number  response  function 

H are 

H(x,k,y,y*,w) = 0 at  y = 0, b (5.3) 

These  .boundary  conditions are automatically  satisfied if H is 

expressed in a Levy  type  series 

In the sequel the  symbol %()A) will be used in lieu of 
k,y',03) for  compactness. 

For  the  determination of the  radiation  pressure  pl, 

we use  the  usual  approximation  that it can be calculated 

without  regard to the  presence of the  turbulence.  Under this 

condition,  the  radiated  pressure pl is  governed  by 

with  the  boundary  condition 

The  exact  solution  for  p  is unknown but  in  close  proximity 

to the  membrane  p  can be approximated by  the  expression 
1 

1 



Substituting Eq. (5.. 7)  into ES. (5.5.) , multiplying  both  sides 
. o . f  the  equation  with  sin(n*ny/b) exp(iy'x) , and integrating 
over -bo< x oo-and 0 c y b,  one  obtains 

where 

Equation (5.8) is  solved,  with  the  condition  that  pl  only 

propagates in the  negative  z-domain, to give 

Substituting Eqs. (5.41, (5.7) and (5.10) into Eq. ( 5 . 6 ) ,  and 

Using  the  orthogonality  properties, we have 

Therefore,  the  radiation  pressure pi, when  evaluated  at 

z = -d, is 



!Che transmitted  pressure p2 is  governed by the 

Helmholtz  equation 

"%( -+ -  a*& 2 a *  a2 a2 

a t2 ax2  ay2 az 
+2') P2 = o  

and  is  subject to the  boundary  conditions 

Q2 
az  
" - 0  a t z = O  

9 2 iwt 
az = p2W H e at z = -d 

a p2 
bY 
" - 0  a t y = O , b  

The  conditions (5.14) and (5.16) corresponds to the  ideal 

case  where  the  bottom  and  side  walls of the  cavity are 

acoustically hard, The  solution of this system  is  given  by 

-00 

where 
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have 

- k) sin nw' 

In the  present  study Eq.  (5.20) will be  solved for the 

following two cases: 

case I : f(x) = 0 

M 
case I1 ; f(x) = C X j  exp(ijux), x0 = 0 

" 

j=-M 

Case I corresponds t o  the  ideal  uniform  tension  problem; i.e., 

the  tension in the membrme is  equal to the  constant To in  all 

directions.  Case I1 represents  the  case  where  random  varia- 

tion of  tension in the  membrane can be  expressed as a super- 

position of sinusoidal  variations. The fundamental  wave 

number u will be  assumed to be deterministic and the  complex 

amplitudes, X j ,  random  variables. 



CASE I 8 f(%)- = 0 

In this case Eq. (5 .20)  reduces to 

which  is an infinite  set of simultaneous  equations  in An. In 

actual  computations  the  number  of  simultaneous  equations  must 

be  truncated. One can solve  a  system  of N equations  corre- 

sponding to 1 s n s N. The  choice of N must  be such  that 

the  truncated  version  of  the  structural  response, (5.4), is 
sufficiently  accurate  and it does  not  change  appreciably  by 

further  increase  of  the  number  of terms. After  truncating 

the  number of simultaneous  equations, Eq. (5.23) can be 

written  in  a  matrix  form 

where  the  elements of the  matrix % and the  vector P are 

pn = (y) 2 sin - nw' 
b 

and snp is a Kronecker  delta  having  the  property; 

The  solution of E q a  (5.24) is 



Substitution of Eq. (5.28) into Eq. (5.4) yields 
N nmY 

H(x,k,y,y',w) = E Rn sin - 
n=l b 

where is the  n-th  element of the  vector R which  is  defined 

In this case Eq. (5.20) reduces to 

where  the  number of the  simultaneous  equations has been 

truncated  to N. In a matrix form 
M 

where  the  elements of the  matrix K;! are 

I :  
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which  show  that  the  matrix  is a diagonal matrix. TQ solve 

Eq, (5.32) CAP)} is  expanded in a series,  keeping in mind 
that E is a small quantity, 

Substituting Eq. (5.34) into EQ. (5.32), and grouping  terms 

of the  first and second powers of E, one obtains 

Substituting Eq. (5.38) into Eq, (5.36), we have 

Likewise, 
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CP3 S(JA + 3y - qv - k) 
2 Thusa to the order of E a we  have 

where Q has  been  defined  in Eq. (5 .301 ,  and Fn 3 and GF are 

the  n-th  elements of the  following  two  vectors,  respectively. 

Now, if the random variables X j ,  j = 1,2,* *,M, 

have  zero  means; i.e., 

then the mean value  of  the  wave-number  response  function H is 

(5.45) 
We note  that  the  first  term  on  the  right  side of Eq. (5.45) 
is the same as the  wave-number  response  function  for  the  ideal 
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uniform tension  membrane, ( 5 . 2 9 ) ,  and the  second  term  gives 

the  contribution f rom the  random  variation in the  tension 

field. The  cross-spectrum of the  response  function H is 

where and yi should be substituted  into  the  variables  with 

the  subscript n and and yi should  be  substituted  into  those 

with  the  subscript 2. 
For  the  special  case  where X j  are statistically  in- 

dependent of each  other  and  identically  distributed  random 

variables,  and 
n 

Eqs. (5.45) and (5.46) reduce  to,  respectively, 

N .  
E[H] = C sin 

n=l 2M j=-M 



is the  coefficient of 

y-direction. We note 

variation of the  random  tension in the 

that due to  the  assumption of uncorre- 

lated X.J, EQ. (5.49) becomes  linear in each  harmonic  component 
of  random  tension  field in the  sense  that  the  solution can be 

obtained  by solving for  each  harmonic  tension  field  variation 

separately  and then superimposed  to  obtain  the  total  correla- 

tion. 

Now, the  cross-spectrum of the  structural  response 

can be  obtained by  substituting  into Eq. (2.52). Generally 

the  integration  over  k  in Eq. (2.52) must be performed  numer- 

ically,,  but  the integrations over y; and y; can  often be 

calculated  analytically. To illustrate we shall  assume  that 

the  decay  factor  of  the  pressure  field in the  y-direction, 

b2(yi - y;), can be expressed as 

where Q is an experimentally  determined  turbulence scale. 

Substitution of E q s .  (5.49) and (5.51) into Eq. (2.52) 

results in 

- N N  mryl lnY2 

C c [Uns(Xl u;t(x.2) + c 

= ap(0,O,w) Yl(k - w) { C C sin - sin - 
Uc  n=l 1=1 b b 

-0Q 

N N  V$To2 

a-1 t=l 2b1 j=" 
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where  Uns , Vns, j and Wns, j are  the  elements in the n-th 
row and s-th column of  the  following  matrices,  respectively. 

and 

In carrying out the  numerical  computations  the  most  time- 

consuming part is  the  inversion of matrix % beside  the 
numerical  integration  over k which  cannot be avoided. 

Therefore, in the  actual  computation, o n l y  the  diagonal 

terms of K1 matrix  will be kept to save  the  computer  time. 

Hence  the  coupling of modes due to the  effect  of  transmitted 



pressure, p2, will be  neglected. 

5.3 Numerical  Example 

The fOllOWingghysicaZ data  are  used in the  numerical 
calculation; 

properties of the  membrane (Mylar membrane): 

e (density) = 1.39 x l o 3  Kg/m3 

t (thickness) = 8.89 x 1Q-6 m 

m (mass per unit area) = rt 

TO (tension) = 61.29 N/m. 

b (width) = 0.127 m 

VT (Coefficient Of variation of random tension)  = 0.1 

v (fundamental wave number of random tension harmonics) 

rn -1 

properties of surrounding  fluid media: 

PI = f" = density = 1.23 Xc3/m3 

a2 = a2 = speed of sound = 340.36 m/sec 

U'(free stream  velocity on the upper  side  of  the 

membrance) = 30.48 m/sec 

d (cavity  depth) = 2 - 5 4  X m 

properties of turbulence: * 
1 s+ 3 s - .-V, KnlWl 
2 U- n=l 

QP (O,O,w) = spectral  density = - -  C A n e n  

Uc (characteristic  convection  velocity of the . 

. turbulence) = 0.8 U, " let 

ql(E) = decay  factor in thb %-direction = e U P  
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1 yl (k  - a) = 
U, sucec(1/uce)2 + (k - w/uc) . ~ . 2 -  7 

IT I 
" 

$ ( ) = decay  factor in the  y-direction = e CAS* 

(Q = dS*) 

S*  (boundary-layer  displacement  thickness) 

277- 

= 0.001168 x Re 

Re = U,x/v 

X = 0.609 m 

V = 1.464 x rn2/sec 

-0.2 

and  experimentary  determined  constants 

Ai = 0.240 5 = 0.470 

A2 = 1.08 3 = 3.0 

A3 = 1.80 K3 = 14.0 

0 ( = 2  

8 (eddy  lifetime) = -(1,24 x 

+ 1.15 x 
.L 

10-3 sec 

Fig. 5.2 shows  the  spectral  densities of structural 

response at x = x2  (the  spectral  densities of structural 

response is homogeneous in the  x-direction,  hence  it is not 
1 

a function of XI or x2) and y1 = y2 = b/2 with or without the 

random  variation in the  membrane  tension  computed  under  the 

assumption  of a frozen-pattern  turbulence (i.e.p (rl(Sj) = 1). 

Furthermore, o n l y  two harmonic  terms  of  the  random  tension 

f i e l d ,  corresponding to I, = 7r m ( j  = 1) and -9 = -TI m -1 -1 

( j  = -l), have been included in the  computation.  We recall 

that  the  cross-correlation of  the  structural  response  is 

linear in each  harmonic  component of the  random  tension  field 
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when  the  random  amplitudes  of  the  tension, X j ,  are statisti-, 

cally  uncorrelated  with  each  other.  The  spectral  density of 

the  structural response in the  absence of random  tension 

shows no peak within  the  frequency  range  shown in the  figure, 

while  several peaks appear  if  the  random  tension  is taken into 

account. This  change in appearance can be  explained as 

f.o,ll.ows. Since  the  exciting  pressure i.6 assumed.-to be a 

froeen-pattern  turbulence,  the  wave  number k of  the  turbulence 

is related to the  frequency by k = w/Uc.  Without random 

tension  the  wave  number  of  the response,p, of an infinite 

membrane  unsupported in the  x-direction  must  be  equal to a/U,. 

Therefore,  the  coincidence  resonance (321 would  occur  when  one 

of the  diagonal  elements of  the  influence  coefficient  matrix 

IC1 could  become  zero.  If  the  induced  pressures, p1 and  p2, 

are neglected, this would  happen when 

However,  numerical  computations  have  shown  that  the  left-hand 

side of this equation  is  always  positive  for any value  of a. 

Thus,  coincidence can never  occur  when  uniform tension To is 

acting on the  membrane  alone,  When  the  random tension terms 

are included in the  computation,  there  appear  perturbation 

terms which  have  factors of the f orm of CK (k - jv)  j = 
1 

~. . _  +&,"+2, , in the mke-number response function Hm Thus 
a shift  of  the  wave  number in the  structural  response  from 

k t o  k - j9 OCCUrS. When j = 1, the coincidence  frequency 
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can be  calculated  from  the  equation 

2 nn 2 w 2 - m u  +I! O b  ( ) 
+ T O ( % - V )  = O  

For n = 1 and 2, this equation has solutions 

f = 371  Hz, 720 Hz,  for n = 1 

f = 425 Hz, 665 Hz, for n = 2 

No solution  exists  if n is  greater than two.  There is no 

coincidence  resonance  when j = -1. Note  that  these  values 

are o n l y  rough estimates of the  peak  frequency  since  the 

induced  pressure  fields,  pl and p , which  have  been  ignored 
in the  estimates  provide  additional  inertia or stiffness to 

change  the  structural  response, thus altering  these  peak 

frequencies . 

2 

Fig. 5.3 shows  the  spectral  densities  of  structural 

response  using  the  measured  spectrum of turbulence  pressure 

in the  computation.  Other  specifications  are  the  same  as 

those  used in obtaining  Fig. 5.2. In this case,  however, 

greater  frequency  intervals  at  every 50 Hz were  used to save 

the  computer  time  instead of 10 Hz interval in Fig. 5.2. 

Although  the  details are missing  in this figure as compared 

to Fig. 5.2, the  major  effect of the  random  tension,  which 

raises  the  spectrum  values  at  some  frequencies  by  several 

orders of magnitude,  can be seen  clearly.  The  comparison 

with Fig. 5.2 also  shows  that  the  frozen-pattern  assumption 
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is unconservative,  resulting in gross underestimates 

structural  response  calculation. 

5.4 Conclusion 

in the 

The  turbulence  decomposition  scheme was applied to the 

two-dimensional  problem  of a membrane  with  random tension 

field.  The  Levy's series  representation  was  used to describe 

the  variation of  the  wave-number  response  function, H, in the 

y-direction.  Therefore,  integrations  in  the  y-direction 

needed to  calculate  the  cross-spectrum  of  the  structural 

response  could be  carried  out  simply  with o n l y  a single  inte- 

gration  remaining to be done numerically on a computer. The 

effect  of  the  randomness in the  structural  properties  was 

also  investigated, in particular  the  random  non-uniform tension 

in the  membrane.  It  has  been shown that  with a coefficient 

of variation of  only 10% in the  tension  field  the  structural 

response  spectrum may be increased  by  several  orders  of 

magnitude  at  some  frequencies.  The  variation  of  the tension 

field  need  not be accidental,  but  it  may  be  caused  intention- 

ally to create a spectral peak,  for  example,  beneficial to 

skin-friction  reduction. This proposition  may  be  investi- 

gated  in  the  future. The suitability of the  frozen-pattern 

assumption was, again,  examined in this chapter and the  same 

conclusion as in Chapter  I11  was  drawn:  namely,  it  leads to 

underestimation of structural  response and omission of  some 

important  peaks in the  spectral  density of  the  response.  Thus, 

the  use of the  frozen-pattern  assumption  should be avoided  for 

. .  



the  analysis  of  the  structural  response  spectra  under  the 

boundary-layer  turbulence  excitation. 
. .  

In Chapter 111-V,  the emphasis has been placed on 

structural motions. In the  next  chapter  our  focus will be 

shifted to the  skin-friction drag reduction itself. 
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VI. REYNOLDS STRESS ON A COMPLIANI! SWAGE 

6.1 Introduction 

From observing  the  swimming  of  dolphins and amazed by 

the  smooth motion of  the fish Kramer  hypothesized  that 

favorable  interactions  between  the  flabby  skin  of  the  fish 

and water  could  reduce  the  skin-friction  drag on the fish. 

..Since then many researches,  experimental C36-371 as well as 
theoretical [38-413.  have been  carried  out in this field to 

find  the  mechanism  of this highly  applicable  phenomenon. 

Aircraft and ship  designers are especially  interested in this 

problem  since reduction of skin-friction will result in a 

decrease in fuel consumption.  It has been  estimated  that  the 

skin-friction drag of an aircraft can be as  high as 50% of  the 

.total drag. Although  some  experimental  studies  performed  on 

very  flexible  membranes  have  indicated  friction-drag reduction 

in fully  turbulent  boundary  layers,  the  theoretical  follow-up 

has  not  been as successful.  For  historical  reviews  of  previous 

works  the  reader  is  referred to [36,37]. 
One requirement  for a successful  theoretical  analysis 

is a thorough  understanding of  the  complicated  structural 

motion  under  the  excitation of the  boundary-layer  turbulence 

[37], to which  Chapters  111-V of this thesis  were  directed. 

Another  requirement  is  the  knowledge of  the  changing flow 

field  resulting  from  the  structural motion. In this chapter 

a perturbation  approach  similar to that  used  by  Ffowcs 

Williams [48].and Blick [41] will be applied to compute  the 
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perturbation  Reynolds  stress near the  structure-fluid  interface. 

The analysis will be related  directly to the two structural 

models  considered in previous  chapters.  The first  model,  a 

one-dimensional  unsupported  beam  will  be  used again to present 

the  basic  concepts,  and then these  concepts will be applied to 

the  more  realistic  model  of  a  one-dimensional  infinite  beam  on 

evenly  spaced  supports. In both  cases  the  turbulence  decompo- 

sition  scheme will be  utilized. 

6.2 Theory 

Fig.  6.1 shows  a  one-dimensional  infinite  beam  which 

is basically  the  same  beam  considered in Chapter 111. As the 

beam  responds  to  excitations  its  motion  will  generate  addi- 

tional  pressures in the  fluid  media  on  the  upper  and  lower 

sides. As before,  denoting  these  induced  pressures  by  p  and 

p2, respectively,  the  governing  equation of the  beam  motion 

is  given by 

1 

Equation (6.1) differs  from Eq. (3.1) in that a pre-tension T 

and  a  viscous  damping coefficient7 have  been  included. 

The  turbulence  pressure  field p can be expressed in 

the  form  previously  introduced in Chapter 11: 

"0 



p (turbulent pressure) 

t w  

d 

I 

p2 (transmitted pressure) 

( p 2 4  

Fig, 6.1 One-dimensional  infinite beam under the 

excitation of boundary-layer  turbulence 



The  meaning of the  functions F and G has been  discussed in 

Chapter 11. We recall that in the  integrand  the  circular 

frequencyw is related to the  wave-number k and the  component 

convection  velocity u by the relationship u) = ku. Now, the 

induced  quantities w, pl and p2 can be expressed as follows: 

where H, P1, and P2 may be  called  the  wave-number  response 

functions  for  the  structural  displacement,  the  radiated 

pressure, and the  transmitted  sound,  respectively. 

of  the 

tional 

of  the 

To  determine  the  radiated  pressure on the  upper  side 

beam, p , we  use  the usual assumption  that  the  addi- 
pressure can be obtained  without  regard to the  presence 

turbulent  pressure p. Then,  p1 can be obtained  in  the 

1 

same  way as in Chapter 111; 

where U, denotes  the  free-stream  velocity  of  the flow on the 

upper  side of the  beam.  For  the  case of incompressible  fluid, 

we  let a Then Eq. (6.6) reduces to 1 
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Following  the same procedure as in  Chapter 111, the pressure 

\ generated on the  lower  side of the beam is found t o  be 

where the bottom wall of the cavity is assumed t o  be acousti-  

c a l l y  hard. Taking the limit a,+-, we have the  incompress- 

ible   f low  solut ion 

For what follows we shall r e s t r i c t  o u r  a t t e n t i o n   t o  the in- 

compressible  case. 

. Subst i tut ing Eqs. (6.2)-(6.51, ._ (6.7),  and (6.9) i n t o  

Eq. (6.1) , one obtains 

- ty 3 2 coth(kd) -1 
k 

(6.10) 

This equation is similar t o  those.der ived in  [41,48], 

however , i n  -these referenc.es   the  effects  of the  radiated 

p r e s g k e  p1 was not  taken i n t o  account. 

Let   the   veloci ty  components  of the  turbulent  boundary- 

layer  f low on the  upper  side of the  compliant plate be T + u' 
and F + v ' ,  where T and T a r e   t h e   v e l o c i t y  components when 



the  boundary  is  rigid and urn and v@ are  perturbation  velocities 

induced by the  structural motion. Now assume  that  the  pertur- 

bation  velocities, urn and v@, can be expressed as power  series 

in yt 

From the  conservation of mass of an incompressible  fluid, 

we  have 

In order  that 

av@ 
ay I 

" - 0  (6.13) 

this condition is satisfied  the  coefficients 

in E q s .  (6.11) and  (6.12)  must  be related  as  followsr 

Therefore,  substituting Eq. (6.14)  into Eq. (6.12),  we  have 

The  boundary  conditions  at  the  beam  surface  are 

G(w) + U@(X,W@t) = 0 (6.16) 

T a k i n g  Taylor  expansions of ii(w) apd T(w) about y = 0, and 
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neglecting  the  high  order  terms of w, one obtains 

Z(w) = Ti(0) + (-) w 4- (") az aa 
(6.18) aY Y=o ay p o w  

S(w) = T(0) + (-) af W + m  
aY y=o (6.19) 

since i i ( 0 )  and T(0) are  zero and the  continuity of the 

unperturbed  fluid  requires  that 

Substituting EqSe (6.11) and (6.18)  into Eq. (6.16),  one 

obtains 

2 a-(x,t) + al(x,t)w + a2(x,t)w + = -(-I w aii 
aY p o  0 

Keeping o n l y  the  first  term  on  the  left-hand side of this 

equation, we  have 

where U ia defined as 

u = (-) az aY y=o 



Again, retaining only  the f h a t  term on the  left-hand  side, 

Equation (6.24) confirms  what  might  have been concluded from 

intuitive reasoning that  the  perturbed  velocity in the  y- 

direction ia equal to the  structural motion in that  direction. 

Substituting Eqs.  (6.21) and (6.24) into Eqs (6.11) and ( 6 . 1 5 ) ,  

we  have 

u'(x,y,t) = - uw(x,t) + c an(x,t)y" 
00 (6.25) 
n=l 

In addition to  the  continuity  equation and the  boundary 

conditions,  the  velocity  components in the f low field must 

satisfy. two momentum  equations,  one in the  x-direction and 

the other in  the  y-direction. However, it is sometimes  more 

convenient to replace one  of these two equations  by a diffusion 

equation gqv&ning-. the  vorticity - -. perturbation: 

In the  proximity  of  the  structure this diffusion  equation 

is  given  by 

a a* - = v(- +-) w' awe 
at ax a# 
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mere v represents  the  coefficient of viscosity. We shall 

apply this diffusion  equation  next to calculate  the  higher 

order  coefficients in the  power  series of u' and v'. Since 

we results from the  structural motion it can be expressed 

in a form  similar to Eqs. (6.2)-(6.5); i . e . ,  

Substituting this expression  into Eq. (6.28),  we have 

with  the  condition  that  the  vorticity  vanishes  at  infinity. 

A solution  for this differential  equation  may be expressed as 

where  the function fi is to be  determined.  Expanding  the 
exponential  function on the  right-hand  side of Eq. (6.31) in 

a Taylor  series  about ~ 0 ,  one  obtains 

2 3 o o n  
n=o n* 

n 
iuk y 

( 0 1 ) ~  (k2 + 7) exp[-(k + 7) y] = C 

Therefore, Eq. (6.29) can be written as 
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However, from Eqs.  (6.25)-(6.27) 

In consistence  with  the  representations of w and o',  Eqs. 

(6.3) and (6.29), each % also can be expressed as follows: 

"00 

+ higher  order  terms in y (6.35) 

By  equating  coefficients of y in Eqs.  (6.32) and (6.35), 
we obtain 

n 

n(k,u) = uk H(k,u) - Al(k,u) 2 (6.36) 

.a(k,u) (k2 + F)' = Uk2H(k,u) + 2A2(k,u) (6.37) 

Eliminating3 from  these two equations, we  have 

. ... .. 



To  calculate AI and A2 we  use  the  momentum  equation 

in the  x-direction 

However, for the  rigid wall case,  we  have 

Thus, by subtracting Eq. (6.40) from Eq. (6 .39 )  and neglecting 

the  square terms of perturbation veloci't5es, one obtains 

a= 1 3Pi 

at ax ax aY aY pl ax. 
2 - au' +C" all' + u' - a ~ + ~ a u t + y ' "  - "  - + uv u' 

(6.41 1 
It has been  shown in Eqs. (6.18) and (6.19) that  at  the 

proximity  of  the  beam Ti and 5 can be  approximated as follows: 

Thus,  the  Navier-Stokes  equation for the perturbation 

velocities near the  -compliant  surface can be  .approximated as 
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Substituting Eqs. (6.4), (6.25), (6,26), and (6.34) in Eq. 
(6,42) and letting y = 0, we obtain 

1 ikPl(k,u,O) = -3[Uk H(k,u) + 2A2(k,u)] 2 

fi (6.43) 

Theref ore 

Now, substituting Eqs. (6.3)'  (6.44), and (6.45) into Eqs. 

(6.25) and (6.26)' we have 

where 

Pl(k,u,O)}y + higher  order terms in y (6.48) 

- . . . __ . . . . . . . . . ._ _._ . - . .- . . . . . . . . . - 



+ higher  order  terms in y (6.49) 

The  Reynolds  stress  associated  with  the  perturbation 

velocities, u' and v', is  defined as # 

The usual minus  sign  associated  with  the  definition of the 

Reynolds  stress  is  dropped  here  since, as shown in Fig.  6.1, 

the  positive v' is taken to be opposite  to  the  conventional 

direction.  Now,  substituting Eqs .  (6.46) through (6.49) into 

E q a  (6.50) and applying Eq. (2.26), one obtains 

T(k,u,y) = p,iukUHH* + e,[-ik?HH* - iu 2 3  k HH * 

+ higher  order  terms in y (6 .52 )  

Sinc.e 0) = ku and the  wave-number  spectrum of the  turbulence 

# .In-.theory, the  imaginary  parts  in  the  expressions  for u* 
and VI should be zero:  however,  some  approximations  have 
been  used  in  the  analysis  which may lead  to  non-zero 
imaginary  parts in these  expressions.  Such  superfluous 
terms  should be discarded  in  calculating  the  Reynolds 
stress. Therefore,  instead of Eq. (6.50) one can write 

-c(x,y) = rlEIRe(u' 1 Re (v' 13 
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where 5 (0,w) denotes  the  frequency  spectrum of the  turbulence 

pressure  and P' accounts  for  the  decay  property  with  respect to 

spatial  separation.  Due  to  statistical  stationality  and  homo- 

geneity  of  the  structural  motion,  the  first  three terms in  the 

right-hand  side  of Eq. (6.53) vanish. Thus the  expression  for 

the  Reynolds  stress reduces to 

P 

We now define a Reynolds  number, R, based on the 

wave  convection  velocity w/k and  the  wavelength 25r/k; 

(w/k) (277/k) 0 R =  
27rv =2 3k 

Assuming this Reynolds  number, R, is  large,  the  square-root 

in the  integrand of Eq. (6.54) is  expanded in a Taylor  series 

about l/R = 0 ;  

For values  of R much  greater than unity,  the  first  term  of  the 

series  alone  is  adequate,  Thus, 



- 
QP(O,W) Y(k - ") dk dw 

uC 
(6.57) 

8 -  , 

This  expression  of  the  Reynolds  stress  differs  from Eq. (33) 

in [48] in that  the radiation pressure, PI, takes place  of  the 

pressure  fluctuation. As shown in the  process of obtaining 

Eq, (6.42), the radiation pressure  is  more  directly  related 

to the  perturbation  velocities  and,  therefore,  to  the  pertur- 

bation  Reynolds  stress than the  unperturbed  turbulence  pres- 

sure on the  rigid  wall. Thus, this expression  of  the  Reynolds 

stress  seems to be  more  plausible  than  that in [41,48]. 

Now, substitutiong Eqs. (6.7) and (6.10) into Eq. 
(6.57), and keeping o n l y  the real part  which  represents  the 

physical  Reynolds  stress,  we  have 

Do 2 
2 2 4 = 11 f i  ($ - U,) {[-ma + Dk + Tk 2 

T ( Y )  
-w 

2 2 coth(kd) 2 2 2 
k 3 + q W y  

It is clear  from Eq, (6.54) that  the  perturbation  Reynolds 
stress  vanishes when there  is no pressure  radiation; i.e., 

Pl(k,f,O) = 0 .  This happens when the wave propagation  speed 

of the  structural  motion, V k ,  becomes  equal to the  free-stream 

velocity  of  the  flow, &,. Of course, in the  absence of struc- 
tural motion the  perturbation  Reynolds  stress  also  must be  aero. 

I 



88 

If the  beam motion is favorable  the  Reynolds  stress may become 

negative.  It has been suggested f48) that  such a negative 
Reynolds s t r e s s  in the  vicinity of  the  surface  may  deprive 

the  turbulence in the  boundary  layer with energy  supply  and, 

therefore,  the  turbulence level may decrease. As seen in Eq. 
(6.58) the sign of the  perturbation  Reynolds  stress can be 

altered by changing  the  structural  properties.  However,  the 

relationship is  subtle and extensive  numerical  studies  would 

be required  to reach any quantitative  conclusions. 

6.3 Periodically  Supported Beam 

The  structural  model  used in the  preceding  section ' 

for a preliminary  investigation of the  change in the  Reynolds 

stress in the fluid due to  structural  motion was an unsupported 

infinite beam. However  the results obtained  there  can be 

extended  easily to the  case  of  periodically  supported  infinite 

beam. This  model is shown in Fig. 6.2, and it resembles more 

realistically the construction of an airplane  fuselage, 

The  governing  equation of the  beam  motion  not  directly 

on the  support  is given by 

2 a w  4 2 
a w  aw 

m > + $ a t  
a w  - + D ( 1  + ig) - T 2 

ax ax 



p (turbulent  pressure ) I 

- u, u' 

ty I v, v' 

I I 

A "I , *-c 
T 1 T 

B 
pz (transmitted  pressure) I 

d 
I 

Fig, 6.2 One-dimeneional  periodio  beam  under  the 

excitation of boundary-layer  €urbulence 
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where 7 denotes  the  viscous  damping  coefficient:, .g is the 

loss factor of the  beam  material, D is  the  beam  rigidity,  and 

m, T, P1 and p are  the  same  symbols  used in the  preceding 2 
section.  For  the  purpose  of  determining  the  wave-number 

response  function,  H(x,k,u),  the  turbulent  pressure p should 

be replaced by  exp[i(ukt - kx)] and the  structural  response 
w equated  with H(x,k,u) exp(iukt).  Other  induced  quantities 

should  also be replaced by their  wave-number  response  functions 

in the  same  manner. 

Since  the  supports  give  rise to multiple  reflections 

of  the  propagation  wave in the  structure,  the  same  expression 

for  the  wave-number response function H as that  used  in  Chapter 

IV is 

where 

suitable: i.e., 

H(x,k,u) = C . Hn exp("i)J x / J )  
OQ 

n=,eo n 

and supject to the  conditions  that p can propagate  only  in 

the  region y > 0 ,-.and .%hat 
1 

= p,(iku + &,-) H e a 2  iukt 
..ax 
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The  solution of this system, when evaluated  at PO, is  given 

bY 

00 

(6.64) 

= (6 .65 )  

The  solution  for  the case of incompressible f low can be 

obtained  by  taking  the  limit al--: i.e. 

where 

The  transmitted  pressure  p2 in the  fluid  medium 

-d s y 0 is governed  by 

a2P * a2 5 %*(% ax +-1 as2 P2 = o  

and subject to the  conditions 

ap2 - =  
aY 

at y = -d 

2 iukt 
" 

a Y  - -f2(uk) H e a t g - 0  



The sctlution for  p2, when evaluated  at y = 0, is given by 

where 

Taking  the  limit a2 + 00, Eq. (6.71) reduces to the  incom- 

pressible  flow  solution 

At this point  it is of interest to note  that  the Hn 

are not all independent of each  other  due to the  constraints 

at the  periodic  simple  supports.  At  these  supports  the 

deflections  are zero. Thus by substituting x = 0 into Eq. 

(6-60) 9 

H(O,k,u) = C % = 0 
w 

n=-a, 

Hence, an alternative  representation f o r  H is 
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where 

To determine  the  coefficients  Hn  we  apply  the  well-known 

virtual  work  principle . Specifically,  we  assume a virtual 
displacement 

The  virtual  work  done  by  the  internal and external  forces 

must sum up to zero. Due  to  the  spatial  periodicity of the 

structural  response and the  virtual  displacement,  it  is  only 

necessary to apply  the  virtual  work  principle to one periodic 

unit.  Thus, multiplying Sw to both  sides  of Eq, (6 .76 )  and 

integrating  over 0 x 1, we  have 



Thus,  substituting 

into Eq. (6.79)', we obtain an equation  involving  only one 
unknown 

oo I 

which  is  solved  readly to give 

(6.81) 

Denote  the  velocity  components  of  the  turbulent 

boundary-layer  flow on the  upper  side of the beam again by. 

u + u@ and iT + v @  where ii and 7 are the  components  correspond- 

ing to.a rigid wall. In view of Eqa (6,6O), the  perturbation 

velocities, u@ and v@, can be expressed as power  series in y 
as followst 

- 

Prom Eqs. (6.83) and (6.84) and the  continuity  equation  for 



95 

an incompressible  fluid! 

one obtains 

Multiplying  both  sides of the  equation  by exp(i)&x/l) and 

integrating  over 0 -Z x c 1, we  have 
3 

n , f o r  n = 1,2, 9 (6.86) 

The  non-slip  condition on the plate  surface can be 

stated as 

%(w) + U'(X,W,t) = 0 (6 .88)  

and 

- aw(x,t) 
v(w) + Y'(X,W,t) = a t  



Taking  Taylor  expansions of 'ii(w) and T(w) about y = 0, and 

neglecting  the  high  order  terms o f  w, we have 

aii  
aY Y=o n(w) = (-) w 

5(w) = 0 (6 .91)  

Substituting Eqs. (6.83)' and (6,:go)..intOkq..  (6.88),  one 

obtains 

Keeping o n l y  the  first  term  on the left-hand  side  of  this 

equation, we  have 

A = - U H  
05 i 

where 

' ( 6 . 9 2 )  

Similarly,  from Eqs. (6.87) ,, (6.89) and ( 6 . 9 1 ) i  

Now, substituting Eqs.  (6.92). and (6.94) into E q s ,  (6.83) 

and (6.87)  we .obtain 



97 

" 

The  vorticity  perturbation 

must  satisfy  the  diffusion  equation  near  the  beam; 

2 a iuk 

Under  the  condition  that  the  vorticity can diffuse  only in 

the positive  y-domain,  the  solution of Eq. (6.100) is found 



to be 

Expanding  the  exponential  function in a' Taylor  series  about 

y = 0, and  substituing  the  result  into Eq. (6.99) , we  -have 
n 

e i(ukt - /Ijx/l) (6;101) 

However,  from  the  definition of the  vorticity, u)' also  can be 

expressed as follows, using Eqs.  (6.95) and (6.961, 

+ higher  order  terms in y] e i(ukt - pjx/l) 

( 6 . 1 0 2 )  

Equating  coefficients of  yn in EQs. (6.101) and (6.102),, one 

obtains 

Eliminating fi. from  these  equations,  we  have 
3 

( 6 . 1 0 3 )  
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Now the  Navier-Stokes  equation  for  the  perturbation 

velocities in the  vicinity :of the beam can be written as 

(6.106') 

Substituting Eqs. (6..66),, (6.93) and (-6.96) into Eq. (.6.10,6) 

and letting y 5: 0 ,  we  obtain 

Multiplying  both  sides of the  equation  by  exp( i).tjx/A ) and 

integrating  over 0 < x <. 1,. one .ob%tains. 

Substitution of Eq.  (6.108)  into  Eq. (6.105) yields 

0 i(ukt - y j d W  
u@(x,y,t) = C R j  e 

j=" 
(6.110) 
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where 

+ higher  order terms in y (6.112) 

SJ = iUMj - ir UHjy + higher  order terms in y (6.113) 
4 

We note  that  the  velocity  components, u' and v', obtained 

here are induced  by a frozen-pattern  component, exp[i(ukt - 
kx)], of  the turbulent  pressure p: therefore, C RS exp( 

-iyjx/! ) and jg,m S exp(-iyjx/l ) are the  wave-number  response 

functions of the  velocity  components, u' and v ' ,  respectively. 

Thus, the total  velocities  induced by  the  turbulent  pressure 

p..&re  obtained by superposition as follows: 

00 

j=-oo 
00 

"00 (6.114) 

The  perturbation  Reynolds  stress  near  the beam can 

now be computed  from 

Substituting Eqs.  (6.112)-(6.115)  into Eq. (6.116),  one obtains 
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where 

As in the  preceding  section,  the  integration  variable u in 

Eq. (6.117) may be  replaced  by w/k and  the  wave-number spectrum 

of the  turbulence  pressure,  Sp,  replaced  by  the  frequency 

spectrum to give 

- 
@p(O,W) Pr(k - x) dk d 0  (6.119) 

UC 

where  the  specific  expression  for Tnj ,  obtained by substituting 

Eqs. (6.112) and (6.113) into Eq. (6.118) is  given as follows: 

+ higher  order terms in y (6.120) 

Since  the  structural motion is a stationary  random  process in 

time,  the  first  term in the  expression  of  Tnj  does  not  con- 

tribute to the  integral  when  substituted  into Eq. (6.119).  In 

this periodic  beam  case,  however,  the  spatial  homogeneity of 
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the  structural motion is destroyed  because of the  supports. 

Consequently,  the  perturbation  Reynolds  stress near a periodic 

beam is a function of the spatial variable x. A reasonable 

measure of the  net  effect of the  perturbation  Reynolds  stress 

appears to be  the spatial average  defined as followsr 

0 

Again,  define a Reynolds number 

d 2  

"Pn 
B =y 

Eqs. (6.119) and (6.120) may be  substituted  into Eq. (6.121), 

and the  result  is  simplified  by  expanding  the  square-root 

term in a Taylor series about l/R = 0 .  Keeping  only  the real 

part  of  the  expression  which represents the  physical  average 

Reynolds  stress,  one  obtains 

"-00 

3 (0,w) Y(k - w) dk dW (6.123) 
P UC 

Finally,  substitution of Eqs. (6.67) into Eq. (6.122) yields 



6.4 Concluding  Remarks 

Expressions  for  the  perturbation  Reynolds  stress 

induced  by  fluid-solid  interaction  were  obtained  for  two 

structural models.  The  first  structural  model, an infinite 

unsupported  beam, was used to  develope  the  basic  concepts of 

the analysis. The  results  were then extended  to  the  second 

model of an infinite  beam,  simply-supported  at equal intervals. 

The  second  model  is a more realistic  model  for  the  typical 

fuselage  construction of an airplane.  The  effect  of  the  radi- 

ation  pressure was included in the  formulation.  The  pertur- 

bation  Reynolds  stress  involves a double  integration  with an 

integrand  depending  on  the  beam  motion and radiated  pressure. 

The  complexity of the  expression  permits o n l y  qualitative 

discussions in this thesis.  Hopefully,  quantitative  results 

can be documented  after  extensive  numerical  studies  in  the 

f ature . 
The  radiation  pressure, pl, required in the  present 

analysis has been  obtained from a wave  equation  for  inviscid 

fluid.  More  rigorously  the  viscosity in the  fluid  and  the 

velocity  profile in the  boundary  layer  should be taken into 

account  when  determining  the  radiation  pressure.  However,  at 

the  present  time  no  closed  form  solution  is known of this  more 

accurate  wave  equation. 
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VI1 . GENERAL CONCLUSION 

This  investigation  has been concerned  with  the  inter- 

action  between  a  turbulent flow and  certain  types  of  structure 

responding to its excitation.  The turbulence  is  typical of 

those  associated  with  a  boundary  layer,  having  a  cross-spectral 

density  indicative of convection  and  statistical decay. It 

has  been  shown  that  a  decaying  turbulence can be constructed 

from  superposing  infinitely  many  components,  each of which  is 

convecting  as  a  frozen-pattern at  a  different  velocity. This 

turbulence  decomposition  scheme  reduces  greatly  the  computation 

time  by  reducing to one-half  the  number  of  integration  which 

must be performed  on  a  computer.  Furthermore,  the  scheme 

provides a convenient  way  in  which  experimentally  measured 

cross-spectral  density  of  the  turbulent  pressure  fluctuation 

can be  incorporated  directly  into  the  computation. 

The  results of the  structure-turbulence  interaction 

were  presented in terms of  the  spectral  densities of the 

structural  response  and  the  perturbation  Reynolds  stress in 

the  fluid  at  the  vicinity  of  the interface. A number of 

structural  models  were  considered in the  investigation. 

Among the  one-dimensional  models  were an unsupported  infinite 

beam  and a periodically  supported  infinite beam. . The  first 

model  was  used  to  develope  the  basic  ideas  which  were then 

applied  to  the  more  realistic  second  model  resembling  the 

fuselage  construction of an aircraft.  For the  two-dimensional 

case  a  simple  membrane  was  used  to  illustrate  the  type  of 



formulation  applicable to most  two-dimensional  structures. 

However, a small  random  variation in the  membrane  tension 

was included in the  analysis  since  ideally  uniform  tension 

never  exists in practice.  Moreover,  the  mathematical  approach 

used in dealing  with  random  membrane  tension can be adapted 

to treat  other  random  structural  properties in general.  Both 

the  one-dimens.iona1  and  two-dimensional  structures  mentioned 

above  were  backed by a space  filled  with an initially 

quiescent  fluid to simulate  the  acoustic  environment when 

the  structure forms one side of a cabin of a sea- or air- 

craft 

It has been  found  that  important  spectral peaks.of 

the  structural  response  will  not  appear  if  decays in the 

turbulence  is  neglected in the  analysis.  Thus,  the  usual 

Taylor's  hypothesis of frozen-pattern  turbulence  is  uncon- 

servative as far  as  the  assessment  of  structural  reliability 

is  concerned.  The  perturbation  Reynolds  stress  is  indicative 

of the  change in the  skin-friction drag due  to  structural 

motion.  It has been show that,  given  the  statistical 

information  of  the  boundary-layer  turbulent  pressure  field, 

the  perturbation  Reynolds  stress can be  altered  by  varying 

the  structural  parameters.  Therefore,  the  present  study  is 

potentially  useful f o r  designing  flight  or  marine  structures 

to minimize  the total skin-friction  drag. 
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