NASA CONTRACTOR REPORT

NASA CR-150363

ŧ

Ņ,

...**!**

(NASA-CR-150363)PROFABILITIES OF GOOD,N77-31728MARGINAL, AND POOB FLYING CONDITIONS FOR
SPACE SHUTTLE FERRY FLIGHTS (National
Climatic Center, Asheville, N. C.)34 p HCUnclasA03/MF A01CSCL 04B G3/4746261

PROBABILITIES OF GOOD, MARGINAL, AND POOR FLYING CONDITIONS FOR SPACE, SHUTTLE FERRY FLIGHTS

By Dick M. Whiting and Nathaniel B. Guttman. National Climatic Center Federal Building Asheville, NC 28801

August 1977

١.

Prepared for

NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, Alabama 35812

REPORT NO.	2. GOVERNMENT ACCESSION NO.	CAL REPORT STANDARD TITLE PAG a. RECIPIENT'S CATALOG NO.
NASA CR-150363		
TITLE AND SUBTITLE		5. REPORT DATE
Probabilities of Good, Ma	rginal, and Poor Flying Conditions	<u>August 1977</u>
for Space Shuttle Ferry F	,	6 PERFORMING ORGANIZATION COL
Dick M, Whiting and Nath	anlel B. Guttman	8 PERFORMING ORGANIZATION REPORT
PERFORMING ORGANIZATION NAME		10. WURK UNIT NO.
National Climatic Center		
Fodoral Building		11. CONTRACT OR GRANT NO,
Asheville, North Caroline	28801	GO No. H-95560A
		13, TYPE OF REPORT & PERIOD COVER
2 SPONSORING AGENCY NAME AND /	ADDRESS	A hand are added as
National Aeronautics and	Space Administration	Contractor
Washington, D. C. 20540	3	14. SPONSORING AGENCY CODE
Atmospheric Sciences Div	shed under the direction of Marshall S vision of the Space Sciences Laborato	ry as part of the Space Shuttle –
Tool Amoonant No. 000	40 00 000 undel al A un annual Employ	and the second
TASK Agreement No. 989-	-13-22-368 entitled Aerospace Envire	onment.
6. ABSTRACT	-13-22-308 entitled Aerosphee Envire	00ment,
6. ABSTRACT	lities are provided for good, margin	
6. ABSTRACT Empirical probabi		al, and poor flying weather
6. ABSTRACT Empirical probabi for ferrying the Space Shu	llities are provided for good, marging	al, and poor flying weather lifornia, to Kennedy Space
6. ABSTRACT Empirical probabi for ferrying the Space Shu Center, Florida, and from	llities are provided for good, marginative determination of the second state of the se	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabania.
6. ABSTRACT Empirical probabi for ferrying the Space Shu Center, Florida, and from Results are given by mon	llities are provided for good, margina uttle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabania. its of each route. The
6. ABSTRACT Empirical probabi for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy	llities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabania. nts of each route. The ree segments: (1) Edwards
6. ABSTRACT Empirical probabi for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M	llities are provided for good, margin uttle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. hts of each route. The ree segments: (1) Edwards iana, and (3) Shreveport,
6. ABSTRACT Empirical probabi for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp	llities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into the fidland, Texas, to Shreveport, Louis	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. its of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center
6. ABSTRACT Empirical probabi for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp	llities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th fidland, Texas, to Shreveport, Louis ace Center. The Edwards AFB to M gments: (1) Edwards AFB to Midlan	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. its of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center
5. ABSTRACT Empirical probabi for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp route utilizes only two se Texas, to Huntsville, Ala	lities are provided for good, marginauttle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th fidland, Texas, to Shreveport, Louis ace Center. The Edwards AFB to M gments: (1) Edwards AFB to Midlan ibama.	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. ats of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center d, Texas, and (2) Midland,
Empirical probability for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp route utilizes only two se Texas, to Huntsville, Ala The report descript the method of computing the	llities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th fidland, Texas, to Shreveport, Louis ace Center. The Edwards AFB to M gments: (1) Edwards AFB to Midlan	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. ats of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center d, Texas, and (2) Midland, good, marginal, or poor and
Empirical probabi for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp route utilizes only two se Texas, to Huntsville, Ala The report descri	lities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th fidland, Texas, to Shreveport, Louis ace Center. The Edwards AFB to M gments: (1) Edwards AFB to Midlan ibama. bes the criteria for defining a day as	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. ats of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center d, Texas, and (2) Midland, good, marginal, or poor and
Empirical probability for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp route utilizes only two se Texas, to Huntsville, Ala The report descript the method of computing the	lities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th fidland, Texas, to Shreveport, Louis ace Center. The Edwards AFB to M gments: (1) Edwards AFB to Midlan ibama. bes the criteria for defining a day as	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. ats of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center d, Texas, and (2) Midland, good, marginal, or poor and
Empirical probability for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp route utilizes only two se Texas, to Huntsville, Ala The report descript the method of computing the	lities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th fidland, Texas, to Shreveport, Louis ace Center. The Edwards AFB to M gments: (1) Edwards AFB to Midlan ibama. bes the criteria for defining a day as	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. ats of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center d, Texas, and (2) Midland, good, marginal, or poor and
Empirical probability for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp route utilizes only two se Texas, to Huntsville, Ala The report descript the method of computing the	lities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th fidland, Texas, to Shreveport, Louis ace Center. The Edwards AFB to M gments: (1) Edwards AFB to Midlan ibama. bes the criteria for defining a day as	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. ats of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center d, Texas, and (2) Midland, good, marginal, or poor and
Empirical probability for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp route utilizes only two se Texas, to Huntsville, Ala The report descript the method of computing the	lities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th fidland, Texas, to Shreveport, Louis ace Center. The Edwards AFB to M gments: (1) Edwards AFB to Midlan ibama. bes the criteria for defining a day as	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. ats of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center d, Texas, and (2) Midland, good, marginal, or poor and
6. ABSTRACT Empirical probability for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp route utilizes only two se Texas, to Huntsville, Ala The report descript the method of computing for the section of th	lities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th fidland, Texas, to Shreveport, Louis ace Center. The Edwards AFB to M gments: (1) Edwards AFB to Midlan ibama. bes the criteria for defining a day as	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. ats of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center d, Texas, and (2) Midland, good, marginal, or poor and
6. ABSTRACT Empirical probabi for ferrying the Space Shu Center, Florida, and from Results are given by mon Edwards AFB to Kennedy to Midland, Texas, (2) M Louisiana, to Kennedy Sp route utilizes only two se Texas, to Huntsville, Ala The report descri the method of computing the	lities are provided for good, margina attle Orbiter from Edwards AFB, Ca m Edwards AFB to Marshall Space F th for each overall route plus segmen Space Center route is divided into th fidland, Texas, to Shreveport, Louis ace Center. The Edwards AFB to M gments: (1) Edwards AFB to Midlan ibama. bes the criteria for defining a day as	al, and poor flying weather lifornia, to Kennedy Space light Center, Alabama. ats of each route. The ree segments: (1) Edwards iana, and (3) Shreveport, arshall Space Flight Center d, Texas, and (2) Midland, good, marginal, or poor and

Ferry Flight Enroute Weather Good, Marginal, Poor Probabilities

17. KEY WORDS

÷.

1

.

.

......

18. DISTRIBUTION STATEMENT

Unclassified - Unlimited Charles A. Lundquist

Director, Space Sciences Laboratory

19. SECURITY CLASSIF, (of this report)	20. SECURITY CLASSIF. (of this page)	21, NO, OF PAGES	22 PRICI
Unclassified	Unclass ified	34	NTIS
MSFC - Form 3292 (Rev December 1972)	For sale by National Technical Info	rmation Service, Springfi	eld, Virginia 22151

FOREWORD

The purpose of this report is to present empirical probabilities of good, marginal, or poor Orbiter ferry weather across the southern United States from Edwards AFB, California, to Kennedy Space Center, Florida, and from Edwards AFB to Marshall Space Flight Center, Alabama.

To develop these probability statements, it was first necessary to establish criteria by which good, marginal, and poor enroute ferry flight weather could be identified from a surface weather map. Current Orbiter ferry guidelines received from NASA/Johnson Space Center indicate that ferry flights are to be conducted under VFR and are to avoid turbulence. The criteria listed on page 1 were selected as indicators of turbulence or thick clouds that would make VFR flight difficult or impossible. An interpretation of each category is:

- Good No indications of turbulence.¹ No thick clouds to hinder VFR flight.
- Margin Some turbulent areas present. Some thick or layered clouds, making VFR flight doubtful.
- Poor Turbulence very likely. Thick clouds present precluding VFR flight.

¹ CAT indicators were not included in this study.

Several examples of questions that can be answered from the tables provided are given on page 5.

Weather requirements (especially light ground winds at Marshall Space Flight Center) for the Orbiter/Carrier aircraft demate operation were not considered in this study. If several hours of light winds at the terminal were to become a prerequisite for the ferry operation, the "good" probability values in this report would be reduced considerably.

AUTHORS' ACKNOWLEDGMENT

The authors wish to thank Mr. S. Clark Brown of NASA/Marshall Space Flight Center for his guidance and assistance throughout this project.

TABLE OF CONTENTS

ł

1

ł

1

1

1

Ţ

.

•

.

t *****

.....

1

.

. .

 Į

},

1

Soct	tion <u>Title</u> Pag	<u>e</u>
Ι.	INTRODUCTION	
	PROGRAM AND ANALYSIS	
III.	EXPLANATION OF FIGURES AND TABLES	
τν.	CONCLUSIONS	
۷.	REFERENCES)

Section I

INTRODUCTION

Current plans call for the Space Shuttle Orbiter to be ferried on the 747 Carrier Aircraft from Edwards Air Force Base, CA to Kennedy Space Center, FL and to Marshall Space Flight Cente, AL. This study provides the empirical probability of having one day of good, marginal and poor flying weather each month across the southern United States conditional upon the prior one, two and three days' flying weather. Results are given by month for each overall route plus segments of each route. The Edwards AFB to KSC route is divided into three segments: Western-Edwards to Midland, TX; Middle-Midland, TX to Shreveport, LA; Eastern-Shreveport, LA to Kennedy Space Center. The Edwards AFB to Marshall Space Flight Center route utilizes only two segments; Western-Edwards to Midland, TX; Eastern-Midland, TX to Huntsville, AL.

Eleven years (1966-76) of the 0700 EST Daily Weather Maps (1) were examined along the proposed route. Each of the three segments was classified as good (1), marginal (2) or poor (3) for aircraft operations using the following criteria:

Good (1)

- no fronts (a)
- no gusts or squall lines (b)
- terminal conditions VFR (c)
- no thunderstorms (d)
- no significant precipitation occurring (e)

Marginal (2)

- (a) frontal system diffuse or dissipating (frontolysis)
 - (b) terminal conditions expected to deteriorate within 6 hours to <VFR
 - (c) isolated thunderstorms

- (d) some widespread middle or high cloud cover
- (e) isolated precipitation areas

Poor (3)

- (a) well developed frontal system or frontogenesis
- (b) gustiness or squall lines
- (c) terminal conditions </r>
- (d) line of well developed thunderstorms(e) widespread middle or low cloud cover
- (e) widespread middle or low cloud cover
 (f) broad band of precipitation occurring

The coded data for each segment for each of the 4,018 days were placed on magnetic tape in chronological order. The code numbers 1, 2 and 3 describe the good, marginal and poor weather conditions, while their position on tape determines the route segment being described. For example, the symbolic form is W,M,E; W,M,E; W,M,E; and the actual data might be 111, 111, 111, 123 for any four days. The coded data were inventoried and edited for serial completeness prior to processing.

Section II

PROGRAM AND ANALYSIS

The program examines the daily codes and identifies overlapping sequences of two, three and four days. The last day of each sequence is considered to be the post condition, while the other days in the sequence are considered to be the prior condition. All days in each prior condition are, by definition, of the same type. In the example given in the introduction, an analysis of the Western segment would show one sequence of 3 prior good days and 1 post good day. It also would show: two sequences of 2 prior good days and 1 post good day; and three sequences of 1 prior good day and 1 post good day.

The same procedure is followed for each segment. When the entire route is analyzed, all three codes (W,M,E) must be examined each day. The criteria for good is that all positions be coded "1"; for marginal, at least one segment of the route must be a "2", but none can be a "3", while for poor conditions, at least one segment must be a "3". In the above example, the ENTIRE ROUTE analysis would show one sequence of 3 prior good days and 1 post poor day. It also would show: one sequence of 2 prior good days and 1 post good day; one sequence of 2 prior good days and 1 post poor day; two sequences of 1 prior good day and 1 post good day and one sequence of 1 prior good day and 1 post poor day.

Section III

Figures and Tables

.

•

The figures show the percent frequency of occurrence of at least one and two good, marginal, and poor days over the entire ferry route from Edwards AFB to Kennedy.Space Center. For example, of the 341 days in the 11 Januaries 103 or 30.2% were good, 178 or 52.2% were marginal, and 60 or 17.6% were poor. These are the values shown by bar graphs for January in Figure 1. Those in Figure 2 were counted in a similar way - there were 56 occassions (16.4%) when the entire route was classified good on at least two successive days. The marginal or poor classification was assigned if any part of the route fell into that category.

The tables show the frequency (F), conditional empirical probabilities (CP) and the empirical probability of having the indicated types of days followed by a good, marginal, or poor day (%). Total frequencies are shown for each type (TOT F) and a grand total (N) gives the number of observations for each month for the 11-year period.

The other headings are explained as follows:

TYPE: This is the condition of the current day, or days, while the condition of the day following is shown in the frequency columns of the good, marginal and poor fields across the page.

DAYS: This is the number of days defined by type. A "1" is added to the appropriate frequency cell under the proper field.

CP and %: These columns contain the conditional probabilities and percontages, where

The following series of questions and answers illustrate some of the information the mission planner can obtain from the tables. Table 1 Edwards AFB to Kennedy Space Center, Entire Route, January is used in all examples.

- Q. What are the chances of having a good day over the entire route?
- A. Of the 341 days examined 103 were good. 103/341 = 0.302 or 30.2%.
- A. Two successive good days occurred 56 times. Three successive good days occurred 30 times. Four successive good days occurred 13 times.
- Q. What is the probability (%) of 2,3,4 successive good days?
- A. $(56 \div 341) \times 100 = 16.4\%$; $(30/341) \times 100 = 8.8\%$; $(13/341) \times 100 = 3.8\%$.
- Q. What is the conditional probability (¢) that tomorrow will be good given that today is good?
- A. $(56/103) \times 100 = 54.4\%$.
- Q. Suppose it is known that the entire route has been good for 2 days. What is the conditional probability (%) that tomorrow will be good? Marginal? Poor?
- A. Good (30/56) x 100 = 53.6% Marginal (18/56) x 100 = 32.1% Poor (8/56) x 100 = 14.3%
- Q. On how many days and with what percent frequency did at least one segment of the route have poor weather?
- A. 60 days $(60/341) \times 100 = 17.6\%$

Section IV CONCLUSIONS

The tables show that the greatest likelihood of having two, three and four consecutive days of favorable weather along the entire route is during the months of June, July and August, while the least favorable months are April and November. In addition, all three segments show the highest percentages of good conditions during the summer months.

These tables should prove useful in determining the months with the optimum flying weather as well as the likelihood of having 2, 3 or 4 consecutive good days along each segment of the route.

Percent Frequency of Occurrence of at least one Good-Marginal-Poor day over entire Ferry Route From Edwards AFB to KSC

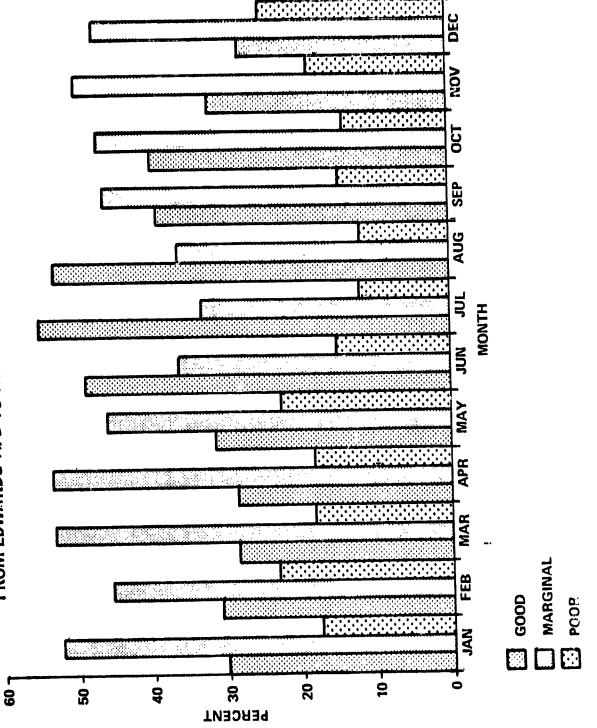



FIGURE 2

PERCENT FREQUENCY OF OCCURRENCE OF AT LEAST TWO GOOD-MARGINAL-POOR DAYS OVER ENTIRE FERRY ROUTE FROM EDWARDS AFB TO KSC

:. 분종 iin () () () ្ពាត 1° 17 1 1 1 1 1 1 1 1 1 1 19 19 19 19 64 64 64 111 1 1 1 1 មាំចេញ មេដាល ២០០ ១០០ ២០០ ១០០ 4 + 4 () (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) (0) (0) () (1) (1) (1) (1) (1) (1) (1) (1) () (1) (1) (1) (1) (1) (1) សលា។ មាលា F 6 0 6 N 0 4 N 0 0) 1 19 6 0 19 19 19 19 LOOF MOD FIN PAM DOF MAN HAN HAN JUN HAN JUN HAN JUN 0 t A 410 m 110 m 110 m 43.6 47.0 61.9 59.7 58.4 69.60 11110 11110 11110 0.010 10.010 10.010 000 000 000 000 4 4 4 60 10 40 14 10 10 MAEGINAL CP 33.9 33.1 33.3 59.6 64.4 69.4 50.7 50.0 50.0 10.05 N 69 60. N4N 000 M-M N-4 9.9 H * 0 0 0 * 0 0 0 * 0 0 4.4.0 40 m 6 m 6 m 6 m 6 m 6 m 110 . 10 . 10 . 10. 10. 10. 14 0 0 14 0 0 1 1 2 0 000 5 10 10 10 10 10 10 10 10 1-11 90.00 90.00 21.9 16.1 16.1 5.9 23.0 32.6 33.9 33.9 **900 90 90** 41- 44 HINN BOON JM INNH MHHHH 41-1 481 60 IN H 109 10 10 DAYS 1 2 3 3 -1-1 IN Ph 1-4 (V M 1-4 (V) (M H N M -IN M 029 3530 1000 4 A R G en en en TABLE MARG 1110 1000 MARG 6000 TYPE GODD PDDR 문서 YR 66-75

9

SPACE CENTER н

EDWARDS AFB TO KENNEDT ENTIRE ROUTE

	1	41										ſ	1							n ł			8 94]				-1			62	,			н П П			r	1			F.			
		91. 1			46.34				22.5				n n tr			32.1				15.2			54.8	, 1		1	39.1			12-5				55.				•			11.7			
1074 0	ţ.	107	89 G G	•	157	F	30	•	4	33	1		161	108	60	910		4	ı.	50	52	12	187	, CJ			113	5	25	1	4 d 1 1) (r †	,	176	161	е г		143			() 4	20	12	,
	24	2.3	1.2	6	2.0.2			D • 7	0.01			2	4.2	1.5	1.2	•	1 •2			7.9	3.6	2.1	¢	Å 4		-	6 . 5	3.8	2.1	•	- 1	n #		1.2	•	9	1				5.9		2.1	•
PC3R	a	1.5	6.9	9.1			1.22		••••	1 U 0 U 1 ×			B.7	6 .4	5.0	•	.	n 4	~ • >	52.0	0.84	56.3		0.1	٠	.	10.5	5.42	28.0	1	39.0	50.0	c•29		. 4	2.0		13.0	13.5	6 * 4 1				20.0
	ŧ	L 0	b t	· (A	1	0	17	ø	1	er i Mi	<u>,</u>	N	41	i K A	t 1		•	•	-1	40	12	-		M	0	-4		4 6	, r-		16	6 2	W' \	4	F 6	• •	•	16	()	n		35	4	•••
		: •	16.0	90		23.5	11.7	5.2		4°07	4	2.5) 4) 4	2.0		19.7	12.1	7.9			1.2		1.11	7.9	4.1	•		0 (5 0 1 1 00		5.9	2.1	,) (• (19.4	10.0	v.v	r	1 1	•	
P AKGI P AL		•	m (30.4	•	1.0	1.9	53.8		48.1	45.5	66.7	1	5°02	20.4		54.6	.62.5	63.0		0.05	90°04		21.4	19.0	12.6				ŝ	6.8.4	43.8	37.5		21.9	8 C I	7.47	53.7		57.1		0.04	30.0	r c c
		u	14	21	n 1	Ca	o C 0 4	9 1	4	37	- 10	01		33	59	P 1	A 5	04	50		18	12	t	40		- 4 - 4		57	8	F. 1	5	3 -	- 11	۱	6 E	20	19	4	9 40 7 10	202	•	9 1		•
		*		o	•		16.4	, i , i	n•n	4	•	• 0	•	34.5	22.4	13.9	C 4 .	1 • 1	- 0 - 0		1.8	"	u.	¢ (2°74	39°1		10.0	9.5	1.5	•	n 1 •	•		39.6	29.9	22.9					1.2		•
	GLUD	<u>د</u> د		56.9	51.5		20.8	26.0	30.8	•	2°R	1.00	N•N	70.8	68.5	56.7		0.95	n • 1 0	c•7e	12.0	0.4	6.9	ļ	17.0	0.61		30.1	22.0	20.0		12.2	6•3				76.8		33°3	30.8	0.92	0.01		>*>*
ENTIRE ROUTE		U	6	. E	17		42	20	12		•	n (n	114	44	40	1	14	20	FT	Ģ	4	-1		441	611 612		36	1 2	1		ŝ	-1		135				14	20	10	4	• •	4
			0AVS	-1 F	1		-1	2	ŝ			2	m	•	4 0	8 (T)	,-4	2	m	÷	4 0	1 (1	•	4	~	m	•	- 4 r	4 17	•	-4	2	u,	•	-4 6	7 10	n	-4	~	'n	4	•••	•
	UTE		TYPE				MARG				PDDR				נכחיי			MARG							0005	•			MARG			P C C P				6009			4ARG			1	PDDR	
	ENTIRE ROUTE														¢										4	•										a D								
	FNT		DM RY	5-76																				ŀ	0																			

5

11 17 10

|-|-

TABLE 1 EDWARDS AFB TO KENNEDY SPACE CENTER ENTIRE ROUTE

1

i

.

2

.

٢,

--

ł

*

1

	•	- 15												14 14 10											089											ц Т С										
	•	• 0	1.0			5.54				14.8				50 ° C			t.	r = 13			13.5				31°3				1° - 64			11 (1)) # 0 -4			27.5							24.9			
	TOTAL	L (((421	-1- 10-1	20	183		0	P T	64	23	11	•	135	78	40				f	4 9	2	•	•	105	16	24		797	82	14	•	40	r (4)	34	ŝ	27		0	ή. Ν.	†	85	35	1 1 1	
	1	, 14 (2.1	6.				4 e • r	n • n	7.0	9.9			1.8	¢.	6	4	7.9	2.5	7.2	9.6				2.4	1.5	6		0.01	5,2	2.4	•	2°6	•		3.8	2+1	1.2	,	10.6		2.3	6 •CT	4.1	1.5	
PUDR		ق	5.4	1.2		с с	14.0		£•27	46.9	47.B			4.4	3.6	6.7	1	16.9	11.0	14.2					7.6	9.8	12.5		20.1	20.7	19.5		31.1	15.4	99.9	13.8	13.2	14.8		22.4	c •12	14.8	43.5	38.9	38.5	
		u. 1	~	-1				* (11	53	1=	6 LI 6	n	Ó	m	m		27	10	•	:	J.	ł		9		1 (*	•	33	17	'n		61	u,	rđ		r	4		36	22	80	37		1	ı
		*	10.9	7.9	n.4	1	21.5	0°61	2.5	7.0		• 4 • •		14.7	6.5	5.0		25.5	14.7	1.0	c f	• •	D•7	•	13.3		ריז • ריז • ריז ב		25.5	12.4	0.1		11.2	Ъ.	0	8.4	1.0	2.0	1	28.4	10.4	10.3	10.0		1.2	1
14.41.9000	ANGINAL	6	27.9	32.1	32.0		59.2	55.7	56.3	0 47	1 - 0 - 1		ñ • n	37.0	37.9	97.8	•	54.4	58.1	53.1	1		0.67	100.0	0 · · •	0.0			51.2		48.8		60.7	68.4	66.7	20.8		33.3		60+2	60.2	64.8	0-04	0.84	9008 8008	
3		u	36		10		90	64	27	6	n (2	ŝ	2		14	•	87	20	26		27	6	Ч	44	;;	D .	77	40	+ + 9 4	100	8	37	13	2	a ,	0 Q N P	40	•	57	56	35		t 4 Ŋ -	r 4	r
		.4	26.1		10.91		12.7	7.0	3.6		5	0					•	13.5	7.6	4.7		1.8	m,				6°-	0.6	r 4 •		- «	•	1.5	0	•	1 1				8.2	5.0	3.2			n .	7.4
TE	GUED	CD	5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		64°0) 	27.6	28.4	20.8		6.1	8.7	1.6	•		0.44 1	0.00	22.8	30.2	32.7		13.0	8.3			6 · D6	51.0	7.14		2.002	2.92		6.5				4. 4.		A•10	17.4	18-3	20.4		10.5	2.22	10.10
ENTIRE ROUTE		u	. 4		+ .+ n m		42	52	12		m	~1	-1	(i	2	0 H		44	90	0	•	Ð	-4		1	¢5	26	01	ļ	•	4 (1 N +	e 1	ſ		•	ł	6) i 10		†	28	1	1		4 (-1	20	•
ш		2700		-4 (N 17	9	•••	• •	1 m		-4	2	3			~1	5	•	4 P	4 11	•	٦	2	n (-4	~1	m		•-4	n) (n	٠	4 6	4 17	n	-4	~	m	•-	4 0	4 67	•	1	2	m
	DUTE	1406		6000			MARG	ļ			PODR							10.05				PODR				3000				MARG				101			0000			4ADC				9004		
	ENTIRE ROUTE	ţ		D i											2											11	1										12									
	ENT		Ϋ́́́	66-70																				1	1																					

.....

ι,

.

i ľ

ł

1

ß

ŕ

TABLE 2 EDWARDS AFB TO KENNEDY SPACE CENTER RESTERN SECRENT-EAFB TO MIDLAND, TX.

i,

-

.

-

ŀ

. . .

.

, .

.

÷

•

;

		77 (1 17 10			11			343			CE E		
		x 78.0	21.1	Ф. •	71.4	25.1		72.1	26.1	1.9	75.5	69-62	1.5
	TDTAL	Е 266 218 178	283	m	222 161 117	78 26 6	201	246 184 135	88 7 7 8 8	a	249 196 154	76 29 8	N +1
		8 A B 4	0 000		680 •••• 111	00A ••• 1	, u , u , u	008 •••	N 6 4 1			1.2	67 8
	POOK	с 4 и 6 4 и 6	2-8 3-8 10-0		0 2 M	8.8 7.7 16.7	27 .3 33.3	8.1 1.1	4.5 8.8 16.7			6.9 6.8	20.0
		L 너 너 너	~~~		ちゅう	M N H	м н	~~~	4 19 19			4 14	•• • •
		12.3 10.0 8.2	0.4 0.4 0.4	Б. •	1.6110.9	4 3. 8 rd 8 rd	E•1	15.5 12.3 8.2	10.0 3.5 4.5	5	13.3 10.6 7.7	9.1 2.2 1.2	• •
	MARGINAL	CP 15.8 15.6	38°9 38°9 20°0	130.0	21.2 21.1 23.9	33.3 23.1	36.4	21.5 22.8 20.7	38°2 35°3 16°7	33,3	17.7 17.9 16.9	39.5 31.0 50.0	20.0
AND, IX.		4 M M F N 4 B	800 108	¢	4 M N 4 M N	9 9 5	4	50 4 N 61 N 60	4 N N M H	2	480	0 6 4	7
HESTERN SECRENT-EAFE TO MIDLAND, IX		4 . 4 5 . 4 5 . 4 6 . 4	12°3 2°1		34.7 39.5 27.7	19.81 29.8 8.8 8.9		56.0 41.1 31.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2	62.1 62.1 8.8 8.8 8.8	12.7 5.5 1.2	0 M
	0009	CP 83.8 83.9	36.9 57.7 70.0		70.0 70.4	62.8 69.2 83.3	36.4 66.7 100.0	77.6 70.1 78.5	57.3 55.9 66.7	56. 7	82.3 82.1 83.1	55.3 62.1 50.0	40.0 160.u
ESTERN SI		г 183 149	42-		170 123 86	4 H	4 11 14	161 161	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	205 161 128	4 10 4 17	m ++
12		04VS 22	- N M	- N m	- N M	N M	N M	- NM	14 N M	N# (T)	H N M	1 N M	N m
		179F 6000	MARG	500d	0009	MARG	P004	0009	YARG	600d	6009	YARG	9009
	HESTERN	1			8			n			4		
	SBR	γR 66-76					1	2					

		ĩ۰	1 1							CEE									141								14 14 19							
			80.4	r 1		13.2		1.5		E4.2	l T		11.8			9 •9			83 . I			10.0			•		92•3			8 . 5			1.2	
	TOTAL	u	274	221	E	62	► 83 ml	5	4	278	239	207	39	13	ø	EI	m		40F	274	240	34	13	0	ŝ	-4	308	277	251	29	ø	2	•	-
		a,	•		•	¢.	•	.		4.0		•	6			•			с, С,	"		•			•			•		9	e.		•	
	POOR	c J	L		1.1	4. 6	5•9	20°C		9.5	1.3	1.0	2.6			23.1			ę.	4		2.9	7.7		33.3			•		6.9	16.7		25°U	
		u	L (4 0	1	m	-1	4		α	-	~	ы			n			н	-4		-4	-4		r4		-	•		~			••	
		¥	۰ ۲	10.01	7 B	5.3	d•1	е.		7 . 7		D • 4	3. 9	1.E	10 •	e.	ń.		0. 2	0°5	4.1	л• С	р.	•			ê, ê	5.0	5.3	2.1	0	ņ	•	•
	MARGINAL	Ę	د د		16.4	29+0	29.4	20.0		0	4.8	1.7	33.3	46.2	16.7	7.7	33.3		6. 9	6.9	5.7	38.2	46.2	33,3	33.3		•		7.2	24.1	33.3	50.0	50.0	100-0
ND, TX.		1	LL (n 4 4 1	0 0 N N	18		-		ç	2 0	99 11 1	e l	0	-	Ţ	1		21	61	4	13	1	2	-1		ŗ	192	8	٢	• •	, 1	2	-1
WESTERN SECRENT-EAFB TO MIDLAND, TX		4	*	0 ° 0		12.0	n -1	6.		ł	2°61	57.9	7.6	2-1	1	2.7	- 42		82.7	76.5	66°C	o ŝ		1.2	.			43.0 15.1	68.3	5	• •			
NENT-EAFB	0009		٩. ١	82°3	92.55 92.55	6A.1	100.0	60.0	100.0	ł	89•2	4.04 9.19	64.1		83.3	60°2	60.7		9.29	00.7	94.3	59.8	46.2	66.7	33.3	100.0		6.24	92.8	6 0 V		20.05	25.0	
STERN SEC		l	ų.	227	1 4 () 1 4 () 1	14	;;;n	M	-	•	248	681 789	56		ŝ	0	• ~		282	250	232	06	9 -0	4	1	-1		282	233		2 (* V	•		
			DAYS	, 1	2	-	* 01 17	-	i vi ų		1 1	NM		4 6	10	٠	4 14	m		• •	n n	•		ı m	•••	- CA 17	•	r4 t	n n	•	-1 0	n n	,	i ni mi
IAB			TYPF	6030				400a	-		600			A NOT		0000	×1174			1010		1007			PUUG	b					うどすに		PUDS	}
	WESTERN		DM AY	65-76 5							•0							13	۲ ۲	1								•						

i٦

TABLE 2 EDWARDS AFB TO KENVEDY SPACE CLUTER

TABLE 2 EDUARDS AFB TO KENNEDY SPACE CENTER

ľ

;

,

: •

;

...

٠ .

Ì

ţ

. •

		2 0 0			341			CEE			T \$e		
		80.9	L7.9	1.2	6-09	17.5	1.5	78,9	19.1	2.1	79 . 5	17.3	2.9
	TUTAL	267 267 220 180	59 22 8	4	276 227 185	3 50 9 7 9 7 9	ŝ	260 219 183	63 26 14	۲	271 224 184	6 76 76	01 19 10
		05 03 24	R .		444	0-43 		M	1.8		0 4 1 1	6.	0- 19 • •
	POCK	СР 1.1 • 5	1.7		r4n	5.0 10.0		•	9.5		5 M M M • • • • • •	5•1	30.C 33.3
		¥ @ -4	-4		244	M N		-	ŵ		4 M N	m	u 4
		10° 10° 10° 10° 10°	6°7 6°7	ē.	1.9 2.01 2.5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	"• •	089 084 084	7.9 2.4 2.4	.	10 8 8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	5°5 1°5	1. U. M.
	MARGIVAL	69 12°7 13°2	37.3 36.4 25.0	23.0	16°9 16°3 16°3	33•3 15•0	20.0	12.7 13.2 11.5	41.3 53.8 64.3	42.9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88 88 10 00 0	30.0 66.7 100.0
D, TX.		900 10 10 10 10 10 10 10 10 10 10 10 10 1	N 0 N N	7	4MM 121	0 m N	4	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	946 047	Ś	908 999	0 & 4 N	ମ ରା <i>ଲ</i> ା
WESTERN SECHENT-LAFB TO MIDLAUD, TX.		% 57.0 47.9	13.9 4.2 1.8	с .	68.9 55.4 4.9	0°0 4°4 4°4	1.2	68.5 57.6 49.1	0 M	1.2	1-00 	50 50 50 50 50 50 50 50 50 50 50 50 50 5	1.2
ENT-LAFB	6009	CP 86.1 86.4	61.0 63.6 73.0	75.0	89.9 89.9 7.9	61.7 75.0 100.0	0°08	888 0.08 0.89 0.89 0.89 0.89	5.44 5.44 30.7	57.1	85°2 85°3 89°3	61.0 97.9 90.0	0 • 0 4
TERN SECN		230 190 150	8 4 9 0 4 9	M	233 189 189	51 20 0	*	22¢ 190 162	151	*	231 191 154	4 M Q	4
		UAVS 1 2 9	N M	n in F	-1 N M	N m	1 N M	101 m	N M	m 1/1 m	- N M	~~ N M	11 N M
		TYPE GOCO	MARG	a DDd	6003	MARG	PQCR	6009	MARG	aDDd	at 19	4 4 8G	RDDA
	NESTERN	YR ₩J 66-76 9			10		14	11			12		

		2									311										•	4										CEE										
		1 19				33.7		5°3			45.0				29.4			5.1				63.9			7.15				4.4			53.5			4 66				8°8			
1	TOTAL			641	5	115	23	1.8			-0	148	103	ł	66	66	20	16	2	•	,	218	141	Ċa					រុះ .	-4		761	140	67	101	107		4	29	r -	2	
		×	1.8	1.5	1.2	2.9	••	a	•				1 6 1		2.6	1•0		r	•			2.3	1.8	1.2	4		4 60 -		ю. •			1.8	1.8	1.5	1	246	+••	11	2.	6.	6,	
POCR		СР	2.9	9°6	3.7	8.7	5.7	•	01		•	01 0			8.6	7.7		•	•••			3.7	4.3	5.0	4	0.0			6.7			3.1	4. J	5.2		15.5		20.02	27.6	42.9	50°U	
		u	. •0	-	4	10	9 69 69		6			•••	4 4	r	a 9	ē		4	r-1			60	٥	•		- Co-	4.	4	**4			Ŷ	9 -0	n (n		1	Ā	n	us;) 4	
			15.0	10.3	7.6	16.4	6.7	•	A • N	•		14.1	12.2		12.9	2.0	1.0		2.3			13.5	15.0	8.4		12.0	•		1.5			13.6				10.1	5*2	3.9	3.0	•		
1 A 10 1 10 1							6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		55.6			21.8	25.7	2.12	0-64	5.00	37.5		43. 8			28.0	20.0	33.0		38.0	40 •0	43 • E4	53.3				2.01	0. HC		49. 5	53.1	54.2	•			
	Ē	ŧ	L . 1	- 5	40	1	01-1-	•	01	~		4	36	28		j a F	77	•	•			C 1	n .	- 60 n ~ 1			16	r	Ľ	•		ļ	n : 4 (() () ()	9	53	26	6	4	2		
TO KENNEDY SPACE CENTER ENT-MIDLAND, TX TO SHREVEPORT, LA			*	(n c	22.6		4	2.6	1.5	ų		48.9	34.1	22.8	•	n (• (5.4	2.6			4	1.54	24.0	•	17.9		5.3	۲ ۲		•		4 0.3	30.0	4 • 4	11.2		8 .		6 6	N 6	.
SPACE CE	6000	,			20.04		\$2.6 \$3.4	0.44	27.8	33.3		75. 3	71.6	68.9		4 · 84	71.68	C•70	50.0	100.0			67.4	0°04		50.5		0.05			N •001		73.7	7.01	000	34.4		25.0		37.9	57.1	0.04
O KENNEDY			u.	161	104		6 8 8	11	ŝ	-			106	F		4	28	n	α	34			147	4 C	b	Ĩ	40	0	4	- , -	-		143	66	40	7.6	- 4 N •	o • -	•	:1	*	 •
EDWARDS AFB T MIDDLE SEGNEN			DAYS	-1	~ 1	n		m	-	* ~1	m	•		9 19		-4	~	ħ	•			•	-1	~	41	•	-4 0	4 (*	•	4 (N (9	-		m			2	n		2	m
			TYPE	6000			MARG		0000				6001			MARG				¥004			0009				4ARG			POOR			5003				4ARG			POOR		
TABLE 3	M 1001 E	110015		66-76 1									8								1	15		•									4	•								

UNDS AFB TO KENNEDY SPACE CENTER

-

.

.. .

ľ

r

· · ·

. .

.

-

~

، تۇر

CGU CGU CGU CGU CGU CGU CGU 111 112	S MARINAL MARINAL MARINAL MARINAL 107 713.8 1.0 21.1 20.0 1.0	TABLE 3	S EDWARD	S AFB TO SECRENT-	KENCUT J	EDWARDS AFB TO LEWEUT SPALE UNITA MIDDLE SECRENT-MIDLARD, TX TO SHREVEPORT, LA.	VEPORT, 1	LA.							
Number Numer Numer Numer <th></th> <th></th> <th></th> <th></th> <th>0000</th> <th></th> <th>-</th> <th>MARGINAL</th> <th></th> <th></th> <th>POOK</th> <th></th> <th>TOTAL</th> <th></th> <th></th>					0000		-	MARGINAL			POOK		TOTAL		
			2	u	Ę	*	u	9	14	u.	съ	3 1	u		7
		a. (140		11	4 ° °	42	20.4	12.3	12	5.0	3.5	205		
						3.15	93	22.1	9.7	œ		2 •0	51		
2 2	1 1		N (7)		70.5	21.7	50	24.8	1.0	ŝ	4. 3	1.5	105		
							60	4.04	11.4	51	15.6	4.4	95	∠8 •2	
	No. 21.1 20.0 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.1	CE	1			12.3	r 18				16.9	2.1	37		
Num 20.0	Num 20.0 30.0 30.0 30.0 30.0 30.0 1 100.0		~1 m	<u>1</u> -	5 0 A	5 - 5 5 - 5 7 - 5	j n	35.7	1.5	2	14.3	•	4		
			•						- 4		22.3	3.8	39	4-11	
	N 1		1 1	12	30.8	3.5	4 I 14	20°2	4 £	n d			12		
1 1	1 200 100		~	t.	33.3	1.2	n		•	ŋ		•	1		
ZO 93.5 <	1 1		m	~	66.7	•	-	0.00	•)		
1 1	1 2				1			14.4	10.6	١C	2.1	1.5	243	73.5	994
	No. 133 33.8 1.1 33.8 1.1 33.8 1.1 33.8 1.1 33.8 1.1 33.8 1.1 33.8 1.1 33.8 1.1 33.8 1.1	-		203	83 . 5	£°19	n (•		1.2	197		
No. 1 2 2 3 3 3 4	10 10 <td< td=""><td></td><td>~</td><td>104</td><td>83.2</td><td></td><td>A 2</td><td></td><td></td><td>2</td><td>1.3</td><td>-0</td><td>139</td><td></td><td></td></td<>		~	104	83.2		A 2			2	1.3	-0	139		
1 1 2 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 3 5 1 1 1 3 5 1	1 50.0 11.2 2 33.3 5.0 11.2 2 3 3 5 6 1 4 60.0 1.2 1 5 6 1 4 60.0 1.2 1 5 6 1 4 60.0 1.2 1 1 5 6 1 4 60.0 1.2 1 2 3 3 5 6 1		n,	EET	13.0	5 ° C	* 7			•				1	
NIT 30.0 10.0 30.0 10.0 30.0 10.0 30.0 10.0	Number 2000 1000			•		•••	60	33.8	6.7	Ð	9.2	1.8	ê,	19.7	
и поли поли поли поли поли поли поли пол	Num 1 2000 14 <	-		1		2•11 7	44	28.6	1.6	-	4 . B	6	21		
1 1	1 2		N (•		, • • •	•	20.0		ı			n		
1 32.5 3.1 3.	1 3		ħ	t	0.00	J • •	•							•	
Null 32.1 32.1 32.1 32.3	1 1	- 1		٢	31.8	2.1	•	31.8	2.1	90	36.4	2.4	22	•	
No. 10 <t< td=""><td>NG 131 132 131 131 131 NG 131 132 131 131 131 131 NG 131 132 131 131 131 131 131 NG 131 <td< td=""><td></td><td></td><td>- 17</td><td></td><td>0</td><td>2</td><td>25.0</td><td>•</td><td>m</td><td>37.5</td><td>•</td><td>וכמ</td><td></td><td></td></td<></td></t<>	NG 131 132 131 131 131 NG 131 132 131 131 131 131 NG 131 132 131 131 131 131 131 NG 131 <td< td=""><td></td><td></td><td>- 17</td><td></td><td>0</td><td>2</td><td>25.0</td><td>•</td><td>m</td><td>37.5</td><td>•</td><td>וכמ</td><td></td><td></td></td<>			- 17		0	2	25.0	•	m	37.5	•	וכמ		
No.1	No. 1		n 1/	•			• •••	33.3	ē.	-4	33.3	n	m		
	1 2 0 0 1 2 0 0 1 2 0 0 1 1 2 0 0 1		2	•		•				•	•	C	5 7 5	0 0	176
20 90.1 90.1 90.1 90.1 10 10 90.1 91.3 90.1 91.3 10 10 90.1 91.3 91.3 91.3 91.3 10 10 10 10 10 10 10 10 10 10 <td>200 90.1 61.3 200 90.1 61.3 200 164 90.2 33.4 9.1 1.1</td> <td>Ĥ</td> <td></td> <td>240</td> <td>88.2</td> <td>70.4</td> <td>29</td> <td>C (</td> <td>n 4</td> <td>11 -</td> <td>1.1</td> <td>•</td> <td></td> <td></td> <td>•</td>	200 90.1 61.3 200 90.1 61.3 200 164 90.2 33.4 9.1 1.1	Ĥ		240	88.2	70.4	29	C (n 4	1 1 -	1.1	•			•
No.1 20.0	19 90.2 19 90.2 10 90.2 10 10 11	•		209	90.1	61.3	22	11 (0- (n 4	r 4 1	• u	5 F	4 N 4 N		
13 23 2	133 133 133 134 34 14 135 134 34 131 334 34 131 334 34 131 34 34 132 34 34 133 14 14 134 34 14 14 16 14 15 14 16 16 14 23 16 14 23 16 16 14 16 16 14 16 16 14 16 16 14 16 16 14 16 16 14 16 16 14 16 16 14 16 16 14 16 16 14 16 16 14 16 16 14 16 16 14 16 16 14 16 16		1	184	90.2	54.0	61	9.3	0 • n	-4	•	•	r 3		
)						1	u	4		5	0-2-	
X 1 2 1 2 1 2 1 2	1 3	- 24		le	93.4	6 ,1	22	6.15		n c			2	•	
2 2 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5 3 1.5	3 2 3 1.5 3 1.5 3 1.5 3 1.5 3			61	61.9	3 . 8	.	28.0	0 5 •	2		•			
1 223 32,4 32,4 <td< td=""><td>1 3 27.3 3 27.3 3 2 1 3 3 2 3 1 3 3 1 3<!--</td--><td></td><td>, LU</td><td>ŝ</td><td>63,3</td><td>۲. ۱</td><td>-4</td><td>1.01</td><td>•</td><td></td><td></td><td></td><td>•</td><td></td><td></td></td></td<>	1 3 27.3 3 27.3 3 2 1 3 3 2 3 1 3 3 1 3 </td <td></td> <td>, LU</td> <td>ŝ</td> <td>63,3</td> <td>۲. ۱</td> <td>-4</td> <td>1.01</td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>		, LU	ŝ	63,3	۲. ۱	-4	1.01	•				•		
1 2 3 1 3 1 3 1	1 2 3 1 3 1 3 1	i		"	C 10	đ	ĸ	45.5	1.7	m	27.3	0 ,	11	3.2	
Z 1 229 85.4 67.2 33 12.9 85.4 67.2 33 192 85.4 67.2 33 192 85.4 67.2 33 192 85.4 67.2 33 12.9 95.4 67.2 33 12.9 95.4 67.2 33 12.9 95.6 5.2 1.9 258 2.1 192 85.1 1.5 2.7 1.9 228 2.1 192 85.6 1.0.3 2.5 1.0.2 2.5 1.0	1 229 85.4 67.2 33 1 100.0 - - - 1 100.0 - - - 1 100.0 - - - - 1 100.0 - - - - - 1 100.0 - - - - - - - 1 100.0 - <t< td=""><td>-</td><td></td><td>n (</td><td></td><td>•</td><td>•</td><td></td><td></td><td></td><td>33.3</td><td></td><td>m</td><td></td><td></td></t<>	-		n (•	•				33.3		m		
1 229 85.4 67.2 33 2 12.3 85.4 67.2 33 2 192 85.4 67.2 33 2 192 86.1 55.6 2.5 11.2 2 192 86.1 56.3 23 12.3 27.3 3 0.0 67.5 2.3 11.2 7.3 2.4 2.5 1.8 2.5 3 192 86.1 56.3 10.3 5.7 3.3 12.3 3.7 3 2.7 3 2.7 3 2.7 3 3 2.3 10.1 2.5 2.7 1.8 2.2 2.3 1.6 2.5 1.6 2.5 3	1 229 85.4 67.2 33 12.3 85.4 67.2 33 12.3 85.4 67.2 33 12.3 85.4 67.2 33 12.3 85.4 67.2 33 12.3 85.4 67.2 33 12.3 85.4 10.3 25.3 13.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3 10.2 10.3		~ ~	N 14	100.0	,				•			rt		
1 229 85.4 67.2 33 229 85.4 67.2 33 4 192 86.1 56.3 25 10.2 192 86.1 56.3 25 10.3 192 86.1 56.3 25 10.3 192 86.1 56.3 10.3 25 10.3 210 1 26 41.3 27.3 27.3 27.3 30.0 6 6.1 36.5 2.3 1.3 2.4 2.4 30.0 6 41.3 2.4 2.4 2.4 2.4 2.4 2.4 30.0 6 6.3 1.0 2.4 3.4 4.4 3.4 4.4	1 229 85.4 67.2 33 229 85.4 67.2 33 25 192 86.1 56.3 25 11.2 192 86.1 56.3 25 11.2 192 86.1 56.3 25 11.2 192 86.1 56.3 25 11.2 25 11.3 25 11.2 27.3 36.0 6.1 50.0 10.3 20.0 20.0 30.0 6 10.3 20.0 10.3 20.0 10.3 30.0 6 50.0 1.0 30.0 10.0 20.0 10.0 30.0 6 50.0 1.0 30.0 10.0 30.3 20.0 10.0					4	2		7 0	•	0.0	60 4	268	75.5	14 M
2 192 86.1 26.3 25 11.2 3 162 86.1 26.3 25 11.2 25 162 86.1 26.3 25 11.2 2 25 162 86.1 26.3 10.3 2 2 1 15 163 85.6 10.3 2 41.3 7.0 2 2 1 1 35 55.6 10.3 26 41.3 7.0 2 2 1 1 3 30.0 .5 50.0 1.5 2 2 1 1 3 3 1 1 1 3 1 <	2 192 80.1 25 11.2 2 11.2 3 2 10.2 2 10.2 2 10.4 1 35 55.6 10.3 2 11.2 2 10.4 1 35 55.6 10.3 2 41.3 1.0 2 1.1 2 3 3 0.0 6 41.3 1.0 3 2 1.1 1.0 3	-		229	92.4	67.2	5				4 0			1	
1 102 80.6 47.5 20 10.1 2 1 35 55.6 10.3 26 13.4 2 35.6 10.3 26 41.3 7.0 26 63 2 3 36.5 2.0 36.5 2.0 26 63 19.4 2 3 30.0 .6 36.5 2.0 26 63 19.4 3 3 30.0 .6 36.5 2.4 26 63 19.4 3 3 30.0 .6 36.5 2.4 26 19.4 3 3 30.0 1.5 2 20.0 1.5 2 20.0 1 1 2 20.0 1.5 2 20.0 10 10.5 10 2 2 1 1.5 2 20.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.	1 102 60.6 67.5 20 61 1 35 55.6 10.3 26 61 36 2 35.6 10.3 26 41.3 7.0 20 63 19 2 33.6 10.3 26 41.3 7.0 26 53 50 10 50 53 50 10 50 53 50			192	86.1	50.3	50	1.0	n 9 • •	() ()			187		
1: 35 55.6 10.3 26 41.3 7.0 63 19. 2 1: 35 55.6 10.3 26 41.3 7.0 26 63 19. 2 1: 10 38.5 2.4 28.5 2.4 28.5 27.7 20.0 26 13. 3 30.0 .6 50.0 1.5 2 20.0 26 10 26 13. 1 2 20.0 1.5 2 20.0 1.5 2 20.0 10 26 13. 2 1.5 2 20.0 1.5 2 20.0 10 26 13. 2 2 20.0 1.5 2 20.0 10 20.0 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 10 26 2	1: 35 55.6 10.3 26 41.3 7.0 63 36.5 2 10.3 26 41.3 7.0 28 37.6 63 36.5 2 1 10 38.5 2.4 10 38.5 27.7 6 63 36.5 3 30.0 -5 50.0 1.5 2 20.0 26 10 26 11 2 2 30.0 -5 50.0 1.5 2 26.0 10 26 10 10 26 10 10 10 26 10 <td< td=""><td></td><td>m</td><td>162</td><td>80.6</td><td>47.5</td><td>07</td><td></td><td></td><td>•</td><td></td><td>•</td><td></td><td></td><td></td></td<>		m	162	80.6	47.5	07			•		•			
1.1 20 36.5 2.4 2 7.7 .6 26 2 1.4 33.6 4.1 10 36.5 2.4 2 3 30.0 .9 50.0 1.5 2 20.0 2 10 2 2 20.0 1.5 2 20.0 .6 10 2 1 2 20.0 1.5 2 20.0 1.5 2 2 1 2 2 50.0 1.5 2 20.0 .6 10 2 1 2 2 50.0 1.5 2 20.0 .6 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2	•		u F		6.01	26	6.14	1.0	N	3.2	•	69	Ð.	
2 20.0 .6 3 50.0 1.5 2 20.0 .6 10 1 2 20.0 .6 3 50.0 1.5 2 20.0 .6 10 2 8 9 0.0 1.5 2 20.0 .9 10 2 8 9 10 2 8		4		n •				38.5	2.4	2	7.7	•	26		
2 20.0 4 0.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-2 CI 9. 0.0E E 4.1 0.02 E 9. 0.02 Z I E 6. E 6.1 0.06 E 2.1 0.03 E 9. 0.02 Z I E 6. E 6. E 6.1 0.001 I		n 6	+ (1	90°0		, 1	50.0	1.5	2	20.0	•	10		
1 2 20.0 6 9 50.0 1.9 3 30.0 1 33.3 3 1 2 2 2 66.7 6 1 33.3 8 3 3 3	1 2 20.0 .6 3 50.0 1.0 3 3 4 4 1 2 2 66.7 .6 1 33.3 .3 3 3 3 1 100.0 .3 100.0 .3 .4 1		n	•		•			•	(c	f	П С	
2 2000 2 2000 2 2 2 2 2 2 2 2 2 2 2 2 2	2 00°7 00 1 33.3 8 1 100°0 -3 1 33.4	Ģ		2	20.0	•	*	50.0	۰. ۱	m 1	0.00	. .	<u></u>	C. 7	
	1 100°0 •						~	66.7	•		5.55	A,	•		

TARIE 5 EDWARDS AFB TO RENVEDY SPACE CENTER

- --

... .

	7	330									141										200									•	-1 1 1)									
	1	с. • • •			27.3			1.0			73.0			22.3			5.0	1 			C • 1 9			25.4			4	•		1				26.4			ļ	0 F		
	TOTAL		157	111	90	38	10	23	0	4	249	187	o c 1	75	20	4	17	- (7	•		122	154	60T	87	26	æ		7 n	1	1	224	102	222	06	35	11		2.	n (4
	;	۹ ۱۹		1.8	2.1	4	.	1.8	•		2.1	1.8	1.0	1.1	•	¢.	0	.			3.0	2.4	1.8	3.0	•		(•			3.8	2.9	2.6	2.1	0			1. 2.	•	
		5	-4 	• •	7.8	2.6	6.3	26.1	33.3		2.8	3.2	0 •0	9 . 3	15.0	25.0	•	17.0			4.5	5.2	ы . Б	5.15	•			13.6			5.8	6.2	7.4	• H.F	- 6			19.2	40	50°0
		1	3 - 0	0 -0	5	·4	- 1-4	ø	~		-	•	n	٢	n.	-4	(n			10	30	Ð	10	4			m			EI	10	G	£	- 0	4		'n	2	-1
		14	12.7	1.0	11.5	30	2.1	2.7	•	•	15.2	12.0	8°5	5.9	1.2	•	:	2°1	ň		15.8	10.0	7.0	1.0		- N 	•	2.7	•		12.9	8.2	6. 2			19	•	2.3		
	MARGINAL	сÞ	4	19.1 20.7			43.8	30.1	33.3	50.0	20.0	21.9	21.7	7.46				35,3	33,3		23.5	4.10	21.1			0.05		40.9	33.3		19.6	1 3	17.2			+ r - 1 1	5.12	30.8	20.0	
		ų.	42	90		9	4	à	r ei	; -4		20	00		0 4 N	t		¢			5	20	20	•	50	∞ ∢	ł	6	-1		44	r a	21	•	90		m	æ) e 4	ı
EDWARDS AFB TO KENNEDY SPACE CENTER MIDDLE SECRENT-MIDLAND, TX TO SHREVEPORT, LA.		×	53.3	30.1 24.8		13.0	4 4 0 N			, n	1	1.05	30.2		1.4.1	ĎĎ N	•	2.3	•		•	2.04	2.42		15.5	n •	7 •†	0.6	-0		0		50°	-	13.8	6 . 5	č.3	0 0	•	
DY SPACE (XD, TX TO	6000			75.8			50.05 0.05			n 0 • 0 n 0		76.3	74.6		54.0	00°0	0.0	47.1	66.7		ļ	11.9	73.4	•	53.6	69.2	0.05	4 5.5	66.7			0.4.0	0.01		52.2	62.9	72.7			
TO KENVE		u	166	119	•	4 N	21 8	•	20 r	4 -4		190	103		48	6 1	ŋ	α	• ~4		1	159	611 80	•	16	18 1	4	÷	2 ~1		ļ	101	124	76	14	22	8	5	9 (v ==
ARDS AFB		-	1	• •••	ŋ	-4	~	n	4 (N 1	•	-4	2	•	-4	~	m	•	- 0	ŝ		4	2	•	-	2	m	•	4 0	i m		-1	~ 1	•	**	• •4	1 (11)			M M
				200		MARG			PODR			6000			MARG							0009			MARG							0000			MARG				7034	
TABLE 3	MIDDLE											10						•		17	7	11	8									12	8							

TABLE 3 EDWARDS AFB TO KENNEDY SPACE CENTER

.

•

.

· · ·

-

•

•

• . •

•

• •• •

•

:

TABLE 4 EDWARDS AFB TO KENNEDY SPACE CENTER EASTERN SEQUENT-SHREVEPORT, LA TO KSC.

1

, T

-

. . .

.

þ

. 5,

E . . .

.

•

:

۰.

.

.

	2 1 1 1 1 1			ITE			341			() () () () () () () () () () () () () (
	51.3	36.1	12.5	53.7	28 - 8	171) 19 123) 1-1	59 • 3	29.9	1 • 4 1	62+1	5+6	0 *01
TDTAL	175 F	123 54 27	64 11 10	167 106 59	60 (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	57 23	162 162 19	N 0 9 0 7 1	4 N N	202 144 102	88 E	99
	10.1 5.0 5.0	4 E 4 • • •	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ \$ \$ \$ \$ \$ \$ \$	888 •••	- M 4 - M 4 - M 4	2•1 5•1 5•1	00000 •••• 81 NI +-1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5=1 2=9 2=7	₽. 0 ₽. * • • N	۵۵ • • •
8004	CP 9.1 10.1	12.2 11.1 7.4	25.6 27.3 33.3	12.6 16.0 22.0	13.8 13.3 12.5	40.4 47.8 45.5	8.9 12.4 8.8	18-6 25-0 37-5	27•1 25•0 100•0	0-0-03 ••• 0-0-03	0 N M 0 N M	18.2
	101 100 10	ц о о	464	21 13	441	5 T 5	101	0 0 0 1 1	10 m n 1	20 13 9	604	•0
	112 123 13.0 10.0 10.0	10.4 8.2 4.7	21 80 MQ 	10.5 8.0 2.9	10.0 2.6 3	0.9 • •	12.C 5.9 9.6	0 3 A 8 8 1 8 1 1	0.5 1.2	5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 N A 0 4 1 1	4
P.ARGINAL	CP 26.9 26.1 26.1	43°5 51°9 59°3	4 5 6 60 4 6 60 5 6 60 5 6 60 5 60 5 60 5 60 5 7 60 5 7 60 5 7 60 5 7 60 5 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	20.4 23.6 15.3	35.6 26.7 12.5	36•8 30•6 18•2	21.5 22.5 25.0	40.2 42.5 31.3	45 23,3 2	18-5 19-5 20-6	0.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00	42.4 50.0
•	404 404	6 6 6 1 1 1 1	1 9 1 5	4 M G M N	6 6	8 8 8	41 26 20	4 M M M N	55 7	38 28 51	-0.4 M M H	ቆ ጠ 11
-SIKEVERUKI, LA 10 AGC GOOD	32.8 22.8 12.9	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	36.0 20.6 11-9	1.41 5.8 9.0	N 9 M • • • •	89°. 24°5 15°5	12° 96° 96° 96°	© IN ● ● 11 ←	46.5 31.2 21.8	14.2 5.8 2.8	9°5
	64°.0 66°.1 66°.1	42°9 33°9 33°9	25.6 18.2 33.3	67.1 60.4 62.7	50.0 60.0 75.0	22.8 21.7 36.4	69.6 65.1 66.3	4 35 35 31 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	27•1 7•14	7-14 7-14 70-04	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39.4 50.0
EASTERN SELMENT	112 12 24	20 6 20 7	121	112 64 37	400	ц ил4	133 54 53	4 H N M N	e n n	141 103 78	4-1	n n
EAS TENC	DAVS 1 2 3	N M	- N B	N m	~I @	N #		+ ∩ ₪	N 9	HNM	N M	-+ i-) ii
	177 PE	4486	PCDR	0009	MARG	NDD d	0009	4ARG	PEDA	0005	4 ARG	800d
EASTERN	√R MG 66-76 1			~		18	n			4		

TABLE 4 EDWARDS AFB TO KENNEDY SPACE CEVIER EASTERN SECMENT-SHREVEPORT, LA TO KSC.

,

.....

	:	7	141												2) A) ()										141											11 9 10									
		24					9 6				13.5				n • n O			23.3				6"4			65°. 7	I			23.8				6 			69.9			I	ы. Н			6) 6)		
	TOTAL	1	161	136	55		101	4	61		4	16	m		122	611	141	11	33	17		26	e i	0	224	170			61	1 8	្ព		ф М	14 5 1	m	218	174	- 4 - 4 - 1 - 4		ም (ው ነ	7		50	4 11	Þ.
		×	4.4	2.9	2.6		3.8	1.5	-		4.7	•		1	2.7	1.5	1.8	6 - 1				3.9	1.5				5 er	2	5 - E	 			3.7	•	•	1.2	0	19	•	3.2	11 8 N	P .	1.4	2.1	Ф.
	POOR	۲P CP	7.7				12.9	11.6	10.5		34.8	18.8			0.4	4.8	4 =9					50.0	46.2	30.0	7.6			•	33.5				30.6	27-3	66.7	1 - 8	 	4 - - 9 - 9 4		8-11	16•7	15.0	46.7	5.05	42.5
		μ	15		, ¢	•	13		0	l	16	m			œ	0	•0	*	•••	•		ET	Ð	3	•	•	NI •	•	a •	, i	- 10	•	1	m	~	4		4.00	4	11	r-	m	14	•	μ,
		14	9-01		- 10	•	12.9	5.6	2.3		6. 2	2.3	ð		9.7	7.40	6. 7			4	•	3.0	L. 5	e.		- I - I	7 ° 7		đ	-4 1 • •	n 0	•	5.0	1.8		14.0				13.4	0.1	3.2	d.E	6 • T	15. •
	MARGINAL				1041				42.1		45.7	50.0	66.7		14.1	14.0	15.6	•	7.4.4		7 • / 6	36.5	38.5	33.3		C+07	19.2	0•ET			6°24	0.00	47.2	54.5		A . A :) ()) () (13.51	7 0 7 7	48.4	54.8	5 5 .C	0.04	1.55	6.64
TO ASC.	£	ų	L P 7	 9 (00	20	44	• •	h 8	6	11	• œ	• •	ł	32		22		e 1 15) (- 1	D	1 U	. 101	~	ļ	LE	27	19		1E	12	n	7	•	•		F (D -1	5	53	1	6.	(° 48 −4	
RT, LA TO				0.14	29.3	17.4			0	2•2	2) H • • •	n 6 4	ŋ •	56.4		34.2		11.8	n * (2.7	9				53.1	43.7	37.0		9.1	2.6	¢.	с с С	1 - C	•		36.6		37.2	12.9	1.64		r	2 • 1	,
EASTERN SECMENT-SHREVEPORT, LA	0009				73.5				2	4°1.4	4 01	• • • •	n (-+ (19.00	81.0	80 - 1	80.1		50.6		52.9	8.1.		10.1		80.8	83.7	86.3		35 . 3	32.1	20.02		1 C • U • U • U	3.94		Ň	-0- 			l a	30.00			n (n • • • •
N SECNENT		ı	u. (142	100	99	:	ł	61	•	c	•	n •	-1	101			1	9 6	5	6	"	• •	4	1	181	641	126		16	04	N	α	9 (4		181	140	127	37	- (1	4.0	•	9 (u 14
EASTER			DAYS	-1	~	m		-1	~	ŝ	•		NF (m	•	-4 (1		1	2	сń		-4 (7	•	I	• •	1 (71		••	• •••	m	I	-4 (7	•	•-4	2	m	•		N (11)	,	-4 (2
			TYPE	6000			,	MARG				POOK				6003			MARG							6000				MARG											0441			200d	
	EASTERN		딡	1	•											a		•								•	-,										ġ								
	EAS.		Х К	66-76	2																			19																					

5

TABLE 4 EDWARDS AFB TO KENNEDY SPACE CENTER EASTEAN SECRENT-STREVEPORT, LA TO KSC.

•

. ••

.

-

••

·.

. .

.

-]-₅----

•

.

•

•

•.

. **.**.

......

	2 8 8						CEE			rit tit Tit tit		
	₩ ₩ 11 10	67 9 113 14	r. 0	89 89 89	32 . 8	6 .	เก เ ก เก	F		4 	33.7	63) 8 90) 1 4
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 7 1	0 6 0 0 =	20- 145 145	11 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 10 10 N	(1 4 0) 6) i 0 11 1	0 ia m 0 m a 1	(h) (i) (i) (i)	114 (b) 47 40 (b) 40 14	500 202 11 202	4 C 4 9 N
	400 104	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	€ 0 0 ••• •••	2=3 1=2	3°0 •0	89`q ■ 1	4 0 4 1 0 4	8 4 8 6 7 7	2•1 6•	000 N' 16 N	0.0 9.0 9.0	5°5 1.5 8.9
PCJR	0 0 0 0 0 0 0 0 0 0 0	11.6 18.2 23.5	4 6 4 5 0 • 0 0 • 0 0 • 0	4 4 M	11.6	22-2	r. 94 101	15.7 22.9 30.8	17. 14. 14.	14.9 17.2 16.7	17. 16.0 5.0	32.8 25.0 25.0
	正正中国	18 4 18 4	N Q M	\$2►◆	13	ના છે.	400	~ @ 4 1	**	24 17 9	н өс И	11 15 11 N
	10 8 10 8 10 8 10 8 10 8 10 8 10 8 10 8	13.9	4 4 6 • • • • • •	13.2 10.3 7.0	14.7 7.3 4.4	4 N M	14.8 9.7 9.2	10.9 9.6 1.9	M N N N N	11.1 8.8 9.0	15.0 0.0 8.6	F 8 6 - 6
MARGINAL	CP 17-7 20-3 20-3 20-3 20-3 20-3 20-3 20-3 20-3	48°4 40°9 1°74	8 4 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22•1 24•1 24•7	50°0 50°0 50°0	55.6 80.0 100.0	26.8 28.1 25.1	33•3 37•1 38•5	0.001 1.72 1.72	23°6 28°3 31°5	10.44 10.44 10.0	39°1 35°0 73°0
ESC.	E 884 1000	4 E B 4 H	11 10 M	4 M N N N 4	11 5 20	10 10 10 10 10 10 10 10 10 10 10 10 10 1	46 17 17 17	0 M M 0 M M	44H 0	98 78 78	50 N I II 151 N I II	m i- m N
SEGENT-SHREVEPORT, LA TO ESC. GIOD	000 140 140 140	55 55 55 55 55 55 55 55 55 55 55 55 55	1 • 8 • 9	44 36.2 20.2	13. 6.7 2.9	€J ● ▶-1	36.4 21.8 13.9	16°.7 1°.2 1°.2	€ (B • • N	29 °.0 15 °.0 8 ° 2	12.3 5.9 1.3	5°9 5
-SHREVEPO	CP 78.3 77.1	4 4 5 5 4 5 5 6 4 5 6 7 5 7 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7	16.8 20.0	74.0	\$2.7 \$6.0 \$0.0	22.2	65.6 63.6 67.6	0-0-00 0-0-00 0-0-00	20.5 26.6	555 1950 1951 1951	804 90 90 90 90	26.1
	125 122 91	0) (8) (7) (7) (7)	n e	121 103	10347	Ċ	120 72 46	8 4 4 8 4 4	sti ni	9 9 9 9 4 9	0 0 A 4 A	80 88 1
EASTERN	DAYS 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	n n n	ы ni m	H N M	MNM	N M	+ ni m	→ n m	<i>⊳</i> n in	-1 AI M	まろう	₩ 101 m
	TYPE 6000	MARG	PCCR	eada	MARG	PODR	0009	MARG	800d	6003	MARG	.a:00d
EASTERN	уя м; 66-76 9			D T .		20	11			12		

١,

71

....

Í

1

• • . TALLE 5 ADWARDS AFE TO MARSHALL SPACE FLICHT CLATER

·· •·

-

-

. . ٢.

.

-

- **---**--

•

н	
RE ROUTL	
LUTIRE	

	に 1日 前			116			14 17 10			e) M M		
	• • • •	0. 88	е В В	ยา ค. ค.	4 -1 11	1 -	24-1	() () ()	61 i 19 i 19 i	#1 m PJ	1 - T]	44) 8 (7)
	6 0 4 4 0 4 4	040 040 14	00 N 114 N 11	14 (0) (*) (*) (*) (*)	8) (P) (A) (N) (A) (N) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	년 (1) (1) 10) (1)	61 ው መ ው መ 14	F (f) (f) (f) (f) (f) (f) (f)	() (4 F N 0 4 R	(N -1 -1 (N) Wy (N (-1	ની ભાભા જોવી છે. હતા
	01	54 H 64 N 11	0 F M 9 0 0 9 0 0 9	4 N Q 4 8 4 4 M H	р. Ф. Ш. * * * * р. М.	40 BH 63 4 BH 44 14 N 14 14	년 8일 후 8 후 1년	000 888 0501 11	4 - 1 () 	() () () ••• •••	0 4 L m 0 V	0000 ••• (30) M N H
PILA	2140 2140 2140 2140 2140 2140 2140 2140	38°9 38°9 38°9	4 6 9 4 9 4 9 4 9 4 9 4	18.8 21.7 17.5	208 208 8 4 7 8 7 8 7 8 8	444 23 33 33 40	13.2 15.4	200 200 200 200 200 200 200 200 200 200	4 -4 0 9 4 0	0 0 r4 0 0 0 11 1	01-0 00-0 01-0 01-0	050 00 05 05 05 05 05 05 05 05 05 05 05
	KOK4	ни г К н	5 N N 11 N U 11 N U	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 N N	40 GP MI M	40	4) (h eu 4) (h eu	0 m 4	240	11 N N 4 N N 1	0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	5 5 6 6 5 6 6 6 6 5 6 6 6 6 5 7 6 6 6 5 7 6 6 6 7 7 6 6 7 7 6 7 7 6 7 7 7 7	4 6 6 4 6 6 6 6 6 7	4 n n 10 n 10	11 20 20 20 20 20 20 20 20 20 20 20 20 20	6 N	0 2 4 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 m 0 0 m 0 0 m 0	1.5 N 9 N 9 N 9 N		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 M 4 4 4 4 4 4	4 - 1 - 4 8 - 8 - 8 0 - 10 - 0
MARGINAL	4440 1990 1990 1990 1990 1990 1990 1990	36°I 39°I 38°9	36.7 36.7 45.5	34°7 39°1 47°1	104 104 104 104 104 104 104 104 104 104	1004 1004 1004 1004	29 46 5 5 6 9 8 2	444 44 44 44 44 44 44 44 44 44 44 44 44	8 8 8 8 8 8 8 8 8 8 8 9 8 8 9 8 8 9 9 8 9 9 8 9 9 8 9 8	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 4 4 6 7 4 6 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	24. 24. 23. 23. 23. 23. 23. 23. 23. 23. 23. 23
	14 N	410.00	4 I I 1 I I	K) 60 60 M) ⊷1	10 4 60 10 N	Щ Ш Щ Ф 4	40 60 (P (T) 1-1	11 17 17	50 55 47 79 47 47	50 50 50 50 50 50 50 50 50 50 50 50 50 5	4400 101 N	11 F 80 11 F 80
	19 19 19 19 19 19 19 19 19 19 19 19 19 1	10°0 1 8°0 1 • 8	0 M N • • • • • • • •	5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14°5 4°5 4°5	0-0-0 • • •	12 ° 4 4 • 4 1 • 2	10 8 8 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	4 0 B • • • • 0 H	8000 ••• •• ••	N 4 N • • • © N +	เก เว เก ••• • • •
0009	90	25.0 26.3 22.2	15.5 16.3 18.2	46°5 39°5 1°5°2	90 90 90 90 90 90 90 90 90 90 90 90 90 9	14.8 25.0 22.2	4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20.3 24.0 24.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	104 104 104 104 104 104 104 104 104 104	22°1 14°8 16°7	13 16 15 15 15 15 15
	41707	4 M 4 1 M	104 1	41	4 6 F	2 6 N	4 H	8 1 1	ų φ. n	44 69 09 09	4 80 4 19	5 03
	DAVS 1 2 3	u n H	H N M	H N M	11 N M	H N M	~ m	m (v) F1	ጠ ላ ጠ	n n n	H N M	
RGJTE		MARG	FCDA	2009	4446	BUD9	ann,	4446	a C D d		582.	e D D d
ENT (RE ROUTE	П 92-99 1 92-99			2			m			÷		

5 í

		r e			C) CA D)						r4 -1 Pi		
		4) 4) 14	6) * 6) M	89 19 19	(\) 8) जी	4 • C J	22-4	47.2	(i) (i) 4	ते * # *!	C = 0 =	1* 9	3 8 5
		រ ម ពួកស	0-1-3 N-10-N 1-1		() () () () () () () () () () () () () (5 9 M	4 (h in f: N ()	년 (9 년 40 (7 년) 14 14	14 (3 A) M 40 (9) 14	4 N 6 N F		(1) (1) (1) (1) (1) (1) (1)	14 (2) (2) 10 (3) (4)
		(이 다 미) 8 8 8 14 (이 이 14	6 (h (i) 6 (i) 7 (0° 00 4 * • • № 00 4 #4	46,1≥ 00 ■ ■ ■ ■ 01 ↔	0000 •••• ►••	11 11 11 8 8 8 9 1 1 1	000 ••• •••	() () () • • • • • • • •	{V +3 {N +0 € € +0 N +3	6) 6) 	F- (7) (). # (). # ().	() () () 10 () () () () () ()
	5004	() 는 비 3 년 년 년 6 년 년 년 9 년 년 년 1	р • • • • • • • • • • • • • • • • • •	400 400 00 00 00 00 00 00 00 00 00 00 00	0 01 • • • • • • •	22° 4 20° 4 20° 4	n 	001- 1111	0 M N 2 M P 4 H H H	8 0 4 8 8 9 9 8 9 9 8 1 9	N 4 0 1 0 0	61 19 19 19 19 19 19	200 200 200 200 200 200 200 200 200 200
		шыр п н	1- 00 U 19 1- 1- 1-	10 IA 10 M 14	in 0• ⊕ ⊢i	in 10 m N	4 1 1 13	(7) (7) (7)	n ib in N	ыр (л (л	14 1= 10 +4	400 M	ONF NH
15F		80% 80% 80%	17•0 1-7 1-5	1 6 6 • • • • • • •	0 bu • • •	9 4 9 9 4 9 9 4 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 - 4 0 4 0 m	たちよう **** ***	5 0 0 0 N	14 9 - 1 1 - 1 0 - 1	0 * * * * * * * * * * * * * * * * * * *	0
FLIGHT CLUTER	PARGINAL		0 6 7 7 7 7 7 7 8 0 8 7 7 7 7 7 7 7 7 7 7 7	33.9 33.9 31.0	1 9 9 9 9 9 9 9 1 1 1 1 9 9 9 1 1 1 1 1	N + + + + + + + + + + + + + + + + + + +	4 4 M M 4 4 M 4 4 M M M 4 4 M M M M M M	4 4 6 6 8 4 4 6 6 8 4 4 6 6 8	4 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 5 5 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	26•3 28•2 33•3	47°2 41°8 49°8	0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SPACE FI	2	ш о К о М н н	-4 ni cu 10 ni	40 C M M	9 9 5 1 1 5 1 1 5	din k m H	19 0 IN 19 14	4 M H 9 H 9	8 F N 9 N H	5 5 5 1 5 1 5	4 11 4 4 m N	80 (M C) 10 (N H	6 - 4 0 V
EDMARDS AFB TO MARSHALL SPACE ENTIRE ROUTE		n 9 u • 1 u 4	10°0 4°1 2°1	10 (0) (0) 0 (0) (0) 0 (0) (0)	35.8 26.1 17.9	0 IN IN 0 4 -1 -1	1) N D • • • • • • •	2010 2010 2011 2011	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80 05 • •	32.6 21.1 12.6	406 46 N	ν ••• •••
AFB TO ROUTE	0209	00.4 50.00 40.00 40.00	26.4 24.6 29.2	11-6 15-3 17-2	74.2 77.5 73.8	97°1 41°7 93°9	14 14 20 20 20 20	64.0 69.7 65.6	0 - 1 - 1 0 - 1 - 1 0 - 1 - 1 0 - 1 - 1 0 1 0 - 1 0	12°2 13°0	n n - 0 0 0 0 0 0	20 4 4 20 7 20 20 40 20 40	00 (J m ••• •••
EDWARDS ENTIRE		12 12 12 12	44M 11 M	<u>1</u> 0 6	878 86 11	8 11 9 15 11	14 m	109 65 26	1- 10 Di 4 N	43 (4)	111 72 112	4 7 D 4 7 D	¥7 ⊷ ⊶
TABLE S		1 1 9 9	H N M	H N G	MNM	HNM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H N M	1 N M	ц N B	H N M	1 N M	H N B
H	IJJTE	14 6000 6000	HARG	PODR	6000	4486	RUDA	6883	4 A R R	900 90	0009	44RG	R T T T
	ENTIRE ROUTE	48 41 66-76 5			٥		2.9	۲			độ.		

	PILLA	40
		щ
		4 B 8 L
TABLE S EDWARDS AFB TO MARSHALL SPACE FLIGHT CENTER ENTIRE ROUTE	MARGINAL	23•1
SPACE		ш
MARSIALL		5 27.3
S AFE TO ROUTE	0079	СР 69.2
ENTIRE		L D I
TALLE S		DAYS I
•	TE	YPE DUB

		2 C C C C C C C C C C C C						176									19 19 19									, 4 B	•							
		9 8 0 9 8 0 9 8		ម ខ		ମ ଜ ଅ		4 - 6 4			1) 1 1 1 1 1			22-2			6. . 60			5. 61						6 1 1			1	11		ц П		
	į		h () 9 4h	121	n P N N	(F)	0 M M II			ia A		1	m . I	ji ji	1:14 (f)	ŝ	121	4 4) (b)	st M	() [1] 	43 81	27	i# F	י דן ח	6 0		1	• 14 P)				r: (4 (1) (1)	0 11 7 7
		9 Q 8 M M 8	1 1 1 1 1 1 1	0 • 0 • 0	U 60) 4 0 17 + 4	9 . I	6 N M M	3.2	2-4 (10 11	4 • 6	4.7	n • 1	10.01	4 • 4	8.	2.7	-		10 • 0	1.0	3°0	4 °0	2.4	4	1	2 - 2	- 6	•	4 d 9 d 4 U		1 - 1		3.1
	PEDA			27.6	25.2	42.42	4 9 9 9 9	4 4 4	0	-4 8 0	27.1	35.4	38.5	45.3	48.4	£6.2	7.4	+4 (19) (27.7					12.5			9 E.			32.1			32.4
		4 U C	•	n e M •	y e	0	n M N	a T	P ~ 1	ň	32	4 <u>1</u>	'n	34	5	•	0	~ •	-4	36	5	7	32	æ	1-1	4	۴	m) (J) ►	1	() IN	22	13
	Ŀ	11 11 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9.6	89° 81	9.9	11.2	> CD • • • • • •	13.2		5	13.2	9,6	n •	83 83 83	m (u1 8 14	13.0	5 * • 4	•	11.3	0 r	7 • 7	9.1	1	2.1	13.¢	ъ. ъ.	2.5	18.2	un di	3.E	14.7	5.0	5.3
	MARGINAL	19 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	24.0	0.14 0.14	10.7	50.7	40°24	30.4	32.6	A • ng	38.1	29.5	19 ° 1	40.0	38.7	50 50 50 50 50 50 50 50 50 50 50 50 50 5	37.2	9.04		8.6十	9 6 .9	5.40	0-86	54.8	87.5	36+3	40.8	45.5	0-64	5	40.4	39°¢	43.8	38.1
		L D C	12	25	11	54	61 40 ⊶1	.	01	4	£9	5 1	175	30	12	in	4 9	4) H (∕] -	n -	57	22	•	30	11	•	36	202	10	4	0	EI	40	21	8 0
		27.3 10.7	4.0	12.1	5	1.8	N. 49.	27.0	16.1		12.0	4) 4 4	b .	3.2	1.2	4	20.3	0.¥	n 1	11.2	₩ 0 •	•	5.2	1.8		14.7	¢.5	2.6	0,01	9.6	1.8	3.2	1.5	•
E ROUTE	6039	CP 69-2	62.0	91. 19. 19.	37.0	8.2	n 4 n 1 n 1	62. 2	80° 60°		34.7	34.1	1-5-1	14.7	5.51	15.4	35.4		4.77	28.5	25.0	5 • n 4	21.5	19.4		50.0	44.9	6-04	24.6	21.3	21.4	10.9	13.4	9.5
ENTIRE		11 0 11 11 0 11	11 19	0.	0	ų v	• •	9 2	80 4 2 6	1	4	<u>.</u>	n	11	. • •	N	67	0 œ	9	37	1 1 1	•	17	Ø		50	22	•	37	EI	o	11	m	~
		1 2 2	m,	н қ	m	н (n v	H	n) n	۲	 4 -	rV e	n	 4 (N 1	41	jud I	~ 17	•	H	~ 1	n	н	rvt i	7	н	~	m	Ч	~	m	H	~	n
	RGJTE	14PE 6003		1285		bCDd					YARG			PODR			0005			7286			PCD9			6000			5822			800q		
	ENTIRE ROUTE	ү R м д 66-76 9						υT							۰.		11									12								

TABLE 6 EDWARDS AFB TO MARSHALL SPACE FLIGHT CLWTER WESTERN SEGMENT-EAFB TO MIDLAD, TN.

•

.. .

i

ú

•

78.0 21.1 *****" 12 25.1 5.0 72.1 ۰. 1074L F 265 218 218 222 161 117 82 9 1223 m n di n 1.0 1.0 0 0 0 0.0 M 0.0 6 2 9 5 6 7 5 6 3.8 7.7 10.7 8.60 9.89 0.98 0.98 27.3 33.3 m n m **m** --12.3 10.0 6.2 8 0 6 6 0 6 10.6 4 ° P 1.3 MARGINAL 38.9 2.55 20.05 100.0 21.2 21.1 23.9 33.3 23.1 36.4 400 000 1040 000 en, 00 00 00 4 4 N N 00 4 4 41.4 9 0 0 4 9 0 0 4 12.9 54.7 29.9 27.7 ស្តេស សំស • សំ ស • 58.3 57.7 70.0 70.0 76.4 73.5 36.4 66.7 100.0 62.8 69.2 83.3 GDDD 1493 F 140 140 140 140 140 140 140 432 4 01 14 DAVS 2 3 3 HNM HNM ----1 N m - Nm TYPE GDD GDD MARG MARG POOR PCCR 1009 WESTERN 모ㅋ ~ ү**д** 66-76 24

311

고 밝

25.1 1.8 5°51 23.0 5 1 246 135 5821 565 ۵ 76 29 8 10 m 100 1.2 • 0.0 m 5.3 20.0 0 -1 K - 1 4.5 8.8 7.7 4 N 205 4 10 10 -15.5 12.3 8.2 01 0 w 0 v 0 v 13.9 1.7 2.1 n, 21.5 22.8 20.7 38.2 35.3 16.7 33.3 17.7 17.9 16.9 80.05 50.05 20.02 4 10 0 0 4 4 10 0 0 0 4 56.0 41.1 31.1 19.0 1.2 62.1 48.8 38.8 12.7 5.5 o, u 77.6 76.1 78.5 57.3 55.9 66.7 66.7 55.3 62.1 90.0 00.00 100.0 82.3 82.1 83.1 109 108 111 10 10 10 4 **m** -+ - Nm HNM HNM H N B - N m HNM MARG MARG 0110 POOR 880 aDDd m ٠

CRE

EDWARDS AFB TO MARSHALL SPACE FLIGHT CENTER RESTERN SEGMENT-EAFB TO MIDLAUD, TX. TABLE 6

2 **1** QEE 1 1 1 1 1 1 I the 60.3 80°*4 10.0 9°2 18.2 64.2 11.5 9°6 **69.**1 1.2 1.5 o, T0TAL F 274 274 221 177 308 277 251 278 239 207 305 274 259 259 125 10 -4 39 n n 0 II 2 **m** ---29.00 400 N Ľ, ŝ ÷. • 0.4 ų, • ų ų **. .** ••• e. 1.099 6.9 16.7 25°0 20.0 23.1 2.0 33**.**3 2.6 9 POOR **4** N ---IL NNN 8°. 1°.9 0 0 M 10 m 10 m 800 10 10 10 10 10 10 6. -----------101 101 0 m n, 9 9 9 9 9 ů ů ۳. MARGINAL 10.0 24.1 33.3 50.0 50.0 29.0 0 0 L 38.2 46.2 33.3 33,3 20.0 r 8r 7.7 59 16.4 16.4 33.3 46.2 16.7 . . 104 25 1 8 1 8 4 m n m 2 ---*** 5 0 N - ++ ч 1.2°0 75.2 65.3 57.3 7.6 2.1 2.7 82.7 74.5 68.0 8 4 4 9 8 4 4 83.6 75.7 68.3 е. o. n . . . 25.0 800 800 800 0009 66.1 64.7 100.0 60.0 100.0 89.2 90.4 91.3 64.1 53.8 83.9 69.2 66.7 92.8 92.7 94.3 58.8 66.2 66.7 33.3 100.0 92.5 93.1 92.8 227 227 163 146 282 254 232 285 233 233 41n 248 216 189 **0** N 52 50 994 **1** L DAVS - N m H N m HNM 1 N m H N M H N M HNM H N m H N M H N M HNM MARG TYPE MARG POOR 6009 MARG PCCR 6000 MARG PODR 6007 9008 . NESTERN ង្គា ~ 60 ø YR 66-76

e S

• <u>-</u>

. . .

,

•

÷.

.

 2° .

TABLE 6 EDXARDS AFB TO MARSHALL SPACE FLIGHT CENTER MEDICAL SECRET ELED TO MIDIAND TV

-

.

3

...

2

		2 m 0			1 40			uee Be			341		
		83.9	17.9	61 8 1	6.08	17.6	1.5	9°6'	19.1	2.1	5.61	17.3	2.9
	THTA:	1900 1900 1900	8 7 8 8 7 7 8	•	276 227 185	900 000 000	'n	260 219 183	63 263 14	2	271 224 184	99 199 199	0.41
		е. н			0 M M	0-0 		e.	1.8		1.2	•	а н • •
8000		1 1 5	1.7		r 4 n	5.0 10.0		4	9,5		1 • 1 • 1 • 1 • 1 • 1	5.1	30°0 33,3
		12. F Q e4	-		N	M N			Ð		440	n	M 44
_	4	20 20 20 20 20 20 20 20 20 20 20 20 20 2	6 4 J	•	12.0 10.9 9.1	54 O. 56 56	m •	0.01	2 4 N	6.	10.6 8.8 8.2	5.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	\$ 0 M
TX. MAPETNAI	*** > **	CP 13.4 13.8	37.3 36.4 25.0	25.0	14.9 16.3 16.8	33.3 15.0	20+0	12.7 13.2	41. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	42.9	8 4 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.9 42.1 50.0	30.0 66.7 100.0
IDLAND,		M 4 0 4	N 80 N N	1	4 M M M 4 M	9 Q 7	1	23 29 21	26 146 1	m	008 0 6 0	084	m nii
WESTERN SECNENT-EAFB TO MIDLAWD, TX.		50°.7 57.6 57.9	10.9 4.2 1.8	сь •	4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0°01 4°4 9°5	1.2	68.5 57.6 49.1	405 664	1.2	67.7 56.0 56.0	10.6 3.2 1.2	1.2
SEGNENT-I		CP 86.1 86.4	61.0 63.6 75.0	75.0	84.4 83.3 82.7	61.7 75.0 100.0	0.08	888 988 998 998 998	44 44 35.7	57.1	85.2 85.3 83.7	0°10 8'10 8'10 8'10	0.04
STERN		230 190 156	040 1 8	ι.	233 189 133	9 15 8	•	226 190 162	1 X N	4	231 191 194	36 11 4	4
		04 VS 1 2 3	N M	へ m	N m		N M	11 N B	N m	N @	N M	N m	
		17 PE 6000	MARG	800d	6005	MARG	PCDR	cato	MARG	800 d	6000	MARG	P004
1024231		√R 41 66-76 9			10		2	11 6			12		

Ł

TABLE 7 EDUARDS AFS TO MARSHALL SPACE FLIGHT CENTER EASTERN SEQNENT-MIDLAND, TX TO MSFC.

. . . .

. .

;

•

		:	7	146											311											341	1									CEE									
			je i				33 8	n • 3 n			31.7				41.2				34.1			9 46				37.0			•	1.10			32.0			35.2			4	30.3			36.8		
	TUT		•	121	en u O c	07	112	16			108	4	21		128	99	28		907	9 f † +	11	F	36	t o	•	126	19	23	101	874 7	9 1 0		601	10 C	0	116	51	16		100	30	4	114		32
		•	, • •	0 (n (10 C	507	12.6	3.2	1 ° 1		14.7	0.9	2,3		•	4 • 3	1.6	•	Ð.,	047	n .	10.0	0	1	•	6.2	3.5	•		2.0	9	•	4 •21	0 - 0 - 1		ۥ 5	3.0	1.2		A •01		1.8	2 .0	10-6	5 6 9 5 6 9 5
PODR					15.4		38.4	35.5	55.6		A	90 ° 0	38.1			7.22	1749	(44.2	26.5	33,3		16.7	19.1	0.0	27.4	31.3	33.3	4 4 4				12.9	14.9	12.9	0 	90°0		45.4	59.6	56.5	59.4
		u			9 4 1	•	E\$	1	ŝ		00	77	10			<u>,</u> ,	ĥ		0 er 4	۴	4	34	•	· m		21	of e	v	29	2	~	a R	h (201	;	13	10	•		0 4 h -	94	D	99	35	19
		**	4		9.0		9.4	2.0	•				4.2			- 6	•••	12.9	5	7 . 7	, ,	8.7	5.1	1.0		14.0	20		9.7	1.8		9.4		0.5	1	 • 1	0.	ی .	11.5				8 . 5	\$°\$	2.4
MARGINAL		e C	29.2		94°0		28.6	29.0	11.1	36.3	1 C .			20.7			1421	37.7	42.5	35.3		35.1	47.1	33,3	5 6 6	0.20 0.00	0.00 0.00 0.00		31.1	16.8		29.4	31.0	30.0	1	21.6	51.3	35.5	38.0			-	24.6	25.8	25+0
TO ISFC.		u	30		•		32	Of 1	-1	38	0 4	20	•	3.8		4 0 4 -	4	40	17	6		27	16	m		~1 . ¢ (+ c	•	93	•0		32		0		2	50	11	3.6	4	+ 10* 4	•	28	16	•
LAND, TX		64	19.1	2.9	3.8		10.9	3,2	.	ð *	0.0		7.4	21.5			•	15.4	5.8	3.2		5.1	2.9	1.0	9	0 °	n . - A		12.9	÷.4	1.2	5.3	2.9	1.8		N		4	7.9	2.4	0		5° 6	3,3	1.5
EASTERN SEGNENT-MIDLAND, TX TO MSFC GODD		d C D	53.7	42.9	50.0		33.0	n	n	18.5	20.8	10.01		52.3	0.64	6.06		45. 3	45.0	58.8		20.8	26.5	33,3		0 • • • •	8-14		∳ 1•5	50.0	60.7	16.5	17.2	20.02				0°7c	26.0	21.1	21.4	- -	15.8	17.7	15.6
LRN SEG	I	uL	65	27	13		76	- *	ŋ	20	2	4		67	29	1	1	6 4	18	10		91	D • 1	m,	44	- 10 - 10	13	1	4	9 1 1	\$	16	2	Q	40		30	01	26	60	ŝ		8 : 1 : 1 :		'n
EAST		DAYS	-4	2	m		⊢ (v r	ŋ	4	2	m	,	-1	~1	n		ы	~	ţ,		1 (2	3	•	4 0	19		-4	N 4	T1	н	~	m	-	4 0	4 1	r	.4	~	ŝ			2	m
	-	TYPE	0009				YAKG			900R				6000				1ARG				1004			5000				MARG			PCCR			6600				MARG				8004		
EASTERN														~										, •	m 7	•									4	•									

.

TABLE 7 EDUARDS AFD TO MARSHALL SPACE FUIGHT CENTER EARTERN SECVENTANDIAND TV TO MEFC.

Ì

•

F

	7 4 0		1) 6 6		t†e	:	-1 4 1
	2 9 9 9	3 3 •1 32•5 32•5	6°-5	27•9 21•2	51.6 34.3	1 • 4 1	33.2 33.7 14.1
TTAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113 45 11 16 12 12 13	29 168 120 88	96 12 12 12	276 176 121 82		178 119 129 129 129 120 120 120 120 120 120 120 120 120 120
	50 00 44 50 00 44 50 00 44	10.6 4.7 6.7 8.8 8.8		000 NG	NH NAN 0 10 MNH N		5 6 4 1 0 6 5 1 6 6 6 7 1 0 6 6 6 7 7 7 7 8 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8004	CP 110.9 111.6	91.9 99.9 90.9 90.9 90.9 90.9 90.9 90.9	51.7 8.9 8.0 8.0	25.0 25.0 25.0	8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	213°0 213°0 20°0 20°0 20°0 20°0 20°0 20°0 20°0 2	645 444 548 645 844 548 556 556 556 557 556 556 556 557 556 556 556 556 557 556 556 556 556 556 557 556 556 556 556 556 556 556 556 556
	н Ч Сі Ф Ю	601- 96 903- 96 01-	1 130r	, co , co , co , co , co , co , co , co	4 1°	rn orn	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	4 0 1 0 4	11 11 11 11 11 11 11 11 11 11 11 11 11	0 6 N G	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- n n n n	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 400 FHH
C. Parginal	CP 28•4 36•1	40.4 94.6 93.6 93.0 8.8 8.8 8.9 8.9	31.0 15.5 17.0	0000 40 0000 40 0000 40		44 46. 46 866 46 866 46 86	1000 444 000 1000 100 1000 1000 100 1000000
N TO MSF	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	41 m-	0 0 K N N 1 1	n n 4 0 0 n → 0	0 ⁶ 10, N, 06, 00, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17	501 04 15 15	100 810 4154 400 80 0
EASTERN SEGNENT-MIDLAND, TN TO MSFC. GODD PARGINAL	20.8 12.6 7.3		20 8 9 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8	う () () () () () () () () () ()	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 N N 4 4	あ 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
GOENT-MI	67 61. 982.9 982.9	27.5 31.3 12.5	17.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44 000 0 44 000 0 ••••• 0.40 0 0.40 0		100 444,400 000 000 000 000000
STERN SE	1680 1640	1015 40 1015 40	127 544 64	10 11 11 10 10 10 10 10 10 10 10 10 10 1	4 01 01 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000 F 01 F 0	1 24 24 24 24 20
EA	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7) m m n n n		NM 409 -	4NM HNA	HNM HNM HNM
	14PE 6000	MARG POOR	0009	YARG PDDR			0000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
EASTERN	√R «] 66-76 5		Ð		۲ 28		α,

TABLE 7 EDTARDS AND TO MAPSIMIL SPACE FLIGHT GAUNER EASTFRA SECTOMENTARY TO TAPTO MSPOL

. .

é

_____.

. . .

.

-

i

	7													141	*											330											14 14											
	81	•	4°24				n•n			•	1.22			4				C. BC	1.07			21.4				4 3 .3			,	33.5							34.3				35.7				1			
	TDTAL		140	22	54		117	R (20	;	5	30	E1		7/1	115	5	¥0	0 r 6 6	4 F)	•	73	31	EI	2	143	83	64		112	45	4 1	ł	n e	9 V V	ø	117	59	56	;	125	4	23		9.8	(n. (61	
			3.3	3,3	2.4		10.3	3.3	1.5		9.1	3.9	1.5	•	5.0	3.5	2°3	4		v 0		0.0				4.5	1.6	1.2	•	3.8	9°6	1.8	•	8° 8	1.5	•	4.7	- 6	1 W 4 P		9°C1				13.8	6 . 6	5° 4	
PBDR					14.8				25.0		41.L						11.0			53 . 0						10.5			5	25.9	28.9	C 04	1	38,7	21.4	16.7	r ;		1602	n=+1	59.4				684	4-45	52 ¢	
Q.					8						30						63						* •			8	•	- 4	r	29	EI	•0		29	Ŷ	4		01	0	n	36	0 V	, r	J	47	20	10	
			~		5.E				1.8		10.9		80		*	.			4.4	2.1	m •	1	7.				- 1		•	9.6	, 4 , 1	-		7.9	5.4	1.4	1	10.3	0.0	2°6	۲ د	4 0 1 0) (- (۲.7	4-11	5.5	2.3	
C					20.4 3				30.0								21.9				14.3		37.0					30.1								66.7		29.9					50°C				42.1	
HISFC.	NAE.				11		"		•				n 4															23				n "				1 4				61		52	24	c1	Ċ)	5 6 0	
EASTERN SECTEMENT-MIDLAND, TX TO MSFC.							•	•1•		•	,		1.2	•	1		21.7		1	- 0		•	0.5 .5	2.1		•	5 . 1	5.5	8.8		1.2	5.2	1.2			, t	•	9.4				6.0	3.2	1.3		, u 1 1		
L-MIDLAN	CODD				64.1 17.9				27.9					15.4			64.3 Z1				41.4 40.0								59. 2			37.8				28.0								26.1		12.2	1.1.1 5.3	
V SECTED	00				59 64				12 27					2 15			+								4				4 04 7 10			17				- CQ										12	n	
EASTLR					n				2					n N			~				~ •				2		+	4 (1 17	•	1	5	ŝ		,- 1	2	rn		-• •	~ *	n	٠	4 6		n	-4	~ ~	•
				6000 J		• **		NARG .				POOR				6000				4ARG								cons,			4486				2004								2141			eDDd		
	FASTERN		C>	0	•			T				a				9 61				-								11											12									
	FA3		Ϋ́	576																					· · ·																							

ļ

Section V

REFERENCES

 Daily Weather Maps, Weekly Series, U. S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data Service, Silver Spring, MD.

U.S. GOVERNMENT PRINTING OFFICE 1977 -740-049/392 REGION NO. 4