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Abstract

An analysis was conducted to study the effects of unsteady aerodynamics
on the stability characteristics of helicopter rotor blades. A simple physical
model of each blade was used tcgether with Theodorsen, Loewy, and quasi-steady
aerodynamics to derive the equations of motion. The stability analysis com-
paring the effects of using each of the three theories revealed some signifi-
cant differences between the Loewy and Theodorsen results. These included
increases and decreases in lead-lag damping, localized around integer lead-lag
frequencies. It wag also shown that the standard method of multi-blade coordi-

nates must be modified for use in conjunction with Loewy aerodynamics.
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Notation
Linear, two-dimensional lift curve slape
Tip loss factor
Theodorsen's 1ift deficiency function
Loewy's lift deficiency function
Profile drag coefficlent
Blade chord
Nondimensional blade chord, c/R
Adrfoil section drag force
Hinge offset nondimensionalized by R, Fig. 1
Wake spacing nondimensionalized by R, Fig. 2
Blade inertia about the hinge
Blade torsional dnertia nondimensionalized by I
y=1
Blade geometry correction factors, Eq. (16)
Combined flap and lead-lag spring stiffness at
Bb = Bh = 0, Egs. (AL0-All)
Flap and lead-lag spring stiffnesses at the blade root,
Fig. 1
Flap and lead-lag spring stiffness of the inclinable hub
springs, Eig. 1
Reduced frequency, wc/20r
Alrfoil section circulatory lift force
Airfoil section noncirculatory lift force
Nondimensional aerodynamic hinge moments
Nondimensional elastic hinge moments

Nondimensional inertial hinge moments



Modal frequency ratio, w/§

Number of blades

Uncoupled rotating flap frequency

Generalized lift deficiency function

Integrated lift deficiency functions, Eq. (17)

Blade number (0, 1, 2, . . . )

Rotor radius

Elastic coupling parameters, Eqs. (A8-A9)

Distance outboard of the hub centerline nondimensionalized
by R

Modal eigenvalue, G + iw

Blade velocity in the plane of rotation, Eq. (12)

Distance outboard of the hinge nondimensionalized by R

Blade root cutout (from the hinge) nondimensionalized by R

Blade velocity normal to the plane of votation, Eq. (11)

Blade flapping deflection, Fig. 1

Lock number, pacR4/I

Stiffness parameter, Eq. (7)

Blade pitch angle with respect to V

Blade lead-lag deflection, Fig. 1

Blade geometric pitch angle, Fig. 1

Inclinations of the blade and hub prinecipal flexural
axes, Fig. 1

Pitch-flap coupling parameters, Eqs. (20-22)

Pitch-lag coupling parameters, Eqs. (20~22)

sir density

Modal damping



Lead-lag damping

Inflow angle

Interblade phase angle

Rotor rotational speed

Modal frequency

Lead-lag frequency

Nondimensional, unceoupled flap, lead-lag, and torsion
patural frequencies, Egs. (Al2-A13)

Equilibrium and perturbation quantities

[d( )/de}/Q

(a®¢ )/ae?1/9?



Introduction

Over the past few years, many investigators have studied the aeroelastic
stability of hingeless helicopter rotor blades. TFor the most part, these
researchers have used quasi-steady, strip theory aerodynamics to develop the
aerodynamic forces [1-3]. Although the results obtained from such analyses
have often correlated well with experiment [4}, and have provided valuable
insights into the physical problem, some discrepancies have appeared which
cannot be explained within the limits of the theory [5]. A possible source
of these discrepancies is unsteady aerodynamics.

The aerodynamic theories used in this investigation include Theodorsen's
unsteady theory [6], Loewy's rotary-wing theory [7], and a quasi-steady approxi-
mation to the two unsteady theories. By comparing the results obtained by
using each of these aerodynamic formulations, the relative effects of unsteady
flow and the shed wakes beneath the rotor plane can be determined.

While other investigators have used unsteady aerodynamics in stability
analyses [8~10], their main concern has generally been the determination of
stability bqundaries. The primary reason for the limited scope of these
analyses has been that the aerodynamic theories only apply for simple harmonic
motion. It iz the intention of this study to treat transient motion, by assum-
ing that motion to be nearly simple harmonic, as well as the case of neutral
stability. In addition, the work presented here observes the effects of the

shed wakes below the rotor plane on the behavior of a multibladed rotor.

Blade Model
The physical model chosen to represent each individual blade of the rotor
was purposely kept simple, so that the aerodynamic effects would be obscured as
little as possible by the blade dynamics. It is the same as the model used for

the theoretical development in Reference 5.
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As shown in Figure 1, the blade model has flap and lead-lag degrees of
freedom, perpendicular and parallel to the plane of rotation. While the blade
is rigid in torsion, provisions are made for including kinematic pitch-lag,
pitch-flap, and elagtic coupling. Hinge offset can alsc be represented. In
addition, the hinge sequence can be changed from lag-flap to flap-lag by
rotating Bh from 0° to 90°. All of the blades are attached to a f£ixed hub

which rotates at a constant speed, (.

Aerodynamic Thr-ries

Before proceeding with the derivation of the equations of motion, the
aerodynamic theories that are used will be briefly discussed. Since both the
Theodorsen and Loewy theories are widely known, this discussinsn will serve only
to compare their mathematical models and approaches. It will also point out
the limitatioms their use imposes on the stability amalysis.

The unsteady aerodynamic theory developed by Theodorsen [6] considers a
thin airfoil undergoing simple harmonic motion, and being trailed by a straight
wake. The vortex strength of this wake varies sinusoidally with time, and
results in a lift deficiency function, C(k), which is associated only with the
circulatory portion of the 1lift. This lift deficiency function is only depen-
dent on the reduced frequency of the airfoil oscillations.

Loewy [7] modified the wake model in Theodorsen's analysis to more closely
represent the caso of a rotating wing. As shown in Figure 2, the airfoil
section at any spanwise station is trailed by a wake in the plane of the rotor,
as in Theodorsen's model. However, Loewy also includes vortex sheets below the
plane of rotor, which result from the vortieity shed by previous passes of the
blades being carried downward by the induced veloeity. For ease of computation,

the wake sheets are assumed to be parallel to the plane of rotation and without



to the plane of rotation and without curvature. They are also assumed to
extend infinitely far ahead of and behind the airfoil, as well as below it.

Loewy's analysis of this aerodynamic model follows the same approach as
that of Theodorsen, and the results are similar. The 1lift defieiency function
C(k,m,h,N,wq), is again only associated with the circulatory lift. However, it
is now dependent on the frequency ratio, the wake spacing, the number of blades,
and the interblade phasing, as well as on the reduced frequency.

The quasi-steady approximation to the Theodorsen and Loewy theories is
obtained by letting the lift deficiency function equal unity. This has no
effect on the non-circulatory lift, but does make the circulatory Jift indepen-
dent of blade frequencies and wake geometry.

Since the 1ift deficiency functions of the unsteady theories are dependent
on reduced frequency, a constraint is placed on the applicability of the sta-
bility analysis. That is, only those modes which have frequencies corresponding
to the reduced frequency used to compute the value of the 1lift deficiency func-
tion are valid results. Therefore, unlike when the quasi-steady theory is used,
a separate calculation must be made for each mode.

Another limitation on the validity of the stability analysis is applied
when one is considering transient motion. Both Theodorsen's and Loewy's
theories were developed only for simple harmonic airfoil motion. However, for

lightly damped modes, the airfoil motion will be nearly simple harmonic.

oti. .0 dwt
L e( i)t _ Tty (1)

.

B 7 1 I Uy Ay (2)

st
Therefore, when the damping is small, EU is approximately unity and e ~ is

approximately elwt. This assumption of nearly simple harmonic motion

essentially means that only the results for the lead-lag mode are valid, since
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the damping of the flap mode is generally outside the limits of this
approximation. |

One Final problem encountered when dealing with the Theodorsen and
Loewy lift deficiency functions results from their being represented by
complex numbers. If the resultant complex aerodynamic coefficients are not
expressed in real form, the twe eigenvalues for each mode will not necessarily
be complex conjugates. The problems in physically interpreting such a solution
are obvious. It is therefore necessary to invoke the assvmption of simple
harmonic or, in this case, nearly simple harmonic motion in order to express

the aerodynamic coefficients as real numbers.

Equations of Motion

From Reference 5, the inertial and elastic moments about the hinges are

) . ] 3/e)
Mg = - B + 2Bz + [1 + 2(1_ )]s} (3)
1 o ;
W = -[';' _ 28k + i(i)s} @)
Ei 2\1l-e
_o1 g2 =2 =2 . 2 . 2
MBe =-3 {[NB + (wc - wB) (Rb sin ebo + Rh sin Bho)] 8
+-%GB§ - &é)(ab sin 20, + Rh'sin 2eh)c} (5)

_o1fif2 -2 .
M‘: = ~ —A- 1-2-(0.)c - wﬁ) (Rb sin 29b + Rh sin 28h)8

~2 -2 -2 2 A ‘
+ [mC - (mC - mB) (Rb sin Bb + Rh sin B.n)] 2;} {6)

where
~2 =2
Y~ Y b 2 2
A=1+4 =77 I-Rb(l—R.b)s:Ln 6, + By (1-R)sin” 6
“r%%
L2 . .2 1 ‘
- R.th(Z sin Bb sin Gh + 5 sin ZBb sin 2eh)] (7)



Since all of the aerodynamic theories used in this study are similar in
form, the aerodynamic moments are derived for an arbitrary 1lift deficiency
function, Q. The expressions for lift and drag are based on Reference 11,

with the small pitch angle assumption removed.

nc='p%cl(%)[;cosB+é§:sin6+\'fsinB+V;:cose+%;] (8)
© L =222y [l cos 8 v sin 04 £ EfQ )
p = B8 vz(i}) ‘ (10)
where ‘
z = - [2¢i(e + %) + éx]R (11)
V= [ﬂ(e + x) + ix:l_g (12)
£ =Q sin B (13)

Note that the blade vertical velocity, é, contains contributions from the
induced velocity and blade f£lapping; while V, the horizontal velocity, has
contributions from the rotor rotation and the blade lead-lag motion. The
terms containing € are a result of the virtual pitch rate induced by the
coning of the blade as it rotates. |

To obtain the aerodynamic moments, Equations 11-13 are substituted into
Equations 8-10, and the lift and drag resolved along the flap and lead-lag
axes. The forces at each blade section are then multiplied by their moment
arms about the hinge, and the product integrated over the span of the blade.

The resulting moments are

ol

e+K4)(5in e - ¢, cos g) - (—C-K cos B)B

i X3

2
{(Kze + 2K3

+ (% K3 sin 29) L - -[(Qze ’- QS) cos ]é
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+ (Qpe + Q) (2 sin 6 - ¢, cos 8)zC +-Z— [Z(Qle +Q,)

+ (Kze + K3)c052 BJB}

=
]
i

ol

#1

8 "3

+ {'(Qze + Qg)t, sin 0 + Z(kze ¥Ry -2

(— K, sin 28)8 + (% K3 s:i.n2 G)C + (Qze + Q3) (sin 6 - 2¢i cos 8)é

%-{(Kzez + 2K3e + Ka)[¢i(sin B - ¢i cos 9) +

Cq

+ [% (Kze -+ K3) sin ZB]B }

where

) n n
Kh =2 [(B-e) - XO]
B-e
Qn = 4 f andx
X
o

(14)

Ca
o
a}

(L5)

(16)

(17)

The flap equation is obtained by summing Equations 3, 5, and 14, and

setting the result equal to zero.

equal to zero in order to obtain the lead-lag equation.

Equations &, 6, and 15 are summed and set

By perturbing the

blade about an equilibrium position, the equilibiium and perturbation

equations are obtained.

B=28, + 48
=g, + fits
g = BO + BBAB + ecAZ;
6, = sbo + eBbAB + Bchc
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. =86 +06_ AR+ 0_ Ar (22)
h ho Ch ch

The complete equations can be found in the appendix.

Multi-Bladed Rotor

When working with rotors having more than one blade, the standard practice
is to transform the isolated blade equations into multi-blade coordinates [12].
Unde; this transformation, a four-bladed rotor would have four rotor degrees
of fr;edom for each blade degree of freedom: collective, differential collec—
tive, lateral'cyclic and longitudinal cyclic. In hover, the collective and
differential collective degrees of freedom are linearly independent of each
other énd of the two cyclic degrees of freedom. The two cyclic degrees of
freedom are, however, coupled.

Using quasi~-steady or Theodorsen aerodynamics for the fixed hub, multi-
bladed rotor considered in this investigation, the transformation to multi-
blade coordinates provides little more information than would an isolated
blade analysis. The results show the damping of all rotor modes to be the
same for a single blade mode, and only the frequencies identify the high
frequency (2 + w) and low frequency (2 - w) cyclic moges. This situation
occurs because fixing the hub uncouples the blades from each other, and
because the blades are aerodynamically independent. In addition, note that
if the modal frequency, w, is greater than the rotor speed, {; the low
frequency cyclic mode is the progressing mode and the high frequency cyclic
mode is the regressing mode. If w < §), however, the low frequency mode becomes
the regressing mode and the high frequency mode becomes the progressing mode.

The nature of the analysis changes when Loewy aerodynamics are introduced,
since the blades are aerodynamically coupled through the wake structure.

Each of the four independent rotor modes {collective, differential, low
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frequency cyclic, and high frequency cyclic) resulting from the eigenanalysis
have different wake geometries associated with them and, therefore, hive

different values of the interblade phasing, wq'

wq =0 Collective

Vg = ™ Differential

wq = 2mq/N Low Frequency Cyclic
¢q = mq(l + 2/N) High Frequency Cyclic

Since the collective and differential degrees of freedom are independent in
multi-blade coordinates, there are no difficulties in providing each set of
equations with the proper aerodynamic coefficients. However, the fact that
che cyclic degrees of freedom are coupled does present problems.

If the wake geometries associated with cyclic degrees of freedom are
used to compute the aerodynamic coefficients for the coupled cyelic equations,
the same damping is obtained for both the high and low frequency ecyeclic modes,
irrespective of the differences in their wake geometries, The reason for this
occurrence is that in both cyclic degrees of freedom the oscillatioas of each
blade lead the one following it by 2wq/N. Thus, the wake geometries of both
cyclic degrees of freedom are the same, as are the aerodynamic coefficients.
Since the hub is fixed, the damping must be the same for both modes,

There are two ways of circumventing these difficulties. The first is to
consider only an isolated blade which is coupled to the others through the
wake geometry [9]. This method is, however, only valid for a rotor with a
fixed hub. The other way s to devise another transformation for the cyelic
degrees of freedom which . .couples them and results in the proper wake geo-

metries. For this case of the fixed hub, it is immaterial which method is
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used. The flap-lag perturbation equations can be solved N times wsing the
aerodynamic coefficients for a different mode each time; or be transformed
into a set of 2N equations, each with the‘appropriate coefficients, and solved

simultaneocusly.

Results and Discussion

A sampling of the results obtained from the above analysis are shown in
Figures 3-7. In these figures, the configuration parameters are as given in
Table 1, except where noted.

Figure 3 illustrates the effect of unsteady aerodynamics on a system with
a low level of damping (note the scale of the ordinate). While the results
using Theodorsen aerodynamics do differ from the quasi-steady results through-
out the frequency range, the differences are small in comparison to the ones
produced by using Loewy's aerodynamics. The addition of the wake sheets below
the plane of the rotor appears to have a significant effect on the behavior of
an isolated blade. There is a sharp spike at the 1l/rev lead-lag frequency, an
N-wave at 2/rev, and smaller dips at 3/rev and &4/rev.

The results for a four-bladed rotc. (Fig. 4) suow the same characteristics
as those for the isolated blade. However, the peaks and valleys do not appear
at every integer frequency for every mode. Instead, the collective mode has
the 4/rev dip, the differential mode has the 2/rev N-wave, the low frequency
eyclic mode has the 1/rev spike, and the high frequency cyclic mode has the
3/rev dip. Except at the points noted, these curves follow the Theodorsen
curve quite closely. From other results, it appears that this pattern repeats
itself at higher frequencies. That is, the collective mode would exhibit
significant deviations from the Theodorsen curves at 4/rev, 8/rev, 12/rev, and
so forth. The other modes would behave similarly., In addition, the sequence

of low frequency cyclic at l/rev, differential at 2/rev, high frequency cyclic
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at 3/rev, and collective at &/rev appears to hold for all other four-blade
configurations.

With a system having a low level of damping, like the one above, a
question arises as to whether the effect of Loewy aerodynamics is significant
only for that type of system, or for all systems. To check out this possibility,
a configuration with full elastic coupling and negative pitch-iag coupling was
analyzed. The results (Fig. 5) show the wake effects to be significant only
below lead-lag frequencies of 2.5/rev. It appears, therefore, that the woke
effects become less significant as the level of damping in the system incresses.

In order to determine if a torsionally soft blade would be more sensitive
to Loewy aerodynamics than a torsionally rigid blade, a pseudo-torsional degree
of freedom was added to the analysis. While the above analysis does not incluiu
the torsional degrec of freedom, it can be approximated by using the pitch-flap

and pitch-lag coupling parameters to produce pitch angle perturbations'[ll].

R A g S

BB = - [(mE - UJB) /we IB %o (23)
_ -2 -2} ,-2 =

BC = - [(m‘: - MB)/NB Iy (B, (24)

This approach neglects inertial torsion moments and is generally valid for
torsion natural frequencies of 3.0 and above. TFigure 6 shows the Loewy curve
to have much larger deviations from the Theodorsen curve than in any other
case. It should be noted, however, that the damping values in this case are
of such a size as Eo make the assumption of simple harmonic motion somewha£
questionable.
Finally, in order to see how the quasi-steady, Theodorsen and Loewy

results compare for purely simple harmonic motion, a stability boundary was

plotted for each (Fig. 7). TFor pitch angles below 0.1 radian and lead-lag
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frequencies below l/rev, all three are virtually identical. At higher pitch
angles, the boundaries of the quasi-steady and unsteady theories diverge from
one another. The main differences between the Loewy and Theodorsen results
occur at and above l/rev. At 1/rev, there is a small dip in the Loewy curve.
Above that frequency, the curves intersect twice, indicating the type of
behavior observed in the other figures.

Another significant feature of Figure 7 is the manner in which the Loewy
effects do not diminish at the larger pitch angles. It is generally assumed
that the effects of the wake sheets are more important at small pitch angles,
where the wake sheets are more closely spaced. In the case of wake-induced
bending-torsion flutter, decreases in wake spacing are destabilizing [9].
However, the pitch-flap problem is linear, and the aerodynamic coupling is
independent of pitch angle. The flap-lag problem is, on the other hand,
nonlinear and sensitive to aerodynamic coupling. As the flap-lag aerodynamic
coupling increases with pitch angle, it overcomes the decrease in the wake
effect caused by the increased spacing at higher pitch angles, and dominates

the results.

Conclusions

The results of this investigation show that the choice of an aexodynamic
theory can have a significant effect on stability caleculations. Most notable
is that the addition of wake sheets below the plane of the rotor influences
the rotor stability characteristics. While this effect is not exceedingly
large for most configurations, except at l/rev, it does appear that it could
be quite significant for systems having a low level of damping and for
torsionally soft blades.

Secondly, it was shown that the method of multi-blade coordinates is not

entirely applicable when Loewy aerodynamics are being used. It would also
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appear that any aerodynamic theory with coefficients that depend on the wake

geometry would not be compatible with multi-blade coordinates.

Finally, while the Loewy results are very interesting, the significant

effects occur only at integer frequencies. Since rotor systems are designed

to avoid these frequencies, the wake effects are observed where they have

minimum influence. Consequently, for most practical configurations, they will

probably not be quantitatively significant.
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APPENDIX

Flap-Lag Equations with Unsteady Aerodynamics

Equilibrium Equations
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Perturbation Equations
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2 a \“z - “g)||cos RebJ2 S T T A
o i B (52 - @t {cos 20, -R,J)8 - (stn 20 +R 3 (A32)
3 A C B h wb 2 % ho wh 3
and
1 |-2 -2 -2 2 2
Jl A [wﬁ - (mc - wB) (Rb sin Obo + Rh sin Jho)J (A33)
; <2 =2
w. - mB
JZ = —g————ZA (Rb sin Zﬂbo + Rh sin ?.Bho) (A34)
< 1] =2 (=2 _ =2 2 2
J3 A [u}c (u)c wB) (R.b sin Gbo + lﬁ‘ sin ehO)J (A35)
@ - a2
= u » . - 2 y
wa - (1 Rb)sin 28b Rh 2 sin Bh sin 28b + sin 28h cos Gb
w. w o o o o o
B
(A36)
-2 =2
%" 2 )
Rwh =55 (1 - Rh)s:l'n 26 - R’b 2 sin 8b sin 28h + sgin ZBb cos \;h
wc 8 o o 0 o 0

(A37)



Table 1. Blade Configuration Parameters

¥y =8 Solidity = 0.05
a = 2% Cd = 0.01
o
. Rh -
Bb =0 Gh =0
- o o
B, =6 = 0 8 =0
8~ B, By
g. =8 6] =0
A ;b Ch
e =0 x =0
0
E=1.0
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