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Abstract

An analysis was conducted to study the effects of unsteady aerodynamics

on the stability characteristics of helicopter rotor blades. A simple physical

model of each blade was used together with Theodorsen, Loewy, and quasi-steady

aerodynamics to derive the equations of motion. The stability analysis com-

paring the effects of using each of the three theories revealed some signifi-

cant differences between the Loewy and Theodorsen results. These included

increases and decreases in lead-lag damping, localized around integer lead-lag

frequencies. It was also shown that the standard method of multi-blade coordi•-

nates must be modified for use in conjunction with Loewy aerodynamics.
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Notation

a	 'Linear, two-dimensional lift curve slope

B Tip loss factor

C(k) Theodorsen's lift deficiency function

n	 C(k,m,h,N,^q) Loewy's lift deficiency function

C 
Profile drag coefficient

0
c Blade chord

c Nondimensional blade chord, c/R

D Airfoil section drag force

e Hinge offset nondimensionalized by R, Fig. 1

h Wake spacing nondimensionalized by R, Fig. 2

I Blade inertia about the hinge

Ie Blade torsional inertia nondimensionalized by I 	 3

i

K2 ,K3 ,K4 Blade geometry correction factors, Eq.	 (16)

Combined flap and lead-lag spring stiffness atKS ,K^

a  = 8  = 0, Eqs. (A10-All)

KSb ,K^b Flap and lead-lag spring stiffnesses at the blade root,'

Fig. 1

KRh ,K^h Flap and lead-lag spring stiffness of the inclinable hub

springs, Fig. 1

k Reduced frequency, me/2Qr

Lc Airfoil section circulatory lift force

L Airfoil section noncirculatory lift force
nc

M	 ,M Nondimensional aerodynamic hinge moments
Oa	 ^a

Nondimensional elastic hinge momentsMS ,MO
e	 e

M ,M Nondimensional inertial hinge moments
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m Modal frequency ratio, w1R

N Number of blades

p Uncoupled rotating flap frequency

lr Q Generalized lift deficiency function

° Q1'Q2'Q3
Integrated lift deficiency functions, Eq. 	 (17)

q Blade number (0, 1, 2,	 )
r

R Rotor radius

t
i

Rb,Rh Elastic coupling parameters, Eqs. (A8-A9)

x
r Distance outboard of the hub centerline nondimensionalized

_ by R

s Modal eigenvalue, 6 + iw

V Blade velocity in the plane of rotation, Eq. (12)
c

x Distance outboard of the hinge nondimensionalized by R

x Blade root cutout (from the hinge) nondimensionalized by R
0

tz Blade velocity normal to the plane of rotation, Eq. 	 (11)

S Blade flapping deflection, Fig. 1

Y Lock number, pacR4/I

4 Stiffness parameter, Eq. 	 (7)

e Blade pitch angle with respect to V

Blade lead-lag deflection, Fig. 1

t,
8 Blade geometric pitch angle, Fig. 1

Bb , Oh Inclinations of the blade and hub principal flexural

axes, Fig. 1

80	 ,8 S Pitch-flap coupling parameters, Eqs. 	 (20-22)
b	 h

B^,B^	 ,B^ Pitch-lag coupling parameters, Eqs. (20-22)
b	 h

P Air density

c7 Modal damping
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( ) o ,^( )

Lead-lag damping

Inflow angle

Interblade phase angle

Rotor rotational speed

Modal frequency

Lead-lag frequency

Nondimensional, uncoupled flap, lead-lag,

natural frequencies, Eqs, (Al2-A13)

Equilibrium and perturbation quantities

[d( )/dt]/O

[d2 ( )/dt2]/Q2
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Introduction

Over the past few years, many investigators have studied the aeroelastic

stability of hingeless helicopter rotor blades. For the most part, these

researchers have used quasi-steady, strip theory aerodynamics to develop the

aerodynamic forces [1-3]. Although the results obtained from such analyses

have often correlated well with experiment [4) , and have provided valuable
4

insights into the physical problem, some discrepancies have appeared which

cannot be explained within the limits of the theory [5]. A possible source

of these discrepancies is unsteady aerodynamics.

The aerodynamic theories used in this investigation include Theodorsen's

unsteady theory [6], Loewy's rotary-wing theory [7], and a quasi-steady approxi-

mation to the two unsteady theories. By comparing the results obtained by

using each of these aerodynamic formulations, the relative effects of unsteady

flow and the shed wakes beneath the rotor plane can be determined.

While other investigators have used unsteady aerodynamics in stability

analyses [8-10], their main concern has generally been the determination of

stability boundaries. The primary reason for the limited scope of these

analyses has been that the aerodynamic theories only apply for simple harmonic

motion. It is the intention of this study to treat transient motion, by assum-

ing that motion to be nearly simple harmonic, as well as the case of neutral

stability. In addition, the work presented here observes the effects of the

shed wakes below the rotor plane on the behavior of a multibladed rotor.

Blade Model

The physical model chosen to represent each individual blade of the rotor

was purposely kept simple, so that the aerodynamic effects would be obscured as

little as possible by the blade dynamics. It is the same as the model used for

the theoretical development in Reference 5.
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As shown in Figure 1, the blade model has flap and lead-lag degrees of

freedom, perpendicular and parallel to the plane of rotation. While the blade

is rigid in torsion, provisions are made for including kinematic pitch-lag,

pitch-flap, and elastic coupling. Hinge offset can also be represented. In

addition, the hinge sequence can be changed from lag-flap to flap-lag by

rotating 9h from 0° to 90°. All of the blades are attached to a fixed hub

which rotates at a constant speed, 52.

Aerodynamic Thom -)ries

Before proceeding with the derivation of the equations of motion, the

aerodynamic theories that are used will be briefly discussed. Since both the

Theodorsen and Loewy theories are widely known, this discussi. ,.:n will serve only

to compare their mathematical models and approaches. It will also point out

the limitations their use imposes on the stability analysis.

The unsteady aerodynamic theory developed by Theodorsen [6] considers a

thin airfoil undergoing simple harmonic motion, and being trailed by a straight

wake. The vortex strength of this wake varies sinusoidally with time:, and

results in a lift deficiency function, C(k), which is associated only with the

circulatory portion of the lift. This lift deficiency function is only depen-

dent on the reduced frequency of the airfoil oscillations.

Loewy [7] modified the wake model in Theodorsen's analysis to more closely

represent the cast! of a rotating wing. As shown in Figure 2, the airfoil

section at any spanwise station is trailed by a wake in the plane of the rotor,

as in Theodorsen's model. However, Loewy also includes vortex sheets below the

plane of rotor, which result from the vorticity shed by previous passes of the

blades being carried downward by the induced velocity. For ease of computation,

the wake sheets are assumed to be parallel to the plane of rotation and without
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to the plane of rotation and without curvature. They are also assumed to

extend infinitely far ahead of and behind the airfoil, as well as below it.

Loewy's analysis of this aerodynamic model follows the same approach as

that of Theodorsen, and the results are similar. The lift deficiency function

C(k,m,h,N,tq), is again only associated with the circulatory lift. However, it

is now dependent on the frequency ratio, the wake spacing, the number of blades,

and the interblade phasing, as well as on the reduced frequency.

The quasi-steady approximation to the Theodorsen and Loewy theories is

obtained by letting the lift deficiency function equal unity. This has no

effect on the non-circulatory lift, but does make the circulatory lift indepen-

dent of blade frequencies and wake geometry.

Since the lift deficiency functions of the unsteady theories are dependent

on reduced frequency, a constraint is placed on the applicability of the sta-

bility analysis. That is, only those modes which have frequencies corresponding

to the reduced frequency used to compute the value of the lift deficiency func-

tion are valid results. Therefore, unlike when the quasi-steady theory is used,

a separate calculation must be made for each mode.

Mother limitation on the validity of the stability analysis is applied

when one is considering transient motion. Both Theodorsen's and Loewy's

theories were developed only for simple harmonic airfoil motion. However, for

lightly damped modes, the airfoil motion will be nearly simple harmonic.

at	 (6+im)t	 a iw t	 (1)
n.

ea = 1 + 6 + 62 /2! +	 + on /n!	 (2)

Therefore, when the damping is small, e6 is approximately unity and e st is

approximately elmt . This assumption of nearly simple harmonic motion

essentially means that only the results for the lead-lag mode are valid, since
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the damping of the flap mode is generally outside the limits of this

approximation.

One final problem encountered when dealing with the Theodorsen and

Loewy lift deficiency functions results from their being represented by

complex numbers. If the resultant complex aerodynamic coefficients are not

expressed in real form, the two eigenvalues for each mode will not necessarily

be complex conjugates. The problems in physically interpreting such a solution

are obvious. It is therefore necessary to invoke the asst ,mption of simple

harmonic or, in this case, nearly simple harmonic motion in order to express

the aerodynamic coefficients as real numbers.

Equations of Motion

From Reference 5, the inertial and elastic moments about the hinges are

1	 ttt	

^ //
14
^i 

= -`^ - 29 + Zl lee)0]	 (4)

Mse = - {[ws 
+ (w2 - ws)1Rb sin

g 6bo	
0/

+ Rh sin 6h i
t S

\	

1	

l,
+ 2 R - W0) (Rh sin 2Bb + Rhs in 26h)^	 (5)

MC	 F2 (w^ - wS l (_Rb sin 20b + Rh sin 26h) 0

+ [w^ - Iwo - m5) (Rb sin2 e  + Rh sin2 6h)
J
	 (6)

where
-2 -2
w	 ws f

= 1 + 2-2 	 IRb (1-R
b )sin2 Bb + Ril (1-R

il) sin2 Bh
wtwR	 L	

ll
-

	

	 2 6h 
sin 6h + 2 sin 28b sin 20h)

J
	(7)RbRh(2 sin 

-8-



Since all of the aerodynamic theories used in this study are similar in

form, the aerodynamic moments are derived for an arbitrary lift deficiency

function, Q. The expressions for lift and drag are based on Reference 11,

with the small pitch angle assumption removed.

PLnc =	 ac 14/[z r_os B + ze sin 8 + V sin B + VE cos 0 + 4 e, (S)
r
F	

r
Lc = Pac V cos B + V sin G+ 2 e^Q	 (9)

L
z	

11

(0

D	 p lc V2 \ ao/
(10)

t

cohere

z = - (e + x) + Rx]R (11) ;CCCC
1

V = ^S2(e + x) +^x
J

R (12)

a

E = 0 sin S	 (13)

F
Note that the blade vertical velocity, z, contains contributions from the y

induced velocity and blade flapping; while V, the horizontal velocity, has

contributions from the rotor rotation and the blade lead-lag motion. 	 The
n

terms containing a are a result of the virtual pitch rate induced by the

coning of the blade as it rotates.

To obtain the aerodynamic moments, Equations 11-13 are substituted into

Equations 8-10, and the lift and drag resolved along the flap and lead-lag

axes.	 The forces at each blade section are then multiplied by their moment

arms about the hinge, and the product integrated over the span of the blade.
ti

The resulting moments are

_ Y	 (	 K3 cos 0) Scfs 	-	
^(K2e 

2 + 2K3 	 + K)(sin8 - ^i cos B) -$
	 4	 \4a

+(8 K3 sin 2BI	 -
L

(Q2 e - Q 3) cos e]

-9-

r
n

r
1



I	 I	 I

(20)

	+ (Q2e + Q3 )(2 sin 6 - ^ cos 0)^ + 4 r2(Q le 	 + Q2)

+ (K2e + K3 ) Cos2 0]s}	 L	 (14)

(Cd

M4 = - 8 
1

(R2e2 + 2K3
 
 + K4)[Oi (sin 6 - $i cos e) + ao

a

(8 K3 sin 20) S + 14 K3 sing 0) ^ + (Q2e + Q3 ) (sin 0 - 2¢i cos 0)S

[(Q2 

	
Cd

+e + Q3)^i sin 0 + 2(K 2e + K3 ) a0 0

+Z (K2e + K3 ) sin 2e, 5 
1	

(15)

where

	

K(B .e) n - xo1	
(16)n n [ 

B-e

	

Q n = 4 f xnQdx	 (17)
x
0

The flap equation is obtained by summing Equations 3, 5, and 14, and

setting the result equal to zero. Equations 4, 6, and 15 are summed and set

equal to zero in order to obtain the lead-lag equation. By perturbing the

blade about an equilibrium position, the equilibrium and perturbation

equations are obtained.

s=sa+os

^0+04

e=e0+esAs+0Ac

Bb = 0b + B S ^S + 6^ A4
o	 b	 b
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(22)6  = eh + 6
C 
OS + 0

C 
g

o	 h	 h

The complete equations can be found in the appendix.

Multi-Bladed Rotor

When working with rotors having more than one blade, the standard practice

is to transform the isolated blade equations into multi-blade coordinates [12).

Under this transformation, a four-bladed rotor would have four rotor degrees

of freedom for each blade degree of freedom: collective, differential collec-

tive, lateral cyclic and longitudinal cyclic. In hover, the collective and

differential collective degrees of freedom are linearly independent of each

other and of the two cyclic degrees of freedom. The two cyclic degrees of

freedom are, however, coupled.

Using quasi-steady or Theodorsen aerodynamics for the fixed hub, multi-

bladed rotor considered in this investigation, the transformation to multi-

blade coordinates provides little more information than would an isolated

blade analysis. The results show the damping of all rotor modes to be the

same for a single blade mode, and only the frequencies identify the high

frequency (Q + w) and low frequency (Q - w) cyclic modes. This situation

occurs because fixing the hub uncouples the blades from each other, and

because the blades are aerodynamically independent. In addition, note that

if the modal frequency, w, is greater than the rotor speed, Q; the low

frequency cyclic mode is the progressing mode and the high frequency cyclic

mode is the regressing mode. If w < Q, however, the low frequency mode becomes

the regressing mode and the high frequency mode becomes the progressing mode.

The nature of the analysis changes when Loewy aerodynamics are introduced,

since the blades are aerodynamically coupled through the wake structure.

Each of the four independent rotor modes (collective, differential, low

-11-
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frequency cyclic, and high frequency cyclic) resulting from the eigenanalysis

have different wake geometries associated with them and, therefore, K va

different values of the interblade phasing, 	 ,
q

q = 0 Collective

q
= 7rq Differential

= 27rq/N 	Low Frequency Cyclic
q

^q = 7Tq (1 + 2/N)	 High Frequency Cyclic

Since the collective and differential degrees of freedom are independent in

s	 multi-blade coordinates, there are no difficulties in providing each set of

r
equations with the proper aerodynamic coefficients. However, the fact that

the cyclic degrees of freedom are coupled does present problems.

If the wake geometries associated with cyclic degrees of freedom are

used to compute the aerodynamic coefficients for the coupled cyclic equations,

the same damping is obtained for both the high and low frequency cyclic modes,

irrespective of the differences in their wake geometries. The reason for this

occurrence is that in both cyclic degrees of freedom the oscillations of each

blade lead the one following it by 21rq /N. Thus, the wake geometries of both

cyclic degrees of freedom are the same, as are the aerodynamic coefficients.

Since the hub is fixed, the damping must be the same for both modes,

There are two ways of circumventing these difficulties. The first is to

consider only an isolated blade which is coupled to the others through the

wake geometry [ 9]. This method is, however, only valid for a rotor with a

fixed hub. The other way -:a to devise another transformation for the cyclic

degrees of freedom which ^,c:ouples them and results in the proper wake geo-

metries. For this case of the fixed hub, it is immaterial which method is

-12-
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used. The flap-lag perturbation equations can be solved N times using tl

aerodynamic coefficients for a different mode each time; or be transform,

into a set of 2N equations, each with the appropriate coefficients, and

simultaneously.

Results and Discussion

A sampling of the results obtained from the above analysis are show

Figures 3-7. In these figures, the configuration parameters are as give.

Table 1, except where noted.

Figure 3 illustrates the effect of unsteady aerodynamics on a system with

a low level of damping (note the scale of the ordinate). While the results

using Theodorsen aerodynamics do differ from the quasi-steady results through-

out the frequency range, the differences are small in comparison to the ones

produced by using Loewy's aerodynamics. The addition of the wake sheets below

the plane of the rotor appears to have a significant effect on the behavior of

an isolated blade. There is a sharp spike at the 1/rev lead-lag frequency, an

N-wave at 2/rev, and smaller dips at 3/rev and 4/rev.

The results for a four-bladed rote (Fig. 4) scow the same characteristics

as those for the isolated blade. However, the peaks and valleys do not appear

at every integer frequency for every mode. Instead, the collective mode has

the 4/rev dip, the differential mode has the 2/rev N-wave, the low frequency

cyclic mode has the 1/rev spike, and the high frequency cyclic mode has the

3/rev dip. Except at the points noted, these curves follow the Theodorsen

curve quite closely. From other results, it appears that this pattern repeats

itself at higher frequencies. That is, the collective mode would exhibit

significant deviations from the Theodorsen curves at 4/rev, 8/rev, 12/rev, and

so forth. The other modes would behave similarly. In addition, the sequence

of low frequency cyclic at 1/rev, differential at 2/rev, high frequency cyclic

-13-
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at 3/rev, and collective at 4/rev appears to hold for all other four-blade

configurations.

With a system having a low level of damping, like the one above, a

question arises as to whether the effect of Loewy aerodynamics is significant

only for that type of system, or for all systems. To check out this possibility,

a configuration with full elastic coupling and negative pitch-lag coupling was

analyzed. The results (Fig. 5) show the wake effects to be significant only

below lead-lag frequencies of 2.5/rev. It appears, therefore, that the wake

effects become less significant as the level of damping in the system increrses.

In order to determine if a torsionally soft blade would be more sensitive

to Loewy aerodynamics than a torsionally rigid blade, a pseudo-torsional degree

of freedom was added to the analysis. While the above analysis does not incluu

the torsional degree of freedom, it can be approximated by using the pitch-flap

and pitch-lag coupling parameters to produce pitch angle perturbations [11].

2	 2\ -2 1l

	

6s = - ( )^ - ws) /w8 
Ia]'o	

23)

	f(m - ws)/w8 I
eIae	 (24)

This approach neglects inertial torsion moments and is generally valid for

torsion natural frequencies of 5.0 and above. Figure.6 shows the Loewy curve

to have much larger deviations from the Theodorsen curve than in any other

case. It should be noted, however, that the damping values in this case are

of such a size as to make the assumption of simple harmonic motion somewhat

questionable.

Finally, in order to see how the quasi-steady, Theodorsen and Loewy

results compare for purely simple harmonic motion, a stability boundary was

plotted for each (Fig. 7). For pitch angles below 0.1 radian and lead-lag

-14-



frequencies below 1/rev, all three are virtually identical. At higher pitch

angles, the boundaries of the quasi-steady and unsteady theories diverge from

one another. The main differences between the Loewy and Theodorsen results

occur at and above 1/rev. At 1/rev, there is a small dip in the Loewy curve.

Above that frequency, the curves intersect twice, indicating the type of

behavior observed in the other figures.

Another significant feature of Figure 7 is the manner in which the Loewy

effects do not diminish at the larger pitch angles. It is generally assumed

that the effects of the wake sheets are more important at small pitch angles,

where the wake sheets are more closely spaced. In the case of wake-induced

bending-torsion flutter, decreases in wake spacing are destabilizing [9].

However, the pitch-flap problem is linear, and the aerodynamic coupling is

independent of pitch angle. The flap-lag problem is, on the other hand,

nonlinear and sensitive to aerodynamic coupling. As the flap-lag aerodynamic

coupling increases with pitch angle, it overcomes the decrease in the wake

effect caused by the increased spacing at higher pitch angles, and dominates

the results.

Conclusions

The results of this investigation show that the choice of an aerodynamic

theory can have a significant effect on stability calculations. Most notable

is that the addition of wake sheets below the plane of the rotor influences

the :.ator stability characteristics. While this effect is not exceedingly

large for.most configurations, except at 1/rev, it does appear that it could

be quite significant for systems having a low level of damping and for

torsionally soft blades.

Secondly, it was shown that the method of multi-blade coordinates is not

entirely applicable when Loewy aerodynamics are being used. It would also

-15-
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appear that any aerodynamic theory with coefficients that depend on the wake	 P

geometry would not be compatible with multi-blade coordinates.

Finally, while the Loewy results are very interesting, the significant	 m

effects occur only at integer frequencies. Since rotor systems are designed

to avoid these frequencies, the wake effects are observed where they have 	 r^

minimum influence. Consequently, for most practical configurations, they will

probably not be quantitatively significant.
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APPENDIX

Flap-Lag Equations with Unsteady Aerodynamics

Equilibrium Equations

}

I

F^ F^	 Q 1 -	 F

FS = 1 + 2 (Te)e + Q W2 + Iw2 - w^ R ) sin  6bo

32 (K2 e + K 3 )(2 + cos 2 ©o)

(A1)

+ R , sin  0h 1	 (A2)

o/
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-2	 -2
w - w

F = 2A - S Rb sin 20b + Rh sin 20h
0	 0

(A3)

Yc
+	

(K e + K^a 	 Pt 
	

)sin 26
64	 2	

3	 0

Cr s 2 ^1- + A 
w _ (

- 2

w  - 2)w \
Rb sin g ©b + Rh sing 11 )

	

U	 O

Foe
 IK2e2 + 2K

3e + K4^(sin 60 - ^i cos 00)t	

//
	

C^

Co = -	 (^2e2 + 2K 3e + K4 ) ^h i (sin 0 ° - ^i cos 0 0 ) + 30

(A4)

(A5)

(A6)

(A7)

where

R1	 ( ` KS /K^bl- w2 Kc/KCbl (
w2 	 w2)

Rh = (w2 K
S IKQh)- ' K^/K^h f W2 - 

W 

1

hs Ksb Ksh K^ f j Ksh K6f + K
sb K6f + K 6 KFh

Kc = 
K^b Kyh ",
	

Kth K^f + K^b K^f + K^b Kph/

w2 = K^ /IQ 2

W2 = K^/122

(A3)

(A9)

(A10)

(A11)

(Al2)

(A13)

Perturbation Ecuations

FS FS l FQ F,' (3 f FS F_ 1(3	 0 f_

C.^ 
C t C  CT

t
C^ C t 0L {

Fa = 1
+ 32 K

3 cos 2 00

F _ - ^4 K3 sin 200
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