General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

CR-147911

N77-32328

(NASA-CR-147911) DISECSAL OF HYPERGOLIC PROPEILANTS, FHASE 6 TASK 4. DISPOSAL POND PRODUCTS (Florida Inst. of Tech.) 46 p HC Unclas CSCL 21D A03/MF A01 G3/28 48173

DISPOSAL OF

HYPERGOLIC PROPELLANTS

Task 4 Report

Disposal Pond Products

June 1977

by

John J. Thomas, Bernard C. Cohenour, Craig N. Wiederhold

FLORIDA INSTITUTE OF TECHNOLOGY MELBOURNE, FLORIDA 32901

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIC

Kennedy Space Center Contract NAS 10-8399

Publication of this document does not constitute National Aeronautics and Space Administration endorsement of the findings or conclusions of the report.

PREFACE

This study was conducted by Florida Institute of Technology under Contract NAS 10-8399, administered by the National Aeronautics and Space Administration, John F. Kennedy Space Center, Florida. The NASA Technical Representative for the contract was Mr. Harold H. Franks, DD-MDD, and the Alternate Technical Representative was Mr. Jimmy L. Dobson, DD-MDD. Florida Institute of Technology's study manager was Dr. Thomas E. Bowman, Mechanical Engineering Department.

TABLE OF CONTENTS

1.	Abs	tract	1
2.	Int	roduction	2
3.	GLC	Standard Curves for MMH Waste Scrubber Liquor Products	3
	a.	Ethano1	8
	b.	Isopropyl Alcohol (IPA)	11
	с.	Methano1	12
	d.	Methylene Chloride	16
	e.	Chloroform	19
	f.	Summary	22
4.	Fie	1d Assays of IPA and MMH Scrubber Liquor Wastes	23
	a.	Isopropyl Alcohol	23
	b.	MMH Scrubber Liquor Wastes	24
	c.	Summary	38
5.	So1	ar Conversion of Nitrate and Nitrite to Nitrous Oxide and Nitrogen	39
	a.	Conclusion	43

1. Abstract

The waste MMH scrubber liquor will consist of aqueous solutions containing small amounts of CH_4 , Cl_2 , CH_3Cl_1 , CH_2Cl_2 and $CHCl_3$ as well as large amounts of CH_3OH . This waste is scheduled to be disposed of in stabilization ponds along with nitrate and nitrite salt solutions obtained as waste liquors from the N₂O₄ scrubbers.

Task 4 is concerned with determining what possible hazardous materials can be generated by such combinations of items as described above as well as the finite lifetime of such materials in the stabilization ponds. The most useful analytical tool to investigate these problems is the Gas Liquid Chromatograph (GLC). This report is a compilation of data obtained to date which is necessary for performing the GLC analyses of the above materials as well as possible pond products. Also included in this report is a series of experiments designed to convert nitrate and nitrite salts to the environmentally innocuous N_20 and N_2 using solar energy. These last experiments were designed to yield information which may be useful in 1) determining the final size and number of holding ponds required and 2) ameliorating the toxic effects of nitrate and nitrite on the pond biota. The Task 4 statement of work entitled "Disposal Pond Products" reads as follows:

"Investigate the various products which can be generated by hypergol waste disposal ponds, to determine safety and ecological effects and countermeasures. Define alternatives and compare results. Perform experimental procedures to verify concepts and to obtain reliable data for evaluation. Coordinate this task with Task 3 to maximize results from both tasks."

In order to investigate the various products which can be generated by hypergol disposal ponds, several analytical techniques must be employed. The most important of these is gas-liquid chromatography (GLC) which is used most often to determine concentrations of relatively volatile organic compounds. It is envisioned that if any of the hypergol wastes are added to the Disposal Pond (DP) and converted by sunlight or plant metabolism to toxic or carcinogenic materials, the presence of such products should be found upon GLC analyses of the pond water. GLC analyses can also be used to determine the concentrations of hypergol wastes remaining in the DP at the end of various time intervals. For example, it has been established that the products of the scrubbing reaction of MMH and NaOCI are CH₃OH, CH₃C1, CH₂Cl₂, CHCl₃ and CH₄. All these products can be considered volatile and thus will evaporate in the DP. Therefore, it seems reasonable to suppose that these materials will not be present in appreciable concentrations after several days. Thus it is anticipated that the vast majority of these substances will be evaporated or incorporated into the plant life before the next load of hypergol waste from the scrubber is introduced into the DP. However, it is necessary to verify all this by proper experimentation and GLC analyses.

2.

Also, a procedure for flushing MMH from tanks and pipelines has been in operation at KSC for many years. This procedure calls for the use of isopropyl alcohol (IPA) as the flushing agent. Information has been obtained that in the past MMH contaminated IPA has been dumped in various ponds at KSC with little thought as to the eventual environmental consequences of such action. Since the Shuttle operations will necessarily involve far more IPA flushing than has been used in the past, alternative disposal schemes must be studied, evaluated, and initiated. A previous study conducted by FIT has demonstrated the feasibility of recovering pure IPA from MMH contaminated IPA. This procedure would allow reuse of the IPA and conversion of MMH to an environmentally innocuous heterocycle. However, although this procedure has been found to work well on a laboratory scale, and has been found to be economically feasible, it has not been tested on a larger scale. Therefore, the possibility arises that at least some quantity of MMH contaminated IPA may be dumped into a disposal pond. Hence, it is necessary to develop analytical techniques for IPA in order know 1) at what concentration IPA is harmful to the plant and animal biota in the disposal pond and 2) the rate of evaporation of IPA from the pond. Thus, IPA was added to the prototype disposal pond (PDP) and GLC analyses were made at periodic intervals. Unfortunately, since our MMH addition procedure had not been approved by KSC at the time, we could not add MMH to the PDP.

「「「「「「「」」」」」

3.

3. GLC Standard Curves for MMH Waste Scrubber Liquor Products

In establishing the standard curves, it is known that the peak area drawn on the recorder is proportional to the concentration of the compound being ionized by the flame in the GLC. The peak area (cm^2) is calculated by triangulation:

 $\frac{1}{2}$ Base (cm) x Height (cm) = Area (cm²)

Once the concentration is known for two or more samples, a slope on a graph can be established, which can be used to measure an unknown concentration.

The conditions for the GLC analyses were as follows:

1. Instrument: Varian Aerograph 2400 with a Beckman 10" recorder

2. Column: Poropak Q, 80/100 S.S., 8'x1/8"

3. Temperature Settings:	Injector 160°C Detector 250°C Column 145°C No temperature program
4. Flow rates:	He 40 m1/min Air 400 m1/min H ₂ 30 m1/min

Ethanol (EtOH) was used as an internal standard. The conditions were those established for $C_1^{-}C_6$ alcohols as presented in McNair and Bonnelli's <u>Basic Gas</u> <u>Chromatography</u> (p. 62, 5th ed., Consolidated Printers, Berkeley, Calif., March 1969). Certain modifications were made for optimizing results in this laboratory.

The concentration of solvent is expressed as ug/ul in order to be directly proportional to the area under the peak.

The preparation of standards was accomplished by accurately weighing

4,

out on analytical balance 100.0 mg of each standard into a volumetric flask. The initial addition of the alcohols (methanol, ethanol, and isopropanol) removes the insolubility problem of chloroform and methylene chloride in water. This solution is then diluted to a final volume of 10 mls with water. This provides a 10,000 ug/ml(ppm) solution of each of the five standards.

The working solutions used to prepare the standard curve were prepared from the 10,000 ug/ml stock solution by diluting as follows:

- a. 1 ml of stock solution diluted to 10 ml final volume with water = 1000 ug/ml.
- b. 5 ml of stock solution diluted to 100 ml final volume with water = 500 ug/ml.
- c. 1 ml of stock solution diluted to 100 ml final volume with water= 100 ug/ml.

Taking the sample peak for methanol from Run #631, test 4-5-20N, the peak area is calculated by triangulation to be 33.945 cm² at a range and attenuation of $2x10^{-12}$ at a known concentration of 100 ug/ml. If the range is not 1, concentration is divided by the range (2). 50 ug/ml is plotted versus 33.945 cm² on the graph.

These data points are used to establish the slope of the standard curve in the following manner. The median and mean are determined for the peak areas for samples of each material. The variant peak area for each sample point is determined. If the variant for a particular sample is very large, it is discarded until the mean approaches the median. The finalized average peak area per unit concentration then becomes the slope ratio. The slope ratio is then multiplied by three or more integers within the range of probable concentrations to derive the plotting points for the standard curve.

The GLC data used in plotting the standard curves are shown in Table 1. The calculations used in plotting the standard curves are shown on subsequent pages.

5.

Table 1. Data Utilized in Establishing Standard Curves for MeOH, EtOH, CH_2Cl_2 , IPA and $CHCl_3$

Run	Test	Atten x 10^{-12}	Conc.ppm	Sample ID	Base	Ht	Area cm ²
607	4-5-19A	16	1000	MeOH CHC13	4.9 4.1	21.9 11.7	53.655 23.985
608	4-5-19B	16	1000	CHC13	4.1	20.8	42.640
609	4-5-19C	16	1000	CHC13	3.9	14.9	29.005
610	4-5-19D	32	1000	MeOH	1.1	15.1	8.305
611	4-5-19E	14.11.11.11.11.11.11.11.11.11.11.11.11.1	1000	CHC13	4.1	24.7	50.635
612	4-5-19F	32	1000	MeOH CH ₂ Cl ₂ CHCl ₃	1.1 1.6 5.1	17.9 31.1* 7.8	9.845 24.880 19.890
613	4-5-19G	64	1000	MeOH EtOH CH ₂ Cl ₂ CHCl ₃	1.2 1.1 1.7 3.9	6.5 24.2 12.2 3.0	3.900 13.310 10.370 5.850
614	4-5-19H	128	1000	MeOH EtOH CH ₂ Cl ₂ IPA CHCl ₃	1.1 1.0 1.7 1.8 4.0	4.0 16.5 10.2 19.8 2.5	2.200 8.250 8.670 17.820 5.000
615	4-5 - 19I	64	1000	MeOH EtOH CH ₂ Cl ₂ CHCl ₃	1.2 1.2 1.6 3.7	6.6 26.0 18.6 4.8	3.960 15.600 14.880 8.880
617	4-5-19K	256	1000	MeCH EtOH CH ₂ Cl ₂ IPA CHCl ₃	1.4 1.1 1.6 1.9 3.5	1.7 7.2 4.7 9.4 1.1	1.190 3.960 3.760 8.930 1.925
618	4-5-20 A	128	1000	MeOH EtOH CH ₂ C1 ₂ IPA CHC1 ₃	1.2 0.9 1.8 1.8 6.0	3.3 16.2 7.7 19.4 2.2	1.980 7.290 6.9300 17.460 6.600
619 •	4-5-20B	128	5 00	MeOH EtOH CH ₂ C1 ₂ IPA CHC1 ₃	1.6 1.3 1.6 3.0 3.3	0.8 5.4 3.9 8.2 0.9	0.640 3.510 3.120 8.200 1.485

Table 1 (cont.) Data Utilized in Establishing standard curves for MeOH, EtOH, CH₂Cl₂, IPA and CHCl₃

Run	Test	Atten, $x 10^{-12}$	Conc. ppm_	Sample ID	Base cm	Ht.	Area cm ²
620	4-5-20C	- 64	500	MeOH EtOH CH ₂ C1 ₂ IPA CHC1 ₃	1.7 1.2 1.1 1.9 4.0	2.8 10.4 7.5 16.3 2.0	2.380 6.240 4.125 15.485 4.000
621	4-5-20D	32	500	MeOH EtOH CH2Cl2 CHCl3	1.7 1.4 1.7 4.4	16.8 20.5 14.3 '3.5	14.280 14.350 12.155 7.700
622	4-5-20E	16	500	MeOH CH ₂ Cl ₂ CHCl ₃	1.3 1.8 4.4	13.0 24.1 6.2	8.450 21.690 13.640
623	4-5-20F	8	500	MeOH CHC13	1.4 4.0	25.9 10 .5	18.130 21.000
624	4-5-20G	4	500	CHC13	4.3	19.9	42.785
625	4-5-20H	64	.100	CH ₂ C1 ₂ IPA	1.9 3.3	1.0 1.8	0.950 2.970
626	4-5-201	32	100	MeCH CH ₂ C1 ₂ IPA	1.5 2.0 3.5	3.6 3.0 3.4	2.700 3.000 5.950
627	4-5-20J	16	100	MeOH hid EtOH CH ₂ Cl ₂ IPA	den 4.7 2.1 3.5	3.7 6.4 7.3	8.695 6.720 12.775
629	4-5-20L	8	100	MeOH hic EtOH CH ₂ Cl ₂ IPA	loen 4.4 2.0 3.3	4.8 7.4 11.9	10.560 7.400 19.635
630	4-5-20M	4	100	MeOH EtOH CH ₂ Cl ₂ IPA CHCl ₃	3.6 5.5 2.1 3.1 5.7	9.5 11.2 18.2 29.1 4.0	17.100 30.800 19.110 45.105 11.400
631	4-5-20N	2	100	MeOH EtOH CHC13	3.1 5.3 7.3	21.9 23.5 10.9	33.945 62.275 39.785

a. Ethanol

Pertinent Calculations for GLC Standard Curves for Ethanol

Column retention time is 2.6 to 3.4 minutes

Molecular weight: 46.07 Density: 0.7893 x 95% strength = 0.7498

1. Peak Areas for Ethanol

Conc (ppm)	Attenuation x Range	Area (cm ²)
100	$2 \times 10^{-12} 4 \times 10^{-12} 8 \times 10^{-12} 16 \times 10^{-12}$	62.275 30.800 10.560 8.695
500	$\begin{array}{c} 32 \times 10^{-12} \\ 64 \times 10^{-12} \\ 128 \times 10^{-12} \end{array}$	14.350 6.240 3.510
1000	64 x 10 ⁻¹² 64 x 10 ⁻¹² 128 x 10 ⁻¹² 128 x 10 ⁻¹² 256 x 10 ⁻¹²	13.310 15.600 7.290 8.250 3.960

2. <u>Calculating ug at attenuation of 1</u>

Conc (ppm)	Conc (ug/m1)/Attenuation	Conc at Attenuatio	n 1 Area (cm ²)
100	100/2	50.0	62.275
	100/4	25.0	30.800
	100/8	12.5	10.560
	100/16	6.3	8.695
500	500/32	15.6	14.350
	500/64	7.8	6.240
	500/128	3.9	3.510
1000	1000/64	15.6	13.310
	1000/64	15.6	15.600
	1000/128	7.8	7.290
	1000/128	7.8	8.250
	1900/256	3.9	3.960

3. Comparison of ug/m1 to cm^2

ug/ml	$\underline{cm^2}$	cm ² /ug/m1
3.9	3.960	1.015
3.9	3.510	900
6.3	8.695	1.380
7.8	7.290	.935
7.8	8.250	1.058
7.8	6.240	.800
12.5	10.560	.845
15.6	15.600	1.000
15.6	13.310	.853
15.6	14.350	.9 20
25.0	30.800	1.232
50.0	62.275	1.246
		12.184

4. Data Finalization for Plotting Slope

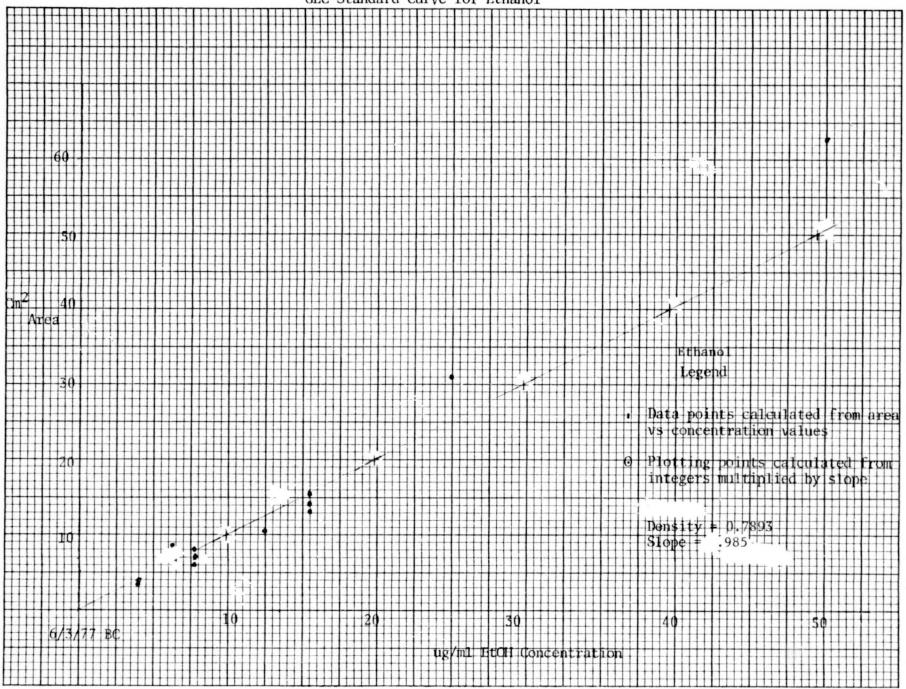
a. Summation

Number of samples (n) = 12

12

ſ,

 $\Sigma cm^2/us/ml = 12.184$


b. Slope n/Summation

average $cm^2/ug/m1 = .985$

c. Plotting points. Area vs concentration

10	cm ²	•	9.850	ug/ml
20		:	19.700	
30			29.550	
40		:	39.400	
50		:	49.250	

GLC Standard Curve for Ethanol

10.

Sear 1

b. Isopropyl Alcohol (IPA)

Pertinent Calculation for G	LC Standard Curves for I	PA	
Column retention time is 5.	1 to 5.6 minutes		
Molecular weight: 60.09	Density: 0.7954		
1. Peak Areas for IDA			e Nezere e e

1. eak Areas for IPA

Conc (ppm)	Attenuation x R	lange	Area (cm ²)
100	4×10^{-12} 8 x 10^{-12}		45.105 19.635
	$ \begin{array}{r} 16 \times 10^{-12} \\ 32 \times 10^{-12} \\ 64 \times 10^{-12} \end{array} $		12.775 5.950 2.970
500	$\begin{array}{r} 64 x \ 10^{-12} \\ 128 \ x \ 10^{-12} \end{array}$		15.485 8.200
1000	128 x 10 ⁻¹² 128 x 10 ⁻¹² 256 x 10 ⁻¹²		17.460 17.820 8.930

Calculating ug/ml at attenuation of 1 2.

Conc. ppm	Conc.(ug/m1)/Atten.	Conc. at Atten. 1	$Area(cm^2)$
100	100/4	25.0	45.105
	100/8	12.5	19.635
	100/16	6.3	12.775
	100/32	3.1	5.950
	100/64	1.6	2,970
500	500/64	7.8	15.485
	500/128	3.9	8.200
1000	1000/128	7.8	17.460
	1000/128	7.8	17.820
	1000/256	3.9	8.930

3. Comparison of ug/ml to cm²

ug/ml		<u>cm</u> ²		cm ² /ug/1	<u>m</u> 1
1.6		2.970		1.856	
3.1	an an guiltean an a	5.950	an an a'	1.919	
3.9		8.200		2.103	
3.9		8.930		2.290	
6.3		12.775		2.028	
7.8		15.485		1.985	
7.8		17.460		2.238	
7.9		17.820		2.285	
12.5		19.635		1.571	
25.0		45.105		1.804	-

- 4. Data finalization for plotting slope
 - Summation: $cm^2/ug/m1 = 20.078$ Number of samples (n)=10 a.

- b. Slope: average cm²/ug/ml= .498
- Plotting points. Area vs concentration с.

5 cm ²	•	2.490	ug/ml
10	:	4.980	-
20	:	9.960	
25	•	12.450	
30	· • •	14.940	

c. Methanol

Pertinent Calculations for GLC Standard Curve for Methanol Column retention time is 1.2 to 1.5 minutes Molecular weight: 32.04 Density: 0.7928

1. Peak Areas for Methanol

Conc (ppm)	Attenuation	x Range	Area (cm ²)
100	2 x 10-12 4 x 10-12 32 x 10-12		33.95 17.100 2.700
500	8 x 10 ⁻¹² 16 x 10 ⁻¹² 32 x 10 ⁻¹² 64 x 10 ⁻¹² 128 x 10 ⁻¹²		18.130 8.450 14.280 2.380 0.640
1000	$16 \times 10^{-12} \\ 32 \times 10^{-12} \\ 32 \times 10^{-12} \\ 64 \times 10^{-12} \\ 64 \times 10^{-12} \\ 128 \times 10^{-12} \\ 128 \times 10^{-12} \\ 128 \times 10^{-12} \\ 256 \times 10^$		53.655 8.305 9.845 3.900 3.960 2.200 1.980 1.190

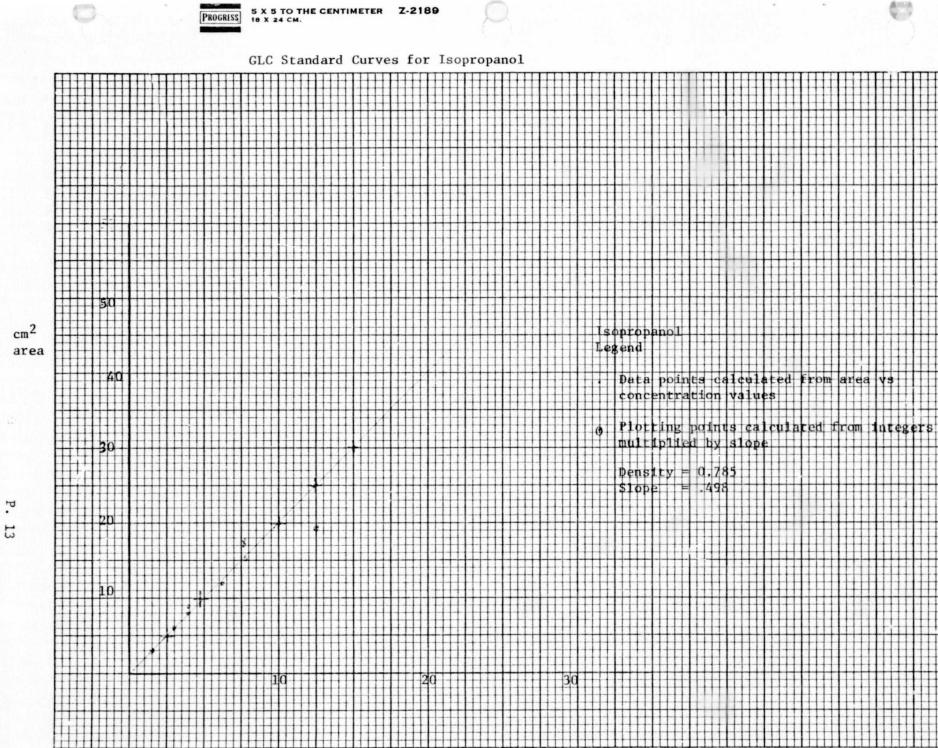


Fig. 2

2. <u>Calculating ug at attention of 1</u>

Conc. (ppm)	Conc.(ug/ml/Atten.	Conc. at Atten. 1	Area(cm ²)
100	100/2	50.0	33.945
	100/4 100/32	25.0 3.1	17.100 2.700
500	500/8	62.5	18.130
	500/16 500/32	31.3 15.6	8.450 14.280
	500/64	7.8	2.380
	500/128	3.9	0.640
1000	1000/16	62.5	53.655
	1000/32	31.3	8.305
and an an ann an an Airlean. An an tha tha tha ann an Airlean	1000/32	31.3	9.845
	1000/64	15.6	3.900
	1000/64	15.6	3.960
	1000/128	7.8	2.200
an a	1000/128	7.8	1.980
	1000/256	3.9	1.190

3. Comparison of ug/ml to cm^2

ug/ml		<u>cm</u> ²	cm ² /ug/m1
3.1		2.700	.871
3.9		0.640	.164
3.9		1.190	.305
7.8		2.200	.282
7.8		2.380	.305
7.8		1.980	.254
15.6		3,960	.254
15.6		3,900	.250
15.6		14.280	.915
25.0	and a second	17.100	.684
31.3		8.450	.270
31.3		8.305	.265
31.3		9.845	.315
50.0		33.945	.679
62.5		18.130	.290
62.5		53.655	.858

4. Data finalization for plotting slope

a. Summation: $\leq cm^2/ug/m1 = 6.961$

= 6.961 Number

Number of samples(n) = 16

- b. Slope: median $cm^2/ug/ml = 2.299$
- c. Plotting points: Area vs concentration

5 cm^2		11,495	ug/ml
10	:	22,990	
15	as t a	34.485	
20		45.980	
25	:	57.475	

14.

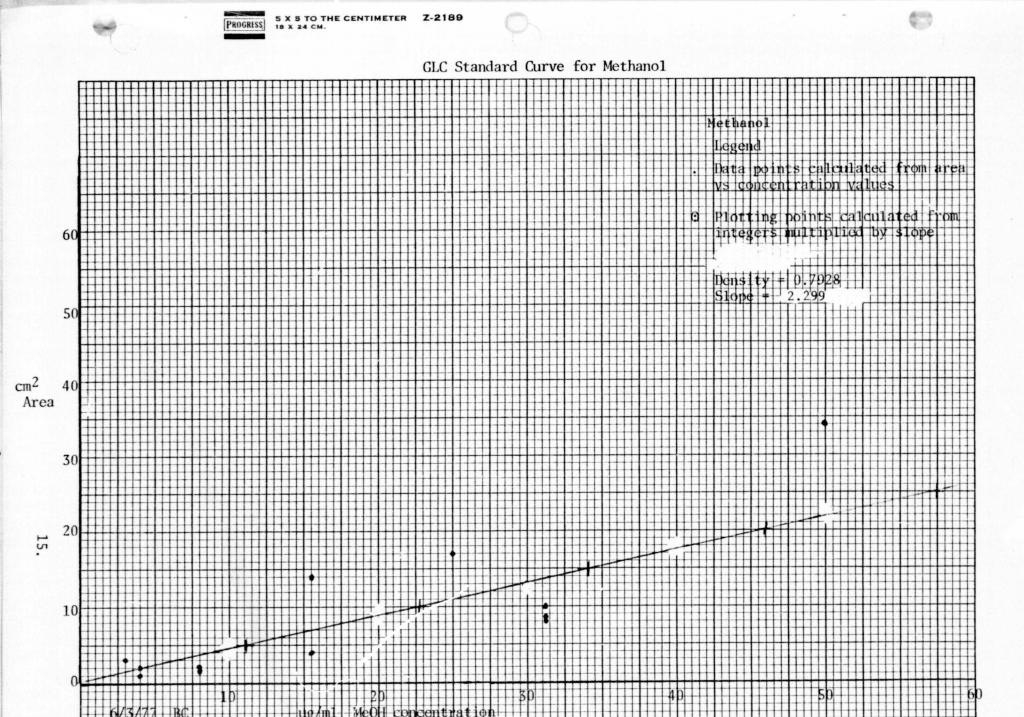


Fig. ³

d. Methylene Chloride

Pertinent Calculations for Standard Curve for Methylene Chloride

Column retention time is 4.5 to 4.7 minutes

Molecular weight: 84.94 Density: 1.336

1. Peak Areas for Methylene Chloride

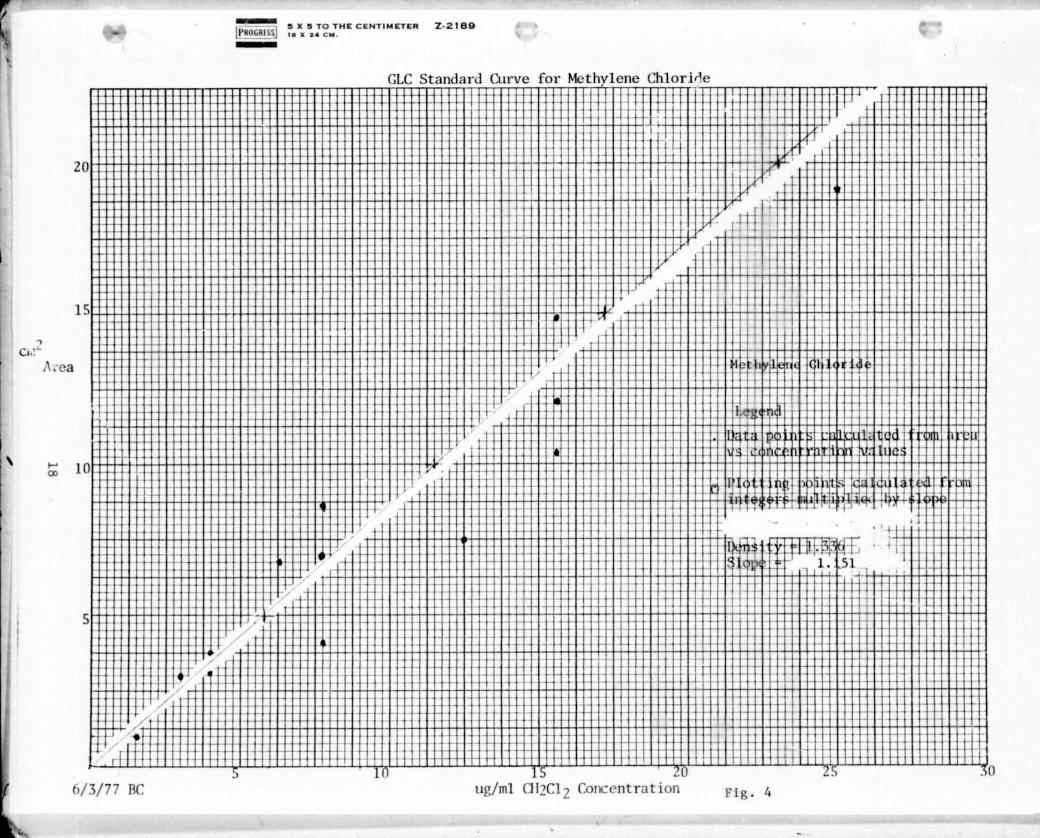
Conc (ppm)	Attenuation x Range	Area (cm ²)
100	$\begin{array}{c} 4 \ x \ 10^{-12} \\ 8 \ x \ 10^{-12} \\ 16 \ x \ 10^{-12} \end{array}$	19.110 7.400
	$\begin{array}{c} 10 \ x \ 10 \ 12 \\ 32 \ x \ 10^{-12} \\ 64 \ x \ 10^{-12} \end{array}$	6.720 3.000 0.950
500	$16 \times 10^{-12} \\32 \times 10^{-12} \\64 \times 10^{-12}$	21.690 12.155 4.125
	128 x 10-12	3.120
1000	$\begin{array}{c} 32 \times 10^{-12} \\ 64 \times 10^{-12} \\ . 64 \times 10^{-12} \\ . 10^{-12} \end{array}$	24.880 10.370 14.880
	128×10^{-12} 128 x 10^{-12} 256 x 10^{-12}	6.930 8.670 3.760

2. Calculating ug at attenuation of 1

Conc (ppm)	Conc (ug)/Attenuation	Conc at Attenuation 1	Area (cm ²)
100	100/4	25.0	19.110
	100/8	12.5	7.400
	100/16	6.3	6.720
	100/32	3.1	3.000
	100/64	1.6	0.950
500	500/16	31.3	21.690
	500/32	15.6	12.155
	500/64	7.8	4.125
	500/128	3.9	3.120
1000	1000/32	31.3	24.880
	1000/64	15.6	10.370
	1000/64	15.6	14.880
	1000/128	7.8	6.930
	1000/128	7.8	8.670
	1000/256	3.9	3.760

3. Comparison of ug/m1 to cm^2

j,


D

劉

ug/m1		<u>cm²</u>		cm ² /ug
1.6		0.950		.594
3.1		3.000		.968
3.9		3.760		.964
3.9	•	3.120		.800
6.3		6.720	-	1.067
7.8		8.670		1.112
7.8		6.930		.888
7.8	inne at the second second	4.125		.529
12.5	and the second sec	7.400		.592
15.6		12.155		.779
15.6		10.370		.665
15.6		14.880		.954
25.0		19.110		.764
31.3		24.880		.795
31.3	1988 - C. 1997 -	21.690		.693

4. Data finalization for plotting slope

Summation: $\Sigma \text{ cm}^2/\text{ug/m1} = 12.164$ Number of samples (n) = 14a. -Slope: average $cm^2/ug/m1 = 1.151$ b. Plotting points. Area vs concentration c. 5cm² : 5.755 ug/m1 10 :11.510 :17.265 19 20 :23.020 29 :28.775

c. Chloroform

Pertinent Calculations for GLC Standard Curve for Chloroform

Column retention time is 11.2 to 11.4 minutes

Molecular weight: 119.39 Density: 1.49845

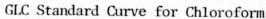
1. Peak Areas for Chloroform

Conc (ppm)	Attenuation x Range	Area (cm ²)
100	$\begin{array}{c} 2 \times 10^{-12} \\ 4 \times 10^{-12} \end{array}$	39.785 11.400
500	$\begin{array}{r} 4 \ x \ 10^{-12} \\ 8 \ x \ 10^{-12} \\ 16 \ x \ 10^{-12} \\ 32 \ x \ 10^{-12} \\ 64 \ x \ 10^{-12} \\ 128 \ x \ 10^{-12} \end{array}$	42.785 21.000 13.640 7.700 4.000 1.485
1000	8×10^{-12} 16×10^{-12} 16×10^{-12} 16×10^{-12} 32×10^{-12} 64×10^{-12} 64×10^{-12} 128×10^{-12} 128×10^{-12} 128×10^{-12} 256×10^{-12}	50.635 23.985 29.055 42.640 19.890 5.850 8.880 5.000 6.600 1.925

2. <u>Calculating ug/ml at attenuation of 1</u>

Conc (ppm)	Conc (ug/m1/Atten.	Conc at Atten.1	Area (cm ²)
100	100/2	50.0	39.785
	100/4	25.0	11.400
500	500/4	125.0	42.795
	500/8	62.5	21.000
	500/16	31.3	13.640
	500/32	15.6	7.700
	500/64	7.8	4.000
	500/128	3.9	1.485
1000	1000/8	125.0	50.635
	1000/16	62.5	23.985
	1000/16	62.5	29.055
	1000/16	62.5	42.640
	1000/32	31.3	19.890
	1000/64	15.6	5.850
	1000/64	15.6	8.880
	1000/128	7.8	5.000
	1000/128	7.8	6.600
	1000/256	3.9	1.925

19.


3. Comparison of ug/ml to cm^2

ug/ml		<u>cm²</u>	<u>cm²/ug/m1</u>
3.9		1.925	.494
3.9		1.485	.381
7.8		4.000	.513
7.8		5.000	.641
7.8		6.600	.846
15.6		8.800	.569
15.6		5.850	.375
15.6		7.700	.494
25.0		11.400	.456
31.3		13.640	.436
31.3		19.890	.635
50.0		11.400	.795
62.5		29.055	.465
62.5		23.985	.384
62.5		21.000	.336
62.5		42.785	.685
125.0		42.640	.341
125.0	······································	50.635	.405

4. Data finalization for plotting slope

a. Summation: X cm²/ug/ml = 9.251 Number of samples(n) = 18
b. Slope: Average cm²/ug/ml = 1.946
c. Plotting points. Area vs concentration

10cm^2	1	19.46	ug/m1
20		38.92	
30	: :	58.38	
40	:	77.84	
50		97.30	

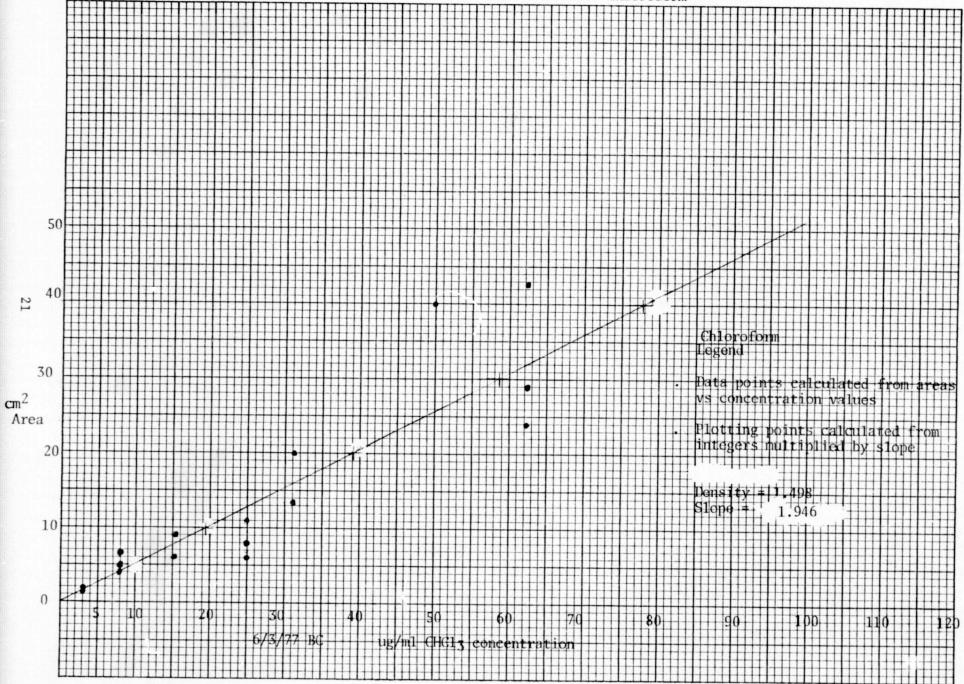


Fig. 5

f. Summary

IPA and MMH scrubber waste liquors can be analyzed using Gas Liquid Chromatography. The concentration and degradation rate of these materials in disposal ponds can be determined by using the standard curves delineated in this report.

3. Field Assays of IPA and MMH Scrubber Liquor Wastes

a. IPA

On April 27, 1977 a small amount of IPA was mixed into the PDP. An approximate calculation of the amount of IPA in the PDP which was based on an estimated volume of water in the pond was made. This estimate was 1000 ppm. A GLC assay was made of the pond water and it was determined that the concentration was 1070.6 ppm.A second sample taken on May 18,1977 showed no trace of IPA present. And States

As discussed earlier, IPA may be a material designated to be disposed of in stabilization ponds. One advantage of IPA addition to the PDP or any disposal pond is that it provides a carbon source for water hyacinths and algae present in such ponds. b. MMH Scrubber Liquor Wastes

Experiments were initiated with an objective to study the evaporation rates of the reaction products of NaOC1 degradation of MMH.

ALC: NO.

Exp. No. 1

Five stainless steel pans of uniform dimension were placed on a platform. These pans (A, B, C, D, and E) all contained 500 ml of 5% NaOCl (250 mls H_20 and 250 mls 10% NaOCl). To each pan was added the following:

- 1) 500 mls of 10% MMH (50 mls MMH and 450 mls H_20) to pan A.
- 2) 500 mls of 5% MMH (25 mls MMH and 475 mls H_20) to pan B.
- 3) 500 mls of 1% MMH (5 mls MMH and 495 mls H₂0) to pan C.
- 4) 500 mls of 0.5% MMH (2.5 mls MMH and 297.5 mls H_20) to pan D.
- 5. 500 mls of 0.1% MMH (0.5 mls MMH and 499.5 mls H₂0) to pan E.

When the combined solutions were prepared, the ambient temperature was 25°C. It was noted that upon mixing, a temperature change occured in each of the pans. See Table 2.

Table 2.

Reaction Temperature of Various MMH Concentrations in 5% NaOC1

Pan	Conc.	of MMH	Time of Max. Temp.	Temperature
	10	91		۸۵°c
A E	10	7		40°C 38°C
C	1	. %		36°C
D	0.5	%		28°C
E	0.1	. %	1. A second s	24°C

A sample for assay was taken every 24 hours (except Saturday and Sunday), at which time two 1 ml samples of each concentration were drawn and stored for assay at a later time. The evaporation rates were determined using a spectrophotometric method to assay MMH concentration and GLC methods were used to determine levels of NaOC1 reaction products. The operating conditions for the GLC were discussed in section The results from the spectrophotometric assays for MMH levels in Exp. 1 are presented in Table 3.

Table 3.

Sample Date	A	В	C	D	E
6/3	11412.5	5602.5	*Negative	*Negative	200
6/4	5082.5	1650.0	807.5	* 2405.0	*61200.0
6/6	439.0	330.0	247.5	*1494900.0	*684750.0
6/7	82.5	*Negative	330.0	*71575.0	*4272500.0
6/8	60.0	*Negative	*Negative	*166000.0	*537250.0
6/9	Sample n	ot taken du	e to comple	ete evapora	tion

* Erroneous results caused by presence of Chlorine Only the results from pan A were considered valid due to chlorine interference in absorbance readings of samples from the other pans. See Table 4.

Table 4

Degradation Rate of MMH in Pan A for Run 1

Dates		Percent	Degradation
6/3-6/4		55.5	
6/4-6/6		91.4	
6/6-6/7		81.0	
6/7-6/8		27.3	
	Total Dear	adation	99.5%

A second series of experiments was conducted which studied air and sunlight oxidation of MMH in solution with no Cl₂ source added. The results show that MMH is essentially totally degradeded in about five days. The results for Exp. No. 2 are presented in Tables 5 and 6.

Table 5

ppm MMH for Run	2 deter	mined from	Spectrophot	cometer Rea	adings.
Sample Date	A	В	C	D	Е
6/9	91,300	39,425	12,850	8,500	415.0
6/10	23,850	14,100	7,365	5,395	92.5
6/13	Sample	not taken	due to comp	Lete evapor	ration

Table 6

Rates of	of	Degradation	of	MMH	for	Run	2	in	First	Day	
----------	----	-------------	----	-----	-----	-----	---	----	-------	-----	--

Pan	Perce	nt Degrada	ation
A		73.9	
В		64.2	
С		42.7	
D		36.5	
E		77.7	

The GLC assays were conducted using conditions previously described. The only variables introduced in the tests on samples from Run 1 and 2 were sample size and attenuation. These modifications were used to optimize the peak height in order to more accurately measure the peak area. The peak area calculations were made by reducing sample size to 1 ul and multiplying by the attenuation. Then using the standard curve graphs from Section 3, the ug/ml (ppm) were calculated. The results are presented in Table 10. GLC Data Presenting Peak Area and Corresponding Concentration Values of Reaction Products for Exp.1 and 2.

¥

G₁-1 (Run #1 on GLC, first day) Sampled on 6/3 , Assayed on 6/4

Pan	Reaction Product ID	Area	Conc.(ug/m1)	
A (10.0%)	Сн ₃ он	41.862	96.241	
	Сн ₂ с1 ₂	115.639	133.100	
	снс1 ₃	4.652	9.053	
B (5.0%)	СН ₃ ОН	74.325	170.873	
	СН ₂ С1 ₂	55.130	63.455	
	СНС1 ₃	2.337	4.458	
C (1.0%)	СH ₃ OH	5.155	11.851	
	CH ₂ Cl ₂	2.055	2.365	
	CHCl ₃	.043	.084	
D (0.5%)	сн ₃ он	3.311	7.612	
	сн ₂ с1 ₂	1.383	1.592	
	снс1 ₃	.016	.031	
E (0.1%)	СH ₃ OH	2.513	5.777	
	CH ₂ C1 ₂	.447	.514	
	.CHC1 ₃	.007	.014	

Table 7

G₁-4 (Run #1 on GLC, fourth day) Sampled and Assayed on 6/6/77

Pan Reaction Product ID Area Conc.(ug/m1) A (10.0%) CH3OH .402 .924 11.767 CH_2Cl_2 10.223 CHC13 .608 1.183 B (5.0%) СН3ОН .487 1.120 CH_2C1_2 1.626 1.872 CHC13 .141 .274 C (1.0%) CH₃OH ,909 2.090 CH_2C1_2 .236 .272 CHC13 .021 .041 сн_зон D (0.5%) 1.650 3.793 CH_2C1_2 .252 .240 CHC13 .007 .014 E (0.1%) CH₃OH 2.310 1.005 CH₂Cl₂ .015 .017 GHC13 .003 .006

28.

Table 7 (c^{ont.)}

$G_{1,5}$ (Run #1 on GLC, fifth day)

Sampled and Assayed on 6/7/77

Reaction Product ID	Area	Conc.(ug/m1)	
СНЗОН	.240	•552	
CH ₂ C1 ₂		4.632	
CHC13		.631	
		•031	
Сн _З он	• 459	1.055	
CH ₂ Cl ₂		1.327	
CHC13	.083	.162	
이 방법 사람이 있는 것 같아요. 이 가지 않는 것 같아요. 이 가지 않는 것 같아요.	.526	1.209	
	.088	.101	
CHC13	.013	.025	
CH2OH	1 202		
		2.763	
이 그 가지 않는 것 같은 아이들 가지 않는 것 같은 것이 없는 것이 없다.		.135	
	• 004	.008	
Сн ₃ он	.853	1.961	
CH ₂ Cl ₂		.008	
GHC13	.002	.000	
	$\begin{array}{c} CH_{3}OH\\ CH_{2}Cl_{2}\\ CHCl_{3}\\ \\ CH_{3}OH\\ CH_{2}Cl_{2}\\ CHCl_{3}\\ \\ CH_{3}OH\\ CH_{2}Cl_{2}\\ CHCl_{3}\\ \\ CH_{3}OH\\ CH_{2}Cl_{2}\\ CHCl_{3}\\ \\ CH_{3}OH\\ CH_{2}Cl_{2}\\ \end{array}$	$\begin{array}{cccc} CH_{3}OH & .240 \\ CH_{2}Cl_{2} & 4.024 \\ CHCl_{3} & .324 \\ CH_{3}OH & .459 \\ CH_{2}Cl_{2} & 1.153 \\ CHCl_{3} & .083 \\ \end{array}$ $\begin{array}{cccc} CH_{3}OH & .526 \\ CH_{2}Cl_{2} & .088 \\ CHCl_{3} & .013 \\ \end{array}$ $\begin{array}{cccc} CH_{3}OH & 1.202 \\ CH_{2}Cl_{2} & .117 \\ CHCl_{3} & .004 \\ \end{array}$	

29

. .

 $G_{1}-6$ (Run #1 on GLC, Sixth day)

Sampled and Assayed on 6/8/77

Pan	Reaction Product ID	Area	Conc.(ug/m1)
A (10.0%)	снзон	.155	.356
A (10.0%)	CH ₂ Cl ₂	2.785	3.206
	CHCl ₃	.162	.315
B (5.0%)	СН ₃ 0н	.192	.441
B (J.0%)	CH ₂ Cl ₂	.222	.256
	CHC13	.057	.111
C (1.0%)	Снзон	.316	.726
C (1.0%)	CH_2C1_2	.036	.041
	CHCl ₃	.011	.021
D (0.5%)	СНЗОН	.859	1.975
D (0.5%)	CH_2Cl_2	.048	.055
	CHC1 ₃	.003	.006
E (0.1%)	снзон	.732	1.683
	CH ₂ Cl ₂		*****
	GHC13	*	*
	and the second term of the second		

A DATE OF THE PARTY OF THE PART

A STREET

*Concentration level below detection limits

30

.....

G₂-1 (Run # 2 on GLC, first day)

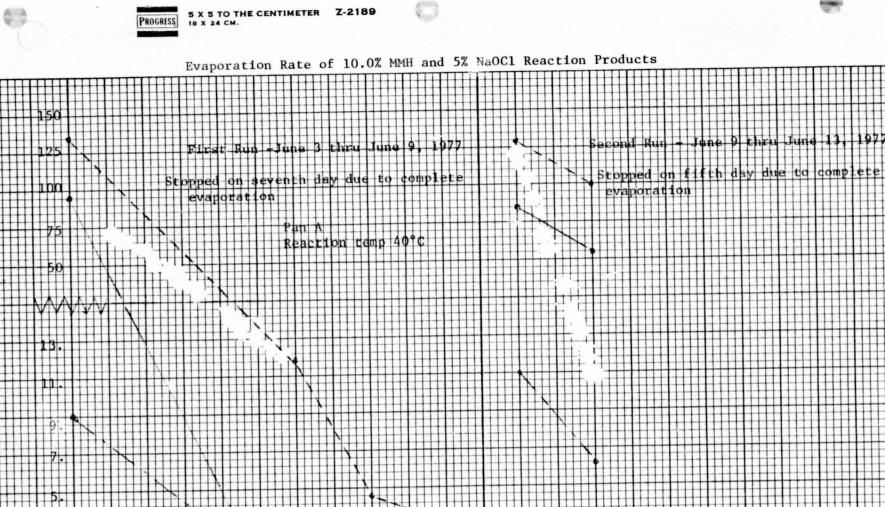
Sampled on 6/9 , Assayed on 6/10

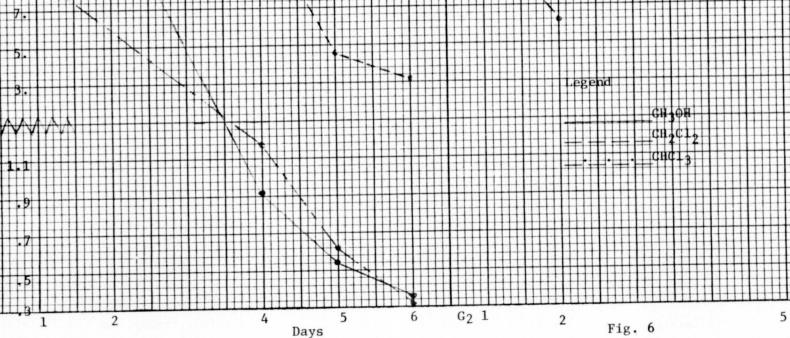
Pan	Reaction Product ID	Area	Conc.(ug/m1)	
A (10.0%)	Сн ₃ он	37.566	86.364	
	CH ₂ C1 ₂	109.342	125.853	
	CHC13	5.711	11.114	
B (5.0%)	СН ₃ ОН	21.573	49.596	
	CH ₂ Cl ₂	50.450	58.068	
	CHC13	1.027	1.999	
C (1 0%)			an a	
C (1.0%)	CH ₃ OH	3.323	7.640	
	CH ₂ Cl ₂	1.130	1.301	
	CHC13	.056	.109	
D (0.5%)				
D (0.5%)	СН ₃ ОН	3.307	7.603	
	CH ₂ Cl ₂	1.552	1.786	
	CHC1 ₃	.012	.023	
- /	n de la composition d Composition de la composition de la comp			
E (0.1%)	СН _З ОН	1.944	4.469	
	CH ₂ Cl ₂	.526	.605	
	GHC13	.009	.018	

" 31

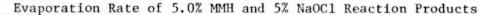
Ð

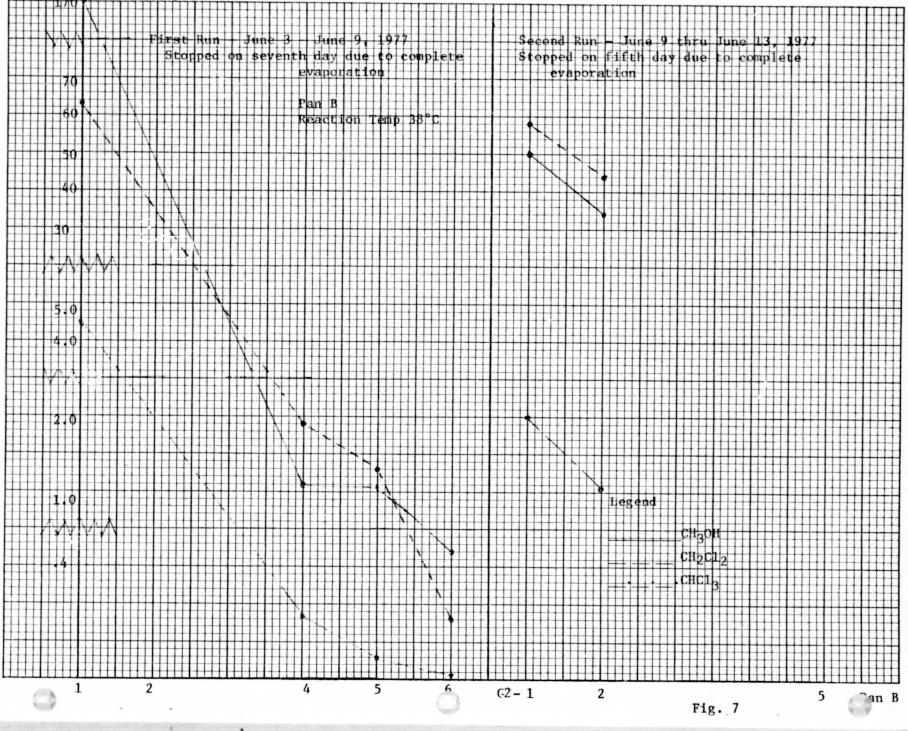
)

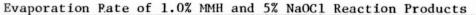

G_2^{-2} (Run #1 on GLC, second day)

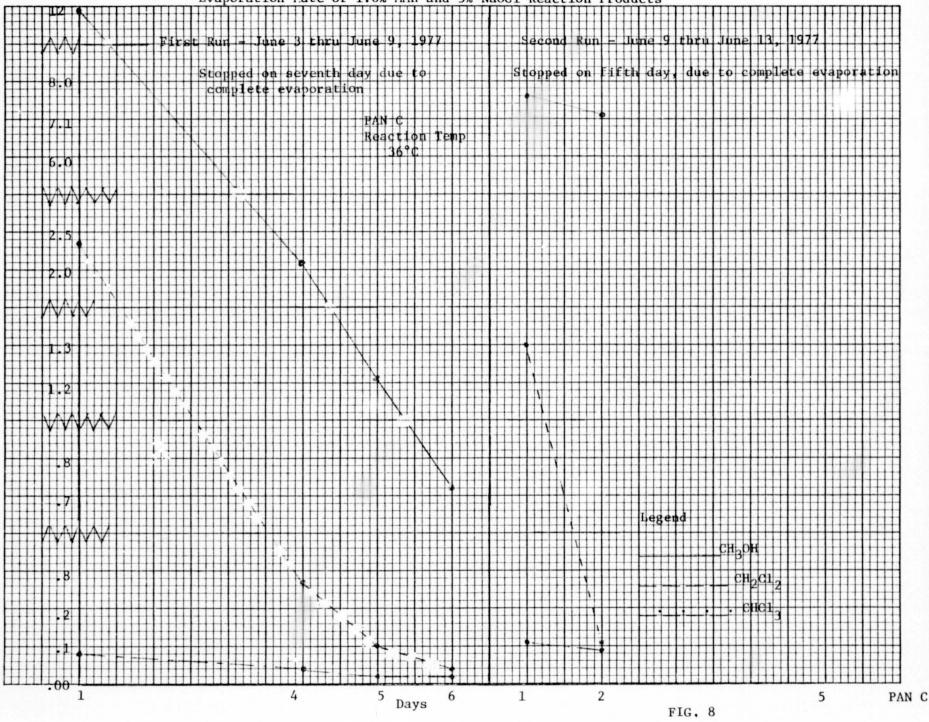

Sampled on 6/10, Assayed on 6/11

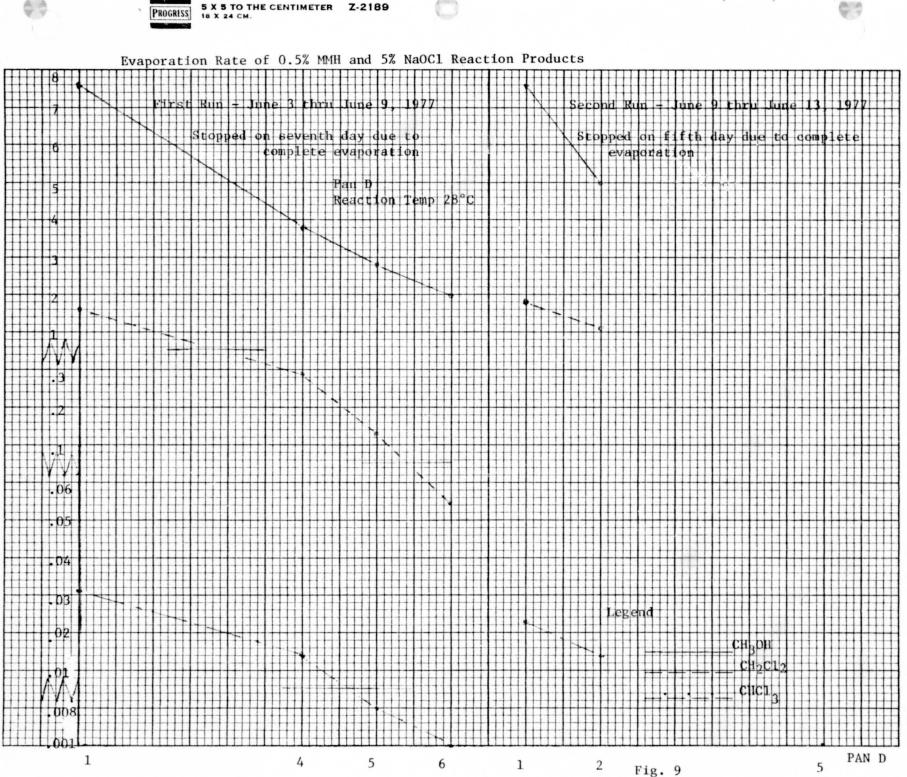
Pan	Reaction Product ID	Area	Conc.(ug/m1)	
A (10.0%)	сн ₃ он	23.396	53.787	
	CH ₂ C1 ₂	83.257	95.829	
	CHC1 ₃	3.222	6.270	
B (5.0%)	CH ₃ OH	14.937	34.340	
	CH ₂ C1 ₂	38.281	44.061	
	CHC1 ₃	.534	1.039	
C (1.0%)	СH ₃ OH	2.641	6.072	
	CH ₂ C1 ₂	.091	.105	
	CHC1 ₃	.044	.086	
D (0.5%)	CH ₃ OH	2.176	5.003	
D (0.5%)	CH ₂ Cl ₂	.936	1.077	
	CHCl ₃	.007	.014	
E (0.1%)	сн ₃ он	1.274	2.929	
	CH ₂ Cl ₂	.420	.483	
	GHCl ₃	.006	.012	

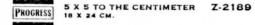

32

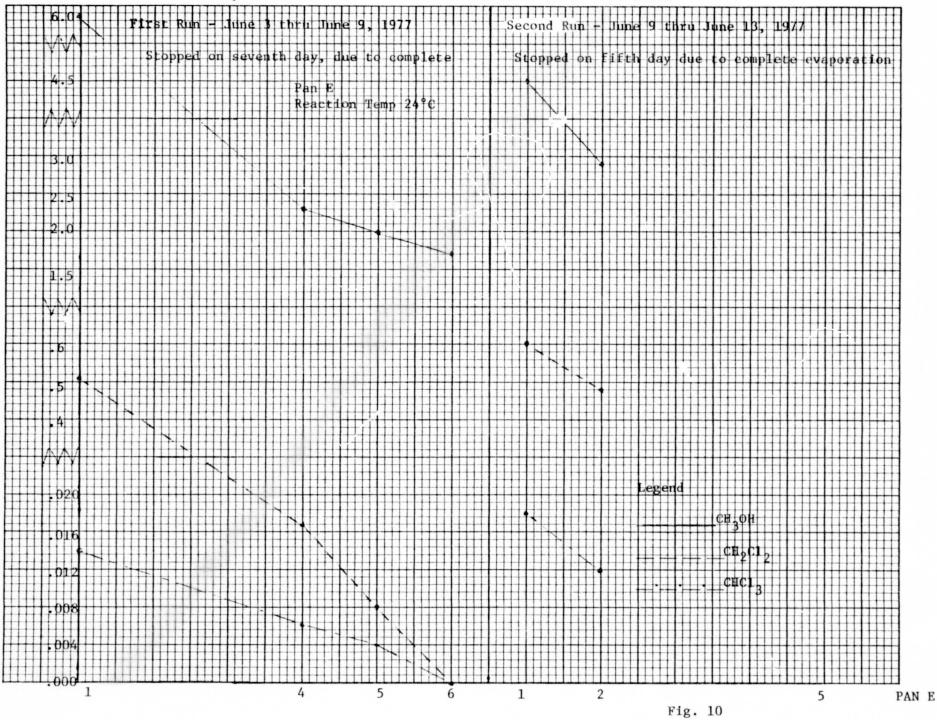

....











5 X 5 TO THE CENTIMETER Z-2189

Evaporation Rate of 0.1% MMH and 5% NaOC1 Reaction Products

C. Summary

The concentration of $CHCl_3$ present in the reaction products of pan A was initially9.05 ug/ml and in six days was reduced to .32 ug/ml (96.5%). The initial concentrations of CH_3OH and CH_2Cl_2 were in six days reduced 99.6% and 97.6% respectively. Lower concentrations of these materials initially present in the other pans evaporated at similar rates. The MMH degradation and oxidation also occurred at a similar rate.

The results also show the importance of heat evolved in the reaction of MMH and NaOC1. As more heat is evolved more CHCl₃ is formed.

4. Solar Conversion of Nitrate and Nitrite to Nitrous Oxide and Nitrogen

Another large problem involving pond products is concerned with the amount of sodium nitrate (NaNO₃) and sodium nitrite (NaNO₂) that is compatible with the pond biota, in particular water hyacinths. It is envisioned that scrubber liquor waste may amount to 1000 gallons of solution containing as much as 800 lbs. of NaNO₃ and NaNO₂. This material must be diluted to a concentration of perhaps as low as 600 ppm in the disposal pond so as to not damage the biota. This would call for a 775 fold dilution of the scrubber wastes after entering the disposal pond. This is a relatively large amount of dilution. Thus if possible alternatives are available they should be investigated. One alternative involves conversion of nitrate and nitrite to environmentally innocuous materials. A series of pertinent reactions are shown below:

1)
$$NH_4NO_3 \longrightarrow N_2O + 2H_2O$$

2) $NH_4NO_2 \longrightarrow N_2 + 2H_2O$

 N_20 nitrous oxide is considered environmentally innocuous as is, of course, nitrogen and water. Heating solutions of ammonium nitrate and nitrite is impractical but perhaps solar irradiation of the pond would provide enough energy to cause these reactions to proceed at significant rates. Therefore, a series of experiments were conducted in which ammonium chloride and sodium nitrate solutions were allowed to sit in the sun. The nitrate, nitrite and ammonium ion concentrations were then measured periodically to determine if reduction of nitrate and nitrite concentration was occurring. In experiment #1, a barrel 23 inches in diameter and 39 inches in height containing 20 gallons of water was placed in direct sunlight. To this was added the contents of one cylinder of N_20_4 and 4 lbs. of ammonium chloride (NH₄Cl) and the pH was adjusted to 7.0. Analyses of nitrate, nitrite, and ammonium ion were taken over a 98 day period. The results are presented in Table 1.

39.

TABLE 8

Solar Conversion of Nitrates and Nitrites To N₂0 and N₂ (Exp. No. 1)

Sample No in	Water Height Barrel(cm)	Date	Nitrate ppm	Nitrite ppm	Ammonia ppm
1	27	12-8-76	33,000	1320	8,296
2	27	12-12-76	26,400	3300	14,316
3	27	12-16-76	26,400	1403	
4	27	12-17-76	24,200	1320	7,930
5 *	31	1-3-77	20,900	1970	7,137
6 **	31	1-6-77	23,100	1650	13,420
7	31	1-13-77	22,440	1568	14,640
8	30.5	1-20-77	11,000	1865	10,370
9	30.5	1-25-77	14,080	2063	10,980
10	30.5	2-4-77	12,100	2558	10,736
11	30.5	2-14-77	9900	2310	7,686
12	29.5	2-22-77	12,100	1320	13,420
13	29.1	3-3-77	11,000	2178	12,078
14	27.3	3-16-77	12,320	2607	10,370

* Added 2 lbs NH4C1. The pH was 6.0 at this point ** pH 7.0 As seen from Table 1, after 98 days it appeared that the nitrate content had decreased to the point of diminishing returns. This was probably due to the blockage of large amounts of sunlight caused by the high walls of the barrel. It was reasoned that containers with lower walls which allowed greater access of sunlight would perhaps be more effective. Thus a portion of the barrel contents were placed in four stainless steel pans each measuring 10.5 inches x 7.25 inches x 6.25 inches. These pans were filled to a height of 10. 5 cm with the above nitrate containing solution and were monitored for nitrate, nitrite, and ammonia as previously described (Exp. No 2). The amount of liquid was kept constant in this experiment. The results are described in Table 2.

Table 9

Solar Conversion of Nitrates and Nitrites to N_20 and N_2 (Exp. No. 2)

Sample No.	Date	Total Nitrogen ppm	Nitrate ppm	Nitrite ppm	Ammonia ppm	pH
1	3-16-77	12,090	12,320	2,607	10,370	5.80
2	3-24-77	11,475	10,472	1,964	10,370	6.10
3	4-4-77	10,440	8,272	1,188	10,004	6.05
4	4-13-77	10,340	7,040	792	10,370	6.15
5	4-21-77	9,485	7,568	545	9,171	6.35
6	5-2-77	8,875	6,424	380	8,906	5.90
7	6-1-77	5,513	4,400	43	5,490	6.50

A third experiment (Exp. No.3) was conducted in the following manner. A solution of neutralized N_20_4 was obtained from the barrel used in the first experiment and transferred to a shallow aluminum pan measuring 65.8" x 18.7" x 2.4". This shallow pan allowed maxim exposure to sunlight. The results are shown in Table 3.

TABLE 10

SOLAR CONVERSION OF NITRATES AND NITRITES TO N20 and N2 (Exp. No. 3)

Sample No	Date	Nitrate ppm	 Nitrite ppm	Ammonia ppm	Total Nitrogen	pH
1	4-2-77	11,968	561	10,004	11,090	5.5
2	4-28-77	9,504	495	7,930	8,810	5.9
3	5-9-77	11,264	165	7,930	9,110	6.1
4	5-17-77	8,360	69.3	7,930	8,421	6.0
5 *	6-1-77	3,432	19.8	2,928	3,186	6.9

* No further samples could be taken due to overflow caused by rain

It is evident from the results that a pH approaching neutrality favors the reactions expressed in equations 1 and 2. At pH 8.0 a distinct smell of ammonia was noted. It is also evident that a greater exposure to sunlight allows greater rate of conversion of NO_3^{Θ} and NO_2^{Θ} to N_20 and N_2 as demonstrated dramatically in these experiments.

a. Conclusion

The results obtained strongly indicate that solar conversion of high concentrations of $NaNO_3$ and $NaNO_2$ to N_20 and N_2 is feasible. Therefore it may be desirable to plan for a second disposal pond to hold high concentrations of $NaNO_3$ and $NaNO_2$ in addition to the pond containing hyacinths already planned. Such an arrangement, involving the construction of two small ponds rather than one big one may be far more economical in construction costs and may also save on dilution water usage.