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RECENT ADVANCES I N  AERODYNAMIC ENERGY CONCEPT FOR FLUTTER SUPPRESSION 

AND GUST ALLEVIATION USING ACTIVE CONTROLS 

E. N i s s i m *  
Langley Research Center 

SUMMARY 

Cont ro l  l a w s  are d e r i v e d ,  by u s i n g  r e a l i z a b l e  t r a n s f e r  f u n c t i o n s ,  which 
permi t  r e l a x a t i o n  o f  t h e  s t a b i l i t y  requi rements  of  t h e  aerodynamic energy con­
c e p t .  The r e s u l t i n g  aerodynamic e igenva lues  i n d i c a t e  t h a t  bo th  t h e  t r a i l i n g -
edge and t h e  lead ing-edge- t ra i l ing-edge  c o n t r o l  systems can be made more 
e f f e c t i v e .  These c o n t r o l  l a w s  pe rmi t  t h e  i n t r o d u c t i o n  o f  aerodynamic damping 
and s t i f f n e s s  terms i n  accordance wi th  t h e  requi rements  o f  any s p e c i f i c  system. 
F l u t t e r  suppres s ion  and g u s t  a l l e v i a t i o n  problems can now be t r e a t e d  by e i t h e r  
a t r a i l i n g - e d g e  c o n t r o l  system o r  by a leading-edge-trai l ing-edge c o n t r o l  sys­
tem by u s i n g  t h e  aerodynamic energy concept .  R e s u l t s  are a p p l i c a b l e  t o  a wide 
class of  a i r c r a f t  o p e r a t i n g  a t  subsonic  Mach numbers. 

INTRODUCTION 

F l u t t e r  suppres s ion  and g u s t - a l l e v i a t i o n  systems u s i n g  a c t i v e  c o n t r o l s  
tend t o  be very s e n s i t i v e  t o  system changes caused by d i f f e r e n t  f l i g h t  condi­
t i o n s  ( f l i g h t  speed ,  f l i g h t  a l t i t u d e ,  f l i g h t  d u r a t i o n ,  and t y p e  of  m i s s i o n ) .  
The aerodynamic energy concept ( re f .  1 )  w a s  formulated i n  an a t t empt  t o  d e f i n e  
. a c t i v e  c o n t r o l  systems which do n o t  e x h i b i t  such s e n s i t i v i t i e s  t o  changing 
f l i g h t  c o n d i t i o n s .  Although r e c e n t  a p p l i c a t i o n s  of  t h e  aerodynamic energy 
concept  t o  s p e c i f i c  problems of  f l u t t e r  suppres s ion  ( refs .  2 and 3 )  and g u s t  
a l l e v i a t i o n  ( r e f .  3) y i e l d e d  encouraging r e s u l t s ,  i t  was i n d i c a t e d  t h a t  t h e  
de r ived  c o n t r o l  l a w s  could  be improved. 

I n  t h e  o r i g i n a l  development of t h e  aerodynamic energy concep t ,  i d e a l i z e d  
t r a n s f e r  f u n c t i o n s  were employed. These i d e a l i z e d  t r a n s f e r  f u n c t i o n s  were 
d i f f i c u l t  t o  r e a l i z e  and on ly  approximate implementations could  be made 
( r e f .  2 ) .  I n  a d d i t i o n ,  t h e  aerodynamic energy concept conta ined  s t r i n g e n t  
requi rements  o f  a s u f f i c i e n t ,  b u t  n o t  necessa ry ,  c o n d i t i o n  f o r  s t a b i l i t y  which 
e f f e c t i v e l y  r u l e d  o u t  t h e  t r a i l i n g - e d g e  ( T . E . )  c o n t r o l  as  a s i n g l e  s t a b i l i z i n g  
c o n t r o l  system i n  f a v o r  o f  a combined leading-edge-trai l ing-edge c o n t r o l  
system. 

The p r e s e n t  work rev iews  t h e  aerodynamic energy approach i n  l i g h t  of t h e  
expe r i ence  obta ined  s i n c e  its o r i g i n a l  development and d e s c r i b e s  a way o f  r e l a x ­

"NRC-NASA Sen io r  Res ident  Research Assoc ia t e  ; now a t  Technion-Is rae l  
I n s t i t u t e  of Technology, Haifa, Israel. 



ing the stringent stability conditions and improves the derived control laws by 

using realizable transfer functions. Both trailing-edge and leading-edge­

trailing-edge control systems are investigated. 
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SYMBOLS 


leading-edge free parameter 


trailing-edge free parameter 


semichord length 


element i,j of control law matrix [c] 

element i,j of control law matrix [GI 


structural damping coefficient in ith mode 


bending displacement, positive in down direction 


= J-1 
wb 

reduced frequency, 
V 
-

Mach number 


mass ratio, defined in equation (B9) 


mass 


number of degrees of freedom 


energy dissipated by system per cycle 


generalized aerodynamic force along h and a, respectively 


transfer function, defined in equation (27) 

number of activated control surfaces 


wing semispan o r  reference length 

time 


flight speed 


oscillatory angle of attack of wing, positive in nose-up direction 


leading-edge and trailing-edge control surface deflections, 

respectively, positive in down direction 




r damping coefficient 

x eigenvalue of [u]
-x = k2A 


Ad equivalent A for structural damping 


P fhid density 


w oscillatory frequency 


Matrices: 


[AR] ,[AI] real and imaginary parts of aerodynamic matrix [AJ (see eq. ( 1 


[XR] ,[XI] real and imaginary parts of aerodynamic matrix [x](see eq. ( 1 5 ) )  


PI inertia matrix 


[CI control law matrix 


[El structural stiffness matrix 


{F} column matrix of forces 


[GI control law matrix 


[QR] ,[QI] real and imaginary parts, respectively, of energy eigenvector

modal matrix 


(4)9 {q'} complex response vectors 

{q,) complex amplitude of response vector 

{qR}, {qI} real and imaginary parts of {qo} 


PI transfer function matrix 


CUI energy matrix 


iTx;i diagonal matrix of eigenvalues of [U] 


{ �&},{SI} real and imaginary parts, respectively, of generalized energy 
coordinates 

{d eigenvector of [u] 
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Subscripts: 


C control 


I imaginary part of a complex value 


max maximum 


min minimum 


R reference, also real part of a complex value 


S structural 


Other notations: 


i i  absolute value 


i I T  transposed matrix 


* 	 complex conjugate 

L J  row matrix 

{ I  column matrix 

Dots over symbols denote derivatives with respect to time. 


THE AERODYNAMIC ENERGY APPROACH 


Basic Concept 


An active control system on a lifting surface, such as a wing, actuates 
a control surface in response to oscillations of the wing in a manner which 
stabilizes the system. Because flutter instabilities originate from aerody­
namic forces acting on the wing, the possibility arises of changing the aero­
dynamic forces through an appropriate activation of control surfaces. The 
aerodynamic energy concept was developed (ref. 1 )  to examine this possibility. 
The concept centers around the work P done by aerodynamic forces on their 
surroundings,per cycle of oscillation. A control surface activation is sought 
that leads to large and positive values of P, thereby energy dissipation and 
stability are insured. 

Development of energy concept.- In this section, the energy concept is 

redeveloped (with details presented in appendix A) both to help the reader fol­

low the present work and to show that the original derivation pertains only to 

mass-balanced control systems. 


4 




The n equations 


represent the equations of motion of n structural modes with r activated 

controls, where at flutter 


(F} = 0 

and 


w frequency of oscillation 

[BI n x (n + r) mass matrix (n natural modes and r active controls) 

[AR] ,[AI] real and imaginary parts of aerodynamic matrix, respectively 

LEI stiffness matrix 

P fluid density 


S reference length 


b reference semichord length 


(4) response vector comprising n structural modes and r control 


The matrices in equation ( 1 )  can be partitioned into square matrices (n x n) 
relating to the structural modes (subscripted by s )  and rectangular matrices 
(n X r) relating to control surface couplings (subscripted by c ) .  

After partitioning the matrices, equation ( 1 )  becomes 

Assume a control law of the form 


where [TI is a r x n matrix representing the transfer functions of the con­
trol law. Substituting equation ( 3 )  into equation ( 2 )  yields 
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The matrix [Ec] is considered to be zero since it is assumed that no elastic 

couplings exist between the structural modes and the control deflections. As 

shown in appendix A, the work P done by the system on its surrounding per 

cycle can be written as (eq. (A12)) 


+ i( 7rpb4s + CAR,s] - C A R , s l T  + CAR,c] LT*lTiAR,,j .)1lqR + i q I )  

( 5 )  

where (from eq. (A61) 

The sign of P determines stability, and therefore, it is advantageous 
to convert equation ( 5 )  t o  a more convenient form. As shown in appendix A 
(eq. (A20)), P can be reduced t o  the form 

or 


where [Ad is a .diagonalmatrix of the eigenvalues Ai, necessarily real, of 
the Hermitian matrix (eq. (A1411 
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r 

[VI = 1 - ([AI,Sl + [AI,sIT + [AI,c] [TI + P*I PI,cIT) 
L 

CAR,s] + [AR, c] -

and where the vect re defined by the transformation 

(eq. (A1511 


The matrix [QR + ~QI] is a square modal matrix of the principal eigenvectors. 

Discussion of energy concept.- The work per cycle P done by the SYS­
tem on its surroundings has a direct bearing on the stability of the system. 
If P is positive, the system is dissipative, and therefore stable. If P is 
negative, the system is unstable because work is done by the surroundings on 
the system. Equation (8) shows that if all the eigenvalues xi of the system 
are positive, the system is stAble regardless of the motions represented by the 
generalized energy coordinates &. If one or more of the eigenvalues is 
negative, the system is potentially unstable. Its ultimate stability is deter­
mined by the relative values of the terms . &  and A .  If the & values make 
the positive eigenvalues dominate the right-hand side of equation (81, the 
work P is positive and the system is stable. If, on the other hand, the 
5 values make the negative terms dominate equation (81, P is negative and 
the system is unstable. Hence, the requirement for all x's to be positive 
is a sufficient but not a necessary condition for stability. 

For mass-balanced control surfaces ([Bc] = 0), the eigenvalues 
obtained from [U] (eq. ( 9 ) )  are dependent only on the aerodynamic properties 
of the system and the activated control law (matrix IT]). In the case of 
mass-balanced surfaces the eigenvalues are referred to as aerodynamic eigen­
values and are, in general, functions of the reduced frequency k and Mach 
number M. If mass unbalance is a fixed quantity in the system, the eigen­
values also depend on the fluid density p in addition to their dependence 
on k and M. In the present work, only mass-balanced systems are treated and 
therefore eigenvalues are obtained from the following [U] matrix (eq. (A21 

CUI = + [AI,slT + [AI,c! [TI + b*lT[A1,clT) 

+ i([AR,~] - [AR,~]T A [AR,~][T] - [T!lTIAR,~]T)] ( 1 1 )  

Equation ( 1 1 )  shows how the transfer function matrix [TI affects the 
matrix [U] and therefore affects the aerodynamic eigenvalues. 
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------ ---- 

Generalized Model 


The energy approach has been formulated for a general n degree-of­

freedom system. Therefore, the energy concept can be applied to any problem. 

The results in this report, however, are specific for the system considered 

since the generalized aerodynamic forces depend not only on the system geometry 

but also on its structural modal responses. If, however, the energy concept 

is applied to a two-dimensional strip, the aerodynamic matrices are independent 

of geometry and responses of the system. As a result, the aerodynamic eigen­

values are independent of any specific system and are only functions of k, 

M, and the transfer function matrix [TI. Therefore, if [TI is defined in 

accordance with the relaxed energy concept, using a two-dimensional strip as 

a model, these [T] values are applicable to any three-dimensional wing within 

the limitations of strip theory; thus, the model is generally applicable. In 

the present work, the two-dimensional strip model is adopted in much the same 

way as in the original derivation of the energy concept. Sketch (a) illus­

trates the system considered, and the arrows indicate positive displacements 

and rotations. 


Undisturbed position 

T 

Relaxation of Energy Concept 


The energy approach, in its original development, sought to determine 
the matrix [TI to render all the aerodynamic eigenvalues large and positive. 
This requirement regarding the aerodynamic eigenvalues insures both the sta­
bility of the system (since P is always positive) and its insensitivity to 
various flight conditions (which manifest themselves in the form of changing 
values of X and changing values of the system responses 5 ) .  Assume that 
a relaxation is now introduced which permits some of the aerodynamic eigen­
values to be negative. Stability can be achieved under these conditions by 
modifying the responses of the system to render the responses associated with 
the positive eigenvalues to be the dominant ones. This latter requirement 
forms a necessary condition for stability but does not insure, in itself, the 
insensitivity of the resulting stabilized system to the various flight condi­
tions. In order to insure that this relaxed stability requirement yields a 
system which shows only small sensitivities to the changing flight conditions 

8 




the absolute values of the negative aerodynamic eigenvalues must always be made 

much smaller than those eigenvalues associated with the dominant responses of 

the stabilized system. For the generalized two-dimensional model adopted in 

this work, two aerodynamic eigenvalues, Xmin and Amax, are obtained. In the 

original derivation of the aerodynamic energy concept, Xmin was required to 

be positive and large. In the relaxed energy approach, hmin is permitted to 

be negative provided 


and provided that this inequality is maintained for all flight conditions. 

This relaxation is made possible by abandoning the sufficiency condition for 

stability in the original formulation while maintaining its insensitivity to 

changes in flight conditions. It should be stressed at this stage that the 

generalized two-dimensional flutter model adopted herein serves only to indi­

cate, on the basis of the strip theory, whether energy is dissipated or 

absorbed by the partial span strip where the activated controls are installed. 

Therefore, to suppress flutter with a minimum number of activated partial span 

strips, enough energy should be dissipated in the activated strip to compensate 

for energy input by the nonactivated portions of the wing. Not only should 

Xmin be made positive but also Xmin might assume large (and positive) values. 

Since the dissipation of energy by the activated strip depends both on Amin 

and on Amax, the importance of Xmax should not be overlooked even when 

Xmin is positive and large. Considerable improvements in the potential per­

formance of the activated control system may result, if changes in the control 

gains are permitted which lead to small degradations in Amin, provided these 

degradations are accompanied by large increases in Amax. It is therefore 

required to determine the optimum values of the transfer function matrix [TI

to Lead to 


Amin = Near maximum value (may be negative) 

These two requirements regarding Xmin and Xmax are referred to in this 
work as the "relaxed energy requirements.It 

Formulation of a revised optimization procedure.- The optimization proce­

dure used in the original development of the energy concept consisted of the 

following basic steps: 


(1)  Define the generalized aerodynamic forces Qh and acting on a 
unit span of the two-dimensional strip and express them in the form 

9 




{ Qa 
npb4w2 [([AR,~] + ~[AI,s]){~’~}+ a ([IAR,c] + i[AI,~]){ :]] (’2) 

where all the matrices are of order 2 x 2. 

(2) Assume a form for the matrix [T] where {!} = 

( 3 )  For a given Mach number M and initial values for the gains in [TI, 
compute the numerical value of [U] for a specific value of k. 

( 4 )  Compute the two eigenvalues resulting from [U] and designate them 
as Amin and Amax­

(5 )  For a fixed value of M and IT], repeat steps ( 1 )  to ( 4 )  for differ­
ent values of k within the range 0.0128 5 k 6 19.5 (0.05 6 l/k 6 78). 

(6) Determine the area under the curve defined by the variation of Amin

with l/k. 


(7) Optimize the gains in matrix [TI to obtain a maximum area under the 

curve of Amin as a function of l/k. 


This seven-step procedure, which used the area under the curves of Xmin

against l/k as a target function, was found to be generally satisfactory. 

However, a plot of Xmin against l/k and Amax against l/k for the 

unactivated system (fig. 1 )  shows that the very low frequency part of the curve 

contributes most to the target function. It is therefore possible that large 

improvements in the values of Xmin at intermediate frequencies may be com­

pletely llmaskedll
during the optimization process if accompanied by very small 

degradations of Amin at very Low frequencies (high l/k values). 


A reexamination of the Xmin against l/k behavior, undertaken in the 

present work, has led to the following two initial changes: 


(a) The very large aerodynamic eigenvalues at the very low k range fol­

low from the representation of the aerodynamic forces 


The matrices [AR] and [AI] do not contain the true variation of the aero­
dynamic forces with k because of the w2 terms left outside the matrices. 
The frequency w is not constant and varies with every mode of oscillation. 
A more rational representation of {FA}, which maintains the full dependence
of the aerodynamic matrices on k, can be expressed by 
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where V is the flight speed and 


Equation (14)  leads to the following change in equation (8) (for n = 2 ) :  

where 


-
Hence, for k < 1 ,  the newly defined eigenvalues Ai are smaller than the 
originally defined eigenvalues Ai by a factor of k2. 

(b) The k range in the original derivation (0.0128 2 k 6 19.5) was 
unnecessarily wide. In the low k range, gust-alleviation problems generally 
occur around k E 1/8; in the high k range, the accuracy of the aerodynamic 
derivatives is questionable for values of k > 3.5. Therefore, the k range 
adopted was 

1- <= k 5 3.5 
25 

or 

1 1 

The optimization algorithm used in the original development of the energy 
approach was found to be deficient in many respects. The algorithm used in the 
present work consists of a variation of Stewart adaptation (ref. 4) of the 
Davidon-Fletcher-Powell method (ref. 5). The variation introduced permits the 
different elements of the matrix [T] to be constrained within preassigned
limits without resorting to penalty functions and with excellent convergence 
characteristics. 

In accordance with the relaxed ezergy concept there remains the problem 

of permitting small degradations in Amin if accompanied by large increases
-
in Amax. The initial approach was based on adjing to the target function a 

weighted value of the area under the curve of Amax against l/k. This 


1 1  


I ” 



approach, although effective, leaves the value of the weight as an arbitrary 

parameter for the designer. However, as the present work progressed, the 

parameters which appreciably increase Amax with relatively small degradations 

in Amin have been identified, and the optimization procedure was modified in 

a manner which avoided weighting Amax. This point is discussed further in a 

later section of this paper. 


Data and scope of optimization.- As in reference 1 and indicated in 
sketch (b) , the two-dimensional strip has constant 20-percent-chord leading-
edge (L.E.) and trailing-edge (T.E.) control surfaces. Similarly, a reference 
point for sensing the motion of the main surface was kept constant at 30 per­
cent of the chord (measured from the leading edge). The gains associated with 
the control laws presented in this work refer therefore to the 30-percent chord 
point. These gains can be modified to accommodate a sensor located at a dif­
ferent point along the chord by employing a simple transformation matrix 
(ref. 1 ) .  

Undisturbed position

I 


Sketch (b) 


The investigation covers both a trailing-edge and a leading-edge­

trailing-edge control system. Each of these control systems is driven by two 

different realizable transfer functions represented by the matrix [TI. The 

gains associated with each transfer function are optimized within a predeter­

mined range of values by following the relaxed energy approach. Generalized 

control gains were tested for adequacy over wide ranges of reduced frequen­

cies k, of subsonic Mach numbers M, and of maximum permissible gain values. 


PRESENTATION AND DISCUSSION OF RESULTS 


Results for the unactivated strip at various subsonic Mach numbers are 

presented first. These results form the basis for assessing any improvements 

introduced by the activated control systems. The results relating to each of 

the two transfer functions employed in this work are presented and discussed 
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separately. For each transfer function, a study is made of both the trailing-

edge and the leading-edge-trailing-edge control systems. 


Basic Nonactivated System 

-

The variation of Xmin and Xmax with l/k at different values of M, 
for a wing strip having no control surfaces (that is, [TI = 0) is shown in 
figure 2. - The quantity Xmin is negative through most of the l/k range,
whereas Xmax is positive throughout the range of l/k. Furtsermore, the-negative Amin values are of the -same order of magnitude as Amax. Note also 
that the aerodynamic eigenvalues X presented in figure 2 are greatly reduced 
in the high l/k range when compared with the original eigenvalues A 
(fig. 1). 

Damping Type Transfer Function 


The damping type transfer function (D.T.T.F.) is similar in form to the 

one used in reference 3; that is, 


{ :} = ([C] + i(iw) [GI){ 'Ib}a 

or 


where [C] and [GI are 2 x 2 constant matrices. Therefore, [TI is given 
by 


[T] = [C] + ik[GI (19) 

The control law represented by equations (18) differs from the one used in the 

original derivation of the energy approach (which used the term i[G] instead 


b 1 b 
of the -

V 
iw[G] term). The implementation of the -

V 
iw[G] term in equa­

tion (18a) is straightforward,whereas the implementation of the i[G] term 
could only be achieved with great difficulties and in an approximate manner. 
The damping type transfer function was chosen for the relaxed energy approach 
because it is similar to the original control law and has been shown to be 
effective when applied to specific configurations (refs. 3 and 6 )  [by using the 
gains derived in ref. 1 for [C] and [GI). The transfer function used in 
equation (19) is expressed in terms of ik in order to maintain the dependence
of matrix [U] (eq. (11)) on M and k only. Furthermore, equation (19) 
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r e p r e s e n t s  the  o v e r a l l  t r a n s f e r  f u n c t i o n  and i m p l i e s  t h a t  any a c t u a t o r  t r a n s f e r  
f u n c t i o n s  should be compensated f o r  t o  o b t a i n  t he  t r a n s f e r  f u n c t i o n  ma t r ix .  

On t h e  basis o f  r e s u l t s  ob ta ined  i n  r e f e r e n c e  1, the aerodynamic eigen­
v a l u e s  are expected t o  i n c r e a s e  i f  a l l  the  g a i n s  i n  ma t r ix  [G] are inc reased  
by a c o n s t a n t  f a c t o r .  Hence, c o n s t r a i n t s  are imposed on the G i j  g a i n  va lues .  
The range  chosen f o r  [G] is -100 5 G i j  5 100. The effects o f  changing t h e  
nominal range are i n v e s t i g a t e d  i n  t h e  p r e s e n t  r e p o r t .  To reduce  t o  a minimum 
t h e  a c t i v a t i o n  o f  t h e  c o n t r o l  s u r f a c e s  a t  z e r o  f requency ,  t he  fo l lowing  con­
s t r a i n t s  are imposed on [C]: 

-2 i c22 6 2 

The g a i n  C22 is v a r i e d  w i t h i n  a c o n s t r a i n e d  range  because o f  i ts  large 
effects on the  aerodynamic e igenva lues ,  as  was shown i n  r e f e r e n c e  1. 

R e s u l t s  f o r  t r a i l i n g - e d g e  c o n t r o l . - The t r a i l i n g - e d g e  c o g t r o l  s u r f a c e  w a s  
first optimized a t  M = 0.9 on t h e  b a s i s  o f  the  cu rves  f o r  Amin a g a i n s t  l/k 
by fo_llowing the  procedure descr ibed ear l ier  i n  t h i s  work ( w i t h  z e r o  weight 
f o r  Amax).  The optimum g a i n s  obta ined  f o r  [C] and [G] are 

rc1 = 
- I  

O
.76
] 

0 

.[GI = [4:6 1.53­

- -
The r e s u l t i n g  A m i n  and- Amax v a r i a t i o n s  w i t h  l/k are shown i n  f i g u r e  3. 
Although the  va lues  o f  A m i n  are improved over  t h o s e  w i t h  no c o n t r o l  system 
( f i g .  21, these improvements are accompanied by a s u b s t a n t i a l  r e d u c t i o n  i n  
A,, over most o f  t h e  l/k range ,  w i t h  t he  excep t ion  o f  improved v a l u e s  a t  
the  _low end of  t h e  l/k range. ( T y p i c a l l y ,  a t  lower Mach numbers the  v a l u e s  
of  A m i n  are less than  those  shown i n  f i g .  3.) Optimum v a l u e s  o f  [GI are 
small compared w i t h  t h e  wide range o f  v a r i a t i o n  permi t ted  the- G i j  g a i n s ;  
t h a t  is ,  -100 5 G i j  5 100. It may be argued t h a t  a l though  Ami-,  seems t o  be 
-bounded and its va lues  cannot be improved beyond a certain-maximum l e v e l ,  
Amax might be  inc reased  wi thout  s u b s t a n t i a l l y  degrading  Amin i n  accordance 
wi th- the  r e l axed  energy requi rements .  The i n c o r p o r a t i o n  of  t h e  weightsd area 
of  Amax a g a i n s t  l/k i n t o  the  target f u n c t i o n  ( i n  a d d i t i o n  t o  t h e  Amin) 
shows t h a t  bo th  G21 and G22 are posi_tive and i n c r e a s e  monotonically wi th  
the  i n c r e a s e  i n  weight a s s o c i s t e d  w i t h  Amax. Consequently,  a n  a p p r o p r i a t e  
weight could be a s s igned  t o  Amax which causes  t h e  larger term (G21) t o  reach 

14 

I 




-t h e  c o n s t r a i n t .  However, a s i m p l e r  method i s  to  a s s i g n  G21 t h e  va lue  a t  t h e  
c o n s t r a i n t  and opt imize  f o r  A m i n  on ly .  By fo l lowing  t h i s  procedure t h e  o p t i ­
mized g a i n s  f o r  [C] and [G] ob ta ined  a t  M = 0.9 are 

- -
The v a r i a t i o n s  of  A m i n  and Amax w i th  l/k are -shown i n  f i g u r e  4. By cam­
p a r i s o n  wi th  f i g u r e  2 (no c o n t r o l s ) ,  t h e  q u a n t i t y  Xmin shows improve_ment over 
most o f  t h e  l/k range .  I n  comparison wi th  f i g u r e  3 ,  t h e  v a l u e s  of  Amin i n  
f i g u r e  4 are mostly n e g a t i v e  and degraded. The v a l u e s  of  Xmax i n  f i g u r e  4, 
however, are g r e a t l y  improved ovs r  t hose  i n  f i g u r e s  2 and 3 e s p e c i a l l y - a t  low 
v a l u e s  o f  l/k. The v a l u e s  of  A m i n  are much smaller than  those  of  Amax i n  
accordance wi th  t h e  o b j e c t i v e s  se t  by t h e  r e l axed  energy approach. 

E f f e c t  of v a r i a t i o n  of  o p t i m i z a t i o n  range of G i j :  The r e s u l t s  i n  f ig­
u r e s  3 and 4 re la te  t o  a G i j  range of  100. Computations made f o r  smaller 
r anges  of  G i j  show t h a t  t h e  v a l u e  of  C22 becomes i n c r e a s i n g l y  impor tan t  as 
t h e  G i j  r ange  is reduced. A t  t h e  l i m i t ,  when a l l  t h e  G i  terms are se t  t o  
z e r o ,  t h e  C22 term prov ides  t h e  only  means f o r  improving $he e igenva lues .  
(When t h e  G;j terms are large,  C22 can be ignored . )  Hence, i n  an a t t empt  
t o  r each  optimized c o n t r o l  v a l u e s  t h a t  do n o t  e x h i b i t  s e n s i t i v i t i e s  t o  t h e  
o p t i m i z a t i o n  range  of  G ~ J ,  except  f o r  a c o n s t a n t  f a c t o r  common t o  a l l  t h e  
G i .  terms, C22 w a s  a s s igned  a va lue  of C22 = -1.86. This  va lue  was 
obgained by op t imiz ing  t h e  c o n t r o l  g a i n s  wi th  z e r o  G i .  g a i n s .  Reoptimizing 
w i t h  C22 -1.86 and G21 = 100 r e s u l t e d  i n  t h e  fo l iowing  t r a n s f e r  func t ion :  

0 
CCI = lo

-1.86
0 

Regard less  o f  t h e  v a l u e  of t h e  G i - c o n s t r a i n t ,  t h e  r a t i o  of G21/G22 remains 
e s s e n t i a l l y  c o n s t a n t .  The re fo re ,  $he fo l lowing  form o f  t h e  optimized t r a n s f e r  
f u n c t i o n  ( e q .  (19)) is  sugges ted :  
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-
The free parameter aT permits the variation of Amax while keeping the ratio 
of G21/G22 a _constant. Figure 5 shows a comparison made at M = 0.9 between 
the curves of Amin against l/k obtained by optimizing the gains of [TI 
for different maximum values of G21 (fig. 5(a)) and the curves obtained by 
using equation (20)with values of aT choseg to obtain the same maximum 

values for G21 (fig. 5(b)). The values of Amin for the low l/k range are 

not shown in figure 5 in order to scale the ordinate to yield a good resolution 

among the different curves. (A similar representation,which will be adopted 

in many of the figures, has no reflection on the k range f_orwhich the opti­

mization has been performed.) The differences between the Amin curves in 

figures 5(a) and 5(b) are not significant in view of the large similar values 

of Amax in figures 6(a) and 6(b). These results justify the form of the 

transfer function in equation (20). 


I Mach number effects: The effect of changing the flight Mach number on 
Amin is shown in figure 7 for G21 = 100 and C22 = -1.86. Figure 7(a) is 
obtained by optimizing the gains at the different Mach numbers, whereas fig­
ure 7(b) shows the values obtained -by using equation ( 2 0 )  with aT = 1. Once 
again the differences between the Amin curyes in figure 7 are not significant 
in,viewof the similar and large values of Amax shown in figure 8. 

Results for leading-edge-trailing-edge control system.- An identical 

procedure to the one discussed in the-trailing-edge system has been adopted for
-
the leading-edge-trailing-edge control system in an attempt to optimize Amin

and take account of Amax. Here again C22 is assigned a value of -1.86 and 

G21,max is assigned the nominal value of 100. The following optimized gains 

are obtained for the leading-edge-trailing-edge system: 


- -
The variation of Amin and Amax with l/k, at M = 0.9, is shown in-

figure 9. The large improvements in Amin, as compared with the trailing-edge 
system (fig, 71, can be observed in figure 9(a) for all values of l/k. The 
values of Amax in figure 9(b) are essentially the same as those obtained for 

-the trailing-edge system (fig. 8 ) .  This situation implies that the optimum 
leadzng-edge control gains essentially affect Amin with negligible effects 
on Am_ax. On the other hand, optimum trailing-edge control gains mainly influ­-
ence Amax and have little effect on Amin. 
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Effect of variation of the optimization range of Gij: Optimum control 
laws were derived for different values of optimization ranges by using a pro­
cedure identical to thgt used for the trailing-edge control system. The 
results obtained for Amir) ar_e shown in figure 10(a) and are compared in fig­
ure 10(b) with the values of Amin obtained by using the suggested values 
for [C] and [GI. (The suggested values of [G] are scaled to span the 
appropriate Gi- range.) A similar comparison is made in figure 11 regarding 
the variation o$ Amax. The agreement obtained in figures 10 and 11- together
with the localization of the leading-edge effects to the values of Amin lead 
to the following more general formulation of the control gains: 

O
CTI =I ;  -1.861 ’  (211 

where aL and aT are positive free parameters. The value of aL essen­
tially determines the leve_lsof Amin whereas the value of aT essentially 
determines the levels of Amax. If the value of aL = 0 is substituted in 
equation (211, the resulting matrix [T] is identical to the one pertaining 
to the trailing-edge control, as presented in equation (20). Hence, equa­
tion (211,together with the parameters aL and aT, is applicable to both 

trailing-edge and leading-edge-trailing-edge control systems. 


-
Mach number effects: The effects of Mach number on the variation of Amin 

with l/k for G21 = 100 and C22 = -1.86 are shown in figure 12. Fig­
ure 12(a) is obtained by optimizing the ga&ns at the different Mach numbers, 
whereas figure 12(b) shows the values of Amin as a function of l/k as 
obtained by using equation (21) with aL = aT = 1. As can be seen, the fig­
ures are almos; identical. Similar results are obtained for the accompanying 
variation of Amax with l/k shown in figures 13(a) and 13(b). Figures 14 
and 15 are identic31 to figures 12 and 13 except that they show the variation 
of the different A values a& the low end of the l/k range. A deterioration 
in the values of xmin and Amax occurs at low l/k values as the Mach num­
bers are reduced and especially when M = 0 .  However, since the results per­
taining to M = 0 _are meaningless for practical applications and since the 
reduced values of Amin at the high l/k range are shown in the following 
-section to be relatively less important, no attempt is made to improve the 
Amin behavior at low l/k values at the expense of some degradation at the 
higher range of l/k. 

~ _ _ _ ~ ~ -Effect of structural damping.- To understand the meaning of a specific 

value of an aerodynamic eigenvalue, it is convenient to express the structural 

damping in terms of an equivalent aerodynamic eigenvalue Ad (the full devel­

opment of the expression for Ad is given in appendix B). The structural 

damping force acting on the ith mode is given by equation (BI) as 
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where gi is the structural damping coefficient, wn,i is the natural fre­

quency, mi is the generalized mass, qi is the nondimensional generalized 

modal response, and bR is a reference wing semichord. The subscript i 

relates the parameters to the ith generalized mode. It can be shown (see 

appendix B for details) that the work W done per cycle by the force Fd,i 

is given by equation (B7) as 


where bc is the semichord at the control-surface midspan region and sc is 

the control-surface span. This equation yields (eq. (B10)) 


where kn,,,i is defined by equation (B11) as 


wn,ibc 
kn,c,i = -V (24) 

For a two-dimensional strip, s ss ,  bR = bc, and equation (23) reduces to 

2
Xd,i = 2gikn,c,iMR,i (25) 

Equation (25) shows that a fixed value of structural damping converts to an 
increasingly larger equivalent aerodynamic eigenvalue -as the reduced fre­
quency kn,,,i is increased. Therefore, a value of Xmin = -1, for example, 
at kn,,,i = 0.1 is equivalent to a structural damling coefficient 1225 times 
larger than the one obtained if the same value of Xmin = -1 is obtained at 

kn = 3.5 (1225 = (?)2). This example illustrates the relative importance
0.1 

of the aerodynamic eigenvalues in different regions of the 

stresses the importance of the low k range over the higher k range. 


k range and 


Summarizing-remarks regarding damping type transfer function.- The 

relaxed energy approach, when used in conjunction with the damping type trans­

fer function, yields fixed control gain ratios for both the trailing-edge and 

the leading-edge-trailing-edge control systems, which are effective over a 
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wide range of reduced frequency k and of control gain factors aL and aT. 

It is shown that although the trailing-edge control system shows improvements
-
in the Amin values, these improvements are bounsed and cannot be improved 
beyond a certain maximum value. The values for Amax, however, are shown to 
be unbounded and increase continuously with aT. The leading-edge-trailing­
edge system shows-unbounded improvements over a wide range of _k values for 
both Xmin and Amax. The -gain aL essentially affects the Amin values 
with only little effect on Amax, whereas the gain aT essentially affects the-
values of Amax with little effect on Xmin. This unbounded behavior is typi­

cal of a dynamic system to which damping is added. For this reason the [G] 

matrix is regarded essentially as a damping matrix introduced through the acti­

vation of the control surfaces. 


Two major criticisms can be made regarding the damping type transfer 
function: 

( 1 )  The damping type transfer function does not permit the introduction 
of damping into the system over a limited range of k values. Instead, damp­
ing is introduced over an uncontrolled range of k values. Hence, a penalty 
may be paid in terms of unnecessary control-surface activity. 

( 2 )  The term ik[G] that appears in the damping type transfer function 
(eq. ( 1 9 ) )  increases indefinitely with k. As a result, stability problems 
may develop at very high k values beyond the range investigated in this work. 

In addition to these criticisms, the.relaxed energy approach does not rule 
out the use of stiffness terms in order-to change the response of the system to 
increase the response associated with Amax. The damping type transfer func­
tion permits the introduction of aerodynamic stiffness terms through the matrix 
[C]. This situation is inconvenient and very limiting since the matrix [C]
has a direct effect on the static behavior of the system. 

These points lead to the formulation of the localized damping type trans­

fer function which is presented later. 


Localized Damping Type Transfer Function 


The following transfer function is a direct outgrowth of the criticism of 

the damping type transfer function: 


(ikI2
{ ;} = (IC1 + 

(ikI2 + 2ckn(ik) + kn2 
(26) 

where both 5 and kn are constants. Direct comparison between equa­
tions (26) and (18) shows that the term ik in the damping type transfer func­
tion has been replaced by the term (ik)2/[(ik)2 + 2ckn(ik) + kn2]. It is 
appropriate, therefore, to investigate the properties of this term and deter­
mine how it compares with the ik term. 
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Variation with k of localized damping type transfer function.- The vari­

ation with k of the localized damping type transfer function (L.D.T.T.F.) is 

essentially embedded in the term (see eq. (26)) 


(ikI2 
(27)
R =  

(ikI2 + 23kn(ik) + kn2 

Defining X as 


k
x = ­ 

kn 


and substituting in equation (27) yields 


-X2
R =  (29)

-x2 + 2 i 3 ~+ 1 

The denominator in equation (27) is identical in form to a transfer function 
representing a second order system with damping 3 and natural frequency kn. 
Figure 16 shows the variation of the real and imaginary parts of R as a 
function of X and <. It can be seen that R = 0 when k = 0 and R 1 
when k -+ 03. The imaginary part of R is always positive. For small values 
of 5 ,  very large values of RI (that is, the imaginary part of R) are 
obtained, with a maximum value obtained around k = kn. In addition, the vari­
ation of RI with k is very rapid for small values of 5. A s  the value 
of 5 is increased, RI becomes smaller and its maximum values occur for 
k > kn. In addition, the increased value of 3 reduces the variation of RI 
with k. If RI is associated with positive damping, then positive stiff­
ness values are associated with positive values of R R  (that is, the real 
part of R) and negative stiffness values are associated with negative values 
of RR. (Strictly speaking, some symmetrical aerodynamic stiffness terms may 
be introduced through formal multiplication of the aerodynamic forces and [TI.
However, these terms appear to be small.) Therefore, the quadrature term ik 
can be locally simulated by R over a range of frequencies determined by 
both 5 and kn. In addition, stiffness terms are introduced as R varies 
with k. These stiffness terms clearly vanish when k = 0 and therefore do 
not affect the static behavior of the system. A transfer function of the 
type ik/(ik + a), where a is a real number, could also simulate the quadra­
ture term ik, however, with reduced effectiveness and reduced control regard­
ing lllocalizationllof damping. 


Remarks on localized damping type transfer function.- Because of the 

results obtained for the damping type transfer function and the similarities 

between the two transfer functions, the following values have been adopted for 

the localized damping type transfer function: 
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(1) C22 is assigned the value of -1.86 (derived for zero Gij gains and 

therefore also applicable to the localized damping type transfer function) to 

maintain the effectiveness of the system for small.values of matrix [GI. (All 

other Cij values are maintained at zero.) 


(2) A nominal optimization range for the Gij elements is chosen as 
-4 6 Gij 5 4. The smaller-range for Gij was chosen to yield approximately 
the same peak values for as obtained for the damping type transfer function 
at the low and intermediate ranges of k values. 

Results for trailing-edge control system.- The trailing-edge control sys­
tem is first optimized at M = 0.9, Gij being constrained within the nominal 
range, and with kn = 0.2 and 5 = 0.5. Variation of these values is subse­
quently investigated. 

Initial optimum values obtained for the matrix [GI showed behavior 
identical- to that of the damping type transfer function; that is, a deteriora­
tion in Xmax was obtained, and the resulting Gij gains were very small in 
comparison with the span of the nominal Gij range. By following an identical 
type of investigation as in the damping type transfer function case, an iden­
tical conclusion was drawn, that is, that optimization must be performed after 
assigning G21 the maximum positive value of its range. The results for the 
nominal range yield the following gains: 

CCI = O
-1.86

] 
ro 0 1  

-
- -Figure 17 shows the resulting variation of Amin and Amax with l/k. 


Both Xmin and Xmax are positive throughout the l/k range and Xmax 
-shows "peaking" behavior-at kn (that is, l/k = 1/0.2 = 5). Figure 18 

shows the variation of Xmin and Xmax with l/k at different Mach num­

bers- obtained by using these gains. Figure 18(a) shows a slight deterioration 

-in Amin as the Mach number is reduced and shows no signs of peaking at kn. 

Figure 18(b) shows that the peaking characteristic of Xmax-exists at all
-
values of M. Figure 19 shows the variation of Amin and Amax with l/k at 

M = 0.9 obtained by using these gains and scaling the [GI matrix by various 
constant factors. The results show increased Amax values throughout the 

-range for most of the scaled gains of the [GI matrix. A small variation in 
Xmin 	 can be seen in figure 19(a), especially for the case where thes? values 

of [GI are all multiplied by 2. Figure 20 shows the variation of Amin and 


-x,,, with 5. The effect of varying 5 is seen to be similar to the effect 

of scaling [GI (fig. 191, with the exception that the Amax peaks become 


-narrower as 5 is reduced and the dips which foilow the peaks become more 

accentuated. Figure 21 shows the variation of Xmin and Xmax with l/k 
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-
at M = 0.9 for different values of kn. The large improvements in Amax are 
immediately apparent over a wide range of k values. The values of Xmin, 
however, show a negative region for the value of kn = 0.1. Comparison with 
the curve for the unactivated system (fig. 2) shows that around k = 0.3 

- ­(k = 3.5), where Xmin is smaller, the degradation in Xmin is very small. 

The following generalized control law is therefore suggested for the 

trailing-edge system: 


ro o i \ m b )  

where aT, 5, and k, are left as free parameters which determine the amount 

of damping introduced, the distribution as a function of k, and the location 

of the peak along the k-axis. 


~ Results for leading-edge-trailing-edge control system.- The following 
optimum gains are obtained for the leading-edge-trailing-edge control system 
at M = 0.9 by using the nominal range for the Gij gains (with kn = 0.2 
and < = 0 . 5 ) :  

- -
The resulting varigtion of Xmin and Xmax with l/k is shown in figure 22. 
The variation of Amax with l/k is identical to that obtained for the 
trailing-edge control system (fig. 17) a_nd implies that the leading-edge con­
trol gains have little or  no effect on Amax. It has been shown that the 
trailing-edge control gains associated _with [GI have only a small effect on 

Xmin. Therefore, the large values of Xmin shown in figure 22(a) are essen­
-
tially due to the leading-edge control gains. The variation of xmin and Amax 
with Mach- number, using these control gains, is shown in figure 23. Once 
again, Xmax remains essentially the same as that for the trailing-edge sys­
tem whereas Xmin is greatly improved and shows large peaks at k = k, = 0.2 
( o r  l/k = 5) .  

-The variation of the aerodynamic eigenvalues with the-scaling factor of 
the matrix [GI is shown in figure 24. Both Amin and Xmax increase with 
the scaling factor over most of the range; this result implies that both Xmin 
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1.86 

-
and Xmax are unbounded i n  t h e  leading-edge-trai l ing-edge system. The 
unbounded characterist ic of  t h e  e igenva lues  i s  ob_served once a g a i n  i n  f i g u r e  25 

-where t h e  va lue  o f  5 is  v a r i e d .  The peaks of  Xmax i n  f i g u r e  25 are essen­
t i a l l y  l o c a t e d  a t  k = kn whereas Xmin shows a peak a t  t h i s  l o c a t i o n  only  
f o r  small v a l u e s  o f  5. A s  t h e  v a l u e  o f  5 i n c r e a s e d ,  t h e  peaks move toward 
lower v a l u e s  o f  l / k .  A study-of t h e  peak v a l u e s  i n  con junc t ion  wi th  R 

-( f i g .  16) i n d i c a t e s  t h a t  the  Amax peaks occur  a t  RR = 0 ,  o r  k = kn.  On t h e  
o t h e r  hand, t h e  A m i n  peaks occur  a t  t h e  va lue  of k which y i e l d s  t h e  l a r g e s t  
response  i n  quadra tu re  R I .  F igu re  16 shows t h a t  as C i n c r e a s e s ,  R I , ~ i s~ ~ 
l o c a t e d  a long  curves  -f o r  which _k > kn. The re fo re ,  i f  i t  i s  des i r ed  t o  maxi­
mize s imul taneous ly  A m i n  and Amax a t  a g iven  v a l u e  o f  k ,  t h e  leading-edge 
c o n t r o l  should be g iven  a similar t r a n s f e r  f u n c t i o n  b u t  w i t h  a smaller v a l u e  
of  kn. The effect of  kn on t h e  aerodynamic e igenva lues  is shown i n  f i g ­
u r e  26. The r e s u l t s  conform wi th  t h e  fo rego ing  d i s c u s s i o n .  On t h e  b a s i s  of  
t h e s e  r e s u l t s ,  t h e  fo l lowing  g e n e r a l i z e d  c o n t r o l  l a w  is sugges ted :  

aL(ik)2 

I

{:}=[E - O I  
+ 1 0 2.84!){h:l 

where t h e  s u b s c r i p t  L refers  t o  t h e  leading-edge c o n t r o l  and the  s u b s c r i p t  T 
refers t o  the  t r a i l i n g - e d g e  c o n t r o l s .  The s i x  free parameters  a l low t h e  ampli­
tude  of  t h e  d i f f e r e n t  X d i s t r i b u t i o n s ,  t h e  w i d t h  o f  t h e  d i s t r i b u t i o n s ,  and 
t h e i r  peak l o c a t i o n s  t o  be selected.  If a L  = 0 ,  equa t ion  ( 3 1 )  reduces  t o  t h e  
t r a i l i n g - e d g e  c o n t r o l  l a w  g iven  by equa t ion  ( 3 0 ) .  

~ _ _ _ _ _ _ ~ _ _ ~ _ _ _  ~ _ _ . _ _ ISummarizing remarks r e g a r d i n g  l o c a l i z e d  damping type  t r a n s f e r  func t ion . -
The l o c a l i z e d  damping type  t r a n s f e r  f u n c t i o n  i s  shown t o  have b a s i c a l l y  t h e  
same character is t ics  as  the- damping type  t r a n s f e r  f u n c t i o n  r ega rd ing  its 
effects  on t h e  v a l u e s  of  A m i n  and Xmax,-but w i t h i n  a l o c a l i z e d  range o f  
k v a l u e s .  The d e t e r i o r a t i n g  effects  on A m i n  shown by t h e  damping type  
t r a n s f e r  f u n c t i o n  a t  h igh  k v a l u s s  have e i ther  been e l imina ted  o r  g r e a t l y  
reduced. F u r t h e r  improvement i n  A m i n  f o r  h igh  k v a l u e s  can be obta ined  by 
means o f  t h e  f ree  parameters  l e f t  i n  t h e  g e n e r a l i z e d  c o n t r o l  law (eq .  ( 3 1 ) ) .  
I n  a d d i t i o n ,  it can be shown t h a t  a t  s u f f i c i e n t l y  high-values o f  k ,  t h e  aero­
dynamic e igenva lues  are p r o p o r t i o n a l  t o  k ,  t h a t  is, a k ,  whereas t he  
e q u i v a l e n t  aerodynamic e igenva lue  f o r  the  s t r u c t u r a l  damping behaves 
as a k2. There fo re ,  a t  s u f f i c i e n t l y  h igh  f r e q u e n c i e s ,  Ad i s  dominant 

-and t h e  system is always stable ( n o t  t h e  case f o r  t h e  D.T.T.F. where k 2 > .  
S ince  t h e  v a l u e s  o f  Xmin a t  t he  h i g h e s t  v a l u e  of  k cons ide red  ( ~ 3 . 5 )were 
seldom n e g a t i v e  and assumed r e l a t i v e l y  s m a l l  v a l u e s ,  no s p e c i a l  r e f e r e n c e  t o  
t h i s  r eg ion  w a s  made d u r i n g  t h e  d i s c u s s i o n  of  t h e  r e s u l t s .  F i n a l l y ,  t h e  free 
parameters  l e f t  i n  the  g e n e r a l i z e d  c o n t r o l  l a w ,  t o g e t h e r  w i t h  t h e  s t i f f n e s s  
p r o p e r t i e s  e x h i b i t e d  by t h e  l o c a l i z e d  damping type  t r a n s f e r  f u n c t i o n ,  make i t  
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possible to tailor fit the results obtained herein to any specific system with­

out exposing it to sensitivity hazards. 


Sensitivity Test for the Gains 


Sensitivity tests were conducted on the Cij and Gij gains for the two 
transfer functions and the two control systems investigated in this work. A l l-
the Gij terms were found to be important (either f o r  Xmin or for Amax), 
and no sudden deteriorations were observed with small to moderate parametric 
changes. Figure 27 is an illustrative example in which the value of G22, 
using a trailing-edge system with localized damping type transfer function, 
is varied at M = 0.9. Both values are relatively insensitive to small 
changes in G22. Finally, the gains obtained by the relaxed energy approach 
are different only in magnitude but not in sign as compared with those obtained 
in reference 1. 

SIMPLIFIED CONTROL LAWS 


The suggested generalized form of the damping type transfer function is 

given by equation (21) as 


Equation (21) can be simplified if a constant reference value of velocity VR 
is assumed in the expression for k. In this latter case, the only variable 
is w and therefore [TI can be written in the form 

0 
( 3 2 )  

- I  .86 
L 

VR 
where WR = - is a reference frequency. Since aL and aT are free param­

b 
eters, it is convenient to reduce the scaling of the Gij element by a factor 
of 25 to make the maximum Gij values the same as for the case of the local­
ized damping type transfer function. Hence, equation (32) (scaled) yields the 
following standardized form of control law for the damping type transfer 
function: 

aT1 -4 
(33) 
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(Note that for a given case the values of aL and aT in equation (33) differ 

from those in eq. (321.1 Similarly, if 


the localized damping type transfer function can be simplified to yield the 

following form of standardized control law (see eq. (31)): 


{:}=[E -

The similarity between the gains appearing in equation (33) and those appearing 

in equation (34) are now immediately apparent. 


If aL and aT are sufficiently large to make the effect of C22 negli­

gible, then equation (34) shows that the ratio between h/b gains and the 


CY gains is 1:0.7 (=A).Since these gains are associated with a point at 0.6b 
from the leading edge (30-percent chord), identical activation will be obtained 
by a linear sensor at 1.3b (=0.6+ 0.7) driving the trailing-edge control sys­
tem. This point is at the 65-percent chord measured from the leading edge (the 
damping type transfer function yields a point located at 70-percent chord). 
For either transfer function the leading-edge control can be driven by a single 
sensor located at -0.4b (~0.6- I), or 20-percent chord ahead of the leading 
edge. This location is clearly not practical and, therefore, two accelerom­
eters should be employed to drive the leading-edge control. 

These generalized control laws essentially determine the relation between 
the gains associated with the h/b and CY for each control surface irrespec­
tive of whether one o r  more control surfaces are actuated on the same strip. 
This statement implies that the relationship between the gains will be appli­
cable to three-dimensional flows, if the ratios between the lift and the moment 
produced by the rotation of the respective control surface are the same as in 
the two-dimensional flow case. 

CONCLUDING REMARKS 

Control laws using realizable transfer functions are derived which per­

mit the relaxation of the stability requirements of the aerodynamic energy

approach. The resulting aerodynamic eigenvalues indicate that both the 
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trailing-edge and the leading-edge-trailing-edge control systems can be made 
more effective. As a result, flutter suppression and gust-alleviation problems 
can successfully be tackled by the aerodynamic energy approach with a trailing-
edge control system only and without encountering sensitivity to changing 
flight conditions. In the original aerodynamic energy approach, such an 
ability could be handled by a leading-edge-trailing-edge system only. 

Free parameters have been identified which control the amount of the aero­

dynamic damping introduced by the activated system. Furthermore, one of the 

control laws also permits the selection of a reduced frequency range within 

which damping is to be increased and provides stiffness terms for controlling 

the response of the system. The values of these free parameters can be 

tailored to specific applications. The results have been reduced to a simple 

form and are applicable to a very wide class of aircraft operating within the 

subsonic Mach number range. 


Langley Research Center 

National Aeronautics and Space Administration 

Hampton, VA 23665 

July 7, 1977 
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APPENDIX A 


THE ENERGY ANALYSIS 


Let the  n equa t ions  

r e p r e s e n t  t he  equa t ions  of motion o f  n s t r u c t u r a l  modes w i t h  r a c t i v a t e d  
c o n t r o l s ,  where a t  f l u t t e r  

{F} = 0 

and 

w f requency of o s c i l l a t i o n  

[BI mass ma t r ix  

[AR] , [AI] real and imaginary p a r t s  of  aerodynamic ma t r ix ,  r e s p e c t i v e l y  

[El s t i f f n e s s  ma t r ix  

P f l u i d  d e n s i t y  

S r e f e r e n c e  l e n g t h  

b r e f e r e n c e  semichord l eng th  

A l l  matrices i n  equat ion  ( A I )  are o f  the  o r d e r  n x ( n  + r )  ( n  s t r u c t u r a l  modes 
and r a c t i v e  c o n t r o l s ) .  The response v e c t o r  ( 4 )  i n  terms of  n s t r u c t u r a l  
responses  and r c o n t r o l  d e f l e c t i o n s  i s  

Equation ( A I )  can t h e r e f o r e  be w r i t t e n  as 

27 




APPENDIX A 

Assume a c o n t r o l  l a w  o f  the  form 

where [T] is a r x n matrix r e p r e s e n t i n g  the  t r a n s f e r  f u n c t i o n s  of  t h e  con­
t r o l  l a w .  By s u b s t i t u t i n g  equa t ion  (A4) i n t o  equa t ion  (A3),  the  fo l lowing  
equa t ion  is ob ta ined :  

IF) = (-u2[ps] + [Bc] + .rrf3b4s ([AR,s] + [AR,c] CTJ 

+ i [ A I , s ]  + i[AI,c][Tl)] + [Es] + [Ec]M)iq l  

where t h e  p roduc t s  [Bc] [TI , [AR,c] ET] [AI,c] ET] 9 and CEc] CT1 are now 

n x n ma t r i ces .  The v e c t o r  (q} can be w r i t t e n  as 

The real  p a r t  o f  equa t ion  (A51 is  e s s e n t i a l l y  the  same as t h e  imaginary 
p a r t ,  except f o r  the  i n i t i a l  c o n d i t i o n s  a t  t = 0. I n  harmonic motion, where 
no t r a n s i e n t s  are treated,  only  the  real  p a r t  o f  equa t ion  ( A I )  need be con­
s ide red .  Hence, t he  f o r c e s  which t h e  system e x e r t s  on i ts  sur roundings  are 
g iven  by 

{F) = 12 (-u2[[J3J + [Bc] [TI + 

where the  asterisk denotes  t h e  con juga te  v e c t o r .  The v e c t o r  (F)  is  c l e a r l y  
a real v e c t o r .  
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The velocity vector (4) can be obtained by differentiating equation (A61 

to obtain 


The real part of the velocity vector R(4) is given by 


1 1 
= -
2 
iw(qo}eiwt 

2 
iw(qo*}e- wt (A91 

Hence, the rate at which the system does work on its surroundings is given 
by RLq](F}. Equations (A") and (A91 yield 

- i[AI, - i[AI, c] [T*])] + [Es] + [Ec] [T*]) ( q ~ * } e - ~ ~ ~ ~  ( A 1 0 1  
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Hence, t h e  work P done per  c y c l e  by t h e  system on i ts  sur roundings  can be 
found by i n t e g r a t i n g  equa t ion  (A101 between t = 0 and t = 2l~/w. Thus, 

- i [AI , s ]  - i[AI,c] ET*])] + [Es] + [E,] rT*I)Iqo*) 

+ i [ A I , s ]  + i[AI,c] PI )I + [E.] + [EC] PI) Iqol  

Th i s  equat ion  i s  a scalar equa t ion ;  t h e r e f o r e ,  t h e  first expres s ion  on t h e  
right-hand s i d e  of t h i s  equa t ion  can be t r ansposed  ( [Bs] and [Es] be ing  
assumed t o  be symmetric) 

2 4 2  
P =  lT pb2 s~qo*][-([AI,s] + [AI,sIT + [ A I , C ] C T l  + CT*IT[AI ,C lT)  

The matrix [Ec] i s  assumed t o  be ze ro  s i n c e ,  i n  g e n e r a l ,  no e las t ic  coup l ings  
e x i s t  between t h e  s t r u c t u r a l  modes and t h e  c o n t r o l  d e f l e c t i o n s .  Hence, equa­
t i o n  ( A l l )  reduces  t o  
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+ CAR,4 - CAR,JT 

Note that the matrices within the square brackets form a Hermitian matrix. 


Now determine the eigenvalues and eigenvectors of the following Hermitian 
matrix [U] extracted from equation (A121: 

where 


[u] = [-([A1,.l + [AI,sIT + [AI,c] [TI + P*IT~A1,clT) 

+ [AR,~] - rAR,slT 

+ CAR,c] - LT*1CAR,C] ')] 
and represent the vector {qo) in terms of the eigenvectors of equation (A13), 

that is, 


i 

The columns of the square matrices [QR] and [QI] are the real and imaginary 
parts of the eigenvectors of equation (A13). The vector {SR + icI) contains 
the generalized modal coordinates of the transformation defined by equa­
tion ( A 1 5 ) .  

All the eigenvalue and eigenvector solutions of equation (A131 can be 
expressed in the form [QR + ~QI] rAJ = [U] [QR + ~QI]. Postmultiplying this 
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equa t ion  by {SR + i S I }  and p remul t ip ly ing  i t  by Lqo*J or  

~ C R- icI] [QR' - iQIT] y i e l d s  

r 


+ [T*] '[AI, c] ') + i 
- [T*lT[.c]T 

+ CAR,s] - CAR,s]'
7rrpb4s 

(A161 

where [A] is t h e  e igenva lue  m a t r i x ,  t h a t  is ,  

�AI = (A171 

The right-hand s i d e  of equa t ion  (A161 is  i d e n t i c a l  t o  t h e  right-hand s i d e  of  
equa t ion  (A121 except  f o r  t h e  1 ~ ~ p b ~ w ~ s / 2f a c t o r .  Hence, t h e  l e f t -hand  s i d e s  
of t h e s e  two equa t ions  can be equated t o  o b t a i n  

The ma t r ix  [QR' - ~ Q I ~ ]  r e p r e s e n t s  t h e  modal ma t r ix  of  t h e  complex l e f t -hand  
normalized e igenvec to r s  and t h e r e f o r e  
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where [I] is  t h e  u n i t  ma t r ix .  Hence, P r educes  t o  t h e  form 

(A191 

or 


The energy i n p u t  pe r  c y c l e  i n t o  t h e  sur roundings  h a s  t h u s  been reduced t o  a 
q u a d r a t i c  form i n  terms of t h e  g e n e r a l i z e d  energy modal c o o r d i n a t e s .  

Note t h a t  i f  a l l  c o n t r o l  s u r f a c e s  are mass ba lanced ,  t h e  matr ix  [Bc]
van i shes  and [U] reduces  t o  

[u] = [-([AI,s] + [AI,s]' + [AI,c!] ['I + [ '*IT[AI,ClT) 

+ i ( [ A R , s ]  - [AR, s]' + rAR,c] LTl - LT*]TIAR,C]T)l (A21 1 

when t h e  c o n t r o l  system is  no t  a c t i v a t e d  [TI = 0 and 

[U] = [-([AI, S] + CAI,sIT)+ i( [lAR,sI - C A R , s l T ) 1  (A221 
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CONVERSION OF STRUCTURAL DAMPING INTO EQUIVALENT 

AERODYNAMIC EIGENVALUES 

L e t  t h e  s t r u c t u r a l  damping f o r c e  F d , i  acting on t h e  i t h  s t r u c t u r a l  
mode be expressed  by 

F d , i  = igi%,i  bRm-q1 i 

where 

g i  s t r u c t u r a l  damping c o e f f i c i e n t  of  i t h  mode 

%,i n a t u r a l  frequency of  i t h  mode 

m i  g e n e r a l i z e d  mass of  i t h  mode 

bR r e f e r e n c e  wing semichord 

q i  nondimensional g e n e r a l i z e d  modal response  

The work W done by t h e  damping f o r c e  pe r  c y c l e  of  o s c i l l a t i o n  is  g iven  by 

2T/w d q i  
W = L Fs- d t  

d t  

S u b s t i t u t i o n  of  equa t ion  ( B I )  i n t o  equa t ion  (B2) y i e l d s  

L e t  

( B 4 )  

q i
i q i  = - = q o , i  c o s  w t  ( B 5 )

w 
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Therefore ,  

Let t h e  work done pe r  c y c l e  be def ined  i n  a form equ iva len t  t o  t h e  newly 
def ined aerodynamic e igenva lues ,  t h a t  i s ,  

where bc is t h e  semichord a t  t h e  con t ro l - su r face  midspan r eg ion ,  sc is  t h e  
con t ro l - su r face  span ,  and Xd, i  i s  t h e  equ iva len t  va lue  of t h e  s t r u c t u r a l  
damping i n  terms o f  the  aerodynamic type  e igenvalues .  Equation (B7) y i e l d s  

Define t h e  mass r a t i o  M R , ~  as 

m i  

S u b s t i t u t i o n  of equa t ion  (B9) i n t o  equa t ion  ( B 8 )  y i e l d s  

where kn , , , i  is def ined  by 

Wn ,i b c  
k n , c , i  = -V 
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For a two-dimensional strip s = sc and bR = be. Equation ( B I O I  reduces in 
this case to 

2 
xd,i = *gikn,c,iMR,i ( B I Z )  
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Figure  1.- Var i a t ion  of X (as  def ined  by eq. ( 8 ) )  w i t h  l/k of a wing s t r i p  
w i t h  no c o n t r o l  s u r f a c e s .  M = 0.  
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Figure  2.- Var ia t ion  of X with l / k  a t  var ious  Mach numbers fo r  a wing s t r i p  

with no c o n t r o l  su r f aces .  
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Figure 3.- Optimum variation of X with l/k for a trailing-edge control system at M = 0.9 

(with gains optimized on the basis of hmin only) using damping type transfer function. 
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Figure 4.- Optimum variation of X with l / k  For a trailing-edge control system at M = 0.9 
(with G21 = 100) using damping type transfer function. 

35 



<.,> 50 
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-

Figure 5.- Variation of Xmin with l/k using optimized gains for different lGijl ranges 
compared with a similar variation using fixed gains scaled by aT. Trailing-edge control 
system at M = 0.9 and using damping type transfer function. 
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Figure 6.- Variation of hmax with l/k using optimized gains for different 1Gi.I ranges 
compared with a similar variation using scaled gains, trailing-edge control sys2em at 
M = 0.9, and damping type transfer function. 
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Figure 7.- Variation of Xmin with l/k using optimized gains at different Mach numbers 

compared with a similar variation using fixed gains, trailing-edge control system, and 

damping type transfer function. 
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Figure 8.- Variation of Xmax with l/k using optimized gains at different Mach numbers 

compared with a similar variation using fixed gains, trailing-edge control system, and 

damping type transfer function. 
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Figure  9.- Optimum v a r i a t i o n  of X with  l / k  f o r  a leading-edge-trail ing-edge c o n t r o l  system 

a t  M = 0.9 ( w i t h  G21 = 100) us ing  damping t y p e  t r a n s f e r  func t ion .  
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(b) Scaled ga ins .  

F igure  10.- Var ia t ion  of A m i n  w i t h  l / k  us ing  optimized g a i n s  for  d i f f e r e n t  1 G i . I  ranges 
compared w i t h  a similar v a r i a t i o n  using scaled IG i j  I g a i n s ,  leading-edge-trading-edge 
c o n t r o l  system a t  M = 0.9 ,  and damping type t r a n s f e r  func t ion .  
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(b) Scaled ga ins .  

us ing  optimized g a i n s  f o r  d i f f e r e n t  I G i  I ranges  
scaled 1 G i j  I g a i n s ,  leading-edge-trading-edge 
type t r a n s f e r  func t ion .  
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Figure 12.- Varia t ion  of Amin with l / k  using optimized gains a t  d i f f e r e n t  Mach numbers 
compared with a similar v a r i a t i o n  using f ixed  gains ,  leading-edge-trailing-edge con t ro l  
system, and damping type transfer func t ion .  
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Figure 13.- Variation of Amax with l/k using optimized gains at different Mach numbers compared 

with a similar variation using fixed gains, leading-edge-trailing-edge control system, and 

damping type transfer function. 
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Figure 14.- Var ia t ion  of Xmin w i t h  l / k  using optimized g a i n s  a t  d i f f e r e n t  Mach numbers compared 
w i t h  a similar v a r i a t i o n  using f ixed  g a i n s ,  leading-edge-trailing-edge c o n t r o l  system, and 
damping type t r a n s f e r  func t ion .  
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Figure 16.- Graphical representation of localized damping type transfer function. 
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Figure 17.- Optimum variation of A with l/k for a trailing-edge control system 

at M = 0.9 (with G21 = 4) and using localized damping type transfer function. 
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Figure 19.- Variation of X with l/k at M = 0.9 for different scaled ranges of IGijl. 
Trailing-edge control system using localized damping type transfer function. 



T=[' 0 -1."] +R[' 4 2.886 

k = 0.2 

Figure 20.- Variation of A with l/k at M = 0.9 for different values of <. 
Trailing-edge control system using localized damping type transfer function. 
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Figure 21.- Variation of X with l/k at M = 0.9 for different values of kn. 

Trailing-edge control system using localized damping type transfer function. 
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Figure 22.- Optimum v a r i a t i o n  of A w i t h  l/k f o r  a leading-edge-trailing-edge c o n t r o l  

system (wi th  G21 = 4)  us ing  l o c a l i z e d  damping type  t r a n s f e r  func t ion .  
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Figure  23.- Var i a t ion  o f  A w i t h  l/k a t  d i f f e r e n t  Mach numbers. Leading-edge-trailing-edge 

c o n t r o l  system us ing  l o c a l i z e d  damping type  t r a n s f e r  func t ion .  
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Figure 24.- Variation of X w i t h  l/k a t  M = 0.9 f o r  d i f f e r e n t  scaled ranges of I G i j l .  

Leading-edge-trailing-edge con t ro l  system using loca l i zed  damping type t r a n s f e r  
func t ion .  
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Figure  25.- Var i a t ion  of A w i t h  l / k  a t  M = 0.9 f o r  d i f f e r e n t  va lues  of C. 

Leading-edge-trailing-edge c o n t r o l  system us ing  l o c a l i z e d  damping type  
t r a n s f e r  func t ion .  
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Figure  26.- Var ia t ion  of X w i t h  l / k  a t  M = 0.9 fo r  d i f f e r e n t  va lues  of kn. 

Leading-edge-trailing-edge c o n t r o l  system us ing  l o c a l i z e d  damping type 
t r a n s f e r  func t ion .  
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