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RECENT ADVANCES IN AERODYNAMIC ENERGY CONCEPT FOR FLUTTER SUPPRESSION
AND GUST ALLEVIATION USING ACTIVE CONTROLS

E. Nissim®
Langley Research Center

SUMMARY

Control laws are derived, by using realizable transfer functions, which
permit relaxation of the stability requirements of the aerodynamic energy con-
cept. The resulting aerodynamic eigenvalues indicate that both the trailing-
edge and the leading-edge—trailing-edge control systems can be made more
effective. These control laws permit the introduction of aerodynamic damping
and stiffness terms in accordance with the requirements of any specific system.
Flutter suppression and gust alleviation problems can now be treated by either
a trailing-edge control system or by a leading-edge—trailing-edge control sys-
tem by using the aerodynamic energy concept. Results are applicable to a wide
class of aircraft operating at subsonic Mach numbers.

INTRODUCTION

Flutter suppression and gust-alleviation systems using active controls
tend to be very sensitive to system changes caused by different flight condi-
tions (flight speed, flight altitude, flight duration, and type of mission).
The aerodynamic energy concept (ref. 1) was formulated in an attempt to define
active control systems which do not exhibit such sensitivities to changing
flight conditions. Although recent applications of the aerodynamic energy
concept to specific problems of flutter suppression (refs. 2 and 3) and gust
alleviation (ref. 3) yielded encouraging results, it was indicated that the
derived control laws could be improved.

In the original development of the aerodynamic energy concept, idealized
transfer functions were employed. These idealized transfer functions were
difficult to realize and only approximate implementations could be made
(ref. 2). 1In addition, the aerodynamic energy concept contained stringent
requirements of a sufficient, but not necessary, condition for stability which
effectively ruled out the trailing-edge (T.E.) control as a single stabilizing
control system in favor of a combined leading-edge—trailing-edge control
system.

The present work reviews the aerodynamic energy approach in light of the
experience obtained since its original development and describes a way of relax-

¥NRC-NASA Senior Resident Research Associate; now at Technion-Israel
Institute of Technology, Haifa, Israel.



ing the stringent stability conditions and improves the derived control laws by
using realizable transfer functions. Both trailing-edge and leading-edge—
trailing-edge control systems are investigated.

SYMBOLS

ag, leading-edge free parameter
ap trailing-edge free pafameter
b semichord length
Cij element i,j of control law matrix [C]
Gij element 1i,j of control law matrix [d]
gy structural damping coefficient in ith mode
h bending displacement, positive in down direction
i = V-1

wb
k reduced frequency, 6—
M Mach number
Mg mass ratio, defined in equation (B9)
m mass
n number of degrees of freedom
P | energy dissipated by system per cycle
Q> Yy generalized aerodynamic force along h and o, respectively
R transfer function, defined in equation (27)
r number of activated control surfaces
s wing semispan or reference length
t time
v flight speed
a oscillatory angle of attack of wing, positive in nose-up direction
8,6 leading-edge and trailing-edge control surface deflections,

respectively, positive in down direction
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Matrices:

(2] - (A1)
[%e] » [21]
(8]
[c]
[E]
{F}
[6]
(98], [Q1]

{a},{a}
{ao}

{ar}, {az}
[r]

[v]

[

{er}, {e1}

{n}

damping coefficient

eigenvalue of Bﬂ

= k2\

equivalent A for structural damping
fluid density

oscillatory frequency

real and imaginary parts of aerodynamic matrix [A] (see eq. (1))
real and imaginary parts of aerodynamic matrix Dﬂ (see eq. (15))
inertia matrix
control law matrix
structural stiffness matrix
column matrix of forces
control law matrix

real and imaginary parts, respectively, of energy eigenvector
modal matrix

complex response vectors
complex amplitude of response vector
real and imaginary parts of {qo}
transfer function matrix
energy matrix
diagonal matrix of eigenvalues of ﬁﬂ

real and imaginary parts, respectively, of generalized energy
coordinates

eigenvector of Bﬂ



Subscripts:

c control

I imaginary part of a complex value

max maximum

min minimum

R reference, also real part of a complex value
s structural

Other notations:

i i absolute value

[ ]T transposed matrix
* complex conjugate
LJ row matrix

{ } column matrix

Dots over symbols denote derivatives with respect to time.

THE AERODYNAMIC ENERGY APPROACH
Basic Concept

An active control system on a lifting surface, such as a wing, actuates
a control surface in response to oscillations of the wing in a manner which
stabilizes the system. Because flutter instabilities originate from aerody-
namic forces acting on the wing, the possibility arises of changing the aero-
dynamic forces through an appropriate activation of control surfaces. The
aerodynamic energy concept was developed (ref. 1) to examine this possibility.
The concept centers around the work P done by aerodynamic forces on their
surroundings, per cycle of oscillation. A control surface activation 1s sought
that leads to large and positive values of P, thereby energy dissipation and
stability are insured.

Development of energy concept.- In this section, the energy concept is
redeveloped (with details presented in appendix A) both to help the reader fol-
low the present work and to show that the original derivation pertains only to
mass-balanced control systems.




The n equations
{F} = —(.02[B + Tprus(AR + iAI)] {a} + [E] {a} (M

represent the equations of motion of n structural modes with r activated
controls, where at flutter

{F}:O

and

w frequency of oscillation

(8] n X (n + r) mass matrix (n natural modes and r active controls)
[Aﬂ],[Ai] real and imaginary parts of aerodynamic matrix, respectively
Dﬂ stiffness matrix

p fluid density

s reference length

b reference semichord length

{a} response vector comprising n structural modes and r control

modes, {a} = {:C}

The matrices in equation (1) can be partitioned into square matrices (n x n)
relating to the structural modes (subsecripted by s) and rectangular matrices
(n X r) relating to control surface couplings (subscripted by c).

After partitioning the matrices, equation (1) becomes

{F} = <_w2 U:BS;BC:] + npb“s<|:AR’sEAR,c + i[AI,SEAI,c])] + [ESEEC:I){ZC} (2)

Assume a control law of the form

{ac} = [T]{d} (3)

where Eﬂ is a r X n matrix representing the transfer functions of the con-
trol law. Substituting equation (3) into equation (2) yields



e} = (<62 [[B] + [Be] (1] + mov¥s([hn,s] + [2,o] L]
»ifag,s] + 1z, ) ()] + [os] + [re] (] )Mo ®

The matrix [Ec] is considered to be zero since it is assumed that no elastic
couplings exist between the structural modes and the control deflections. As
shown in appendix A, the work P done by the system on its surrounding per
cycle can be written as (eq. (A412))

"20b4 2

Pei ™ g5 - iqﬂ[—([AI,s] v [ar,4)" + [ar,e) (1 + [ a1,q)")

2

) i([ac] [1] - [t [e]"

npbus

+ [AR S:I - [:AR S:I + [AR c] [TJ - [T*] LAR c_l >:l qR + in}

(5)

where (from eq. (46))
{a} = {ao}el®t = {qg + iqp}eivt (6)

The sign of P determines stability, and therefore, it is advantageous
to convert equation (5) to a more convenient form. As shown in appendix A
(eq. (A20)), P can be reduced to the form

P - %n2pb4w2s(LaRJ (M {er} + g1) N {ex}) (n

or

1 2 2 2 2 2 2
P = > ﬂzpb"‘wzs[M(ERJ + 51,1) + )\2<§R,2 + 51,2) + .. . F >‘n<€R,n + gI,H)J
(8)

where DQ is a diagonal matrix of the eigenvalues A;, necessarily real, of
the Hermitian matrix (eq. (A14))



[6] = |-([er,s] + [Az,s]" + [ar,q] (1) + ()7 or,o]")
[Bo] [1] - [ " [5]"

+i([ag,s] - [Br,s]  * [8r,o][T] - [T¥]"[ar,o]" +

ﬂpbus
(9)
and where the vectors {ER} and {EI} are defined by the transformation
(eq. (A15))
{qo} = [QR + iQi]{gn + iEI} (10)

The matrix [QR + iQi] is a square modal matrix of the principal eigenvectors.

Discussion of energy concept.- The work per cycle P done by the sys-
tem on its surroundings has a direct bearing on the stability of the system.
If P is positive, the system is dissipative, and therefore stable. If P 1is
negative, the system is unstable because work is done by the surroundings on
the system. Equation (8) shows that if all the eigenvalues A; of the system
are positive, the system is stable regardless of the motions represented by the
generalized energy coordinates &. If one or more of the A eigenvalues is
negative, the system is potentially unstable. Its ultimate stability is deter-
mined by the relative values of the terms ‘£ and A. If the & values make
the positive eigenvalues dominate the right-hand side of equation (8), the
work P is positive and the system is stable. If, on the other hand, the
£ values make the negative terms dominate equation (8), P is negative and
the system is unstable. Hence, the requirement for all A's to be positive
1s a sufficient but not a necessary condition for stability.

For mass-balanced control surfaces ([Bé] = 0), the eigenvalues A
obtained from [Uﬂ (eq. (9)) are dependent only on the aerodynamic properties
of the system and the activated control law (matrix Ef] . In the case of
mass-balanced surfaces the eigenvalues are referred to as aerodynamic eigen-
values and are, in general, functions of the reduced frequency k and Mach
number M. If mass unbalance is a fixed quantity in the system, the eigen-
values A also depend on the fluid density p in addition to their dependence
on k and M. In the present work, only mass-balanced systems are treated and
therefore eigenvalues are obtained from the following [U] matrix (eq. (A21))

[ = [-((r,a) + Br,d ™+ [z, (1] + (24" oz, ] )
+ i([AR,S] - [AR’S]T ~ [AR,qo] [T} - [T*]T[AR’C]T)] (1)

Equation (11) shows how the transfer function matrix [T] affects the
matrix ﬁﬂ and therefore affects the derodynamic eigenvalues.



Generalized Model

The energy approach has been formulated for a general n degree-of-
freedom system. Therefore, the energy concept can be applied to any problem.
The results in this report, however, are specific for the system considered
since the generalized aerodynamic forces depend not only on the system geometry
but also on its structural modal responses. If, however, the energy concept
is applied to a two-dimensional strip, the aerodynamic matrices are independent
of geometry and responses of the system. As a result, the aerodynamic eigen-
values are independent of any specific system and are only functions of Kk,

M, and the transfer function matrix [T]. Therefore, if [T] is defined in
accordance with the relaxed energy concept, using a two-dimensional strip as

a model, these [Ij values are applicable to any three-dimensional wing within
the limitations of strip theory; thus, the model is generally applicable. 1In
the present work, the two-dimensional strip model is adopted in much the same
way as in the original derivation of the energy concept. Sketch (a) illus-
trates the system considered, and the arrows indicate positive displacements

and rotations.

Undisturbed position

A

2b >

Sketeh (a)

Relaxation of Energy Concept

The energy approach, in its original development, sought to determine
the matrix [T] to render all the aerodynamic eigenvalues large and positive.
This requirement regarding the aerodynamic eigenvalues insures both the sta-
bility of the system (since P is always positive) and its insensitivity to
various flight conditions (which manifest themselves in the form of changing
values of A and changing values of the system responses £&). Assume that
a relaxation is now introduced which permits some of the aerodynamic eigen-
values to be negative. Stability can be achieved under these conditions by
modifying the responses of the system to render the responses associated with
the positive eigenvalues to be the dominant ones. This latter requirement
forms a necessary condition for stability but does not insure, in itself, the
insensitivity of the resulting stabilized system to the various flight condi-
tions. In order to insure that this relaxed stability requirement yields a
system which shows only small sensitivities to the changing flight conditions

8




the absolute values of the negative aerodynamic eigenvalues must always be made
much smaller than those eigenvalues associated with the dominant responses of
the stabilized system. For the generalized two-dimensional model adopted in
this work, two aerodynamic eigenvalues, Apip, and Apgy, are obtained. In the
original derivation of the aerodynamic energy concept, Apin was required to
be positive and large. In the relaxed energy approach, Apin 1s permitted to
be negative provided

Amax >> |Aminl (Amin < 0)

and provided that this inequality is maintained for all flight conditions.

This relaxation is made possible by abandoning the sufficiency condition for
stability in the original formulation while maintaining its insensitivity to
changes in flight conditions. It should be stressed at this stage that the
generalized two-dimensional flutter model adopted herein serves only to indi-
cate, on the basis of the strip theory, whether energy is dissipated or
absorbed by the partial span strip where the activated controls are installed.
Therefore, to suppress flutter with a minimum number of activated partial span
strips, enough energy should be dissipated in the activated strip to compensate
for energy input by the nonactivated portions of the wing. Not only should
Amin be made positive but also Apj, might assume large (and positive) values.
Since the dissipation of energy by the activated strip depends both on xmin
and on Ap.x, the importance of Ap,y Should not be overlooked even when

Amin 18 positive and large. Considerable improvements in the potential per-
formance of the activated control system may result, if changes in the control
gains are permitted which lead to small degradations in Xmin’ provided these
degradations are accompanied by large increases in Apax. It is therefore
required to determine the optimum values of the transfer function matrix [f]
to lead to

Amin = Near maximum value (may be negative)

Amax >> |Aminl
These two requirements regarding Apip and Agyayx are referred to in this
work as the "relaxed energy requirements.”
Formulation of a revised optimization procedure.- The optimization proce-
dure used in the original development of the energy concept consisted of the

following basic steps:

(1) Define the generalized aerodynamic forces Qn, and Qy acting on a
unit span of the two-dimensional strip and express them in the form




{Qh}= mpbYw?2 [([AR,SJ * i[AI,s]){h;b}+ ([AR,CJ + i[AI’c]){i} (12)

Qa
where all the matrices are of order 2 x 2.

B h/b
(2) Assume a form for the matrix [T] where { }: [T]{ }
¢ a

(3) For a given Mach number M and initial values for the gains in [T],
compute the numerical value of ﬁﬂ for a specific value of k.

(4) Compute the two eigenvalues resulting from [U] and designate them
as Apin and Apgx-

(5) For a fixed value of M and [T], repeat steps (1) to (4) for differ-
ent values of k within the range 0.0128 £ k £ 19.5 (0.05 £ 1/k £ 78).

(6) Determine the area under the curve defined by the variation of Apip
with 1/k.

(7) Optimize the gains in matrix [T] to obtain a maximum area under the
curve of Apin as a function of 1/k.

This seven-step procedure, which used the area under the curves of Apip
against 1/k as a target function, was found to be generally satisfactory.
However, a plot of Apin against 1/k and Apyy against 1/k  for the
unactivated system (fig. 1) shows that the very low frequency part of the curve
contributes most to the target function. It is therefore possible that large
improvements in the values of Apjp at intermediate frequencies may be com-
pletely "masked" during the optimization process if accompanied by very small
degradations of Apj, at very low frequencies (high 1/k values).

A reexamination of the Agjn against 1/k behavior, undertaken in the
present work, has led to the following two initial changes:

(a) The very large aerodynamic eigenvalues at the very low k range fol-
low from the representation of the aerodynamic forces

{Fy} = npb“w25<[AR] + i[AI]){a} (13)

The matrices [Ai] and [AI] do not contain the true variation of the aero-~
dynamic forces with k because of the w2 terms left outside the matrices.
The frequency w is not constant and varies with every mode of oscillation.
A more rational representation of {FA}, which maintains the full dependence
of the aerodynamic matrices on k, can be expressed by

10



B |

{Fy} = mob2v2s([Ag] + 1[A7] (D (14)

where V 1is the flight speed and

[ZR] + i[Ag] = k2<[AR] + i[Aﬂ) (15)

Equation (14) leads to the following change in equation (8) (for n = 2):

1 - 2 2 - 2 2
P = Eanb2v23[>\1(£R,1 + €1,1) + Xz(‘ER,Z * ‘51,2)] (16)

where

ii = kzki 17)

Hence, for k < 1, the newly defined eigenvalues Xi are smaller than the
originally defined eigenvalues Aj; by a factor of k2.

(b) The k range in the original derivation (0.0128 £ k £ 19.5) was
unnecessarily wide. 1In the low k range, gust-alleviation problems generally
occur around k =~ 1/8; in the high k range, the accuracy of the aerodynamic
derivatives is questionable for values of k > 3.5. Therefore, the k range
adopted was

ey

— <ksg3.5
25

or
1 1
— < —5 25
3.5 k

The optimization algorithm used in the original development of the energy
approach was found to be deficient in many respects. The algorithm used in the
present work consists of a variation of Stewart adaptation (ref. 4) of the
Davidon-Fletcher-Powell method (ref. 5). The variation introduced permits the
different elements of the matrix [f] to be constrained within preassigned
limits without resorting to penalty functions and with excellent convergence
characteristics.

In accordance with the relaxed energy concept there remains the problem
of permitting small degradations in Ap;, if accompanied by large increases
in Apay. The initial approach was based on adding to the target function a
weighted value of the area under the curve of Ap,, against 1/k. This

1



approach, although effective, leaves the value of the weight as an arbitrary
parameter for the designer. However, as the present work progressed, the
parameters which appreciably increase Apgy with relatively small degradations
in Apin have been identified, and the optimization procedure was modified in
a manner which avoided weighting Xmax' This point is discussed further in a
later section of this paper.

Data and scope of optimization.- As in reference 1 and indicated in
sketeh (b), the two-dimensional strip has constant 20-percent-chord leading-
edge (L.E.) and trailing-edge (T.E.) control surfaces. Similarly, a reference
point for sensing the motion of the main surface was kept constant at 30 per-
cent of the chord (measured from the leading edge). The gains associated with
the control laws presented in this work refer therefore to the 30-percent chord
point. These gains can be modified to accommodate a sensor located at a dif-
ferent point along the chord by employing a simple transformation matrix
(ref. 1).

Undisturbed position

PRy
a_ -——— -
O.4la| __»l
<«—0.6 b &
04D
< 2b >

Sketch (b)

The investigation covers both a trailing-edge and a leading-edge—
trailing-edge control system. Each of these control systems is driven by two
different realizable transfer functions represented by the matrix [T]. The
gains associated with each transfer function are optimized within a predeter-
mined range of values by following the relaxed energy approach. Generalized
control gains were tested for adequacy over wide ranges of reduced frequen-
cies k, of subsonic Mach numbers M, and of maximum permissible gain values.

PRESENTATION AND DISCUSSION OF RESULTS

Results for the unactivated strip at various subsonic Mach numbers are
presented first. These results form the basis for assessing any improvements
introduced by the activated control systems. The results relating to each of
the two transfer functions employed in this work are presented and discussed

12



separately. For each transfer function, a study is made of both the trailing-
edge and the leading-edge—trailing-edge control systems.

Basic Nonactivated System

The variation of Apjn and Apzxy with 1/k  at different values of M,
for a wing strip having no control surfaces (that is, [T] = 0) is shown in
figure 2. The quantity Apin 1s negative through most of the 1/k range,
whereas Apay 1s positive throughout the range of 1/k. Furthermore, the
negative Apip Vvalues are of the same order of magnitude as Apgy. Note also
that the aerodynamic eigenvalues A presented in figure 2 are greatly reduced
in the high 1/k range when compared with the original eigenvalues A
(fig. 1).

Damping Type Transfer Function

The damping type transfer function (D.T.T.F.) is similar in form to the
one used in reference 3; that is,

{2} ([c] " -(m)[c;]){h/b} (18a)
{2} = ([c] + ik[G]){h;b} (18b)

where [C] and [d] are 2 x 2 constant matrices. Therefore, [T] is given
by

or

[T] = [c] + ik[G] (19)

The control law represented by equations (18) differs from the one used in the
original derivation of the energy approach [which used the term iﬂi] instead

b b
of the V-iw[p] term). The implementation of the - iw[G] term in equa-

tion (18a) is straightforward, whereas the implementation of the i[G] term
could only be achieved with great difficulties and in an approximate manner.
The damping type transfer function was chosen for the relaxed energy approach
because it is similar to the original control law and has been shown to be
effective when applied to specific configurations (refs. 3 and 6) (by using the
gains derived in ref. 1 for |[C] and [p]). The transfer function used in
equation (19) is expressed in terms of ik in order to maintain the dependence
of matrix [U] (eq. (11)) on M and k only. Furthermore, equation (19)

13



represents the overall transfer function and implies that any actuator transfer
functions should be compensated for to obtain the transfer function matrix.

On the basis of results obtained in reference 1, the aerodynamic eigen-
values are expected to increase if all the gains in matrix Bﬂ are increased
by a constant factor. Hence, constraints are imposed on the Gij gain values.
The range chosen for [G] is -100 £ Gjj £ 100. The effects of changing the
nominal range are investigated in the present report. To reduce to a minimum
the activation of the control surfaces at zero frequency, the following con-

straints are imposed on [QJ:
C11 = C21 = C12 =0
-2 = Coo £2
The gain Cpo 1is varied within a constrained range because of its large
effects on the aerodynamic eigenvalues, as was shown in reference 1.
Results for trailing-edge control.- The trailing-edge control surface was
first optimized at M = 0.9 on the basis of the curves for Ap;, against 1/k

by following the procedure described earlier in this work (with zero weight
for Apax). The optimum gains obtained for [c] and [G] are

[0 0
[c] =

0 -1.76

[0 0
[c] =

| 4.6 1.53

The resulting Api, and_ Apyx variations with 1/k are shown in figure 3.
Although the values of Amin are improved over those with no control system
(fig. 2), these improvements are accompanied by a substantial reduction in
Amax over most of the 1/k range, with the exception of improved values at
the low end of the 1/k range. (Typically, at lower Mach numbers the values
of Apin are less than those shown in fig. 3.) Optimum values of Bﬂ are
small compared with the wide range of variation permitted the_ Gij gains;
that is, =100 S Gij £ 100. It may be argued that although Amin seems to be
bounded and its values cannot be improved beyond a certain maximum level,

Amax might be increased without substantially degrading Api, in accordance
with_the relaxed energy requirements. The incorporation of the weighted area
of Apax against 1/k into the target function (in addition to the Apjip)
shows that both Gpq1 and Gpp are positive and increase monotonically with
the increase in weight associated with Amax- Consequently, an appropriate
weight could be assigned to Apyy which causes the larger term (Gpq) to reach

14



the constraint. However, a simpler method is to assign Gpq the value at the
constraint and optimize for A min only. By following this procedure the opti-
mized gains for [C] and [G] obtained at M = 0.9 are

0 0
[c] =

0 0.46

0 0
[c] =

| 100 79

The variations of Xmln and Xmax with 1/k are shown in figure 4. By com-
parison with figure 2 (no controls), the quantity Amln shows improvement over
most of the 1/k range. In comparison with figure 3, the values of Amln in
figure U4 are mostly negative and degraded. The values of Apgx in figure U,
however, are greatly improved over those in figures 2 and 3 especially at low
values of 1/k. The values of Api, are much smaller than those of Apgx in
accordance with the objectives set by the relaxed energy approach.

Effect of variation of optimization range of Gij: The results in fig-
ures 3 and U4 relate to a G; 5 range of 100. Computations made for smaller
ranges of Gij show that the value of Css becomes increasingly important as
the Gij range is reduced. At the limit, when all the Gj terms are set to
zero, the Cps term provides the only means for improving %he eigenvalues.
(When the Gj; terms are large, Cpp can be ignored.) Hence, in an attempt
to reach optimized control values that do not exhibit sensitivities to the
optimization range of Gj;, except for a constant factor common to all the

terms, Coo, was assigned a value of Cpp = -1.86. This value was
obgained by optimizing the control gains with zero G;: gains. Reoptimizing
with Cpp B -1.86 and Gpq = 100 resulted in the following transfer function:

[0 0
[c] =

0 -1.86

[ 0 0
[¢] =

| 100 80

Regardless of the value of the Gj; constraint, the ratio of G21/G22 remains
essentially constant. Therefore, ghe following form of the optimized transfer
function (eq. (19)) is suggested:
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0 0 0 0
[T] = + ap(ik) (20)

0 -1.86 100 80

The free parameter ar permits the variation of Xmax while keeping the ratio
of G2L/G22 a constant. Figure 5 shows a comparison made at M = 0.9 between
the curves of Apij, against 1/k obtained by optimizing the gains of Eﬂ

for different maximum values of Gpq (fig. 5(a)) and the curves obtained by
using equation (20) with values of ar chosen to obtain the same maximum
values for Gpq (fig. 5(b)). The values of Apip for the low 1/k range are
not shown in figure 5 in order to scale the ordinate to yield a good resolution
among the different curves. (A similar representation, which will be adopted
in many of the figures, has no reflection on the k range for which the opti-
mization has been performed.) The differences between the MApj, curves in
figures 5(a) and 5(b) are not significant in view of the large similar values
of Apax 1in figures 6(a) and 6(b). These results justify the form of the
transfer function in equation (20).

- Mach number effects: The effect of changing the flight Mach number on
Amin is shown in figure 7 for Goq = 100 and Cpp = -1.86. Figure 7(a) is
obtained by optimizing the gains at the different Mach numbers, whereas fig-
ure 7(b) shows the values obtained by using equation (20) with ag = 1. Once
again the differences between the Amin curves in figure 7 are not significant
in view of the similar and large values of Ap,y shown in figure 8.

Results for leading-edge—trailing-edge control system.- An identical
procedure to the one discussed in the trailing-edge system has been adopted for
the leading-edge—trailing-edge control system in an attempt to optimize Apip
and take account of Ap.y. Here again Cpp is assigned a value of -1.86 and
G21,max 1s assigned the nominal value of 100. The following optimized gains
are obtained for the leading-edge—trailing-edge system:

"0 0
[c] -

|0 -1.86

[ -100 100
[c] =

| 100 80

The variation of Api, and Apay with 1/k, at M = 0.9, is shown in

figure 9. The large improvements in Xmin’ as compared with the trailing-edge
system (fig. 7), can be observed in figure 9(a) for all values of 1/k. The
values of Apgy in figure 9(b) are essentially the same as those obtained for
the trailing-edge system (fig. 8). This situation implies that the optimum
leading-edge control gains essentially affect Amin with negligible effects

on Xmgx- On the other hand, optimum trailing-edge control gains mainly influ-

ence Apay and have little effect on Apjp.
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Effect of variation of the optimization range of Gij’ Optimum control
laws were derived for different values of optimization ranges by using a pro-
cedure identical to that used for the trailing-edge control system. The
results obtained for Api, are shown in figure 10(a) and are compared in fig-
ure 10(b) with the values of Apj, obtained by using the suggested values
for Bﬂ and Bﬂ. (The suggested values of Bﬂ are scaled to span the
appropriate Gjj range.) A similar comparison is made in figure 11 regarding
the variation og Amax- The agreement obtained in figures 10 and 11_together
with the localization of the leading-edge effects to the values of Api, lead
to the following more general formulation of the control gains:

ar, -100 100
[T] = + ik (21)
0  -1.86 ap|| 100 80

where aj, and ayr are positive free parameters. The value of aj essen-
tially determines the levels of Api, Whereas the value of ap essentially
determines the levels of Apay. If the value of ap, = 0 is substituted in
equation (21), the resulting matrix [ﬁ] is identical to the one pertaining
to the trailing-edge control, as presented in equation (20). Hence, equa-
tion (21), together with the parameters a;, and ag, is applicable to both
trailing-edge and leading-edge—trailing-edge control systems.

Mach number effects: The effects of Mach number on the variation of Apjip
with 1/k for Gpq = 100 and Cpp = -1.86 are shown in figure 12. Fig-
ure 12(a) is obtained by optimizing the gains at the different Mach numbers,
whereas figure 12(b) shows the values of MApj, as a function of 1/k as
obtained by using equation (21) with ap = ap = 1. As can be seen, the fig-
ures are almost identical. Similar results are obtained for the accompanying
variation of Apayx with 1/k shown in figures 13(a) and 13(b). Figures 14
and 15 are identical to figures 12 and 13 except that they show the variation
of the different A values at the low end of the 1/k range. A deterioration
in the values of Apj, and Ap,y occurs at low 1/k values as the Mach num-
bers are reduced and especially when M = 0. However, since the results per-
taining to M = 0 are meaningless for practical applications and since the
reduced values of Ap;, at the high 1/k range are shown in the following
section to be relatively less important, no attempt 1s made to improve the

Amin behavior at low 1/k values at the expense of some degradation at the
higher range of 1/k.

Effect of structural damping.- To understand the meaning of a specific
value of an aerodynamic eigenvalue, it is convenient to express the structural
damping in terms of an equivalent aerodynamic eigenvalue Xd (the full devel-
opment of the expression for Xd is given in appendix B). The structural
damping force acting on the ith mode is given by equation (B1) as

2
Fq,i = 18iWn,ibRM{q; (22)
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where g; 1is the structural damping coefficient, Wn,i is the natural fre-
quency, mj 1is the generalized mass, qj 1is the nondimensional generalized
modal response, and bgp 1is a reference wing semichord. The subscript i
relates the parameters to the ith generalized mode. It can be shown (see
appendix B for details) that the work W done per cycle by the force Fd,i
is given by equation (B7) as

1 2 2 2
W= E-n2pb02V2sc>\d,iqo,i = TT8iwn,ibR2miqo,i

where by is the semichord at the control-surface midspan region and s, is
the control-surface span. This equation yields (eq. (B10))

br\" s

2

Aq,i = 281(;-) = kn,c,iMR,i (23)
[¢] C

where kp o i 1is defined by equation (B11) as

Wn,ibe

kn,e,i = —% (24)

For a two-dimensional strip, s = sg, bR = by, and equation (23) reduces to

2
Ad,i = 28ikn,c,iMR,1 (25)

Equation (25) shows that a fixed value of structural damping converts to an
increasingly larger equivalent aerodynamic eigenvalue as the reduced fre-

quency kp ¢,i 1is increased. Therefore, a value of Apin = -1, for example,
at kn,c,i = 0.1 1is equivalent to a structural damping coefficient 1225 times
larger than the one obtained if the same value of Apip = -1 1is obtained at

3.5\2
kp = 3.5 <1225 = (———) >. This example illustrates the relative importance

of the aerodynamic eigenvalues in different regions of the k range and
stresses the importance of the low k range over the higher k range.

Summarizing remarks regarding damping type transfer function.- The
relaxed energy approach, when used in conjunction with the damping type trans-
fer function, yields fixed control gain ratios for both the trailing-edge and
the leading-edge—trailing-edge control systems, which are effective over a
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wide range of reduced frequency k and of control gain factors a; and ar.
It is shown that although the trailing-edge control system shows improvements
in the Apspn values, these improvements are bounded and cannot be improved
beyond a certain maximum value. The values for Ap,y, however, are shown to

be unbounded and increase continuously with at. The leading-edge—trailing-
edge system shows unbounded improvements over a wide range of k values for
both Apin and Apgax- The gain aj, essentially affects the Amin values
with only little effect on Apyx, whereas the gain ar essentially affects the
values of Apayx wWith little effect on Apin. This unbounded behavior is typi-
cal of a dynamic system to which damping is added. For this reason the Bﬂ
matrix is regarded essentially as a damping matrix introduced through the acti-
vation of the control surfaces.

Two major criticisms can be made regarding the damping type transfer
function:

(1) The damping type transfer function does not permit the introduction
of damping into the system over a limited range of k values. Instead, damp-
ing is introduced over an uncontrolled range of k values. Hence, a penalty
may be paid in terms of unnecessary control-surface activity.

(2) The term ik[d] that appears in the damping type transfer function
(eq. (19)) increases indefinitely with k. As a result, stability problems
may develop at very high k values beyond the range investigated in this work.

In addition to these criticisms, the relaxed energy approach does not rule
out the use of stiffness terms in order_to change the response of the system to
increase the response associated with Apgyx. The damping type transfer func-
tion permits the introduction of aerodynamic stiffness terms through the matrix
[C]. This situation is inconvenient and very limiting since the matrix Dﬂ
has a direct effect on the static behavior of the system.

These points lead to the formulation of the localized damping type trans-
fer function which is presented later.

Localized Damping Type Transfer Function

The following transfer function is a direct outgrowth of the criticism of
the damping type transfer function:

B (ik)2 h/b
{ }: [] + —— ) [G]{ } (26)
8 (ik)2 + 2k, (ik) + kp? o

where both ¢ and k, are constants. Direct comparison between equa-

tions (26) and (18) shows that the term ik in the damping type transfer func-
tion has been replaced by the term (ik)2/[(ik)2 + 2Ckn(ik) + kpZ]. It is
appropriate, therefore, to investigate the properties of this term and deter-
mine how it compares with the ik term.
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Variation with k of localized damping type transfer function.- The vari-
ation with k of the localized damping type transfer function (L.D.T.T.F.) is
essentially embedded in the term (see eq. (26))

(ik)2
R = (27)
(ik)2 + 2Cky(ik) + kp?
Defining X as
k
X = — (28)
e
and substituting in equation (27) yields
-x2
R = (29)

-X2 + 2irX + 1

The denominator in equation (27) is identical in form to a transfer function
representing a second order system with damping <€ and natural frequency kp.
Figure 16 shows the variation of the real and imaginary parts of R as a
function of X and T. It can be seen that R =0 when k=0 and R a 1
when k =+ «, The imaginary part of R is always positive. For small values
of [, very large values of Ry (that is, the imaginary part of R) are
obtained, with a maximum value obtained around k = k. In addition, the vari-
ation of Ry with k is very rapid for small values of . As the value

of ¢ 1is increased, Ry becomes smaller and its maximum values occur for

k > kp. In addition, the increased value of ¢ reduces the variation of Ry
with k. If Ry is associated with positive damping, then positive stiff-
ness values are associated with positive values of Rp (that is, the real
part of R) and negative stiffness values are associated with negative values
of Rp. (Strictly speaking, some symmetrical aerodynamic stiffness terms may
be introduced through formal multiplication of the aerodynamic forces and [T].
However, these terms appear to be small.) Therefore, the quadrature term ik
can be locally simulated by R over a range of frequencies determined by

both ¢ and kj,. In addition, stiffness terms are introduced as R varies
with k. These stiffness terms clearly vanish when k = 0 and therefore do
not affect the static behavior of the system. A transfer function of the

type 1ik/(ik + a), where a 1is a real number, could alsc simulate the quadra-
ture term ik, however, with reduced effectiveness and reduced control regard-
ing "localization" of damping.

Remarks on localized damping type transfer function.- Because of the
results obtained for the damping type transfer function and the similarities
between the two transfer functions, the following values have been adopted for
the localized damping type transfer function:
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(1) Cpp 1is assigned the value of -1.86 (derived for zero Gjj gains and
therefore also applicable to the localized damping type transfer function) to
maintain the effectiveness of the system for small. values of matrix [Q]. (A1l
other Cjj values are maintained at zero. )

(2) A nominal optimization range for the Gjj elements is chosen as
=4 < Gij s 4. The smaller range for Gji was chosen to yield approximately
the same peak values for A as obtained for the damping type transfer function
at the low and intermediate ranges of k values.

Results for trailing-edge control system.- The trailing-edge control sys-
tem is first optimized at M = 0.9, Gis: being constrained within the nominal
range, and with kp = 0.2 and T = 0.5. Variation of these values is subse-
quently investigated.

Initial optimum values obtained for the matrix [G] showed behavior
identical to that of the damping type transfer function; that is, a deteriora-
tion in Ay, was obtained, and the resulting Gij gains were very small in
comparison with the span of the nominal Gij range. By following an identical
type of investigation as in the damping type transfer function case, an iden-
tical conclusion was drawn, that is, that optimization must be performed after
assigning Gpq the maximum positive value of its range. The results for the
nominal range yield the following gains:

o 0
[c] =
0 -1.86
[0 0
[c] =
4 2.8

Figure 17 shows the resulting variation of Apipn and Apay with 1/k.

Both Apjn and Apgy are positive throughout the 1/k range and Apgy

shows "peaking" behavior_at k, (that is, 1/k = 1/0.2 = 5). Figure 18

shows the variation of Api, and Ap,y with 1/k  at different Mach num-
bers obtained by using these gains. Figure 18(a) shows a slight deterioration
in Apjn as the Mach number is reduced and shows no signs of peaking at k.
Figure 18(b) shows that the peaking characteristic of Ap,y exists at all
values of M. Figure 19 shows the variation of Api, and Ap,y with 1/k at
M = 0.9 obtained by using these gains and scaling the [d] matrix by various
constant factors. The results show increased Ap,y values throughout the
range for most of the scaled gains of the Bﬂ matrix. A small variation in
Amin_ can be seen in figure 19(a), especially for the case where these values
of [G] are all multiplied by 2. Figure 20 shows the variation of Apj, and
Amax Wwith . The effect of varying C 1is seen to be similar to the effect
of scaling [G] (fig. 19), with the exception that the Apsyx peaks become
narrower as ¢ 1is reduced and the dips which follow the peaks become more
accentuated. Figure 21 shows the variation of Apip and Apgy with 1/k
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at M = 0.9 for different values of k,. The large improvements in Ap.y are
immediately apparent over a wide range of k values. The values of Xmin’
however, show a negative region for the value of k, = 0.1. Comparison with
the curve for the unactivated system (fig. 2) shows that around k = 0.3

1 - -
(_ = 3.5), where Apip is smaller, the degradation in Apj, is very small.

The following generalized control law is therefore suggested for the
trailing-edge system:

B 0 0 ap(ik)?2 0 0]\ (h/b
O ol e
8 0 -1.86] (ik)2 + 2igkpk + k2|4 2.8\ a

where ar, [, and k, are left as free parameters which determine the amount
of damping introduced, the distribution as a function of k, and the location
of the peak along the k-axis.

Results for leading-edge—trailing-edge control system.- The following
optimum gains are obtained for the leading-edge—trailing-edge control system
at M= 0.9 by using the nominal range for the Gij gains (with k, = 0.2
and T = 0.5):

[c]

o -1.86

-y 4

[e]

y 2.8

The resulting variation of Apin and Apax with 1/k  is shown in figure 22.
The variation of Apyayx with 1/k is identical to that obtained for the
trailing-edge control system (fig. 17) and implies that the leading-edge con-
trol gains have little or no effect on Apgx. It has been shown that the
trailing-edge control gains associated with [G] have only a small effect on
Amin- Therefore, the large values of Apin shown in figure 22(a) are essen-
tially due to the leading-edge control gains. The variation of Apin and Aggy
with Mach number, using these control gains, is shown in figure 23. Once

again, Amax remains essentially the same as that for the trailing-edge sys-
tem whereas Xmin is greatly improved and shows large peaks at k = k, = 0.2

(or 1/k = 5).

The variation of the aerodynamic eigenvalues with the scaling factor of
the matrix [G] is shown in figure 24. Both Apjn and Apax increase with
the scaling factor over most of the range; this result implies that both Apip
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and Apsx are unbounded in the leading-edge—trailing-edge system. The
unbounded characteristic of the eigenvalues is observed once again in figure 25
where the value of { is varied. The peaks of Amax in figure 25 are essen-
tially located at k = k, whereas Apj, shows a peak at this location only
for small values of 7. As the value of 7 increased, the peaks move toward
lower values of 1/k. A study_of the peak values in conjunction with R

(fig. 16) indicates that the Ap,x peaks occur at Rgp = 0, or k = k,. On the
other hand, the Apj, peaks occur at the value of k which yields the largest
response in quadrature Ry. Figure 16 shows that as  increases, RI,max 1s
located along curves for which k > k,. Therefore, if it is desired to maxi-
mize simultaneously Api, and Amax at a given value of k, the leading-edge
control should be given a similar transfer function but with a smaller value

of kp. The effect of k, on the aerodynamic eigenvalues is shown in fig-

ure 26. The results conform with the foregoing discussion. On the basis of
these results, the following generalized control law is suggested:

aL(ik)Z
0

B o o (ik)2 + 20pky (1K) + K5 -5 4| (hso
= + ’ ap(ik)2
8 0 -1.86 0 4 2.8 o

(ik)2 + 207k, p(ik) + kS 7

(31

where the subscript L refers to the leading-edge control and the subscript T
refers to the trailing-edge controls. The six free parameters allow the ampli-
tude of the different A distributions, the width of the distributions, and
their peak locations to be selected. If aj, = 0, equation (31) reduces to the
trailing-edge control law given by equation (30).

Summarizing remarks regarding localized damping type transfer function.-
The localized damping type transfer function is shown to have basically the
same characteristics as the damping type transfer function regarding its
effects on the values of Apj, and Xmax,_but within a localized range of
k values. The deteriorating effects on Xmin shown by the damping type
transfer function at high k values have either been eliminated or greatly
reduced. Further improvement in Xmin for high k values can be obtained by
means of the free parameters left in the generalized control law (eq. (31)).
In addition, it can be shown that at sufficiently high values of k, the aero-
dynamic eigenvalues are proportional to k, that is, A = k, whereas the
equivalent aerodynamic eigenvalue A4 for the structural damping behaves
as Ag « k2. Therefore, at sufficiently high frequencies, Aq is dominant
and the system is always stable (not the case for the D.T.T.F. where A < k2),.
Since the values of Apjn at the highest value of k considered (=3.5) were
seldom negative and assumed relatively small values, no special reference to
this region was made during the discussion of the results. Finally, the free
parameters left in the generalized control law, together with the stiffness
properties exhibited by the localized damping type transfer function, make it
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possible to tailor fit the results obtained herein to any specific system with-
out exposing it to sensitivity hazards.

Sensitivity Test for the Gains

Sensitivity tests were conducted on the Cij and Gij gains for the two
transfer functions and the two control systems investigated in this work. All
the Gij3 terms were found to be important (either for Apip or for Apax),
and no sudden deteriorations were observed with small to moderate parametric
changes. Figure 27 is an illustrative example in which the value of Goj,
using a trailing-edge system with localized damping type transfer function,
is varied at M = 0.9. Both XA values are relatively insensitive to small
changes in Gpp. Finally, the gains obtained by the relaxed energy approach
are different only in magnitude but not in sign as compared with those obtained
in reference 1.

SIMPLIFIED CONTROL LAWS

The suggested generalized form of the damping type transfer function is
given by equation (21) as

0 0 ar, -100 100
[T] = + ik
0 -1.86 ap|| 100 80

Equation (21) can be simplified if a constant reference value of velocity Vg
is assumed in the expression for k. In this latter case, the only variable
is w and therefore [T] can be written in the form

0 0 ES -100 100
[T] = + 1 — (32)
0 -1.86 WR arp|{ 100 80

where wg = o is a reference frequency. 3Since aj, and a7 are free param-

eters, it is convenient to reduce the scaling of the Gij element by a factor
of 25 to make the maximum Gis values the same as for the case of the local~
ized damping type transfer function. Hence, equation (32) (scaled) yields the
following standardized form of control law for the damping type transfer
function:

B 0 0 w oL -4 47\ (n/b
= +1 — (33)
8 0 -1.86 WR at|l 4 3.2 o
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(Note that for a given case the values of aj, and ar in equation (33) differ
from those in eq. (32).) Similarly, if

the localized damping type transfer function can be simplified to yield the
following form of standardized control law (see eq. (31)):

aL(iw)2
0

B 0 0 (i(.l))r2 + ZCLwn’L(iu)) + wral,L U 4 h/b
= + aT(iw)2
8 0 -1.86 0 4y 2.8 a

(iw)2 + 2g oy 7liw) + wrz,,T

(34)

The similarity between the gains appearing in equation (33) and those appearing
in equation (34) are now immediately apparent.

If a;, and at are sufficiently large to make the effect of Cpp negli-
gible, then equation (34) shows that the ratio between h/b gains and the

o gains is 1:0.7 (=§—§>. Since these gains are associated with a point at 0.6b

from the leading edge (30-percent chord), identical activation will be obtained
by a linear sensor at 1.3b (=0.6 + 0.7) driving the trailing-edge control sys-
tem. This point is at the 65-percent chord measured from the leading edge (the
damping type transfer function yields a point located at 70-percent chord).

For either transfer function the leading-edge control can be driven by a single
sensor located at -0.4b (=0.6 - 1), or 20-percent chord ahead of the leading
edge. This location is clearly not practical and, therefore, two accelerom-
eters should be employed to drive the leading-edge control.

These generalized control laws essentially determine the relation between
the gains associated with the h/b and o for each control surface irrespec-
tive of whether one or more control surfaces are actuated on the same strip.
This statement implies that the relationship between the gains will be appli-
cable to three-dimensional flows, if the ratios between the lift and the moment
produced by the rotation of the respective control surface are the same as in
the two-dimensional flow case.

CONCLUDING REMARKS
Control laws using realizable transfer functions are derived which per-
mit the relaxation of the stability requirements of the aerodynamic energy

approach. The resulting aerodynamic eigenvalues indicate that both the
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trailing-edge and the leading-edge—trailing-edge control systems can be made
more effective. As a result, flutter suppression and gust-alleviation problems
can successfully be tackled by the aerodynamic energy approach with a trailing-
edge control system only and without encountering sensitivity to changing
flight conditions. In the original aerodynamic energy approach, such an
ability could be handled by a leading-edge—trailing-edge system only.

Free parameters have been identified which control the amount of the aero-
dynamic damping introduced by the activated system. Furthermore, one of the
control laws also permits the selection of a reduced frequency range within
which damping is to be increased and provides stiffness terms for controlling
the response of the system. The values of these free parameters can be
tailored to specific applications. The results have been reduced to a simple
form and are applicable to a very wide class of aircraft operating within the

subsonic Mach number range.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

July 7, 1977
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APPENDIX A

THE ENERGY ANALYSIS

Let the n equations

{F} = -w2[B + mobls(ag + iAI)] {a} + [E]{a} (a1)

represent the equations of motion of n structural modes with r activated

controls, where at flutter

{r} = o

and

w frequency of oscillation

[B] mass matrix

[Aﬁ],[ﬁi] real and imaginary parts of aerodynamic matrix, respectively
[E] stiffness matrix

P fluid density

s reference length

b reference semichord length

All matrices in equation (A1) are of the order n x (n + r) (n structural modes

and r active controls). The response vector
responses and r control deflections is

Gh=4"

de

Equation (A1) can therefore be written as

{q} in terms of n structural

(A2)

{F} = (-w2 [[Bsch] + npb"s([AR,siAR,c;] + i[AI,siAI,c]):l + [ESEE(;)) : (A3)
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APPENDIX A

Assume a control law of the form

{ao} = [r]{a} (A4)

where Dﬂ is a r X n matrix representing the transfer functions of the con-
trol law. By substituting equation (Al4) into equation (A3), the following
equation is obtained:

{F} = <_w2[[}35] + [Bo] [T] + mobts ([AR’S:I + [ar,q] [T]
el + 1P @) ¢ [ + () (as)

where the products [Bo|[T], [AR,q][T], [Ar,o][T], and [Eg][T] are now

n x n matrices. The vector {q} can be written as
{a} = {aotei®t = {qg + iqr}elwt (46)

The real part of equation (A5) is essentially the same as the imaginary
part, except for the initial conditions at t = 0. 1In harmonic motion, where
no transients are treated, only the real part of equation (A1) need be con-
sidered. Hence, the forces which the system exerts on its surroundings are
given by

(¢} = 302l + [2c] [« moobo ([im, ] + [in,c] (1) = 2[hz,] + 1 [ar, o] ()
+ [5 + [ () laokei® + 2 (w2[[n] + (5] 2
e ovts([hn, ] + [an, ][4 - <[az,q] - 1[r,g] (79
o [oa) + [2 [09]) gt omtor an
where the asterisk denotes the conjugate vector. The vector {F} is clearly

a real vector.
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APPENDIX A

The velocity vector {d} can be obtained by differentiating equation (A6)
to obtain

{a} = iw{q}eiwt (A8)

The real part of the velocity vector R(d) is given by
. 1 , 1 .
Rla} = < iwfgolel®® - — tu{gorlemivt (A9)

Hence, the rate at which the system does work on its surroundings is given
by RLQJ{F}. Equations (A7) and (A9) yield

i) () = 2loo) (2 [oe) = [Bc] )+ mont ([om, o] + [on, ]
cift,g) + 3for, ) ()] + (5] + (5] 1] faohe?ien
- Plaotl (22 + BT « ro0ts ({2 + e, J
-1l + 10, JE)] - [ - (2] 09) fao)
 Ploo) (7[5 + BI  wo0's ([, ] + (i, ]
1Pir,d - 4P, )] - fed - ] ) )
- Plaot) (2 + (I + wov's (fm, ] + [ o] 1

- i[A1,s] - i[A1,c] [T*:|>:| + [Bs] + [Ec] [T*]){qo*}efZiwt (410)
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APPENDIX A

Hence, the work P done per cycle by the system on its surroundings can be
found by integrating equation (A10) between t = 0 and t = 2n/w. Thus,

P = ;qu_l (—w2 [[Bs:l + [Bc] [T¥] + mobls ([AR, s] + [8r,c] [T¥]
- 1[r,g] - i, 09)] + (B + (5] [T*]>{qo*}
- ;_ﬁ[_qoﬂ (—wZ[EBS] + [Bo] [T] + npb”s([AR,S] + [2r,q] [T]

cifin,d) + 1P )] ¢ ] + 5] ol

This equation is a scalar equation; therefore, the first expression on the
right-hand side of this_equation can be transposed ([Bé] and [Eé] being
assumed to be symmetric

p o 2o SI_QO*J[ ([AI,s] + [AI,s:lT + [A1,c] [T] + [T*]T[AI,CJT)
v i([on,q] - [n,e) "+ (om,d] 09 - (97 [or, o] 7)ol
e o) [t ([l 0 - 07 )

+quo*J [i([Ec] [1] - [T*]T[ECJT)]{%} (a11)

The matrix [Ec is assumed to be zero since, in general, no elastic couplings
exist between the structural modes and the control deflections. Hence, equa-
tion (A11) reduces to
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ﬂzpbﬁnzs

P = T 2lack |- ([ar,g) + [ar,d)" + [b1,q 1] + [197[ar, )

) i<[Bc] (7] - [ 78] "

ﬂpbus

+ [AR’S] - [AR’S:]T
+ [8g,qJ [1) - [T*]T[AR,c:II) {ao} (A12)

Note that the matrices within the square brackets form a Hermitian matrix.

Now determine the eigenvalues and eigenvectors of the following Hermitian
matrix [U] extracted from equation (A12):

An} = [U]{n} (813)

where

[v] = l:-([AI’s;I + [ar,q]" + [a1,0)[1] + [T*]T[AI’CJT>

’ i<[BCJ SRR + [A,s] - [*a,s]

ﬂpb”s

+ [AR,OJ [T] - [T*]T[AR,C:IT>i| (A1Y4)

and represent the vector {q,} in terms of the eigenvectors of equation (A13),
that is,

{ao} = [or + i0q]{er + it} (415)

The columns of the square matrices [QR] and [QI are the real and imaginary
parts of the eigenvectors of equation (A13). The vector {£g + iy} contains
the generalized modal coordinates of the transformation defined by equa-

tion (A15).

A1l the eigenvalue and eigenvector solutions of equation (A13) can be
expressed in the form [Qg + iQr]fA] = [U][QR + iQr|. Postmultiplying this
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equation by {ER + i1} and premultiplying it by Lgofj or

&g - iE1|[eRT - 101T] yields
LER - iEI_I [QRT - iQIT:I [QR + iQI] [XJ {&g + &1}

= [&r - &) [er” - 1077 [—([Ax,sj + [a,q]" + [a1,0] [1]
[Bo] [1] - [¥]"[Bq]"

ﬂpbus

+ [T*]T[AI,C]T) + i< + [,s] - [r,s]"

+ I:AR,c] [T:] - [T*]T[AR,OJI):I [QR + iQI] {ER + iEI} (A16)

where DQ is the eigenvalue matrix, that is,

Y 7
Ao

M = - (A17)

An

— -

The right-hand side of equation (A16) is identical to the right-hand side of
equation (A12) except for the nzpb“wzs/? factor. Hence, the left-hand sides
of these two equations can be equated to obtain

201 M2
P = n—-pzﬁ’iﬁla - i€7)[arT - 1077 [op + 10 {ER + it7)

The matrix [QRT - iQIf] represents the modal matrix of the complex left-hand
normalized eigenvectors and therefore

[rT - 1077 [or + i07] = [I] (418)
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where [i] is the unit matrix. Hence, P reduces to the form

n2pb”w s

ae)
n

|Er - i&1) A} {&R + i1} (A19)

or

o
1}

m pb 02 S(

Ler) V] (et + [£2) B ex}) (420)

The energy input per cycle into the surroundings has thus been reduced to a
quadratic form in terms of the generalized energy modal coordinates.

Note that if all control surfaces are mass balanced, the matrix [Bé]
vanishes and Bﬂ reduces to

[ = [-(Pr,8] + Pr,a)" + [, (9 + [107[a,q])
v 1([an,5] - [Pn,a)" + [n,o] ] - [T*]T[AR’CJT)] (a21)

when the control system is not activated [T] = 0 and

[ = [-(Br,s] + [2,8]") « ([, - [, ]")] (a22)

33



APPENDIX B

CONVERSION OF STRUCTURAL DAMPING INTO EQUIVALENT
AERODYNAMIC EIGENVALUES

Let the structural damping force Fq ; acting on the ith structural
mode be expressed by

.2
Fq,i = 18iWwn,ibRmiqj (B1)

where

gi structural damping coefficient of ith mode
Wn,i natural frequency of ith mode

m{ generalized mass of ith mode

bgr reference wing semichord

qi nondimensional generalized modal response

The work W done by the damping force per cycle of oscillation is given by

2m/w dq;
W =.J1 Fg — dt (B2)
0 dt

Substitution of equation (B1) into equation (B2) yields

2n/w
2 . da
W= giwn’ibR2mij‘ iq — dt (B3)
0 dt
Let
i = Qo,i sin wt (BY4)
ai
iqj = == do,i cos wt (B5)
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Therefore,

2 2
W = Tg;wy jbRPmidg, i (B6)

Let the work done per cycle be defined in a form equivalent to the newly
defined aerodynamic eigenvalues, that is,

1 2 2 2
W = — m2pbe2VseAg, 145, 1 = TgiWwp, 1PR°Mid0, 1 (BT)

where b, is the semichord at the control-surface midspan region, s, 1is the
control-surface span, and Xd,i is the equivalent value of the structural
damping in terms of the aerodynamic type eigenvalues. Equation (B7) yields

2
281wn,ibR2mi

A,i = ———— (B8)
ﬂprZVZSc

Define the mass ratio Mg ,j as

mj
MR,i = (B9)
TPbRZs
Substitution of equation (B9) into equation (B8) yields
bR s 2
Ad,i = 281 be/ 5o kn,e,iMR,1 (B10)

where kp o i 1is defined by

Wp,ibe
v

kn,c,i = (B11)
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For a two-dimensional strip s = s, and bg = bs. Equation (B10) reduces in

this case to

2
Ad,i = 28ikn,c,iMR,i (B12)
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Figure 20.- Variation of A with 1/k at M = 0.9 for different values of C.
Trailing-edge control system using localized damping type transfer function.
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Figure 21.- Variation of X with 1/k at M= 0.9 for different values of ky.
Trailing-edge control system using localized damping type transfer function.
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system (with Gpq = 4) using localized damping type transfer function.
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Figure 26.- Variation of i with 1/k at M = 0.9 for different values of kp.

Leading-edge—trailing-edge control system using localized damping type
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