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ABSTRACT

Jet/flap interaction acoustic data obtained statically from a model-
scale study of STOL-OTW configurations with a conical nozzle mounted
above the wing and using various external deflectors to provide jet-flow
attachment are correlated. The acoustic data are correlated in terms
that consider the jet/flap interaction noise contributions associated
primarily with fluctuating lift, trailing edge, and configuration wake
noise sources. Variables considered include deflector geometry, flap
setting and wing size. Finally, the configuration overall noise levels
are related to static lift and thrust measurements in order to provide
insight into possible acoustic/aerodynamic performance trade-off benefits.

INTRODUCTION

One method for achieving STOL for aircraft is to mount the engines
over the wing and employ external jet-flow deflectors to vector the ex-
haust flow toward the wing/flap surfaces (fig. 1). Aeroacoustic data
obtained at model scale for several such configurations using a conical
nozzle are given in reference 1. The variables that were considered in
that study included deflector geometry (size and angle setting), flap
setting, jet velocity, and wing/flap size.

The present study correlates the jet/flap interaction acoustic re-
sults from reference 1. Three jet/flap interaction noise sources are
analysed independently in terms of the individual source OASPL and the
primary configuration variables. The frequency relationships at which
the peak SPL values occur for each noise source are also given. Finally,
the overall configuration noise levels are related to the static lift
and thrust measurements given in reference 1 in order to guide the as-
sessment of trade-off between acoustic and aerodynamic performance.

The acoustic data were obtained using a conical nozzle with a di-
ameter of 5.2 cm. Flap settings of 20° (takeoff) and 60° (landing)
were used with wing chords (flaps retracted) of 33 and 49.5 cm, both
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having a span of 61 cm (ref. 1). The nozzle was located at 0.1 chord
(flaps retracted) downstream of the wing leading edge and 0.1 chord
above the wing surface. The wing sizes are referred to herein as base-
line (33 cm) and 3/2-baseline (49.5 cm). The acoustic data, including
spectral plots, were obtained at far-field radiation angles of 60°, 90°,
and 120° measured from the inlet axis. All acoustic data were obtained
at nominal cold-flow jet Mach numbers of 0.6 and 0.8. Aerodynamic data
obtained included velocity profiles measured at the trailing ocdge. The
1lift and thrust force measurements, were presented in reference 1.

APPARATUS AND PROCEDURE
Facilities
Aerodynamic facility. - Thrust and lift forces were obtained at

nominal jet exhaust velocities of 200 and 266 m/sec as described and re-
ported in reference 1.

Extensive jet velocity profiles were obtained at the trailing edge
of the wing/flap surfaces. Measurements were made with a traversing
pitot tube having an entrance cone angle of 60° to help minimize flow
angularity effects resulting from the jet flow over the curved surfaces.
A vane on the probe was used to set the jet flow angle for each traverse.
When the flow angle exceeded the angularity capability of the pitot tube,
the tube angle to the local flow was adjusted to provide suitable data.
The total pressures measured were plotted directly on an x-y plotter.

Acoustic facility. - The acoustic data were taken at the outdoor
facility described in reference 2. In this facility, dry pressurized,
ambient temperature air was supplied to the nozzle/wing configurations
through a control valve and valve-noise quieting system. This system
consisted of a perforated plate, a four-chamber baffled muffler, and
approximately 4.6 m of 10.16 cm diameter piping.

Acoustic data were obtained with a horizontal 3.05 m radius semi-
circular array of microphones centered on the nozzle exhaust plane. The
1.27-cm omnidirectional condenser microphones used were in a plane level
with the nozzle centerline. The microphones were at 60°, 90°, and 120°
measured from the inlet. A mat of 15 cm thick acoustic foam was placed
on the ground (asphalt) inside the microphone array to minimize ground
reflections. The microphones were 1.52 m above ground level.

Microphone signals were analyzed by a 1/3-octave-band spectrum
analyzer. The analyzer determined sound pressure level (SPL) spectra
referenced to 2x10~5 N/m2.

Acoustic measurements were taken for approximately the same jet ex-
haust velocities as those for the aerodynamic measurements; i.e., 200 and
259 m/sec (jet Mach numbers of 0.6 and 0.8, respectively). All flow data
for the acoustic tests were taken at cold-flow, ambient temperatures near
288 K.



e

Model Description

Nozzle and deflectors. - The test nozzle consisted of a conical
nozzle with a 5.2 cm diameter exit (fig. 2).

The deflector (fig. 2) was secured by two frames or 'tracks"
attached to the nozzle. The deflector could be pivoted to various
angles relative to the nozzle centerline. Dimensions of the deflectors
used are given also in figure 2. All deflectors had a span of 7.0 cm
(1.35 times the nozzle diameter). This geometry was chosen as repre-
sentative of a deflector width which could be stowable within & prac-
tical engine nacelle,

Wings. - The wings (shielding surfaces), with pertinent dimensioms,
are shown schematically in figure 3. The surfaces consisted of metal
plates secured to wooden ribs, and were shaped to approximate the upper
surface contours of the airfoils with the 20° and 60° flap settings used
in reference 1. All wings had a span of 61 cm. The nozzle exit was po-
sitioned at the 0.1 chord point of each wing and at a height of 0.1
chord above the baseline wing. The 0.1 chord point is based on the wing
chord with flaps retracted. The equivalent flaps-retracted chord sizes
for these wings are 33 and 49.5 cm. The wings are referred to by the
flap setting of 20° and 602, and their sizes are referred to as baseline
(33 cm) and 3/2-baseline (49.5 cm).

ANALYSIS

The general approach taken and considerations included in corre-
lating the jet/flap interaction noise sources are summarized in the fol-
lowing sections.

Spectra

The variations of spectral shapes associated with jet/flap inter-
action noise (low frequencies; i.e. < 5000 Hz) for the OTW configurations
tested are schematically illustrated in figure 4. The average spectra
obtained for the various deflector geometries (size and angle) for each
basic wing/flap combination are shown. The spectra in figure 4 are super-
imposed in order to illustrate local spectral shape differences; no con-
sideration is given in the figure to actual frequencies and sound pressure
levels. It is apparent that significant spectral shape differences exist
for the configurations shown, particularly at lower frequencies (<1000 Hz).

Examination of the spectral plots in reference 1 suggested the indi-
vidval jet/flap interaction noise sources shown in figure 5. The three
sources shown are identified herein as: (1) noise caused by fluctuating
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1ift at the wing/flap surface (I); (2) noise associated with the jet flow
at the flap trailing edge (II); and a tone-like or haystack noise source
(I1I) thought to be related to periodic wake shedding similar to the phe-
nomenon reported in reference 3. Hereinafter, noise source III will be
referred to as wake noise. Also shown for reference in figure 5 is the
nozzle-only spectral shape.

A fourth noise source that peaked in the 6-9000 Hz range (not shown
in fig. 5) was evident for some configuration geometries (ref. 1). This
source was identified as being associated with the deflector. The data
correlation of this source is not included in this paper, which is limited
to the lower frequency jet/flap interaction noise sources.

For these three jet/flap interaction noise sources (I to III), spec-
tral shapes were evolved for each source by considering all the data of
reference 1. The spectral shapes selected are given in figure 6 in terms
of the reduction in sound pressure level with respect to that at the peak
frequency for each source, (SPL-SPLP) as a function of 1/3-octave bands.

With the use of the spectral shapes shown in figure 6, OASPL values
for each noise source were calculated for each test condition and config-
uration. The calculated OASPL values were then plotted as a function of
the jet velocity ratio, Uy/Us, determined from the velocity contours at
the trailing edge. (Velocity profiles, in terms of local Mach numbers,
normal to the trailing edge at the nozzle centerline are given in Appen-
dix A.) A representative plot of the overall sound pressure level for
the trailing edge noise source (II) as a function of Uy/U; 1s given in
figure 7. From such plots, parameters were evolved to correlate empiri-
cally the measured acoustic data for each noise source in terms of flow
and geometry variables. These variables included jet velocity, wing
size, flap setting, deflector size (streamwise length), and characteris-
tic flow regime dimensions and velocities at the flap trailing edge. The
important jet flow regime dimensions and characteristics are shown sche-
matically in figure 8 and include the following: free shear layer thick-
ness, Ge, total shear layer thickness, 6*, boundary layer thickness, 6pL,
peak flow velocity, Uy, and 0.5 Uy. The various jet flow thicknesses
used to correlate data were obtained from the velocity profiles given in
Appendix A.

Frequency

The frequencies (fP) at which the maximum sound pressure level was
obtained for each jet/flap interaction noise source are expressed by the
following relationships. For the fluctuating 1ift noise source (1) the

frequencies at the peak sound pressure levels could be correlated by ,

U
f1,p = 0.216 7} «/%'(1 + sin a) (1)
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Similarly, for the trailing edge noise source (II),

Uj gD
fII,P = 0.540 _DJ- z (l + sin G) (2)

For the wake noise source (III) the following equation was developed,

Ca [D

U D
= 0.0667 4 iy NT (3)

f111,p

Note that the usual Strouhal dependency on jet velocity does not occur
for this noise source; rather a dependency onQ’Uj was cobserved.

Many of the measured spectra contained a tone near 1000 Hz. This
tone is believed to be associated with the natural frequency of the
jet (ref. 4).

CORRELATION RESULTS

The correlation of the OTW acoustic data are presented for each
noise source in the following sections. All correlations will be de-
veloped and shown at 6 = 90°; the variation with radiation angle will
be discussed separately. The trailing edge noise source (II) will be
discussed first because this is the most important community jet/flap
interaction noise source when the present data are scaled to a full-
size aircraft. Then the fluctuating 1ift and wake noise sources (I
and III, respectively) will be discussed. These latter sources appear
to be less important to community noise, but can be significant with
respect to structural vibration, fatigue, and cabin interior noise
considerations.

Trailing~Edge Noise Source

Attached flow. - The OASPLTg correlation of the trailing edge noise
source for a radiation angle, 8, of 90° is shown in figure 9 as a func-
tion of the jet velocity ratio, UM/Uj for jet Mach numbers of 0.6 and
0.8. The ordinate considers configuration size by the inclusion of two
terms, the nozzle size and the wing/flap surface length. The flap set-
ting is also included as is the jet velocity (the latter with an expon-
ent of 7.0). Most of the data correlate on a curve given by (UM/Uj)Z.
The data that fall on the curve shown in figure 9 are for cases in which
the jet flow over the flap is well attached to the surface at the trail-
ing edge. The data below and to the right of the curve shown, exhibit
varying degrees of jet flow separation from the flap surface. An exam-
ple of this effect of partial flow separation on the acoustic character-
istics is illustrated in figure 10 in which data taken from figure 9 is
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identified in terms of deflector angle and the 0.5 Uy velocity contours
at the flap trailirg edge. With the jet flow well attached to the sur-
face (B, 409; circle symbol), the velocity contour is small in height
above the trailing edge and spread out in the spanwise direction. As
the deflector angle, B, is progressively decreased to 25°, the velocity
contours increase in height and become much narrower in the spanwise
direction. In particular, the deflector with a B of 25° (diamond
symbol) shows significant flow separation. Thus, the relationships
shown in figure 9 apply only for well attached flow, such as can be ex-
pected with flap settings in the takeoff mode (low flap angles) or with
very large wing/flap chords in the landing mode (high flap angles).

Attached flow and partially separated flow. - The correlation of
the trailing-edge noise source OASPL was made by consideration of the
flow regimes at the trailing edge as a means to collapse the attached
flow and partially separated flow data. The data reduction was di-
rected toward obtaining a factor that included measured flow variables
in the noz=»le centerline plane, such as &%, 6., and §&pL. These con-
siderations came about from an examination of these variables that
showed an interrelationship between them and the trailing edge velocity
contour shape, 6*/w* (not shown).

The best corrclation of the trailing edge noise source for the
present configurations, is shown in figure 1l. The factor correlating
the acoustic data obtained with attached flow and that obtained with
partially separated flow is given by:

4

SBL n)

where &% = §, + 6p+ With a few exceptions, very good correlation of
the data (+1 dB) was obtained.

4)

Fluctuating Lift Noise Source

Attached flow. - The OASPL,, correlation of the fluctuating 1lift
noise source for 6 = 90° 1is shown in figure 12 as a function of
Uy/U; for jet Mach numbers of 0.6 and 0.8. The ordinate is similar
to tgat used for trailing edge noise (fig. 9); however, the exponents
for Uy, L/D and a are somewhat different. Again, the data that
fall on the curve shown in the figure are those with well attached flow
to the flap surface at the trailing edge. Note that the Uy/U; expon-
ent is now 3 compared with a value of 2 for the data in figure 9. The
data below and to the right of the curve show flow separation effects on
acoustic characteristics similar to those discussed for figures 9 and 10.

Attached flow and partially separated flow. - The best correlation
of the data with partially separated flows with that for fully attached
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flows was obtained through use of the same correlation parameter, Fj,
that was used to correlate the trailing edge noise source. The corre-
lated fluctuating lift noise data are shown in figure 13 where the
abscissa is again (Uy/Uy)/(F1). The data generally are correlated with
+1.5 dB.

Wake Noise Source

Attached flow. - The OASPLy correlation of the wake ncise as a
function of Uy/U; 1is shown in figure 14. For the must part, only the
data for the 3 Z-gaseline wing using the 7.9-cm deflector are correlated
on the 4—power slope curve shown. The remaining data, except for a few
exceptions, require an additional correlation parameter to achieve col-
lapse of the data on a single curve. It should also be noted that the
data at M; = 0.8 for the baseline wing with a 20° flap setting (not
shown) showed little difference from that obtained with M, = 0.6. The
deviations of the data from the curve shown in figure 14 age again at-
tributed to the effect of partial flow separation.

Attached flow and partially separated flow., - By considering the
overall variations in acoustic characteristics, a correlation parameter
was evolved that correlated the wake noise data reasonably well, except
for the anomaly noted previously (baseline wing. 20° flap setting,
nj = (0.8). The correlation parameter selected is given by:

8 4
Fp=1+ (20.25 %*L%) (5)

where, again, 6* = 6, + ép;.

The correlation of OASPLy as a function of (UM/Uj)/(Fz) is shown in
figure 15. The data, except for one point, correlate within +1.5 dB.

Radiation Angle

The data and correlations thus far considered are only for a radia-
tion angle of 90°. The spectral data of reference 1 indicate that the
OASPL values for the three jet/flap interaction noise sources differ at
radiation angles other than 90°. Thevariation of the OASPL values with
radiation angle, averaged for all the configurations, are shown in fig-
ure 16 as differences from the OASPL value at 6 = 90° for the three
noise sources. In general, the OASPL at 6 = 60° was less than that at
90°, by 1% to 3% dB depending on the specific noise source. At 6 = 120°,
the OASPL values were slightly higher (<1 dB) to an estimated 3 dB lower
(trailing edge noise source, 1I) than those measured at 6 = 90°. The
lower OASPL values were associated with a flap setting of 60° while the
higher OASPL values were associated with a flap setting of 20°. It should
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be noted that the trailing edge noise source OASPL valued for a flap set-
ting of 60° is estimated because the spectra were contaminated by the jet
tone at 1000 Hz and deflector noise. The latter effect on the spectra
was particularly difficult to separate out at 6 = 60°.

The data trends shown in figure 16 can be estimated by use of the
following relationships in which the OASPL at any 6 1is referenced to
that at 6 = 90°. The variation of AdB with radiation angle for both
t..e wake (III) and fluctuating lift (I) noise sources is given by:

OASPL - OASPLgno = 10 log sin2/ 3[—2—]- 10 log sin?/8 [9;0} (6)

where
a=(1+ cos6u)

The variation of OASPL - 0ASPLggo (AdB) with radiation angle for the trail-
ing edge (II) noise source is given by the same relationship as that in
equation (6) except that the equation is written as 20 log rather than as
10 log.

Concluding Remarks on Source Correlation Results

The data scatter with respect to the individual noise source correla-
tions is evident in figures 9 and 11 to 15. It is also of interest, how-
ever, to examine on a spectral basis, the data scatter of the measured con-
figuration data with respect to the summed correlations. Typical results
of such comparisons are shown in figures 17 to 20. The cases selected are
for minimum and near maximum values of Uy/Uj. Minimum Uy/U; values
were generally obtained with the 7.9-cm deflector set at B = 40° while
maximum Uy/U; values were generally obtained with the 4.1lé4-cm deflector
set at B = 250 or 30°. In figures 17 to 20, the individual noise sources
are shown by dashed curves and the antilogarithmic summations of the sources
are shown by the solid curves. It is apparent that the summed curves com-
pare reasonably well with the measured data, particularly for the attached
flow cases. The high data point near 1000 Hz, as pointed out previously,
is believed to be caused by the jet "screeching" at its natural frequency.
With the 3/2-baseline wing and for some conditions with the baseline wing,
the high frequency measured data are above the calculated curve because of
the presence of deflector noise, the correlation of which is beyond the
scope of the present work.

AEROACOUSTIC RELATIONSHIPS

From the aerodynamic data given in reference 1, the relationship of
the overall OASPL for each configuration can be related to the associated
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1ift and thrust. Typical plots of such relationships of the overall OASPL
as a function of 1i1ft, thrust, and flow turning efficiency, n are shown
in figures 21 and 22 for 6 = 90°, It is apparent that the maximum OASPL
oceurs, unforcunately, when the lift is maximized and the thrust is at a
high level. It should be noted that the maximum thrust and flow turning
efficiency, n 1is obtained with the separated jet/flap flow.

Specific combinations of deflector size and angle can yield the same
aerodynamic performance and noise level. For example, in figure 21 con-
sider the open-diamond symbol (30°, 4.14 cm deflector) and tailed square
symbol (259, 7.9 cm deflector) data. The associated trailing edge velocity
profiles and noise spectra are shown in figures 23 and 24, respectively.
It is apparent that the respective deflector configurations yield the same
velocity profile and spectra in shape and level, thus accounting for the
same aeroacoustic characteristics (1ift, thrust, efficiency, and OASPL).
From a practical poirt of view, however, the larger deflector would be
heavier and more difficult to store for cruise. Thus, aerocacoustic data
presented as in figures 21 and 22 can be used to assess acoustic/
aerodynamic performance trade-offs.

CONCLUDING REMARKS

On the basis of the present work it appears that the acoustic charac-
teristics of OTW configurations using external deflectors to promote flow
attachment for STOL operation can be correlated with the flow characteris-
tics measured at the flap trailing edge and the nozzle-wing geometry. The
pertinent trailing edge flow parameters are the thickness of the shear and
boundary layers and the peak trailing edge velocity. The geometry param-
eters include the shielding surface length, deflector size, and flap
setting.

Specific combinations of deflector geometry (size and angle) can re-
duce the jet/flap interaction noise level; however, the aerodynamic per-
formance, based on static 1ift and thrust measurements, are adversely af-
fected. In general, the best aerodynamic performance for STOL is accom-
panied by the highest jet/flap interactimm noise level.

APPENDIX A - TRAILING EDGE VELOCITY PROFILES

From jet flow Mach number contour plots made normal to the flap
trailing edge (unpublished data) velocity profiles were developed at the
nozzle centerline. The procedural details used in obtaining these con-
tour plots are given in reference 5. The resulting velocity profiles,
in terms of local Mach number, are shown in figures A-1 and A-2. These
velocity profiles for the various wing/flap/deflector configurations
were used to obtain values of 6L, 6*, g, UM, and 0.5 UM. These
values, as appropriate, were then used in the data correlationms.
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The onset of partially separated flow is evident in the data from a
significant thickening of the boundary and shear layers at a given de-
flector angle (or flap setting) compared to other profiles in the same
configuration category.

Trends readily apparent from the data in figures A-1 and A-2 indi-
cate that: (1) the peak velocity at the flap trailing edge decreases
with an increase in wing size and deflector angle; (2) the larger deflec-
tor tends to delay flow separation; (3) the crailing edge peak velocity
generally decreases with an increase in flap setting; and finally, (4) the
overall shear layer thickness increases with an increase in flap setting.

NOMENCLATURE
A nozzle exhaust area, er?
c wing chord (flaps retracted)
D nozzle exhaust diameter
F1,F, flow separation parameters (defined in text)
fp peak 1/3-octave band frequency for a given noise source
L shielding surface length
L¢ wing length upstream of nozzle exhaust plane
Lp projected shielding surface length
L 1ift
L effective deflector length
M local jet flow Mach number
MJ jet exhaust Mach number
OASPL overall sound pressure level, dB re 2x10™° N/m?
OASPLc configuration overall sound pressure level, dB re 2x1073 N/m?

OASPL,, ~ fluctuating lift noise source (I) OASPL, dB re 2x10™> N/m’
OASPLTE trailing edge noise source (I1) OASPL, dB re 2x1077 N/mz

OASPLy, wake noise source (III) OASPL, dB re 2x10~° N/m2
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sound pressure level, dB re 2x10™ N/m2

peak sound pressure level, dB re 2x10~5 N/m?

thrust

jet thrust, nozzle alone

jet exhaust velocity

maximum jet velocity at flap trailing edge

spanwise width of 0.5 Uy contour measured at trailing edge
flap setting (angle)

deflector angle

characteristic jet effux thickness at trailing edge (nozzle
centerline). See figure 8.

boundary layer thickness at trailing edge. See figure 8.
free shear layer thickness at trailing edge. See figure 8.
characteristic shear layer thickness at 0.5 UM at trailing

edge. See figure 8.

flow turning efficiency,

acoustic radiation angle measured from nozzle inlet

jet/flap interaction noise source identifications
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