HOH

IBRARY KAFB, NN

NSEG - A SEGMENTED MISSION ANALYSIS PROGRAM FOR LOW AND HIGH SPEED AIRCRAFT

Volume II - Program Users Manual

00 0 - 28(

2

4 5 < Z

時間目に

D. S. Hague and H. L. Rozendaal

Prepared by **AEROPHYSICS RESEARCH CORPORATION** Bellevue, Wash. 98009 for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION · WASHINGTON, D. C. • SEPTEMBER 1977

TECH LIBRARY KAFB, NM

 Report No. NASA CR-2808 Title and Subtitle NSEG - A Segmented Mission Analysis Program for Speed Aircraft. Volume II - Program Users Manuary Author(s) D. S. Hague and H. L. Rozendaal Performing Organization Name and Address Aerophysics Research Corporation Bellevue, WA 98009 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 	Low and High al 10. Work Unit No. 11. Contract or Grant No. NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
 NASA CR-2808 4. Title and Subtitle NSEG - A Segmented Mission Analysis Program for Speed Aircraft. Volume II - Program Users Manu. 7. Author(s) D. S. Hague and H. L. Rozendaal 9. Performing Organization Name and Address Aerophysics Research Corporation Bellevue, WA 98009 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C.	Low and High al 5. Report Date September 1977 6. Performing Organization Code 8. Performing Organization Report No. 10. Work Unit No. 11. Contract or Grant No. NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
 4. Title and Subtitle NSEG - A Segmented Mission Analysis Program for Speed Aircraft. Volume II - Program Users Manu 7. Author(s) D. S. Hague and H. L. Rozendaal 9. Performing Organization Name and Address Aerophysics Research Corporation Bellevue, WA 98009 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 	Low and High 5. Report Date September 1977 al 6. Performing Organization Code 8. Performing Organization Report No. 10. Work Unit No. 11. Contract or Grant No. NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
 NSEG - A Segmented Mission Analysis Program for Speed Aircraft. Volume II - Program Users Manu 7. Author(s) D. S. Hague and H. L. Rozendaal 9. Performing Organization Name and Address Aerophysics Research Corporation Bellevue, WA 98009 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 	Low and High al 6. Performing Organization Code 8. Performing Organization Report No. 10. Work Unit No. 11. Contract or Grant No. NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
Speed Aircraft. Volume II - Program Users Manu 7. Author(s) D. S. Hague and H. L. Rozendaal 9. Performing Organization Name and Address Aerophysics Research Corporation Bellevue, WA 98009 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C.	al 6. Performing Organization Code 8. Performing Organization Report No. 10. Work Unit No. 11. Contract or Grant No. NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
 Author(s) D. S. Hague and H. L. Rozendaal Performing Organization Name and Address Aerophysics Research Corporation Bellevue, WA 98009 Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 	8. Performing Organization Report No. 10. Work Unit No. 11. Contract or Grant No. NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
 D. S. Hague and H. L. Rozendaal 9. Performing Organization Name and Address Aerophysics Research Corporation Bellevue, WA 98009 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 	10. Work Unit No. 11. Contract or Grant No. NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
 9. Performing Organization Name and Address Aerophysics Research Corporation Bellevue, WA 98009 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 	10. Work Unit No. 11. Contract or Grant No. NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
 9. Performing Organization Name and Address Aerophysics Research Corporation Bellevue, WA 98009 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 	11. Contract or Grant No. NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
Aerophysics Research Corporation Bellevue, WA 98009 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C.	 11. Contract or Grant No. NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
Bellevue, WA 98009 12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C.	NAS1 - 13599 13. Type of Report and Period Covered Contractor Report
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C.	13. Type of Report and Period Covered Contractor Report
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C.	Contractor Report
National Aeronautics and Space Administration Washington, D.C.	
Washington, D.C.	14. Sponsoring Agency Code
▼ *	
15. Supplementary Notes	
Langley Technical Monitor: Walter A. Vahl	
Volume II of Final Report	
16. Abstract	
Program NSEG is a rapid mission analysis code	e based on the use of approximate flight path
equations of motion. Equation form varies with	the segment type, for example, accelerations,
climbs, cruises, descents, and decelerations. R	Realistic and detailed vehicle characteristics
are specified in tabular form. In addition to i	its mission performance calculation capabilities.
the code also contains extensive flight envelope	e performance mapping capabilities. For example,
rate-of-climb, turn rates, and energy maneuverab	wility parameter values may be manped in the Mach-
altitude nlane Annrovimate take off and landin	analyses and also ponformed. At high speeds
contribute plane. Approximate take off and fandin	ig analyses are also performed. At high speeds,
centrilugar filt effects are accounted for. Ext	censive turbojet and ramjet engine scaling
procedures are incorporated in the code.	
· · ·	
7. Key Words (Suggested by Author(s))	18. Distribution Statement
17. Key Words (Suggested by Author(s)) Mission Analysis: Trajectories: Air-breathing	18. Distribution Statement
17. Key Words (Suggested by Author(s)) Mission Analysis; Trajectories; Air-breathing Propulsion: Turboiets: Ramiets	18. Distribution Statement Unclassified - Unlimited
 Key Words (Suggested by Author(s)) Mission Analysis; Trajectories; Air-breathing Propulsion; Turbojets; Ramjets 	18. Distribution Statement Unclassified - Unlimited
17. Key Words (Suggested by Author(s)) Mission Analysis; Trajectories; Air-breathing Propulsion; Turbojets; Ramjets	18. Distribution Statement Unclassified - Unlimited Subject Category 01
 17. Key Words (Suggested by Author(s)) Mission Analysis; Trajectories; Air-breathing Propulsion; Turbojets; Ramjets 19. Security Classif. (of this report) 20. Security Classif. (of this 	18. Distribution Statement Unclassified - Unlimited Subject Category 01 page) 21. No. of Pages 22. Price*
 Key Words (Suggested by Author(s)) Mission Analysis; Trajectories; Air-breathing Propulsion; Turbojets; Ramjets Security Classif. (of this report) Unclassified Unclassified 	18. Distribution Statement Unclassified - Unlimited Subject Category 01 page) 21. No. of Pages 22. Price* 174 \$6.75

.

For sale by the National Technical Information Service, Springfield, Virginia 22161

1

· . .

ŝ

.

. .

.

.

_

--

, —

Section	<u>I</u>	Page
1	INTRODUCTION	1
2	PROGRAM STRUCTURE	2
3	SUBROUTINE LIST	3
4	DATA DECK STRUCTURE	23
S	ATMOSPHERE OPTIONS	25
	5.1 Data Input for Atmosphere	25
6	PROPULSION	27
	 6.1 Simplified Propulsion Systems - Introduction 6.1.1 Relevant Subroutines 6.1.2 Data Input	27 28 29
	6.1.2.1 General	29
	6.1.2.2 Dry Power, CASEN = 1	29
	6.1.2.3 Wet Power, CASEN = 2	30
	6.1.2.4 Maximum Power, CASEN = 3	31
	6.1.2.5 Automatic Propulsion Switching, CASEN = 4	31
	6.2 Turbojet, Ramjet and/or Combined Engines with Inlet Pre-Compression Effects	
	(Combined Engine Option)	32
	6.2.1 Analytical Description	32
	6.2.1.1 Freestream Properties	
	6 2.1.2 Flowfield Conditions at Station 1	33
	6.2.1.3 Inlat and Pam Force Computations	33
	6.2.1.4 Flowfield Conditions at Station 2	22
	6.2.1.5 Turbojet Airflow, Fuel Flow, and	54
	6.2.1.6 Ramjet Airflow, Fuel Flow, and	34
	Inrust Computations	37
	0.2.2 Usage	39
	6.2.3 Input Data for Dual Engine Option	40
7	AERODYNAMICS	45
	7.1 Introduction	45
	7.2 Aerodynamic Subroutines	46
	7.3 Data Input	46
	7.3.1 General	46
	7.3.2 Aerodynamics Option 8	47
	7.3.3 Aerodynamics Option 9	48
8 ·	LANDING AND TAKE-OFF CALCULATION	50
	8.1 Data Input, Take-Off	50
	8.2 Data Input, Landing	51

TABLE OF CONTENTS

Section

Page

9	MISSION SEGMENT OPTIONS	52
	9.1 Option 1. Climb or Descent Path 9.2 Option 2. Maximum Rate of Climb or Maximum	53
	Range Descent Path	55
	9.5 Option 5. Radius Mission Option	57
	9.5 Option 5. Cruise Climb for Specified Range	58
	9.6 Option 6. Constant Altitude Cruise to a	59
	9.7 Option 7. Constant Altitude Cruise for a	60
	9.8 Option 8. Constant Altitude Cruise for a	01
	9.9 Ontion 9. Buddy Refuel	62 63
	9.10 Option 10. Mach-Altitude-Weight Transfer	65
	9.11 Option 11. NSEG Logic Option	66
	9.12 Option 12. Instant Weight Change	67
	9.13 Option 13. Instant Mach-Altitude Change	68
	9.14 Option 14. General Purpose and Point Condition Calculation Option	69
	9.15 Option 15. Iterate to Fly a Specified Distance	73
	9.16 Option 16. Climb or Accelerate	74
	9.17 Option 17. Fuel Weight Change for Time, Turn, Combat, etc.	76
	9.18 Option 18	77
	9.19 Option 19	78
	9.20 Option 20. Fuel Allowance	79
	9.21 Option 21. Dual Engine Scaling	80
10	9.22 Option 22. Generalized Iteration Control Segment	82
		84
11	ALPHABETIC LIST OF INPUT AND INTERNAL VARIABLES 8	85
12	FLIGHT PATH INEQUALITIES 11	17
13	GENERALIZED PERFORMANCE ANALYSIS 11	18
	13.1 Contour Plotting Data and Options 11	18
	13.1.1 Specific Energy Time Derivative, E 12	20
	13.1.2 Specific Energy/Fuel Flow, E/m 12	20
	13.1.3 Lift/Drag, L/D 12	20
	13.1.4 Range Factor, R _F	20
	13.1.5 Thrust 12	20
	13.1.6 Drag 12	21
	13.1.7 Specific Fuel Consumption, SFC 12	?1
	13.1.8 Fuel Flow Rate. m	1

TABLE OF CONTENTS

Section

Page

13	(cont'd)	13.1.9	Specific Energy	121
		13.1.10	Lift/(Thrust-Drag), L/(T-D)	121
		13.1.11	Turn Radius	122
		13.1.12	Time to Turn	122
		13.2 Organize	ed Mission Segments and Flight Envelope	123
		13.2.1	Flight Envelope Calculation	123
		13.2.2	Climb Path History	123
		13.2.3	Endurance vs. Weight at Several	
			Altitudes	123
		13.2.4	Optimum Cruise Climb vs. Weight at	
			Various Mach Numbers	123
		13.2.5	Constant Altitude, Constant Mach Cruise	
			at Various Weights	124
		13.2.6	Take-Off and Landing Calculations	124
		13.2.7	ML/D Calculation at Given Altitude,	
			Various Mach Numbers and CL Values	124

.

v

LIST OF FIGURES

 $\cdot |$

Figure Number	Title	Page
1	NSEG Overlay Structure	125
2	Basic NSEG Data Output	126
3	Some Possible Additional NSEG Data Blocks	127
4	Flow Chart, ENCASE	128
5	Flow Chart, ENDAT	129
6	Flow Chart, ENSET	132
7	Reference Stations and Geometry	135
8	Spillage Lift and Drag Computations	136
9	Typical Table Data	137
10	Flow Chart, Subroutine ENGINS	140
11	Flow Chart, Subroutine DRAG	161
12	Flow Chart, SACNS1	162
13	Flow Chart, Subroutine SACSN2	163
14	Flow Chart, SACSP	164
15	Flow Chart, SACTP	165
16	Path Finder Options of NSEG Mission Option 1	166
17	ЕДОТ Мар	167
18	Flow Chart, FLITEN	168

vi

.

PREFACE

The NSEG program was originally constructed by Mr. L. H. Leet of the United States Air Force Aeronautical Systems Division, Wright-Patterson Air Force Base. The code was subsequently modified and extended by Aerophysics Research Corporation under contract F33615-73-C-3039. The current version of the NSEG (Version III) extends the program applicability to higher speed (hypersonic turbo-ramjet) aircraft. It also includes various improvements generated by Mr. David T. Johnson of the Air Force Flight Dynamics Laboratory. The authors wish to extend their thanks to Mr. Walter Vahl of NASA for his extensive assistance during formulation and checkout of the turbo-ramjet propulsion system model now available in NSEG. The analytic basis of the turbo-ramjet model is due to Mr. Vahl.

Mr. D. S. Hague of Aerophysics Research Corporation served as project leader for the present study. Dr. H. L. Rozendaal provided specialist support in the fields of propulsion system analysis and computer sciences. Mr. R. T. Jones, formerly of Aerophysics Research Corporation, has also made significant contributions to the NSEG code in studies preceding the present one.

Additional details and copies of the program deck can be obtained from NASA Langley Research Center.

R

NSEG - A SEGMENTED MISSION ANALYSIS PROGRAM FOR

-3.

a figura e superior de la figura da Apresidade de la composición de la comp

LOW AND HIGH SPEED AIRCRAFT

D. S. Hague and H. L. Rozendaal

AEROPHYSICS RESEARCH CORPORATION

1. INTRODUCTION

Program NSEG is a rapid mission analysis code based on the use of approximate flight path equations of motion. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed vehicle characteristics are specified in tabular form and a variety of layered atmosphere options are available. The mission specification is open-ended in that the upper limit on the number of flight segments to be included in a mission profile (currently one hundred and forty-nine) can be increased by increasing the size of a single common block (CØMTAB) above its current size of 3000 words. The code contains an English language oriented input procedure for describing the mission segment sequence to be employed. In addition to its mission performance calculation capabilities the code also contains extensive flight envelope performance mapping capabilities. For example, rate-of-climb, turn rates, and energy maneuverability parameter values may be mapped in the Mach-altitude plane. Where suitable graphics capabilities exist these maps may be drawn by machine in the form of contour plots.

The code contains several approximate flight path optimization capabilities based on Rutowski energy-like criteria. These flight path optimization formulations permit inclusion of minimum time or fuel flight segments and maximum range segments during climb or descent segments. Approximate take off and landing analyses are also performed. At high speeds centrifugal lift effects are accounted for. Extensive turbojet and ramjet engine scaling procedures are incorporated in the code. Take off and landing analyses are also available which employ a high lift aerodynamic analysis model based on the Air Force Flight Dynamics Laboratory DATCOM method. Alternatively, user supplied high lift aerodynamics can be employed.

This report is Volume II of 3 volumes. Total program documentation consists of:

Volume I. Theoretical Development Volume II. Program User's Manual Volume III. Test Problems

2. PROGRAM STRUCTURE

NSEG has eight overlays. Program structure is defined in Figure 1. The main control program is NSEG II. This program calls the next level of overlay, 1.0, 2.0, and 3.0 directly. Overlays 3.1 and 3.2 are, in turn, directly called from the program MISION of overlay 3.0. The remaining two overlays, 3.3 and 3.4, are called from subroutine FLITEN which is also directly called from program MISION.

Gross functions of each overlay are as follows:

OVERLAY 0.0, NSEG II - Main controlling program.

OVERLAY 1.0, INISEG - Initialize the program including common blocks and input directories.

OVERLAY 2.0, INSEG - Read the input data.

OVERLAY 3.0, MISION - Control program for mission and performance calculations.

OVERLAY 3.1, OUTATM - Controls printout of the atmospheric properties employed.

OVERLAY 3.2, ENSEG - Controls generalized performance calculations.

OVERLAY 3.3, FLIRAN - Generates data for performance contour maps.

OVERLAY 3.4, FLIMAP - Produces performance contour maps.

The program consists of approximately ten boxes of cards (twenty thousand source cards). Coding is predominantly written in the algebraic FORTRAN language. The program currently operates on the CDC 6400 and 6600 series computers. Core requirement depends strongly on the computer center at which the program is run. At Lawrence Radiation Center the retractable binary loads are 115000₈, at the Control Data Cybernet Centers 135000₈, and at Langley Research Center 150000₉.

Constants utilized in the NSEG code employ English Units (lb., ft., sec., naut. mi., and degrees Rankine) exclusively. It is imperative therefore that input quantities employ English Units; constants utilized in the illustrations reproduced in the text reflect this convention. Provisions of NASA Policy Directive (NPD 220.4) have been waived for those portions of this report that pertain to the NSEG computer code.

3. SUBROUTINE LIST

- AHMACH Writes out the z array which contains scaled engine data vs. Mach number and altitude.
- ALTA Entry point in ATMOSD

ł

- ASCALE Constructs the z array from the atmosphere routine
- ATMOSD Controls atmospheric property calculations
- ATMOS3 1962 standard atmosphere (Original NSEG)
- ATMOS9 Arbitrary temperature profile atmosphere
- ASRCH Looks for a table location associated with a given starting location in common block /TABNAM/ which contains names and locations of input table names and data, respectively.
- AUGMT Dummy routine to supply thrust augmentation

BCDDEC Part of input procedure

BCDINT Part of input procedure

. . . . **. .**

BERAN Calculates altitude for maximum range factor given Mach number and weight

BSCALE Assists in setting up the Z array (see AHMACH) from the atmosphere routine

CBFUEL Computes time to turn through specified angle; in Option 17 Combat

CHANGE Sets NSR to zero

CHECK Provides instantaneous conditions when lift equals weight

.

CHMACH Writes out the z array (see AHMACH)

CHRNUM Detects illegal input characters on data cards

CLIMB Calculates climbs and descents

COMPAC Compacts card images

CMAX Calculates Mach number for maximum rate of climb or minimum fuel climb given altitude and weight

en interna la

CONPLT Contour plotting routine for performance maps in overlay 3.4

CRCOMP Computes range factor optional

CSCALE Sets up atmospheric z array

DBOUT Sets up tape 25

DISCØT Two dimensional table lookup subroutine

DORDER Sorts input list in alphabetic and numeric order

DRAG Aerodynamic control routine

DSERCH Carries out directory search for input

DUMPRG Dumps the RG array, the array which contains data relative to completed segments (e.g. option, range, weight, fuel, etc.)

- DUMPTZ Dumps the TZ array, the array which contains data necessary for the serial execution of flight path segments as specified by input data
- EDMHPT Locates maximum performance criteria along specific energy contour

EDCLMB Performs maximum É climb

EMAX Calculates Mach number for maximum endurance given weight and altitude

ELT Provides elapsed computer time computation

ENCASE Controls automatic selection of propulsion option.

- ENDAT Calculates thrust and specific fuel consumption
- ENERGY Computes energy maneuverability parameters at specified G-level, Mach number, weight, and altitude
- ENGINS Engine simulation subroutine for the turbojet, ramjet and/or combined engine propulsion option.

ENSEG Controls mission simulations (Program) and the second Modifies input propulsion data basis for tabular thrust and ENSET fuel flow option ERROR Reports table errors to user FCLMAX Finds C_L Max FLYMHP Flies the vehicle between two M-h points • FETCH Reads each input card Initializes vehicle data mission segment options FILLPM

FILBCD Part of input routine

5

FNLOSS User supplied routine to given propulsion losses

FUELIF Computes in-flight fuel used, its disposition, tank drop times, and fuel remaining

FILLTZ Fills the C array from the term array and gives optional print of term array. The term array is a 10 word array of segmentrelated data created by the input option selected (INXX1-INSS21). The C array contains the term arrays in serial fashion for subsequent mission execution.

FLIMHC Constant altitude-constant Mach number cruise

FLITEN Controls generalized performance calculations

FLIMAP Controls performance plots

(Program)

والمحاج والروائل والمحصور والمتارك والمترك والمراجع المتحاد

ine of the second of the second of the second s Second second

en la stressa de la seconda de la second

FLIRAN Controls generalized performance calculations

(Program)

Given weight and a set of Mach numbers, computes flight envelope

FLIXEP Computes endurance performance

FLIXPR Begins range performance calculations

8

FLIENV

FLIXCP Computes climb performance

ي. 1.1

ł

FLITOL Controls take-off and landing calculation

- FLIMLD Computes range factor performance
- FUELLD Computes initial fuel load, its disposition, and useable fuel load
- GTI112 Part of table look up routine
- GOGO Calculates constant Mach or C_L cruises where independent variable is time or distance
- HDAMPT Finds maximum of performance criteria at constant altitude

HDCLMB Flies maximum rate of climb path

HIHO Controls N dimensional table look up routine

HNSEG	Utility routine; prints out a heading identifying the NSEG program version
INIMHP	Initialize M-h point calculation
INDXCK	D etects incorrect data input names
INSEG	Controls error check in data input (Program)
IVNAME	Decomposes data input cards
INISEG	Initializes NSEG II (Program)
INITZ	Initializes the TZ array, the array which contains the data necessary for the serial execution of flight path segments as specified by input data
INIWGT	Initial weight breakdown computations
INXO1 INX22	Input routines for Options 1 through 22. Written in Macro-Fortrar language and assembled on CDC 6600 Fortran. The present program uses the CDC 6600 Fortran versions directly without the need to use Macro-Fortran
LANDIN	Provides organized print out of landing inputs
LANDNG	Performs landing calculations

¥ 1

LINES Controls the number of lines printed on each page

LISTZL Notates a plot

LNCLMB Controls linear Mach-altitude path calculation

MAP01 Prepare E map

MAP02 Prepares E/m map

MAP03 Prepares L/D Map

MAP04 Prepares range factor map, $\left(\frac{V}{SFC}\right)\left(\frac{L}{D}\right)$

MAP05 prepares thrust map

MAP06 Prepares drag map

MAP07 Prepares specific fuel consumption map

1

MAP08 Prepares fuel flow map

MAP09 Prepares specific energy map

MAP10 Prepares lift/(thrust-drag) map

MAP11 Prepares radius of turn map

MAP12 Prepares time to turn map

MAPOUT Controls map outputs

MDCLMB Flies best acceleration path

MDHPT Finds maximum performance criteria at constant Mach number

- MHPATH Draws a Mach-altitude path
- MISION Main program for Overlay 3, which performs all flight path and flight envelope calculations
- NDATA1 Directory of input data
- NDATA2 Directory of table names
- NDATA3 Extension of input data directory
- NDATA4 Contains data (temperature and pressure vs. altitude) to describe an arbitrary atmosphere used in ATMOS9
- NDTLV N-dimensional table look-up routine
- OBSHOK Given supersonic flow properties ahead of a wedge this routine computes flow properties behind the resulting shock wave. Two dimensional isentropic flow is assumed
- OPTXXI Performs Option 1 calculation, climb or descent path
- OPTXX2 Performs Option 2 calculation, maximum rate of climb or minimum sink rate

OPTXX3 Performs Option 3 calculation, radius mission option

- OPTXX4 Performs Option 4 calculation, cruise climb to specified weight
- OPTXX5 Performs Option 5 calculation, cruise climb for specified range or time
- OPTXX6 Performs Option 6 calculation, constant altitude cruise to specified end weight
- OPTXX7 Performs Option 7 calculation, constant altitude cruise for a specified range
- OPTXX8 Performs Option 8 calculation, constant altitude cruise for a given time
- OPTXX9 Performs Option 9 calculation, buddy refuel

.

OPTX10 Performs Option 10 calculation, transfer Mach-altitude weight

OPTX11 Performs Option 11 calculations, NSEG segment selection logic

and the second second

OPTX12 Performs Option 12 calculation, instantaneous weight change

- OPTX13 Performs Option 13 calculation, instantaneous Mach-altitude change at constant weight
- OPTX14 Performs Option 14 calculations, restores previous state or computes point calculation
- OPTX15 Performs Option 15 calculation, adjust range in previous segment to give specified total range
- OPTX16 Performs Option 16 calculation, climb/accelerate between specified M-h points
- OPTX17 Performs Option 17 calculations, fuel weight change in warm up, take-off, loiter, or combat

OPTX18 Performs a store drop

ł

OPTX19 Performs a tank drop

OPTX20 Performs Option 20 calculation, fuel allowance for specified time at given power setting or T/W ratio

OPTX21 Performs engine scaling when dual engine propulsion is selected

OPTX22 Range matching generalized iterative control option

OUTATM Atmosphere output control program (Program)

OUTXXX Provides output from mission segment options

OVWGTE Computes the overall weight empty including stores, tank, and pylon combinations

PAGHED Provides the output page heading

PATH Computes conditions along a climb or descent arc

PAYLOD Computes vehicle payload including store, tank, and pylon contributions

PERPLT Control program for the twelve performance maps

PHMACH Provides organized print of Z array (see AHMACH)

PICINX Mission segment input control routine

PLWDRP To be used for payload drop

PNAMES Writes directory of input names

QCLIMB Computes constant dynamic pressure climb

QBOUND Imposes dynamic pressure boundary limits on plots

RETRNW Computes aircraft return weight

RFMAX Computes Mach number and altitude combination for best range factor given weight; or Mach number for best range factor given altitude and weight RGSAVE Saves the RG array (see DUMPRG); the RG array will be printed if IPRGSV is nonzero

RNSEG Input main control program

RPOLY Computes the roots of a polynomial, given the polynomial coefficients

· . .

• . .

· •.

RUN Calculates cruise paths

SACSP Store and pylon aerodynamics

SACTP Tank and pylon aerodynamics

SACNS1 NSEG Option 1 clean vehicle aerodynamics

SACNS2 NSEG Option 2 clean vehicle aerodynamics

SEGINI Initialize segment calculation

SEGOUT Outputs segment calculations on Unit 6 and Unit 15 in observation function style

• • • •

Initializes Y, Y1, Y2, Y3 arrays SETYIC Sorts array of names into algebraic order SHELL 31.4 . . . • SHELLX Sorts array of values into numeric order SLVALU Part of table look up package Utility routine in input procedure STASH Computes the number of stores dropped and the dropped weight STORES Computes total store drop and return weights STORWT Controls table data read TABRE 17 Part of table look up routine TABUP1

TAKEOF Prints take-off data input

TAKOFF Carries out take-off calculation and outputs result

TANKS Computes current number of tanks and pylons dropped and their drop weight

TNKSWT Computes total tank drop and return weight

TLAERO Take-off and landing aerodynamics option

TLU1 Two-dimensional table look up

TOP Calculates ceiling for a given rate of climb and weight

TLU Two-dimensional table look up routine

- TSRCH Compiles starting locations for data tables in common block CØMTAB and stores these locations in common block TABNAM
- TZRGDB Writes TZ and RG arrays on Unit 25
- UNPACK Unpacks the MTZ array and writes the results and the TZ array on Unit 6
- UNIT25 Controls input and output for generalized performance calculations
- VMAX Calculates maximum Mach number for steady level flight given altitude and weight
- VOIDXX Sets weight, altitude, and Mach number from RG array
- XALT Computes altitude for a given pressure ratio
- XCEL Calculates constant altitude accelerations and decelerations
- XCLECT Selects the next mission segment option and passes on the TZ and RG arrays

XFIT2 Second order curve fit routine

XNLTST Searches card image for non-numeric character

XTRACT Decomposes card images

XXINIT Initializes the XX array

- 22

4. DATA DECK STRUCTURE

The basic NSEG data deck is presented in Figure 2. Major input blocks are

1. <u>Three TITLE cards</u>. The three TITLE cards will be used as a heading and will appear on all regular NSEG print out pages along with a page number.

HARAN TO STATE AND A MANAGER AND

- 2. <u>STCASE/TABSIZ</u>/. This data set is used to reserve space in the internal table array for the various tables to be used during the computer run.
- 3. <u>STCASE/DATA1/</u>. This data set is used to specify values for all vehicle characteristic tabular data and data used to control the print output of the program.
- 4. <u>STCASE/GENPC/</u>. This data set is used to specify data for the general performance calculations and/or performance maps. This data set is optional and need only be included if general performance calculations and/or performance maps are to be generated.
- 5. <u>STCASE/MSEG</u>/. This data set is used to specify details of the mission to be flown.
- 6. <u>RUN</u>. The run card is the indicator to the NSEG input package to stop reading data and execute the task defined by the data just processed.

Additional data cases may follow the run card; however, the following deck structure must be observed:

- 1. Each case must start with three title cards.
- 2. The STCASE/TABSIZ/ data set need not be repeated in subsequent cases unless the table sizes are to be altered. If the STCASE/TABSIZ/ data set is included in a subsequent case, then *all* tabular data must be input in that case since the starting locations for the various tables were redefined by the STCASE/TABSIZ/ data set.
- 3. The STCASE/DATA1/ data set need not be repeated in subsequent cases unless data items in that set are to be altered. It should be noted that all variables will have the same value as established by the previous case unless they are changed by a data card in the current case. Therefore, only data items whose values are to be changed need be given in the current case.

d. The STCASE/GENPC/ data set is destroyed at the end of each case; therefore, if general performance calculations are required in a subsequent case, all data necessary to define the desired performance calculations must be input each time.

Some typical examples of additional NSEG data sets are presented in Figure 3.

5. ATMOSPHERE OPTIONS

NSEG contains the original NSEG 1962 U.S. Standard Atmosphere and an arbitrary layered atmosphere in which the temperatures or temperature and pressure at the base of each layer are input. Aerophysics Research Corporation has the following atmospheric models available in NSEG format on request.

- 1. ATMOS1: 1962 U. S. Standard Atmosphere, from AFFDL Gentry Arbitrary Hypersonic Body Program
- 2. ATMOS2: 1962 U. S. Standard Atmosphere, from Langley Research Center STOP program for supersonic transport optimization
- 3. ATMOS3: 1962 U. S. Standard Atmosphere; analytic model from original NSEG
- 4. ATMOS4: 1963 Patrick Air Force Base atmosphere
- 5. ATMS59: 1959 ARDC atmosphere
- 6. ATJAN6: 1966 January atmosphere at 30° North
- 7. ATJUL6: 1966 July atmosphere at 30° North
- 8. ATMS62: 1962 atmosphere from AFFDL ATOP program
- 9. ATMOS9: arbitrary atmosphere

As noted above, only atmospheric models 3 and 9 are now an integral part of NSEG. The other atmospheric models can be added and called from ATMOSD by a simple program addition.

5.1 Data Input for Atmosphere

IPATMD	= 0, Don't print out atmosphere model = 1, Print out atmosphere model
INDATM	= 3, Use ATMOS3 = 9, Use ATMOS9
When INDATM =	9, the following additional data is required:
NHG	= Number of layers; nominally not to exceed 25
HG _i	= Array of altitude values, in feet
тм _і	= Array of temperature values, ° F absolute

· 25

Array of pressures, 1b./ft.². NOTE that pressures can be determined from sea level pressure and temperature profile. In this case set

۰.

- $HG_1 = -16505$.
- TM_i = Desired temperature profile
- $PG_1 = 3711.0839$

6. PROPULSION

6.1 Simplified Propulsion Systems - Introduction

The simplified propulsion options in NSEG provide for the computation of a vehicle's thrust force and fuel consumption primarily by table lookup procedures. Any one of three propulsion systems, dry, wet, or maximum, may be employed at any instant along the flight path. Provision is made for automatically switching from one propulsion system to another on Mach number. Alternatively, the user may directly specify which of the three propulsion systems is to be employed.

In all options the thrust force, F_N , is specified in the form

 $F_{N_i} = F_{N_i}(h, M); \quad i = 1, 2, 3$

In the first two options the fuel flow rate

$$FF = FF(PS, M, h); i = 1, 2$$

In the third option

$$\dot{F}F_3 = \dot{F}F_3(h, M)$$

In the automatic Mach number propulsion system switching mode, the following sequence is employed

$$F_{N}, \vec{FF} = \begin{cases} F_{N_{1}}, \vec{FF}_{1}; & M \leq 1.0 \\ F_{N_{3}}, \vec{FF}_{3}; & 1.0 < M \leq 3.5 \\ F_{N_{2}}, \vec{FF}_{2}; & M > 3.5 \end{cases}$$

Within the program the propulsion system input is scaled by appropriate factors to produce the following modified thrust and fuel flow data

$$(F_N)_i = F_{N_i}/DR$$
; i = 1, 2, 3
 $(FF)_i' = FF_i/(100 \times TR^{1.5})$; i = 1, 2
 $(FF)_3' = FF_3/TR^{1.5}$

where DR is the atmospheric density ratio and TR is the atmospheric temperature ratio.

In the dry and wet options (i = 1 and 2, respectively), the power setting is specified as a percentage of maximum; hence, the factor of 100 in the scaling equations for fuel flow in the cases i = 1 and 2. Again, in the dry and wet options, three power setting options are possible. These correspond to

$$F_N = \begin{cases} Maximum available in system \\ Required to equal drag \\ Specified value of power setting \end{cases}$$

The corresponding fuel flows are determined from the power setting

PS = FN/(FN Maximum Available)

It should be noted that power setting data is specified in the mission segment options of Sections $9.1 \div 9.20$ and hence does not form part of the basic propulsion system input.

6.1.1 Relevant Subroutines

The subroutines of particular significance in the simplified propulsion system calculations are listed below.

- AHMACH Used to write out the input and scaled thrust data in an organized manner. It is called from the propulsion system scaling routine ENSET.
- ASCALE Used to *scale* the input thrust data. All input thrust data for the dry, wet, and maximum thrust options are divided by density ratio. This data resides in TTAB01, TTAB03, and TTAB05. Called from ENSET.
- BSCALE Used to scale the input fuel flow data in the dry and wet options. All input fuel flow data in TTAB02 and TTAB04 is scaled by dividing by (100 × temperature ratio ** 1.5). Called from ENSET.
- CSCALE Used to scale the input fuel flow data in the maximum power option. Input fuel flow data in TTABO6 is divided by (temperature ratio ** 1.5). Called from ENSET.
- CHMACH Used to write out the input and scaled fuel flow data for the maximum thrust case in an organized manner. Called from ENSET.
- ENCASE Controls automatic propulsion system switching on the basis of Mach number. Called from ENDAT.
- ENDAT Performs the actual thrust and fuel flow calculations. It is called from a variety of mission segment and point performance calculations.
- ENSET Controls the initial propulsion system input scaling and optional print out.
- PHMACH Used to write out the input and scaled fuel flow data for the dry and wet cases in an organized manner. Called from ENSET.
- Flow charts for ENCASE, ENDAT, and ENSET are presented in Figures 4, 5, and 6. 28
6.1.2 Data Input

6.1.2.1 General

SYMBOL	DESCRIPTION
CASEN	Engine option indicator: = 1, dry = 2, wet = 3, maximum = 4, automatic selection on Mach number
FFLMIN	Minimum fuel flow
IPENDR	Raw engine data print indicator: = 0, omit raw data print = 1, print raw data
IPENDS	Scaled engine data print indicator: = 0, omit scaled data print = 1, print scaled data
NUMENG	Number of engines
PSET	Power setting indicator: = 1, maximum thrust in CASEN = 1, 2, or 3 = 2, minimum thrust in CASEN = 1, 2, or 3 = 3, specified power setting in CASEN = 1, 2, or 3
SFCFAC	Multiplier for SFC value
TSIZEF	Engine scale factor
THRMIN	Minimum thrust

6.1.2.2 Dry Power, CASEN = 1

SYMBOL	DESCRIPTION	
INDT01	Thrust table indicator: = 0, no thrust = 1, thrust data given	
TTAB01	Maximum dry thrust: $T = T(h, M)$	
ITO1X	Number of altitude values in TTAB01	
		-

SYMBOL	DESCRIPTION
ITOIY	Number of Mach number values in TTAB01
INDT02	Fuel flow table indicator: = 0, no fuel flow = 1, fuel flow data given
TTAB02	Dry thrust fuel flow Table in form of S.F.C.
	W = W(PSD, M, h)
	where PSD is per cent maximum
IT02X	Number of PSD values in TTAB02
IT02Y	Number of Mach number values in TTAB02
ITO2W	Number of altitudes in TTAB02

6.1.2.3 Wet Power, CASEN = 2

SYMBOL	DESCRIPTION
INDT03	Thrust table indicator: = 0, no thrust = 1, thrust data given
TTAB03	Maximum wet thrust: T = T(h, M)
ITO3X	Number of altitude values in TTAB03
IT03Y	Number of Mach number values in TTAB03
INDT04	Fuel flow table indicator: = 0, no fuel flow = 1, fuel flow data given
TTAB04	Wet thrust fuel flow table in form of S.F.C.
	$\dot{W} = \dot{W}(PSD, M, h)$ where PSD is per cent maximum
IT04X	Number of PSD values in TTAB04
IT04Y	Number of Mach number values in TTAB04
ITO4W	Number of altitude values in TTAB04

6.1.2.4 Maximum Power, CASEN = 3

SYMBOL	DESCRIPTION
INDT05	Thrust table indicator: = 0, no thrust = 1, thrust data given
TTAB05	Maximum power thrust table
	T = T(h, M)
IT05X	Number of altitude values in TTAB05
IT05Y	Number of Mach number values in TTAB05
INDT06	Fuel flow table indicator: = 0, no fuel flow = 1, fuel flow data given
TTAB06	Maximum power fuel flow tablein form of S.F.C.
	$\dot{W} = \dot{W}(h, M)$
	(Max. PS data only)
IT06X	Number of altitude values in TTAB06
IT06Y	Number of Mach number values in TTAB06

6.1.2.5 Automatic Propulsion Switching, CASEN = 4

When CASEN = 4.0, the propulsion option is internally switched among CASEN = 1, 2, and 3 according to Mach number as follows:

CASEN
1.0
3.0
2.0

6.2 Turbojet, Ramjet and/or Combined Engines with Inlet Precompression Effects (Combined Engine Option)

The turbojet, ramjet and/or combined engine simulation option provided in NSEG by the ENGINS subroutine provides a more realistic engine simulation option than those described in Section 6.1 due to the following features:

- 1. Inlet flow field precompression effects due to airstream flow deflection are accounted for in thrust calculations.
- 2. A more accurate description of engine performance is provided by tabular engine data. (see 6.2.3)
- 3. Turbojet only, ramjet only, or turbojet/ramjet combination engine options are provided; in-flight option selection as a function of Mach number can be employed.
- 4. Engine-related lift and drag forces are computed and accounted for in the net thrust and the desired vehicle lift.
- 5. High altitude and Mach number atmospheric properties related to engine performance are described by tabular data.

The following sections provide an analytical description of the turbojet, ramjet and/or combined engine propulsion option and complete user-related information.

6.2.1 Analytical Description

The basic assumption of two-dimensional flow is employed in the turbojet, ramjet and/or combined engine simulation subroutine. The geometry and various flow regions relevant to the simulation are shown in Figure 7. The computations performed are divided into seven main categories as follows:

- 1. Free stream properties at Station 0 which are a function of aircraft Mach number and altitude.
- 2. Flow field conditions at Station 1, aft of the wing shock.
- 3. Inlet computations which yield the turbojet inlet recovery ratio and ram drag.
- 4. Flow field conditions at Station 2, aft of the engine inlet wedge shock.
- 5. Turbojet thrust, airflow, and fuel flow computations, a function of flow field conditions at Stations 1 and 3 (at the turbojet compressor face) and throttle setting.
- 6. Ramjet thrust and fuel flow computations, a function of flow field conditions at Station 2 and M_0 .

7. Spillage drag computations, if any, are performed either in the turbojet iteration loop for the turbojet alone engine option or in the ramjet iteration loop for the ramjet alone engine option, or the combined engine option.

Details of these computations are described in the following text.

6.2.1.1 FREESTREAM PROPERTIES

For freestream conditions where $M \ge 3.5$ and altitude exceeds 19812 meters (65000 ft) real gas freestream total pressure (p_{t_0}) and total temperature (T_{t_0}) values are computed by the two-dimensional table lookup subroutine DISCOT. Linear interpolation is utilized. Plots typical of these data appear in Figure 9. Freestream total pressure in p.s.f. is then given by

$$P_t = 2116.22 * p^*$$
 (p* in atmospheres)

If the above Mach-altitude conditions are not satisfied, total temperature and total pressure values are computed by first determining freestream static conditions (p_0, T_0) from the 1962 Standard Atmosphere Subroutine ATMS62. Static enthalpy (H) and pressure ratio (p_{r_0}) are then determined from Table II, given the static temperature. Total enthalpy (H_t) can next be computed by the expression

$$H_{T} = H + (M_{0} * a_{0})^{2}/50073.2$$

Given total enthalpy, the freestream total temperature and total pressure ratio (p_{rt_0}) can be determined from Table II. Freestream total pressure is then

$$P_{t_0} = (P_{r_t_0}/P_{r_0}) * P_0$$

6.2.1.2 FLOWFIELD CONDITIONS AT STATION 1

Given the free-stream flowfield parameters at Station 0, their counterparts at Station 1 aft of the wing shock are determined by the two-dimensional isentropic shock relations (NASA Report 1135). These relationships are mechanized in the subroutine OBSHOK which performs oblique shock computations for wedge angles below the critical value and normal shock computations at higher wedge angle values.

6.2.1.3 INLET AND RAM FORCE COMPUTATIONS

Given flowfield parameters at Station 1 and the engine streamtube area, the ram drag is computed from the equation

TURBOJET RAM FORCE =
$$\rho_1 * A_{T_J} * (M_1 * a_1)^2 + A_{T_J} (P_1 - P_0)$$

turbojet. Ramjet ram forces are accounted for a priori in the ramjet specific impulse data. The ram force computed above, parallel to the vehicle wing under surface, is subsequently resolved into components in the lift and drag directions. The engine capture ratio (A_c/A_{FIILL}) is determined from Figure 9, Table III, given M.. The air flow rate captured by the inlet then becomes

$$W_{A_{c}} = W_{A_{FULL}} * (A_{c}/A_{FULL}) = \rho_{1} * A_{INLET} * M_{1} * a_{1} * (A_{c}/A_{FULL})$$

Capture ratio less than 1.0 indicates operation at a below design Mach number. As seen in Figure 7 the result of below design operation is that the wedge shock fails to intersect the inlet cowl resulting in inlet air spillage. This spillage produces forces (inlet spillage lift and drag) which are computed using a combination of continuity relationships and geometry as shown in Figure 8.

6.2.1.4 FLOWFIELD CONDITIONS AT STATION 2

Given the flowfield parameters at Station 1, conditions at Station 2 are computed using subroutine OBSHOK as in Section 6.2.1.2 above. That is, the two-dimensional flow behind the precompression (wing) surface shock is turned again through the inlet wedge angle (δ_{τ}) .

6.2.1.5 TURBOJET AIRFLOW, FUEL FLOW, AND THRUST COMPUTATIONS

For a base size turbojet, airflow and fuel flow requirements at full throttle are first determined via the one-dimensional table lookup routine FTLUP. The corresponding maximum thrust is determined via the two-dimensional table lookup routine DISCOT. The corrected airflow (WN θ/δ) requirement is determined from Table V, given the total temperature at Station 3, T_{t_2} . This value is then used to determine the turbojet airflow at any flight condition by the equation

$$W_A = (W_A) + \frac{\delta}{\sqrt{\theta}} + F_{T_J}$$

where

 (W_A)

= the base engine corrected airflow rate corrected

= P_t/2116.22, ratio of compressor face total pressure to t₃ sea level static pressure

- $\theta = T_{t_3} / 518.67$, ratio of compressor face total temperature to sea level static temperature
- $F_{T_{T}}$ = the turbojet scaling factor obtained by specifying (1) desired net thrust at sea level standard conditions or (2) desired turbojet airflow at sea level standard conditions

Note: It is assumed that
$$T_{t_2} = T_{t_2} = T_{t_1} = T_{t_2}$$
 (Figure 7).

The fuel flow rate to air flow ratio is determined from Figure 9, Table VII, given T_{t_3} . The maximum turbojet thrust to air flow rate is found from Table VI using the two-dimensional table lookup routine DISCOT, given T_{t_3} and the log to the base ten of the ratio of total pressure at Station 3 at the compressor face and a reference turbojet discharge region static pressure P_N which may be the underwing pressure or the freestream static pressure. The above pressure ratio is obtained by first determining P_{t_3}/P_{t_1} from Table IV, given M_1 , and multiplying by P_{t_1}/P_N .

The fuel flow rate, maximum thrust and specific fuel consumption are then computed as follows:

$$(W_{f})_{MAX} = W_{A} * (W_{f}/W_{A})$$
$$F_{MAX} = (F_{G}/W_{A}) * W_{A}$$
$$(SFC)_{MAX} = (W_{f})_{MAX}/(F_{N})_{MAX}$$

Where $(F_N)_{MAX}$ is the maximum net thrust of the turbojet given by the expression

$$(F_N)_{MAX} = F_{MAX} - Ram Force$$

Note that the specific fuel consumption given above has units of (Lb.Fuel/Sec)/Lb.Thrust. The non-standard time unit is employed to be compatible with subsequent weight computations in NSEG. The fuel/air ratio W_f/W_A is obtained from Table VII, given T_{t_3} .

The program is constructed to allow thrust required in the flight direction to be determined either by a turbojet throttle setting input or a thrust required input. If the throttle setting option is exercised, thrust required is computed as

$$F_R = T_J * F_N$$

where T_J is the turbojet throttle setting input. If F_R is input greater than the net thrust which the turbojet can provide in the combined engine mode, the excess thrust will be provided by the ramjet, if possible. Prior to entering the turbojet iteration loop the maximum turbojet net thrust is computed

$$(F_N)_{MAX} = F_{MAX} - RAM DRAG$$

and miscellaneous iteration parameters are initialized.

The purpose of the turbojet iteration loop is to provide the net thrust required, if possible, totally by throttling the turbojet. This procedure requires that spillage drag, a function of turbojet throttle setting, be accounted for in the net thrust, i.e.,

$$F_{T_J} = F_R = (F_{TOT})_{T_J} * \cos \gamma - RAM DRAG - SPILLAGE DRAG$$

In the above expression γ is the angle between the wing under surface and the freestream direction, RAM DRAG is the component of RAM FORCE in the freestream direction and SPILLAGE DRAG includes drag components due to inlet spillage and excess captured air spillage, if any.

The logic within this loop first tests the turbojet throttle setting. If this value is less than one, iteration commences. Otherwise, turbojet throttle setting and total thrust are adjusted to their maximum values and a check for the combined engine option is made. If the combined engine option is not requested, an optional message will indicate that the thrust requested is higher than that which can be provided. Within the iteration loop, throttled turbojet performance parameters are computed by first determining the throttled engine SFC ratio from Table VIII, given the throttled net thrust to maximum net thrust ratio. The throttled SFC, fuel flow rate, and airflow rate then become simply

 $SFC = (SFC)_{MAX} * SFC/(SFC)_{MAX}$ $(W_{f})_{TJ} = SFC * (F_{TOT})_{TJ}$ $(W_{A})_{TJ} = (W_{f})_{TJ}/(W_{f}/W_{A})$

Since the throttled net thrust to maximum net thrust ratio required to compute turbojet airflow rate is a function of turbojet ram force which itself is a function of turbojet airflow rate, an iteration loop encompassing the above computations is required to ensure that the turbojet airflow rate used to compute the net thrust ratio is equal to that used to compute the ram drag.

If W_A as computed above is less than the previously computed inlet captured airflow rate, the excess is spilled by the turbojet and results in either a spillage drag, a ramjet thrust, or both. If W_A is greater than the inlet captured airflow rate, the excess is assumed to be available from suck-in doors.

If, (1) the turbojet throttle setting equals one and the combined engine option is selected or (2) a desired turbojet throttle setting has been specified by the subroutine input data the net turbojet thrust available in the freestream direction is computed by the expression:

 F_{TJ} = $(F_{TOT})_{T_J}$ * $\cos\gamma$ - RAM DRAG - INLET SPILLAGE DRAG

and logic flow exits to ramjet calculations.

If the turbojet throttle setting is less than one, the spilled air lift and drag components due to spillage of excess captured air (engine spillage) are computed as shown in Figure 8. The available turbojet thrust is updated to account for engine spillage drag by the equation $F_{TJ} = (F_{TOT})_{TJ} * \cos \gamma - RAM DRAG - INLET SPILLAGE DRAG - ENGINE SPILLAGE DRAG$

A maximum throttle setting check followed by a satisfactory thrust level check are performed; satisfaction of either results in a return to the calling routine. The iteration loop following no exit is a simple application of Newton's method which attempts to satisfy the required thrust level within one tenth of one per cent. A maximum of ten iterations is allowed to complete this requirement. The independent variable in this process is the total turbojet thrust. In the event convergence is not achieved in ten iterations, an error message is printed and a return to the calling program is executed with the engine parameters computed on the last iteration.

6.2.1.6 RAMJET AIRFLOW, FUEL FLOW, AND THRUST COMPUTATIONS

The ramjet computation sequence is constructed similar to that for the turbojet. The maximum ramjet air flow rate to the full capture inlet air flow rate is computed from Table X given the total temperature at Station 2, T_{t_2} . The maximum ramjet air flow is then, simply,

$$(W_A)_{RJ}_{MAX} = \frac{(W_A)_{MAX}}{(W_A)_{FULL}} * (W_A)_{FULL}$$

The ramjet actual fuel/air ratio divided by the stoichiometric fuel/air ratio and ramjet specified impulse are determined from Table IX as a function of freestream Mach number. Engine spillage drag, if any, ramjet and total fuel flow rates, air flow rates, and net available thrust levels are computed in the ramjet iteration loop via the equations

 $(W_f)_{RJ} = \frac{(W_f/W_A)_{RJ}}{(W_f/W_A)_{Stoichiometric}} * (W_A)_{RJ} * (W_f/W_A)_{Stoichiometric}$

 $F_{RJ} = (W_f)_{RJ} * I_{SP} * \cos \gamma - SPILLAGE DRAG$

 $(W_{f})_{TOT} = (W_{f})_{RJ} + (W_{f})_{TJ}$ $(W_{A})_{TOT} = (W_{A})_{RJ} + (W_{A})_{TJ}$

 $F_{NET} = F_{RJ} + F_{TJ}$

Where the ramjet air flow rate above is either due to the air flow spilled from the turbojet or the maximum ramjet air flow rate, which ever is less. In the latter case, the excess air is spilled at pressure P₂ and engine spillage forces are computed. The term SPILLAGE DRAG above consists of only engine spillage drag in the combined engine option but includes inlet spillage drag in the ramjet only option. The ramjet iteration loop again applies Newton's method to satisfy, if possible, the thrust level requested within .1 per cent using the ramjet air flow rate as the independent variable. If this condition cannot be satisfied, an appropriate message is printed and a return to the calling routine is executed with the engine parameters last computed. A flowchart cf the combined engine subroutine (ENGINS) appears in Figure 10.

6.2.2 Usage

The turbojet, ramjet and/or combined engine propulsion option (ICASEN = 5) provided by the engine simulation in subroutine ENGINS requires the input data presented in Section 6.2.3. This data describes "base" turbojet and ramjet engines and relevant airframe geometry. These base engines may be scaled, if desired, by utilizing NSEG input option (21) described in Section 9.21. Scaling <u>must be</u> accomplished in the first mission segment, Segment (2). (Segment (1) may never be used as a mission segment; the data array locations which would be employed are utilized for other mission parameters.)

Turbojet scaling of the base engine is accomplished by (1) specifying a desired net turbojet thrust (LB) at zero velocity at sea level or (2) specifying the sea level corrected airflow rate (LB/sec) for the desired engine. The ramjet is scaled by varying the inlet area to provide a specified ramjet net thrust at cruise Mach number and altitude. A ramjet thrust margin may also be specified. If option (21) is not exercised in segment (2) the engines utilized will be described by the base engine data and the input inlet area, AINLET.

Maximum and throttled (specified) power settings can be employed with the turbojet, ramjet and/or combined engine propulsion option. If throttling is not specified the thrust provided will be such that the thrust component in the freestream direction is equal to that requested (equal to vehicle drag in the unaccelerated mode). The ENGINS subroutine is called by the general propulsion subroutine, ENDAT. An iteration is provided in ENDAT which automatically alters the vehicle angle of attack until the sum of the vehicle aerodynamic lift and the thrust component in the lift direction is equal to the lift necessary for the flight condition specified (equal to the vehicle weight less centrifugal lift for level flight).

In addition to the segment data described in Section 9.21 the following data is required to utilize the turbojet, ramjet and/or combined engine propulsion option.

SYMBOL	DESCRIPTION
INDE03	Indicator for usage of engine data table 3.
INDE04	Indicator for usage of engine data table 4.
INDE05	Indicator for usage of engine data table 5.
INDE06	Indicator for usage of engine data table 6.
INDE07	Indicator for usage of engine data table 7.
INDE08	Indicator for usage of engine data table 8.
INDE09	Indicator for usage of engine data table 9.
INDE10	Indicator for usage of engine data table 10.
	NOTE: All the above indicators must be set positive for this option.
INDCLZ	Indicator for usage of C_{L_0} Table.
INDCLA	Indicator for usage of $C_{L_{\alpha}}$ Table.

SYMBOL	DESCRIPTION
AINLET	Engine Inlet Area (initial guess if ramjet is to be scaled) (ft ²).
DELWNG	Angle from vehicle reference line to wing lower surface (degrees).
DELIN	Inlet wedge angle (degrees).
AMAXTJ	Maximum Mach number for turbojet operation.
AMINRJ	Minimum Mach number for ramjet operation.

SYMBOL	DESCRIPTION
IE03X	Number of Mach number (M ₀) values in ETABO3.
IE04X	Number of Mach number (M_1) values in ETAB04.
IE05X	Number of Temperature values (T _{t3}) in ETAB05.
IE06X	Number of Temperature values (T _{t3}) in ETAB06.
IE06Z	Number of Pressure ratio values Log10 (P _{t3} /P _N)
IE07X	Number of Temperature values (T_{t_3}) in ETAB07.
IE08X	Number of Throttle setting values in ETAB08.
IE09X	Number of Mach number (M_0) values in ETAB09.
IE10X	Number of Temperature values (T _{t3}) in ETAB10.
ICLAX	Number of Mach number values in CLATAB.
ICLAY	Number of Altitude values in CLATAB.
ICLZX	Number of Mach number values in CLZTAB.
ICLZY	Number of Altitude values in CLZTAB.
TEAD	Engine ention Selector
1EØP	Engine option Selector
	0 - use Turbojet only if M ≤ AMINRJ
	use Combination if AMINRJ < M < AMAXTJ
	use Ramjet only if M ≥ AMAXTJ
	l – use Turbojet only
	2 - use Combination
	3 - use Ramjet only

SYMBOL	DESCRIPTION
ETAB03	Engine Capture Area Schedule
	Ratio = $f(M_1)$
	ETAB03 = M_1^1 , M_1^N , Ratio ¹ ,, Ratio ^N
	N = IE03X = Number of Data pairs
ETAB04	Inlet Pressure Recovery Schedule
	$Ratio = r(M_1)$
	$ETAB04 = M_1, \dots, M_1, Ratio^-, \dots Ratio^-$
	N = IE04X
ETAB05	Base Turbojet Corrected Airflow Schedule (LB/SEC)
	Airflow = $f(T_{t_3})$
,	ETAB05 = $T_{t_3}^1, \dots, T_{t_3}^N$, Airflow ¹ ,, Airflow ^N
	N = IE05X
ETAB06	Turbojet Gross Thrust/Airflow rate Schedule (LB Thrust/(LB Airflow/SEC)) FGWA = f(TLog(P+ /P_N))
	ETAB06 = $T_{t_3}^1, \dots, T_{t_3}^N, L_{10}^1, \dots, L_{10}^M,$
	$FGWA_1^1, \dots, FGWA_1^N,$
	$FGWA_{M}^{1},, FGWA_{M}^{N},$
	N = IE06X
	M = IE06Z

L

÷

SYMBOI	DESCRIPTION
SIMBOL	
ETAB07	Turbojet Fuel/Air Ratio
	$WFWA = f(T_{t_3})$
	ETAB07 = $T_t_3^1$,, $T_t_3^N$, WFWA ¹ ,WFWA ^N
	N = IE07X
ETAB08	Turbojet Specific Fuel Consumption Schedule
	SFCR = $f(T_r)$ T_r = Turbojet Throttle Setting
	ETAB08 = T_r^1 , T_r^N , SFCR ¹ ,, SFCR ^N
	N = IE08X
ETAB09	Ramjet Specific Impulse and Scaled (by stoichemetric ratio) Fuel to Air Ratio
	$ISP = f_1(M_0)$
	$\emptyset = f_2(M_0)$
	ETAB09 = $M_0^1,, M_0^N, \text{ ISP}^1,, \text{ ISP}^N,$
	$\emptyset_{,}^{1}$
	N = IE09X
ETAB10	Ramjet Maximum Airflow Rate Schedule
	WOWRAM = $f(T_{t_z})$
	ETAB10 = $T_{t_3}^1$,, $T_{t_3}^N$, $W Ø W RAM^1$,, $W O W RAM^N$
	N = IE10X
· · · · · · · · · · · · · · · · · · ·	

7. AERODYNAMICS

7.1 Introduction

Aerodynamics options in NSEG compute the total vehicle drag force given the required lift force. Lift force required is determined in the various mission segment options available in NSEG. There are two basic *clean vehicle* aerodynamics options; in each option a total of three aerodynamic systems may be defined. Aerodynamic specifications in the two clean vehicle options are

$$C_{D_{j}} = C_{D_{oj}}(h, M) + C_{D_{induced_{j}}}(C_{L}, M) ; j = 1, 2, 3$$

$$C_{D_{j}} = C_{D_{oj}}(h, M) + K_{1_{j}}C_{L}^{2} + K_{2j}(C_{L} - C_{L_{min}}(M))^{2} + K_{3_{j}}C_{L}^{3};$$

$$j = 1, 2, 3$$

In either option the user may optionally sum the system drag components so that

$$C_{D} = C_{D_{1}} + C_{D_{2}} + C_{D_{3}}$$

or select the lowest drag configuration

$$C_{D} = Min[C_{D_1}, C_{D_2}, C_{D_2}]$$

or finally, any one of the clean vehicle aerodynamic systems may be specified

$$C_D = C_{D_j}$$
; $j = 1 \text{ or } 2 \text{ or } 3$

Store and tank drags together with their associated pylons may also be specified. Three systems of stores are available; each system may involve any number of store pairs and store pylon pairs. The aerodynamic form employed for store drag is

$$C_{DS} = \sum_{j} (C_{DSj} N_{Sj} + C_{DSPj} N_{SPj}); j = 1, 2, 3$$

where

and

Similarly, tank system drags are written in the form

$$C_{DT} = \sum_{j} (C_{DTj} N_{Tj} + C_{DTPj} N_{Tj}) ; j = 1, 2, 3$$

where the notation is similar to that employed for stores.

7.2 Aerodynamic Subroutines

The subroutines of particular significance in aerodynamic drag calculations are

- DRAG The control program for aerodynamic drag calculations
- <u>SACNS1</u> First clean vehicle aerodynamics option available in NSEG
- <u>SACNS2</u> Second clean vehicle aerodynamics option available in NSEG
- SACSP Store and store pylon drag calculation
- SACTP Tank and tank pylon drag calculation

Flow charts for these five subroutines are presented in Figures 10 through 14.

7.3 Data Input

7.3.1 General

SYMBOLDESCRIPTIONINDAERAerodynamic option indicator:
= 8, Option 8, tabular
= 9, Option 9, derivatives
\$\not 8\$ or 9, errorCASEAerodynamic case indicator:
= -1, Use smallest drag from Systems 1, 2, and 3
= 1, Use System 1
= 2, Use System 2
= 3, Use System 3
= 4, Sum System 1, 2, and 3

7.3.2 Aerodynamics Option 8

_ ___

| -

ATAB40	Zero lift drag, System 1; $C_{D_{01}} = C_{D_{01}}(h, M)$
ATAB41	Zero lift drag, System 2; $C_{D_{02}} = C_{D_{02}}(h, M)$
ATAB42	Zero lift drag, System 3; $C_{D_{03}} = C_{D_{03}}(h, M)$
ATAB43	Drag due to lift, System 1; $C_{D_{1}} = C_{D_{1}}(C_L, M)$
ATAB44	Drag due to lift, System 2; $C_{D_{i_2}} = C_{D_{i_2}}(C_L, M)$
ATAB45	Drag due to lift, System 3; $C_{D_{i_3}} = C_{D_{i_3}}(C_L, M)$
IA40X	Number of altitude value in ATAB40
IA41X	Number of altitude value in ATAB41
IA42X	Number of altitude value in ATAB42
IA43X	Number of CL value in ATAB43
IA44X	Number of C _L value in ATAB44
IA45X	Number of C _L value in ATAB45
IA40Y	Number of Mach number values in ATAB40
IA41Y	Number of Mach number values in ATAB41
IA42Y	Number of Mach number values in ATAB42
IA43Y	Number of Mach number values in ATAB43
IA44Y	Number of Mach number values in ATAB44
IA45Y	Number of Mach number values in ATAB45
INDA40	Table control indicator ATAB40
INDA41	Table control indicator ATAB41
INDA42	Table control indicator ATAB42
INDA43	Table control indicator ATAB43
INDA44	Table control indicator ATAB44
INDA45	Table control indicator ATAB45

47

and the second second

7.3.3 Aerodynamics Option 9

ATAB46	Zero lift drag, System 1, C _{D01} = C _{D01} (h, M)
ATAB47	Zero lift drag, System 2, $C_{D02} = C_{D02}(h, M)$
ATAB48	Zero lift drag, System 3, $C_{D_{03}} = C_{D_{03}}(h, M)$
ATAB49	Coefficient of C_L^2 , System 1, $K_{11} = K_{11}(M)$
ATAB50	Coefficient of C_L^2 , System 2, $K_{12} = K_{12}(M)$
ATAB51	Coefficient of C_L^2 , System 3, $K_{13} = K_{13}(M)$
ATAB52	Coefficient of $(C_L - C_{L_{min}})^2$, System 1, $K_{21} = K_{21}(M)$
ATAB53	Coefficient of $(C_L - C_{L_{min}})^2$, System 2, $K_{22} = K_{22}(M)$
ATAB54	Coefficient of $(C_L - C_{L_{min}})^2$, System 3, $K_{23} = K_{23}(M)$
ATAB55	Coefficient of C_L^3 , System 1, $K_{31} = K_{31}(M)$
ATAB56	Coefficient of C_L^3 , System 2, $K_{32} = K_{32}(M)$
ATAB57	Coefficient of C_L^3 , System 3, $K_{33} = K_{33}(M)$
ATAB58	Minimum drag C _L , System 1, $C_{L_{min.1}} = C_{L_{min.1}}(M)$
ATAB59	Minimum drag C _L , System 2, $C_{L_{min.2}} = C_{L_{min.2}}(M)$
ATAB60	Minimum drag C _L , System 3, $C_{L_{min.3}} = C_{L_{min.3}}$ ^(M)
IA46X	Number of altitude values in ATAB46
IA47X	Number of altitude values in ATAB47
IA48X	Number of altitude values in ATAB48
IA46Y	Number of Mach number values in ATAB46
IA47Y	Number of Mach number values in ATAB47
IA48Y	Number of Mach number values in ATAB48
INDA46	Table control indicator ATAB46
INDA47	Table control indicator ATAB47

48

- -

INDA48	Tab 1e	control	indicator	ATAB48
INDA49	Table	control	indicator	ATAB49
INDA50	Tab1e	control	indicator	ATAB50
INDA51	Table	control	indicator	ATAB51
INDA52	Table	control	indicator	ATAB52
INDA53	Table	control	indicator	ATAB53
INDA54	Table	control	indicator	ATAB54
INDA55	Table	control	indicator	ATAB55
INDA56	Table	control	indicator	ATAB56
INDA57	Table	control	indicator	ATAB57
INDA58	Table	control	indicator	ATAB58
INDA59	Table	control	indicator	ATAB59
INDA60	Table	control	indicator	ATAB60

I

1 49

.

8. LANDING AND TAKE-OFF CALCULATION

NSEG contains an approximate landing and take-off calculation. This model has its own aerodynamic (DATCOM) and propulsion data. It is not a mission segment option at the present time; however, it is used to perform landing and take-off analyses independently of the mission sequence. The landing and take-off analysis options are selected by data input via Option 17. Where detailed high lift aerodynamic values are known, the DATCOM calculations may be bypassed. In this case the values of $C_{L_{\rm Q}}$, $C_{\rm LMAX}$, and $\alpha_{\rm MAX}$ (CLATØT, CLMXTØ, ALMXTØ) are specified directly in data input.

8.1 Data Input, Take-Off

WO	Weight at start of take-off, in pounds. NOTE that if
	WO < 0.0
	take-off calculation is omitted.
AG	Ground roll body angle, degrees
AMAXG	Maximum ground rotation angle, degrees
ARTHEO	Theoretical wing aspect ratio
BFOBEX	Flap span to exposed wing span ratio
CDO	Drag coefficient at zero lift
CDP LG	Flat plate drag coefficient of gear
CFOCAV	Average flap chord to wing chord ratio
CLO	Lift coefficient at zero angle of attack
CLATOT	Total linear lift curve slope, per degree
DFK	Induced drag factor
FLAPDT	Take-off flap deflection, per degree
FNO	Take-off thrust, in pounds
FFR	Take-off fuel flow rate, in pounds per hour
GRNDFT	Take-off ground roll friction coefficient
SFC	Internal, specific fuel consumption, (hour ⁻¹)
SPLG	Flat plate area of gear

	wing forefonce area	
TRATIO	Wing taper ratio	
WO	See above	· · ·
WINCID	Wing incidence, degrees	an a
WSLEFC	Wing leading edge sweep angle, degrees	ر به در در در ا
XISO	Internal, specific impulse at take-off, in seco	nds

8.2 Data Input, Landing

The landing calculation uses the take-off data with the following modifications:

WL Landing weight. NOTE that if $WL \leq 0.0$, no landing performance calculation is performed.

CDPCHT Flat plate drag coefficient of landing chute

FLAPPDL Landing flap deflection

FNL Landing thrust

GRNDFL Landing ground roll friction coefficient

SPCHUT Flat plate area of landing chute

WL See above

XMAXG Maximum ground roll distance, in feet. It is ignored if equal to 0.0; otherwise the thrust required to achieve the desired ground roll is computed.

9. MISSION SEGMENT OPTIONS

NSEG contains twenty-one mission segment options listed below.

- 1. Climb or descent, includes approximately optimal paths
- 2. Maximum rate of climb or maximum range descent
- 3. Radius mission

T

- 4. Cruise-climb to specified weight
- 5. Cruise-climb for specified range or time
- 6. Constant altitude cruise to a specified end weight
- 7. Constant altitude cruise for a specified range
- 8. Constant altitude cruise for a specified time
- 9. Buddy refuel
- 10. Mach-altitude-weight transfer
- 11. NSEG logic option
- 12. Instantaneous weight change
- 13. Instantaneous Mach-altitude change
- 14. General purpose and point condition calculations
- 15. Iterate to fly a specified total distance
- 16. Climb or accelerate
- 17. Fuel weight change
- 18. Not used
- 19. Not used
- 20. Fuel allowance
- 21. Turbojet, ramjet and/or combined engine scaling option
- 22. Range matching generalized iterative control option
- Data input descriptions and typical cases are described in the remainder of this section.

9.1. Option 1. Climb or Descent Path

This option calculates a climb or descent path between two Mach-altitude points,

$$(H_0, AMS) \rightarrow (HE, AME)$$

where

(H_o, AMS) - the initial Mach-altitude point and is taken as the current Mach number and altitude point

(HE, AME) - final Mach-altitude point

If the value of the final Mach-altitude point is known, it can be specified directly as data. In some cases the final Mach-altitude point is the result of a calculation in a previous segment. In this case, Option 10 would be used to transfer the Mach number and altitude from the segment in which it was calculated into the segment in which the climb-descent path is to be computed. Range, time, and fuel used in the climb or descent are accounted for when Option 1 is specified. It also allows either forward or reverse flight path calculation.

When using Option 1, the intermediate Mach-altitude points may be selected in any one of seventeen ways. Figure 16 shows the various methods available for selecting the intermediate Mach-altitude points along the flight path. If this option is used for climb paths, thrust equal to maximum should be specified; for descent paths, thrust equal to minimum should be specified. The flight path is adjusted at the beginning and end to meet the specified end points.

Data for Option 1.

The following is a list of all possible data statements for Option 1. The information in *italics* is optional. Note that v and η are decimal numbers and must contain a decimal point.

end MACH number = v_{1}

end ALTITUDE=n, (feet)

USE MAX EDOT as basis for selection of Mach-altitude points

USE MAX EDOT/MDOT as basis for selection of Mach-altitude points

USE MAX L/D as basis for selection of Mach-altitude points

USE MAX RANGE FACTOR as basis for selection of Mach-altitude points

USE MAX L/(FN-DRT) as basis for selection of Mach-altitude points

search for Mach-altitude point using CONSTANT ENERGY search for Mach-altitude point using CONSTANT ALTITUDE search for Mach-altitude point using CONSTANT MACH NUMBER fly CONSTANT Q path fly LINEAR Mach-altitude path REVERSE calculation (with respect to flight path) forward calculation (with respect to flight path)

Example Data Set for Option 1.

SEGMENT(3), OPTION(1)

The maximum E path flown by this option is shown in Figure 16. A list of all flight paths available in Option 1 is presented in the following figure.

^{*} An entire statement appearing in italics denotes the default option. The statement has no effect on the program.

9.2. Option 2. Maximum Rate of Climb or Maximum Range Descent Path

Option 2 calculates a climb or descent such that the vehicle follows a flight path for maximum rate of climb or minimum rate of sink. The program determines the speed for maximum rate of climb at intermediate altitudes. The initial condition is the Mach-altitude-weight at the end of the previous segment. The flight path is adjusted at the beginning and at the end to meet the specified end points.

Data for Option 2.

The following is a list of data statements for Option 2. The information in italics is optional. Note that v and η are decimal numbers and must contain a decimal point.

end MACH number =v,

end ALTITUDE=n,(feet)

calculate DESCENT path

calculate climb path *

REVERSE calculation (with respect to flight path)

forward calculation (with respect to flight path) *

Example Data Set for Option 2. (Climb Path Calculation)

END SEGMENT (5)

THRUST=MAX

END MACH NUMBER 0.76,

END ALTITUDE = 37500.0, (FEET)

SEGMENT (5), OPTION (2)

^{*} An entire statement appearing in italics denotes the default option. The statement has no effect on the program.

It should be noted that Option 2 was part of the original NSEG program of Reference 1 and was included in the current version of NSEG without modification in order to retain the same option number as that of the original program.

.

It is recommended that the maximum È climb of Option 1 be used in place of Option 2.

9.3. Option 3. Radius Mission Option

When Option 3 is specified, the program performs an iteration process such that the range gained in some sequential portion of a mission is made equal to the range gained in some other sequential portion of the mission. The range adjustable segment must be either an Option 5 segment or an Option 7 segment.

Data for Option 3.

1211

The following is a list of data statements for Option 3; information in italics is optional. Note that i, j, k, ℓ , and m must be integer numbers; therefore, decimal points should not be used.

START first LEG at segment(i) END first LEG at segment (j) START RETURN LEG at segment(k) END RETURN LEG at segment (l.) ADJUST range in segment(m)

Example Data Set for Option 1.

END SEGMENT (30)

ADJUST RANGE IN SEGMENT (8)

END RETURN LEG AT SEGMENT (29)

START RETURN LEG AT SEGMENT (17)

END FIRST LEG AT SEGMENT (12)

START FIRST LEG AT SEGMENT (3)

SEGMENT (30), OPTION (3)

9.4. Option 4. Cruise Climb to a Specified Weight

Mission option 4 calls for the computation of a cruise climb flight segment from one weight to another at constant Mach number and constant lift coefficient. This type of cruise climb is also called a constant w/δ cruise since the vehicle weight divided by the pressure ratio is a constant. The flight path for this option may be computed using one step or five steps.

Data for Option 4.

The following is a list of data statements for Option 4; information in italics is optional. Note that v is a decimal number and therefore must contain a decimal point.

end WEIGHT=v, pounds

make five FLIGHT PATH corrections

DO NOT make FLIGHT PATH corrections

Example Data Set for Option 4.

END SEGMENT (15)

THRUST = THRUST REQUIRED

MAKE FIVE FLIGHT PATH CORRECTIONS

END WEIGHT = 335000.0, POUNDS

SEGMENT (15), OPTION (4)

9.5. Option 5. Cruise Climb for Specified Range or Time

Mission Option 5 calls for the computation of a cruise climb flight segment for a specified range or a specified time. As in Option 4 this cruise climb flight path is at constant Mach and constant lift coefficient.

Data for Option 5.

The following is a list of data statements for Option 5; information in italics is optional. Note that v is a decimal number and must contain a decimal point.

cruise TIME=v, (hours) cruise RANGE=v, (n. miles in this segment) TOTAL RANGE flown including this segment =v, (n.m.) NO RANGE credit REVERSE calculation (with respect to flight path)

forward calculation with respect to flight path *

Example Data Set for Option 5.

END SEGMENT (17)

THRUST = THRUST REQUIRED

TOTAL RANGE FLOWN INCLUDING THIS SEGMENT = 1500.0, (N.M.)

SEGMENT (17), OPTION (5)

in

^{*} An entire statement appearing in italics denotes the default option. The entire statement has no effect on the program.

9.6. Option 6. Constant Altitude Cruise to a Specified End Weight

Option 6 calculates a constant altitude cruise path to a specified end weight. The constant altitude cruise may be performed at a constant Mach number or at a constant lift coefficient. The initial condition is the Mach-altitudeweight at the end of the previous segment.

This option provides the capability of flying the path backwards by specifying a weight that is larger than the vehicle weight at the end of the previous segment.

Data for Option 6.

The following is a list of data statements for Option 6; information in italics is optional. Note that η is a decimal number and must contain a decimal point.

WEIGHT at end of cruise =n, POUNDS cruise at constant LIFT coefficient cruise at constant Mach number *

Example Data Set for Option 6.

END SEGMENT (21)

THRUST = THRUST REQUIRED

WEIGHT AT END OF CRUISE = 76000.0, POUNDS

CRUISE AT CONSTANT MACH NUMBER

SEGMENT (21), OPTION (6)

^{*} An entire statement appearing in italics denotes the default option. The statement has no effect on the program.

9.7. Option 7. Constant Altitude Cruise for a Specified Range

This mission option calls for the computation of a constant altitude cruise flight segment for a specified range at constant Mach number.

Data for Option 7.

The following is a list of data statements for Option 7; information in italics is optional. Note that v is a decimal number and must contain a decimal point.

RANGE flown in this segment =v, (n.m.) TOTAL RANGE flown including this segment =v, (n.m.) REVERSE calculation (with respect to flight path) forward calculation (with respect to flight path)*

Example Data Set for Option 7.

END SEGMENT (29)

TOTAL RANGE = 2700.0, (N.M.)

THRUST = THRUST REQUIRED

SEGMENT (29), OPTION (7)

^{*} An entire statement appearing in italics denotes the default option. The statement has no effect on the program.

9.8. Option 8. Constant Altitude Cruise for a Specified Time

This mission option calls for the computation of a constant altitude cruise flight segment for a specified time at either constant Mach number or constant lift coefficient. This option may also be used to compute fuel required for loiter by specification of no range credit in the data set.

Data for Option 8.

The following is a list of data statements for Option 8; information in italics is optional. Note that v is a decimal number and must contain a decimal point.

cruise TIME=v, (hours)

NO RANGE credit

cruise at constant LIFT coefficient

cruise at constant Mach number *

REVERSE calculation (with respect to flight path)

forward calculation (with respect to flight path)

Example Data Set for Option 8.

END SEGMENT (24)

CRUISE TIME = 2.5, (HOURS)

CONSTANT LIFT COEFFICIENT

THRUST = THRUST REQUIRED

SEGMENT (24), OPTION (8)

^{*} An entire statement appearing in italics denotes the default option. The statement has no effect on the program.

9.9. Option 9. Buddy Refuel

Option 9 will determine where the "optimum" in flight buddy refuel should take place and how much fuel will be transferred. The user must input three points of the tanker off load curve in the DATA1 data block. The names of the tanker off load data are shown below.

POINT	(RANGE (N.M.)	FUEL AVAILABLE (POUNDS)
1	RANGE 1	FUEL 1
2	RANGE 2	FUEL 2
3	RANGE 3	FUEL 3

The tanker off load data will be curve fitted to determine the coefficients of a quadratic equation and the quadratic equation will then be used in the mission option to determine fuel available as a function of range.

The cruise out to the refuel point will be one of the following:

- 1. Constant Mach, constant C_I
- 2. Constant Mach, constant altitude
- 3. Constant C_{I} , constant altitude

Option 9 is similar to Option 4 and Option 6 except that the segment end weight will be determined by the refuel criteria. The vehicle will cruise out until one of the following conditions is satisfied:

- 1. The fuel receivable equals the fuel available.
- 2. The distance flown equals the maximum allowable distance to refuel if such a constraint exists
- 3. The minimum in-flight weight of the receiver is reached.

If the fuel receivable exceeds the fuel available at the start of the mission segment in which Option 9 is used, transfer of the fuel will take place at that point in the mission.

Data for Option 9.

The following is a list of data statements for Option 9; information in italics is optional. Note that v and n are decimal numbers and must contain a decimal point.

maximum RANGE to refuel =n, (n.m.) no maximum refuel range is to be considered * cruise at CONSTANT CL, constant altitude cruise at CONSTANT MACH, constant CL CRUISE AT CONSTANT MACH, constant altitude maximum in flight WEIGHT=v, (pounds) fuel transfer RATE=n, (pounds/minute)

Note that if the fuel transfer rate is not specified or is specified as a value less than or equal to zero, the fuel transfer will be instantaneous.

Example Data Set for Option 9.

END SEGMENT (21)

MAXIMUM RANGE TO REFUEL = 2200.0, (N.M.)

CRUISE AT CONSTANT MACH, CONSTANT CL

MAXIMUM IN FLIGHT WEIGHT = 450000.0, POUNDS

SEGMENT (21), OPTION (9)

^{*} An entire statement appearing in italics denotes the default option. The statement has no effect on the program.
9.10. Option 10. Mach-Altitude-Weight Transfer

Option 10 transfers values calculated in any segment into some other segment; for example, the end Mach-altitude point for a climb may be the result of an Option 14 point calculation. Option 10 would be used to transfer the Machaltitude values from the segment in which the information was calculated into the segment in which the climb is to be performed.

Data for Option 10.

A State State State

The following data statement is used for Option 10. Note that v and η must be integer numbers and *cannot* contain a decimal point.

TRANSFER $\left\{ \begin{array}{l} MACH \\ ALTITUDE \\ WEIGHT \end{array} \right\}$ FROM SEGMENT(v) TO SEGMENT(n)

Example Data Sets for Option 10.

END SEGMENT(17)

TRANSFER MACH ALTITUDE WEIGHT FROM SEGMENT(3) TO SEGMENT(30)

SEGMENT(17), OPTION(10)

... NOTE MACH ALTITUDE AND WEIGHT MAY BE IN ANY ORDER

END SEGMENT(16)

TRANSFER ALTITUDE FROM SEGMENT(9) TO SEGMENT(21)

SEGMENT(16), OPTION(10)

••• NOTE ONLY VALUES SPECIFIED WILL BE TRANSFERRED

END SEGMENT(15)

TRANSFER ALTITUDE MACH FROM SEGMENT(6) TO SEGMENT(19)

SEGMENT(15), OPTION(10)

••• THREE EXAMPLES OF USING OPTION (10)

9.11 Option 11. NSEG Logic Option

This option allows for choosing one of two sets of flight conditions (Mach, altitude, and weight) by deciding which has the largest or smallest value of the variable used as the basis of selection. The user specifies the Mach, altitude, and weight for flight condition 2 and the segment in which flight condition 1 was calculated. The user also specifies the basis of selection:

Maximum Mach Minimum Mach Maximum Altitude Minimum Altitude Maximum Weight Minimum Weight

Data for Option 11.

The following is a list of data statements for Option 11; information in italics is optional. Note that v, η , and λ are decimal numbers and must contain a decimal point; ℓ is an integer number and *cannot* contain a decimal point.

MACH number for flight condition 2 = v, ALTITUDE for flight condition 2 = n, (feet) WEIGHT for flight condition $2 = \lambda$, (pounds) get data for flight condition 1 from SEGMENT (2) CHOOSE on the basis of $\begin{cases} MAXIMUM \\ MINIMUM \end{cases} \begin{cases} MACH \\ ALTITUDE \\ WEIGHT \end{cases}$

Example Data Set for Option 11.

END SEGMENT (6)

GET FLIGHT CONDITION 1 FROM SEGMENT (4)

CHOOSE ON MAXIMUM MACH

MACH = 2.25,

WEIGHT = 78000.0, (POUNDS)

ALTITUDE = 64000.0, (FEET)

SEGMENT (6), OPTION (11)

9.12. Option 12. Instant Weight Change

This option allows instant changes in the vehicle weight; for example, changes that would occur with the dropping of an internal payload.

Data for Option 12.

The following data statement is used for Option 12. Note that v must be a decimal point. The weight of the vehicle will be computed by subtracting v from the current vehicle weight.

WEIGHT change =v, (POUNDS)

Example Data Set for Option 12.

END SEGMENT (9)

WEIGHT CHANGE = 10000.0, POUNDS

••• DROP 10000.0 POUND WEAPON

SEGMENT (9), OPTION 12

END SEGMENT (8)

WEIGHT CHANGE = -74000.0, POUNDS

••• INSTANT REFUEL OF 74000.0 POUNDS

SEGMENT (8), OPTION (12)

9.13. Option 13. Instant Mach-Altitude Change

This option provides the user with a method of changing the Mach-altitudeweight point of the vehicle. Option 13 changes any combination of Mach number, weight, and altitude.

• • •

• · · · · · · · ·

Data for Option 13.

The following is a list of data statements for Option 13; information in italics is optional. Note that v and η are decimal numbers and must contain a decimal point.

new MACH number =v, new ALTITUDE = Y, (feet) new vehicle WEIGHT=n, (pounds)

Example Data Set for Option 13.

END SEGMENT (31)

NEW MACH NUMBER = 0.42,

NEW WEIGHT = 38000.0, (POUNDS)

SEGMENT (31), OPTION (13)

9.14. Option 14. General Purpose and Point Condition Calculation Option

Option 14 is used for either of two basic functions:

- Restoring of the vehicle to the Mach, altitude, and weight condition at the end of the specified segment. Vehicle return weight is restored if WEIGHT is set to zero.
- 2. Calculating the point condition

When using the point condition calculation feature of Option 14, the flight condition for the calculation may either be specified or taken as the vehicle flight conditions at the end of the previous segment.

The point calculations that can be performed using Option 14 are

- 1. Compute best cruise altitude for specified weight and Mach number.
- 2. Compute ceiling for the specified rate of climb, Mach number, and weight.
- 3. Compute Mach number for best lift to drag ratio for the specified altitude and weight.
- 4. Compute Mach number for lift equal to weight at the specified lift coefficient, weight and altitude.
- 5. Compute maximum endurance Mach for the specified altitude, weight, and maximum lift coefficient.
- 6. Compute maximum Mach number for the specified altitude and weight.
- 7. Compute Mach number for maximum rate of climb at the specified altitude and weight.
- 8. Compute altitude and Mach number for maximum range factor at the specified weight.
- 9. Compute Mach number for maximum range factor at the specified altitude and weight.
- 10. Compute the various energy maneuverability parameters at the specified G level, Mach number, weight, and altitude.

Data for Option 14.

Following is a list of data statements for Option 14; information in italics is optional. Note that δ , ν , η , β , and λ are decimal numbers and must contain a decimal point; ℓ is an integer number and must not contain a decimal point.

RESTORE vehicle to flight conditions at end of segment (1).

use flight conditions from previous segment *

GIVEN MACH number =v, (pounds)

GIVEN WEIGHT=λ, (pounds) GIVEN ALTITUDE=η, (feet) NOTE: If weight = 0.0, then weight will be internally set to return weight.

S . 10

GIVEN GLEVEL= δ ,

COMPUTE best CRUISE altitude

COMPUTE CEILING for rate of climb = β , (feet/min)

COMPUTE MACH for best LIFT/DRAG ratio

COMPUTE MACH for $CL=\delta$,

COMPUTE MAXimum endurance MACH for $CL=\delta$,

COMPUTE MAXimum MACH number

COMPUTE MACH number for MAXimum RATE of climb

COMPUTE MACH, ALTITUDE point for MAXimum range factor

COMPUTE MACH for MAXimum range factor

COMPUTE MACH(v), ALTITUDE point for MAXimum range factor

COMPUTE MACH(v), for MAXimum range factor

COMPUTE ENERGY maneuverability parameters

Note that for maximum range factor calculation the user can specify the upper limit on Mach number; i.e., MACH (v) where v is upper Mach number limit. If it is not specified AMLIM is used.

^{*} An entire statement appearing in italics denotes the default option. The statement has no effect on the program.

END SEGMENT(18)

GIVEN GLEVEL = 1.5, ALTITUDE = 18000.0, (FEET)

GIVEN MACH = 0.71

COMPUTE ENERGY MANEUVERABILITY PARAMETERS

SEGMENT(18), OPTION(14)

• • •1

END SEGMENT(17)

GIVEN ALTITUDE = 18000.0, (FEET)

GIVEN WEIGHT = 70000.0, (POUNDS)

COMPUTE MACH FOR BEST LIFT DRAG/RATIO

SEGMENT(17), OPTION(14)

•••

END SEGMENT(16)

COMPUTE BEST CRUISE ALTITUDE

USE FLIGHT CONDITIONS FROM PREVIOUS SEGMENT AND

SEGMENT(16), OPTION(14)

/...

SAMPLE DATA SETS FOR OPTION(14)

Example Data Set for Option 14.

END SEGMENT(21)

RESTORE VEHICLE TO FLIGHT CONDITIONS AT END OF SEGMENT(3)

SEGMENT(21), OPTION(14)

END SEGMENT(20)

COMPUTE CEILING FOR RATE OF CLIMB = 100.0, (FEET/MIN)

GIVEN MACH = 0.72, WEIGHT = 220000.0, (POUNDS)

.....

SEGMENT(20), OPTION(14)

•••

END SEGMENT(19)

COMPUTE MAX ENDURANCE MACH FOR CL = 0.7

GIVEN ALTITUDE = 32000.0, WEIGHT = 270000.0, (POUNDS)

SEGMENT(19), OPTION(14)

(continued)

.

9.15. Option 15. Iterate to Fly a Specified Distance

This option provides an iteration process that forces the vehicle to have accumulated a specified distance at the end of this segment. The range flown in a specified segment is automatically adjusted by the program until the total range flown is within a tolerance of one nautical mile of the range specified.

Data for Option 15.

The following data statement is used for Option 15; information in italics is optional. Note that v is a decimal number and must contain a decimal point; ℓ is an integer number and *must not* contain a decimal point.

adjust range in segment (1) to give a total range =n, n.m.

Example Data Set for Option 15.

END SEGMENT(23)

ADJUST SEGMENT(13) SO TOTAL RANGE=1650.0, N.M.

SEGMENT(23), OPTION(15)

With Option 16 two Mach-altitude conditions are specified by the segment numbers in which they were calculated. Option 16 makes decisions as per MIL-C-Rules to determine if fuel is to be "burned" while going from Condition 1 to Condition 2.

المراجع والمحالي المحاكم فتستشم المتراجع والأكثر والمحالي والمحالي والمحالي والمحالي والمحالي والمحالي والمحال

The decision process is

If H_2 is greater than H_1

or

If H_2 equals H_1

and

 M_2 is greater than M_1 then

The vehicle will fly (burning fuel) to Condition 2 from Condition 1

If neither of these conditions eixsts, the program will move the vehicle to Condition 2 with no change in weight or performance.

Note that Option 16 cannot be used to descend or decelerate.

Data for Option 16.

The following is a list of data statements for Option 16; information in italics is optional. Note that l and j are integer numbers and must not contain a decimal point.

obtain condition ONE from segment (1) obtain condition TWO from segment (j) NO RANGE credit for this segment RANGE credit for this segment forward calculation (with respect to flight path) * REVERSE calculation (with respect to flight path)

^{*} An entire statement appearing in italics denotes the default option. The statement has no effect on the program.

Example Data Set for Option 16.

END SEGMENT(12)

RANGE CREDIT

· · · · ·

FORWARD CALCULATION

GET CONDITION TWO FROM SEGMENT(4)

GET CONDITION ONE FROM SEGMENT(7)

SEGMENT(12), OPTION(16)

n ng tan ng sha

75

9.17. Option 17. Fuel Weight Change for Time, Turn, Combat, etc.

The fuel weight change may be computed or input depending on the needs of the program. If the option of computing the fuel weight change is desired, fuel used during warm-up, take-off, loiter, or combat can be computed by the program. Landing calculations are also controlled by Option 17.

Data for Option 17.

The following data statements are used by Option 17; information in italics is optional. Note that η and λ are decimal numbers and must contain a decimal point.

fuel WEIGHT change =λ, (pounds)
WARM-UP TIME=η, (minutes)
loiter TIME=η, (minutes)
n DEG λ G TURNS
COMPUTE COMBAT fuel allowance
COMPUTE WARM-UP and TAKE-OFF fuel allowance
COMPUTE loiter fuel allowance
COMPUTE LANDING performance

Example Data Sets for Option 17.

END SEGMENT(27)

720.0 DEG 4.2 G TURNS

COMPUTE COMBAT FUEL ALLOWANCE

THRUST=MAX

SEGMENT(27), OPTION(17)

END SEGMENT(26)

LOITER TIME=15.0, (MINUTES)

COMPUTE LOITER FUEL ALLOWANCE

THRUST=THRUST REQUIRED

SEGMENT(26), OPTION(17)

9.18. Option 18.

.

Option 18 is not used in the current version of the NSEG program.

5

I

- ..--

77

-

9.19. Option 19.

Option	19	is	not	used	in	the	current	version	1 of 1	the NS	EG	progra	lm.	
		•						•			-			
•														
								•						
											•			
											.•			
													· .	

.

9.20. Option 20. Fuel Allowance

Option 20 computes a fuel allowance for (a) a specified time at a specified power setting and (b) a specified time at a specified thrust to weight ratio.

and the state of the

Data for Option 20.

The following data statements are used by Option 20; information in italics is optional. Note that η and v are decimal numbers and must contain a decimal point.

GIVEN TIME=v, (minutes)

compute fuel allowance for a POWER setting =n,

compute fuel allowance for thrust/weight RATIO=n,

Example Data Set for Option 20.

END SEGMENT(36)

POWER SETTING=0.45,

GIVEN TIME=13.0, (MINUTES)

SEGMENT(36), OPTION(20)

END SEGMENT(35)

THRUST/WEIGHT RATIO=.25,

GIVEN TIME=17.0, (MINUTES)

SEGMENT(35), OPTION(20)

Option 21 performs engine scaling computations by performing appropriate calls to subroutine ENGINS. Turbojet scaling is performed by computing a scaling factor by which the base engine airflow schedule (input) is multiplied throughout the flight regime. This factor is computed based on a desired net thrust at sea level or a desired turbojet corrected airflow at sea level. For an aircraft utilizing turbojet engines only, the cruise Mach number and altitude must also be input to allow sizing of the turbojet inlet area to meet airflow requirements at the specified cruise condition. The ramjet scaling, which sizes the combined engine inlet area, is performed at the specified cruise Mach number and altitude to provide net thrust equal to drag plus a specified thrust margin at cruise.

The lift coefficient utilized in drag coefficient calculations is the specified cruise lift coefficient (CLC) input in the general data section. If CLC is not input (or is input as zero) the lift coefficient for scaling is computed using the cruise Mach number and altitude and lift equal to 75% of the gross takeoff weight.

A final option for ramjet scaling is the same as that just mentioned except <u>current</u> weight, Mach number, and altitude are used to compute the lift coefficient. This option allows the combined engine inlet area to be scaled during the mission, if desired. An additional input to this option allows the usage of turbojet engine reference pressure (P_N) to be specified as the Wing Undersurface Pressure; if reference pressure is not specified ambient static pressure is used. Finally, a combined engine option debug print can be requested for engine performance evaluation during climb segments. Option 21 must be exercised in Segment (2) if the combined engine option is to be employed and engine scaling is desired. If no scaling is desired the base turbojet engine airflow schedule and combined engine inlet area specified in the general data section will be employed.

Data for Option 21

The following data statements are used by Option 21; information in italics is optional. Note that all numbers (α , β , etc.) are decimal numbers and must contain a decimal point

```
PROPULSIVE mode = DUAL

SCALE TURBOjet THRUST = \alpha, NOTE: If \alpha < 3.0, then \alpha must be the thrust/

weight ratio instead of thrust/

SCALE TURBOjet corrected AIRFLOW = \beta,

SCALE RAMjet = ramjet thrust MARGIN = \varepsilon, cruise MACH = \delta,

cruise ALTITUDE = \delta

engine DEBUG print requested

turbojet reference PRESSURE = underwing pressure

compute alpha for scaling based on current WEIGHT

END
```

Sample Data Set for Option 21

/SEGMENT (2), OPTION (21)

/PROPULSIVE MODE = DUAL

/SCALE TURBOJET - SEA LEVEL CORRECTED AIRFLOW = 398.65, (LBS/SEC)

/SCALE RAMJET -- THRUST MARGIN = .1

/REFERENCE PRESSURE = WING UNDERSURFACE PRESSURE

/CRUISE MACH = 6., ALTITUDE = 120000., (FT)

/ENGINE DEBUG PRINT REQUESTED

/END

,

9.22 Option 22. Generalized Iteration Control Option

Option 22 is a generalized iteration loop used to vary a specified parameter (independent variable) in a specified mission segment such that a specified parameter (dependent variable) either satisfies a given input value to within 0.1% or the maximum number of iterations input is exceeded. As currently mechanized the dependent variable must be either Mach number, total range, or weight. The independent variable must be either Mach number, weight or range as specified in the segment where the iteration loop begins. For example, if the independent variable is specified as RANGE, this range will be either total range at the end of the iteration loop or range to be flown in the initial segment of the iteration loop depending on the input option used in the initial segment. In any case the independent variable <u>must be</u> one of the parameters input in the segment data for the initial segment in the iteration loop.

Data for Option 22.

The following data statements are used by Option 22; information in italics is optional. Note that the numbers α and β are decimal numbers and must contain a decimal point. The numbers A and B are integers.

START loop at beginning of SEGMENT (A)	WEIGHT RANGE MACH	is to be varied
FINISH loop at end of SEGMENT (B)	WEIGHT RANGE MACH	is to be satisfied

NUMBER of iterations = α ,

DESIRED value of dependent variable = β ,

END

Example Input for Option 22.

SEGMENT(27), OPTION(22)

START LOOP AT SEGMENT(4)---WEIGHT IS TO BE VARIED

FINISH LOOP AT END OF SEGMENT (26)----RANGE IS TO BE SATISFIED 82

NUMBER OF ITERATIONS = 3.

DESIRED RANGE = 1500., NAUTICAL MILES

END

The default value for the number of iterations is 3. Note that if specified the number of iterations must be a decimal number.

In the above example Segment(4) could, for example, utilize Option(13) to define a new value of weight and Segment(26) could utilize Option(6) to cruise to a specified weight. The initial value of weight in Segment(4) will be varied by Option(22) until the total range at the end of Segment(26) is 1500 ± 1.5 nautical miles or the number of iterations exceeds 3, whichever occurs first.

Land St. Commence

.

·...

IPDICN	Input dictionary print control: = 0, omit print
	= 1, print input dictionary in alphabetic and numeric order
IPSEG _i	Array indicating the final printout segment order and selection
IPATMD	<pre>Atmospheric tabular print indicator: = 0, omit print = 1, print tabulation of atmospheric properties as a function of altitude</pre>
IPTZIN	Controls initial TERM array print = 0, omit print = 1, print term array from FILLTZ as each mission segment is processed
IPENDS	Scaled propulsion system data print control = 0, omit print = 1, print scaled propulsion data
IPENDR	Raw (input) propulsion system data print control = 0, omit print = 1, print raw propulsion data
IPTZXX	Controls TERM array print as each segment is computed: = 0, omit print = 1, print TZ ₁
IPRGSV	Controls RG array print as each segment is computed = 0, omit print = 1, print RG ₁
IPDGPC	Generalized performance print control = 0, omit detailed print = 1, provide detailed print
AOUT	A five digit compressed term to control the printers: lst digit controls CHECK data output 2nd digit controls PATH data output 3rd digit controls CLIMB data output 4th digit controls XCEL data output 5th digit controls RUN and GOGO data output
	If AOUT is zero, the printing control will take on the value of the previous mission segment. The digit "1" indicates DO NOT print out the data computed in the corresponding Subroutine; "2" indicates print out all data computed in the corresponding subroutine

84

· • · • ·

11. ALPHABETIC LIST OF INPUT AND INTERNAL VARIABLES

11.1 A's

ACG	Internal variable computed in CHECK
ACV	Internal variable computed in CHECK
AERODYNAMIC MOD	E Optional way of specifying aerodynamic case number (CASE)
AG AINLET ALMXTO	Ground roll body angle Engine inlet area (not required if ramjet is to be scaled)(ft ²) Angle of attack for take-off C_{l} MAX if internal table not to be used
AM	Initial Mach number for computation of flight envelope
АМАСН	Mach number array used in ML/D calculation
AMAXG AMAXTJ AME	Maximum ground rotation angle Maximum Mach number for turbojet operation End Mach number for Mach-altitude paths on performance maps
AMF	Final Mach number for performance maps. Also end of climb Mach number FLITEN climb path history. If AMF=0.0, end of climb Mach number is determined from maximum range factor
AMI AMINRJ AMLIM	Initial Mach number for performance maps Minimum Mach number for ramjet operation Maximum allowable Mach number in FLITEN searches
AMSW1	First Mach number for propulsion system switch when CASEN=4.
AMSW2	Second Mach number for propulsion system switch when CASEN=4.
AMS	Start Mach number for Mach-altitude paths on performance maps
АМТО	Initial Mach number for take-off
AN	Initial variable set in CHECK
AOUT	A five digit compressed term to control the printers: 1st digit controls CHECK data output 2nd digit controls PATH data output 3rd digit controls CLIMB data output 4th digit controls XCEL data output 5th digit controls RUN and GOGO data output If AOUT is zero, the printing control will take on the value
	or the previous mission segment. The digit "1" indicates DO NOT print out the data computed in the corresponding

AOUT (contd) subroutine; "2" indicates print out all data computed in the corresponding subroutine.

. **.** . .

AREFF Not used.

ATABXX Aerodynamic table XX

ATMOS Internal program array containing atmospheric properties at given altitude

AVOID Compressed term 10 on First Mission Card

AVOID1 and AVOID2 Two digit terms to be used only when mission data change cards are used. (These terms must be zero the first time the mission is computed). The first variable, AVOID1, represents a segment number, n_1 , and the last variable, AVOID2, represents another segment number n_2 . AVOID1 equal to non-zero value indicates that the computations in mission segments n_1 through n_2 will give the same results as the corresponding mission segments of the previous mission; therefore, segments n_1 through n_2 will not be recomputed but will use the values computed in the previous mission.

AVSFC Internal variable computed in GOGO and RUN

11.2 B's

-

BAREWT	Vehicle bare weight	·	· .		
BFOBEX	Flap span to exposed wing	span	ratio.	Used in take-off	
6	and landing calculations.		•		. ¹ •. ¹ €.

· .

· · · · ·

. 8

11.3 C's

I

CASE	Aerodynamic case indicator for selecting systems 1, 2, and 3
CASEN	Propulsive case indicator for selecting systems 1, 2, and 3
CCPXX	Compacted integer used in UPACK. Consists of 5 characters: 1st character = propulsion option 2nd character = aerodynamic option 3rd character = throttle setting 4th and 5th characters = number of integration steps NOTE: CCPXX is the 6th word in the Tt array printed after each segment data block is processed.
CD	Internally computed drag coefficient
CDDELT	Drag coefficient increment used in FLIMLD
CDO	Drag coefficient at zero lift. Landing and take-off analysis
CDPCHT	Flat plate drag coefficient of parachute, landing and take-off analysis
CDPLG	Flat plate drag coefficient, landing and take-off analysis
CDSTOR	Internally computed stores drag coefficient
CDTANK	Internally computed tanks drag coefficient
CFOCAV	Average flap chord to wing chord ratio, landing and take-off analysis
CL	Internally computed lift coefficient
CLATOT	Linear lift curve slope per degree, landing and take-off analysis
CLC	Internally computed lift coefficient
CLCD	Internally computed lift/drag coefficient
CLIMBQ	Dynamic pressure for constant climb. If set to zero, dynamic pressure of End Point (AME, HE) will be used.

88

.

CLMAX	Maximum cruise lift coefficient when INDCLM=0. (When INDCLM = 1, C _{Lmax} is found from CLMTAB in the form
	$C_{L_{max}} = C_{L_{max}}$ (M, CASE)
CLMTAB	Table of $C_{L_{max}}$ as function of (M, CASE) when INDCLM = 1
CLMXTO	Maximum C, for take-off computations if internal tables are not to be used
CLO	Lift coefficient at zero angle of attack. Landing and take-off analysis
CLZZ	Internally computed maximum lift coefficient in FLIENV

- - - ----

11.4 D's

DAC Internally computed acceleration in XCEL DATE Date of a particular calculation DELAN Mach number increment in generalized performance calculations DELH Incremental altitude in generalized performance calculations DELNT Weight decrement or increment in generalized performance calculations DFK Not used. Referenced in LANDIN DHC Internally computed Mach number; used in PATH DRT Internally computed drag force

⊷ , ¹ .

	11.5 E's	
END	Signifies end of a data block	设制
ENDPTH	End of path indicator for E climb:	3
	<pre>= -1, Don't exceed terminal altitude = 0, terminal arc along final constant energy line = 1, Don't exceed terminal Mach number</pre>	tan tan t Kata ta
ETABO3	Pice Procession of the first of the first of the first of the second of the first of the second of t	1
ETAB10	See Section 6,2.3 for description	
ERRFP	Undefined error indicator in PATH, internal	47.5
ERRH	Altitude error in PATH, internal	317
ERRM	Mach number error in PATH, internal	
E10	Internal thrust error indicator, ENDAT and CMAX dumped from CRCOMP	
E11	Internal error indicator, dumped from CRCOMP	

·· _ _ ·

-

11.6 F's

|

	and the gradient state of the second state of the second state of the second state of the second state of the s
FF	Reserve fuel fraction (.05 for Mil C-5011A rules)
FFLMIN	Minimum fuel flow (unfactored) per engine
FFR	Internally computed total fuel flow rate
FFRMIN	Internally computed total fuel flow rate minimum
FLAPDC	Flap deflection, landing
FLAPDT	Flap deflection, take-off
FN	Internally computed net thrust per engine
FNO	Internally set thrust in FILLPM and FLITOL
FNMIN	Internally computed minimum total thrust
FNL	Landing thrust, internally set
FPOL	Fraction of initial payload dropped or off-loaded during a mission
FUEL	
FUEL1	First fuel value, buddy refuel
FUEL2	Second fuel value, buddy refue
FUEL3	Third fuel value, buddy refuel
FUELIN	Internally computed total internal fuel
FUELT1	Internally computed fuel weight, tanks l
FUELT2	Internally computed fuel weight, tanks 2
FUELT3	Internally computed fuel weight, tanks 3
FUELTO	Total fuel, including tank fuel at take-off
FUELTK	Internally computed total tank fuel
FUELUS	Internally computed total usable fuel at take-off
FWC	Internally computed fuel weight change in CLIMB

11.7 G's

-

|

GLEVEL	Number of 'g's' pulled in performance contour map calculations
GLIMIT	Limiting 'g's' in radius of turn and time to turn contour map
GRNDFL	Ground roll friction coefficient, landing
GRNDFT	Ground roll friction coefficient, take-off

.

11.8 H's

and the second second

· . · ·

•••

.

HE	End altitude on Mach-altitude path
HF	Final altitude on contour maps
HG	Specified altitudes in arbitrary atmosphere
ні	Initial altitude on contour maps
НО	Initial altitude on Mach-altitude path
HOVSFC	Not used; was in OPT17
HOVT	Not used; was in OPT17
HOVTM1	Not used; was in OPT17

•

4

с. С

.

1

.

,

· ·		
• •	11.9 ⁴ I's	
	· · · · · · · · · · · · · · · · · · ·	Ł
TA40X, TA41X	Number of first independent work blo walkes to at	,
IA48X	dimensional aerodynamic tables	
IA40Y. IA41Y	Number of Second independent variable values in these	
IA48Y	dimensional aerodynamic tables	ž.
ICLAX	Table size indicator for Contract the second	
ICLAY	The second se	¢1; .
TCI 78	·····································	
ICLZY	lable size indicator for CLO	4. A. A.
ICLMX	Number of Mach number values, in CLMTAB	y traile
ICLMY	Number of CASE values in CLMTAB	
TOPSPI	Dron store nulon indicatore:	
ISRSP2	= 0. Don't drop	
IDRSP3	= 1, drop	
100001	N . N . N	
IDKIPI IDDTD2	Drop tank pylon indicators:	
IDRTP3	= 0, don't arop $= 1. drop$	
-		
IEOP	Table size indicators for combined engine simulation da	ita
IE03X		
IEO4X		
1E05X		
IE06X		
IEUOX IEOZX		
IEU/A TEORY		
TEOOX		
IEOIOX	♥	
	Table usage indicators for combined engine data	
INDE03	Table usage indicators for company ongeneration	
INDE05		
INDE06		
INDE07		
INDEO8		
INDE09		
INDE10		
INDCLA	Table usage indicator for $C_{L\alpha}$	
INDCLZ	Table usage indicator for C _{LO}	5 t. 05
		30

• •

INDAO1 INDA12, INDA40, INDA41 INDA60	Aerodynamic table indicators
INDAER	Clean vehicle aerodynamic indicator = 8, general model = 9, derivatives
INDATM	Atmosphere indicator = 3, use original NSEG model = 9, use arbitrary model atmosphere
INDCLM	Controls $C_{L_{max}}$ selection: = 0, $C_{L_{max}}$ given by CLMAX value = 1, $C_{L_{max}}$ = $C_{L_{max}}$ (M, CASE): CLMTAB
INDGPC	Flight envelope calculation control indicator
INDMAP	<pre>Selects which performance contour map is to be drawn in current data block: = 0, no maps = 1, Ė map = 2, Ė/W map = 3; L/D map = 4, Range factor map = 5, thrust map = 6, drag map</pre>
INDMAP (Contd.)	<pre>= 7, ŞFC map = 8, W map = 9, energy map = 10, L/(T-D) map = 11, turn radius map = 12, time to turn map</pre>
INDMHP	Controls contours to which tangency criteria is applied (see IPATH): = 1, use max [E] condition = 2, use max. [E/W] condition = 3, use max. [L/D] condition = 4, use max. [range factor] condition = 5, use max. [L/(T-D)] condition
INDTOA	Nonzero specifies that CLMXTO and ALMXTO will be used for take-off and landing computations in lieu of internal tables
INDTO1, INDTO6	Propulsion table indicators
INDTRN	Turn calculation C _L selection indicator: = 0, turn at constant velocity = 1, turn using C _{Lmax}
INDZLT	Selects contour levels on performance maps: = 0, program computes levels = 1, levels specified in ZLTAB

.

i

IPATH	Controls tangency condition for Mach-altitude path inscribed on performance contour maps: = -1, no paths = 0, all paths = 1, energy tangency climb = 2, altitude tangency climb = 3, Mach tangency climb = 4, linear M-h climb = 5, constant q climb
IPATMD	Generate and print atmospheric table indicator. Controls call to Overlay 3.1 in MISION.
IPDGPC	Detail print indicator for flight envelope calculations
IPDICN	Data base directory print control
IPENDR	Print raw propulsion system data indicator
IPENDS	Print scaled propulsion system data indicator
IPLF1 IPLF2 IPLF 3	<pre>Indicator to control allocation of tank fuel to payload: = 0, don't include in payload = 1, include in payload</pre>
IPRGSV	Print the RG array from each mission segment indicator
IPSEG	Array giving mission segments to be printed and their order at printing
IPXX	<pre>Array of print control indicators: IPXX(1), controls BERAN, CRCOMP, and CHECK print if .TRUE. (2) (3) (4), controls PATH print of .TRUE. (5), controls CLIMB print if .TRUE. (6), controls XCEL print if .TRUE. (7), controls RUN print if .TRUE. (8), controls GOGO print if .TRUE. (9) (10) NOTE THAT in FLITEN calculations the IPXX array is set internally to .TRUE.</pre>
IPTZIN	Print term array as each mission segment data is processed indicator
IPTZXX	Print term array as each mission segment is started indicator

	${m R}^{*}$, ${m $	
ISEG	Internal variable which counts segment number, (ENSEG)	
ISEC	Internally computed second value in calls to CLOCK	<u>;</u>
ITO1X, ITO6X	Number of values for first variable in three or four dimensional propulsion tables	
IT01Y, IT06Y	Number of values for second variable in three or four dimensional propulsion tables	
ITO2W ITO4W	Number of values for third variable in four dimensional propulsion tables	.1.4
ITZ	Internally computed location for position of segment in TZ array	

••

۰ ۱۹۰۰ - ۱۹۰

11.10 **J's**

1 1 1

ъ.,

		n ar s V	$r = \delta_{0}$		e e		nas és	5 . C S
JDRPS1		Number of	store	pairs t	ype 1 1	to b e	iropped	12.3
JDRPS2	·. ·	Number of	store	pairs t	у ре 2 , 1	to be	iropped	
JDRPS3		Number of	store	pairs t	ур в 3 т	to be	dropped	
JDRPT1		Number of	tank	pairs typ	pe 1 t	o be d	ropped	s an th
JDRPT2		Number of	tank j	pairs ty	pe 2 t	be d	ropped	t i s Effitie Henrie a
JDRPT3		Number of	tank ;	pairs ty	pe 3 ti	o be d	ropped	
	÷.,	· • •	· · · ·	1947 (Mar)		a da fin	97 A. 144	
				· · · ·	:			• •

• . . .

:

and the second state of th

. :

. . .

11.11 L's

.

LOCLM	Internal, location of CLMTAB in TAB array
LOCNG	
LOCRG	Internal, location of RG array in C array
LOCSAC	Internal, starting location of aerodynamic tables in TAB array
LOCTFF	Internal, starting location of propulsion tables in TAB array
LOCTZ	Internal, location of TZ array in C array
LTTIOX 7	
LTT10Y	
LTTIOW	Not used
LTT10Z	
LTT11X	
LTT11Y	
LTT11W	
LTT11Z	
11.12 M's

;

MAXSEG	Maximum number of mission segments
MDROP1 MDROP2	Number of tank pairs type 1 dropped, internal Number of tank pairs type 2 dropped, internal
MDROP3	Number of tank pairs type 3 dropped, internal
MIN	Internally set minutes from CLOCK
MTAB01	Mission segment data tables
MTAB02	
MTAB03	

:

11.13 N'š

Í

· .

NAM	Number of Mach numbers in generalized performance calculations
NAT10	
NAT11	
NCASE	
NDROP1	Number of stores type 1 dropped, internal
NDROP2	Number of stores type 2 dropped, internal
NDROP3	Number of stores type 3 dropped, internal
NH	Number of altitudes in generalized performance calculations
NHG	Number of altitudes employed in arbitrary atmosphere model
NPAGE	Page counter, internal
NSDROP	
NSTOR1	Number of store pairs type 1
NSTOR2	Number of store pairs type 2
NSTOR3	Number of store pairs type 3
NTANK1	Number of tank pairs type 1
NTANK2	Number of tank pairs type 2
NTANK3	Number of tank pairs type 3
NUMCON	Number of contours in performance map
NUMENG	Number of engines
NUMSEG	Internally computed mission segment number, set to 1 in INISEG
NWT	Number of take-off weights for climb path

11.14 O's

_

I

~~

OPTION Internally set mission option indicator	•
	• (
	· *
	· : •
:	
	,
	;
et a la companya de l	
· ·	
	103

11.15 P's

- PAIRS Number of tank pairs carried in simple tank option. See ENERGY, OPTXX3
- PAYWT Internally computed, total payload
- PLWINT Internal payload weight
- PM Array of specified pressures at base of each layer in arbitrary atmosphere model; in pounds per square foot. If pressures are free, omit.
- PQ1 Internal, computed in OUTXXX, SEGOUT
- PQ2 Internal, computed in OUTXXX, SEGOUT
- PQ3 Internal, computed in SEGOUT
- PQ4 Internal, computed in SEGOUT
- PQ5 Not used
- PQ6 Not used
- PQ7 Not used
- PQ8 Not used
- PQ9 Not used
- PQ10 Not used
- PS Power setting, propulsion

PSET Throttling option:
 = 1, maximum available dry, wet or maximum power
 = 2, minimum available
 = 3, at specified power setting

11.16 Q's

QLIM Maximum allowable dynamic pressure

QS Internal, product of dynamic pressure and wing area; computed in CHECK, PATH, CRCOMP, EDMHPT, etc.

11.17 R's

RANGE	Internally computed range, ENSEG
RANGE1 RANGE2 RANGE3	Three range values for buddy refuel mission segment option
RC	Internal, rate of climb; computed in PATH
RCM	Internal range increment, FLIENV
RCMAX	Internal, used in OPTXXZ
RCSC	Rate of climb at service ceiling
RETWGT	Internal, return weight
RFAC	Internal, Breguet range factor; computed in CHECK, CRCOMP
RN	Internal, summed range FLIMHC
RXC	Internal, range covered in time DT; computed in CLIMB

11.18 S's

SFC Internal, specific fuel consumption, ENDAT SFCFAC Factor applied to specific fuel consumption SPCHUT Flat plate area of drag chute SPTYP1 Internal, number of store pylons type 1 left, SACSP, STORES Internal, number of store pylons type 2 left, SACSP, STORES SPTYP2 Internal, number of store pylons type 3 left, SACSP, STORES SPTYP3 SPLG Flat plate area of landing gear SQ SREF Wing reference area STWRET STWDRP STYP1 Internal, number of stores type 1 left, SACSP, S. Internal, number of stores type 2 left, SACSP, SI STYP2 -STYP3 Internal, number of stores type 3 left, SACSP, STONTS

11.19 T's

TAC	Internal, time to accelerate, XCEL
TCMAX	Internal, time variable OPTXX2, OPTXX4
TERM	Internal, array of particular mission segment data
TEWT	Weight of empty fuel tank pair, simple tank option (old NSEG)
TFWT	Weight of fuel in tank pair, simple tank option (old NSEG)
TIME	Internal, mission time, ENSEG
TITLE	Title card, read in INSEG
ТМ	Array of temperatures used in arbitrary atmosphere
TMINRJ	Minimum ramjet throttle setting for combined engine option
TMINTJ	Minimum turbojet throttle setting for combined engine option
TOL	Internal, tolerance set in CLIMB
TOTSWD	Internal, total store and pylon weight dropped, STORES
TOTTFD	Internal, total tank fuel dropped or consumed, TANKS
TOTTWD	Internal, total weight of tank and pylons dropped, TANKS
TPWT	
TPTYP1	Internal, number of tank pylons type 1 left, SACTP, TANKS
TPTYP2	Internal, number of tank pylons type 2 left, SACTP, TANKS
TPTYP3	Internal, number of tank pylons type 3 left, SACTP, TANKS
TRATIO	Wing taper ratio, landing and take-off aerodynamics
TSIZEF	Engine sizing factor
TSWT	Internal, total tank and store system weight, INKSWT
TSWDRP	Internal, total store system weight dropped
TSWDRP	Internal, total store system weight returned
TSWRET	Internal, total store system weight returned

TTABXX	Propulsion table number XX
TTCC	Internal variable in CLIMB
TTR	Internal, time to cruise, RUN; used in several options
TTYP1	Internal, number of tanks type 1 left,SACTP, TANKS
TTYP2	Internal, number of tanks type 2 left,SACTP, TANKS
ттүрз	Internal, number of tanks type 3 left,SACTP, TANKS
TZ	Internal, array of mission segment data. Contains all
TZ13	segments and is aggregate of IERM arrays

.

į

· · ·

11.20 V's

VN Internal, velocity knots, CHECK
VX Internal, velocity in feet per second, CHECK
V50 Internal, velocity at 50 foot obstacle, take-off analysis

11.21 W's

_

-

,	•	
W	Initial weight	
Wl	Internal, weight FLIMHC	577
W2	Internal, weight FLIMHC	• 'e .
W50	Internal, weight at 50-foot obstacle, take-off analysis	4.1.2 1.1.2
WFF	Final weight, endurance and range performance	
WGTO	Initial weight	
WGTFT1	Weight of fuel in tank pair type l	
WGTFT2	Weight of fuel in tank pair type 2	
WGTFT3	Weight of fuel in tank pair type 3	
WGTS1	Weight of store pair type l	
WGTS2	Weight of store pair type 2	
WGTS3	Weight of store pair type 3	
WGTSP1	Weight of store pylon pair type l	
WGTSP2	Weight of store pylon pair type 2	
WGTSP3	Weight of store pylon pair type 3	
WGTT1	Empty weight of tank pair type 1	
WGTT2	Empty weight of tank pair type 2	
WGTT3	Empty weight of tank pair type 3	
WGTTP1	Weight of tank pylon pair type l	
WGTTP2	Weight of tank pylon pair type 2	
WGTTP3	Weight of tank pylon pair type 3	
WGTUF1	Weight of usable fuel in tank pair type 1	
WGTUF2	Weight of usable fuel in tank pair type 2	
WGTUF3	Weight of usable fuel in tank pair type 3	

WI	Initial weight, endurance and range performance
WINCID	Wing incidence used in take-off and landing analysis
WL	Weight at start of landing; also control landing analysis in FILLPM
WO	Initial take-off weight; also contains take-off analysis in FILLPM
WSLEFC	Wing leading edge sweep angle; used in landing ant take-off analysis
WT	Weight used in general performance calculations
WTKEP	Internal set to initial segment weight in OPTXX7 and other options
WUTO	Warm up and take-off fuel weight allowance
WUTOFU	

11.22 X's

-

5

XA1 XA2	Internal variables in FLYMHP, FLIXCP, OPTXX2
XA3	
XAA	Internal, controls INDMHP setting in CMAX. Control maximum R/C or dh/dW in OPTX14
XAO	Internal dM/dh in FLYMHP, FLIXCP, OPTXX1
XBO XB1	Internal, used in EMAX, FLIENV, FLIXEP, FLIXCP. XBO QLIM, XB1 AMLIM in OPTX14
XFLEN	Internal indicator. Controls call to FLITEN in MISION. Set in RNSEG
XISO	Specific impulse at take-off
XMAXG	Maximum ground roll
XMLOD	Internal, set in RNSEG
XMSEG	Internal, used in INSEG, set in RNSEG
XNZZ	Internal, error indicator set in BERAN, CHECK, CLIMB, CRCOMP, OPTXX1, OUTXXX, etc.
XQ12	Internal, used in OPTX14
XQA1	Internal, altitude variable GOGO OUTXXX
XQAE	Internal, altitude variable GOGO, OUTXXX
XQBD	Internal, indicator controlling CHECK Option and used in EMAX, FLIMHC, FLIXCP, GOGO
XQFP	Internal constant, FLYMHP, FLIMHC, FLIXEP, FLIXRP, FLIXCP, OPTXX1, OUTXXX, etc.
XQR1	Internal, range variable GOGO, RUN
XQR2	Internal, used in RUN
XQR3	Internal, used in RUN
XQSW	Aerodynamic reference area

.....

113

		in in ag 11 ge i b
XQT1	Internal, time variable GOGO, RUN	
XQT2	Internal, used in RUN	
XQT3	Internal, used in RUN	
XQW1	Internal, weight variable in GOGO, OUTXXX, RUN	
XQW2	Internal, weight variable in GOGO, OUTXXX, RUN	
XQWE	Internal, minimum weight in CLIMB	
XSTEP		
XTT	Internal, limiting altitude change in FLYMHP. Also used in FLIMHC. FLIXEP. FLIXEP. FLIXCP. GOGO. INTMHP. OPTXX1. etc.	r

;

11.23 Y's

-

- ----

YZA	Internal, variable used i	n CHECK, CLIMB, PATH, etc.	
			1,25
			2 ¹¹ -11
		·	
			2.5
、			• •

115

·· _ --

11.24 Z's

.

ZLTAB	Table of "Z" levels, contour plotting, used when INDZLT = 1.
ZMAX10	Minimum L/(T-D); map 10
ZMAX11	Maximum "Z" contour, map 11 (turn radius)
ZMAX12	Maximum "Z" contour, map 12 (time to turn)
ZX5	Internal, number of tanks dropped, simple option, ENERGY
ZX6 ZX7	Internal, used in PATH, RUN. 2X6 = 0.0 in SEGINI
ZX8	Internal, set to WGTO in SEGINI
ZX9	Not used
ZX10	Internal, weight term in ENERGY. Set to total non-fuel weight dropped in OPTX12. Set to PAYWT in SEGINI
ZY1 ZY2 ZY3 ZY4 ZY5 ZY6 ZY7 ZY8 ZY9 ZY10	Not used

12. FLIGHT PATH INEQUALITIES

|

ł

AMAXTJ	Maximum Mach number for turbojet operation
AMINRJ	Minimum Mach number for ramjet operation
AMLIM	Limiting flight Mach number
CLMAX	Limiting C_L value when INDCLM = 0
CLMTAB	Table of $C_{L_{max}}$ as function of (MACH, CASE) when INDCLM = 1
FNMIN	Minimum thrust
FFRMIN	Minimum fuel flow
GLEVEL	Load factor
QLIM	Dynamic pressure limit
TMINRJ	Minimum ramjet throttle setting for combined engine option
TMINTJ	Minimum turbojet throttle setting for combined engine option

117

13. GENERALIZED PERFORMANCE ANALYSIS

Two types of generalized performance calculations are available in NSEG;

- Contour maps of specified performance function with or without superimposed climbs, descents, or accelerations
- 2. Organized sets of mission segments for a range of weights, Mach numbers, and altitudes

Generalized performance calculations are controlled from subroutine FLITEN which is called directly from the Main program of Overlay (3.0) MISION when the internal variable XFLEN is .TRUE. Contour maps are prepared in FLIMAP Overlay (3.4), and organized missions are prepared in FLIRAN Overlay (3.3). Figure 17 presents a flow chart for subroutine FLITEN.

Each map generated requires a self-contained block of data which terminates with an END card. Vehicle data and contour map data, such as map limits, may be altered in any map data block. All map data blocks are contained in the GENPC data region, Figure 17.

13.1 Contour Plotting Data and Options

A set of point calculations (i.e., vehicle capability at given flight conditions) are carried out over a two-dimensional array of Mach/altitudes, M_i , h_j . The resulting matrix of capabilities, F_{1j}^k is then supplied automatically to the CONPLOT routines, and the contours of the function F^k in the Mach/altitude plane are obtained in the form of CALCOMP, Houston plotter, or CRT display device output. At the present time twelve functions, F^1 to F^{12} , may be output in contour form. Each contour plot and input is described below.

- AME End climb Mach number
- AMF Highest Mach number on contour grid
- AMI Lowest Mach number on contour grid

AMS Start climb Mach number

ENDPTH Terminal maneuver indicator: =-1, don't exceed terminal altitude = 1, allowed to exceed terminal altitude

·118

CIEVEI	Number of lat nulled by vehicle
GLEVEL	Number of g pulled by venicle
HE	End climb altitude
HF	Highest altitude on contour grid
HI	Lowest altitude on contour grid
НО	Initial climb altitude
INDGPC	Generalized performance calculation indicator. Must be set to INDGPC = 8 for maps
INDMAP	Map indicator: = 0, no map = i, produce map i
INDZLT	Contour level indicator: = 0, Internally computed by NSEG = 1, specified directly by user
IPATH	<pre>Superimposed path indicator: =-1, no paths = 0, all paths = 1, È climb = 2, h climb = 3, M climb = 4, linear M-h climb = 5, constant dynamic pressure climb</pre>
IPDGPC	Controls print out of grid details: = 0, don't print = 1, print
NAM	Number of Mach numbers in grid, (Max. = 21)
NH	Number of altitudes in grid (Max. = 21)
NUMCON	Number of contour levels to be used
ZLTAB	Table of contour levels to be defined on map when INDZLT=1
In addition	on, the appropriate aerodynamic and propulsive data must be specified.

i

1

13.1.1 Specific Energy Time Derivative, E (INDMAP=1)

The specific energy time derivative is computed according to the expression

$$E(M,h) = (T-D)V/W$$

where

- È energy total time derivative
- T thrust obtained at a specified power setting or at T=D. Wet, dry, or maximum power options are available
- D drag computed for a specified load factor
- V flight velocity
- W aircraft weight

The \dot{E}/\dot{m} contour presents the specific energy time derivative over the fuel flow map. Since

$$\dot{E}/m = \frac{dE/dt}{dm/dt} = \frac{dE}{dm}$$

The point calculation employed is

$$\dot{E}/m = (T-D)V/(Wm)$$

where m is the fuel flow rate.

Lift/drag contours present a measure of the airplane's aerodynamic efficiency. The L/D maps indicate its range capability in unpowered flight and partially reflect the cruise range capability. Maps can be produced for any specified load factor.

13.1.4 Range Factor, RF, (INDMAP=4)

Range factor contours present a measure of vehicle cruise range capability. Maps are produced for level flight with thrust equal to drag at a specified aircraft weight.

$$R_F = (\frac{V}{SFC}) (\frac{L}{D})$$

where SFC is the specific fuel consumption.

13.1.5 Thrust (INDMAP=5)

The thrust map is available as a device for examining thrust input data or the thrust component of other mapped functions. The map can be obtained for wet, dry, maximum, or throttled power setting.

13.1.6 Drag (INDMAP=6)

The drag map provides a device for inspecting drag data input or the drag component of any other map. Drag maps are produced for a specified load factor.

13.1.7 Specific Fuel Consumption, SFC, (INDMAP=7)

Specific fuel consumption maps are provided as a data input inspection device or as an aid to visualizing the specific fuel consumption component of other maps. Maps may be obtained for wet, dry, maximum, or throttled power settings.

13.1.8 Fuel Flow Rate, m, (INDMAP = 8)

The fuel flow maps are provided as a data input inspection device or as an aid to visualizing the fuel flow component of other maps. Maps may be obtained for wet, dry, maximum, or throttled power settings.

13.1.9 Specific Energy (INDMAP=9)

The specific energy map

$$E = h + V^2/2g$$

is provided as a user's convenience in visualizing the trajectory points between constant energy lines and any other set of contours.

13.1.10 Lift/(Thrust-Drag), L/(T-D), (INDMAP=10)

The lift/(thrust-drag) contours are useful for determination of maximum range powered flight. Assuming that maximum range flight occurs at small flight path angles with $L \simeq W$

$$R \simeq \int \frac{L}{T-D} dE$$

Therefore, the energy-like approximation to maximum range flight occurs when L/(T-D) is a maximum at each energy level. It should be noted that when T - D = 0, no energy gain is possible; therefore, this singular condition must be avoided. In NSEG the per cent excess of thrust over drag which is acceptable is the program input ZMAX10.

13.1.11 Turn Radius (INDMAP = 11)

Turn radius maps give a gross indication of aircraft's combat capability. Turn radius is computed by equating the aircraft's lift capability in steady state or decelerating flight using the expression

$$R = w \left(\frac{V^2}{g}\right) \left[\frac{1.0}{(qSC_L)^2 - W^2}\right]^{1/2}$$

where C_{L} is determined so that

1. INDTRN = 0

2. thrust equals drag for steady state flight

3. INDTRN = 1

4. $C_L = C_{L_{max}}$ for minimum instantaneous turn radius

The maximum turn radius to be plotted is given by ZMAX11.

13.1.12 Time to Turn, (INDMAP=12)

Time to turn through 180° is presented as a supplement to the turn radius map. When the minimum instantaneous turn radius calculation is employed, the maps do not give a true time to turn. They merely indicate how long a time the aircraft would take to turn *if it could maintain its current turn rate*. When steady state turns are considered, true time to turn is obtained which will frequently be much longer than is required for a decelerating turn.

The maximum time to turn 180° plotted is given by ZMAX12.

13.2 Organized Mission Segments and Flight Envelope

These calculations are retained in the original NSEG program form. General data required is

AMLIM Maximum Mach number

CLMAX Maximum lift coefficient

QLIM Dynamic pressure limit

Appropriate propulsion and aerodynamic data must also be specified.

13.2.1 Flight Envelope Calculation (INDGPC = 1) AM Initial Mach number for computation of flight envelope DELAM Mach increment for flight envelope DELWT Weight increment for computation of several flight envelopes NWT Number of weights for computation flight envelope WT Initial weight for computation of flight envelope 13.2.2 Climb Path History, (INDGPC=2) AMF ' End of climb Mach number (if zero, RFMAX will be used) DELWT Incremental weight for climb performance NWT Number of weights to compute climb path WT Initial take-off weight for climb performance WUTO Warm-up and take-off fuel 13.2.3 Endurance vs. Weight at Several Altitudes, (INDGPC = 3) DELH Incremental altitude Н Initial altitude for endurance computation WFF Final weight for endurance WI Initial weight for endurance computation The number of weights, NWT, is computed internally and is less than or equal to 9. 13.2.4 Optimum Cruise Climb vs. Weight at Various Mach Numbers (INDGPC=4) AM Initial Mach number for cruise climb

DELAM Incremental Mach number

I

NAM Number of Mach numbers

WI Initial cruise weight

WFF Final cruise weight

The number of weights, NWT, is internally computed and is less than or equal to 9.

13.2.5 Constant Altitude, Constant Mach Cruise at Various Weights, (INDGPC = 5)

AMI Initial Mach number for constant altitude cruise

DELH Incremental altitude

DELAM Incremental Mach number

NH Number of altitudes

NAM Number of Mach numbers

WFF Final weight for cruise

WI Initial weight for cruise

The number of weights, NWT, is internally computed and is less than or equal to 9.

13.2.6 Take-Off and Landing Calculations (INDGPC = 6)

Data has already been presented in Section 8.

13.2.7 ML/D Calculation at Given Altitude, Various Mach Numbers and C_{I} Values, (INDGPC = 7)

AMACH Mach number value table

H Given altitude

NAM Number of Mach numbers, less than or equal to 9.

Note that ML/D is computed for $C_{I_{\rm c}}$ in the range 0 to 1.6 at .05 $C_{\rm L}$ intervals.

FIGURE 1. NSEG OVERLAY STRUCTURE

FIGURE 2. BASIC NSEG DATA OUTPUT

126

a

	(a)
1.	TITLE
2.	TABLE SIZES
3.	VEHICLE DATA
4.	GENERAL PERFORMANCE
5.	MISSION
6.	RUN CARD

	(b)
1.	TITLE
4.	GENERAL PERFORMANCE
6.	RUN CARD

1	~	٦.	
t	C	J	

1.	TITLE
5.	MISSION
6.	RUN CARD

(d)

1.	TITLE
3.	VEHICLE DATA
5.	MISSION
6.	Run Card

(e)	

1.	TITLE
2.	TABLE SIZES
3.	VEHICLE DATA
4.	GENERAL PERFORMANCE
6.	RUN CARD

٢	f	
ι	÷	4

1.	TITLE
2.	TABLE SIZES
3.	VEHICLE DATA
5.	MISSION

6. RUN CARD

FIGURE 3. SOME POSSIBLE ADDITIONAL NSEG DATA BLOCKS

* Provides automatic propulsion switching on Mach number

FIGURE 4. FLOW CHART, ENCASE

• Write Scaled TTAB02 FIGURE 5. FLOW CHART ENDAT

FIGURE 5. FLOW CHART ENDAT (CONTINUED)

1.

FIGURE 5. FLOW CHART ENDAT (CONCLUDED)

FIGURE 6. FLOW CHART ENSET

FIGURE 6. FLOW CHART ENSET (CONTINUED)

FIGURE 6. FLOW CHART ENSET (CONCLUDED)

$$A_{2} = A_{1} / TAN \delta_{I}$$

$$F_{1} = (P_{2} - P_{0})A_{1} \quad F_{2} = (P_{2} - P_{1})A_{2}$$

$$L_{SPILL} = (F_{2} \cos \gamma - F_{1} \sin \gamma \qquad D_{SPILL} = F_{1} \cos \gamma + F_{2} \sin \gamma$$

FIGURE 8. SPILLAGE LIFT AND DRAG COMPUTATIONS

and a series of

÷ . •

Preset L

141

Ι

.

÷ .

j.

i

165 '

SEARCH FOR MACH ALTITUDE POINT USING	BASIS FOR SELECTION OF MACH ALTITUDE POINT				
	MAX Ė	MAX Е/Й	MAX 2/D	MAX Range Factor	MAX l/(fn-drt)
Constant Energy IPATH=1	INDMHP=1	INDMHP=2	INDMHP=3	INDMHP=4	INDMHP=5
Constant Altitude IPATH=2	INDMHP=1	INDMHP=2	INDMHP=3	INDMHP≈4	INDMHP=5
Constant Mach Number IPATH=3	INDMHP=1	INDMHP=2	INDMHP=3	INDMHP=4	INDMHP=5
IPATH=4	Linear Mach Altitude Path Fly from (HO, AMS) \rightarrow (HE AME)				
IPATH=5	Fly Constant Q Path				

If IPATH = 0, all five paths will be generated using the function specified by INDMHP as the basis for selecting each Mach altitude point along the path.

If IPATH < 0, no path will be generated.

 $\cdot < 0$

FIGURE 16. PATH FINDER OPTIONS OF NSEG MISSION OPTION $\underline{1}_{c}$

÷

FIGURE 17. EDOT MAP

л.

167

- L

FIGURE 18. FLOW CHART FLITEN

*U.S. GOVERNMENT PRINTING OFFICE: 1977 - 735-004/23