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UNSTEADY SUPERSONIC AERODYNAMIC THEORY
FOR INTERFERING SURFACES BY THE
METHOD OF POTENTIAL GRADIENT

by

William P. Jones
Aerospace Engineering
Texas A&M University, Texas

and

Kari Appa
Niagara Frontier Operations
Bell Aerospace Textron
Buffalo, New York 14240

SYMBOLS
, . wf kM
k,k Reduced frequencies, ? , T
27K Modified potential difference across the lifting surface
L Reference length
/Q\,A ,?1 Direction cosines of a normal to the lifting surface
(3 Local lift
m Slope of a line
M Mach number
n Unit normal or summation variable
q 1/z,oU2 dynamic pressure
. . -y Qi
Qij Generalized aerodynamic coefficients = ——
a3
S Surface of integration
R2 Hy perbolic radius squared (X,-X)2 - (Yo-Y)? - (Z,-Z)?
t Dimensional time
) . . Ut
T Nondimensional time, T
U Air stream velocity
U2n’v2n’w2n Induced velocity components, also termed as backwash, sidewash and

normalwash components



w Influence coefficient matrix relating normal velocity and velocity doublets

X,y,Z Dimensional space coordinates Xy z
i,Y,Z Nondimensional space coordinates, !5 ’—E’?
X A transformation matrix, Eq. 48.
o Constant of a line
8 =/M2.1
Ul Displacement normal to the lifting surface = 217 exp(ikT)
n = Yy-Y
= Xo X
P Air density
(03 elkT Velocity 'potential, a scalar quantity
@ = eik MX Modified potential
w Circular frequency of harmonic motion, radians per second

INTRODUCTION

Accurate determination of unsteady aerodynamic forces is essential for precise evaluation of
the aeroelastic stability characteristics of flight vehicles. In the subsonic case, the integral formula-
tion is simple and computational methods have been well developed (ref. 2). In the supersonic case,
the problem is complicated by the fact that pressure discontinuities arise because of the conical flow
field emanating from geometric irregularities such as cranked leading edges, wing tips and interfering/
interacting surfaces. A closed form solution for such problems is unlikely, and numerical superposi-
tion methods of finite element type, using sources, velocity potential doublets or pressure doublets
as basic variables have received attention in the literature (refs. 3-24).

The source superposition method gives a very simple integral relationship between the po-
tential and the downwash field (which is determined by the mode shapes) in the non-interacting
case (ref. 3). However, in the interacting case, the potential is first related to the source strength
and this is in turn related to the downwash distribution (ref. 4). Thus, by this method, two sets of
equations are involved in solving the problem. In addition, integration over wake regions and non-
unique “diaphragms’ is necessary as a part of the solution.

In the velocity potential method, there is a direct relationship between the downwash (the
mode shapes) and the velocity potential (ref. 1). Diaphragm regions are no longer necessary and the
wake regions do not need detailed modelihg since their behavior is determined by the trailing edge
potentials of the wake-producing surface. The integral relations which are more complicated than
in the source superposition method have been considerably simplified in the current work.

The pressure potential or kernel function method is a ‘direct’ approach via a relation between
downwash and pressures and aerodynamic coefficients (refs. 5-8). This integral relation is, however,
even more complicated than in the velocity potential approach.



For arbitrary configurations, the numerical methods employed may broadly be classified as
collocation and finite element methods. Collocation methods assume, a priori, certain mode shapes
or series expansions of the unknown parameters such as pressure and doublet strengths. The coeffi-
cients of these series or modes are determined from a set of algebraic equations established by satis-
fying the integral relation only at an appropriate number of collocation points. The number of
equations is comparatively few and is computationally efficient for simple configurations (ref. 9).
In a recent paper, Cunningham (ref. 10) uses the three-dimensional kernel function with a judicious
selection of pressure functions for interacting surface configurations. However, the application of
pressure collocation methods to handle general configurations is complicated by the difficulty of
choosing pressure modes for complex multi-dimensional shapes such as wing-body combinations.

In finite element methods, the integration over the dependence domain is replaced by a sum
of integrations over a number of simple elemental domains (finite elements). Over each area element,
the unknown parameter is expressed as a sum of simple functions. A number of finite element
shapes have been used, such as squares, Mach or characteristic boxes, and triangular or quadrilateral
elements. Numerical approaches differ also in the choice of functional variation within each element
and in the integration method over the element (refs. 11-20).

In Mach or characteristic box schemes, planform edges have usually been approximated by
jagged representations which result in erratic behavior of the pressure over the whole surface. More
recent versions of Mach box programs are described in references 11 and 12.

Stark (ref. 13) used elementary characteristic boxes in developing a digital computer pro-
gram in which special consideration was given to the handling of subsonic singular leading edges.
These modifications, however, detract very significantly from the basic simplicity of the Mach or
characteristic box approach, the computational price paid for additional accuracy being large.

A triangular representation of the dependence domain using a linear distribution of sources
was developed in references 14 and 15. This method offers acceptable accuracies with far fewer
elements than other methods.

Allen and Sadler (ref. 17), using characteristic elements, developed a doublet superposition
method based on Jones’ integrated potential formulation for planar configurations. They expressed
the kernel (sine and cosine) functions as parabolic interpolation functions within each element.
Woodcock and York (ref. 18) extended this approach to interacting wing and wing-body configura-
tions.

The integrated potential approach was further developed in reference 23, using linearly
varying potential doublets within triangular elements. Closed form integrals were employed to
evaluate the singular functions, while numerical integration methods were adopted for more com-
plex but analytic functions.

Although good results were obtained with fewer elements, an arbitrary wing with a control
surface could not satisfactorily be idealized. This disadvantage of the velocity potential method led
to the development of the potential gradient method described in reference 25 and this report. In
this scheme, the potential gradient in the stream direction is considered as an independent variable
and is assumed to be constant over an element. This results in fewer integrals than in the velocity



potential method discussed in reference 23. Once again closed form integrals have been obtained tor
singular functions and recurrence formulae derived for non-singular terms. Two sides of a typical
quadrilateral element are taken parallel to the stream, and computational efficiency is increased be-
cause the integrals along these two lines and along the boundary of the area of the wing cut by the
Mach cone vanish. This type of element has also facilitated the provision of automatic grid genera-
tion. Velocity potential distributions and generalized aerodynamic coefficients have been obtained
by the use of the potential gradient method and compared with available results derived by other
methods.

GENERAL AERODYNAMIC ANALYSIS

In the present analysis the coordinates x, y, z and time t are replaced in nondimensional form
by X, Y, Z and T, respectively, where

Ut
g

X = ,ngl’Z= ’Tz (l)

Blx
o |~

¢ being the standard length, U the airspeed, and 8= {M? - | ]l/2 where M is the Mach number. The
effect of the above transformation is to change the planform of the wing in such a way that its chord
is lengthened while its lateral dimensions remain the same. At the same time the Mach lines in the X,
Y, Z coordinate system are inclined at £45° to the X axis as indicated in Figure 1.

Z

S DENOTES AREA CUT OFF BY
MACH CONE WITH VERTEX AT P

Figure 1. Domain of Influence in Supersonic Flow

Next let us suppose that a delta wing with subsonic leading edges is oscillating in the airstrcam

with frequency w rads/sec: Then if ¢eikT, the velocity potential of the disturbed flow, is replaced
by a nondimensiona! modified potential ¢ such that



__% _ikM2X/8
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it can be proved (ref. 1), that

02¢ 9%9 %o ,
ax " avr azz TKTe=0 3

where k' = -%M- and k =_%¥__ Furthermore, it is shown in reference 1 that the solution of Equation
(3) may be expressed as the integral relation

2 cosk'R 4

® (Xo Yoo Zo) = - = [ K (X, Y) == dxay @
0Z, R

where the integral is taken over the part of the wing cut off by the Mach cone with vertex at X, Y,

Z,. The symbol K =(P, -(IJb)/21r denotes the difference between the modified velocity potential

above and below the wing and
R=[(X0-X)2-(YO-Y)2- (20-2)2] % (%)

The surface of the Mach cone with vertex at X, Y, Z, is defined by R = 0 and the mean position of
the wing is assumed to be in the plane Z = 0.

In general, the modes of motion of the wing are assumed to be known. The displacement
normal to the wing’s surface will be denoted by npy [ = 27 exp (ikT) 1 where 77 is a function of x and

y. The condition for tangential flow over the wing may then be expressed as

—_— = — ¢
dt n
or
~ ° ~ ~ i) !
ﬂ =_Q_ _a.. +mi+n —_ @e'lkMx (6)
d B 3X, Y, = azZ,
where
ﬂ =3 fn"+L EE
dT g oX

and —a—?; is the velocity normal to the surface induced by the doublet distribution over the wing and

the wake. The factor exp (ikT) is cancelled through Equation (2) and subsequently.



Wher' the wing lies approximately in the plane Z = 0 and the displacement 7y is small, the
above relation simplifies. In terms of the modified potential ® and the nondimensional coordinates
defined by Equation (1), the boundary condition to be satisfied at a typical point X, Y, Z, is then
obtained by differentiating Equation (4). For the case considered, Equation (6) is replaced by

: o L
i -:[ik.',y.g._l. _n] e 1 kT MX,
0Z, _ B 9X,

N

92 cos k'R
= . — K (X, Y) dXdy
aZ02 ff R

When the appropriate K distribution that satisfies the above equation has been determined, the values

P od
of X and 37 can be deduced from Equation (4) by differentiation. The actual velocity com-
Xo o)
' 0
ponents 9 ,—¢ may then be derived by differentiating Equation (2).
0X, 9Y,

The Modified Upwash

In order to determine the modified velocity components, it is convenient to express cos k'R
in series form

' N
COSR“ R . S Cyy RO (8)
n=o
where
_ (_l)n k'2n
Con = ol ©)

The modified upwash W is then given by

o¢ (10)
W=— = CH, W
azo Z 2n 2n
where
92 2n-1
Won = iz [k X, ) R20"1axay an
andn=0, 1, 2, etc.
Whenn=0and Z =0,
92 K
W= . — — d: d (12)
wO azoz ff R E n



where £ = X -X and 1 = Y,-Y. By integrating by parts, it may be deduced that

92 oK
S
where _
_ L £+ R
L=yl <z-R> (14)

Let us next assume that the area of integration S is divided into a number of small quadri-
lateral elements E with chordwise sides parallel to the & or X axis. It is further supposed that

g—? (=- E;—I;-() is constant over each element. Then, since L = 0 over the part of the boundary of S on
the surface of the cone R = 0, it can be deduced that W, is given approximately by

Z
oK ) o £
= —_— =) de d 15
Wo= L oy 2 W @ua (15)
E
S

the sum of the contributions from all the E elements. The above equation, after integration with
respect to £ then yields

K , 2 ZoR
Yo = L oox Y (Fvap) @
E o o (16)
where denotes the contour integral around a quadrilateral element in the anti-clockwise direction

as indicated in Figure 2. In Equation (16), & is replaced by mn + « where m and « have the values
corresponding to the particular side of the quadrilateral over which the integration is being performed
and

1
R = [(m2 1)n? +2man +o? -zoz] & (17)

It should be noted that m? -1 can be negative and that o? >Zo2. When the above expression for R is
substituted in Equation (16), it can be shown that

dK
W, = - g X Ip 18)

where 1 is given by

_ [ Ra
I, = [172"'202 -(m?*-1)F +m?Z2 F, -moze] c (19)



Figure 2. Contour Integration Along Discrete Elements

where
dn

F = ~—~—

o f R

. dn (20)
F, = R —

1 ¢ (772 +202 ) R

ndn

F, =¢ ——*

¢ m*+Z72)R

and ]c indicates Sf around each element E, Figure 2.

Since

dL  MZg -na
dn - @+Z 2R

it follows that the value of F, can be derived from the relation

o«F, = mZ2F, -L (22)



Hence, only F and F, need be evaluated. It can readily be deduced that

1 (m? - 1) R+(m? -1) n+me
Fo, = (m2_1)1/2 log, 7] ,...m>1
1 o 1-m?)n-moa
- st Lmnome .m<1 23)
(1-m)% [a?-Z2(1-m)%
R ....m=1

o
The integral F, can also be derived by substituting n = Z tan (6 +7) in the integrand and putting tan

v= mZo/a. After some reduction, the required formula can be shown to be
no - mZ%

1
— 31
Fl—Zo(a2+m2 202) [ asin [l.(n2+zoz) [a2 +Zoz (mz _l]l 173 ]

y Mo @R
2 % @R 24)

™

where the integral is taken along the line £ = mn + « from n, ton,. It should be noted that the
values of m and « are different for the lower side of the quadrilateral element.

When the values of all the F integrals over the upper and lower sides of each element have
been determined, the total integral 1, for any element can be evaluated. From Equation (18), the
upwash due to all the elements may then be obtained by summation.

Similarly, it can be deduced that

3 KZ ¢
= — —— dn
W, 5z R
oK Zo2 R
= L — ¢ tL-R-———) dn (25)
E oX ¢< n2+202
oK
= Z X I, (n)

E

where

nL(mn+20) Rn F,
Lm =|——F—— -7 +—5 [ -3m?*-1)Z]]

2 2 2
(26)
Z2F, .. TmaZgF, ]
+ > (3mZ S -40?) - ——’—‘—2

C
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is taken around the contour C of each element of area (Figure 2). The corresponding formula for
Wy, for n = 2 is given by

K 27
W2n= (2n-1)z a_X 12n Q7N
E
where
L, = § My 9-(2n-3)Z7 Hyp g) dn (28)
in which
2n+1
R @n-1) (29)
= - +Z 2 H
Hon = Znnr ) o @ 2o) Hon o
with
Hy, = (L -R (30)
and
( 2 +7Z 2) H
R3 n 3) 0 31
H, =— - ————

6 2

The integrand in 15, is analytic throughout the dependence domain and closed form integration is
possible. However, it is more economical to evaluate the integral numerically, say, by the method of
Gaussian quadrature. It is clear from the expressions for H, that the integrals I, vanish on the
Mach boundary R = 0. This eliminates the need Tor the determination of the intersection of the
dependent domain by the Mach hyperbola. However, for hyperbolic radius R>>1 and n large, the
magnitudes H,,, grow in geometric progression. The convergence of W for large values of reduced
frequency k is then slow. However, for practical values of k and R convergence is obtained with a
reasonable number of terms.

The Modified Backwash and Sidewash Components

The corresponding velocity components U, V5, along the OX and OY axes, respectively,
may also be deduced.

It can readily be proved that

od
o v 0K
Xy~ Vom0 L g ey G
P oK
axz - U2 - Zo Z _a_x (nL_mZo2 F2 _azoz Fl +aFO) (33)
o E
and
od
2n v 9K d >2 (34)
_ =U = (2n-1Z _ P n..... n:=
X, 2n = Gn-DZo % ax & Pan-2



where Py is defined by

P2n = f R2n-1 dé
gR201 - (2n-1) @*+22) Py
- 2n ' (33)
with
P, = L . | (36)
and
ER-(m2+Z2)L
P =
2 5 37
Similarly, the sidewash components are given by
oP 3K R
. " Vo=tZ% L 3% (svzz o
o E n o
ad>2_v 17 Z oK ((mn+a) L-R] 39)
Y, ° o L px TR
and
(40)
od '
2n K .
= Vo, =+ @n1)Z, ) ——Hy,y...n>2
Y, ~n 0 E oX n
The Wake Field
In the wake, since it can sustain no lift,
K KK _, (41)
oX B
This implies that
ik (X-XTE)
(42)

K(X) = K(XTp) e

where K(XTE) is the value of K at the trailing edge of the wing section being considered. If the wake
is assumed to lie in the plane Z = 0, its contribution to the normal modified velocity component can

readily be deduced since
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-~ = ¢

X B

and K(Xyp) is the sum of the % values for all the elements upstream. Using the g)l(—( distribution

given by Equatjon (43), the contribution to the velocity components at a receiving element from the
wake elements can be written as, '

.k 'k
2n,w = 1y Zexp (i (G- Erp)) Wo 4
i
ok ko (45)
Vonw = 15 Zexp Cig (- &pp) - Van
i
where § = (Xo-X;) is the relative upstream distance between the influencing and
receiving elements
and ETE = (Xo'XTE) is the relative upstream distance between the receiving element

and center of the trailing edge.

Forn =0, 1, 2, etc. the expressions for W5, , and V5 . are the same as for the lifting
surface elements. The summation in Equations (44) and (45) denotes the contribution from all the
wake elements between the trailing edge and the intersection of the Mach hyperbola with the wake
sheet (see Figure 3).

Finally, the modified normal wash distribution using Equation (6) may be expressed in

matrix form

a7 ik'MX, _

57 ¢ °= W o [T Wwl | KTE (46)

The trailing edge values of the velocity potential KT can be approximated by

—_ | oK

Ktg = [X] X 47

where the transformation matrix X is given by
ty
Xy = t, (48)
. t,

in which

tr = [AXg AX, ... AX,], (49)



rth SPAN

Y *(Xo, Yo, Zo)

Figure 3. Consideration of Wake Sheet

t. is a row vector defining the distances between the centers of the elements in the rth span from
which trailing edge the wake sheet emanates (see Figure 3).

Using Equation (47), the modified velocity potential gradient can be related to the given
boundary conditions as;

=] 8K di  ik'MX, (50)
WH+W. . X]{—}= —
[ w X ox T ar ®
Calculation of the Velocity Potential
. . . . oK . .
Equation (50) can be solved for the velocity potential gradient X It is then desired to

determine K and subsequently the velocity potential difference A¢ = by Pe-
From Equation (2) et seq,

oK I oAy ik'MX
—_ = = — 4 A
3x 21r< ox kM "’> © &)

13
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where Ap = Aé is the nondimensional velocity potential difference.

Ue
Then
3Ap (52)
et ] 'MA =
3% ikMAp = ¢
with .
oK -ik'MX
v =27 2X e
Since Ay = 0 at the leading edge, the solution to Equation (52) is given by
GkMX ) ik'M§ (54)
Ap(X) = e  y(E)e d¢
Chordwise
Elements

If Y is expressed linearly between two element centers, Equation (54) can be integrated in a closed
form between element centers, and the contributions summed. Finally, K is determined from
Equation (2).

Calculation of the Generalized Forces
The lift on an element dx dy of the wing’s surface is denoted by £ (x,y) exp (ikT) and hence

?(xy)dxdy = 2262 (X,Y) dX dY (55)

where the lift distribution

pU? 1 0K ikK | -ik'MX
[ax e ]e (56)

By the principle of virtual work, the generalized aerodynamic influence coefficient (AIC)
can be written as

oK: ik K; -ik' MX:
~ ~ ] J j 57
Qjj = 4m }F; "i<ax' 5 >AEe e

where Gij is the nondimensional form of the coefficients defined by

Q; = a¥ Gij (58)

In the above equation, Af is the area of a quadrilateral element of the wing and the contributions
from all such elements of both sides of the wing are summed.



'COMPUTATIONAL METHOD

This section briefly describes the idealization of the interacting wing surfaces, numerical
calculation of the velocity components and the solution procedure. More detailed information is
contained in the user’s and programmer’s manuals (refs. 26 and 27).

Idealization of Lifting Surfaces

The choice of the grid system plays an important role in the numerical computation of the
unsteady aerodynamic coefficients in a supersonic flow field. Triangular, rectangular, quadrilateral
and Mach characteristic grids have been employed in the supersonic analysis (e.g., references 11, 13,
14, 17, etc.). While well conditioned and more efficient calculations result from the grids based
partly on Mach characteristic lines, as shown in Figure 4, the automated generation of such elements
for a complex configuration such as multiple wings with control surfaces is difficult and proved
beyond the scope of the current work.

2
— Y
@® Denotes Downwash Point at which the Kinematic
Boundary Conditions are Satisfied
1
O Denotes Ancillary Grid Point at which the Velocity Potential
is Interpolated but the Downwash is not Computed
[}
1
X

Figure 4. Typical Characteristic Grid Idealizétionv WithA Cohtfol Surface

15
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In the present development, trapezoidal elements have been chosen as the basis to model the
interacting wing configurations with control surfaces. All the elements are assumed to have two
sides parallel to the free stream. Figure 5 shows the idealization of a typical wing with control sur-
faces. As previously indicated, this element type has specific advantages for the performance of the
recurring line invegrals around the perimeter.

o-} — Y
A
PARALLEL TO
LEADING EDGE
PARALLEL TO
FREE STREAM
B

CONTROL SURFACE

Figure 5. ldealization of Wing Planform for
Constant Potential Gradient Method

Numerical Computation of the Integrals

Integrals of the velocity components given by Equations 9, 25, 27 and 32 through 40, are
performed for all influencing elements in the dependence domain, with respect to a receiving point
at the center of an element. These integrals are taken along the contour of each element. Since the
sides of the elements are parallel to the streamlines, numerical line integrals are performed only along
leading and trailing edges of the elements. Furthermore, all the integrals vanish on the Mach cone
and the need for determining the hyperbolic curves of intersection of the cone with the lifting sur-
face is avoided. In the case of partial elements, the line integration beyond the Mach hyperbola is
Zero.

The velocity influence coefficients wji 7 Which are independent of the reduced frequency k
are first evaluated for each term in the series expansion. For n =0 and n = I, the integrals are casily



expressed in closed form, while for higher order terms, say n =2, closed form expressions exist but are
increasingly complex. Hence it is more economical to evaluate these integrals by numerical methods. -

At low Mach numbers and for large reduced frequencies, convergence of this series is poor
for far field elements. Numerical difficulties were also encountered in the evaluation of I5,, integrals
given by Equation (28) since the magnitudes of the Iy terms became very large. However, for a
given frequency, the total value of the influence coefficient, i.e.,

Wi = ngo’l’zmcznwji,zn (59)
approaches an asymptotic value for far field elements, Figure 6 shows a typical distribution of the
velocity coefficients for various chordwise and spanwise positions (¢, n) of an influencing element

i with respect to a receiving element j. '

i = INFLUENCING
ELEMENT

i = RECEIVING
ELEMENT

5

M
K

1.0
0.6

20.0}

16.0

12.0

8.0

4.0

n=0.3
n=0.2

VELOCITY INFLUENCE COEFFICIENT Wij

n=0.1

1.0

Figure 6. Asymptotic Nature of Far Field Elements

For n = 0, the asymptotic value is seen to have been obtained for all upstream elements be-
yond £20.4 (region B in Figure 6). A similar asymptotic trend is seen for elements at other span
stations such as n = 0.1, 0.2, 0.3, etc., with a drastic reduction in magnitude of the velocity com-
ponents. This behavior is discussed for rectangular elements in the Appendix.
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A dependence domain C with respect to the receiving point j (Figure 6) can be constrained by
specifying a certain order of magnitude of the velocity components wij in relation to wjj such that
the total solution does not vary by more than, say, 2 percent. Thus, the actual computation can be
performed only for the region A while the upstream region B is represented by the asymptotic values
obtained in the region A. In this way increased computational economy has been achieved in the
development of the computer program (see references 26 and 27). This also eliminates the numerical

difficulty encountered in the computation of 1, integrals for the far field elements.

Solution Procedure

Accurate determination of unsteady aerodynamic forces on lifting surfaces with controls
requires that the configuration be defined by a large number of elements which prevents the matrix
relation given by Equation (50) from being solved economically by inversion techniques. lterative
methods have been developed to solve such large order linear systems on digital computers of limited
memory size. In the present work, an iterative technique developed by Bratkovich and Marshall
(reference 28) has been chosen as the most efficient one. This method is based on the successive-
over-relaxation technique, without the need to determine the relaxation factor by trial and error
runs.

After the frequency independent coefficients have been determined, the total solution is
obtained for any frequency within a required range. Computational efficiency can be increased by
using the previously determined solutions as the starting vectors for different frequencies.

Reference 27 discusses in greater detail the cpu time taken for operations such as:
(1) determination of the coefficients

(2) decomposition of the matrix

(3) solution for each mode, and

(4) solution for each frequency, etc.

RESULTS AND DISCUSSIONS

To assess the solution accuracy and the versatility of the potential gradient method, a number
of calculations have been performed on an IBM 360/65 computer and compared with available results.
In all the cases considered here, the wing planforms were represented by trapezoidal finite elements.
Generalized aerodynamic coefficients and pressure distributions were calculated for various reduced
frequencies and Mach numbers. The examples include planar and nonplanar configurations with
control surfaces.

Isolated Wings
Double Delta Wing

The wing planform ( Figure 7a) was represented by 150 elements, with 15 span stations. The
pressure distributions along the span for various chord stations are compared with the results of
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ref. 29. The correlation is very good, except at the tip section (see Figure at X=9.0), where the large
pressure discontinuity is smeared by the discrete element approach.

Rectangular and Arrowhead Wings

The generalized aerodynamic coefficients for rectangular and arrowhead wings (Figure 8a and
8¢) for heave and pitch motions are, in Tables 1 and 2, compared with Fenain’s (ref. 22) and Stark’s
(ref. 13) methods as reported by Woodcock in ref.21. The number of elements used in chord and
span directions are shown in the tables. The generalized aecrodynamic coefficients determined for the
Mach number range M = 1.04 to M = 2.0 and reduced frequencies k =0, 0.5, and 1.0, are seen to be
in very good agreement, in spite of fewer elements used in the present method.

AGARD Swept Wing With Control Surface

Figure 8b shows the planform of the AGARD swept wing with control surface. The wing was
represented by 147 trapezoidal elements with 15 of them on the Control Surface. The oscillating
modes of the wing considered in the present calculations were:

Heaven, = 1.0

Pitching about the mid-chord (C/2) n, = X -C/2
Chordwise bending n; = (X - C/2)?

Flapping of control surface.

LN -

The generalized aerodynamic coefficients were calculated at M = 1.2, and reduced frequencies
k=0.5and 1.0.

Table 3 shows the comparison of the present results with those of refs. 13 and 22. In spite of
the large difference in the number of elements used in the present and the referenced methods, the
generalized aerodynamic coefficients are in good agreement, except for the loss of accuracy in the
small order terms.

When the magnitudes of the real and imaginary parts of a complex number differ significantly,
it is better to compare two complex numbers using their magnitudes and phases. For example,
amplitudes of Q, 3 and Q, 4 are in good agreement while their phase angles differ only by a fraction
of a degree.

Interacting Wings
Rectangular Wing Folding at 50% Semi Span

In order to check the accuracy of the out of plane velocity components derived in the
present approach, a rectangular wing of aspect ratio 4 folded at 50 percent of semi span was con-
sidered. Lift curve slopes at M =\/§_ for various fold angles were calculated, and indicate excellent
agreement with the theoretical values ref. 30 (Figure 9). Mach box results of ref. 30 shown in this
figure, overestimate the values of lift curve slopes at low fold angles and underestimate them at high
fold angles.

21



22

TABLE 1
AGARD RECTANGULAR WING (PLANFORM FIG. 8 (a))

MODESZ; =1.0Z,=X-C/2AR=2.0

k =0.6

Methods k=0 k=0.3
Mach (Matrix) or

No. {Sp/Ch P1s.)* Qij Re(Q) Im(Q) Re(Q) Im{Q) Re(Q) im(Q)
Present (49) 0.215 1.070 0.472 1.715

M9 (34/26)** 1,1 0.205 1.060 0.749 1.820

M19 (22/17)*** 0.189 1.009 0.348 1.639

Present 3.978 3.567 -0.593 2.938 -0.556

M9 1,2 3.951 3.531 -0.545 3.058 -0.946

12 M9 3.750 3.370 -0.500 2.840 -0.294
Present -0.001 -0.132 -0.096 -0.300

M9 2,1 -0.005 -0.141 -0.026 -0.310

M19 -0.005 -0.131 -0.107 -0.285

Present -0.370 -0.419 0.157 -0.403 0.440

M9 2,2 -0.398 -0.446 -0.177 -0.427 0.350

M19 -0.368 0411 -0.165 -0.380 0.450

Present (99) 0.008 1.128 0.158 2.065

Mg (34/54)°° 0.034 1.144 0.146 2.083

M19 (14/22)*** 11 0.019 1.088 0.124 1.997

Present 3.880 3.955 0.255 3.781 -0.035

M9 1,2 3.787 40 0.088 3.806 0.004

1.06 M19 3.542 3.80 0.134 3.648 0.036
Present -0.200 -0.193 -0.3419  -0.200

M9 2.1 -0.185 -0.204 -0.333 -0.251

©M19 -0.174 -0.197 -0.320 -0.244
Present -1.339 -0.544 0.837 -0.1616 0.797

M9 2,2 -1.363 -0.590 0.790 -0.250 0.825

M19 -1.293 -0.571 0.790

0.749

-0.247

* %

LX)

Spanwise and chordwise grid points

As reported in Ref. 21 using the method of Ref. 22

As reported in Ref. 21 using the method of Ref. 13



TABLE 2. AGARD ARROW HEAD WING (FIG. 8 (c))

MODES: Z; =1.0,Z,5 =X-C/2,AR=4.0

k=0 k=0.5 k=1.0
Methods .
Mach (Matrix Size

No. or Sp/Ch Grid)* Qij Re(Q) Im{Q) Re(Q) Im{Q} Re{Q} Im{(Q)
Present (43) 0.046 0.6514 0.161 1.239
M9 (34, 15)** 0.059 0.6085 0.198 1.136
M19(40, 17)*** 1, 1 0.055 0.6122 0.186 1.144

2.0 Present (43) 1,2 1.334 1.306 0.1318 1.254 0.292
M9 (34, 15)** 1.248 1.222 0.0766 1.164 0.190
M19 (40, 17)*** 1.2656 1.228 0.0851 1.165 0.208
Present (43) 0.027 0.236 0.094 0.436
M9 (34, 15) 0.031 0.226 0.105 0.406
M19 (40, 17) 2,1 0.020 0.224 0.096 0.404
Present {43) 0.489 0.474 0.0858  0.448 0.188
M9 (34, 15) 0.471 0.457 0.0595 0.426 0.140
M19 (40, 17) 2,2 0.467 0.452 0.0650 0.419 0.151
Present (110) 0.146 1.104
M9 (34, 35) 0.146 0.913
M19 (26, 26) 1.1 0.136 0.887

1.25 Present (110) 2.182 2.316  0.1566
M9 (34, 35) 2.002 1.911 0.138
M19 (26, 26) 1,2 1.936 1.852 0.147
Present (110) 0.089 0.442
M9 (34, 35) 0.075 0.330
M19 (26, 26) 2,1 0.072 0.329
Present (110) 2,2 0.868 0.949 0.101
M9 (34, 35) 0.758 0.710 0.100

M19 (26, 26) 0.748 0.705 0.102

-

Spanwise and chordwise grid points
As reported in Ref. 21 using the method of Ref. 22
As reported in Ref. 21 using the method of Ref. 13

* "
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AGARD SWEPT BACK WING WITH CONTROL (FIG. 8 (b))

TABLE 3

MACH NO. = 1.2 TOTAL CPU = 306 SEC (IBM 360/65)

k=1.0

k=05
i, Ref 22 Ref 13 Present. Ref 22 ) Ref 13 Present
No. Elements 34 x 51 20 x 30 147 34 x 51 20 x 30 147

1,1 0.0110 -0.0228 0.1758 0.3690 0.4042 0.6150

2,1 -0.2780 -0.2832 -0.2332 0.7220 0.7085 0.8567

3,1 0.1620 -0.1643 0.1193 0.3500 -0.3397 0.3840

4,1 -0.0100 -0.0090 -0.0094 -0.0230 -0.0222 0.0186

1,2 3.8110 3.6714 3515 4.1910 40734 40721

2,2 0.2870 0.2442 0.0906 0.8580 0.8016 0.8924

3,2 0.7160 0.6824 0.6056 0.9520 0.9106 0.9666

4,2 0.0200 0.0186 0.0131 0.0260 0.0235 0.0305

1,3 3.5220 3.3533 3.916 2.7140 2.5672 2.6444
=23 2.8130 2.7026 2.958 2.2980 2.2108 2.0063
g (3,3 1.444 1.3568 1.547 1.2660 1.1923 1.1051
&: 4,3 0.0850 0.0803 0.0672 0.0830 0.0784 0.0526
’g.':J 1,4 0.5900 0.5723 0.5563 0.5600 0.56437 0.5313
2,4 0.5320 0.5101 0.4984 0.5020 0.4834 0.4748

3.4 0.4830 0.4583 0.4494 0.4550 0.4332 0.4244

4,4 0.0530 0.0514 0.0448 0.0490 0.0478 0.0419

1,1 3.4790 3.3506 3.2200 3.6460 3.5473 34314

2,1 0.0410 0.0084 0.1699 0.56440 0.56016 0.5390

3,1 0.5810 0.5532 0.4637 0.8420 0.8084 0.8644

4,1 0.0160 0.0146 0.0074 0.0250 0.0227 0.0311

1,2 1.6770 1.7325 1.2420 1.6100 1.5832 1.8967

2,2 24910 2.4589 2.4289 1.7880 1.7385 1.8345

3,2 1.3350 1.3055 1.2182 0.9040 0.8632 0.8562

4,2 0.0780 0.0738 0.0764 0.0610 0.0590 0.0485

1,3 -1.2090 -1.1954 -1.0223 0.1750 0.1563 0.0139

x 12,3 -1.0740 -1.0507 -1.2672 0.1180 0.0996 0.0826
=33 -0.2560 -0.2489 -0.3390 0.4570 0.4360 05124
=] 4,3 0.0220 0.0198 -0.0049 0.0440 0.0412 0.0373
g 1,4 -0.0410 -0.0298 -0.0170 -0.0270 -0.0168 -0.0054
= 12,4 -0.0320 -0.0220 -0.0104 -0.0180 -0.0093 0.0010
3,4 -0.0260 -0.0149 -0.0173 0.0120 -0.0023 -0.0059

4,4 0.0020 0.0032 0.0042 -0.0040 0.0052 0.0058

Note: Modes are defined in the text.
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AGARD Wing-Tail Configuration

In the interacting case, the generalized aerodynamic coefficients were calculated for the
AGARD wing-tail coplanar configuration (Z = 0) shown in Figure 10. Four antisymmetric modes
of the form:

Wing Tail Mode
™ Y(X-2.25|Y]-0.85) 0 wing twist
M2 YiY| 0 wing bending
3 Y tail roll
N4 Y] (X-3.35) tail pitch

were considered.

The wing and tail were represented by 111 and 71 trapezoidal elements respectively.
Generalized aerodynamic coefficients were calculated at M = 3.0 for reduced frequencies k =0 and
1.5. Table 4 compares these results with those of ref. 24 and 31. The generalized aerodynamic
loads on the wing due to wihg modes, and on the tail due to tail modes are in excellent agreement
with the referenced methods. However, the interference effects, i.e., loads on tail due to wing modes,
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TABLE 4
AGARD WING-TAIL INTERFERENCEM =3.0 Z=0.0
NO. ELEMENTS =111 (WING) + 71 (TAIL) TOTAL CPU = 246 SEC (IBM 360/65)

k=0.0 k=15

i,) Ref 24 Ref 31 Present Ref 24 Ref,31. Present

1.1 -0.0226 0.0189 -0.0187 0.0966 0.1066 0.0901

2,1 0.3035 0.2789 0.3287 0.3846 0.3238 0.3895

3,1 -0.2152 0.2226 -0.1075 .0.0394 0.1438 -0.0695

4,1 -0.1550 -0.0006 -0.0843 -0.0147 0.1438 -0.0360

1,2 -0.0700 -0.0668 -0.0819

2,2 -0.0759 -0.0530 -0.0888

3,2 -0.1531 0.1701 -0.0400

4,2 -0.1033 0.0216 -0.0179
=13
@123

3|33 0.0168 0.0127 0.0140

w (4,3 0.0050 0.0008 0.0032
1,4
2,4

3,4 0.4650 0.4338 0.4756 0.4517 0.3859 0.4541

4,4 0.2882 0.3018 0.2904 0.2965 0.2578 0.2903

1,1 0.1486 0.1345 0.1593

2.1 0.0890 0.0865 0.1083

3,1 0.0769 -0.0612 0.0007

4,1 0.0559 -0.0612 0.0008

1,2 0.0309 0.0463 0.0300

2,2 0.2363 0.2040 0.2498

3,2, 0.0239 0.0670 -0.0003

x |42 0.0197 0.0398 0.0030
1,3
g 2,3

= 133 0.2560 0.2283 0.2635

4,3 0.1786 0.1669 0.1820
1,4
2,4

3,4 0.1632 0.1518 0.1820

4,4 0.2188 0.1910 0.2300

Note: Modes are defined in the text.




28

do not agree in magnitude among the methods compared. The discrepancy may be resolved by
conducting additional correlation with other methods.

Tail-Fin Configuration

A T-tail configuration, with tail mounted on fina Z, = 1.2 as shown in Figure 10 was considered
as the next example with the following modes of oscillation:

Tail Fin_ Mode
n, = 0, Z? Fin bending
n, = 0, Z(X-0.87_SZ-3.0) Fin twist
n3 = Y, 0 Tail roll

Tail and fin were represented by 42 and 63 trapezoidal elements. Generalized aerodynamic coeffi-
cients were calculated at M = 1.6 for reduced frequencies k = 0 and 1.5, and are given in Table 5. It
was intended to compare with the results of reference 32. For some reason Table Q3.11 of reference
32 was not available in that report. However, the corresponding result with fin reflection is shown

in Table 5. There seems to be no agreement in any of the generalized aerodynamic coefficients. The
results of ref. 32 appear to be 2 to 3 times higher than the values obtained from the present method
with no fin reflection.

TABLE 5
AGARD TAIL - FIN INTERFERENCEM = 1.6 Z= 1.2
NO. ELEMENTS =42 (TAIL) + 63 (FIN) TOTAL CPU =93 SEC (IBM 360/65)

k=0.0 k=15
i Ref. 31* Present Ref. 31* Present
1.1 1.3389 -0.0125
2,1 0.0664 -0.0605
3,1 0.4630 0.056
= 1,2 2.7068 0.8089 1.4164 0.6516
S| 22 0.3511 0.0970 0.2823 0.1031
3| 32 0.5621 0.2258 0.1392 -0.1359
[+
1,3 0.1251 0.0370
2,3 0.0211 0.1795
33 0.0350 0.0025
1,1 4,7124 0.5200
2,1 0.1324 0.0449
3,1 1.6933 0.1209
{ .
gl 12 -0.4249 0.1430
o | 22 0.1817 0.1643
s | 32 -0.2333 0.0047
1,3 1,6239 0.0527
2,3 0.0074 0.0166
3.3 0.6700 0.4457

*The results of Reference 31 were obtain;i with fin reflection.



Wing-Tail-Fin Configuration

This was the last in the series of the examples considered. The tail was placed at Z = 0. Four
niodes;
i)  wing twist
i) tail pitch
iii)  fin bending, and
iv)  fin twist,
as defined in the previous examples were considered. Generalized aerodynamic coefficients were

calculated at M = 3.0 for frequencies k = 0 and 1.5 and are presented in Table 6. For this configuration
no other results are available for comparison.

»

TABLE 6
AGARD WING - TAIL - FIN INTERFERENCEM =3.0Z=0
NO. ELEMENTS = 73 (WING) + 70 (TAIL)+110 (FIN) TOTAL CPU = 203 SEC (IBM 360/65)

k=00 k=15
i Real (@) | IMG (@)/k | Real (@) | MG (a)/k
1.1 | -0.0202 0.0839 0.1641
2.1 .0.1333 0.1779 0.1444
3.1 -0.0980 0.0492 0.0066
41 -0.0460 0.0240 0.0185
1,2
2.2 0.3420 0.3137 0.2160
3.2 .0.01756 0.0042 0.0084
4.2 00414 .0.0059 0.0170
1,3
2.3 -0.0046 .0.0006
33 -0.0420 0.2918
43 00217 0.0361
1.4
2 4 -0.0144 -0.0017 0.0059
34 0.3400 0.03314 0.0780
44 0.0545 0.0551 0.0711

Influence of Element Mismatch on Pressure Distribution

The lifting surfaces are commonly represented by discrete elements bounded by continuous
lines drawn from root chord to tip chord and leading edge to trailing edge. For highly tapered wings,
this may result in an undesirable concentration of small elements at the tip. Elements of nearly
equal areas could be obtained by terminating some lines at partial span stations (e.g:, see the control
surface in Figure 5).
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In subsonic doublet methods such a discontinuity creates undesirable fluctuations in the
pressure distribution (ref. 2). Some misgivings were voiced concerning similar effects in the present
method. They do not seem to be significant as evidenced by the following examples. '

Figure 11a and b shows the chordwise pressure distribution at two spanwise stations adjacent
to the leading edge crank of the double delta wing of Figure 7. Two cases of ‘element mismatch’ are
shown. In both the cases the pressuré distributions are relatively smooth. Figure 11b also shows the
pressure distribution with element downwash points located at 0.75 and 0.8 of the element chords.
No significant effect was observed. However, in the case of wings such as Figure 8c, pressure dis-
tributions with the downwash point taken at 0.5 of the element chord gave unsatisfactory results.

In general, a choice of downwash point anywhere between 0.6 to 0.8 of the element center chord
should give satisfactory results.
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Figure 11. Effect on Pressures of Element Mismatch - Double Delta Wing

CONCLUSIONS

The potential gradient approacl, unlike the pressure potentials, results in simplified integral
formulae. By expanding the kernel, the singular integrals have been evaluated in closed form without
the need for principal or finite part integral techniques. Integrals vanish on the Mach cone and the
need for determining the hyperbolic curves of intersection of the cone with the lifting surface is
avoided. Furthermore, idealization of lifting surfaces by trapezoidal finite elements with two sides
parallel to the streamlines, requires numerical integrals to be performed along the other two sides



only.Such elements are amenable to automatic grid generation schemes. Comparable results to other
niethods are obtained with far fewer elements.
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APPENDIX
BEHAVIOR OF THE FAR FIELD ELEMENTS

In Figure 6, it appears that the velocity influence coefficient has an asymptotic trend for
increasing &.

Suppose in Figure 6, a rectangular sending element has sides (2¢, 27v) and coordinates (¢, 1)

such that -;-,% are small. For this box, approximately

Eteqnty
Woox = 121: Con [I2n (5,17)] ] (A-1)
E-edn-vy
3L, Jn+Y
~ 23 Oy, [6—2;] (A2)
n-vy

Now this may be shown proportional to

7 n+7v

n
1-\5=— "2 14
2e |- ng -l;— {nL+£sin"(Z>}+%E Nt (A-3)

Forn = 0 (£ not small),

W ~ 4 M (E) k' 2 Y 4 EZ'Y
box = 4€v -~—2— Qn—+£sm E+k + . (A-4)

246
1 1 2) K2 KTy,
Wbox—4e7[nz§ = n)z ) In—- - T SO (A-5)
k3
in which ¢ £,
2 q 6
and S(i) = g‘ _.g__i_{_ « o s e (A_6)

33



34

For n 2 0, the significant terms are like

, kl4 2
kK'“ n¢+

and there is no obvious reason why an asymptotic behavior occurs. This should receive more detailed
study.
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