@ https://ntrs.nasa.gov/search.jsp?R=19770026256 2020-03-22T08:29:30+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



. NASA Contractor Report 145246

e ;gggg—CR-195296! DIGITAL FLIGHTACORTROL
Stateug !V1t91n1a Polytechnic Inst. and
‘ niv.) 51 p HC A04/MF A01 CSCL 01cC

N77-33200

Unclas
G3/08 50257

DIGITAL FLIGHT CONTROL SYSTEMS

ALper K, CacLAYAN AND HuGH F, VANLANDINGHAM

NASA GRANT NGR 47-004-116

VIRGINIA PoLYTECHNIC INSTITUTE & STATE UNIVERSITY
BLacksBurRG, VA 24061

- | | SEPTEMBER 1977

bgﬁ%%ﬁﬁf

- o AT 4 fagkx

7 ALY AR %

| NNASA £ wrmr 2

g ¥ : " ~ —

National Aeronautics and o oy 75

Space Administration = HnECEWED f‘f

; , wes  RASE BT RAGIITY .00
£ ‘ : Langley Research Center \\“”f‘;x 3
| Hampton, Virginia 23665 “Eh , A

L oo S



II.

II1I.

Iv.

V.

CONTENTS

Introduction

Optimal Control of Sampled-Data Systems with
Variable Sampling

A, Stochastic Modeling Apprcach to Variable
Sampling :

B. Stability of Sampled-Data Systems with
Variable Sampling

Failure Accommodation in Control Systems

A. Parameter Adaptive Estimation

B. Directions for Further Research

References
Appendices

A. A Separation Theorem for the Stochastic
Sampled-Data Regulator Problem (Reference
2., page 17)

B. On the Relation Between the Sampled-Data
and the Continuous Optimal Linear
Regulator Problems (Reference 4, page 17)

C. Failure Accommodation in Digital Flight
Control Systems by Bayesian Decision Theory

(Reference 6, page 17).

D. Parameter Adaptive Estimation of Random
Processes. (Reference 8, page 17).

“E. Stability of Multirate Sampled-Data Systems
(Abstract of Reference 5, page 17).

-F., Optimal Parameter Adaptive Estimation of
* Stochastic Processes (Abstract of Reference 7,
page 17).

Page

11
12
13
16

17

26

30
37

47

48



I. INTRODUCTION

Under NASA Grant NGR~47-004-116, two major problems have been stud-
ied. The first problem studied is the design of stable feedback control
laws for sampled-data systems with variable rate sampling. These types
of sampled-data systems arise naturally in -digital flight control systems
-which use digital actuators. In these control systems, it is desirable
to decrease the number of control computer output commands in order to
save wear and tear of the associated equipment. Variable sampling also
provides the designer with the capability of a more efficient utiliza-
tion of the flight control computer than the standard fixed sampling-rate
approach. Therefore, a variable sampling approach can also be of value
to digital flight control systems using analog actuators. For instance,
more time can be devoted to the identification of aircraft paraméters or
to some other task by reducing the control calculations using variable
sampling.

The second major problem studied under NASA Grant NGR-47-004-116 is
the design of aircraft control: systems which are optimally tolerant of
sensor and actuator failures. The first problem to be resolved is the
detection of the failed sensor or actuator. If the estimate of the state
is used in the control law, then it is also desirable to have an estima-
tor which will. give the optimal state estimate even under the failed con-
ditions. Both the detection of sensor and actuator failures and the
optimal state estimation with sensor and actuator failures are important
~control systém problems which, if not resolved, can seriously (even

fatally) degrade the control system performance of an aircraft.



II. OPTIMAL CONTROL OF SAMPLED~DATA SYSTEMS WITH VARIABLE SAMPLING

At each flight condition, the airplane dynamics can be modeled by a
continuous, lipear, time-variant, dynamic system [l]. Comparative simu-
lations have indicated that a model-follower scheme in which the error
between the model states and the plant states is penalized continuously
"in time was a more suitable approach in the design of control laws for
sampled-data systems with variable sampling than designs based on a
minimization of error at only the sampling instants. The aircraft dynam-
ics are continuous and the gust inputs affecting the airplane are contin-
uous random processes, but the measurements are made only at the sampling
instants and the control is comnstrained to be constant between the sam-
pling instants. Thus, the problem can be cast into the format of the
stochastic sampled-data regulator problem of linear stochastic optimal
control theory. The first problem to be resolved was to find out whether
the separation theorem of linear optimal control continues to hold for
the stochastic sampled-data regulator problem. This problem has been
resolved and the results are reported in reference [2] along with a
discrete-time stochastic problem which is equivalent to the stochastic
sampled—data regulator problem. A summary of the results follows.

The stochastic sampled-data regulator problem is to find the stoch-

astic optimal control for the dynamical system represented by

x(t) = Ax(t) + Bu(t) + w(t) te[t ,t (1)

o] N]
where x is the n~dimensional state vector, u is the r-dimensional control
vector, and w is the white Gaussian plant noise vector of dimension n

with Bw(t) = 0 and Ew(t)w'(s) =~WW6D(t-s) for some positive semidefinite



a

where X, = x(tk), u, = u(tk), ¢(tk+l’tk) = exp A(tk+l-tk)’ T(t

matrix Ww. E denotes the expectation operator and GD is the Dirac delta
function. A and B are matrices of appropriate order.
The plant noise is a continuous random process; however, the measure-

ments are available only at the sampling instants:

y () = Cx(t,) + v(e) k=0,1, 2, . . ., N-1 (2)

‘where y is the m-dimensional measurement vector, and v is a Gaussian

sequence of uncorrelated zero-mean random vectors with Ev(tk)v'(tj) =

Y s

v ki’
The cost functional penalizes the state and the control continuously
in time
1ty
J=3E [x"(£)Q x(t) + u'(t)R u(t)] dt 3
to c c

where Qc is positive semidefinite and Rc is positive definite. The stoch-
astic sampled-data regulator problem is to find the control sequence

{ux(tk)}z z i with thgrconstraint

e (t k=0,1, 2, . . ., N-1

K k? Ber1)

u*(t) = u(t )

and also the additional constraint that u*(tk) will depend only on the
past measurement sequence y(ti), i=1, 2, . ., k which will minimize
the cost functional (3).

In reference [2], it is shown that this stochastic optimal control
problem is equivalent to finding the optimal control for the discrete

system

+ W

= #( el BV Y

tk+l,tk)xk + T(t

(5

Y = Ckxk + Vi k=0, 1, . + ., N-1

k+1° ) =



t

Tt

k+1
k
vectors with

¢(tk+l,s) dsB, and W is a zero-mean Gaussian sequence of random

t

k+1
Ewkwj' = [ftk @(tk+l,s) W 3! (t l,s)ds]6 (6)
with the cost functional
1 N 1
J=5EIL (x 'Qkxk + 2xk Mou, +u Rku 7
, k=0
where
Cr+1
— 1
Q = ftk o' (t,t,)Q, ¢(t,t,)dt (8)
Pl
— '
M o= ftk ¢ (t,tk)Qc F(t,tk)dt (9
R, = tkﬂ[a + T (E,£)Q_ T(E,£)]de (10)

The stochastic optimal control is shown to be given by

= - ! -1 ! N 2
ui [R M + (R + I K1+l l) PiKi+l ¢i]xi
| (11)
i=0,1, 2, ... ., N-1
where Ki is the solution to the Riccati difference equation
=g ~lp © ) . '
Ry = 0 IRy Ky g Ty Ry + T IRy 1) T Ky ] 0y + 0y (12)

_ -1
= — 1] ]
0; = 0(tyyynt )Ty RyMT,

il

0 and. where Pi =’T(ti+l’ti)’

with KN
5_ = Q,-M.RTlM.’, and %, is the conditional expectation of x, given the
i i SR s S | i i

fobse?vation sequence {yo, yl’,' e yi}., |

Looking at equations (11) and (12), it is seen that the optimal con-
trol law for the stochastic sampled-data regulator problem is the same as
the deterministic sampled-data regulator problem [3] with Xy replaced by
its estimate ﬁk; Therefore, the separation between estimation and con-

trol continues to hold for the stochastic sampled-data regulator problem.



The only modification needed for stochastic control is the use of the
derived equivalent discrete plant covariance (6) in the Kalman filter
equations for the state estimates.

As a byproduct of this investigation, new results were also obtained
concerning the geometric relationship between the optimal solutions to
.the sampled-data and the continuous regulator problems. The findings are
reported in [4]. A brief summary of findings is given below.

Since the dynamical system (1) and the integral cost function (3)
used are the same for both continuous and the sampled-da;a regulators,
the optimal sampled-data control must be intuitively an approximation to
the continuous one in some sense. The relationship between the two op-
timal solutions, that is, the sense in which the sam;yled-data solution is
an approximation to the continuous solution, has been obscured due to the
separate formulations of these two problems in the control literature.

The continuous problem has been solved by using‘the Peontryagin's minimum
principle, by using the Hamilton-Jacobi-Bellman partial differential
equatioh for the optimal cost function, and by some other methods. The

) sampled—data broblem has been solved‘by converting it into an unconstrain~>
ed discrete minimization pfoblem through the integration of the cost
functional and the systém differential equations over each sampling in-
terval and then appiyiﬁg dynamic programming or the discrete minimum
principle._'ln o@f étﬁdy; the two problems have been formulated in the
same Hilbert épace as minimum norm probiemSu In this geometrié formu—
~lation, ic‘iéishown.in reference [4] that the optimal sampled-data control
is a'"pfojection” of the optimal conﬁinuqus contiol. Specifically,iit.is’
shown, that if [i*(t),u*(t)] is the optimali¢ontinu0Qs regulacor-soiutibﬁ

~ and [x**(t),u**(t)] is the optimal éampled4daté solution to the correés=



ponding deterministic regulator problems, then

[Hx**(t), v**(t)] = [H¢(t,to)x(to), 0] +
(13)
Py [Hx* (t) - H¢(t,to)x(to), u*(t) ]
where H is defined by HTH = Qc’ N is the sub-Hilbert space of all output-
.input éairs satisfying the sample&—data constraint with zero initial con-

dition, and P denotes the projection operator with respect to the Hilbert

space norm

t .
[ Geu | =s% fti[x'(t)ch(t) + ' (O)R u(t)1de (14)

One of the implications of the result is that if an optimal sampled-
data tracking problem is to be solved where the desired trajectory to be
tracked is the optimal continuous iegulator solution, then the solution
obtained would be the same as the solution to the original sampled-data
regulator. problem. To phrase it precisely, the bptimal sampled-data regu~
lator solution is the sampled-data control that minimizes.

1 .%¢ : | '
5 fto{[x(t> - x*(t)] Q [x(t) - x*(£)] +

. (15)
[u(t) - u*(t)]'Rc[u(t) - u*(t)]}dt
The above equation clearly shows the senserof the approximation of
the sampied—data control. Equation (14) shows that tﬁe optimal sampled-
data solution is the projeqtion of the éptimal continuous éolution onto
the set of all solutions that satisfy the sampled-data constraint.
Furthermore, the specific projections hqve been couverted into recursive
algorithms to compute the optimal sampled-data control. These algorithms
are new; hdﬁevgr, tﬁey ére not‘necessérily_less complicated than the knowﬁ‘,

: Ricca;i'equations in the literature.



Stochastic Modeling Approach to Variable Sampling

During the course of the project, a number of sampling iunterval
adaptation control laws have been developed based on minimization of
local objective functions. Although these algorithms proved to be
succesSful in various simulations, they suffered from Being only locally
optimal. A control law that would take into account the changing of the
sampling intervals was needed. This was accomplished by modeling the
sampling interval se_quenée as a f.inite—state Markov chain with known
transition probabilities. The finite-state assumption, that is, the
constraint that the sémpling inter?al can assume values only from a
finite number of sampling intervals, was hecessary to avoid an infinite

set of equations. Specifically, the system equations are given by
x(t) = Ax(t) + Bu(t) ~(16)

where x, u, A, B are as in equation (1). The sampling interval sequence

{Tk, k=0,1, 2, .. .} dis a finite-state Markov chain that assumes
values {Sl, Sps v 0 s Sn} with the transition probability
P(T,,, = s, | T, = 8;) = Py ‘ (17)

and the initial probability distribution

v

=§)=P,i=1,2, +. .51 : (18)

0

Then, the discrete-time stochastic system is given by

Ky T e Tt )X H T(E T e D, .
. : - (19)

k

i}

o
H
0
=



where ¢, I' are as in equation (5). The observations are modeled as

Vi = (5T (20)
That is, at each sampling instant tk’ the state vector at tk is
known and the sampling interval Tk to be applied at the instant tk is
known. Note that the sampling intervals to be used at tk+l and further

‘on are uncertain at time tk. Only a statistical knowledge of their un-
certainty is known through the transition probabilities. Measurement
noise and plant noise are not included in the model to keep the equations

simple. The problem is to find the stochastic optimal control

{uk, k=0, 1, . . ., N-1} that depends only on the past and present
measurements {yi, i=0,1,2, .. ., k} that minimizes
1 N-1
= = ' 1 L]
J 5 E[kzo(xk ka + u Ruk) + x NHXN] (21)

The stochastic optimal control has been obtained by dynamic pro-

gramming and is given by

uy = -F(Tk)xk (22)
where F(Tk) = Fk,i for Tk = Si’ given by the recursive equations
n ‘ -1 n :
= ' : N7
P, = [RHTy (jzlpink+l,j)riJ 'ri(jilpink+1,j)¢i (23)

n
Vo= - v =7 1
Ko = QF (0T F ) (jilpink+l,j)(¢i PiF,e) P iR 4 (24>

with KN ;= H; i =1,2, «. «ymny k=0,1, . . ., N-1; and Qi = Q(Si,O),

r, = TI(s;,0).

That is, at each sampling;instant'tk the control is given by a

linear feedback law and the feedback gain at the instant tk,is Fk 5 where
. . ?

The

the "i'" corresponds to the sampling interval §; at the ‘instant by

recursive equations are similar to the standard Riccati equations of



g

linear optimal control. As it can be seen from equation (24), n coupled
Riccati equations are to be solved recursively. The coupling comes from
the terms Pij’ corresponding to the transition probabilities for the

sampling interval sequence. In the case when n = 1 and Pll =1, we get

the standard Riccati equation of optimal control.

Steady-state gains can be obtained as k + -», then lim. k = =~
F =F.,i=l, 2, . ] .y n.
The stochastic optimal control for the infinite time problem becomes

for all k such that T, = §,.,.

up = Fex k= 84

The infinite time optimization solution is very easy to implement.

Steady-state gains, {Fi, i=1l,2, . .., n}, where n is the total number

of possible sampling intervals, are calculated off-line and stored. At

LAERL

each sampling instant t the. feedback gain Fi is used where "i'" is de-

k

termined by the sampling interval Si at time t The algorithms for the

ko,
stochastic optimal control, equations (23) and (24), are not yet avail-

able in the literature.

* The difficulty of applying these results can be the selection of a

 sampling interval adaptation law, since the problem formulation does not

address that question. However, for any sampling interval adaptation law

-whose sampling interval sequence can be modeled by a Markov chain with.

appropriate transition probabili;ies,bthe stochastic optimal control de—
rived cah be used. Moreover, several examples have beeﬁ simulated on the
digital computer where the sampling interial sequence was chosen arbi-
trarily aﬁd the resuits héve been'véry succéssful. A computer program
that calculateé the stochastic optimal céntrbl gains has been written,

Given next is an example showing how the results can be'applied.to a

~specific problem.
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Examgle

Let the system matrices be given by

0 6.28 0
A= B = (25)
-6.28 -3.14 1
The control weighting matrices have been chosen to be
1 0
Q= R = [1] (26)
0 1
Sampling intervals are chosen as
S, = .1 S, = .01 ' (27)

The transition probabilities have been chosen to be the simplest case

Py = o5 i, = 1,2 (28)

That is, if the sampling interval at tk is Sl” the chance of the next
interval being the same and the chance of the sampling interval jumping to
82 are equally likely.

The stochastic optimal control gains have been solved by using equa-

tions (23) and (24) to obtain the steady—state values

rrf
[

_[~.0181 .4455]

F

, = (01246 .0612]

The.stochastic optimal Q;osed~loop’syStem.has béen simplaﬁed by
using arbltrary sampllng interval sequenceb. rFigUré 1 shows one of these
’runs.; For thls flxed sampllng lnterval sequence, the determlnibLLC op-
‘tlmal contro] feedback galns have been found also, and the closed loop
ksxmulatlop of this system is 1n-F1gure_2. An- overlay ofvthe'two'f;gures

‘would show that the two trajectories are virtually the same. For a
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fixed sampling interval sequence and the cost function of (21), expecta-
tion can be dropped when the sampling interval sequence is fixed because
the system becomes deterministic in this case. Since this resulting
deterministic time~varying linear quadratic regulator solution is optimal,
the closeness of the stochastic and the deterministic trajectories are
_quite noteworthy. The remarkable aspect of the stochastic optimal control
is that it not only matches the ultimate optimal deterministic performance
for this fixed sampling interval sequence, but it also matches the per-
formance of several other sampling interval sequences in the simulations.
Ofbcourse, the deterministic optimal control is not realizable for the
problem we are considering since it requires the absolute knowledge of

“the whole sampling interval sequence.

Stability of Sampled-Data Systems with Variable Sampling

The deterministic stability conditions of the stochastic model of
the previous section has been investigated jointly with Dr. D. P. Stanford
of the College William and Mary. The results have been reported in [5].
LA ] }

From the formulation in the previous section, it is seen that '"n" closed-
loop discréte system matrices will be obtaiﬁed

8 =T Fi, 0,-T,Fyy o o vy & T F o (29)
>Where "n" is the tbtalyhgmber of'possible sampling inﬁerﬁgls and the "Fi"
are tﬁe stochastic optimai steédy-state gains obtéined through eduations
(23) and (24).  The quéstion of whethe; any initial conditioﬁ can be
,Brought‘tobzero,by a repeated application.of the ﬁatrices in (29)’in séme
order hasabeen inveétigated in the stability analysis [5]. If'a,sequence,
of matriées c&n be found whose terms are gélected from the set of matrices

in (23) for each initial condition such that the state goes to zero in the
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limit when this sequence of matrices are applied, then the set of matrices
will be called convergent. In [5], it is shown that "precontractiveness'
is a necessary and sufficient condition for a set of matrices to be con-
vergent. It is also sﬁown that "contractiveness'" is a sufficient condi-
tion for a set of matrices to be convergent. The stochastic optimal
.feedbéck gains have been found for a number of examples. it has been
found that the closed—léop system matrices resulting from the stochastic
optimal control turn out to be contractive in each case. However, an

analytical justification has not been found yet.
I1I. FAILURE ACCOMMODATION IN CONTROL SYSTEMS

The secohd major problem which has been investigated ‘in NASA Grant
NGR-47-004~116 is the design of aircraft control systems which are op-
timally tolerant of sensor and actuator failures.A A désign method has
been developed, and the results have been reported iﬁ'Ref; [6]. The
method developed is based on Bayesiau decisién theory.

‘Each sensor and actuator failure mode (inqluding the normal opera-
tion mode) is formulated as one hypothesis.r Using M~ary hypothesis
testing, the corresponding likelihood fatios are computed for each
hybpthgsis. The computations of likelihood ratios réqpiré M different
-Kalman_filters corresponding to M different failure mpdes of £he'syst§m
where M i§ the total number of different hypotheées."By’coﬁparing the
likelihood ratios, the most likely failure mode of the system is selected
in the Bayeéian sense} | |

The’unique feature bf‘this'methbd isthe flexibility of modéiing tﬁe
. sensor failu?es as noise with unknownbﬁeén ahd’vafiance. The meaniéf
each sensor in a failed mode is’compdted’on line by employing maximum'

likelihood estimation. This estimate for the mean is used in the calcu-
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lation of the likelihood ratios which make them generalized likelihood
ratios. The advantage of the method is that it is not required for the
designer to know how the sensor will fail. This point has been demon-
strated in the simulation [7] by the superior performance of the system
in the detection of both increased noise type and hard-over type failures.
-Although the variances of the sensors in failed modes have been fixed

in Ref. [6], the same approach for the estimation of the mean can be used
for the variance as well. The maximum likelihood estimation of the para-
meters requires the storage of a moving window of innovations of each
Kalﬁan filter.

The applicability of the fault-tolerant system design has been demon-
strated by using a real-time hybrid simulation for a space shuttle prbiter
developed jointly with Dr. R. C. Montgomery of NASA/Langley Reseafch Center.
The failures were idencified in two or three sampling periods. The simu-

lations indicate that the use of steady~state Kalman filters were adequate.

Pafameter Adaptive Estimation

From the preceding failure detectioh problem in aircraft control

- systems feéearch, fﬁe édditional Bénefitvof obtaining the optimal state
estiﬁaﬁe under failed conditions resulted. This problem is egceedingly
important if state variable feedback is used and if a filter 1is used to

get the state estimaﬁes. Thisyestimation probiem has -been resolved in'é
Ph.D, thesis t7] and ekteﬁsions of the work have been feported in‘[8]{
This problem is knoﬁn,as pérameter ddaptive estimétiou,in the litératﬁre.f
The following is a summéry‘df the wqu rébgrted in [7) and [8]. Consider
 the observatioﬁ model

y(t) = 2(0,t) + v(t) = (30
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where @ is a random variable and, for each fixed value of O, z is a ran-
dom process and v is‘a white Gaussian random process. The problem is to
find the ﬁinimum mean-square estimate of the signal z. Detection problems
can be easily modeled by this formulation with a suitable choice of the
random variable © [7]. The general case when © has an arbitrary distri-
‘bution has been worked in [8]. When the parameter © has a discrete

distribution

PO = =P,,i=1,2, .. .3 (31)

0 =Py
it is shown in [8] and [9] that the minimum mean-square estimate of the

signal z is given by

~ oo

2= 3 ™, (B)z, () (32)
i=1

where'zi(t) is the estimate of the signal z(@i,t)'given the observetion

y(s) = z(@i,s) + v(s), 0 <s <t and where‘ni(t) is given by
() =P =0, | y(s), 0 <8< t) (33)

That is, {z, (t)}°° are the parameter conditioned estimates and
_ -
_ {ﬁi(t)} are the posterior probabllltles of the parameter 0.
| The Eosterlor probabilities satlsfy the stochastlc dlfferentlal

'-equatlons

@

an (0 = m (12,00 = 3 n 02 OR©)dy(© - I (©)25(6)] (38)
: i= l ~‘ l e

with the initial conditions

Wi(O)‘= Pi, i=1,2; = e . o (35)
The parameter conditioned estimator has two parts: A non-adaptive
part in which the parameter conditiocned estimates are found and an

adaptive part in which the posterior probabilities are found. The form

of the solugion given by (32)‘agd>(34)'implies that if recursive equations
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are known for the parameter conditioned estimates, then a completely re-
cursive solution is found to the problem. The recursive form of the so-
lution is, of course, very advantageous in terms éf implementation of the
filter. The following example demonstrates how these results can be
applied to a nonlineai filtering problem,-

.Example: Consider the random telegraph signal, Z(t), with values + 1 and
transition density a where o is a random variable with prior distribution

i=1,2, .. ., M. The observation model is given by

P(a = ai) = Pi’

y(t) = Z(t) + v(t)

where v is a unit-variance Gaussian process, from (32) and (34), it is

seen that the minimum mean-square estimate of the signal is given by

A M ~
Z(t) = & ﬂi(t)Zi(t)
i=1

where the parameter conditioned estimates Zi(t) are known to be given by
(8]
dZi(t) = Zaizi(t) + [l, Zi(t)][dy(t) - Zi(t)dt]

which, in turn, derives the stochastic differential equation (34)

. M A Mo,
O e RN DICES
with ri(O)r% Poi=1,2, ..., M
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Directions for Further Research

In the work on optimal sampled—daté regulators, a promising and in-
teresting problem is to find early computable algorithms to perform thé
projection in equation (13). 1In ﬁhis way, optimal sampled-data regulator
gains can be obtained as a function of the optimal continuous regulator
.gains. So far the equations obtained are mot any simpler than the known
equations available in the 1itera£ure. However, this study can lead to
an understanding of how the sampled-data optimal gains vary with the
sampling interval even though the algorithms may turn out to be complicated.

In the work on the stochastic modeling approach to variable sampling,
more aﬁalytical and experimental study is needed. Analytical conditions
thatvguarantee the convergence of gains for the steady-state gains
[equatiéns (23) and (24)] would be very useful. Simulation of a wide
range of applications to different ﬁroblems is needed to seé how far the
stochasﬁic optimal law can be "stretched." So far, the simulations in-
dicate that the stochastic optimal control law gives virtually the
ultimate’deterministic performance.

In the work on pér;meter adaptive estimation, more work is‘ﬁecessary
on the followihg questions. Wﬁat happens when thé parameter does not
have the prescribed distribution? In this cése, fér instance, does the
set of posterior probabilities converge ﬁd a value tﬁat is mearest to the
actual value?

Also, additional effort is necessary to understand the stability .
characteristiés of the stochastic differential equétions for the |

Eosteriof probabilities (34).
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A separation theorem for the stochastic sampled-data
LG problem

NESIM HALYO: and ALPER K. CAGLAYANS

This paper considers the eautrol of o continuous linear plant distorbed by white phun
noixe when the contral is eanstrained to be a piceewise constant fanetion of time
Lewa storhastie sampled-dity syston. The cost futietion is the integral of qundeatio
vrror termsin the state and control, thus penalizing errors at every instant of time
while the plant noise disturbs the system eontinuoasly,  The problen is sulverd hy
reducing the constrained continnous problem (o an uneonstrvined diserete one. 1t
ix shown that the separation prineiple for estimutinn and contreo? still holds for thiy
problem when the plant disturbinee apd mensarement noise wre Satssion,

1. Introduction

Various studies of the deterministic diserete-time rezulator problem have
been made since the original work of Kalmun and Koepeke (1938). A tutorial
review of these basic resulty can be found in the paper by Dorato and Jevis
{(1971).  The. deterministic sampled-data regulator problem has also heen
studied by Levis ef ul. (1971). 'The stochastic counterparts of the continuous
and diserete linear quadratic Gaussian problems result in the separation
principle for estimation and control (Joseph and Tou 1961, Cunckel and
Pranklin 1963, Potter 10964),  Various extensions of the separation theoremn
to inchude a Larger elass of continuous and diserete cost funetions have also heen
made (e.g. Streibel 19635, Wonham 1968, Halyo and Foulkes 1974, and the
references therein).

In this paper the control of a stochastic linear sampled-data system (i.c.
the stochastic counterpart of the work by Levis of al. (1971)) is considered,
A continuons tinear plant is disturbed by a continuous Gaussian white plant
noise, while the control is constrained to be constant in between sampling
instants, say 1,1, but can change at every sampling instant.  Measw ements,
which ean he expressed as linear combinations of the state variables corrupted
by Gaussian white noise, are made at the swpling instants, £ Suclisystems
are-often encountered. particularly if the control law is to be implemented on
adigital computer. On the other hand, the performanve of the system depends
on-the devintions of the state veetor from a steady-state condition (represented
a8 the zero veetor) at every instant of time, not only-at the sampling instants,
Henee, a cost function which penalizes deviations in the state continuously is

Reoeivid 28 April 1975,

T This work was supported by NASA Langley Researeh Cenler under Cantract
NAST- 1020 and Grant 17 004 2116, ~

1 Deparfment of Bleetvien] FEngineering, University of Vieginia, Charlottesville,
~Virginia. , ; L : : ;

§ Department of Eleetrical Bogincering, Virginia Polytechnie nsftule, Blacks.
burg, Virginia, ‘ : o
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mare appropriafe as a performance eriteriond than a diserete cost function,
The problem is solved by reducing it to o diserete stochastic regulator where the
states.are medsured with no error,

2. Statement of the stochastic sampled-data problem
Consider the following continuous stochastie dynamical system represented

.

by
Aty = A+ By + D),  1€lty. 1] )

where x is the n-dimensional state vector, 1 is the r-dimensinmal eontrol veetor,
anch e is the white Gaussian plant noise veetor of dimension pwith Fw(t)=
and e’ (s)=F(1)8,,(/ =) for some positive semidefinite matvix #, o, B
and 1 are time-varving matrices of compatible order. Faguation (1) is inter-
preted as the following stochastic integral ecquuation (Wong 1971) ¢

a()=x(ly) + ‘{ As)r(s) ds+ jl B(s)u(s) ds + j D(s) diV(s) {2)
ia i T

where W (f) is a Wiener process with Z117(f) =0 and

min{t, 5}

EOVEH—= WDV = W) = Fe)dr

{n

The plant noise can be considered as the formal time derivative of the Wiener
process 11,

In the stochastic sampled-data regulntor the plant noise is a continuow
random process, whereas the measarement noise is a diserete random pracess
Measurements of some of the linear combinations of statesawith additive noie
are available at the sampling instants ~ :

W) =Chrty+elt), k=01, N, fy<li< ... <ly=l, (%

where i is the m-dinmensional measarement vector, #{f;)} ix the measuremes!

noise veetor which ix a Gaussian sequence of uneorrelated zoro mean randor

veetors with Ep(t, 0?(1)= 0,8;, for some  positive definite mntrix 0, asd

EW () = Eatt)e' () = Ex(g) Wy =0 for alb Cin [f, f) and i =0, 1 N
The controls are constrained by ‘ !

w(ly=ulty), Al )y A=001 N ~ 1 !

In order for a solution fo exist to e (2). the following further assumptios
will heomade s the elements of 1)y are hmnnlml and meagureable read function
1

nf time, B is infograble, and [ Dyt [(I)/)’(l) !H is fnn(v

ta

e NI U i e oy s a e keee e G S, P VO VT N—

T the sampling rate ean be chosen high eaouwdy o tlmwh- eost functivg mayh
adeguate 2 however, i many enses this inereases the eost of the conpuier Iy plm“
“stringent equirenients on its speed ofaperations . This trade-off makes the desa
of vontrol Jaws, which do not. degrade at Jow sampling rates; important,
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The following cost functional is used to achieve the desired system perfor-
mance !

. ,
J =L [ £ @ OQ00) + D R di + .r'(/,)ll.r(z,):l (3)

where @, is positive comidefinite- and £ s positive definite on |4, 1]

Now the stochastic optimal control problem can he stated as follows:
given the linear stochastic dynamical system (1), and a partition £y, 4, ..., ty
of the interval [, 4] find a control sequence. (0*{t), A =01, N = 1) with
the constraint (1) and also the additionad constraint that w*{t,) will depenyl
only on the past measurement sequence (y{(), i=0,1, ..., k=1) which will
minimize the cost functional (5),

3. Equivalent stochastic discrete-time problem

It will be shown that the constrained continuous stochastic optimization
problem can he transformed into an unconstrained diserete stochastie optimi-
zation problem by integrating the system differential equations and the cost
functional over cach sampling interval. "The problem will be embedded into
the known format of the standard diserete Jinear quadiatic Gaussian regulator
problem.  Thus, it will be proved that the separation hetween estimation and
vontrol is still valid for this constrained continuous stochastie optimization
problem. '

Under the assumptions made in § 2, the solution to eqn. (1), for any bounded
control, 18 given by

1

2ty = W, 1)ty + _f h(t, s) By ds + bt ) D(s) d 1 (s) (6}
f.
where M7, 8) is the state-transition nmtn\ of 1) defined as the solution of
matrix differentinl equation

(—g W, 8) = AN, 8), (I >5)

with (s, $) =1,
Using (6), the state for {, <t <y, can be computed from the state at time 4,

oty = O, L)+ T, 0+ €0, 1) (ia)

where xp = x(f,.), up=ull,), and

', )= f B(t, &) I3(s) s ; (T h)
! ) ' .
U f bt <) D) d ” (%} - for 1',' RR 47 P (7 )
i :

The term given by eqn, (7 ¢) shows that the plat noise corrapts the state
i acontinvous fashion, but the resulting diserete-time systen will he given by

11"1—("( l‘lin,‘”i‘(l;:l,ll ll,+é B (qﬂ)
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where &, = (0 1) T zero mean while Gaussinn sequonee of random vectors
with (Jazwinski 1970)

Iy
KEE) = [: § g s)DEWYEE O D, 8) fISJ Spj= I 8,5 (86)

3

The asstmptions made ahout the independenee of plant noise and 2(f,), ¥(f,)
in § 2 will still be valid for the new diserete plant noise (£,).

The cost integral can also be written as the sum of .V integeals as in the
deterministic ease. The control af time /7, muxt only depend on the measure-
ments made wntil £, and the initial estimate #(1,). This can he expressed
by restricting #{f,) to be mensurable with respeet to ¥, where Yy is the
minimal g-algebra generated by the measurement sequence (y(L), 7=0, 1, ...,
b1y wnd the initial estimate F(7,) while the initinl estimate satisfies the
equation K@ E)) =8,).  The usual choice of &(f,) as the mean of x(l)
salisfies this condition.

Using (7 a), the cost functional (5) can be put into the following form ;

N1
J=F [Q‘t"\.'ll.r'\.a;. ] ‘EO (0 Qg b 200 Mg b w0, Ry,
Ty

A 2 A0E 1) dL

I
-+ :f’ fl(’r /L)Qr(l)g(l’ [A) {”)] (9 [l)

where Q. M, Ity arve given by

. [ ‘
Qu= [ (1, )OO D, 1)l (90)

fe

[
M= [ DU N0 1) df (9¢)

1y

Iy

f AR+ 0 10QN00(, 1)) ot (94d)

fe

it

R,

Note that 1 will be positive definite since 2, is positive definite,  Similarly,
@ will he positive semidefinite,

We shall now show that the last two teems in eqn. (9 «) can be ignored as
far as the minimization of the cost functional is concerned :

Lenv 1
The control sequenes (ug, ko0 1000 N - By minimizes The cost funetional
A given by eqn. (9 a) i o only if, i minimizes the following cost funetional
. '/ . !
it .

s

e
T

RS |
Jy= K <§.r.\-'_//,l"\-+ 13 ‘\') P Qa2 M Y u,,.> {10)
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Proof

From (7 r), note that £, 1) depends only on the inerements of 1W(s) in the
interval {f,, 1], which are independent of a(f,) and (W), ly<t<1,) s henee,
so s £, 1) of (IF(s), fy=sss54,) and w(ty).  On the other hand, (/) depends
only on (W), fp<s<t,) and x(y), so that g, 4,) and »(f,) wre independent
whenever (21,. Thus,

iy 1y
Exy | O 1)QU0EW, 1) dt=E(x) | (1000 (€W, 1)) dt=0
e ) [

since &(¢, f,) has zero mean.  Furthermore, the last term in (9 «¢) is a constant
which does not depend on the cantrol sequence ; hence, it ean be excluded

“from the minimization.  So the lemma follows.

At this stage, in the case of the deterministio regulator, a preliminary
fredback of the form = — R~V 4%, would reduce the prebiem into
the standard regulitor problem.  However, as @y, is not available, the same
canrot be done in this problem.  Instead, we now show that minimization of
the cost funetional J, is equivalent to the minimization of the same expression
with x,’s replaced by their conditional expectations £,

Lemma 2

The control sequence (u,*, b=0.1, 4,0 N = 1) minimizes the cost fune-
tional J given by (10), i, and only if, it minimizes the following st fune-
tional J, ¢

N
Sy l;‘[._‘,.f-_\v’ll.f-_\ 1Y (O, 4 2 M u,"/c,,u,,)] (i)
S

e
where Fp=J(y [ V),
Proof
Rinee u,, is measurable with respeet to Y, using woll-known theorems on
conditional expectations,
/'«‘(~1'/.IA”;\"‘A~) = B g | Y )y = B, | V) M) = B8 W u, (12)
Similarly, by fetting Ip=a, =&,
B gy ) = B QL8 #2810, 8 b 0;0))
Using the faet thatt £(5,70,F,) - 0, we get
e Q) s RO Qi+ U O8]V, ) (13)
Ninee the e-algehras generated hy Foand Y, acve independent, it Tollows that

Qi 1Y) = B e, (14)
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Note that the right-hand side of (14) does not vary with w,.  Substituting
(12), (13) and () ) into (1), we got

N -

J=F [&.f‘.\.'ll.i‘.\. 8 X (GOt 28 W v Ry u,_‘):i
k=t

N1

By U+ B BEQE)  (19)

k=0

Ninee the second term in (15) does not depend on (u,, k=0,1, .., x\'-— 1), it may
be dropped as far ag the minimization with respeet to (n, A=0,1, ..., N =1)
is concerned.  No ./, reduces to o/, given by (11} this cmnplotvs thc proof of
the lemma,

Thus, to find the optimal eontrol for thv original cost funetional ./, it is
sufficient to find the control sequence which minimizes the cost funetional J,
of (J1). Note that the cost ./, depends only on the estimates of the state at
the sampling instants,  Looking back at eqns. (8 a), (8D) and (3), it iz clear
that these estimates will be given by the well-known Kalman filter equations
(Jazwinski 1970, Kahnan 1960).  We can now introduce wpreliminary feedback
of the form wy = — R~ 8 + 75, and embed the problem into the standard
diserete linear quadratic Gaussian problem.  We sum up these results in the
next theorem.

Theorem

Consider the stochastic optimal contral problem deseribed i §2. A
uniquie control sequence (w,*, A=0,1, ..., N =1) which minimizes the cost
functional J of (4) exists and is given l)_\'

k= = (B M (R4 U)K DR DL (16)
where A is the solution to the Riceati difference equation
Ki=®/ (K= K U4 1K ri)—tl’i’l\'i Q3D 40, {17)
with the boundary condition Ky =1/

wheve 1=, 0.0, O,=00, 1)~ URA0N), Q=@ =3, R0, and
i=0,1,...,.X=1

Pronf ;
Infroducing  the preliminary  feedhack  (Payne and Silverman 1973,
Thomasson and Cook 1973)

0

= — Ry M8+ T

e e s o B -
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the cost functional hecomes

’ N
A=HD VILE ) ZLWWVJMMW“MQMWMMJ (18)
kU

The estimates £, can be ohtained by the Kalman filter equations (Jazwinski
1970, Kalman 1960)

By = Dy 4 DT+ G (19)

where v, is the white innovation sequence,

Hence, the original constrained continuous problem is reduced to mini-
mizing J, as given in (18) with the dynamies of (19) where 7, may depend on
& However, this is a discrete LQG problem and its solution is given by (l()
and (17} c.g. see Kushuer (1971),

Looking .11 eqns. (16) and (17), it is scen that the optimal control law for
this stochastic optimization problem is the same as the deterministic sampled-
data regulator problem (Levis of af. 1971) with », veplaced by its estimate £,
Therefore, the separation between estimation and control continues to hold
for this constrained continuous stochastic optimization problem,

4. Conclusions

In this paper it is shown that the separation prinviple between estimation
and eontrol continues to hold for the stochastic sampled-data regulator. The
problem is solved by vedueing the constrained continuous stochastic optimiza-
tion problem into an unconstrained diserete stoehastic ane. The results are
obtained by embedding the problem into the standard dizerete ~fochastic
recilitor problem, :

Using similar teehniques to the one deseribed here, it ean also e shown that
the separation of estimation and vontrol continaes to hold for linear systems
using nth-order holds and having computational delays in the control Toop.
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ON THE RELATION BETWEEN THE SAPLED-DATA AND THE CONTINUOUS OPTIMAL LINEAR RECULATOR PROBLEMS

Alper K. Caglayan
Department of Electrical Engineering
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Research Laboratories for

Virginia Polytechnic Institute and State University the Fnpineering Sciences

Blacksburg, Virginia 24061

Abstract

In this paper, the geometric relationship be-
tween the optimal solutions to the sampled-data and
continuous linear quadratic regulator problems is
investigated in a Hilbert space framework. It is
shown that the optimal sampled-data solution, ex-
cluding the response due to the initial condition,
is the projection of the optimal continuous solu-
tion onto the set of all solutions that satisfy
the sampled-data constraint. That is, the optimal
sampled-data solution is an optimal approximation
to the continuous solution. In fact, it is shown
that the sampled-data solution can be obtained by
solving a sampled-data tracking problem with the
continuous solution as the desired trajectory.

1. Introduction

This paper is concerned with the relationship
between the optimal continuous and the optimal
sampled-data linear quadratic repulator problem
{1), [2]. Since the dynamical system and the inte-
gral cost function used are the same for both the
continuous and the samnled-data regulator, {ntu-
itively, the optimal sampled-data control must be
an approximation to the optimal continuous one in
some sense. In this paper the precise relationship
between these two optimal solutions will be inves-
tigated in a vector space sctting.

In the control literature, the continuous and
the sanpled-data regulator prohlems have usually
becn treated using different methods: The continu-
ous regulator problem has been solved by using
Pentryagin's niafmum principle, by using the
Hamilton=Jacobi-Rellman partial differential equa-
tion for the optimal cost function, and by a few
other methods, The sampled data problem has been
solved by converting it into an unconstrained dis-
crete optimization problem through the integration
of the ceost fuactional and the systen differential
equations over cach sampling interval and then ap-
plying denanle progromning or the discrete mint-
num princtple.  the relattonship between the two
optimal solatlons is, thus, ohucured due to these
separate formulations,  In this paper, the two
problems are torrulated in the same framcwork by

This work was supported by NASA Langley Pesearch
Conter under prant HGR 47-004-116 and contract
HAS=1=-12754-2.

University of Virginia
Charlottesville, Virginia 22901

using a Hilbert space approach. This geometric
formulation reduces the problem to one of finding
the element of minimum norm in two linear variet-
ifes in a Hilbert space. (This approach has been
sugpested for a simple control problem {n [3]). It
is shown that, excluding the unfcrced response of
the system due to the initial condition, the
sampled-data control and the resulting state tra-
jectory is the projection of the optimal continuows
control and {ts corresponding state trajectory;
that is, the optimal sampled-data solution is, in
fact an optimal approximition of the continuous
solution with respect to an appropriate Hilbert
space norm.

* 2, A Minimum Norm Theorem in a Hilbert Space

Refore proceeding to formulate the problem in
a Hilbert space setting, we shall prove a general
theorem concerning the elements of minimum norm
of two linear varieties in a lilbert space which
will be required in the following derivation. We
now state the projection theorem and its extension
to lincar varieties for ease of reference; the
proofs can be found in [3].

Lemma 2.1 (Projection Theorem) Let H be a
Hilbert sp. space ‘and M be a closed subspace of H, Cor
responding to any vector x in H, there exists a
unique vector m* in M such that m* {s the closest
element in M to x (n the sense of the inner product
norm. Furthermore, a necessary and sufficient con-
dition that m* be this unique vector i{s that x =
m* be orthogonal to . (We will denote the projec-
tion operator onto !f by P“; {.0,, mk = P(x).

Corollary 2,2 Let H and ‘M be as in lemma 2.1
Lot x_be a fixed element in H and let V be the
linear variety x + M, Then there exists a unique
vector v¥ in V of minimum norm. Furthermore, a
necessary and sufficlent condition that v* be this
unique vector is that v* he orthogonal to the sub-
space M,

The following theorem desceribes the relatfon-
ship between the elements of minimum norm of two
linear varietles in a Hilbert space where the gen=
erator subspace of one varfety is a subset of the
other eorresponding subspace.

Theorem 2.3 Let B be a Hilbert space and let
't oand H be elosed sube paces of I such that N s a
subset of M. Let x bn a fixed element fn W and
let V and W be the Yincnr varicties defined by
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x 4+ Mand x_+ N respectively. Then there exiat:
a unique vecfor v* n V and a unique vector wh in
W of minimum norm. Furthermore, w* can be obtained
from v* by

wh - x, + Pumﬁ (1)
where m* is the unique element of M defined by the
relation

vk - x, m¥ (2)
Proof: By Corollary 2.2, there exists a u-

nique element v* in V and a unique element w* in

W of minimum norm. Since v* is in V, it must have
a representation of the form v* = x_+ m* where m*
iz an element of M. Clearly, m* must be unique.
Similarly, there exists a unique element n* in N
such that w* = x + n*, Since N is a sub-Hilbert
space of M, there exists a direct sum decomposition
of M [4) given by

MeN+N- )

where N is the orthogonal complement of wh with
respect to M, and + denotes the direct sum. In
order to prove that w* = L + P“n*. we have to
show

<x + Ba*, n > = 0 for all n in N (4)
where < . , . > denotes the inner product. Since
< Pﬂl--.' n > is identically zero, we have

<R + P'-*. no>ec< LR + pumt . PNL m*, n >
(5)
Since m* has the direct sum decomposition PNm* +
P."_,_ m*, we get
«% + Pﬂn*, LR +m*, n>=
<vk, n>=0 (6)

The last equality follows from Corollary 2.2 and
the proof is complete.

3. Formulation of the Probler

In this section, we shall formulate the two
regulator problems in a Hilbert space framework so
that we can apoly the theorem of the last section
to find the precise mathematical sense in which the
optimal sampled-data solution is an approximation
of the continuous solution. Cocnsider the linear
dynamical system represented by the differential
equation

x(t) = A(t) x(t) + B(t) u(t)
as<tc<bh

(3.1)

y(t) = C(t) x(t)

where x(t) is the n-dimensional state vector, u(t)
is the m-dimensional control vector, y(t) is the
r-dimensional measurement vector, and x(a) 1s the
initial condition. A(t), B(r), and C(t) are matri-
ces of appropriate order with continuous elements.
The following cost functional will be used to a=-
chieve the desired system performance:

3x(0), uie)) = (2" )y ()4 (OR(u(e))aet?
(.2)

where R(t) is a positive definite matrix with con=-
tinuous elements. We will denote the R™-valued

ORIGINAL PAGE IS
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functions on [a, b] that are square Integrable In
tMEMMNwm‘nmmvhvlg(hld.luu.

La,b) = (u(e): /: W (Du(t)dt « = ) (3.3)

Similarly, let L:(J. bh) be the space of k' -valued

square inteprable functions on [a, b). Ve will
{t';rmul.-nlc the twoe problers in the Plbert space H =
LoCa, b) x L™ (a.1), the Cartecfan product of L,(a,

(
b) and L?(n,ﬁ). with the inner product defined by

lyy(0), u (1), (ry(t), wy(1))= = 5 (v} (0)y, ()4
ui(t)R(t)uz(())ull (3.4)

so that the norm induced by the inner product 3.4
gives the desired cost fimctional of 3.2. Since
the solution of the differential equation 3.1 is
given by :

x(t) = ¢(t,a) x(a) + I: t(t,s)B(s)u(s)ds  (3.5)

y(t) = c(t)x(t)

where ¢(t,s) is the state transition matrix of A(t),
we will be concerned with the ordered pairs (v(t),
u(t)) in Il that satisfy the intepral constraint 3.5
for the continuous regulator, It is easy to show
that the subset M of H defined by

M= ((y(6), u(e)ely x 13: y(e) = /7 T(t,5)u(s)de

T(t,8) = C(t)¢(t,s)B(s) 2.9

i{s a subspace, so that we can define the linear va-
riety in i by

V= (C(t)i(t,ak(a), 0) + X 3.7

Thus, the continucus repulator problem {3 one
of finding the clerment of minimum nerm in V. To
apply the Hilbert space theory of the previous, se~
tion, we have to show that M 1s a closed subspace.
To this end, let us define¢ the lincar transforma-
tion L from L7(a,b) into LY(a,b) by

2 2

L(u(t)) = /5 T(t,s)u(s)ds (3.8)

Using Fubini's theorem, it can easily be shown
that for all y in Lj(a,b)

<Lu, y> = <u, f: T'(s,t) y(s)ds> (3.9)
which proves that L is a bounded and, therefore,
continuous linear transformation. (See Theorem 5
in [5], p. 48). We also note the linear transfor-
mation L* from Lg defined by

Léy = /2 T'(s,0)¥(s)ds (3.10)
i{s the adjoint of L. So if (y ,u ) 1s a sequence

of clements in M converging to an element (y,u) in
H, we have

Um (y ou ) = limn(/: T(t,8)u (s)ds, u (s)) =

(I: T(t.s)linnun(s)ds, limnun(s))cM

This follows since L 1s a continuous operator and,
therefore, M 1s closed.
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In the sampled-data problem, we will be glven o
partition (a = ty, €1, « « « » ty = b) of fa, b)
such that over each sampling Intvrval the control
remains constant, i.e., u(t) = u(t,) for ty <t <

t .
k+l
In this case, the subspace of interest will be

N= {(y,u) L;XL:: y(t) = I: T(t,s)u(s)ds, usll,

u(t) = uley) for ty < t <ty .} (3.11)

Clearly, N is a subset of M. To show that N is
closed, we note that the same linear operator L de-
fined 3.8 is used except now its domain is a subset
of L), So we only have to show that this domain is
closed in L;. Clearly, the set of all functions
that are constant over each sampling interval {s
isometrically isomorphic to R™xR™x ... xRm(Ntimes)
so that N is closed.

So the sampled-data rcgulator problem 1s one of
finding the element of minimum norm in the linear
variety W defined by

W= (C(t)d(t,a)x(a), 0) + N (3.12)

Thus, we have cast the two regulator problems
into the vector space format of the previous sectim.

4. Optimal Sampled-Data Solution as an
Approximation to the Optimal Continuous Solution

In this section, we will first show that the
Hilbert space formulations of the sampled-data and
the continuous regulator problems in the previous
section do indeed give the standard results. Then,
using the thecorem concerning two linear varieties in
Section 2., we will state the precise sense in which
the optimal sampled-data solution is an approximatiamm
of the optimal continuous solution. We will also
show that the optimal sampled-data solution can be
obtained by taking the appropriate projection of the
optimal continuous one.

Considcr the continuous regulator problem formu-
lation described in the previous section by equations
3.1-3.7. A necessary and sufficient condition for
(y*, u*) to be the element of ninimum norm in V by
Corollary 2.2, is that (y*, u*) be orthogonal to M,
which implies

<(y*,u*), (y,u)> = 0 for all (v, u) in M (4.1)

Since the inner product on L; X L? is the sum of in-

ner products on LJ and L;

yA(£), 75 T(E,5)us)ds +eur(t), R(E)u(t)>=0
for all u in Lg(a,b) (4.2)
By using 3.9, we get

Y TS OVAGE, u(E) (), R(Eu(t) =0

for all u in L? (4.3)
It follows that
R(e)us () + !t T'(s,t) y*(s)ds = 0 (4.4)

Therefore, the optimal continuous solution is glven
by

() =27 0 /P 10,0 yh(e)ds (4.5)

or, equivalently

ur(t) = R~ 1e)m' (o) I: $'(s,£)C" (s)C(s) x*(s)ds
(4.6)

It is easy to show that there exists a posi-
tive semidefinite matrix K(t) such that

b

‘e

%' (s,L)C' (s)C(s)x*(s)ds = K(t)x*(t) (4.7)

for t in (a, b)
where K(t) is the unique positive semidefinite solu-
tion of
K(t) = -A' ()K(E) - K(E)A(E) + K(E)B()R 1(e)BYO

which i{s the Riccati equation of the linear contin-
uous optimal control.

Consider now the formulation of the sampled-
data regulator problem described by equations 3.1 =
3.5 and 3.11 -~ 3.12. A necessary and sufficient
condition that (v**, u**) be this optimal solution
is by Corollary 2.2 that

<(y**, u**)  (y,U)> = 0 for all (y,u) in N (4.9)
which irplies (after some manipulation)
(5L (x"*a(t) €' (OC(RIT(E, £) + u'**(E)R(E))de
to
I () O ICET(E ot )] u_ +
€ x (t) (e)C(e)de 1'% °

t
(!ti (x'#4(t) C'(e)C(e)r (e, tl) + u'**(t)R(t))dt
t
+/t: x'**(t) C‘(t)C(t)dtr(tz. tl))u1
e e

HUEN (xAOC (CIT (L, by 1) + u'*4(e)
N-1

R(t))dt)uN_1 =0 (4.10)

m
for ail vectors (uo, up eees uN_l)in R

where T'(t, tt) = f: t(t,s)B(s)ds. This implies

that the tems in the brackets in (4.10) must be
zero. Starting fron the last term in 4.10 and us-
ing the fact that x*a(t) = i(t, ty-1)x**y , +

I(t, ty-Put* , It can be shown that the optimal
sampled=data control law is given by

- »1 . ' ok
w A (RSt LR R TR b B

LKxolrl 1+1°1
(4.11)
where I = T(t . ,t),8 = My, oty), and
o

& i

1 % 6'(t.tl) ()4 (e e )de (4.12)
e

L Te P () (e, )de (4.13)
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t ' H « .
R - :t:*l(n¢:> # TN, (4.14)

where K1 satisfies the discrete Riccatl equation
[6]
c =2 ' 5 1yt
el Eahy Y teii =
' = . : ' &,
ry K"y (ry "Rty * My ) (4.15)
ol =1,.5 «, 0with KN =0

We will state the exact relationship between
the two regulator solutions in the next theorem.

Theorem 4.1 Consider the continuous regulator
problem described 3.1 - 3.5, 3.11, 3.12, lLet (v*,
u*) be fhe optimal solution to the continuous prob-
lem given by 4.5 - 4.8 and let (y**, u**) be the
optimal solution to the sampled-data problem given
by £.11 - 4.15. Then, excluding the response due
to the initial condition, the optimal sampled-data
solution is the projection of the optimal continu-
ous soltuion onto the set of ordered pairs (y(t),
u(t)) that satisfy the sampled-data integral con-
straint of 3.11 or more precisely:

(y**(t), u**(¢)) = (C(t)i(t,a)x(a), 0) +

+ Pu(y*(t) - C(t)i(t,a)x(a),u*(t))
(4.16)

or, equivalently, (y**, u**) {s the clement of V
which minimizes
!:((y(t)-y*(t))'(y(t)-y‘(t))+(U(t)-u*(t))'R(t)(U(t%
u*(t))ldt (4.17)
among all (v,u) in W, A necessary and sufficient

condition that (y**,u**) be the optimal sampled-
data sclution is that

/:((y*(t)-y**(t))'y(t)*(u'(t)—u**(t))'R(t)u(t)]dt=0
for a1} (v 4} In N (4.18)

Proof: Equation 4.16 follows from Theorem 2.3
with x, = (C(t)i(t,a)x(a),0), m* = (y* u*), and N
defined by 3.11.

To see 4.18, we note that be Lemma 2.1
Hyrr(e) = c(e)ile, a)xn(a), ur*(e)) ]| =
minimur || (y(t) - C(y*(t) - C(t)#(t,a)x(a)),

u(t) = u*(t))|] (y, u)eN (4.19)

which implies

[ yaece), ut*(t))||2- mintmun || (y(£)=y* (L) ,u(t)-

(y,u)cW
u*(z))ll2 St (4.20)

which verifies 4.17. Equation 4.18 foilows from
the last part of Lemma 2.1 and the proof is complete.

Theorem 4.1 implies (sce equation 4.17) that {f
an optimal sampled-data tracking problem is solecd
by any method(such as dynamic programming, discrete

minimum gr!nclile. ctec.), where the desired tra-
jectory to be tracked is the optimal continuous

repulator solut fon, then the solut fon obtained
would bLe the wame a4 the solution to the oripinal
sampled-data repulator problem,

5. Conclusfons

The sampled=data aud cont innons Linear repulas
tor probloems wre formulated in the sane Nilbert
space as mintnun norn problems, The peometric re-
lationship bhetween the two optiral solutions f4 in-
vestigated, It fs shown that the optimal sanpied-
data solutfon is an optinmal approximation to the
cont inuous repulater solution in an appropriate
Hilbert space norm. Specifically, it is shown that,
excluding the response due to the initial condition,
the optimal sampled-data soluticn i& the projection
of the optimal continuous solution onto the sct of
all solutions that satisfy the sampled-data con-
straint, It should be also noted that extensions
to the case where [a,b) is an infinite interval
can be easily obtained with this method with slight
modifications,
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Failure Accommodation in Digital Flight Control Systems by
Bayesian Decision Theory

Raymond C. Montgomery* and Alper K. Caglayant
NASA Langley Research Center, Hampton, Va.

A design method for digital control systems which is optimally tolerant of failures in aircraft sensors is presen-
ted. The functions of this system are accomplished with software instead of the popular and costly technique of
* hardware duplication. The approach taken, based on M-ary hypothesis testing, results In a bank of Kalman
filters operating in parallel. A moving window of the innovations of each Kalman filter drives a detector that
decides the failure state of the system. The detector calculates the likelihood ratio for each hypothesis correspon-
ding to a specific failure state of the system. It also selects the most likely state estimate in the Bayesian sense
from the bank of Kalman filters. The system can compensate for hardover as well as increased noise-type
failures by compauting the likelihood ratios as generalized likelihood ratios. The design method is applied to the
design of a fault tolerant control system for a current configuration of the space shuttle orbiter at Mach § and
120,000 ft. The failure detection capabilities of the system are demonstrated using a real-time simulation of the

system with noisy sensors.

Introduction

HE most striking impact of new technology in aircraft

flight control stems from the advent of the modern, high-
speed, digital computer. Control concepts previously con-
sidered untractable can now be considered because of the
flexibility and speed of information processing made
available by this new technology. One important new poten-
tial that exists is the ability of digital system to reorganize it-
self to accommodate for failures in sensors and actuators.
This reorganization is possible, provided there is enough
duplication of function between the actuators or the sensors in
a given control system. This paper presents a design method
for digital flight control systems that will be optimally
tolerant of sensor failures.

Modern control methods allow one to determine the part of
the state space of an aircraft that can be dynamically in-
fluenced by a given actuator (the controllability subspace) and
the part of the state space that a given sensor can produce in-
formation about using state esiunator theory (observability
subspace). Reference 1 provides a good treatment of
theoretical considerations involved in determination of these
subspaces. Redundancy is provided in either sensors or ac-
tuators when there is overlapping of the subspaces of the
various sensors or actuators in a given system. For example,
consider the longitudinal dynamics of an airplane, If there are
three sensors on the aircraft, say an accelerometer, to measure
normal acceleration, a pitch-rate gyro, and an elevator
position transducer, and if the aircraft state is completely ob-
servable from outputs of cither sensor, then it is possible,
using say a minimum order observer.® to estimate the
behavior of one sensor based on the output of another one.
Redundancy, in that situation, does exist and can be used by
cross-checking state estimates obtained by one sensor with
those obtained from another one.

Theoretical considerations for determining the absolute
level of redundancy that exists in a given system were
developed in Ref. 3. Reference 3 also presented a failure
detection filter designed to make use of the system redun-
dancy. One limitation of that work was that no consideration
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of the practical noise environment of the sensors was made
and failure detection depended on observing a steady-state
bias in an error plane in a state space. For aircraft ap-
plications, however, a design process is desired that enables
rapid detection of failures during maneuvering transients and
accounts for the normal operational noise environment of the
aircraft and the control system actuators and sensors.

A design method is presented for resolving both problems
in that it accounts for noise in sensors and is capable of dcter-
mining hardover as well as increased noise-type failures
during maneuvering transients. Incorporation of failure
detection and recovery into an aircraft control system design
is a joint detection, estimation, and control problem. The
design method presented here produces a decision for detec-
ting svstem failures which is optimal in the Bayesian sense. In
addition. because of the theoretical development, one is able
to account for uncertainty in the aircraft's stability
derivatives, mass, inertia, and geometric characteristics.
Although the method developed can be applied to both sensor
and actuator failures, only sensor failure detection and
recovery are considered.

The approach taken here uses M-ary hypothesis testing with
generalized likelihood ratios. The elements of this theory were
originally developed at the close of World War 11 for a binary
hypothesis testing problem of determining whether a radar
return signal respresented a target or not. In that case there
are clearly two hypotheses—either there is a target or there is
not. Theoretically, one can assign a cost to cither failing to
detect a real target or creating a false alarm. A performance
index can be constructed which expresses the cost of making a
decision based on a given radar return. This index can be
minimized by selection of threshold points for decision
whether or not the return represents a target. Elements of this
problem are outlined in Ref. 4, which also contains a brief
description of the M-ary hypotheses testing and generalized
likelihood ratios. In this paper the set of hypotheses used is,
first, that all sensors are functioning properly and, then,
M — 1 further hypotheses stating that the ith sensor group has
failed i=1,2,..,M~ 1. In the next section the theory for ap-
plying Af-ary hypoihesis testing to self-reorganizing systems is
presented. Then, it is applied to an example aircraft problem.

Sensor Failure Accommodation Using
M-ary Hypothesis Testing

Consider the equations of motion of an aircraft to be
represented by
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X=Ax+Bu+w (1

where x is an n-dimensional state vector, w is an m-
dimensional control vector, w is a zero mean Gaussian white
noise process with a covariance matrix W, (1—1). In Eq. (1)
matrices 4 and B are determined from the aircraft’s s'ability
and control derivatives, its mass and inertia characteristics,
and its geometric characteristics. The variable w may, but
need not, represent turbulence. It may represent uncertainty
in the designer’s knowledge of the characteristics of the air-
craft. Basically, it can be thought of as representing the error
in calculation of x, given x and u. We will be concerned with
the digital control of the plant where the control is con-
strained to be constant with sampling interval 7, that is
w(t) =u (kT) for kTst<(k+1)T. By integrating the system
differential Eq. (1) over each sampling interval,* we get the
discrete equations of motion for the aircraft

x(k+1)=®x(k)+Tu(k)+wik) )
where x(k) = x(kT), u(k) = u(kT), ®=&(T), (s) =e*

T
r={ ae) s
Jo

and w(k) is a zero mean, white Gaussian sequence with
covariance E w(k) w’ (J) = Q §,, where

:
0=, wee o @

Let us assume that the control system has M-/ sensor
failure modes for each mode

yk)Y=Cx(k)+v,(k) i=12,. . M=-1]

where v, (k) is a Gaussian white noise sequence where
Elv, (k)] =(0,m; 0) =m/

and
Elv,(k)v/()) =R by

The quantity #ir; is an unknown (nonrandom) parameter
vector.

We shall solve the problem as if m; were known and then
use the maximum likelihood estimate of m; under the ith
hypothesis. This procedure is known as generalized likelihood
ratio approach in the communication literature.® This ap-
proach to failure modeling enables the designer to compensate
for hardover failures of arbitary magnitude. Increased sensor
noise-type failures can be modeled by appropriate selection of
the noisc variances R,

For the normal unfailed condition we will asume

Y(k) =Cox (k) +v,(k)

where Elv, (k)| =0and E{va(K)vg ()] =R,8;,. Henee, for .

a system with three failure modes, as considered in the next
section, we have four hypotheses to consider

Hp: v(k) =Cox(k) +v,(k)
Hy: v(k) =Cx(k) + v, (k)
Hy: y (k) =Cx (k) + v, (k)
Hj: y(k) =Cix(k) +v; (k)

where C, (i=1, 2, 3) is C, matrix with the rows corresponding
to the ith group of sensors replaced by zeros.

3l
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We will be concerned with the selection of the most
probable hypothesis, based on a finite set of measurements,
Y(K)=|y(1),v(2), 2)...y(K) . To do this we construct a
Bayesian cost function for the M-ary problem

M-I M-

o E E Pll,cuszip)‘lﬂ(al”j) da 4)

1=0 =0

subject to

M-
E Py,=1

=0

and where the sets Z,, i=0, 1...M~ 1, are disjoint and their
union represents the entire observation space. P, is the a
priori probability of hypothesis H, being true, C, is the cost
of selecting H; when H, is true, and Py (a|H)) is the con-
ditional probability density of the measurement sequence Y
given that H, is true. The symbol {;, implies that the integral
is carried over the decision region Z, in the observation space.
Decision regions Z, are subsets of observation space such that
if Yisin Z, then the hypothesis H, is to be selected. Note that
the integral in Eq. (4) represents nothing more than the
probability of making the incorrect decision of selecting
hypothesis /1, when H, is true for i#j. So the Bayes risk @,
represents the sum of probabilities corresponding to different
decisions weighted by the a priori probabilities P, and the
design weights C,,. The problem is to choose the boundaries
of decision regions Z, that will result in minimum Bayes risk.
These boundaries are, in effect, switching hypersurfaces for
the decision logic in the measurement space.

The minimization of Bayes risk can be performed easily by
rewriting the cost function (4) in the form

M-

@= ¥ | v.(a) da )
=0 * 2
where
A1
Vita)= L Py,C,PyutalH) )
=0

The Bayes risk is minimized by selecting H, at each point «
in the observation space such that ¢, («a) is the smallest of M
possible values of ¥,(a) (k=0, 1...M—1). Hence, the op-
timal decision regions are

Z,(aly(a) =miny,(a), OsksM-1) )
From a computational point of view, it is convenient to in-
troduce a dummy hypothesis H,, with a priori probability
Puy=0 with Hy: v(k)=v,(k). Then, an cquivalent
decision criterion can be given in terms of likelihood ratios,
A, ()

,\,((l)'-'I,)v"(ll”l,)/,’H"((III’“) i=n.,...d"-" (R)

Dividing each ¥, in Eq. (6) by the probability density of
Y(K) under iy, we get an equivalent decision criterion in
terms of the likelihood ratios

\( ! '
A = 2, PuC A (o) (L))
)

Then

Z,=lal\(a)=mink, () .Osk<AM -] (10)

The advantage of using likelihood ratios is that the boun-
daries of the decision regions are linear hyperplanes and not
generai hypersurfaces in the likelihood ratio space A, A, ...,
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Ay¢-;. From the chain rule of probability densities and the
Gaussian density of the observations, it can be shown® that
the likelihood ratio for the problem considered is given by
A
R (detR,)"
ALY = n e |
A

cxp{ -1 2: [P (k)YQ,  (k)r, (k)

A=l

-y'(km.;'y(m} im0l .M=1 an

where 7,(A) is the innovation® of the measurements under the
ith hypothesis given by

ri(k)=y(k) =CR,(klk=1)=m;(k) (12)

with 2, (klk=1=E [x(k)IY(k=1), H,]. The matrix
Q. (k) in Eq. (11)is given by

Q,(k) =C,Vy (klk=1)C/+R, a3

where V, (klk—1) is the prediction error variance of the
estimate of the state x (k) under the ith hypothesis defined by

Vylklk=1)=E| [x(k) =% (klk—=1)][x(k)
=Xiklk=1))"1Y(k=1),H,)

In Eq. (12), the true value of m,; (k) should be used to get
the exact likelihood ratio. Since this is not available, we will
use the sample mean of [0, h/()), 0]", j=1, 2,...k, thatis the
maximum likelihood estimate of m; at the kth instant under
the il? hypothesis. That makes A, a generalized likelihood
ratio.

To compute £, (klk—1) and V, (klk-1), M Kalman’
filters are required. A bank of Kalman filters operting in
parallel has been used for parameter adaptive control in Ref.
8. The filter equations are listed as follows for completeness

2,(k) =2, (klk=1)+K,(k)r,(k) (14)
£,(klk—1)=®2, (k) +Tutk) (15)

where %, (k) is the estimate of the aircraft state under the ith
hypothesis defined by

X (k) =E(x(k)IY(K), H)

The filter gain K, (k) in Eq. (13) can be calculated recursively
from the algorithm

K (k)=V,(klk=1C/Q ' (k) (16)

where Q, (%) is given by Eq. (13) and the prediction error
variance ¥V, (k 1k = 1) is given by

Vilklk=1) =@V, (k=-1)®'+Q (17
where ¥V, (k) is the filter error variance given by
Vi k) =[1=-K (K)C, )V, (klk=1) (18)

Note that, because of the special structure of the matrices
C,, the unknown mean m; does not enter the filter equations.
That is, the estimates of the hypothesis conditioned filters will
be exact. Thus, for each hypothesis we have a Kalman filter,
as previously indicated, that can be used 1o determine the
likelihood ratios, which can, in turn, be used 1o make the
decision as to which hypothesis is most likely. The s:ructure of
the system is schematically indicated in Fig. 1.

FAILURE ACCOMMODATION IN DIGITAL FLIGHT CONTROL

Fig. 1 Fault tolerant control system structure.

Corsiderable simplification occurs if one considers C, =
C, =1, (j#1) and C; =0. Ramifications of this ummpt“on
are discussed in the example to follow. Under those con-
ditions the equations for A, may be modified without loss of
generality to select the maximum of

K K
WPy ~In 3 10, 1=% L DO U)r, (),

=1 i=l

i=0,1,..M~-1}

where K is the total number of measurements used to make
the decision. If the steady-state Kalman filter is used, we can
select the largest of

A
(InPy - 5 WIQ1 -4 ¥ 7)),

=1

i=0,1,.M-1}

Also, if the a priori probabilities of H, are equal, without loss
of generality, we may take

K A
LYK )= 5 InlQl+% Y rporing a9

=1

and select the hypothesis H, corresponding to the smallest 7,
i=0,1... M- l. The next section demonstrates the application
of this method to a practical problem.

Application to Aircraft Flight Control

The theory developed in the previous section has been ap-
plied 1o the design of a control system for one space shuttle
orbiter configuration at a Mach number of § and an altitude
of 120,000 ft. Taking the state to be defined as x=(p, 0, r,
B) ’ and the only effective control u=§, the aircraft equations
of motion can be written as

-0.0580 0 00170  -5.791 7
_ 1.0 0 0.5773 0
T | —0029 0  -00085 -0.7438
L 05 00055 -0.8660 -0.0009 |
r 2.2%
0
*g 00883 |
==
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Table | Evaluation of W

T S T TR R T

Level of
W component certainty? Error scale
W, (p component) 2 0.05 rad/sec
W, (6 component) 0 I rad
W (r component) 2 0.01 rad/sec
3

W, (8 component)

e

0.001 rad/sec

mmrmgrTTT T e PR

2 0 implies absolute certainty, 1 implies a high level of certainty, 2 im-
plies only moderate certainty, and 3 implies not too sure.

The selection of the variance W for the last equation in-
volves consideration of 1) the uncertainty that we, as
designers, feel related to our knowledge of the equations of
motion, 2) the relative scales of the variables, and 3) the en-
vironment, with regard to turbulence, under which the vehicle
must operate. We will only consider the first two items here.
Table 1 shows the authors’ interpretation of the level of cer-
tainty and scale considerations. Concerning the level of cer-
tainty, it was felt that the ¢ equation was well understood
since it represents a well-known kinematic relationship. A
high level of certainty was assigned to the ¢ equation. On the
other hand, the p and 7 equations were felt to be better defined
than the 8 equation. Turning to scale considerations we have,
in effect, equated an error of 1/0.05 in the computation of p
to one of 170.001 in the computation of 8. The W matrix
selected is constructed from the elements of Table 1 as follows

W=diag [2(0.05)%, 0(1)?, 2((1.01)?, 3(0.001)?)

The discretized equations of motion using a zero-order-hold
with a sampling interval of 0.1 sec is

09798 -0.0002 0.0267 -0.5752
0.0992 1 0.0587 0.0310
x(k+1)=
0.0021 0 1.002 —-.0740
l_ 0.0497  0.0006 -0.0862 0.9887

and the discrete variance matrix for the process w(k) is

[ 04757 004757 -0.0066 0.0236 |
0.04757  0.00654  0.00100  0.00309

@=! _0006 000100 002015 -uvoMgs |

0.0236 0.00309 -0.00185 0.00211 |

x(10)?

which was evaluated using Eq. (3). Note that, because of the
sampling, even though the ¢ equation was considercd ab-
solutely certain, uncertaimty does result in the ¢ equation of
the discrete model. Also, the components of the plant noisc
vector are correlated in the discrete model.

For illustration, consider that the vehicle has three sensors:
a roll-rate gyro. a yaw-rate gyro, and a sideslip indicator,
There will, therefore, be four hypotheses to consider, as
follows

1 0 00
0010
=001

Hy: y= X+,

33

]
|

J

J. AIRCRAFT
0000
H, y= " o810 x+v,
| o001 |
i’ -9 -8 "!
Hyy=| 0 0 0 0 x+v;
= = & = 4’
[ 1 000
Hyy= 001 0 } xX4+v;
L 000

Variances of the measurement error are taken, consistent with
current technological capabiiity, to be

R, =diag [ (0.05)%, (0.01)?, (0.01)?)

Failure covariances are assumed to be larger than the unfailed
ones. (The behavior of the resulting system will, however, be
illustrated for both statistical failures—increased varian-
ce—and for hardover failures. This capability is a direct result
~f not assuming a zero-mean measurement error in the failure
states.) The valuesof R, R, and R, used are

R, =diag (0.025, 0.0001, 0.0001)
R, =diag (0.0025, 0.001, 0.0001)

R ; =diag (0.0025, 0.0001, .01)

" 0.2240 7

'0.0139'
! fu(kuw(/.»)
- 0.00536 |

xX(k) +

| 0.00538 l

For cach hypothesis the state is observable but, given the
measurement errors and uncertainties in the vehicle equations
of motion, each hypothesis has a different capability of
estimating the state of the aircraft. Hence, embedded in the
theory is the consideration of the capability of any given sen-
sor group, corresponding to each hypothesis, to estimate the
state of the aircraft. This is reflected in the error covariance
matrix clements of cach hypothesis. As an example, El(p
=) | under cach hypothesis is indicated as the (1, 1) element
of the error covariance matrin and is 0.00075, 0.001S,
0.00082, 0.00087 for H,, H,, H,. and H;, respectively. As
expected, 74, has the smallest value of El(p=p)?}, in-
dicating that this hypothesis, if true, can produce the best
estimate of p. Also indicated, however, is the fact that #,
produces the worst estimate. Again, this is expected since H,
corresponds to deletion of roll-rate gyvro information.

In this example, The Bayesian risk weights C, are taken as
C,=1fori#jand C,=1. Also, stcady-state Kalman filters
arc used so that Eq. (18) is applicable. For the example here,
Eq. (18) becomes (using a memory size of five samples)

.

To= - i (22.508) + 5 E rafkl

de/

3
3
E

T T —

Ehataa gt nTantandcias e




LLOBKUARY 1976
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0.6 6350 550 | re(k)
L 390 sso 3582
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!
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During control system operation the scalars 7, should be using
the innovations 7, of the Kalman filter bank stored over the
past five samples. Then, the hypothesis corresponding to the
minimum 7, should be selected.

The behavior of the system has been studied using a hybrid
computer facility in which the equations of motion of the
vehicle were programmed on an analog computer and the con-
trol system was mechanized in a digital computer. Figure 2

R yovyn
§ s = §5:
] 0 W

-
B e
¥ ST
Fig. 2 Response of unaug- o 1 b o
mented aircraft to aileron 3 aere
step. 5 T ]

e S Tra
',_I for ol
& e
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FAILURE ACCOMMODATION IN DIGITAL FLIGHT CONTROL

illustrates the unaugmented step response of the vehicle to an
aileron input, This aircraft is a nonmi~imum phase system in-
dicated by roll reversal. Also, the aircraft possesses a large
coupling of the Dutch roll into the aileron response. Digital
feedback was employed at a cycle time of 0.1 sec using feed-
back gains (—4.9,0.4, 14.5, —6) for (p, 0, r, B), respectively,
to the aileron. The gains were selected to be constrained to a
control system operating with only roll control. Figure 3
shows the response of the closed-loop aircraft to the same
pilot step input when state variable feedback (perfect
measarement of each state) is employed. Considerable im-
provement in flying qualities could be obtained if yaw control
were available. Figure 4 illustrates the same step response
using noisy measurements and accepting H,. No actuators
and sensors have been failed in Fig. 4. In Fig. § the responses
of the system are indicated for the case where H, is true but
for cach hypothesis being accepted at different times. The
failure mode considered in Fig. § is an increase in
measurement noise. Note that at the start of the record H, is
selected and produces poor characteristics, as can be seen by
comparing the H, true portion of the roll-rate trace of Fig. §
with that of Fig. 4. Had there been no failure, those traces
would be almost identical. When H, is selected at ap-
proximately 5 sec, poor characteristics are still produced.
However, when H, is selected at approximately 10 sec the
system moves (o a normal operation, only to return to its poor
characteristics when H; is selected at approximately 15 sec.
This figure illustrates the effect of accepting hypothesis H,
when H, is true, It indicates the effect of cost selection of the
C, terms in the Bayesian risk function. Figure 6 shows the
fault tolerant system in operation when failures of increased
noise type are introduced. By looking at the (p, r, B)
measurements, it can be seen that the following sensor failure
modes have been simulated: |H,, H,, H,, H;). The plot
showing the hypothesis accepted indicates the performance of
the detector logic. Figure 7 deals with the detection of har-
dover failures. A hardover failure in the beta sensor has been
simulated. Note that, although detection logic is able 1o detect
sensor failures in all cases quite rapidly, the detector logic
takes a longer time to reject a failure hypothesis when the

1L i
RS = o

£ e e
o 2

§ oL ———
¢ =] =
ot — —
L -

Fig. 3 Response of air-
craft to step pilot input
when digital state variable
feedback (with no mea-
surement noise) is used,

1, deg/ sec
e
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Fig. 4 Response of closed-loop system with noisy measurements un-
der normal operation.

Exm e S
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Fig. § Response of closed-loop system demonstrating effects of ac-
cepting hypothesis 1, H,, H,, when 1, is true.

svstem is already in one. Further, note also that only the
steady-state Kalman filters are used and overall performance
may be improved using time-varying Kalman filters.

Conclusions

A digital fault tolerant control system design that ac-
commodates for aircraft sensor failures has been presented.

1

J. AIRCRAFT
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Fig. 6 Operation of fault tolerant system during failures resulting in
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Fig. 7 Operation under saturation hardoser failure.
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Each sensor failure mode and the normal operation of sensors
are modeled as M different hypotheses. Then, using the
Bayesian M-ary hypothesis testing approach, a detection logic
is developed that resuits in a bank of Af Kalman hiters The
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decision logic, which uses M generalized likelihood ratios,
selectes the hypothesis that minimizes the cost of making a
wrong decision in the Beyesian sense. The likelihood ratios are
calculated from a moving window of the innovations in each
of the Kalman filters. The estimate of the state corresponding
to the hypothesis selecied by the detection logic is used in the
control system. The design system is capable of identifying in-
creased noise type and hardover-type sensor failures. These
capabilines are demonstrated using a real-time hybrid
simulation f'or a space shuttle vehicle lateral dynamics.
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OF POOR QUALITY

PARAMETER ADAPTIVE ESTIMATION OF RANDOM PROCLSSES
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2 Abstract

This paper is concerned with the parameter
adaptive least squares estimation of random proces-
ses, The main rcsult is a general representation
theorem for the conditional expectation of a random
variable on a product probability space. Using this
theorem along with the general likelihood ratio
expression, the least squares estimate of the pro-
cess is found in terms of the parameter conditioned
estimates, The stochastic differential for the a
posteriori probability and the stochastic differen~
tial equation for the a posteriori density are
fecund by using simple stochastic calculus on the
rcpresentations obtained. The results are special-
ized to the case when the parameter has a discrete
distribution. The results can be used to construct
an implementable recursive estimator for certain
types of nonlinear filtering problems, This is
illustrated by some simple examples.

1. Introduction

This paper is concerned with the parameter
asaptive cstimation cf random processes cerrupted
by additive rcise. The problem muy be briefly
stated as fcllows., From a given (possibly uncount-
able) coilection of random processes with known
distributions, onc process is observed with additive
n2ise. Tne a priori prcbabiiity, that a specific
rardom process in this collection is olserved, is
speeiflcd 2t eacih one in the collection. The

reo.vn .8 to find the Yeast ‘quzres cstivate of the
otser-ad z.cmal process,

Ihese $e = Yivee clase 20 phv=inrY-proklens
that car $¢ ccaridered in thie ceniext, For
irstance. .irt dotection and estimation (9], [i18],
#$LLTaT i fior uncertaonty (3], I9int estimiticn
znc identificasion 110], paremcter adaptive self-
epgentein: sartyot 115), {16], {17].

Paramcter adap.ive estiration of discrete
Gaussian procesnes with lincar dynanic medels has
been treated by Magill {12), Lalniotis [1G] has
invastigated the parameter adaptive estimation
problen for continuous Caurslcn rrocosses with
Hnear Oona le modaln. Ctler related werk wlong
Tais sors was supported by NASA Lungley Rescarch
Conter under Grant NCR «7-004-116. The authors are
with the department of Flectricel Frpineoring
Virglnta Polysicinls Tuotitute and State University,
Ylackihurg, Virglila 24061,

H. F. VanLandingham

Department of Llectrical Engincering
Virpinia Polytechnic

Institute and State University
Blacksburg, Virginia 24061

these lines can be found in [18] - [21]). The first
systematic treatment of joint detection-estimation
in a general setting was done by Middleton and
Esposito [9]).

In the mathematical theory of probabllity,
related works can be outlined as follows., Parameter
adaptive cstimation for a specific jump Markov
process with a finite number states has been stud-
ied by Wonham [22]. The same problem for a two
dimensional Markov process with the nonobservable
component a jump Markov process and the observable
component, a diffusion process, has been resolved
by Shiryaev [23]. Related work on the estimation
of arbitrary stochastic systems can be found in the
work by Kallianpur and Striebel [5) and for Markov
processes in [24].

This paper generalizes the results of [10],
[9]. The approach taken is along the lines of
{13], [5]. The problem is formulated in the usual
Baviesian decisicn theoretic framework. In the
second section, a mathematical statement of the
pretlem is given. In section 3, a general repre-
sentation theorem is proved for the conditicnal
expectation of a random variable on a product prob-
ability space using the properties of Radon-
Hinodyn derivatives. This theorem alsv yields a
Radon-Nikodym rcpresentation for the a posteriori
prebability which can be thought of as a general-
iced Bayes thecren. By using the represeatation
theorems alcag with tne peneral lizelincod ratio
extrossion of Raiflath-Duncan (6], [7], the para-
metcy adaptive estimation problem of random pro-
cecues I8 solved In section 4., The main theores
oi ti..s sceticn can be thought of as a geaerelice!
partition thecrem. In section 5, by using simple
stcci.ostic caiculus, the stochastic differential
ccire ponding te the a pesteriori probability ird
the stochastic differential eguation for the a
pocteriori demsity are found. In section 6, the
res:.t are specialized to the case when the perd”
metery -pace is ccuntably infinite, f.e., when tC
paramcter hos a discrete distribution, [he pesult?
of ti. s seetion fnclude the case of fintte pars
acter pece such as M=ary hypotheses. Sc. tion?
fneivcce sone jllvetration and Spplicaticus.

& Statésont of the Pycbles

et o rencetacd witio S undo s iaing o
al “ ity spaces {2): At A Pl arg Lo ns
Wt hayer v ey, e el corres vl ote E
parter srate ang oWl ahinicaate the el

“pati. Rlerm€its of ) and i) will be cunstoe
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and n, respectively,  Expectation with respect to
measures Py and I'p will be denoted by Fy and k.,

We shall assume that therr exists a vector Wlencr
process v(t, n) on (2, Ap, I';) with zero mecan and
incremental covariance E; dv(t) dv'(s) = R'(t) dt,
For each Cu.lv, we will be given two vector random
processcs z_(t, n) and y_(t, n) such that the future
ircrements of the Wiener process v(t, 1) will be
independent of the past of v(t, n) and zo(L. n) with

ye(tin) = /: £q(s,n)ds + v(t,n) tel0,1]  (2.1)

We will assune that for a fixed t ¢ [0,T),
ya(t, n) and 2z _(t, n) are jointly mcasurable in
(8. n) on the Sroduct probability space (R; x R,
Ay X Ayy Py x P;) so that we can now definc the ran-
dom processes y(t, n, 6) and z(t, n, G) on
(@) % Ry, Ay x Ay, Py x Pp) by

y(t,8,n) = y (t,n) t [0,T)
z(t,0,n) = z,(t,n) 8cfy . (2.2)
So that the observation model becomes

y(t,8,n) = I: z(s,0,n)ds + v(t,n) te[0,T), (2.3)

The problem is to find the conditicnal expec-
tation of z(t,6,n) given a sample function of
y(t,0,n) in terms of the conditicnal expectation of
2z (t,n) conditioned on the sample function of
yo(t.n). The implicit assumption in parameter
adaptive estimation is that the parameter condi-
tioned estimates are easily computable,

Given two arbitrary sets ), and Q;, we shall
denote the product of ) and ; by R; x Q;, which
is, by definition, the set of all pairs (wj,w;)
where the points w) and w; run through Q) and 5,
respectively. If Y is an arbitrary mapping of
fiy % £ into an arbitrary space, we shall denote
Yw’. the section of Y at w), to be the mapping

deflined on R; by Y“l(uz) « Y(uy, ) If A is an
rrbitrary set of ) x 1;, we denote Aul. the section

cf A at u;, to be the subset of §i; defined by
A“‘ = {wy € A2 (w;, w2) € Al.

Now the problem can be stated as follows: Find
the conditional cxpectaticn of z(t, n, 6) given a
sample function of y(t, n, 6) in terms of the condi-
tional eupectation of the section of z at 6 condi-
tioned on the sample function of the secti . of y
at e,

We shall use the following definition of
conditional expectation [3]). Let g be a random
variable on the probability space (2, A, P) and Y
be a measurable transformation from (2, A, P) into
a measurable space (V,B). 1If Eg exists, then
E(g|Y = y) is defined to be the mcasurable mapping
from (¥, B) into the real line, R, such that

fo_, 8 dr) =/ Eg| Yey) ay” ()
¥ ) B
for every Beb

whereo Y-l(b) = {w: Y(w) ¢ B) and PY-l(-) is the
meas.ce on R defined by PY=1(B) = P(Y~)(B)) and ©
is the Borel sets of R.

In the parametler adaptive estimation we will
be concerned with two different conditional expee=
tations. If ¥ is the set of all k" valucd contin-
uous functions on [0,T) and b is the Rorcl scts on
¥, then we can define the measurable mapping ¥
from () x £, Ay * Ay, P} x Py) into (¥, B) such

that
Y2 (0 xy, A xA, Py xFy) (Y, B)
by Y(0, n) = (y(t, n, 0), 0t <cT).

Similarly, we can define the neasurable mapping Y
where 0 is some fixed point in the parameter spacc
)

Y. : (R, A, P) » (Y, B)
by
Yo(n) = (yplt, n), 0t e 1),

That is, Yo is the section of Y at 0.
this setting we can talk about

2(t,y) = ECz(t, 8, n) | Y(8, n) = {y(s), O < s <T})
and, for a fixed 6 ¢ 0,

Now in

zo(t, ¥) = Ex(zg(t, n) | Yo(n) = {y(s), 0 <5 < T))
which will be defined correspondingly (P = Py x Py)

o, 2t 8, n) AP, n) = f 2(r, y) APYT(y)
L » for every B ¢ B
’ 28, ) dPa(n) =/ z,(t, y) dP¥ " ().
Yol (B) B

The problem is to find ;(t, y) in terms 2 (t, y)
where 6 runs through the paraceter space 0,

3. Characterization of Conditional Expectation
on the Product Probability Space

In this section, we will prove a general
theorem concerning pararcter adaptive estimation,
Namely, a representaticn will be found for the con-
ditional expectation of a randon ‘ariable on a
product probability space using the properties of
Radon-tikodym derivatives. This theorem also gives
a representation for the a posteriori probabiliry.
The results will be repeatedly used in the rest of
the paper. The rupresentation theorems arc gener-
alized Bayes tlicorers.,

Theorem 3.2 Let (I;, Ay, Py) and (2;, Az, P3) be
two probability spaces and (¥, &) be a measurable
space where B is generated by a countable class of
sets, Denote the product prebability space

(Ry x 93, Ay x Ay, Py x P3) by (2, A, P). Let Y be
a measurable transforration from (2, A, P) into
(Y, B) and g be a random variable on (2, A, P)
whose expectation exists., (g is quasi-integrable
in Nevcu's sense (2]). Let up denote the measure
induced on (¥, B) by the section of Y at € ¢ R,
i.e.

ug(B) = Pa(¥y sy for cvery B ¢ B.

(3.1)

1f there cxists a c-finite measure p on
(Y, B) and a set Ny in A} of Py-mcasure zero such
that yg << pg for ¢ ¢ f; = Ny, then the conditional
expectation of g given Y 1is

E(g(0, n)/¥Y(0, n) = y) =

du
Inlnz(ua(n)lYe(n) * y);;E G) dry(e)
o
— (375 B
!szzz (y) dry(e)

(3.2)
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du
where u(*) = I’(V“(')). :l;‘q' is the Radon-Nikodym
o

derfvative of up w.r.t. y,, F denotes expectation
w.r.t, the measure P (4.e. Py x Py), and [u) denotes
almost everywhere with respect to the measure u.
Proof: See Appendix.

Corollary 3.3 Under the assumptions of Theerem 3.2,
Tor Py - almost all 0 ¢ @) and py << y, the R-N
derivative is given by

duo )
dp R :
2 ) - -4 (w) . (3.9
. =k
lnl duo(y) dp (§)

So that
E(g(0, m|Y¥(e, ) = y) = /g Ealgg(n)|¥g = )

du°

= (y) dry(8) . (3.4)
Al:o d”g
P(A) x Q2]Y = y) = Iﬁ‘ o ) dPi(e), (3.5)
Proof: See Appendix,

Note that p(A; x Q3|Y = y) is the a posteriori
probability of the event Kl in the paramcter space
conditioned on Y. P(A; * Q,|Y = y) defines a
measure 7 ou Ay-sets for each y € ¥ by:

vy, y) = &) x 0|Y = y) (3.6)

We also note that the representation for the
a posteriori probability is a generalized Bayes
theorem. To sec this, let ) be countable,
2 = {01, 85,... , 0 ,... }, and R = R and let u
be Lebesque measure on R, then by 3.3 and 3.8

dp

o

]
Pl<9j)du° (y)
-(ej. y) = f:—-—'gu—o‘i‘-
L Py(0,)5—=L(y)
i=1 : duo

. 3.7

duo
Note that —7—1 is by definition, the conditional
»”
o
probability density of Y given 2, so that (3.7) is
one form of the celcbrated thoorém of Bayes.
Ve shall now apply the results of the Theorem
3.2 and Corollary 3.3, to the parameter adaptive
estimation of random processes.
4. Parameter Conditioned
Lstimation of Random Proccsses

In this scction we will apply the results of
the previous section to pararcter adaptive estima-
tion of rawden processes,  The representation
theorem for the couditional expectation of the last
section will be wicd aloag with the general likeli-
© hood ratio expression of Katlath and Runcan [6],
[7), (206}, [27]). \» now state the general likeli-
hooed ratio results in the next lensma which is a
slipghtly differeat restatement of Theorem 2 in [6].
Levma A1 Let Ciys Apy Py) and Giay Ay, Py) be two
probhabiltty spices.  Assume that for cach 0 ¢ 9,
we are given throe measurable vector random proces=
ses (Laking theiv values 4n R") 2o(t, n), yg(t, n),
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and v, n) with n e 22, and t ¢ [0, T] such that
v(t, n) isx a zero mean Wiener process with incre-
mental covartance
Ky duv(t) Jdv'(s) = R(L) dt
and the three random processes are related by the
equation

t
yolts m) = f 2. (s, n) ds + v (t, n). (4.1)

Let V¢ be the space of all R"-valued continous
functions on [0, t] and B, be the Borel sets of ¥,.
Define the measurable transformations Y, g and Ypy
from (Qs, Ay, P,) into (Vt. Bt) by:

YLQ : (ﬂz; Azl PZ) ~ (yto Bt)

Yto(") = (yg(s, n), 0 <8 <t) (4.2)
th : (nz. Az. Pz) > (vt' 8‘)
Y M = (v(s, n), 08 ct), (4.3)

Let P, Y, o~} and Pzth" be the measures in-
duced on (@tEOBt) by:
=} - =
PpY, o (B) = Pp(Y ,"1(B)) BeB, (6.4)
-1 = -1 ; E
PY, 7' (B) Pz(ytv (B)) B¢ 8; (4.5)
1f, for some 0 ¢ 0,
By /g 1 zge, n) ||y de < = (64.6)
and
f: zg'(t, n) zg(t, n) dt < = 4.7

and the future increments {v(t, n) = v(s, n)} are
independent of the c-algeora generated by (v(r, n),
z2alt, 2), 0 < t s s}, then P?Y‘o°‘<< P;th" and
the R-N derivative is given by

ol LT : : % =

e b £ exp(}o z ' (s,y) R-1(s) dy(s) -

rpy ! ®

E5t =y s(s)~) 7 - -1

3 7o % (s,y) R(s) Ze(s,/) ds)[Pzth ]
(4.8)

where

ie(S.y) = Ep(z,(s, 1) | Yo YR, 0<E<9),
(4.9)

Preof: Sce Theorem 2 in [6] and also Theorem 1 in
{7].

Theerem 4.2 Let the assumptions be as in Lemma
4.1, Also assume that z (t, n) is a measurable
function in (t, n, €) so that we can now define the
measurable random processes z(t, n, €) and y(t, n,
0) on the product probability space (@, A, P) =

(Rl X fla, A * Ay, 'y * P)) by

(4.10)
te [0, T], 0¢yp, netj.

=t VW)= ZU(L. n)}
(4.11)

y(e, 2, n) = y (¢, n)
The three raadom processes are related by
y(t, ¢, n) = I: z(s, ®, n) ds ¢ v(t, n)

& 0 e L B
(4.12)
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Let Y‘ be the measurable transformation

't t R A P (V:. 8‘)
Y. (0, n) + (y(s, 8, n), 0 <8¢ t). (4.13)
Note that ':e is the section Y, at 0, I1{ there

exists a set N) in A of P; measure zcero such that
for all 6 ¢ 2; - N;, the assumptions in Lemma & are
satisfied, and E(z(t, n, 0)) cxists, then

E(z(t, 0, n) | Y (0, n) =y) =
‘ay 2,(:. y) Ag(e, y) dPy(0)

Toy WO 9 (O

vharo l.(t. y) is given by
'(t. 7) - EZ(‘ (to n) ‘ Y

lpyt-l) (4.14)

=y(£), 0<E<t)
(4.15)
and the R-N derivative Ag(t, y) is given by

dPyY

Aglts ¥) = ET L E UL 3,0 (s y) RS

’2th

3.'(s, y) R°1(s) 2 zo(s, y) ds).

dy(s) - 3/ %,

(4.16)

Proof: For all 0 € ) - Ny by Lemma 4.1, we have

PzY << PoY, . 1, and the R-N derivative is given
X,(e. y). ae can now apply Theorem 3.2 with
y Mg (+) = Pi t ( ), u(e) =
4 Yt ( )9 i ) - sztv ( 9
Corollary & g Under the assumptions of Thcorem 4.2,
for Py-almost all 8 ¢ @, P,Y o~} << P : P !, and
the R-N derivative is given by
d?zy =3 A (tv Y)
M=y : S LA TR
aP Y fn] At(t' y) dPy(g)
So that : dPZYLO-)
Bl Yoo )= fp, Rl —— )
t
4?,(6)(Pvt-11. (4.18)
Also dPZYtG-l
Py 2] X oy =y —— )
s dry ~!
dp, (8) [PYt'l]. (4.19)

Proof: Follows from Corollary 3.3.
Corollary 4.4 Under the assumptions of Theorem 4.2,
we have the follow{ng representation for the R-N

derivative E (y)
aey "}
t
dP,Y A (e, y)
TEe e (4.20)
dPYt“ A (e, y)
where ap Yt-l
At, y) = (¥) = exp (/ 2(s,y)R"1 (s)dy(s)~
"?'Lv

% I: 2'(s, y) R-M(s) z(s, v) ds).

(4.21)

Proof: ly Corollary 4.3, we have
dra¥ o Aolt, y)
= Ry :
dr Yt fnl AC(t' y) dP (L)
By Remark 4 in the proof of Theorem 3.2
o

Ta, Rotts ¥) 4y (0) = .

1 -1

2 dP;th

The result now follows from Lemma 4.1,

Comments: The R-N derivative Ag(t, y) is the like-
lihood ratio for the dotection problem (with 6
fixed)

hgt yo(t. n) = l: zo(s. n) ds + v(t, n)

hO: Ye(t. n) = V(tn n).

A(t, y) in Corollary 4.4 is the L.R. for the compo-
site hypotheses testing problem

hs yit, n, 0) = I: z(s, n, 0) ds + v(t, n)

ho y(t, n, 0) = v(t, n),

Note that

Ae(t' y)
R RN G)

A (e, y) =
] fnl

represents a normalized likelihood ratio. This
normalized LR is the ratio of the conditional
probability deusity of the parameter conditioned
on the obsecrvation and the probability density of
the paramcter; that is, 24(t, y) is the normalized
conditinnal density conditicned on the observation.
Note also that P(A) x 0 | Yy = v) is the a
posteriori probability of the event Al in the para-

weter space conditioned on the observation. Since
: drpy 7}
P(A, * 0y | PSS E S (y) dPy(0) ,
1 gp Y
t

we have proved the existence ef the conditional
probability demsity of the paramcter.

Theorems 3.. and 4.2 unify a nuwber of known
results in the literature. For instance, in the
case, wiiere the paraneter space contains two
points, cach one corresponding to the presence or
the abscnce of a signal, we obtained the relation~
ship betveen the optimal est'hate of the signal
under uncertainty and the optimal estimate of sure
signal in the least squares sense derived in ref-
erence [9). 1In the casc, where the signal and the
measurerment noisc are independent and the signal
is a Gaussian signal with a lincar dynamic model
we get the results In [10]).

The exprestion derlved for the conditional
expectation In this sectfon is useful in the case
of fixed obscrvation time interval, If the data
is coming continously, a stochastic differential
equation implementation is more practical. In the
next cection, by using simple Ito calculus on the
representations obtained in this section, we
shall find the stochastic diffcrential cquations
that the a posteriori probability and probability

density satisly.

D S S TS e e —

B

B—



41

5. Stochastic Differential Fquations
for the A Posterior!i Probability

The results of the previocus section are useful
when the obscrvation interval is fixed., Since in

most technologleal applications the data is cbtained

continuously, the differential form of the results
is more practical to implement. In this section,
we shall find the stochastic diffcrential cquations
for the a posteriori probability density and a
stochastic differential representation for the a
posteriori probability by a simple application of
Ito's differentiation rule on the normalized con-
ditional probability density representation in
Corollury 4.4.

Theorem 5.1 If the assumptions of Corollary 4.4
hold, then normalized conditional probability
dennity

dPyY .

(y) = 2 (t. y)
dP ':

exists P)-almost everywhere and is the unique solu-
tion of the following stochastic differential
equation

g (E,y) = Ao (E,5) (2 (,y) = 2(t,3)) 'R} (2) Wy () -
z(t,y)dt) (5.1)

with the initial condition unity.
Proof: From Corollary 4.4.

Aﬂ(t' y) =
expl /7 2,"(s, y) R"1(s) dy(s) -

z' (s, y) R°1(s) dy(s) -

exp{ f:

-

! ze'(s. y) R™1(s) ;Q(s. y) ds}

. (502)

»

I/

t
o
: z' (s, y) R"I(s) 2 (s, y) ds)

LS EST

Let R be tle identity matrix with no loss of gener-
.l’»tyo

Since the rrqulted partials exist and are con-
tinuous, by Ito's differentltion rulc [25) we get

d)e(tn y) = A (to y)(l (e, ¥) dy - 3(‘- y) dy

(E,y)2g(,y)de + "(t.y);(t.y)dt)

-Jh- hﬂr-

(tDY)(' (C.Y) 3 z(toY)) (z (t.Y)

- z(t,y)) dt

drg(e, y) = A (t,y) (Zy(t,y) - 2(,y))"

(dy (L) = z(t,y)de), (5.3)
To show uniqueness, let Ay and A; be two solutions
of 5.3, then

pddy = Apdly A gdiydhg - Agd)pd),
d(A3/22) = 7 * = ’

A2 A2

By 5.3 it is clear that Add; - A\jdd; = 0, By
using 5.3 and stochnstlc calculuo

Mdiadhs = Agdg (zg(t,y)-2(t,y))’ (:.(t.y) :(t.y))dt

Aoddydiy = \:ll(;o(t.y)-;(t.y))'(;o(C.Y)-;(!.Y))d‘-
We, therefore, have
A(e)  21(0)

d(Ay/2y) = 0 0T Tt 0 forall te[0,T),

or (5.4)
12 (0)

Ap(t) = O] A (e) for all t in [0,T],

(5.5)

So if 1;(0) = 1,(0), we must have Ay(t) = Az(t)
for all t in [0, T). Detailed arguments can be
found in [13].

From the stochastic differential equation that
the normalized conditional probability density
satisfies in Theorem 5.1, it is now casy to find a
stochastic diffcrential repre:entntlon for the a
posteriori probability in P(A} x 0 | Y = y).

From Equation 3.6, we know that v(i;, y) =

P(A} x 0y | ¥ = y) defines a measure on A; sets for
PY~! almost everywhere, and n << Py, The R-N
derivative is glven by

dn dP,Y 0

— e (). (5.6)
g ar”!

By using Theorem 5.1 and equation 5.6, we
shall find the stochastic differential for the a
posteriori probability.

Theorem 5.2 Let the assurptions of Corollary 4.3
hold., For a fixed parameter set A}, the a
posteriori probability

x| Y=y,

admits the following differential

drg(My y) = JR; Ggleay) - 2(t,y))" dre(a,y)

R=1 (t) (dy(t) - z(t,y)dt) (5.7)
with wo(gl, y) = Pl(Rl) or what is the same
dwg(ﬁl. y) = [fﬂl 29(‘. y) th(e. y) - "t(i|- y)
3(t, v)] R7I(e) (dy(t) = 3(t, y) dt). (5.8)

Proof: See appendix,

In the next <ection, we shall specialize the
results to the case where the paramcter space is
countably infinite.

6. Discrete Paramcter Case

The real advantage of paramecter conditioned
approach to estimation occurs when the parameter
space is finite or countably infinite since the
solution may then be readily implemented on a digl-
tal computer. This will be the case when the pam-
meter has a discrete Jistributlion or it has been
suitably quantized to be put on a digltal computern
The parameter adaptive approach will of course be
more rewarding when the parameter conditioncd esti-
mates can be easily obtained., We now glive the re-
sults for the discrete paramcter case,

Theorem 6.1

Let the ascumption of Theorem 4.2 hold, If
the parameter space is countably infinite (or
finlte), let

nl - (elg ‘2 ey “. ooo) '
then
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z(ll\' .’) - 3
£ ,.1 Py (oi) I‘O‘(toY)

:rv:h (6.1)

where
;°1<t'y) - Bl(z,‘!\’;o1 = y(a), 0 <8 <t)
and the R-N derivative is given by

dp v-t

(6.2)

(y) = exp (!: z, 1 (s)dy(s)

Ay, (E2Y) = (8,y)R°
1 1

ar, Yy

-3 sa‘(-.y)l"(o) 2 (0], (6.9

Proof: Follows from Theorem 4.2 by integrating
with mplct of P, over Q.
Corollary 6,2 Under thc assumption of Theorem 6.1,

for all 8y € 8y, P,Y, o << P Y:’, and the R-N deri-
vative is gtvtu by b
"IY;Q AO (t,y)
1 o) o 4 ). (6.4
mt 1‘1 Aol(toY) Py (5’.)
So that
e zY;:e
EGzY =) = I, :ai(t.y) 2 ory e )
3 (6.5)
LA
PGy x 6)fYmy) = Py(0)) —-——1 @) I (6.6
:

Thecrer €.3

Under the assumptions cf Theorem 5,1 and
Theorem 6.1 the a posteriori protability for a fix-
ed value %; of the parareter acnits the following
stochastic differential fcr

v (8, .¥) = P(E, x .fzzlvt-;) 6.7)

".

5 . gt .
a= (€ 0¥ -t(ex-y)(‘e‘("?) =2,y R (%)

(v () = 2(t,y)ct) (6.8)

with 'oiéi.y) = P;(&i).
Frcof: Follows form Tneorex 5.2 by carrying out

~ &

the integraticn with respect to Pl-

In practice, since z2(t,v) will be computed by
= = »
2(t,y) =2y T () :ei(:,r)
it is thcrefcre of interest to lcek at the exis-
terice znd uniquencss oi the sclution of tic infis’
nite set cf simultonesus eguaticens that Ijustion
6.8 inplies,
aneore= €.4

Cocer the asrutption of Trecsrer 6.1, the sct
of a rostericri probabilitdes

{'t(f,.y). t 81,2353 )

is tie xicue szicticn of tne infinite coriex sys=
tex 2f stciestic differential equations

d't(o‘d) b ‘t("lgy)(7u‘(tl ) ‘j’ (,J(t-)')“t(o

j.

s¥)dL)

y) RN @y - Zoj(u.y) " o

1 =1,2,.00

with '°(ol,y) - P'(Ui)'
Proof: Sce appendix,

Theorems 6.1 and 0.4 fuply an implementable
estimator structure which consists of two parts:
(1) a nonadaptive part in which paramcter condi-
tioned estimates are found, (2) an adaptive part
in which the a postcriori probehilitics are found.
If the differential equatiovns for the parameter
conditioned estimated are available, then these
estimates along with the differential equations
for the a posteriori probabilitics (Theorem 6.4)
provide a recursive solution to the problem. In
the ncxt section, we shall give some examples to
illustrate this estimator structure,

7. Exumples

The usefulness of parameter adaptive approach
to estimation problems has been ifllustrated in
several papers [10]), [12], [1&], [20], [21]), [22].
In this section, we shall outline somc further
possible applications of parameter conditioned
approach to estimation,

Example 1 Consider the nonlincar stochastic dyna-
mic system descriled by the following stochastic
differential equations

dx = x (2 dt + dw

do = 0
with the observation model
dy = x 6} de + dv

where x(0) is a Gaussian random variable with mean
u and variance c? and 6(0) is an arbitrary raando=
variable with a discrete distrilition P (u5). The
Wiener processes and v and v Lave zero rmean and
unit variance. Alsao, x(C), 4£{0), v(t), enc w(t)
are indcpendent, Dy ap;lyxrg ihecrene €.1 and 6.4,
with 6{(0) as the paraneter we get the least square:
estirate for x(t)

xtz) =L, v (0) % (0)

wvhere xi(t) is the sclution cf the Kalran~-Eu:zy
filter

-- x (t) = o/ x % (t) + K (1) G(e) - ufxi(t))
where Vy(t) is the scluticn of Ficcati equation
with x§(2) = u and Ki
¢ . T
ot \1(t) 2a

{(t) = afv1

G2 o
‘ 1\l) iy ‘t (t) 1

with Vi(o) = o¢ and the sat of : restcriort proba-
bilities

(ﬁi(t). Pos o Serrrar oRs

is the uniquc solution of the feilcwing svstes of
stochastic diffcrential egquaticne
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dry @) = 1 ® @) %@ -)F, a0y xy(6))
(y(e) =0, oJ’ -J(t) xj(t)d:)

with =, (0) = Py(0g).

Example 2 In thls example, we shall consider the
random teclegraph signal z(t), with values %) and
transition density, a jump/second where a is a dis-
crete random variable with a range of values (aj,
a2y s++ @) and a priori probability distribution
(Py(a ).a? =1, 2, 442y M}, The observation model
is taken to be

dy(t) = z(t)dt + dv

where v is a unit Wiener process.
Theorem 6.1 and 6.4 we get

By applying

- M -
z(t) = L = (¢) 2z, (¢)
o1 1 i

where the parameter conditioned estimated ; (t)
satisfied the stochastic differential cquation de-
rived by Wonham in [22]:

a2 (6) = 28, 2,(6) + (1= 22()Ey(e) = 2,(t)de)

which in turn derives the stochastic differential
equations for a posteriori probabilities given by

Theorem 6.4 M .

dv‘(t) = (t) (z,(t) -jfl ﬂj(t) zJ(t)) (dy(t) =
PRSI O

3=1 13

with

ut(O) - Pl (Gi)-
8. Conclusions

The problem of optimal parameter adaptive esti-
mation for random processcs is formulated in the
Bayesian framework. A general R-N derivative repre-
scntation for the least squares estimate of a ran-
dom variable on a product space is derived. The
representation theorem is applied to the optimal
parameter adaptive estimation problem for random
processes to find the least squares estimate of the
observed signal and the a posteriori probability of
parazcter conditioned estimates, The stochastic
differential equation for the a posteriori proba-
bility is derived. The results are specialized to
the case where the parameter has a discrete distri-
bution. The approach is illustrated by simple ex-

azples,
Appendix

The appendlx contains the proofs that are not
given in the text. To prove Theorem 3.2, we shall
nced the following lemma.

Lerma 3,1 Let (?), A, Pj) be a probability space
an! (¥, B) be a meosurable space where B 1s gene=-
rated by a countable class of sets, Suppost that
for cach 9 in @) we are glven a measure ug(y) on
(¥, 8) such that, for fixed B ¢ B, uy(B) is mea-
surable in 0, If there exists a sct Ny in A} of
Ti measure zcro such that, for all 0 in Q) - Ny,
where ug is a mcasure on (¥, B), thea
there is an A} x 8 measurable function f such that

3 €< 3

duo
‘(o.y)'a‘u:(y) .Ca‘-“lo
Proof: Sec [4) pp. 616-617.
Proof of Theorem 3.2: Let us define the signed
measures v and (vg, 9¢f;} on (¥, B) by

v(B) = / g(e, n) dP(9, n) BcB (A-1)
Y~ (8)

and

ve(B) = 7  gy(n) dr,(n) BeB (a-2)
Y, (8)

where Yg(n) are the sections of Y and g at 6cfl.
We have from the definitions of conditional expec-
tations

E(g(s, m¥o, ) = y) = § ) (a-3)
v
By (g (MY (m) = ) = 22 ). (A-4)
8
So we are to prove that
dvo duo
! 3;; (y) ;;: (y) dpy(8)
d 2y 2
Tl = (a-5)
! F oo (y) dp,(9)
g *
Remark 1
v(B) = !‘,:1 v (B) dPy(0) , (A-6)

This follows from Fubini's theorem and the fact
that Yo~ !(B) = (Y=!(B))as so that

v(B) = ‘a, lfY;!(B) 8,(n) dP ()] dP(0) (A-7)

Remark 2 E,(gy(n)|¥4(n) = y) can be chosen to be
A x 8 - measurable,

Since vg << ug and 15 << ug, then by the chain
rule of R-N derivatives (Theorem 32.A in [1])
by 2 0y
T T T L a-9
du
Since ug and u, are measures, = is non-
du
negative, Sinc: {yeV: 3;2 (y) = 0) has i measure
y 0
-]
zero and {yeV: E:: (y) = =} has Vo and consequently,
up =measure zero, it follows that
d
o<ﬁ<-[u)
= ol - (A-9)
o
So
g = f:ﬂn/fiﬁ (
diy " &/ vl . (A-10)
dv9 duo
By Lemma 1.1 3:: and 3;: can be chosen to be
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dv
Ay x B - measurable, so that —J--Q can be chosen te
Yo

be a A x B measurable function.
Remark 3

%5: (y) = l“‘!z(so(n)lYe(n) y) W, % (y) ap 1 (0),

(A-11)
From Remark 1 we have
v(B) = !n U'-l(') .0(") sz(n)l dl’l(o). (A-12)
Let gg(n) = 3 *(n) - 85(n) where g and g are the
positive and negativo parts of go?ll. thtn
v(B) = Ju‘U'l;l(l) l° (n) dl’z(n)l d!l(o)
t (A-13)

-I“‘l!,;l(.) 8g(n) dPz(n)) dPy(0),

From the definition of conditional expectations
V(8 = g UgE, (glvgmy) du ()] dry(©)
= (A-14)
~Iq,l/3E2 (8, |Yg=y) dug()] dPy(0),

From the chain rule of R-N doriva_tivu (Theorem

32,8 in (1)),

ve®) = Jo U 22 lYg -y) (y) du_(y)) dP,(8)
d (A-15)

~Io,V sB2(8lYe=y) (y) duy(y)) dpy(8),

By Lemma 1.1 and guark 2 thc terms 52(86|Ye'y)-
- o =
!2('0“0-’)' and 3\7:' can be chosen to be A, x B

measurable, By applying Fubini's theorem for non-
negative functions, dy Ve can write that v (B)
+ 0 :
- ’nl’n‘zl(‘e'Ye'y) T dpy(e)] du (y)
P (A-16)
- 0
- —_— d
/.(Inlsz(solYe'y) v (y) dP;(0)] du_(¥),
Since the difference is well-defined, at lecast one
of the integrals should be finitc and, conscquently,
the integrand corresponding to that intcgral must

be finite valued almost everywhere P) x Mge So the
follwmg te;m is well-defined. =
]
E2 (g, ¥,ey) ;;;(y) - E2(gy|Yomy) = &)
o
d (A-17)
. - Ya
= [E2(gy¥g=y) = Ea(gy|¥y=y)) w, .
From Theorem 6.5.2 in [3) this expression
. gy S8 =
Bz (g,[Yg=y) a, - (A-18)

So that d»

v(B) = /yl/o Eg(golYo-v) (v) Py (0)] du (y).

(A-19)
Since the term in brackets is B-measurable by
Fubini's theorem and since the R-N derivative is
unique a.e.,

dv

5 "t (:,lYe-y) (y) dr, (0) lu,) . (A-20)

]
= ) ho(y).

Remark 4

-
o

This follows from Remark 3 by sctting p(i,n) »

Ig, x g, (0,n) where 1), x ¢, i* the characteristic

tunctiou of the set 4, x 0, ~ This can be secu as

follows

vB) = Jy=1yy Inl x f,

du,
Ia‘ o ) ar (), (A-21)
°

(8,n) dP(c,n) = POY"1 (D))

= u(B),
Now since v << y and v «c g

(A-22)

(Remark 4), we have

dv du

dv
L [u l . (A-23)
du du° ‘”o °
Since
0<fco ) (A-24)
)
we have
dv
= du / v} . (A-25)

The result now follovws from Remark 3 and Remark 4.
Proof of Corollary 3.3: Let hg(y) denote the right
hand side of 3.3. From Thcorm 3.2 we have

ElglY=y) = /g Ea(ggl¥g=y) hyly) dPy(0).  (A-26)
With g = 1A x 9, (é,n) where Rl € A
z(x;) = 92l\'-y) = (A-27)

fil he(y) dr;(e),

This proves the last assertion in the statcment of
the corcllary.
Integrating both sides w.r.t, PY"!

Iy ECIL x g, /Y92 dy) = LR, () dPy(®)]dty)

( A-28)
Applying the definition of the conditional expuc-
tation to the L.li.S., and Fubini's theorem to the
right hand side (h{y) is Ay x B - measurable and
non-negative),
we get

’ I3 x 0y 9F = 73, Ughen) du(n)] dpy(e)

(A-29)
Using Fubini's theorem on the left hand side pives

Y i(s)

I3\ Po(Y;'8)) dp (0) = f;l[fahe(y) duly)] dPy(0),
(A-30)
So for Py-almost everywheu on @, we have
3 PO = £ b (y) duG) (u). (A-3D)

Since ho(y) is S - reasurable for Py -almost all 2,
it must be that

du

(A-32)

s

Proof of Theorem 5.2: There 1s no icss of genera=

lity in assuming that R i{s the identity matrix, Ve

shall first show that the following equality holds
almost suicly .
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o U Ny (o) (s dy(®)] dry (@)
(A-133)
= follg Ag(ewy) zi(a.y) dry (0] dy(e),

By applyiig the differential rule on the re-
presentation of Ay in Theorem 4.2, we have

Agltsy) = Ay 0,y) = I: Ae(-.y) 25(s,y) dy(s).(A-34)
Integrating with respect to P, over nl we get
Aft,y) - A(0,y) = fnx(f: Ao(s,y) :a(n.y) dy(s)])

dp, (8), (A-35)
On'the other hand, by an application of the

differential rule on the representation of A(t,y)
in Corollary 4.4 we get

At,y) = A0,y = /5 Als,y) 2'(s,y) dy(s).  (A.36)
Also, by Theorem 4,2, we have

s ‘o, zj(s,y) Ag(s,y) dP,(0)

z(s,y) = . (A-37)

As,y)

So that the right hand sides of A-36 and A-35 must
be equal almost surely which proves A-33,

Now by integrating Equation 5.1 in Theorem 5.1
over Ay with respect to Pl we get

Iig le(t.y) dP,(8) = !ille (0,y) dp,(8) (A-38)

+ 13 UG g [2g(,y) = 2(s,)1" [dy(s) = 2(s,y)

ds]) dp(0),

‘R X 02

1
with A('oy)
A.33, ve get the following equality.

z(s,8,n)

in place of z(s,08,n) in

h! £F2gleuy) 2(s,y) dy(e)] APy O (A-39)
=§ UL 26 HEndo] i,

So that :

ﬂtde) - !Rx' o(t,y) dry(e) = 'o(;"’) +

L o dglealaglo - 2(s,y)) 42, (0))

{dy(s) - z(s,y)ds].

Since, by Remark 3.2, d't(g' y) = xo(:. y) dPr;(0),

't(l\lcy) - 'o(Aloy) +
4 { /-

£~

{dy(s) - 2(s,y) ds)

[;0(8.7) - ;(*OY))' d"t(ov y) )

which proves Theorem 5,2,

Proof of Theorem 6.4t The exlstence and uniquencss

of thisx type ol {nfluite order stochastic differen-
tial equation has been studied by Rozovskii and
Shiryaev [28). To prove Theorem 6.4, we shall apply
Theorem 1 in (28). To this end, we have to show
that ne (04, y) is in class M. It is clear that,
for each {, n (04,y) is continuous with probability
one. This follows from the continuity property of
the Ito integral which states that the points of
continuity of the random process defined by the

Ito integral are the points of continuity of the
Wiener process with respect to which the integral
is defined [4). Measurability conditions are
satisficd due to the definition of w (0‘. ¥).

t w (0 ) =
oy * 4

Also
g =
S B zZ,
o 1i=1

>
“P({ 22(s,y) ds < = } = 1 ,

(s,y) o (s,y) )2 ds <= )
i i

Therefore, 7 (8¢, y) is in class M. By
Theorem 1 in (28], the system of equations 6.9 has
a unique solution in the sense if v and % are two
solutions with = (0 o) =R (0, ,y), 1 =1, 2,...,
then i o1

P { sup sup | 't(e‘,y) - 't
i t

(8,,y) |>0)=0.
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OPTIMAL PARAMETER ADAPTIVE ESTIMATION OF STOCHASTIC PROCESSES
by

Alper K. Caglayan
(ABSTRACT)

This study is concerned with the simultaneous detection and least
squares estimation of vector random processes. The problem is formu-
lated in the following context: A random process, out of a countably
infinite collection of (not necessarily Gaussian) vector random
processes with known distributions, is observed with additive white
Gaussian noise. The a priori probability, that a specific random
process will be observed, is specified for each one in the collection.
The least squares estimate of the random process that is being observed
is to be found in terms of the hypothesis conditioned estimates.

It is shown that the best estimate is the linear combination of
the hypothesis conditioned estimates weighted by the a posteriori
probabilities of the hypotheses conditioned on the observations. A
Radon-Nikodym derivative representation is derived for the a posteriori
probability by using the specific structure of the product probability
measure for this problem. It is shown that this Radon-Nikodym
derivative can be expressed in terms of the Radon-Nikodym derivatives
of measures induced by the random processes in the collection with
respect to Wiener measure. By using the recent results on likelihood
functions, an expression for the a posteriori probability is found in
terms of the conditioned estimates. In this connection, an extended

version of the partition theorem of parameter adaptive estimation
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is proved. The unique stochastic differential equation, that each
a posteriori probability satisfies with its associated a priori
probability as the initial condition, is derived for the case of
finitely many hypotheses along with an expression for the conditional
error covariance in‘terms of the hypothesis conditioned error
covariances. .
The results are applied to the parameter adaptive estimation
problem in linear continuous and discrete stochastic dynamic systems.
In the continuous case, the solution is also obtained through an
alternate approach using nonlinear filtering theory. An application of
the theory to the design of a digital flight control system which is
tolerant of sensor failures is presented with real-time hybrid computer
simulation results. A review of random processes and statistical

decision theory is also included.




