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I. INTRODUCTION

Under NASA Grant NGR-47-004-116, two major problems have been stud-

ied. The first problem studied is the design of stable feedback control

laws for sampled-data systems with variable rate sampling. These types

of sampled-data systems arise naturally in-digital flight control systems

-which use digital actuators. In these control systems, it is desirable
s

to decrease the number of control computer output commands in order to

save wear and tear of the associated equipment. Variable sampling also

1	 provides the designer with 'the capability of a more efficient utiliza-

tion of the flight control computer than the standard fixed sampling-rate

approach. Therefore, a variable sampling approach can also be of value

to digital flight control systems using analog actuators. For instance,
I

more time can be devoted to the identification of aircraft parameters or

to some other task by reducing the control calculations using variable

sampling.

The second major problem studied under NASA Grant NGR-47-004-116 is

the design of aircraft control systems which are optimally tolerant of

sensor and actuator failures. The first problem to be resolved is the

detection of the failed sensor or actuator. If the estimate of the state

is used in the control law, then it is also desirable to have an estima-

tor which wilh give the optimal state estimate even under the failed ,con-

ditions. Both the detection of sensor and ;actuator failures and the
Vii.	 3

optimal state estimation with sensor and actuator failures are important

control system problems which, if not resolved, can seriously (even

f	 fatally) degrade the control system performance of an aircraft.

r'

1
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II. OPTIMAL CONTROL OF SAMPLED-DATA SYSTEMS WITH VARIABLE SAMPLING

At each flight condition, the airplane dynamics can be modeled by a

continuous, linear, time-variant, dynamic system [1]. Comparative simu-

lations have indicated that a model-follower scheme in which the error

between the model states and the plant states is penalizedcontinuously

in time was a more suitable approach in the design of control laws for 	 ^+•

sampled-data systems with variable sampling than designs based on a

minimization of error at only the sampling instants. The aircraft dynam-

ics are continuous and the gust inputs affecting the airplane are contin-

uous random processes, but the measurements are made only at the sampling

instants and the control is constrained to be constant between the sam-

pling instants. Thus, the problem can be cast into the format of the	 j

stochastic sampled-data regulator problem of linear stochastic optimal

control theory. The first problem to be resolved was to find out whether

the separation theorem of linear optimal control continues to hold for 	 a

the stochastic sampled-data regulator problem. This problem has been

resolved and the results are reported in reference -[2] along with a

discrete-time stochastic problem which is equivalent to the stochastic

sampled-data regulator problem. A summary of the results follows.

The stochastic sampled-data regulator problem is to find the stoch-

astic optimal control for the dynamical system represented by

x(t) = Ax(t) + Bu(t) + w(t)	 tE[to,tN]	 (1)

where x is the n-dimensional state vector, u is the r-dimensional control

vector, and w is the white Gaussian plant ,noise vector of dimension n-

with Ew(t)	 0 and Ew(t)w'(s) = T 6D(t-s) for somepositive semidefinite

i
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matrix T	 E denotes the expectation operator and dD is the Dirac delta

function. A and B are matrices of appropriate order.

The plant noise is a continuous random process; however, the measure-

ments are available only at the sampling instants:

Y(tk) = Cx(tk) + v(tk)	 k = 0, 1, 2,	 ., N-1	 (2)

where y is the m-dimensional measurement vector, and v is a Gaussian

sequence of uncorrelated zero-mean random vectors with Ev(tk)v'{t^) _ 	 •

Tv6kJ
The cost functional penalizes the state and the control continuously

in time
1

t
J	 2 EItN [x'(t)Q^x(t) + u'(t)Rcu(t)] dt	 (3)	

I

0

where Qc is positive semidefinite and Rc is positive definite. The stock

astic sampled-data regulator problem is to find the control sequence

_
{u l~k),}k = o with the constraint

U (t)	 u(tk)	 tE(tk'tk+l)	 k = 0 1 1, 2 9	 ., N-1,	 (4)
i

and also the additional constraint that,u ( tk ) will depend only on the

past measurement sequence y(ti), i 1, 2, ., k which will minimize

the cost functional (3).

In reference [2], it is shown that this stochastic optimal control

problem is equivalent to finding the optimal control- for the discrete

system

xk+l 4)(tk+l' tk)xk + r(tk+l' tk)uk + wk

(S)
yk = Ckxk + vk	 k = 0, 1,	 .9 N-1

where x =	
"^tx( t	 -	 dP(t	 ,t ) = exp A(t	 -t ) r(t	

tk	 k)' uk	 k)'	 k+l k	 k+l k'	 k+l'k)

y
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j^k+l (P(tk+l's) dsB, and w k is a zero-mean Gaussian sequence of random
k

vectors with

	

Ewkw.' _ [jtk+l ^ (tk+l' s) Tw(PI(tk+l' s) ds]a k' 	 (6)J	 k	 J

with the cost functional

N-1

	

J2 E
k=O (xk' Qkxk + 

2x04ku l< + u
k ' Rkuk)	 (7)

where	
9

	

Qk _= jtk+l V ( t ' tkA ^(t,tk)dt	 (8)
_k

j k+l V (t,tkA r(t,t k)dt	 (9)
k

	

it = f
t 	[R + PI(t'tk)Qc r(t,tk)Idt	 (10)
k

The stochastic optimal control is shown to be given by

	

u* = -[R.1 M'i	 i+ (R + r!K	 r.) -l
r ,K	

^ i ]xi	 i	 ii+li	 i i+l 	 i
{ll)

	

i	 0, 1, 2,	 _N-1

where K. is the solution to the Riccati difference equation
I

	

K. _ ^D 
i 
'[K 

i+l i+l
-K	 r 

i i
.	

i
(R + r	 i+l'K	

i	 ^.
r ) -
 lr. i+1'K 	] (D

i + Qi	
(12)

i 

with = 0 and, where r.	 r(t.`	 t ) ^. = 0(t.	 ,t )-r.'R.^M.',KN	
z+li	 '	 '	 i+1_ i

_	

-

i Ri Qi-MiRilMi ', and R. is the conditional expectation of x i given the

observation sequence 
(y0' yl'	 yi).

Looking at equations '(11) and (12), it is seen that the optimal con-
R

trol law for the stochastic sampled-data regulator problem is the same as
r

the deterministic sampled-data regulator problem [3] with x k replaced by

its estimate Rk . Therefore, the separation between estimation and con-

trol continues to hold for the stochastic sampled-data regulator problem.
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The only modification needed for stochastic control is the use of the

derived equivalent discrete plant covariance (6) in the Kalman filter

equations for the state estimates.

As a byproduct of this investigation,_ new results were also obtained

concerning the geometric relationship between the optimal solutions to

the sampled-data and the continuous regulator problems. The findings are

{	 reported in [4]. A brief summary of findings is given below.	 «.

Since the dynamical system (1) and the integral cost function (3)

used are the same for both continuous and the sampled-data regulators,

the optimal sampled-data control must be intuitively an approximation to

the continuous one in some sense. The relationship between the two op

! timal solutions, that is, the sense in which the samaled -data solution is

an approximation to the continuous solution, has been obscured; due to the

separate formulations of these two problems in the control literature.

The continuous problem has been solved by using the Pontryagin's minimum

principle, by using the Hamilton-Jacobi-Bellman partial differential

equation for the optimal cost function, and by some other methods. The

F	 sampled-data problem has been solved by converting it into an unconstrain-

ed discrete minimization problem through the integration of the cost

functional and the system differential equations over each sampling in

F	 terval and then applying dynamic programming or the discrete minimum

principle. In our study, the two problems have been formulated in the

same Hilbert space as minimum norm problems. In this geometric formu-
t	 -

lation, it is shown in reference [4] that the optimal sampled-data control

j
t	 is a "projection" of the optimal continuous control. Specifically, it is

shown, that if [x*(t),u*(t)] is the optimal continuous regulator solution

e	 and [x**(t),u**(t)] is the optimal sampled-data 'solution to the corres-

_...	 ,t
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I	 j	 ponding deterministic regulator problems, then

[Hx**( t) u**(t)]	 [H(D(r,t0)x(t0) o] +

(13)
PN [Hx*(t)	 H(D(t,to)x(to)', u*(t)]

where H is defined by HT  = Qc , N is the sub-Hilbert space of all output

input pairs satisfying the sampled-data constraint with zero initial con-
I

dition, and P denotes the projection operator with respect to the Hilbert

space norm
t

(I (x'u) (I	
2 ftf 

[x ` (t )Qcx ( t ) + u' (t)Rcu(t)]dt	 (14)
o

One of the implications of the result is that if an optimal, sampled

_ I data tracking problem is to be solved where the desired trajectory to be

j	 tracked is theoptimal continuous regulator solution, then the solution
i

obtained would be the same as the solution to the original sampled-data

I regulator problem. To phrase it precisely, the optimal sampled-data regu-

lator solution is the sampled-data control that minimizes.

l t 
	 a

2 f toQx(t)	 x*(t)]'Qc[x(t) - x*(t)] +
(15)

[u(t) - u*(t)]'Rc[u(t) - u*(t)]}dt

The above equation clearly shows the sense of the approximation of

the ,sampled-data control. Equation (14) showsthat the optimal sampled-

data solution is the projection of the optimal continuous solution onto
I

the set of all solutions that satisfy tlic sampled-data constraint.
i

Furthermore, the specific projections have been converted into recursive

algorithms to compute the optimal sampled -data control. These algorit}ltns

are new; however, they are not necessarily less complicated than the known 	
Y

Riccati equations in the literature.
a

E



Stochastic Modeling Approach to Variable Sampling

During the course of the project, a number of sampling interval

adaptation control laws have been developed based on minimization of

local objective functions. Although these algorithms proved to be

successful in various simulations, they suffered from being only locally,

optimal. A control law that would take into account the changing of the
i

sampling intervals was needed. This was accomplished by modeling the

sampling interval sequence; as a finite-state Markov chain with known

transition probabilities. The finite-state assumption, that is, the

constraint that the sampling interval can assume values only from a

finite number of sampling intervals, was necessary to avoid an infinite

set of equations. Specifically, the system equations are given by

x(t)	 Ax(t) + Bu(t)	

(16)

where x, u, A, B are as in equation (1). The sampling interval sequence

9
ITk , k 0, 1, 2,	 .} is a finite-state Markov chain that assumes

l	 values {Sl , S 2 ,	 ., Sn} with the transition probability

P(Tk+l	
S. I Tk = S i) _ P i .	 (17)

J-	 J

and the initial probability distribution

P(TO = Si) = P., i = 1, 2,	 n	 (18)

Then, the discrete-time stochastic system is given by

Xk+l
	 (P (.c + Tk'tk)xk + r(tk + Tk,tk)uk,; (19)

k = 0, 1,	 N-1
1

r
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where (D, r are as in equation (5). The observations are modeled as
a

y _ (X ,T)	

_	

(20)
k	 k k

That is, at each sampling instant t k , the state vector at 
tic 

is
9

known and the sampling interval T  to be applied at the instant t  is
f

known. Note that the sampling intervals to be used at tk+l and further

on are uncertain at time t k . Only a statistical knowledge of their un-

certainty is known through the transition probabilities. Measurement

noise and plant noise are not included in the model to keep the equations

simple. The problem is to find the stochastic optimal control

{uk , k = 0, 1,	 ., N-1} that depends only on the past and present
3

measurements {yi , i = 0, 1, 2,-.	 ., Q that minimizes

2 

N-1 

k k	 k k	 N xN

	

J = 1 E[ E (x'Qx +u 'Ru )+x' H ]	 (21)
k=O

The stochastic optimal control has been obtained by dynamic pro-

gramming and is ;given by

uk = -F(Tk)x
lc
	(22)

where F(Tk)	
Fk,i 

for Tk = S i , given by the recursive equations

	

n	 l	
n

	Fk,i = [R + ri '( E p
ij__k+l,j )ri 	 ri(.E pij k+l,j)^
	 (23)

	

=1	 J=1

_	
n

k,i	 Q + (^i FiFk, ) (	 p ij k+l,j) OD	 iFk,i ) + F'k,i.KFk^i	 (24)K

J -'1	 r
i

with K=`H • i= 1 2	 n• k= 0 1	 N-1• and D- (D(S 0)
,i

r  = r(Si3O),

That is, at each sampling instant tk the control is given by a

linear feedback law and the feedback gain at the instant t [c 'is F 
i 
where

the "i"'corresponds to the sampling interval Si at the instant t c . The

recursive equations are similar to the standard Riccati equations of
I
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linear optimal control. As it can be : peen from equation (24), n coupled

j	
Riccati equations are to be solved recursively. The coupling comes from

the terms Pij , corresponding to the transition probabilities for the

1	 sampling interval sequence. In the case when n = 1 and P11 1, we get

!	 the standard Riccati equation of optimal control.

lSteady-state gains can be obtained as k -W , then 1im. k - ^ -^	 ^,^ {

Fk	 Fi, i	 1, 2,	 n.

The stochastic optimal control for the infinite time problem becomes

uk = -Fxk for all k such that T k = Si,

The infinite time optimization solution is very easy to implement.

Steady-state gains, {F i , i = 1, 2,	 ., n}, where n is the total number

l	
,.

of possible sampling intervals, are calculated off-line and stored. At

_I	
each sampling instant t 	 the feedback gain F  is used where "i" is de-

termined by the sampling interval S. at time t k . The algorithms for the

stochastic optimal control, equations (23) and (24), are not yet avail-

able in the literature.

The difficulty of applying these results can be the selection of a

sampling interval adaptation law, since the problem formulation does not

address that question. However, for any sampling interval adaptation law

whose sampling interval sequence can be modeled by a Markov chain with

6	
appropriate transition probabilities, the stochastic optimal control de-

rived can be used. Moreover, several examples have beensimulated on the
I

digital computer where the sampling interval sequence was chosen arbi-

trarily and the results have been very successful. A computer program
I

	

	 ^

s
that calculates the stochastic optimal control gains has been written.

Given next is an example showing how the results can be applied to a
j

specific problem.

l



Example

Let the system matrices be given by

0	 6.28	 0
B	 (25)

-6.28	 -3.14	 1

The control weighting matrices have been chosen to be

'	 1	 0
Q	

R	 [1]	 (26)

0	 1

Sampling intervals are chosen as

S 1 = .1	 S2 = 01	 (27)

The transition probabilities have been chosen to be the simplest case

Pij - ,5
	 i,j = 1,2	 (28)

That is, if the sampling interval at t k is S 1 ,_ the -chance of the next

interval being the ;same and the chance of the sampling interval jumping to

S2 are equally likely.

The stochastic optimal control gains have been solved by using equa-

tions (23) and (24) to obtain the steady-state values

`	 Fl _ [ 0181	 .44551

F2 = [.01246	 .06121

The stochastic optimal closed-loop system has been simulated byJ

using arbitrary sampling interval sequences. Figure 1 shows one of these

runs. For this fixed sampling interval sequence, the deterministic op-

timal control feedback gains have been found also, and the closed-loop

simulation of this system is in Figure 2. An overlay of the two figures

would show that the two trajectories are virtually the same. For a

,
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fixed sampling interval sequence and the cost function of (21), expecta-

tion can be dropped when the sampling interval sequence is fixed because

	

•(	 the system becomes deterministic in this case. Since this resulting

deterministic time-varying linear quadratic regulator solution is optimal,

the closeness of the stochastic and the deterministic trajectories are

i	 quite noteworthy. The remarkable aspect of the stochastic optimal control

is that it not only matches the ultimate optimal deterministic performance
^	 I

for this fixed sampling interval sequence, but it also matches the per

I
formance of several other sampling interval sequences in the simulations.

Of course, the deterministic optimal control is not realizable for the

problem we are considering since it requires the absolute knowledge of

I

the whole sampling interval sequence,

	

1	 I
]

Stability of Sampled-Data Systems with Variable Sampling

I
The deterministic stability conditions of the stochastic model of

; the previous section has been investigated jointly with Dr. D. P. Stanford

of the College William and Mary. The results have been reported in [5].

I	 From the formulation in the previous section, it is seen that "n" closed

loop discrete system matrices will be obtained	
3

(D -rF1 , ^D -r F2, .	 , 4n rnFn,	 (29)
I

f )	where"n" is the - total number of possible sampling intervals and the "Fi"

are the stochastic optimal steady-state gains obtained through equations

(23) and (24). The question of whether any initial condition can be

brought to zero by a repeated application of the matrices in (29) in some

order has been investigated in the stability analysis [5]' If a sequence

of matrices can be found whose terms are selected from the set of matrices

in (23) for each initial condition such that the state goes to zero inthe
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limit when this sequence of matrices are applied, then the set of matrices

will be called convergent. In [5], it is shown that "precontractiveness"

is a necessary and sufficient condition for a set of matrices to be con

vergent. It is also shown that "contract.iveness" is a sufficient condi-

tion for a set of matrices to be convergent. The stochastic optimal

feedback gains have been found for a number of examples It has been

found that the closed-loop system matrices resulting from the stochastic

optimal control turn out to be contractive in each case. However, an

analytical justification has not been found yet.

j	 III. FAILURE ACCOMMODATION IN CONTROL SYSTEMS
i

!	 The second major problem which has been investigated in NASA Grant

NGR-47-004-116 is the design of aircraft control systems which are op-
i	 _

i
_timally tolerant of sensor and actuator failures. A design method has

been developed, and the results have been reported in Ref. [6], The

method developed is based on Bayesian decision theory.
i

I

Each 'sensor and _actuator failure mode (including the normal opera-

tion mode) is formulated as one hypothesis. Using M-ary hypothesis

F	 !	 testing, the corresponding likelihood ratios are computed for each

hypothesis. The computations of likelihood ratios require M different

Kalman filters corresponding to M different failure modes of the system
f

where M is the total number of different hypotheses. By comparing the

likelihood ratios, the most likely 'failure mode of the system is selected

in the Bayesian sense,

The unique feature of this method is the flexibility of modeling the

!	 sensor failures as noise with unknown mean and variance. The mean of

!	 each sensor in a failed mode is computed on line by employing maximum
t

f likelihood estimation. This estimate for the mean is used in the calcu

i
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lation`of the likelihood ratios which make them generalized likelihood

ratios. The advantage of the method is that it is not required for the

designer to know how thesensor will fail. This point has been demon-

strated in the simulation [7) by the superior performance of the system

in the detection of both increased noise type and hard-over type failures.

-Although the variances of the sensors in failed modes have been fixed

in Ref. [b), the same approach for the estimation of the mean can be used

for the variance as well. The maximum likelihood estimation of the para-

meters requires the storage of a moving window of innovations of each
l

Kalman filter.

The applicability of the fault-tolerant system design has been demon-

strated by using a real-time hybrid simulation for a space shuttle orbiter

developed jointly with Dr. R. C. Montgomery of NASA/Langley Research Center.

` I	 The failures were identified in two or three sampling periods. The simu-

lations indicate that the use of steady-state Kalman filters were adequate.

*I

Parameter Adaptive Estimation

t	 ^

From the preceding failure detection problem in aircraft control

systems research, the additional benefit of obtaining the optimal state

estimate under failed conditions; resulted. This problem is exceedingly

important if state variable feedback is used and if a filter is usedto

get the state estimates. This estimation problem has-been resolved in a

Ph.D. thesis 7 and extensions of the work have been reported in $ .

'I	 This problem is known as parameter adaptive estimation in the literature.

The following is a summary of the work reported in [7) and [$) 	 Consider

the observation model

y(t) - z(0t) + v(t)	 (30)
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where 0 is a random variable and, for each fixed value of 0, z is a ran-
.	

^	 ...
dom process and v is a white Gaussian random process. The problem is to

i

find the minimum mean-square estimate of the signal z. Detection problems

can be easily modeled by this formulation with a suitable choice of the

random variable 0 [7]. The general case when 0 has an arbitrary distri-

• bution has been worked in [8]. When the parameter 0 has a discrete

distribution

P (0 = Oi) = P i , i = 1, 2,	 . ;	 (31)

j	 it is shown in [8] and [ 9] that the minimum mean-square estimate of the

signal z is given by

COz 
= E ff i (t)z.(t)	 (32)

=1
 i

where zi(t) is the estimate of the signal z(O i ,t)_ given the observation
I

Y(S) = z(Oi,$) + v(s), D < s < t and where 7ri(t) is given by

Tri(t) = P(O = Oi I ' y(s), 0 < s < t)	 (33)

That is, {zi(t))i_1 are the parameter conditioned estimates and

{^1(t)}i_1 are the posterior, probabilities of the parameter 0.

The posterior probabilities` satisfy the stochastic differential

I

equations

CO	 00 t
dTri(t)	 7ri ( t ) [ z i ( t ) - 

'E f1(t)zj (
t ) ]R 

;l(t) 
[ dy (t )' - E Irj (t)zj (t) ] (34)

j-1	 j-1	
1

}	 with the initial conditions

i
7ri(0)' = Pi, i = ` 1, 2,	 (35')

The parameter, conditioned estimator has two parts: A non-adaptive

part in which the parameter conditioned estimates are found and an

adaptive part in which the posterior probabilities are found. The form

of the solution given by (32) and (34) implies that if recursive equations
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are known for the parameter conditioned estimates, then a completely re-

cursive solution is found to the problem. 	 The recursive form of the so-

lution is, of course, very advantageous in terms of implementation of the

ff' filter.	 The following example demonstrates how these results can be
1

applied to a nonlinear filtering problem.
i
t	 ,Example:	 Consider the random telegraph signal, Z(t), with values i 1 and

transition density a where a is a random variable with prior distribution

l P(a =_ai)	 Pi , i - 1, 2,	 .	 ., M.	 The observation model is given by

I	 y(t) = Z ( t) + v(t)

where v is a unit-variance-Gaussian process, from (32) and (34), it is
i

seen that the minimum mean-square estimate of the signal.-is given by

^	 M	 ^
Z(t)	 =	 E 7	 (t)Z. (t)i	

1	
1

I i=1

where the parameter conditioned estimates -Z i (t) are known to be given by

JJ

	 (8]

dZi(t) = 2a iZ1(t) + ^l - Zi t)] [ dy ( t ) - Zi(t)dt]

t
Iwhich, in turn, 'derives the stochastic differential equation (34)

M^

	

M	
^

diri ( t )	 _ fi ( t ) (z	 (t)	 -	 E Trj ( t ) Z . ( t )] [ dy ( t )	 -	 E IT	 (t)z (t)dt]

j-1	 j=1

with iT	 (0) = Pi ,	 i - 1,	 2,	 ., M.

a	 <^

1

:
I

I

i
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i
In the work on optimal sampled-data regulators, a promising and in-

teresting problem is to find early computable algorithms to perform the

projection in equation (13). In this way, optimal sampled-data regulator

gains can be obtained as a function of the optimal continuous regulator 	 a

gains. So far the equations obtained are not any simpler than the known

equations available in the literature. However, this study can lead to
i	 I

an understanding of how the sampled-data optimal gains vary with the

sampling interval even though the algorithms may turn out to be complicated.

i
In the work on the stochastic modeling approach to variable sampling,

more analytical and experimental study is needed. Analytical conditions

{	 +	 that guarantee the convergence of gains for the steady-state gains

[equations (23) and (24)] would be very useful. Simulation of a wide

range of applications to different problems is needed to see how far the
I	 -)

stochastic optimal law can be "stretched." So far, the simulations in-

dicate that the stochastic optimal control law gives virtually the

ultimate deterministic performance. _

jIn the work on parameter adaptive estimation, more work is necessary
i

on the following questions. What happens when the parameter does not

jhave the prescribed distribution? In this case, for instance, does the

{

	

	 set of posterior probabilities converge to a value that is nearest to the

actual value?

{	 Also, additional effort is necessary to understand the stability

1
characteristics of the stochastic differential equations for the

posterior probabilities (34).

V

xeLL
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A separation theorem for the stochastic sampled -data

LQc problem•

This paprr considers tilt' rootrol of it vow ittuous linearphim distorhod It% %hilt plant
ioi:;e whctl. tilt' Potltrof is vow"lrgtitli'd to III' . It 1 11t • cm%isi l . con-tanl fl-owtioll of time':.
i.o. it stoehuslic sampled-datil Systotn. The cost futictiol1 is ilu' uUol;rnl of (Imidratic
error lorms iu flit , Stab anti control, thus 1wimlizio g orrorls al m-cry instatif of time
while Ilic plant noise disturbs flit , mystem cunl ill uowly. 'fill- problem is soh vetl by
roducing t1w rronstrititiod contimams problem to Jill ilnoow indiw(f discrete ono. It
is shown thal the swparation principle for estimutitur and control still holds for this
problem %%hell the liltull disturhnnre itod rticnsurcirwitt noise at,. 6'aussian.

n

t

1. Introduction
Vatiou, studios of flit, cictcrministic discrete tinic tcsulittctr problcitt h"we

been made since the orisinal Necirlc of K;tlolan_and Koepckc (19.38). A tutorial
review of thcsc basic results Caul be found ill the !riper by Donato n114 Levis
(1971), The deterministic sampled-datit rcrul;ttor ln •ohlent Itas also beell
stiulied bV LeVis cl'(11, (1 t171). The stochastic coil ttrrlrart8 of the coil titttlous
and (li,ct •cte )incfar ill advittic Gaussian problefo, result in tho Solrlriltioli	 j
priltciple for estinuction and control (Jos(,ph anti Tou 1001,>Gillw1wi iu)tl
Priitiklin 196:3, Pottor 1 1)(14).	 VIviotis extensions of tilt , separation theor•cilt
to includt , it	 t;htsti of colttinnous and disrrofc^ cot functions hat • % aku hcc^ti

made (c,r: ,Stivil el lwi;;, Wonh for 1968, I-ial yo cute! FollIkes 16174, told tlii
references therein).

!

	

	 In this 1laper the colitrol of a stttrh;tstic linc,ir. ,;t Ill plod-datit 	 (i.c,
tlic stochastic col iitefltitrt- of tlm NVOI-k hV Lr\ i, rl Ill. (I (171)) i, eonsidcrod.
A continuous li ic,tr ill y it is disturbed by ;t Coil till 	 Owlssian white pLilit

j	 noise, while the emitrol is constrained to lit , ;c•on talit ill beNcull s.l.rllpliw'
illsttittts, sa y	but call clrutf;c at	 siunhlitl.: instiuit.	 1'lca;urcnit^nts,
which caul hr	 as lillvar comhiitatiolls of the state v.11-itibles corrupted
ht` (;Russian triiite fioisc, itf •c illitcie ;It the sailtlilifirr iiltitalits. 1,; .	 'licit sisirlits
are oftco cric•ouutc^retl. pitrtirulnrl5 if the control latA-_ iS to he intplciucn(cd oil
it divitttl con;putcr.	 0I) the of her hand, the perforilwil _•e of the 8 

,
'stx-ni depelicl,

oft the tict- iatiolls of l Ito st;ite vector from it stead • -state oollditioll (rt pIvsoiilc(1
l	 as the zero vector) tit vvry instant of bole, ]lot	 at the >arnplia^, irlstilllts.

Helice, it cost fttuctiort which pc utlizesdet • iatiorts ill the state coiit ill uoftslt' is

Receivi'd _h April 197.1.
i. This wol-k \% ;Is '^Ilppovtvtl by NASA kan«h t' itt"varch ( `cntor under Colitract.

I	 NA81--1020 ;ind Grant 17 (101 -1 Ili.
+ Uopartillcot of l.lcctlical I;nrinccrinr, Uoii•craity cif Virg ilria, ("hat•Iottest•ille,

lirr(li iii.
§ Ut pirtinew of Electrical l;u^inec'rin	 V'ii hue Polviechnic Ill! Attlto, lilaccls-

i
;I burg , 1'ir4.;tuia.
E
i

l
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more	 ;lppropriatc	 .t!^ 	 a	 pol'fol• nt;lilve	 c • t • itr; • irnt •I'	 iluto	 i t 	 (li,crcte	 cost	 ftinction.
-

I
I 'I'llo prohleiti is soiN—vd bt	 1 •rrlllcinn it to a cliscrcte storhaslic 1-calliator where the

i'	 l -hues are ineastn•ril Mt 11 no error-

2.	 Statement of the stochastic sampled-data problem
Consider tiro foliowinrt Continuous stoviolstic (lN • nslutic;ll `y	 cm represented =,.

by

Ia •(1)=.-t jl>,r(r)+J3(^)u(I) ^- »^r)11'U),	 111, 1 , r t e	 (r)

where a• is Ihr n-clilncnsional state tiedor, it is the. r-dimensional control rector,

Iall(1`it , is tlic' white ("aussian	 plant	 Iloise \"(' r 't or of tlllltt'll\loll P'NvItll	 Ji1('(r)=,n
1	 ;loci	 lar'(r)t('(s)=1'(i)^Sl,(f—•c) for Some po g ilive sentidefiniir n minx 	 F.i

ancl_ /? ; 1 1l, t inu'-t art in;^ lnnt riccs of compat ilde order. 	 t';clual ion	 (1) is inler-'

I^	
preted ns tltc followin g stochastic integral c'rpinfion (Wom;; 19	 1)

^'( f ) =,r(/,) +	 •(	 11(.c)a (s) ds+	 f	 B(s)II(s) (Is h	 f	 D(s) ri ll`(c)	 (2)

II where II • (t) is a Wic'11er process with h fl'(/) = 0 and I
I.	 hull (1, F):
^ ^	 1:(ll'(1)— iI ( fin))O) ( 's ) — I'I'(1n))'=	 (	 F(T) (Il,

The plant tioise can he Considered as the formal time derivative of the. Wiener
(	 l prom-'s II

(	 In	 the strtrhastil, sampled riata	 tc«ulntor tho phint	 noisl, it a	 continaao:
r.1 111dont proctss, whereas the nleasurcillo tt nois y -Is ;t discrrtc' tmidonl pmccr<

I	 llcasnr'enu'nts of some of the linear eottihillations of Antos with additive 110k
ale available at the somplin-,r instants

i
A/A.)=Ci r(tk)+7'(r1.),	 k — u, 1	 N,	 l,, 1 <I	 <	 <I .,.-1 r 	(^'

where 11 is the Ill-dilnen.,4olmi nic`asln •cilicnt	 vector,	 ;,(r^l^ is till , nlrasureilin,
Noise vector which	 i,, 	;a Gallseiall se(juctlee of Illlcol • t •ehitt'd 7.1`t •+l lilvall rall(h"
Vectors	 with	 h'1'(l )1	 (r,)-^ It ,+S,	 for	 senor	 positit• c	 definitt•	 lltatris	 fl,i	

Ill!

!^; IC(()1''(1,) -^ l;,l' ( r o1 1	 ( r .) — Is.r(!n)11`'(l) _^ for all f	 u)	 Ij, rr),ancl z = U-	 I ....,,A'.
The controls are constrained lad

1	 I	 71(r)= 11(1 A.),	 ieir1,, t k1 t),

)

In ot •cler fort s0111tion to exist to ( , (ll. (•_'), the followim-, fmtlrrrstsutni,ti r'..+ ^	 ^
will he flulde :	 Ihr'cll,nlclits of .1(1) aw holindt'd andfltcasil l'ohll , real fnlic•tio:+

(
I

I of	 Iinic'	 11 / )-is into...rahle, :1114	 [ JJ(r)h'(I)II'(1) rlr	 is fiiliir. t

{I 	 i'	 If the satnlrlin g rate valt I,r cho-ell hi gh 1-11oilzlt n rlisc ri-tc co ' l.	 tilnl • tion firm t^
dcyuatc ,	 Illm m - cl, ill 111mlt 1 n.,l+s illi^, invr • l,c, i 1l, mist of t hr vompillcr let • ph"

-fit IYIi^^E`Ilt	 I . 1 • +t (111'1 `IIU'11 t:: 	 oil	 ik	 .Spvt-d	 tlf	 olll nit ltlllC	 This	 t rado-off	 lllid' es	 tliC ClC:..y 	- , _ -
of erutJrol last's, which do not dc;— rttclr at	 low S;tntlllnt;; rotas, important,

y,
'

t
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Mochadic sumphd-dtda tQu prsNott	 231.)

	The follo\%in;! crust functional is used to achieve the closirccl systena perfor- 	 T
mancc

	

I	 r.

ls	 ( (.r'(t)(1,:(I).r(t)-t U tilt,.tr)r,UDW+.r'(tr)llx(tr) 	 (<^)
r

i
where Q. is positive scnaidcfinitc and h,. is llositi\. c tlr-fiiritc can It, if

Now the stoclaa"tic optimal control probleua call Ire stated as follows
liven the Linear stochastic dynamical s .-Acna (1), and < ► partition 1 1,, 1 1 , ... fz
of the interval It,,, I r I; find a cont rol sc(jtacnee (tr *(I t .), k — n, 1, ..., N— 1) wit la

the constraint (4) rind also the addititnaal constraint that 0(tt,) aa•ill depc ► ul
only on the past measurement sequence (y Vj, i=A 1, ,,., k— 1) mlich aa•ill
Ininimize the cost funetlonal (>).

3. Equivalent stochastic discrete-time problem
It will ho shown that the constrained continuous ,stochastic olAimization

NOW crud bc• transfurined into an unewstraahmi. discrete shwh"tic npdmi-
zatiun problem lay integrating the system rlifff'rcnti,al equations and the oust
functional ovcr ca ell sampling interval. The problem will he embedded into
the known format of the standan •d discrete lilIC ar tluadi •catic l,aaus5iaui rc<sulattrr
problem. Thus, it will he proved that the scJaa ration lmtNaa•cn csti ► auation a tut
control is still valid for this constrained continuous .stochaastie optimization
problem.

Under the assumptions mule in j 2, tlae solution to rein. (I ), for any bounded

	

I	 control, is gi\^en by
i

_r	 t

	

j	 •a•(I) _ tIt(l, l„)•t'(trr)+ f th(t, s)/1(sjtr(s} ^1„ -±- •( <h(!, s) I1(s) rl ll'{s}	 (ti)	 a

i

where 441a is the staatc-tmnsidwi nuOdx of _l(!) deMwd as the whition of I
matrix differential equation

	

i	 a

rit ^l
>(l, s} = rt(t)<h(t, s),	 (t > s)	 j

with t l a (s, s) = 7.

Using (11), the state for I t, _< t <t 1'. ' i can be com putcal from the siatc at time tk

x(t)= 4a (l, t ).rk i T'ft , t r,) t ^r. I- (l, tr)	 (r a)

Where .r,a.-,r(tr,.), t k=n(tr:), amid
1

^(l, 1'i) = (aU(t, .ti)U(.,) d Il`(., }	 fcrr	 1, ^! ^< I t. a a	 (7 r)	 a

The ternm"ivcu by c(ps. (7 r) shows that the pl;uat noise corrupts the state
in a coaltinuotas f:ashian, but the resulting din-w-ti ► ne sytvIn will. lK,girraz_Uy

a`ti• a=`l'(tiaa,l^;.r4 1 1'(/ 	 a tt:}u^. ^,. 	( 	 a) a
a3

	

';	 1

I
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wheoe y,	 (1^ , i , Id i a zero Mean "Imp Qu "ina sectuNWV of random  vectors
with (Jazwinslci 1970)

WO^ 11.1

	

,{ `I ' t 1 r. , r s)1)(s) /'(s)11'l.e)11^'(1, 1„ .e) rLs^ Sti l = 1''r N,	 (S b)
14

'I'ho asSnunId ions made nhout f 1o  III I(ipvntl('noe of 11lnnt noise and 1 .(1 A ), 7110)
in K'' \ • ill still he vnTl No the nemv Anne 11ml noiso Q.

The. cost	 caul also he written ns the stint of s1' integrals ns in the
deterministic: ease. The control of time I,, must only del,onrl oil 	 measure-
ments made until I ,, and IS initial ostimnle .i(I„). This earl he exlovssed
by restrictiil!^ rr(!r) to he nu •nsurahle with respect to l",., \%here ) -R. is the
minimal (1-algehr •n ,,euerated hy 111e rnen•ut'ement sequence (ry(1,), i=(), 1,.,,,
W- and the initial estimate 3(1„) mhile the initial (A ninte Satisfies the
equation Is(.r(1„)4.c(l„))=.i(l), The usual choice of TVd ns the nte;un of ,r(lo)
satisfies this condition.

Using (7 a), the cast, .functional (:i) can be lnrf- into tilt' following form

1' - I

/= 1;'^1.r^•'11•+'.^ -► ^ S' (^'>r f1r; ^^ '}-''.rr;',1lr.rr -I rr,'I?rrrr^,
a•-o

r,	 ,

f 2a •r.” f *T°	 1 r. )Q (1 )6( f , t ".) (Il

-f-r
,
	( 1 , 1,u)()x)5(1, 14 ) (li)^	 Pa)

wher •c r F., .ltr , Il,; are given by

i	 n, _ .` ' 1 ' ` ( 1 , 1'^•)^1,(1)'f'(1, (r,) dt 	 (O L)

'	 ,1Ir= .^ <h'(l.lr,)^,),,(1)I'fl.lr,)rll 	 (cJc)
r,

r,
liA.= f (Ii.(I) + I - y, 1,:)f1,.(1) IT 11 .)) r11	 {9 d)

\ote that. R I. , «•ill he lrositiVe (]('finite since. P,, is positive definite. Similarl),,
Q1.. will he positive senlidefiiuite.

We shall rtoxr show that the last two ] p mts in edn. (9 a) can he ignored as
far as the minimization of the cost functional is concerned

I,rlrrrnrr 1
f	

'f•hc rnnfrol serliiciic • t , (rrr, , A. 	 0 1.`.. , A, - I) ininimim-i fho cwt folu •tiondi
/ given hr eqn. (11 (1) if, and only if, it miir)ntizes the foll(m ing, cost forn•tional

f. s	 I ;.r	 v 	 ! ) r 'h	 ?r ll rr	
\	

(^

(

4

4
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Non/

%nn (7 r), note IhaI E(t, Q) llelx'm1s uny- on the invw"ullts of ll'p) itl_tlle
interrllI Ill,., t 1• vv hick are ,imIcpvrulemt of ,I (t (,) ;old (II'(t), t jr ` t — 1 1. ) ; hence,
so is EV, 4) 14 (144, N ox t A ) tool W. On the uther hand, ,+-(4) dc`pvmis
0111y on (I1'(.y ), to 4 s 4 t 1; ) and aV,h so that E(t, t A ) and .r•(tr; ) nn- in(lell quont
il • henever t t t; . Thus,

h.,	 n„
EXk' f (f' " (tr tA•)QXW" lt.) (It = .t1(xk') f (W(t, tA)c1^(t)t x( (t, t ),)) (It _0

since (t, t^) has zero mean. 1''ul • thermore, the last term in (9 ei) is a constant
{ SO does not detwnd oil the control sequence ; hence, it can be t+Xcluded

from the minimization. 50 the 1(;111111.1 follows.
At this sWgv, in the case of the deterministic regulator, a preliminary

feedback of the form x t;	 111, - rJl1;'.e+W1, would ue(tuee th",, pro0iien) into
the standard regulator problem. 	 Ilow(wer. .1s .rA1 is not a\• ail;lhh', tlu' same
cannot be (]oil(,, in this problem, Inst(',ld, we now show that minimization of
tilt- cost funetiraml J l is vquiv'ulent to the nlinimi ation of the dune ex)lretision
with a:A.'s rvidneed Y' their conditional exllectathns Q

Lemma 2

`1'he cnntrol se(1uv et- (,*, W,'4 ..,. N-- U uninimlizes the Bost fine-
Ii MI J, given by 00b if, and only if, it n1i11'ina= IV , IclIL- WNW (,rat fume-
tional J.,	 1

'.	 rr a rt ` l a )^	 N 1)11\`	 \	 ('Ar ^A ;:	 t	 k 1.

where, .ek _ /s (xA ) ' A ),

f
Proof

I Since u, 1s In east Irable with reslu^et to }^,, u , ijl^ vroll- known theormus oil
Conditional l.xpvc-tations,

l P" (x 	 / (K(.j t. r al A rtc^ )'A ))= I.'{Islil'I Q.1/ A.1j	 1Ai'r: 41,q	 (12)

imilnrlt hy letting .- /

	

/; f.j•' t ) .J' )=/S• 1'r^
	 1, ^	 r	 ^	 a	

`.1

^	 G t A 1,	 (• A t^A' 1.	 =a•a: tt/ 6'' •A	 t''l, tc1;,•j•!.

Usi 11g, iho 1.1vt I hnt /: {.rA t^tr.'r:)	 n, \\v t;t'r
j

Yr.)	 (13)

N' Illce IhC (t ;1l',(' i #I'll +L(`I1('1'aIl`tl 111',1' / and 1 ' alt indt • 1tt•11111'111, it 111110\\stll.lt

l:' ,i't	 f' Y 1'	 l;' r `O' i')	 a.r• (14)^	 (_ te r, • r ,	 A } ._	
(•^ t k • A

I'

i

.	 t

d

I

I
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Note that tltr , ri«ht- hand :;ill(! of (I . 1) clots not vilr^ N%il)t It ]. ,	 'Srrl,stitutitrh
(12), (1:3) and (1 t) into (11), we got

.I
it	 1% 

L
' i .ti""A' t' 2 \te r 

(
 A-' f1t, t't: _ '• l4"11 4 Il k +tcR'1411t;)

I^ = tt	
-!

s
\
- t

♦ iIS(1'\,ILI.\)^ Z [I ^i(.C^'17^.^^.) 	 (15)

	

l	 "•c°
`;incc the second term it) (15) does not drl)cncl on (Il l, k t), 1, ..,, N— I ), it mac
he dropped as far as the minimization with respect to Oq., l,• u, I, ... X— I )
is concerned. do J I reduces to J. i r ivell by (I I) ; this eomltictes the proof of
the lemma.

Thus, to find the ol,timrrl cont rol for the ori^simrl cost funutional •1, it is
sufficient to find the control sequence which niinimvcs the • cost functional Jz
of (I J), 'Note  that the cost./; depends only on the c'stimatc:s of the state at
the amJ>linf instants. Looking lnirlc nt celns, (8 rtl. (,ti hl and (:3), it is clear
that these cslimatcs will he "iven hv fill weli-known Knlnuul filter ccluations
(.Jam inski 1 970, Kalm;ut 1 t1r1O). Wt+ tau HOW iniroduve a l)reliminary feedhack
Of the form Itr, = — /i- r J/ t; ',i ti.+W4 and ('rnhc •rl thr Itrohlcm into till , standard
discrete linear quadratic Cnilssiru) problem. We surn trl) these results in the
next, theorem.

	

_ I	
Theorrin

	

l	 Consider tile stochastic, optimal control 1)r •ohlem dc., eribod in	 '. A

unirine control segIwIce (u k*, / —U, I, ..., -^'— I) \t • hiclt rn nimi •rrs the cost

	1	 functional J of (4) exists and is given hY

rti*=--`/I^i;-rJ/;'- }- (11'i ^^ l, i 1/1• i 41 1 ' i
)-t l, i^

/^i, I tl) i )•t•t	 (ltl)

i	 where A; is the solutiotr to the Riecati difference c(plation

\rith the l,oundary condition i \. = II

i	 1

\rherc	 1'; = I'(t; ; I !i),	 cT)r = `I ' ( / r, i , t i ) - L';11 i- , -11 i', l^, == f,) - M /G -) JI,', anti
t =t), I, .,., N — 1.

E

t	 Proof
f

i lit r •oducin,, _tlit, ,prelinrinary fcccilmek (Navne mid Silvvrmait 1lt73,
r	 'I'liomasson and Cool: 1073)

zt,t.= -li tt-'3	 +uk.

I
f

r

3.
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the cost, functional hecomes

N-1

	

.L, =1s r1,.P H.i,+'. )' (•i'c^f1^;—alr,^'^i: '.11c')•i'r. 1 iir'llr;^ir;)^ 	 (1^3)

	

L	 1, u

The estim;ttCS .ir (-;ill hC ohtainud hY the Kalman filter equations (Jaz}vinski

1970, Kalm< ► n 111130 ► )

r'k ^(=(^>r;i'!; { 11111(c4+6,1."r;	 (191)

where "k is the «'bite inno"tion seTlence.
Hence, the oritrinal Constrained Continuous problem is reduced to mini-

tnizillg J.., as {riven ill (Ili) with the dYlWlllie8 of (19) \01VIC T1 1, mad• del crud on

.i'k . 11ou•ever, this is a tliscrrto LOG, problem and its solution i riven by (16)

and (17) ; e.g. see K usliner (1971).
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d. Conclusion~
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ON THE RELATION [BETWEEN THE. SA'H'I.EU-DATA AND Till: CONTINUOUS OPTi'tAl. LINEAR RECULATOR PROBLEMS
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Department of Electrical Engtneerirg	 Research Laboratories for
Virginia Polytechnic Institute and State University the Enp.tneerini; Sciences
Blacksburg, Virginia 24061	 University of Virginia
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Abstract

Iri this paper, the geometric relationship be-
tween the optimal solutions to the sampled-data and

continuous linear quadratic regulator problems is

investigated in a Hilbert space framework. It is
shown that the optimal sampled-data solution, ex-
cluding the response due to the initial condition,

is the projection of the optimal continuous solu-
tion onto the set of all solutions that satisfy
the sampled-data constraint. That is, the optimal

sampled-data solution is an optimal approximation
to the continuous solution. In fact, it is shown

that the sampled-data solution can be obtained by

solving a sampled-data tracking problem with the
continuous solution as the desired trajectory.

1. Introduction

This paper is concerned with the relationship

between the optimal continuous and the optimal
sampled-data linear quadratic regulator problem
(1), (2). Since the dynamical system and the inte-

gral cost function used are the same fill both the
continuous and the sampled-data regulator, intu-

itively, the optimal sam p led-data control must be

an approximation to the optimal continuous one In

some sense. In this paper the precise relationship
between these tc.o optimal solutions will be inves-

tigated in a vector space setting.

In the control literature, the continuous and

the san,led-data regulator problems have usually

been treated using different methods: The continu-
oct. rotol.ator problem has been solved by using

P;ntryagin's nin'mum principle, by using the

Hanilton-.lacobi-%ellman partial differential eq^;a-
tion for the eptin.il cost function, and by a few

other methods. The sampled data problem has been

solved b y r,nverttng it into an unconstrained dis-

crete ortir..izatirn problem through the integration
of the cos, frictional and the system differential
equations over o.;rh namyl inr inler y :al and then ap-
l+lvinat dvnamic- 1.1. • .;i m; riine, or the dlscreto mint-
num principle. 1;,4. ;4.latlon•+hlp hrtwoon the two
op'.tmal sol.;lion:; 1:;, thus, oh,;cured due to these
separate frtmulat lens.	 in tht,: paper, the two
rrublems are forrutated In the •.:ime framework by

Till-; work •r.19 supported b y NASA i.angley Pezoarch
Crntvr amh•r grant. N ." 47-004-116 anti contract
NAS-I-1275+-2.

using a Hilbert space approach. This geometric
formulation reduces the problem to one of finding
the element of minimum norm in two linear variet-
ies in a Hilbert space. (This approach has been
suggested for a simple control problem in (l)). It

is shown that, excluding the unforced response of
the system due to the initial condition, the

sampled-data control and the resulting, state tra-
jectory Is the projection of the optimal continuots

control and its corresponding state trajectory;

that is, the optimal sampler)-data solution is, in
fart an optimal al:proximation of the continuous

solution with respect to an appropriate Hilbert

space norm.

2. A Minimum Norm Theorem in a Hilbert Space

Before proceeding to formulate the problem in

a Hilbert space setting, we shall prove a general
theorem concerning the elenents of minimum norm

of two linear varieties in a Hilbert space which
will be required in the following derivation. We
no-d state the projection theorem and Its extension

to linear v:trietie9 for ease of reference; the
proofs can be found in (3j.

Lc-ma 2. 1 (rrolection Theorem) Let H be a
Hilbert space and M be a clotted subspace of H. Co r

responding to any vector x in 11, there exists a

untque vector m* in '1 such that m* in the closest

element in 't to x In the sense of the inner product
norm. Furthermore, a necessary and sufficient con-

dition that m + be this unique vector is that x -

m* be orthogonal to 1. (We will denote the projec-

tion operator onto 't by PSI ; i.e., M*- P,fr).

Cnrollar y 2.2 Let 11 and `I be as in Lemma 2.1.
Let x be a fixed element In it and let V he the
linear variety x + M. Then there exists a unique

vector v* in V of
p 
 minimun norm. Furthermore, a

necessary and sufficient condttion that v* be this
unique vector is that v* be orthogonal to the sub-

space E1.

'1114 . Followlnr. thrnrem d. • ^crthen the retntion-
shlr l,. • tw. , on the elements pf minlmum norm of two
linear varl4.tie •; in a 11116ert space wh.•re the gen-

erator suhF;race of one variety Js a subset of the
other rorrespouding aubspace.

Theorem 2.1 I.rt H be a Ili lbert sp.trr and let
`1 amt N b y c In .4.d sul-paces of 11 such that N is a
subset of M. Let x he .1 fixed element In 11 and

let V and U be the l
p 
inear varieties defined by

r•• II
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x + M and x + N respectively. Then there exist

aounique vector v* in V and a unique vector w* in
W of minimum norm. Furthermore, w* can be obtained

from v ol by

W ill - x o + PNm*	 (1)

where n* is the unique element of M defined by the

relation

v* - xo + m *	 (2)

Proof: By Corollary 2.2, there exists a u-
nique element v* in V and a unique element will in
W of minimum norm. Since v* is in V, it must have

a representation of the form v* - x + m* where m*
i^ an element of M. Clearly, m* must be unique.

Similarly, there exists a unique element n* in N

such that w* - x + n*. Since N 1s a sub-Hilbert
space of M, theme exists a direct sum decomposition

of M (4) given by

H - N + N 1-	 (3)

<xo
+P lfn*, n>-0 for all nin11	 (4)

where < . , . > denotes the inner product. Since

< PN-L m*, n > is identically zero, we have

< xo + P,,m*, n > - < x o + PNm* + PNLL m*, n >
(5)

Since m* has the direct sum decomposition Pm* +

PN_L m*, we get

< x  + PNm*, n >	 < x o + m*, n >

< v*, n > - 0	 (6)

The last equality follows from Corollary 2.2 and

the proof is complete.

3. Formulation of the Probler

In this section, we shall fornulate the two

regulator problems in a Hilbert space framework so

that we can apoly the theorem of the last section
to find the precise riathematical sense in which the

optimal sampled-data solution is an approximation

of the continuous solution. Consider the linear
dynamical systen represented by the differential

equation

k(t) - A(t) x(t) + B(t) u(t) 	 (3.1)

a < t < b

Y(t) - C(t) x(t)
where x(t) is the n-dimensional state vector, u(t)
is the r.-dimensional control vector, y(t) is the
r-dimenstonal measurement vector, and x(a) is the

Initial condition. A(t), B(L), and C(t) are matri-
ces of appropriate order with continuous: elements.
The following cost functional will be used to a-

	

chieve the desired system performance: 	
11

J(x(t), u(t)) - (ab(y'(t)y(t)+u'(t)P,(t)u(t))d0 2

(3.1)

where R(t) is a positive definite matrix with con-
tinuous elements. We will denote the a -valued

ORIGINAL PAGE IS

OF POOR (QUALITY

functions on )a. b) tit-it are r.,luaro (nterral-lr In
the Leherque ::ens:e I•v I.1(.n, i.). i.e..

1, 6.b) - (u(t) : I ' u s it )u(t),IL	 )	 (3.3)

SIMIIarIV let 1"o. h) Dr Ile• space of R r-valued

square tntcgrahl" funrt Ion-: nn Ia. 1>).	 1:'r will
formulate the two pn,d,lc,— Inn Iliv p tlbert space 11 -
1, rr (n, h) x I. (a.1 . 1, IIs,• cart. • :fan produce t of I.r(a.
b) and LZ(a,h), with the inner product defined ay

	

< (Y l ( t ), u l (t)). (y 2 (t), 112(1))•.	 Ili (vl(t)Y2(t)+

	

u'(t)""112(t))"t 	 (3.4)

so that the norm induced by the inner product 3.4
gives the desired cost functional of 3.2. Since
the solution of the differential equation 3.1 is

given by

	

x(t) - C(t,a) x(a) + f a 4(t,$)B(s)u(s)ds	 (3.5)

y(t) - C(t)x(t)

where 1(t,$) Is the state transition matrix of A(t),

we will be concerned with the ordered pairs (y(t).

u(t)) in 11 that satisfy tine integral constraint 3.5
for the continuous regulator. It is easy to show

that the subset 11 of H defined by

M - (( y (t), u(t))cLZ x 1.n : y(t) - f t T(t,$)u(s)ds)

T(t,$) - C(t):(t,$)B(s)	
(3.6)

is a subspace, so that we can define the linear va-

riety in It by

V - (C(t):(t,a)x(a), 0) + % 1 	 (3. 7)

Thus, the continuous regulator problem is one
of finding the cicroni. of minfrai-n norm in V. To
apply the (filbert space theory of the previous, so-
Lion, we have to show that `1 is a closed subspace.
To this end, let us define the linear transforma-

tion L from Lm (a,b) into LZ(a,b) by

L(u(t)) - f a T(t,$)u(s)ds	 (3.8)

Using Fubint'- theorem, it can easily be shown

that for all y in I.2(a,b)

<Lu, y> - <u, fb T'(s,t) y(s)ds >	(3.9)

which proves that L is a hounded and, therefore,
continuous linear transformation. (See Theorem 5

in [5], p. 48). he also note the linear transfor-
mation L* from Lz defined by

1.*y - I t T'(s,t)y(s)ds	 (3.10)

!s the adjoint of L. Cn if (v ,u ) is n srqurnce
of elements in M converging to n an"element (y.u) In

N, w  have

limn (yn .un ) - limn (fIt T(t,$)un(s)ds, un(s))

(f t T(t,$)linn un (s)ds, limnun(s))rM

This follows since L is a continuous operator and,
therefore, I1 1 r closed.

where N is the orthogonal complement of N1 with

I	 respect to M, and + denotes the direct sum. In

order to prove that w* - x o + PNtn*, we have to

show
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In the sampled-data problem, we will he given •i

partition (a - t o , ti, .	 - b) of [a, b)

such that over each samplint; lnt

t
t
Fl
•rval the control

remains constant, i.e., u(t) - u(t k) for tk = t <

tk+1'
In this case, the subspace of interest will he

N - ((You) L Zx1.2 : Y(t) - Ia T(t,q)u(a)(IS, 11,1.1,

u(t) - u(tk) for tk < t < t k+l)	 (3.11)

Clearly. N is a subset of 1•1. To Show that N is
closed, we note that the same linear operator L de-
fined 3.8 is used except now its domain is a subset

of 13. So we only have to show that this domain is
closed in LZ. Clearly, the set of all functions

that are constant over each sampling interval is
isometrically isomorphic to RmxRmx ... xRm(Ntimes)
so that N is closed.

So the sampled-data regulator problem is one of
finding the element of minimum norm in the linear

variety 11 defined by

W - (C(t)0(t,a)x(a), 0) + N	 (3.12)

Thus, we have cast the two regulator problems

into the vector space format of the previous section.

4. optimal Sampled-Data Solution as an

Approximation to the Optimal Continuous Solution

In this section, we will first show that the
Hilbert space formulations of the sampled-data and

the continuous regulator problems in the previous

section do indeed give the standard results. Then,
using the theorem concerning two linear varieties in
Section 2., we will state the precise sense in which

the optimal sampled-data solution is an approximation
of the optimal continuous solution. We will also

show that the optimal sampled-data solution can he

obtained by taking the appropriate projection of the
optimal continuous one.

Consider the continuous regulator problem formu-

lation described In the previous section by equations

3.1-3.7. A necessary and sufficient condition for

(y*, u*) to be the element of minimum norm in V by
Corollar y 2.2, is that (y*, u*) be orthogonal to M,
which implies

<(y*,u*), (you) , - 0 for all (v, u) in N (4.1)

Since the inner product on L r x Lm is the sum of in-
ner products on L5 and L 

<y*(t), ! t T(t,$)u(-)ds-+,u*(t), R(t)u(t)--0

for all a in LZ(a,b)	 (4.2)

By using 3.1. we qct

Ic T'(s,t)v*(ec)d::, u(t)^+ a*(t), 1;(t)u(t) =0

for all u in Lm	
(4.3)

It follows that

R(t)u*( t ) + I
L 
T'(s,t) y*(s)iht - 0	 (4.14)

Therefore, thy• optlm •il continuous solution is given

by

u*(t) --P -1 (t) f  To (9,t) y*(s)ds	 (4.5)

or, equivalently

u*(t) - -R-1(t)R'(t) f  V (s,t)C'(s)C(s) x*(s)ds
It

(4.6)

It is easv to show that there exists a posi-

tive semidefinite matrix K(t) such that

f  ,'(s,t)C'(s)C(s)x*(s)ds - K(t)x*(t) 	 (4.7)

for t in (a, b)

where K(t) is the unique positive semidefinite solu-

tion of

K(t) - -A'(t)K(t) - K(t)A(t) + K(t)8(t)R 1(t)RC0

K(t) - C'(t)C(t) with K(b) - 0 	 (4.8)

which is the Riccatt equation of the linear contin-

uous optimal control.

Consider no-.+ the formulation of the sanpled-

data regulator problem described by equations 3.1 -

3.5 and 3.11 - 3.12. A necessary and sufficient
condition that (v**, u**) be this optimal solution

is by Corollary 2.2 that

<(y**,u**), (y,U)> ' 0 for all (y o u) in N (4.9)

which irplies (after some manipulation)

( f tl (x'**(t) C'(t)C(t)r(t, t 0 ) + u'**(t)R(t))dt

t0

t

+ f t x'**(t) C'(t)c(t)dtr(tl,to)) 
uo +

C
(f t1 (x'**(t) c'(t)c(t)r(t, t 1 ) + u'**(t)R(t))dt

+i t N x'**(t) C'(r)C(t)dtr(t 2 , t1))u1
2

+(RCN	 (x'**(t)c'(t)C(t)r(t,tN-1) + u'**(t)
^1-1

R(t))dt)uN-1 ' 0	 (4.10)

for all vectors (u 0. 11 1 .... uN-1 )in Rm

where r(t. t 1 ) ' !^ :(t.$)D(s)ds. This implies

that the terms in the brackets in (4.10) must be
zero. Starting from the last term in 4.10 and us-

ing the fact that x**(t) - :(t, tpl_l )x**N-1 +
r(t,tp1_1)n

N
*
1
, it can he shown that the optimal

sampled-data control law is given by

u i ** _ _(Rt+r'lKi+tit)-1 (r1'Ki+1FL+111,)x!**

(4.11)

where r 1 - r(t
t+i' t i ) "i	 r(tL+1'ti)' and

tt+1

Q t	 ! t i	^'(t ' t t ) Q(O f(t.t 1 )dt	 (4.12)

tt+1
Fl t n

t 	 (t,ci)Q(t):(t,ti)dt	 (4.13)

*.1•• s

1
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I	 R1	 f`I+'( k( t )	 +	 1•'(t.tl )4(L)i(1,t1))-It	 (4.14) regulator solutlun.	 then	 lht •	solullott nbinin.:.l
1 would bo	 tht • 	r,,nnr	 :r;	 the	 Solui ion	 to tho orlr,irt.,l

where K 1	 maltsfies the discrete k1ccatl	 equatinn sampled•datn	 rerulat-,r	 prnbi.•,.

•	
[6)

S.	 Coucln.four.
I	 K	 lQ	 K	 •	 +<)	 )	 -	 (t	 'K	 ^	 +	 t1	 ')'(R	 t

1 +l	 1	 1	 1	 f+l	 1	 1	 11
	 i f

•	 I1	 K i+l r i )-1	 (f i^ K i+1 ; 1	 + ff i ')	 (4.15) The namnled-dal.r and , enl inn.-na	 I Imo tr	 revuln-
for	 prol.ltnr:	 ate	 furmul.o,.1	 it,	 the	 ::.rn .o	 Ililh, t

i	 v -	 1,	 0 with K
	

0
ll y 	,'I'metric• 	rv-spacp	 n • . rnitttrut-r	 norms	 problem:.	 I	 r

TI lationship heLwoon Elie	 two optir1	 :;ulttLiou^	 1^	 In-

We will	 state the exact	 relationship between vestii,.11vd.	 It	 is	 shnvn	 that	 Lite	 optim.rl	 s.c•q-i.•d-

the two regulator solutions in the next	 theorem.
dnta	 olut l,m	 is	 an optir.al	 a{q rnx[n.atimt	 to	 thes
continuous:	 rernl-ILcr solution	 in	 .,n	 :tpprnpr•iatc

l	 Theorem 4.1	 Consider the continuous regulator Hilbert space norm.	 Specifically, it is shown that,

I
problem described	 3.1	 -	 3.5,	 3.11.	 3.12.	 Let	 (v*, excludinp. the response due to the IM L1al 	 condition,
u*) be the optimal solution to the continuous prob- the optimal sampled-data solution Is the projection
lem given by 4.5 - 4.8 and let	 (y**, u**) be the of the optimal	 eonllnuous solution onto Lite sc •t of
optimal solution to the sampled-data problem given all solutions that satisfy the snnpled-data con-

by 1 .11 - 4.15.	 Then, excluding the response due straint.	 it	 should be also noted	 that	 extensions
to the Initial condition, 	 the optimal	 sampled-data to the case where	 [a,bl	 is an infinite interval
solution is the projection of the optimal conLinu- can be easily obtained with thim method with slight
ous soltuion onto the set of ordered pairs	 (y(t), mod iIicaLIuns.
u(t)) that satisfy the sampled-data integral con-

I	

straint of	 3.11 or more precisely:
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defined b y	 3.11. 620, Pec.	 1971.

To see 4.15, we note that be Lemma 2.1

11( y** ( t )	 -	 C(t) 1(t, 	a)t=(a),	 u**(t))Il	 -

minimuir	 iky(t)	 -	 ( y *(t)	 - C(t):.(t,a)x(a)),

u(t)	 -	 u*(t))j'	 (y,	 u)cN	 (4.19)

which implies

2
11(Y**(t),	 a**(t))II	 . minimum	 JJ(y(t)-y *(L),u(t) -

(y,u)t41

*(t)) ^(2(4.2n)-

UWhich vet ifles	 4.17.	 Equation S.lA	 foi?oc::	 from ^^^''	 Ar' PAGE 13
the last part of Lemma 2.1 and the proof is complete. R

TIALITI7• r	 Theorem 4.1	 Implies	 (sue equation 4.17)	 that	 if
an optim •tl sa-; led-data traAltir problen. is solt•c;!
by any meth.: d(a • rch	 as dynamic prorrar,mine, discrete
minimum princirle,	 etc

i
), where the desired tra-jec[ory to be tracked	 s the optimal	 continuous

I
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Failure Accommodation in Digital Flight Control Systems by
Bayesian Decision Theory

Raymond C. Montgomery' and Alper K. Caglayant
NASA /_angle ►v Research Center, Hampton, Va.

A design method for digital control systems which is optimall y tolerant of failures in aircraft sensors is presen•
ted. The functions of this system are accomplished with software instead of the popular and costly technique of
hardwsre duplication. The approach taken, based on M-ary hypothesis testing, results is a bank of Kalman
fillers operating in parallel. A moving window of the innovations of each Kalman filler drives a detector that
decides the failure state of the system. The detector calculates the likelihood ratio for each hypothesis correspon-
ding to a specific failure state of the system. It also selects the most likely state estimate In the Bayesisn sense
from the bank of Kalman filters. The system can compensate for hardover as well as increased noise-type
failures by computing the likelihood ratios as generalized likelihood ratios. The design method is applied to the
design of a fault tolerant control system for a current configuration of the space shuttle orbiter at Mach 5 and
120,000 ft. The failure detection capabilities of the system are demonstrated using a real-time simulation of the
system with noisy sensors.

Introduction

T
HE most striking impact of new technology in aircraft
flight control stems from the advent of the modern, high-

speed, digital computer. Control concepts previously con-
sidered untractable can now be considered because of the
flexibility and speed of information processing made
available by this nevv technology. One important new poten-
tial that exists is the ability of digital system to reorganize it-
self to accommodate for failures in sensors and actuators.
This reorganization is possible, provided there is enough
duplication of function between the actuators or the sensors in
a given control system. This paper presents a design method
for digital flight control systems that will be optimally
tolerant of sensor failures.

Modern control methods allow one to determine the part of
the Mate Spdce of an aircraft that can be dynamically in-
fluenced by a given actuator (the controllability subspace) and
the part of the state space that a given sensor can produce in-
formation about using state es6wator theory (observability
subspace). Reference 1 provides a good treatment of
theoretical considerations involved in determination of these
subspaces. Redundancy is provided in either sensors or ac-
tuators when there is overlapping of the subspaces of the
various sensors or actuators in a given system. For example,
consider the longitudinal dynamics of an airplane. If there are
three sensors on the aircraft, say an accelerometer, to measure
normal acceleration, a pitch-rate gyro, and an elevator
position transducer, and if the aircraft state is completely ob-
servable front of either sensor, then it is possible,
using say a minimum order observer. : to estimate the
behavior of one sensor based on the output of another one.
Redundancy, in that situation, does exist and can be used by
cross-checkine state estimates obtained b y one sensor %%ith
those obtained from another one.

Theoretical considerations for determining the absolute
level of redundancy that exists in a given s ystem were
developed in Ref. I . Reference 3 also presented a failure
detection filter designed to make use of the system redun-
dancy. One limitation of that work was that no consideration

Presented as Paper 74-21 at the AIAA 12th Aerospace Sciences
Meeting, Washington, D.C.. January 30-February 1, 1974; submitted
April 12, 19'4; revision received March 21. 1975.

lnder category %aviganon, Control, and Guidance Theorv.
*Aerospace Technologist, Flight Dynamics and Control Division.

Member AIAA
tResearch 1sso; ace, Virginia Polytechnic Institute and State

IJnt y cr,in. in resulcme a; I an g le% Research Center,

of the practical noise environment of the sensors was made
and failure detection depended on observing a steady-state
bias in an error plane in a state space. For aircraft ap-
plications, however, a design process is desired that enables
rapid detection of failures during maneuvering transients and
accounts for the normal operational noise environment of the
aircraft and the control system actuators and sensors.

A desi g n method is presented for resoking both problems
in that it accounts for noise in sensors and is capable of deter-
minin g hardover as well as increased noise-type failures
during maneuvering transients. Incorporation of failure
detection and recovery into an aircraft control system design
is a joint detection, estimation, and control problem. The
design method presented here produces a decision for detec-
ting system failures which is optimal in the Rayesian sense. In
addition, because of the theoretical development, one is able
to account for uncertainty in the aircraft's stability
derivatives, mass, inertia, and geometric characteristics.
Although the method developed can be applied to both sensor
and actuator failures, only sensor failure detection and
recover are comidered.

The approach taken here uses ,1I-ary h ypothesis testing vs it
generalized likelihood ratios. The elements of this theory %%ere
ori g inally developed at the close of World War 11 for a binary
hypothesis testing problem of determining whether a radar
return signal respresented a target or not. In that case there
are clearly two hypotheses—either there is a target or there is

not. Theoretically, one can assign a cost to either failing io
detect a real Target or creating a fake alarm. A performance
index can he constructed which c%presses the cost of makin g a
decision based on a g iven radar return. This index can be
tninitmied by selection of thrc,hoid points for decision
whether or not the return represents a target. Elements of this
problem are outlined in Ref. 3, %%hi g h also contains a brief
description of the Al-ary hypotheses testing and generalized
likelihood ratios. In this paper the set of hypotheses used is,
first, that all sensors are functioning properly and, then,
Af-1 further hypotheses stating that the ith sensor group has
failed i=1,2....,Af-1. In the next section the theory for ap-
plying Al-ary hypothesis testing to seif-reorganizing systems is
presented. Then, it is applied to an example aircraft problem.

Sensor Failure Accommodation Using
)N-ary Hypothesis Testing

Consider the equations of motion of an aircraft to be
tepresented bs

4
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y

z=Ax+Bu+w	 (1)

where x is an n-dimensional state vector, a is an in.
dimensional control vector, w is a zero mean Gaussian white
noise process with a covariance matrix "D (t — r) . In Eq. (1)
matrices A and A are determined from the aircraft's %fobitity
and control derivatives, its mass and inertia characteristics,
and its geometric characteristics. The variable a• may, but
need not, represent turbulence. It may represent uncertaimy
in the designer's knowledge of the characteristics of the air-
craft. Basically, it can be thought of as representing the error
in calculation of ^, given x and u. We will be concerned with
the digital control of the plant where the control is con-
strained to he constant with sampling interval T, that is
u(t) =u ,(k7) for kT5 t< (k+ 1)T. By integrating the systcrn
differential Eq. (1) over each sampling interval,' we get the
discrete equations of motion for the aircraft

x(k+1)=4'Ylk)+ru(k)+w(k) 	 (2)

wherex(k)=x(kT), u(k)=u(kT), it=-w), t(s) =eA,

r= ^ 4^(s) dsB
.o

and w(k) is a zero mean, white Gaussian sequence with
covariance E w(k) w' (/) = Q A,, where

( r
Q=

.0
1 ^t' (s) 111'40(s) ds	 (3)

Let us assume that the control system has M-1 sensor
failure modes for each mode

y(k)=C;x(k)+v,(k) i=1,1,...,A1-1

where v, (k) is a Gaussian white noise sequence where

E(v;(k)I=(0,m;; 0)'am,

and

E(vi(k)v,(j) I =R,bk;

The quantity iq; is an unknown (nonrandom) parameter
ccior.
We shall solve the problem as if m; were known and then

use the maximum likelihood estimate of m i under the ith
hypothesis. This procedure is know n as generalized likelihood
ratio approach in the communication literature.-' This ap-
proach to failure modeling enables the designer to compensate
for hardoser failures of arbitary magnitude. Increased sensor
noise-type failures can be modeled b) appropriate selection of
the noise variances R,.

For the normal unfailed condition we will asumc

y (k) = Cox (k) +vo(k)

where £It'n(k)I=0 and £Ivn(k)v„ (j)1=RnA,I.Flence,for
a system with three failure modes, as considered in the next
section, we have four hypotheses toconsider

11o: v(k)=Cnx(k)+rn(k)

H,: v(k)=Cix(k)+v,(k)

11 1 : y(k)=CIx(k)+uz(k)

Hj : y(k) =C tx(k) +vj(k)

where C, It= I, 2. 3) is C, ) matrix with the rows corresponding
to the ith group of sensors replaced by zeros.

We will be concerned with the selection of the most
probable hytxlthesis, based on a finite set of measurements,
Y(1l') = I ►'t 1). y(1), y(1)...y(1i )1 • To do this we construct a
Bayesian cost function for the M-ary problem

rd 	 CJ p r,,, (o I Hj ) do	 (4)
,.n ,=p

subject to

M-!

1'!!, =1
,sn

and where the sets Z„ i=O, 1 ... M-1, are disjoint and their
union represents the entire observation space. P,,, is the a
priori probability of hypothesis 11, being true, C,, is the cost
of selecting 11, when H, is true, and P t-,,, (a1/1,) is the con-
ditional probability density of the measurement sequence Y
given that H. is true. The symbol iz, implies that the integral
is carried over the decision region Z, in the observation space.
Decision regions Z, are subsets of observation space such that
if Y is in Z, then the hypothesis H, is to be selected. Note that
the integral in Eq. (4) represents nothing more than the
probability of making the incorrect decision of selecting
hypothesis 11, when H, is true for i*j. So the Bayes risk A,
represents the sum of probabilities corresponding to different
decisions weighted by the a priori probahilitics PH, and the
design weights C,,. The problem is to choose the boundaries
of decision regions Z, that will result in minimum Bayes risk.
These boundaries are, in effect, switching hypersurfaces for
the decision logic in the measurement space.

The minimization of Bayes risk can be performed easily by
rewriting the cost function (4) in the form

N- I

^_ a	 +L,(a) do	 ISI

where

Al - I

+33 ,(a) = E PtlC,,Pyu1(olH,)	 (6)

The Bayes risk is minimized by selecting H, at each point a
in the observation :.pace such that ik,(o) is the smallest of .W
possible values of tl,(a) (k=0, L..M-1). Hence, the op-
timal decision regions are

	

Z,Ia10,(a) =minJA(a), O!skSAf— l1 	(7)

From a computational point of s icw, it is convenient to in-
troduce a dummy h ypothesis Hs, with a priori probability
P„,,=0 with //s,: y(k)=vn(k). Then, an equivalent
decision criterion can he given in terns of likelihood ratios,
A, (a)

,1,(rr)=11,"'(frIH,)1 /'r1!!(rtl //„)	 i=0,1.,. ,%f-1	 (tt)

Dividing each r , in Eq. (6) by the probability density of
Y(K) under //s,, we get nn equivalent decision criterion in
terms of the likelihood ratios

V ,

A, (!r) _ 3 1'!!(',,A,( 11) 	 ly)
.; n

Then

Z,=IaIX,(a)=minlow(rr). OsksAl— /1 	(10)

The advantage of using likelihood ratios is that the boun-
darics of the decision regions are linear hyperplanes and not

general hypersurfaccs in the likelihood ratio space

cst =
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Am_,. From the chain rule of probability densities and the
Gaussian density of the observations, it can he shown' that
the likelihood ratio for the problem considered is given by

	

A	
(detRu)v,

A,IY(K)l=I
A -11 (detQ,(k))" I

exp, —^^+ L.^ I r^l k )Q, ^(k)r,lkl

—y'(k)R„!n(k)I I 1=O,l ... M-1	 111)

where r,(A) is the mnovatiou A of the mea.uremcm% under the
ith hypothesisgiven by

r,(k)=1'(k)—C,.tt,(klk-1)—m,(k) 	 (12)

with R,(klk-1).E (x(k)IY(k-1). H,I. The matrix
Q, (k) in Eq. (11) is given by

Q,(k)=C,V,,(klk- 1)C,+R, 	 (13)

where Vt, (k Ik — I) is the prediction error variance of the
estimate of (lie statex(k) under the ith hypothesis defined by

V,,(klk-1)=E1 Wk) —it,(klk-1)I (x(k)

—9,(klk-1)I' IY(k — MH,I

In Eq. (12), the true value of m,(k) should be used to get
the exact likelihood ratio. Since this is not available, we will
use the sample mean of 10, 01 ', j =1, 2,...k, that is the
maximum likelihood estimate of m, at the kth instant under
the ith hypothesis. That makes A, a generalized likelihood
ratio.'

To compute .i,(klk-1) and V,,(klk-1), Af Kalman'
filters are required. A bank of Kalman filters operting in
parallel has been used for parameter adaptive control in Ref.
8. The filter equations are listed as follows for completeness

9,(k)=R,(klk-1)+K,(k)r,(k) 	 (14)

it, (klk-1)=w,(k)+Cu(k) 	 (15)

where 1, (k ) is the estimate of the aircraft state under the ith
hypothesis defined by

.i• , (k) =E(x(k) IY(k),H,)

The filter gain K, (A-) in Eq. (13) can be calculated recursively
from the algorithm

K,(k)=V,r,(k IA' —1)C,Q;'(k) 	 (16)

where Q, ( k) is given by Eq. 03) and the prediction error
variance Vt, (k Ik —1) is given by

V.,,(klk—l)=*V,,(k-1)V+Q	 (17)

where V, , (k) is the alter error variance given by

V,,(k)= II —K,(k)C,IV,,(klk-1)	 (18)

Note that, because of the special structure of the matrices
C„ the unknown mean m, does not enter the filter equations.
That is, the estimate, of the hypothesis conditioned filters will
be exact. Titus. for each hypothesis we have a Kalman filter,
as previously indicated, that can be used to determine the
likelihood ratios, which can, in turn, be used to make the
decision as towhich hypothesis is most likely. The structure of
the system is schematically indicated in Fig. 1.

i^ /' ^	 Ate. Mw+u.^

Fil. 1 Fautl lulvrant control system orudare.

Considerable simplification occurs if one considers Cj =
C„ =1, (j ;,-, 1) and C. =0. Ramifications of this assumption
are discussed in the example to follow. Under those con-
ditions the equations for A, may be modified without loss of
generality to select the maximum of

K	 K
It.,P,4, —In F, IQ, w 1—v4 E riV)QI 1 (j)r,U).

i=0,1,...M -11

where K is the total number of measurements used to make
the decision. If the steady-state Kalman filter is used, we can
select the largest of

A

I I n P,,, — 2 In IQ, I — '/2 	 r; (j ) Q,- I r, (j ) .
,.1

i=0,1,...M- 11

Also, if the a priori probabilities of H, are equal, without loss
of generality, we may take

K	 A.

	

r ,1 Y ( K )I 2 InIQ, I +''4 E r;U)Q ' r,V)	 (19)
.1

and select the hypothesis H, corresponding to the smallest s„
i = 0,1 ... Al — 1. The next section demonstrates the application
of this method to a practical problem.

Application to Aircraft Flight Control

The theory developed in the previous section has been ap-
plied to the design of a control system for one space shuttle
orbiter configuration at a Mach number of 5 and an altitude
of 120,000 ft. Taking the state to be defined as x= (p, 0, r,
i3)' and the only effective control u=b, the aircraft equations
of motion can he written as

r —0.0580 0 0.0170 —5.791

I 1.0 0 0.5773 0
x= x

— .0029 0 —0.0085 —0.7438

L	 0.5 0.0055 —0.8660 —0.0009

r 2.256

0+
0.0553

L o

t:

t

^_ l



'
0.9798 -0.0002	 0.0267 -0.5752 

I
0.0992 1	 0.0587 0.0310

x(k+l)=
0.0021 0	 1.002 -.0740

1 L-	 0.0497 0.0006	 -0.0862
1

0.9887

r 0.2240

0.0139

0.00536

0.00538
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TaNe 1 Evaluation of Ill'
Level of

W component certainty" Error scale

(p component) 2 0.05 rad/sec
WJ (0component) 0 1 rad
IF (r component) 2 0.01 rad/sec
14 , ({/comprment) 3 0.001 rad/sec

• 0 implies atKolute certainty. I implies a high lc.cl of certainty, 2 im-
plies onh moderate certainty. and 3 implies not too sure.

The selection of the variance K' for the last equation in-
volves consideration of 1) the uncertainty that we, as
designers, feel related to our knowledge of the equations of
motion, 2) the relative scales of the variables, and 3) the en-
vironment, with regard to turbulence, under which the vehicle
must operate. We will only consider the first two items here.
Table 1 shows the authors' interpretation of the level of cer-
tainty and scale considerations. Concerning the level of cer-
tainty, it was felt that the 0 equation was well understood
since it represents a well-known kinematic relationship. A
high level of certainty was assigned to the 4 equation. On the
other hand, the /) and t equations were felt to be better defined
than the 0 equation. Turning to scale considerations we have,
in effect, equated an error of 110.05 in the computation of ,0
to one of 1/0.001 in the computation of p. The W matrix
selected is constructed from the elements of Table 1 as follows

W=diag [2(0.05) 2 , 0(I)', 2((1.01)', 3(0.001)']

The discretized equations of motion using a zero-order-hold
with a sampling interval of 0.1 sec is

0 0 0 0

0 0 1 0	 x+u,I
0 0 0 1)

1 0 0 0

1/;: =	 0 0 0 0	 x+u2

0 0 0 1

x 1 0 0 0

H ) :y=	 0 0 1 0	 x+vj

t? 0 0 0

Variances of the measurement error are taken, consistent with
current technological capability, to be

Ro=diag1(0.05)', (0.01) 2 , (0.01)21

Failure covariances arc assumed to be larger than the unfailed
ones. (The behavior of the resulting system will, howcser, be
illustrated for both statistical failures--increased sarian-
ce-and for hardover failures. This capability is a direct result
^f not assuming a zero-mean measurement error in the failure
states.) The values of R,. R 2 , and R. used are

R, =diag (0.025, 0.0001, 0.0001)

R 2 =diag (0.0025, 0.001.0.0001)

R, = diag (0.0025, 0.(X)OI ..01)

t

.oil

{
f

F

and the discrete variance matrix for the process w(k) is

0.4757 0.04757 -0.0066 0.0236

Q=1
0.04757 0.00654 0.00100 0.00309

-0.006 0.00100 0.02015 - t.. ^0185	 t

0.0236 0.00309 -0.00185 0.00211	 1

X (10)-,

which was evaluated using Eq. (3). Note that, because of the
sampling, even though the o equation was considered ab-
solutely certain, uncertainty does result in the o equation of
the discrete model. Also, the components of the plant noise
vector arc correlated in the discrete model.

For illustration, consider that the -.chicle has three sensors:
a roll-rate gyro. a yaw-rate gyro, and a sideslip indicator.
There will, therefore, be four hypotheses to consider, as
follows

1 0 0 0

Ho: y=	 0 0 1 0	 x+oa

0 0 0 I ]

For each hypothesis the state is obsenablc but, gi%en the
measurement errors and uncertainties in the vehicle equations
of motion, each h y pothesis has a different capability of
estimating the state of the aircraft. Hence, embedded in the
theory is the consideration of the capability of any giscn sen-
sor group, corresponding to each hypothesis. to estimate the
state of the aircraft. This is reflected in the error covariance
matrix clement% of each hypothesis. As an cxample, El (I)
-I') . I under each hypxsthcsis is indicated as the (1, 1) clement
of the error covariance matrik, and is 0.(X11)75, 0.0015,
O.(XX)82. 0.(X1087 for H,,. l/,. 11 1 . and I/,, respccti-.eh. As
c%pected, //,, has the smallest saluc of El ( /1 -p) ^ ], in.
dicating that this hypothesis, if true, can produce the best
estimate of p. Also indicated, however, is the fact that //,
produces the worst estimate. Again, this is expected since H,
corresponds to deletion of roll-t atc gyro information.

In this example, The Ilayesian tisk weights C, are taken as
('„ = 1 for r o j and C,, = 1. Also, steady-state Kalman filters
are used so that Eq. (I8) is applicable. For the example here,
Eq. (18) becomes (using a memory site of fise samples)

s	 '2 (22.508) ' s u r„(k)
^-

1
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300	 0.6	 340

0.6 6350	 550	 r°(k)

L 340	 550	 3552

s
r, _ – -- (20.020)+ V., r; (k ►

r

411	 0	 U

0	 6135	 542	 r,(k)

t1	 5.12	 211(N)

7 1 = –	 (20.438) + !/1 ^^ r_ ( k )

300	 0	 340

0	 1000	 0 	 r1(k)
I 3

.10	 0	 2893 J

3
1 (18.897) + Ih 	 r; (k

r= ►

262 – 52.5	 0

—52.5 6106	 0	 r,(k)

0	 0	 100

Durin g control system operation the scalars r, should be using
the innosations r, of the Kalman filter bank stored over the
past fise samples. Then, the hypothesis correspondin g to the
minimum r, ;hould be selected.

The behavior of the system has been studied using a hybrid
computer facility in which the equations of motion of the
vehicle were programmed on an analog computer and the con-
trol system was mechanized in a digital computer. Figure 2

^F

.aL ..	 13

20

logy

Fig. 2 Response of unaug-	 °
F 

_
menled aircraft to aileron
slrp. lo	I:•b

illustrates the unaugmented step response of the vehicle to an
aileron input. This aircraft is a nonmi^imum phase system in-
dicated by roll reversal. Also, the aircraft possesses a large
coupling of the Dutch roll into the aileron response. Digital
feedback was employed at a cycle time of 0.1 sec using feed-
back gains (-4.9, 0.4, 14.5, –6) for (p, 0, r, Q), respectively,
to the aileron. The gains were selected to be constrained to a
control system operating with only roll control. Figure 3
shows the response of the closed-loop aircraft to the same
pilot step input when state variable feedback (perfect
measurement of each state) is employed. Considerable im-
provemcnt in flying qualities could be obtained if yaw control
were available. Figure 4 Illustrates the same step response
using noisy measurement% and accepting H ° . No actuators
and sensors have been failed in Fig. 4. In Fig. 5 the responses
of the system are indicated for the case where Hz is true but
for each hypothesis being accepted at different times. The
failure mode considered in Fig. 5 is an increase in
measurement noise. Note that at the start of the record Ho is
selected and produces poor characteristics, as can be seen by
comparing the H„ true portion of the roll-rate trace of Fig. 5
with that of Fig. 4. Had there been no failure, those traces
would be almost identical. When H, is selected at ap-
proximately 5 sec, poor characteristics are still produced.
However, when // 1 is selected at approximately 10 sec the
system moves to a normal operation, only to return to its poor
characteristics when H, is selected at approximately 15 sec.
This figure illustrates the effect of accepting hypothesis H,
when 11, is true. It indicates the effect of cost selection of the
C,, terms in the Bayesian risk function. Figure 6 shows the
fault tolerant system in operation when failures of increased
noise type are introduced. By looking at the (p, r, 0)
measurements, it can be seen that the folio%ing sensor failure
modes have been simulated: 1 110, N,, H;, H, 1. The plot
showing the hypothesis accepted indicates the performance of
the detector logic. Figure 7 deals with the detection of har-
dover failures. A hardoser failure in the beta sensor has been
simulated. Note that, although detection logic is able to detect
sensor failures in all cases quite rapidly, the detector logic
takes a longer time to reject a failure hypothesis when the

1 —

FiR. 3 Response of n ir-	 0	 7
craft to step pilot input
when digital stale variable	 .1	 -
feedback (with no mea.
surement noiw• ) is used.

j_

i

d
i r

1

t L

o	 2	

16

	 1	 10

riled sec

J; o

.2

0	 2	 ^	 ^	 1	 a
Time. t. W
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Fig. 4 Response of cloud-loop system wish noisy measurement% tin-
der normal operation.

b'	 7	 6	 6	 r	 a	 a	 u	 w	 u
fine. t w+

=	 Fig. 6 Operation of fault I•derant system during failures resulting in
increased noise.

7	 d	 ^-
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Fig. S Response of closed-loop system demonorahrim effects of ac- 	 F
cepiingh)pothesis//,) , //7 . I/ 7 , when 1/ 1 is true.	 €	 1	 -- L_+_^

system is alread y in one. Further, note also that only the 	 _	 •	 •	 1	 a	 a	 w
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Conclusions	 Each sensor failure mode and the normal operation of scnvors
i	 are modeled as M differcm hypotheses. Then, using the
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decision logic, which uses Al generalized likelihood ratios,
selecies the hypothesis that minimizes the cost of making a
wrong decision in the Heyman sense. The likelihood ratios are
calculated from a moving window of the innovations in each
of the Kalman filters. The estimate of the state corresnonding
to the hypothesis selected by the detection logic is used in the
control system. The design system is capable of identifying in-
creased noise tNpc and hardover-type sensor failure%. These
capabiluics arc demonstrated using a real-time hybrid
simulation for a space shuttle vehicle lateral dynamics.
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Abstract

This paper is concerted with the parameter
adaptive least squares estimation of random proces-

ses. The main result is a general representation
theorem for the conditional expectation of a random
variable on a product probability space. Using this

theorem along with the general likelihood ratio

expression, the least squares estimate of the pro-
cess is found in terms of the parameter conditioned

estimates. The stochastic differential for the a

posteriori probability and the stochastic differen-
tial equation for the a posteriori density are

found by using simple stochastic calculus on the

representations obtained. The results are special-
ized to the case when the parameter has a discrete

distribution. The results can be used to construct
an implementable recursive estimator for certain

types of nonlinear filtering problems. This is

illustrated by some simple examples.

1. Introduction

This paper is cot:cerneci with the parameter
ac::.ptive cSLIMotion cf random processes corrupted
b; addit: •:e rc-se. The problem may be briefly
stated as fellows. From a given (possibly uncount-

able) collection of raodon processes with known
distributions, one process is observed with adlitive

noise. silo a p io:i probability, that a specific
random process, in L'..is collection is otservcd, is

spc is _. a f jr *. ,,4 oar in the collie ilea. The
Frc'...- .rt to _°ir.i C ite !cast ^r-_:rrs estivate o' -Fe

EE	 larre cl?51 ^f ^^.t•o',r'! :TC' 1C S

t:... car !..	 is de:eI :r. _i i 	 rcr..t-xt.	 fat
irttanc.t. _ .rc detection and estmaiea (9), (:a),
as:::. __ca	 ...._r ur.:c:t>_:.t; 	 •j, jo,t.t a =sir t`cn
..r.c ideutif!catI^n fl0), p-re:-tcter cdapt!ve stlf-
organ{zi:,; 	 '15!, 1161, (17).

P:r--at^r a•_'.cp.ive E:.tir...ition of iscretc
Goss.,; ar, ptucL.-o.c•s wiLi. lit.. ar dyn...'nic mcdcla :s.t.5
been erc.v.,:d by Ilat•.'_'.1 1121.	 I.Aniotis 1ic,1 has
:nv^stivated tilt, par.ttnc• ter adaptive cst imat ion
rroble-i for continuous	 with
li^c•tr .; t:._.:^ n•.^ L,.	 CC!.t, • rel3tL, c.c tk ,long

::cis tone was %,.j-ported by NASA Lat.gley Research
C:nter under t.rant NCR •,7-004-116. The author , ; are
with the ,l. P.Ir,rtH • nt ••f I'lectriccl Frei•t-cring
Vlri;l::la i' ly:: !n!	 l:.ct:tutc ar. 	 Etato Cnit•,t-;i:
91sc:r:b •ub, Vire::.i., T:G61.

these lines can be found in 1181 - (21). The first
systematic treatment of joint detection-estimation

in a general setting was done by Middleton and

Esposito 19).
In the mathematical theory of probability,

related works can be outlined as follows. Parameter

adaptive estimation for a specific jump Markov
process with a finite number r.tates has been stud-

ied by Wonhan (221. The same problem for a two

dimensional Markov process with the nonobservable
component a jur-r ttarkov process and the observable

component, a diffusion process, has been resolved

by Shityaev 1231. Related work oil 	 estimation
of arbitrary stochastic systems can be found in the

work by Kailianpur and Stricbel (5) and fcr `)arkov
processes in (24).

This paper generalizes the results of (101,

(9). The approach taken is along the lines of

1131, (5). The problem is form !llated in the usual
!fa • ..sian derision theoretic frarcwork. In the
second section, a mathematical statement of the
prel:tn is given. In section 3, a general repre-

sc•ntation theoron is proved for the conditional
expectaticn of a randon variable on a product prob-

ability bpacc using the properties of Radon-

..i.-dyn derivatives. This theorem also yields a
Radon-Nii.od;:n rcptvsentation fcr the a r steriori
`roba!ility which can be thought of as a rcncral-

i.:ed C.yes cheerer.. By u •:ing the re;rC5.ntation
theorems alo:l b with tna i,oreral likelihood ratio
e>::--c_-:;Jon of Kailath-Duncan (6), (7), the para-

not: ­ adaptive estimation problem of random pro-
Ct •. c' is solved in section 4. the rain thcore-
of ti_s scctien cin be O.ougat of as a gc er^liz.:
pzirt.itiOn th.ecre-. In section 5, by using simple
stcc:.:stic calculus, the stochastic differential

mere cunding to the a prstrr?cri probability ;ci

Oil, six;...stic. differential cuation for tl •.e a
pot,̂ t • r.ori (;vr.sity are found. 	 In section 6, cite
rc:... are spc:ialized to tLe cast: whin the p.:
r.. to ; a-e is	 oat:.bty infinite, f.e., wl.en 01
pjr,ww tLr li,s a 0scrCLe dt:Aribution.	 Iite t aulr^
o f tt,.	 Ct{C.. intAtlde the ca:•e • of finite par.,

	

p. • cc such as M-ary hypotht,: cs, 	 St:• tion l
c• , .	 o-e 1l1 , .^: tratloti .1vI ,.;;.:lc3:tens.

. • nt of the Pr cb1C:n

at	 It -	 .•ac1	 f' I:	 (.	 Ai. P 1 1	 v -i

	

cot IC	 c

,'..c	 .,r•	 _ .^	 ^	 will	 •!.	 • a..t^	 ..	 ..

pas..	 .-c::	 ut ?l and t;; will be
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and n o respectively. h.xpeclutfon with respect to
measurrc P l and P 2 will be denatcd by F.1 and F.2.
We shall as:•ume that them exista a vector Wlen,r

process v(l. rt) 1 ,n (0 2 , A2, P;) with zero mean and
incremcot;rl covariance 1i 4 dv(t) dv'(s) - R'(L) dt.
For ench p .,:,, we will be given two vector random
processes z r (t. ri) and y 0 (t, n) such that. Lhe future
increments rt the Wiener process v ( t, ,) will be

independent of the past of v(t, n) and z 0 (t, n) with

y e (to) - Io z e (s,n)ds + v(t,n)	 tc[O,T)	 (2.1)
We will assume that fi)r a fixed t E (0,T1,

ye(t, n) and 
-0 

( t o n) are jointly measurable in
(0, n) on t:.e product probability space (Ol x n2,
A l x A 2 ; P1 x P 2 ) so that we can now define the ran-
dom processes y(t, no 0) and z(t, n o 0) on
(nl x 02, A l x A2, P I x P 2 ) by
y(t,0,n) - y 0 (c,n)	 t (0,T)

z(t,e,n) - z e (t,n)	 0E01	 (2.2)

So that the observation model becomes

y(t,e.n) - Io z(s,0,n)ds + v(t,n)	 tE[0,1].	 (2.3)

The problem is to find the conditional expec-

tation of z(t,e, ,i) given a sample function of
y(t,eoo in terms of the conditional expectation of
2 0 (t,n) coneitioned on the sample function of

y 0 (t,n). The implicit assumption in parameter
adaptive estimation is that the parameter condi-
tioned estimates are easily computable.

Civen two arbitrary sets Ill and 0 2 , we shall
denote the product of 0 1 and ,'2 2 by O 1 x 02i which
is, by definition, the set of all pairs (W10m2)

where the points wl and W 2 run through n l and 02,
respectively. If Y is an arbitrary mapping of

U I „ 9' 2 into an arbitrary space, We shall denote
Y

41 
. the section of Y at w l , to be the trapping

defined en P. 2 by Y wl (w 2 ) - Y(' I , . 2 ). If A is an

etbitrary set of :: 1 x 0 2 , we denote AWl , the section
cf A at . 1 , to be the subset of S. 2 defined by
A	 ( W2 C n 2 •	 ( W 1, W2) E A).
WI

Now the problem can be stated as follows: Find

the conditional cxpectaticn of z(t, no 0) given a
ba:eple function of y(t, n, 5) in terns of the condi-

tional expectation of '-he section of z at 0 condi-

tioned on the sa.:.ple function of the secti ., of y

at P.
We shall use the following definition cf

conditional expectation (3). Lot g be a randon
variable on the probability space (2, A. r) and Y

be a measurable transformation from (', A, P) into

ameasurable srace (V,6). If E g exists, then
E(gIY - y) is defined to he the n.asurable mapping

from (V, G) into the real line, R, such that

1 _,	 g(,•) dr(W) - ! L ( g I Y=y ) d l'Y -1 (y)
Y ' (B)	 B

for every BrG

when: Y - 1
 (b) - (W: Y(W) c B) and PY

-1
(-) is the

meascte on R defined by rY- I (b) - r(y - l o ) and G
is the Borel sets of R.

In the parameter adaptivc estimation we will
be concerned with Lwo different eunditionil expec-
tations. If V is the set of all & tt valued contin-
uous functions on (O.T) and G is the Loll sets on
V. then we can define the measurable mappinh Y

from (Al x C2, Al x A2, r l x P 2 ) into (V, V) such

that

Y : 01 1 x 0 2 , Al x A2 r P1 x 1' 2 ) + ( V , b)

by	 Y ( 0 , n) - Wt. no 0). 0 `_ t < 1' ) .
Simllarly, we can define the oe.,.:ur.:blo rapping 1'0
Where 0 is some fired point in the • parameter space
Ol

Y 0 : 02. A2, r2) - (V. 6)
by

YO(n) - 00( t . n), 0 < t < T) .

That 1s, Y 0 is the section of Y at 0. Now in
this setting we can talk about

z(t,y) - E(z(t. e, n) I Y(9, n) - (y(s), 0 < s <T))

and, for a fixed 0 c 01,

z e (to y) - E2( z e(t, n) I Ye (n) - O• (s). 0 < s < T))
which will be defined correspondingly (1' - P1 x r2)
1	 z(t, 0, n) dP(e, n) - I z(t, y) dPY-I(y)
Y-I (B)	 B

for every B E 6

J	 z(8, n) dP 2 (n) - !	 z 8 (t. y) dP2Y0-1(`,),
Y 0-I (B)	 B

The problem Is to find z(t, y) in terms z e (L. y)
where 0 runs through the raraceter space Ol.

3. Characterization of Conditional Expectation

on the Product Probability Space

In this section, we will Prove a general
theorem concerning parr ,.:rr adaptivc estimation.
Namely, a representaticn will be found for the con-

ditional expectation of a rand:,n variable on a

product probability srace using the properties of
Radon-N! kodym derivatives. This theorem also gives

a representation for the a Lostezirri probability.

The results will be repeatedl y used in the rest of
the paper. lite representation theorems are gener-

alized Baycs thcorets.

Theorem 3.2 Let (.: 1 , A , , PI) and (.^• 2 , A,, P 2 ) be
two probabilit y spaces and ('r ' , 6) be a measurable
space where 6 is gcr.erctcd by a countable class of

sets. Denote the product probability apace
(0 1 x P 2 , A l x A2 , P I x P 2 ) by (a, A, P). Let Y be
a measurable transforration from (n, A. P) into

(V, B) and g be a random varfa'_• le en (n, A. P)
whose expec

t
ation exists. (g is quasi-integrable

in Ncvcu's sense 12)). Let l:e denote the measure

induced on (V, 6) by the section of Y at 0 E 9.1,

i.e.

u e (B) - P2(Y 0 -I (B))	 for every B c G.

(3.1)

If there exists a c-finite measure u ,) on
(V, 6) and a set N l in A l of P l -mv asure zero such
that lie « Vo for 0 r P I - S1. then the conditional
expectation of g eivcn Y is

E (i;( O , n)/ Y ( 0 , n) - !)	 dut,
Jill }:2tG0 (n)I1' 0 (n) - >')au- t?) dFi(0)

duo	 a	 (t )	 ,

rflld^o ty) drl(e)

w

t
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where u( • ) - 1'(Y-I(•)). JN is the Radun-Nikodym

u
derivative of l+o w.r.t. v o . F. denotes expeCtatlon
w.r.t. the mr u,ure P (i.e. P I x P 2 ), and (u) denotes
almost everywhere with respect to the measure u.

Proof: See Appendix.

Corollar y 1.3 Under the assumption:: of Thectem 3.2,

or P I - almost all 0 c n I and p O << u, the R-N
derivative is given by

du

duo	
duO 

(Y)
du (Y) - — du	 -	 (u]	 (3.11

fn1 d̂ { (y ) dP (^)
0

So that

E ( g ( O , 01Y(e, n) - Y) - Inl E2(90 (n)I Y e - Y)

du

	

due (
y ) d p l(e).	 (3.4)

Also	
du

P(Al x 11 21 Y uz1 Y ` Y) - fRI de (Y) (11, 1(0).	 (3.5)

Proof: See Appendix.

Note that p(A l x P 2 1Y - y) is the a posteriori
probability of the event A l in the p.iramcter space
conditioned on Y. P(A I x 11 2 1Y - y) defines a
measure n o.t A I -sets for each y c V by:

*(1 1, Y) - (Al x n 2 l y - Y)	 (3.6)

We also note that the representation for the
I posteriori probability Is a roneralized Bayes

theorem. To see this. let QI be countable,
.2 1 - { 0 1 , 0.,,,,,	 9 ,,,, }, and S12 - R and let u
be Lebesque measure un R, then by 3.3 and 3.8 	 0

dlj6
P 1 0 ) dv j (Y)

n(e j . Y) - m
	

0dye	
(3.7)

E Pl(01)du i(Y)
1-1	 0

duo

Note that d-1 is by definition, the conditional
;.0

probability density of Y given " so that (3.7) is

one form of the celebrated tltcc.dm of Bayes.

We shall now apply the results of the Theorem
3.2 and Corollary 3.3, to Cie paraneter adaptive
estimation of random processes.

4. Parameter Conditioned

CsLimatiett of Random Processes

In this r.ct:tion wo will apply the rt•sults of
the previous section to para;vt .• r ndaplivr estima-
tion of rat:dert per , _, :1;;ng.	 The t, prrsrntntiun
th1 •urot for Lha c- lo.lilional espr.cl.ILIon of the Irl::t

. rctivil wi I l br• W;: 1 alum; with 111r !;r n• • rnl I ikr • li-
houd r.,tio rsprv:r • :iun of Kail.10 and Uuncan (6],
[7), 1261, [:'7). 1', • now state the gent • ral Melt-
hood ratio rv;,ult:: In llir 1tu •xt Jetwit which is a
r0 fightly di!'frn • "1 r. • :t: l onivttt of Theorem 2 in (6).
L , m1n:1 4. 1	 Lot (:i 1 , Al,  1' 1) :tnd (s2 . , A;	 1' 2 ) be two
proba!ri Illy :,1•a..r:;.	 A!:r; une that fOr e.tdt 0 t SII,
we are givtu thn. mca::urable voctor randt)m proces-
ses+ (Lakin !: their vatucs in R") zti(t, n), yq(t, n),

an,l v(I, t!) wllh n e. It; and t t [0, T) such that
v(t. r1) is a •r., • t'u mv.nl Wiener proce:cs with incre-
mental cuv.lrtance

1•:; dv(L) Jv'(:;) - R(t) dt

and the throe random processes are related by the

equation

y0 (L, n) - f  z
0 (

q , n) ds + v (t, n)	 (4.1)

Lot V t be 111e space of all R"-valued continous
functions on (0, t[ and Bt be the [Sorel sets of Vt.
Deftn" the ntaa:;urable transformations Yt0 and Ytv
tro:n (n±, A;, P 2 ) into ( V t , B t ) by.

yLO	 (n2, A2. P2) - ( V t . Bt)

Y tO (n) - NO. n). 0 < s < t)	 (4.2)

Ytv	 02, A2, P
2) _' ( V t , 8t)

Y tv (n) = Ms, n), 0 < s < t)	 (4.3)

Let P) YCO-1 and P 2 Y t^ 1 be the measures in-
duced on &

L 
t, B t ) by:

P2Yt0-I (0) - P 2 (Y t0 -1 (B))	 8 c B t	 (4.4)

P2Y ty 1 (8) - P2 (Y tv- 
i (IS))	 8 t. B L .	 (4.5)

If, for some 9 c ]2I,

E 2 f o ^^ z O (t, n)	 dt < -	 (4.6)

and

fo zO '(t, n) z 0 (t, n) dt < -	 (4.7)

and the future increments [v(t, n) - v(s, n)) are

ind,pe::lcnt of the c-algertra reneratcd by (v(T, n),

za (T , -) , 0	 , < s } , then P: Y to- I « P 2 Y ty-I and
the R	 derivative is given by

-1

dr2Yt0-' O') = exp(io i d ' (s,Y) R-1(s) dy ( s ) -

dP2YLv

2 io z !) '(s,Y) P(5)_ I
 
7 O ( s , y ) ds)(P2Yty-11

(4.8)

where

zO ( s , y ) - 1.2( z ( s • r.) 1 Yy0	 y (E). 0 < 4 < s).
(4.9)

Proof: S,a Theorem 2)in [61 and also Theorem 1 in[7[._

Theorem 4.2 Let the assumptions be as in Lemma
4.1. Also assume that z,

t 
(t, n) is a measurable

function in (t, n, 0) so that we can now define the
mt,r;urabl y r v.fom prorr:: s, e, z(l, n, 0) and y(t, n,
0) on Lhe Product prcbabil i ty ::pace (11, A. 1')
( 12 1 x t2 ' , A l x A,• PI x P 2 ) by

0. n) - z 0 (t, ")
l 	(4.10)
r C r (U, '1'), 0 e S11, n c'12.

Y(t, ". n) ` Y U (t, n) J	 (4.11)

The tltrc( . random pruccsse •: art , rclatcd by

y(t, e, n) = f L z(::, ", n) d:: 4- v(L, n)

L t (o, T1.
(4. 1I)
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Let Y t be the measural,le trale4ormatIoil
Y t : (I), A, P) + (V t . 8t)
Y t ( 0 , n) - W s . 0 . n). 0 < s < t).	 (4.13)

Note that Y th is the section Y t at 0. If there
exists a set N I in A I of 1' I measure zero such that
for all 0 c n j - N I , the assuu,ptiens in Lemma 4 are
satisfied, and E(z(t, n, 0)) exists, then

E(z(t, 0, n) I Y t (0. n) ' Y)

In1 z
0 (t. y ) A 0 ( t , Y) dPI(0)

	

IIZ A 0 ( t , y) di , I (0)	 IPYt-1 )	 (4.14)

1

where z 0 (t, y) is given by

z O ( t , Y) ` E2(z 0 (t, n) I Yto ` Y M . 0 < 4 < t)
(4.15)

and the R-N derivative A O (t, y) is given by
-1

A O ( t . Y)	
dP2Y 

t0
- I 

(Y)	 exp (lu z 0 '(s. y) R-I(s)
dP2Yty

dy(s) - fo i 0 '(s. Y) R 1 (s) z 0 ( s , y) ds).
(4.16)

Proof: For all 0 c R I - N I by Lemma 4.1, we have
P 2Y t0-I << P 2Y ty- 1 , and the R-N derivative is given
by AO(t, y). We can now apply Theorem 3.2 with

P Y yi. B` B L , uO( • )	 P,Yt©-I(•). UN '

t	 (•). vo( • )	 P 2 Y t y	 (•).
Corollary 4.3 Under the assumptions of Theorem 4.2,

for P I -almost all 0 c Il l , P 2Y t ©- I << P Y' t -1 , and
the R-1: derivative is given by

dP2Y -I	 A (t, y)
co	

(y) , ` —	
0	

- in, - 1 1 .	 (4.17)
dP Yt-1 	 J01 A^(t, y ) dPI(E)

So that	
dP Y -1

E(zj Yt	 n` Y) - I I 0i (t.Y)- 2 t0 — (y)
dPYt- 1

dPI(a)IPYt-1)	 (4.18)

Also	
dP2y 

-I

P(AI x f12I Y ` Y)I , ? t0	
()')

[	 AI dl'Y -I
dPI(0) ( PY t- 1 ).	 t	 (4.19)

Proof: Follows from Corollary 3.3.
Corollary 4.4 Under the assumptions of Theorem 4.2,

we have the following represcuLation for the R-1:

dP2YC0'1
derivative	 (y)

dP1' -1
t

dP2Y 
-I	

A (t, y)
—	 t0	

(Y)	
0_	

(4.20)

dPY t -I 	A ( t . Y)

where	
dP 

Yt- 1	 t -

A ( t , Y)	 {1(Y) = cxp	 z(s,>')1:-1 (s)dY(s)-
dP 2 Y ty-1	 °

I fo z'(s, y) R -1 (s) z(s, y) ds)
(4.21)

Proof: By Corollary 4.3, we have

di'2Y
C0-1	 AO( t' y)

dP Y t -
 
l	 In

1 
A C (t. Y) dl11(,)

By Remark 4 in the proof of 'Iheorem 3.2

dP Y - I
1	 A (t, Y) dP1( 0 ) ' — J	 (Y).f3 1 0	 dP2Yty I

The result now follow:: from Lc•mma 4.1.
Comments: The R-N derivative A O (t, y) is the like-
lihood ratio for the detection problem (with 0

fixed)

h O : y 0 (t. n) ` fo z 0 (s. n) ds + v(t, n)

ho : y 0 (t, n) ' v(t, n).

A(t, y) in Corollary 4.4 Jr. the: L.R. for Lite compo-

site hypotheses testing problem

h	 y(c, n, 0) - f 
L

0 
z(s, n, 0) ds + v(c, n)

h ° :	 y(L, n, o) = v(t, n).

Note that

A0(t, Y)

a e (c, y) ` 1n1 A E (t. Y) dl'1(E)

represents a normalized likelihood ratio. This
normalized LR is the ratio of the conditional

probability densit y of the parameter conditioned
on the observation and the probability density of

the parax,cter; that is, ) O (t, y) is the nomalized
conditional density conditioned on the observation.

llote also that P(A) x f1 2 I Yt '.y) is the a
posteriori probability of the event A i in the para-
meter space conditioned on the observation. Since

dP2Y -I

P(AI x f12 I Y t ° y) ' !AI dP 
Y t0-1
 

(Y) 010)

t

we have proved the existence of the conditional

probability density of the parar.uter.
Theorems 3..: and 4.2 unify a nu-ubcr of knc •. n

results in the literature. For instance, in the
case, whore the parar..eter space contains two

points,each one corresponding to the presence or

the absence of a signal, we obtained Lhe relation-

ship bctai.en the optimal est i mate of the signal
under uncertainty and the optimal estimate of sure

signal in the least squares sense derived in ref-
erence (9). In the case, where the signal and the

measurer,ent noine are indcpcndcnt and the signal
is a Gaussian signal with a linear dynar.ie model

we gel. the r v l• ulLic In (10).
The cxpr'ur;.-Jt , r dci Ivvd for the eandltlunal

exprctation in this r.ectiou Is useful In the case

of fi>:c•d observation time interval. If the data
is coming continously, a stochastic differential
equation implementation Is more practical. In the

next r. ectiwn, by u:•ing simple Ito calculur on the
rcprrsentations obtnineJ in this: section, we

shall find the stochastic differential equations
that the a po_tcrinrt probability and probabtlity
denclLy catiwiy.

I

x
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5. Stochastic Differential Equations
for the A Posteriori Probability

The results of the previous section are useful
when the observation interval is fixed. Since in

most technological applications the data is obtained
continuously, the differential form of the results

is more practical to implement. In this section,

we shall find the stochastic differential equations
for the a posteriori probability density and a
stochastic differential representation for the a
rstcriori probability by a simple applicatio:, Ii

Ito's differentiation rule on the normalized con-

ditional probability density representation in

Corollary 4.4.
Theorem 5.1 If the assumptions of Corollary 4.4

hold, then normalized conditional probability

density

dP2Yte-I

(Y)	 A e( t . Y)
dP Yt-1

exists P I -almost everywhere and is the unique solu-

tion of the following stochastic differential

equation

d k e (t.Y) - Y t.y)(ze(t,y) - z(t.Y))'R-1(t)(dY(t) -

z(t,y)dt)	 (5.1)

with the initial condition unity.
Proof: From Corollary 4.4.

A 0 ( t . Y) -

exp( to z,'(s. Y) R-1 ( s ) dY( s ) -

exp( Jo z' (s. Y) R-1(s) d Y( s ) -

	

Io 	 Y) R-1 ( s ) z 9 (s, y) ds)
(5.2)

2 to z' (s. y) R-1 (8) z (s, y) ds)

Let R be tl.e identity matrix with no loss of gener-

ality.
Since the required partials exist and are con-

tinuous, by Ito's differentation rule (251 we get

d X 0 ( t . Y) - k e( t . Y)( z e'( t . Y) dy - z(t, Y) dY

Zze'(t.Y)ze(t.Y)dt + 2z'(t.Y)z(t.Y)dt)

+ 1
2
A d ( t .Y)( z e( t .Y) - z(t.Y))'(ze(t.Y)

- z(t,y)) dt

d k e (t. Y) - A.(t.y)(zO(t.y) - --(t.y))'

(d (t) - z(t,y)dt).	 (5.3)

To show uniquecess. let A l and A 2 be two solutions
of 5. 3, then

k-da l - A l dA 2	A ldk 2 dA 2 - A2dAldA2

	

11 0I/ A 2)	 Z	 +	 —

A 2	 k2

B y 5.3 it is clear that A 2 dA l - A I dA 2 - 0. By
using 5.3 and stochastic calculus

A 1 -Al 2 317 - kI1 :(ze(t.y)-z(t.y))'(ze(t.y)- z(t.Y))dt

%AAIdA2 - %2Xl(z0(t.y)-z(t.y))'(ze(t.y)-z(t.y))dt.

We, therefore, have

A I (t)	 AIM
d ( A I/ 1 2) - 0	 A 2( t )	 Az(o) - 0

	 for all tc(O.T1.

or	 12(0)	 (5.4)

A 2 (0 - 11(0) A I (t)	 for all t In (O,T).

(5.5)

So If 1 1 (0) - A 2 (0), we must have A I (t) - A2(t)

for all t in 10, T). Detailed arguments can be
found in (13).

From the stochastic differential equation that
the normalized conditional probability density

satisfies In Theorem 5.1, it is now easy to find a

stochastic differential representation for the a
rosterlori probability in P(A1 x 02 1 Y - y).

From Equation 3.6, we know that r(A l , y) -

P6 1 x 02 1 Y - y) defines a measure on A l sets for

PY- 1 almost everywhere, and r c< P 1 . The R-N

derivative Is given by

dr	 dP2Yte=1

-	 (Y).	 (5.6)

dP I	dP Yt-1

By using Theorem 5.1 and equation 5.6, we
shall find the stochastic differential for the a
posteriori probability.
Theorem 5.2 Let the a^su-ptions of Corollary 4.3

hold. For a fixed rarameter set Al , the a

posteriori probability

r t (Al x S12 1 Y - Y),

admits the following differential

dn t (Al. Y) - f,; (ze( t .Y) - i( t , y ))' dnt(e.Y)

R-I(t)(dy(t) - z( t .Y)dt)	 (5.7)

with ro (p l , y) - P1 Q, ) or what is the same

dr tQ1, Y) - (%Al 1,1 (t, Y) d- t (P, Y) - r t (A l , Y)

z( t . Y)) R-1(t)(dy(t) - Z(t, y) dt).	 (5.8)

Proof: See appendix.

In the next s ection, we shall specialize the

results to the ca3c where the parameter space is

countably infinite.

6. Discrete Parar_oter Case

The real advantage of parameter conditioned

approach to estimation occurs when the parameter
space is finite or countably infinite since the
solution may then be re.ullly implemented on a di;-I-
tal conruter. This will be the case when the para-
meter has a discrete distribution or it has been
suitably quantized to be put on a digital computer.

The parameter adaptive npproac4 will of course be
more rewarding when the parameter conditioned est4-
mates can be ea •iily ubtalnrd, We now Five the re-

sults for the discrete parameter case.

Tlicorem 6.1
Let the anrurptlon of llivorem 4.2 hold. If

the parameter space is counto` , ly infinite (or
finite), let

nl - (el. 8 2 .... e	 ..)	 ,
n'

then

O.b. a

_.

	

_..,	 ^.^.	 •-	 per►

IAL	
AL>...

	

^	 t
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1:	 P l (n 1 ) A (, (t,y) z j^ (t,y)
(C(zIY -y)	 i^l	 !	 i	 I,y 11 (6.1)

t	 3:	 P I (0
i ) 

1. 0 (t y) l
i• l	 1

whe re

ze1 (t ,Y) - r2 (z 11 1Y t o 1 - y ((c ) . 0 _ s = t)	 (6.2)

and the R-N derivative is given by

dP Y-I

AB (t ,Y) -	 2 t01 (Y) - exp (10 z0 (a.Y)P 1(s)dY(s)
i	 dP2Yty	

i

	

- 1 f t z^ (s.y)R 1(s) z 0 ( s , y ) ds ).	 (6.3)
i	 i

Proof: Follows from Theorem 4.2 by integrating

with respect of P1 over ill.
Corollary 6.2 Under the assumption of Theorem 6.1,

for all 0E nI, P Z Y-1 «p Y-1 , and the R-N deri-
vative is given by tP^
	 [

dP 2
1C9	 AO (t.Y)

t of (Y)	 j	 1py-1)	 (6.4)

dPY-1	
1L1 Ao i (t,Y) PI(o1)

So that

dP 2  t P
E(z!Y t-Y) - 1E l z o (t,y)	 _li (Y) P I ( e 1 ) fry— III

1	 dPYt

(6.5)

dP2Y-1
CE

P(a' x C, l y t`y)	 1'I ( o ' )	 (y)	 I F1'^ 1 1	 (6.6)
dFY

Tl,ecrer_• E. 3_
Under the assus,ptions cf Theorem 5.1 and

Theorem 6.1 the _a posteriori probability for a fix-

ed value : i of the parameter ac:rits the folio.iug
stochastic differential fcr

r t (° 1 .5)	 P(e 1 x Z2 1Y t -y').	 (6.7)

d-	 R- 1 (t)

	

` 't(e1.)')(z6 ( t .7) - z(t,y!)' R	 (t)
i

(dy(t) - z(t,y')ct)	 (6.8)

with O -^ t ,c) - p , ((-((-

1'rco: • Fellows form Tneorc: 5.2 by carryin o.t
the ir.:esra:icn with respac: to PI.

In practice, since z(t,y) will be computed by

L(c.Y) -1^1 r t (° 1 .Y) zEi(t,y')

it .s thcrefcre of interest to leek at the ex-

tecce :.nd tzil ;ac mess of tae selctiun o r t:.c '_nf:
nite set -i	 e;•. t'_cnr Oat

E•.E .n,^^lies.
:r.c,ory- (.

1:n - t:.t as-option cf 'i.ccr(r. 6.1, the set
of a T:.tericri pr^,bc:,:litics

is t .e . .	 _ s:_t cn cf t:.e iniir.ite Gt:or s s-
tot e: s:e :tstic d:ffcrcn:ial equations

d"t(01.Y) - I (n i .Y K' (t,y) - T sh (t.y)s' t (0 .

	

1	 J..1	 ,

Y)) R-1 (t) (dy(t)-	 1 ^^ (t.Y) ^t(oj.Y)dt)

1

i - 1,2,...

with 7 , 0 ( 01 y )	 1'I(u1).

Proof: See appendix.
Thcorecrs 6.1 and 6.4 i,..hly in impJcncotable

estimator structure which cuoulsts of two part-:

(1) a nonadaptive part in which parameter coudi-
tioned estimates are found, (2) -,n adaptive part
in which the a po:stcriori prob:;_3i11t1ca are found.

If the differential equatiuns for the parameter
conditioned estimated are available, then thc-se

estimates along with the differt•ntinl equations
for the a Lpsterlori pt'obahilltles (Theoten 6.4)

provide a recursive solution to the problem. In
the next section, we sliall dive sumo examples to
Illustrate this estimator structure.

7. Exwrples

The usefulness of par.-imcter ndr.ptive approach
to estimation prublems has been illustrated in

several papers 110), 1121, (18), 1201, 1211, 1221.
In this section, we shall outline some further
possible applications of parameter conditioned

approach to estimation.

Example 1 Consider the nonlinear stochastic dyna-

mic systcn described by the following stochastic
differential equations

dx- x t 2 dt+dw

d0-0

with the observation nudel

dy - x G l dt + dv

where x(0) is a Caur: ; lan random, variable frith rean
u and variance c 2 and 6(0) is an ari'itrary rand=
variable with a discrete disttil.:tion f.(. i ). Tna
Wiener procesecs and v and cr l..,ve zero -on and

unit variance. Also, x(C!,	 .), v(t), :u w(t)
are indcpen^c% t. 	 by ap,. l;•:ng :i,ecra-e 6.1 a%A 6.4,
with 5(0) as the l . araneter we get the least sTuare_a
estinatc for x(t)

x(t) `1`i r 1 (t) x1(t)

where x i ( t) 1s the selccien c` the
filter

do x
i (t)	 o 12 x 1 (t) + K 1 (t) (y(t) - o1_-x1(t))

where V i ( t) is the ecictisn of riecati equatic.n
with xi(0) - o and E; 1 (t ' - of?Vi

at V (t) - 2 a 12 1' 1 (t) - :'1'1'

with V4 (C') - :I and t`.e r:t of 	 probL-
bf litic

is the u:aquc soll:ion of the feilcwing systc- of
-toc',astic differential
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Ju

f (O, Y)	 doO	 (Y) o	 c	 R 1 - N 1.

0
rroof:	 See	 (4)	 pp. 616-617.

Proof of Theorem 3.2:	 Let u, define the signed

reasures v and (v O , 9tf1 1 )	 on	 (V, B) by

v(B) - I	 g(9, n)	 dP(9,	 n) Bc8 (A-1)

Y

and

v 0 (B)	 - I	 99(n) dP2 (n) BEB (A-2)

Y e t (B)

where YO(n) are the sections of Y and g at	 Otfl1.

We have from the definitions of conditional expec-

tations

E(g(o,	 n)IY(9,	 n)	 -
y)v dv

( Y) (A-3)
d

E2(g d ( n )I Y ^(n ) - Y) (Y).
duo

(A-4)
e

So we are to prove that

dvo	duO

I u 
(Y) du (Y) dPl(©)

0	 0

dv

du (
y ) - ^1 du
	

fl1	

(A-5)

I	 duo (Y) dP1(9)

n	 o1

Remark 1

v(B) - I^ v0(B) dP l (0 ).	 (A-6)
1

This foilo%s from Fubini's theorem and the fact
that Y O- 1 (B) - (Y- 1 (B))a so that

v(B)	
IRl (IY-l (B) gd(-) 

dp z(n)I d P 1(0),	 (A-7)
9

Remark 2 E 2 (g,,(n)IY A O - y) can be chosen to be
A I x 8 - -oasurable.

Since va << uO and i.n <: u 0 , then by the chain
rule of R-N derivatives (Theorem 32.A in (1))

duo - d., 0 duo (u o ) '	 (A-8)

dug

	

Since ug and ua are measures, du is	 non-

	

du g	0
negative. Since(ytY: duo (y) - 0) has u 9 measureeV 

zero and {cV:	
0

Y	 du (y) - 
m} has u 0 and consequently,

0
u O -measure zero, it follows that

Ji3O

0 < du0	 m (u 0 )	 (A-9)

So

dv o	dvA duo

du o 	0- du /duo ( u 0 ) .	 (A-10)
	dv 0	duo

	

By Lemma 1.1 d- and d
	 can be chosen to be

	

0	 0

I
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dx i (t)	 wi(t) (ai3 Xi
 (t)-' f l a' 3 n ' (t) x

i 
(0)

(dy(t) -lrl a,3 e
' 
(t) x'(t)dt)

with * i (0)	 110(0i).
Example 2 In this example, we shall consider the

random telegraph signal z(t), with values ± l and

transltion density, a ju:rp/second where o is a dis-

crete ran,lom variable with a range of values (a,,

a 2 , ,•, a,) and a priori probability distribution
(P 1 (a ), } - 1, 2, ..., M). The observation model

is talcn to be

dy(t) - z(t)dt + dv

where v is a unit Wiener process. By applying

Theorem 6.1 and 6.4 we get
M

z(t) - E n i (t)(Oz (t)
J.1

where the parameter conditioned estimated z(t)

satisfied the stochastic differential equation de-

rived by Wonham in (22):

dzi (t) - 2 a  z i (t) + (1 - z i2 (t))(dy(t) - zi(t)dt)

which in turn derives the stochastic differential

equations for a posteriori probabilities given by

Theorem 6.4	
H

dn i (t) - n i (t) (z i (t) - E n j (t) z^(t)) (dy(t) -

M 	 j -1

E	 et) Z j (t)dt)

-1
with

s i (0) - P1(ai).

8. Conclusions

The problem of optimal parameter adaptive esti-
nation for random processes is formulated in the
Baycsian framework. A general R-:1 derivative repre-

sentation for the least squares estimate of a ran-

dom variable on a product space is derived. The

repre.,entation theorem is applied to the optimal

parameter adaptive estimation problem for random
processes to find the least squares estimate of the

observed signal and the a posteriori probability of

parameter conditioned estimates. The stochastic

differential equation for the a posteriori proba-
bility is derived. The results are specialized to

the case where the parameter has a discrete distri-

bntion. Vie approach is illustrated by simple ex-

amples.

Appendix

The appendix coatafnri the proofs that are not

givcn in the text. To prove '11corem 3.2, we shall

neei the following lemma.

I., -11 _3_1 Let (01, A l , P 1 ) be a probability space

an-, ( '7 , 6) be a mc {urible space where 8 is gene-
rated by a countable cla,ts of sets. Suppost that

for each 9 in II I we are given a measure ;j,4 (y) on

(:, u) such that, for fixed B c C, u O (B) is mea-

ssrn'.^le in 0. If there exists a set 11 1 in Al of
measure zero such that, for all 0 in III - Ni,

q e where uo Is a measure on (V, 6), then
there is an Al x S measurable function f :uch that
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Jv
A t x R - measurable, so that du, can be chot.en to

0
be a A I x 8 measurable function.

Remark 3

dv du

du 
(Y) - III E 2 (g O (n)I Y O ( n ) - Y) du° (Y) dl'I(n)

0	 1	 0 (A-11)
From Remark 1 we have

v(B)- In IIY
-1 (B) go (n) dP

2 (n)) dP I (0).	 (A-12)
l	 0

Let 9 O (n) - g+ (n) - Wn) where g+yv and g - are the

positive and negative parts of gnlll. then

v (B) - In I IY-1 ( H ) gO (n) dP
2 (n)) dP1(e)

I	 0•	 (A-13)
-I II IIY- I (B) go (n)dP

2 (n)) dPI(o).
1	 O

From the definition of conditional expectations

v(B)- In 
1 
IIBE 2 (g01 ye -Y) du 0 (Y)) dl'l(o)

- 1Y	

(A- 14)

-In II BE 2(BO6'Y) du e (Y)) dP1(o).
1

From the chain rule of R-t: derivatives (Theorem

32.B in (1)),	
du

V(B)	 In ifBT2(801YO'Y) duO (Y) du 0 (Y)) dPI(e)
1	

du	 (A-15)

- In If B E 2 ( g 0 I Y b Y) doe (y) du 0 (Y)) 0 1(0),
1	 0

By Lemma 1.1 and Remark 2, the terms E2(g±1ye-y),
d	

can be chosen to be A I x B -
E 2(g O I Y O'Y). and

o

measurable. By applying Fubini's theorem for non-

negative functions, du we can write that v(B)

I B If E 2(g01 Y O'Y) du° (y) dPI(E)) duo(Y)

_	 duo	
(A-16)

I B II n lE2(g0 1Y O'Y) 
do0 (y) dPl( 0 )) duo(Y).

0

Since the difference is well-defined, at least one

of the integrals should be finite and, consequently,
the integrald corresponding to that integral must

be finite valued almost evcry here P I x 1, 1 . So the
following term is well-defined.

du
Ez( gel^'o'Y) dijo(Y) - E2(gelle'Y) dvE (Y)

o	 (A-17)

IE2(90+IYO'Y) - E2(ga_IYO')')) du dvQ (Y).
0

From Theorem 6.5.2 in I3) this expression

duo
- E2(gOIYO'Y) du (Y).	 (A-18)

0

So that
du

V(B) - J B [IAl E2 (g 0 1 y o.y) du° (y) dl' i (P)) da0(Y).
0

(A-19)
Since the terry in bracketb is 6-measurable by
Fubini's theorem and since the R-11 derivative is
unique a.e.,

dv	 du

dro - 
IQ  

E2 Q I Y O°Y) 
duo (Y) dr I (0) 11,1 1 . (A-20)

L, 	 4
du

du (y) - /n 
dot+ (Y) dPl ('t )	 (A-21)

0	 1	 0

71tis follows from Remark 3 by scltlur. P(`•.'+)
l it l x SI 2 (°. n ) where 1 ., 11 x : 2 1- the characteristic
function of the set ! I 1 x f'.	 This can be t;eeti as
follows

v(B) - !Y-I(B) In x 11 (o,n) dP((f,r,) - P(Y-1(C))
1	 2

' 1,(B) .	 (A-22)
Now since v << v and v « 1, o (Remarl: 4), we have

dv du 	 dv

du du	 du

	
Ili 	 (A-23)

0	 0

Since

0 < a	 fu)	 (A-24)
0

we have

dv - dv /du	
I1,)	 (A-25)

du	 du o duo

The result nay follows frum Remark 3 and Re^ark 4.
Proof of Corollary 3.3: Let h 0 (y) denote the right
hand side of 3.3. From Theorem 3.2 we have

E (g I Y -Y) - Ini E 2 (9 0 I Y B-Y) h 0 (Y) dPl(`-).	 (A-26)

With g - IA x n (e,n) where A l c AI

	

1	 2

E(I' x n 2 1 Y-Y) - !A l hjy) dPI(o),	 ( A-27)

:his proves the last assertion in the statement of
the corollary.

Integrating both sides %..r.t. PY-1

IB E( I.11 x f,2IY-Y)d;.( )') - B IIA I h
(}
(Y) dr,( -') ) d y).

(A-28)
Applying the definition of the conditional expec-

tation to the L.H.S. and Fubini's theorem to the
right hand side (h;(y) is .1 l x 8 - r„easurable and
non-negative),

we get

I
Y 
-
 
I (B) IA x 1;2 dP	 . Ii l (I Bh e (y) d., (y)) dPI(e).

(A-29)

Using Fubini's theorem on the left hand side Rives

IAl P2(Y8 1 B)) dP 1 (0) - IA I ! Hh ,.(Y) du(y)) dPi(P).
l

(A-30)

So for P I -almost ever)n.licre on P, we have
d i^) r 1' 2 (Y p l (H))	 I

B 
11 A (Y) di , (y)	 Iu)	 ( A-31)

Since ! , n (y) is S - measurable for P I -almost all ^.
it must ` be that

du e

du (y ) - h0 
(Y).	 (A-32)

Proof of Theurer 5.2: There is no I ss of I • cnera-
lity in assuming OWL R is the idrntit y matrix. 4'e
shall first show that the following equality holds
almo=t su:cly .
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1f1 
if  

AO ('.Y ) z0( 4 .Y) dy(s)) dl't(0)
1 (A-33)

10IfIl
l A

O (s,y) z ;( s ,Y) dP l (0)] dy(s).

By applylc.g the dtfferential rule on the re-

presentation of A O in Theorem 4.2, we have

A O (t,y) - A U
 (O.y) - 10 A

0 ( 5 ,Y) zo(S.Y) dy(s).(A-34)

Integrating with respect to P i over D1 we get

A(t.Y) - A (O .Y) - In (Io A 0 
(3,Y) z ;( s .Y) dy(s)]

1

dP l (9).	 (A-35)

On'the other hand, by an application of the

differential rule on the representation of A(t,y)

in Corollary 4.4 we get

A(t.Y) - A(O.y) - Io A ( s .Y) z ' ( s . y ) dy(s).	 (A.36)

Also, by Theorem 4.2, we have

10 Z ©( s .Y) A 0 ( s . y ) dPl(e)

z(s,Y) -	 i	
A(s.Y )
	 (A-37)

So that the right hand sides of A-36 and A-35 must

be equal almost surely which proves A-33.
Mow by Integrating Equation 5.1 in Theorem 5.1

over Al with respect to P l we get

I. A ( t , y ) dP l (a) - jA l a 9 (O,y) dP l (e)	 (A-38)
A l	

0+ f- If  a e (s,y)Iz © (s,y) - z(s,y))'IdY(s) - z(s.Y)
1

ds) )	 dP l (e) .

IA 
x A z(s,0,n)

With 

	

	 in place of z(s,0,n) in
A(s.Y)

A.33, we get the following equality.

1 f o f a e(s.Y) ZJ(s.Y) dy ( s )]	 dP l 0	 (A-39)
Al

4t (!.
	 ). e(s.Y) Z,'(s.Y)dPl(0)]	 dy(s).
Al

So that	 -

It t (AI,Y) - 1.	 I O (t,Y) dp l( e ) - n 0 (Al,Y) +
Al

I
 brt 11•	

a e (s.Y)I z 0 ( s .Y) - z ( s , y )) dr,(o)]
At

(dy(s) - z(s,y)ds]

Since, by ,on. ► rk 3.2, dw t (1, y) - a 0 (t. y) drl(e).

w L (A I, y ) - it (A1.Y)

rt ( I.	 ( z 0 ( s .Y) - z( ., .y)]' dwt(O. Y) ]b	
Al

7
	

I dy ( s ) - z ( f-. .Y) da)

which proves Theorcm 5.2.

Proof of Theorem 6.4: The extutence and uniqueness
of this type of lufttm a order clochastle Jifferen-

tial equation lian been studied by RozovRkii and

Shiryaev (28). To prove Theorem 6.4, we nhall apply
Theorem 1 in 128). To this end, we have to show

that w t (Oi. y) is in class M. It is clear that,
fnr each I. w t (O i .y) is continunus with probability

one. This follows from the continuity property of

the Ito integral which states that the points of
continuity of the random process defined by the

Ito integral are the points of continuity of the

Wiener process with renoect to which the integral
is defined (4). Measurability conditions are

ratisficd due to the definition of s t (0 1 , y).

t w t ( e i , y ) - 1
i-1

Also

T
P { I I L z  ( s.Y) we ( s,y) 12	 do <	 }

0 1-1 1	 i

T.
- P ( o 

z2 ( s .Y) do <	 )	 1

Therefore,. w t (ei, y) is in class M. By

Theorem 1 in (28). the system of equations 6.9 has
a unique solution in the sense if v and t are two

solutions with r0 (e i ,y) - :l 0 (0 1 ,y), 1	 1. 2,....
then

P ( sup sup	 w t ( e i .Y) - f t (e i .Y) I ' 0 } - 0.

i	 t
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OPTIMAL PARAMETER ADAPTIVE ESTIMATION OF STOCHASTIC PROCESSES

by

Alper K. Caglayan

(ABSTRACT)

This study is concerned with the simultaneous detection and least

squares estimation of vector random processes. The problem is formu-

lated in the following context: A random process, out of a countably

infinite collection of (not necessarily Gaussian) vector random

processes with known distributions, is observed with additive white

Gaussian noise. The a priori probability, that a specific random

process will be observed, is specified for each one in the collection.

The least squares estimate of the random process that is being observed

is to he found in terms of the hypothesis conditioned estimates.

It is shown that the best estimate is the linear combination of

the hypothesis conditioned estimates weighted by the a posteriori

probabilities of the hypotheses conditioned on the observations. A

Radon-Nikodym derivative representation is derived for the a posteriori

probability by using the specific structure of the product probability

measure for this problem. It is shown that this Radon-Nikodym

derivative can be expressed in terms of the Radon-Nikodym derivatives

of measures induced by the random processes in the collection with

respect to Wiener measure. By using the recent results on likelihood

functions, an expression for the a posteriori probability is found in

terms of the conditioned estimates. In this connection, an extended

version of the partition theorem of parameter adaptive estimation



49

is proved. The unique stochastic differential equation, that each

	

•	 a_posterior•i probability satisfies with its associated a priori

probability as the initial condition, is derived for the case of

	

I	

finitely many hypotheses alone with an expression for the conditional

	

l	 error covariance in'terms of the hypothesis conditioned error

covariances.

The results are applied to the parameter adaptive estimation

Iproblem in linear continuous and discrete stochastic dynamic systems.

In the continuous case, the solution is also obtained through an

Ialternate approach using nonlinear filtering theory. An application of

I

the theory to the design of a digital flight control system which is

tolerant of sensor failures is presented with real-time hybrid computer

	

^I	 simulation results. A review of random processes and statistical

decision theory is also included.

d&L	 1


