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ABSTRACT

The advent of the space shuttle (STS) will make it possible
to carry out relativistic experiments in a laboratory in free
fall. One of the most important such experiments, because it
is essential to the foundations of general relativity, is the
test of the universality of the ratio of passive gravitational
to inertial mass for bodies, which is' known as the E8tvds ex-
periment. This report presents analyses of a direct force-
balance technique for carrying out this experiment in space,
which is intended to give sufficient sensitivity to allow in-
vestigation of the gravitational interactions of energy stored
in the weak interaction. It is found that a sufficiently sensi-
tive experiment may be possible in which the apparatus is al-
lowed to float in the payload bay of the shuttle, although maxi-
mum sensitivity requires a fully autonomous, free-flying experi-
ment.

The heart of this experiment is an exceedingly sensitive dual
accelerometer, containing two proof masses constructed of the
materials whose E8tvds ratio is to be compared. It is hoped to
use an electrostatically-suspended accelerometer for this appli-
cation; but it is impossible to test such an accelerometer in a
terrestrial laboratory if electrostatic forces are used to sup-
port the proof mass, because of cross-coupling between the support
and sensitive axes. For use in development of the accelerometer,
a magnetic microbalance is proposed in which the weight of the
proof mass is supported by magnetic¢ forces which vary very slowly
with the proof mass position. It may then be possible to build
an electrostatic suspension to control the proof mass with elec-
trode spacings, voltages, etc., similar to those which are needed
in free fall. It is shown that at least two different mechaniza-
tions of the magnetic suspension may be feasible.
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CHAPTER ONE

THE EOTOVOS EXPERIMENT

I.1 Introduction

In Newtonian gravitational theory, the force acting on a
particle of inertial mass m, , due to the gravitational fiéld of

another particle of mass M, is given by
F=mr = - GMMyr~r (1]

where G is the gravitational constant, r is the
position vector of the particle relative to the source cf the
field and Ml is the gravitational mass of the particle. As has

been noted by Bondil

, three logically distinct concepts of mass
occur in this equation: (i) inertial mass m, , which determines
the acceleration of the particle under a given force; (ii) passive
gravitational mass Ml’ which determines the force on the particle

in a given gravitational field; and (iii) active gravitational

mass M,, which determines the strength of the gravitational field

generated by a particle. The equivalence of active and passive

~gravitational mass is a consequence of the law of action-reaction

[which is not a Lorentz-invariant concept, so that it must be

handled with care in relativistic generalizations of the theoryl,



but the universality of gravitational phenomena depends on the

separate assumption that the EStvOs ratio
k = M/m [2]

is a constant for all bodies (at least, for all bodies
which are so small that gravity-gradient effects in the external
gravitational field are unimportant). The value of G is normally

so chosen that this ratio is unity.

The hypothesis that k is independent of the chemical composition
or internal structure of a sufficiently small body is a statement of
the Weak Principle of Equivalence, which is an axiom in general
relativity and in most other theories of gravitation, although in
some (for example, the Brans-Dicke cosmology2) the ratio is allowed
to vary from point to point in spacetime. It should be noted that
the Weak Principle is necessary but not sufficient for the validity
of general relativity (and espedially for its geometric interpretation
in terms of the metric of spacetime); the theory developed by
Einstein requires the Strbng Principle of Equivalence, which states
that no self-contained physical measurement, carried out in an
infiniteéimal region of spacetime, can distinguish between gravitation'
and a suitably chosen inertial acceleration. As a corollary, a
free-fall coordinate system, if sufficiently limited in extent,
is physically‘ébsolutely equivalent to an inertial frame (local

Lorentz frame).



The Strong Principle is subject to direct experimental proof
only if it is believed that it is presently possible to enumerate
every feaéible’type of physical measurement. However, it is
possible that the Weak Principle implies the Strong Principle,

a suggestion known as the Schiff Conjecture3 which has, as yet,
beén satisfactorily demonstrated only for restricted cases.? 1f
it can be proven, the Weak Principle will become the primary

foundation of gravitational theory.

- The Weak Principlé.of Equivalence is obviously supported by
the common observation that all bodies fall with the same accelera-
tion under gravitation (as in the famous and perhaps apocryphal
test by Galileo at the Leaning Tower in Pisa). 'This phenomenon
was demonstrated dramatically on television by David Scott on
Apollo 15, when he dropped a feather and a hammer together to
the lunar surface. Accurate evidence for the validity of the
principle however consists of experiments of the EptvSs type,
whose distinguishing characteristic is that they are null measure-
ments, taking advantage of some situation in which there is a
nominal balance between inertial and gravitational forces in order
to ééhievé quite remarkable precision. Given two bodies; of
materials A and B, these experimentsrmay be regarded as measﬁrements

of the EOtvos number

n(a,B) = k(a) - K(B) | T [2al]



E6tvOos himself used the fact that, in a horizontal plane
determined by a plumb bob, there is (in the northern hemisphere)
a small southward component of centrifugal acceleration, due to
the diurnal rotation of the Earth, and an equal but opposite
component of gravitation. The magnitude of these horizontal
accelerations reaches a maximum of about 1.7 cm/sec? at 45° latitude.
A torsion pendulum was constructed in which bobs of different
materials were attached to opposite ends of an arm which was
suspended by a fiber at its balance point. If n for the two bobs
differed from zero, a small torque would be produced aboﬁt the
vertical, which would affect the rest orientation of the arm
relative to the laboratory. Because this Edtvds torque was a
sinusoidal function of the azimuth angle of the arm, the arm
orientation would not then change by exactly 180° when the fiber
suspension was rotated through precisely that angle. In a series
of painstaking experiments between 1889 and 1922, E6tv8s showed?
that, for a variety of pairs of materials, n differs from zero by

at most a few parts in 109,

In 1962, Dicke et a1l® built an improved torsion balance, which

, possessed triangular symmetry to reduce the effects of local gravity

gradients and which was designed to take advantage of the balance

which exists between the gravitational pull of the sun and the

centrifugal force due to the motion of the Earth in its orbit.

The accelerations involved here were somewhat smaller (c. 0.6cm/sec?)

than in the experimeﬂts of EOtvés, but they were modulated with a



244hdur period by the rotation of the Earth, allowing fregquency .
discrimination against some interfering torques and, more importantly,
eliminating the need to disturb the system by rotating the suspension
relative to the laboratory. The accuracy achieved was about one

part in 1011, in a comparison of gold and aluminum test masses.

Using a modified form of the Dicke experiment, Braginski7 in

1972 improved the accuracy further; by about one order of magnitude.

~ As discussed in Chapter II, the advent of space technology
has opened up opportunities for EO6tvés experiments of unprecedented

accuracy.

I.2 Possible Violations of the Equivalence Principle

General relativity is a theory of gravitation which is
self-consistent, complete, and in agreement with all experiments
to date. Moreover, it is compellingly elegant,bin a way unmatched
by any other theory which has been proposed. Even if other gravita-
tional theories are to be considered, there are strong arguments8
that the only viable theories are metric theories =-- i.e., theories
~in which spacetime possesses a metric which satisfies the Equivalence
}Principlekby exhibiting locally Lorentz frames. The best confirma-
tion of the Equivalence Principle (and especialiy of the Strong
Principle) lies inethe nature of -the theories to4which it leads,

rather than in the direct experimental evidence for it. Nevertheless,'



an unsatisfactory aspect of metric theories of gravitatien is that,
despite much effort which has gone into unified field theories, e
gravitation remains conceptually quite distinct from the other fields

of physics, being regarded as an expression of the curvature of
spacetime. Furthermore, as will be shown, there are difficulties

with the Equivalence Principle itself which suggest that anomalies

might be revealed by continued experimentation.

In designing such tests, a theoretical framework would obviously
be useful which predictedkwhere violations might be found. It is
not reasonable to discuss tests of the Equivalence Principle in
terms of a theory which assumes its validity. What is needed is
a gravitational theory which starts with minimal assumpticns
(e.g., Lorentz covariance and reduction to Newtonian theory in
that limit), identifies clearly the additional assumptions which
lead to a metric theory, and then systematically explores the
consequences of changing those assumptions. The spin-two field
theory of gravitationg'lo, which leads to general relativity when
non-linear terms due to the energy density of the gravitational

field itself are included, may provide a model for such a development.ll

In the absence of a comprehensive theory, the best that can

‘be done is to consider some isolated possible anomalies.

I.2.1 Differences in Comnipwsition: The Weak Interaction
The classical EGtvOs experiment is a test of the possibility

that the ratio of passive to inert mass of a body depends on its
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chemical composition. In more fundamental terms, ;hekhypothesis

to be tested is that one or more of the forms of energy which make

up matter exhibits an anomalous value of this ratio. Examination

of this hypothesis will show the motivation for further improvements
in the accuracy of the experiment, as well as providing some important

design considerations.

Ordinary matter may be regarded as consisting of energy stored
in a combination of the following forms:

(i) The elementary particles (both real and virtual) which
make up atoms, particularly protons, neutrons and electrons.

(ii) The strong interaction, which binds protons and neutrons
together to form nucleii.

(iii) The electromagnetic interaction, which binds electrcns
and nucleii together to make atoms, atoms together to
make molecules and crystal lattices,. and which weakens
the strong attraction of protons in a nucleus.

(iv) The weak interaction, which is respdnsible for B -decay
processes. ‘

(v) The gravitational interaction, which holds stars together
and binds planets and stars into solar systems and solar
systems into galaxies, but which is very weak indeed
on the laboratory scale.

'E6tvOs experiments using bodies of widely different composition
allow conclusions to be drawn concerning the passive mass of some
of these forms of energy (excluding the gravitational interadtionp
which is discussed in Section I.2.2). Energy conservation requires

conservation of passive mass in reversible transformations between

forms of energy, since otherwise it would in principle be possible

to convert a system to its heavy form, extract energy by lowering

o N o B [ o s . e = s < ki i+ e 8T8 L I . S S

-



it in a gravitationai field, and then 1lift it after conversion

back to its light form, allowing a perpetual metion machine. However,
this does not prohibit equal and opposite changes invpassive mass
amongst components of such transfgrmations, so that anomalous

results of the EOtvOs experiment are possible.

In order to estimate the accuracy required in such experiments,
aseume for simplicity that only the ith form of enerqgy exhibitsuan
EOtvos anomaly, with ki the ratio of passive to inert mass. If
ai(A) is‘the fractional contribution of this energy to the overall

inert mass-energy of body A, Eg. (2A) reads
n(A,B) = (1 - k;) [o;(B) = a;(8)] [3]

Since the mass fractions of the‘alfferent energy forms
add to unity for a given body, the difference in the particle mass
fractions for two bodies is equal, apart from sign, to the difference
1n the binding energy mass fractions. Figure I shows the difference,
between the total blndlng energy for an element of atomic number 2
and that of berylllum, whlch is arbltrarlly chosen as a'reference.
Thls curve, which is obtained from the semi- emplrlcal mass formula

12, may be useful in de51gn1ng tests of the hypoth951s

of Weizsacker
that particles, Of whatever type, exhibit an anomalous Eotves ratlo.

der example, it is clear that this anomaly, if it exists, would

‘bé maximized in a test which compared beryllium with copper or

iron. Such a choice would in fact glve a test 6 times as sensitive

‘as one using gold and alumlnum, with no other changes in the.

‘experlmental condltlons.‘
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n

The total binding energy is made up basically of the electromagnetic
and strong interaction energies, the latter being negative since .
it is an attractive force between nucleons. The weak and gravitational
interactions are negligible by comparison. The electromagnetic
and strongucomponents of the difference in binding energy of an
element of atomic number 2 and that of beryllium are also shown
in Fig. I, where it is seen that the optimum choice for test of
the hypothesis that one of these energies has an anomalous EOtvds
ratio is beryllium and an element of high atomic number, such as
gold or uranium. The achievable improvement over gold and aluminum

is by a factor of 2.4 for the strong interaction, but only by

about 50% for the electromagnetic interaction.

The shape of the curves in Fig. I suggest that an E6tvOs
experiment in which beryllium is used as a standard for comparison
with both copper and gold would give optimum sensitivity fc_. each
of the three above forms of energy -- and if an anomaly were
detected, it would be possible to determine,rfrom the relative
magnitude of the results for copper and gold, which energy was

responsible.

The Dicke test, showing that n(Au,Al) < 10‘11, allows the
folIOWing conclusions to be drawn from Fig. I:
kparticles is 1€$S than 2 x 10-8

Kelectromagnetic is less than 6 x 10~9
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for the EStvOs experiment in space.

11.

Note that this simple analysis applies to particles only when
they are considered as a group. Drawing'conclueions from thek
EStvés experiment about the passive mass of particular types of
partlcles (e g., neutrons) requiree a’nore defailed analysis, as
the differences in mass fractions are not necessarlly given with
sufficient accuracy by the semi-empirical mass formula and, in
aﬁy case, depend on the particular isotopic composition of the
semples tested. An analysis by Schiffl3 suggests that EGtvOs
experiments to date have demonstrated with convincing precision
that protons, neutrons and electrens (and their anﬁiparticles)

do not exhibit anomalous gravitational behavior.

Energy stored in the nucleus by virtue of the weak interaction
is typically of order 107’times less than that due to the strong
interactionl4; in other words, weak interaction energy may contribute

3 to the mass of an atom. In

a fraction of order one part in 10
view of the uncertainties in this calculation, and of the fact that
only differences in the mase'fraction between different materials
contribute in an EGtvOs experiment, it is clear that such experiments
te date are insufficient to allow any statement about the paseiVe
mass of weak energy. On the other hand, the E6tv65 experiment in‘

orblt which is dlscussed in Chapter II, which is intended to have-

a sens1t1v1ty of abcut one baxt in 1014, is fully capable of detectlng

“ony substantial violation cf the Equivalence Pr1n01ple by weak

‘energy. It is this p0551b111ty which provides the strongest motlvatlon

¥
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I.2.2 The Gravitational Self-Energy

For an approximately spherical body of radius r, the fractional
contribution of the energy in its gravitational field to the overall
inert mass is of order

- Gm

o
g
rc? [4]

where ¢ is the speed of light. This number is of order
10_25 for laboratory bodies, much toc small to be of any experimental
interest, but it is of order 1079 for the Earth and 10~° for the

.Sun, so that solar system experiments are much more promising.

As was pointed out originally by NordtvedtlS, a differential
acceleration towards the Sun ofrthe Earth and Moon would result if
gravitational self-energy lacked passive mass. The resulting
polarization of the lunar orbit about the Earth is detectable by
lunar laser ranging using the retroreflectors left on the Moon
during the Apollo program. Results to date indicate no ahomaly,
the accuracy in the measurement of the EStvSs ratio of gravitational

energy being about 2%16.

If this effect existed, the Eérth would exhibit an anomalous
acceieration towards the sun of order 10'1293 While this could in
principle be detected by a sensitive accelerometer in a laboratory,
difficulties with first- and second—o;der Sblax grévity gradients,
tidal effects, seismic noise, étc., probably preclﬁde»such an'éxperi—

ment.
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It would be quite surprising if this type of EStv6s anomaly
were discovered. One third of the anomalous precession of the
périhelion of Mercury can be construed as arising from the active
ﬂass‘of energy stored in the solar gravitatioﬂal field10 (there
is more spherically symmetric mass inside the pianet's position at
éphelion than at perihelion). Moreover, if the”pagsive mass of a
éravitating system changes when gravitational energy is converted
ﬁo,other forms (e.g., kinetid), it is clearly possible to conceive

gedanken experiments which would exhibit small violations of energy

conservation.

A somewhat similar effect can arise in those theories which,
while obeying the Equivalence Principle, allow spatial variStions
»in the gravitational‘C§nstaﬁt (e.g., the Bfans-Dicke theory?).
Because ﬁhe<gra§itational self-energy dépends on G, spatial gradients

°

of G can ptoduce small anomalous forces on a massive quy17.

I.2.3 Spin-Orbit Interactions

It is predicted by'generdl relativ.ity18 that a spinning bbdy
does not follow exactly a geodesic in the Riemannian_Space—timgi
deﬁermined by neighboring bodies, whehvit is in acted on bf no
‘fofces. In’othef words, a gyroscope in a gravitational field exbéfiences
ah anomalous acceleration, which has been calculated byiéchifflgi_'

for the case of a spherically symmetric, static field as

a_ = 3G [(x-B)(xr x v) + (x-v)(r x H)] - [5]
mc r‘_ i
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where M is the mass of the source of the field, m is the mass
of the gyro, r is the radius vector to the gyro, H is its angular
momentum, and v is the orbital velocity. For a circular orbit, for
which r-v = 0, with H lying in the plane of the orbit, an EStvSs
experiment which compared the gyro with a non-spinning body would
feveal an EStvds ratio which varied sinusoidally at orbital period,
of amplitude
3HQ
Ns = pe2 [6]
where 2 is the orbital angular velocity. For example,
a large gyro in low Earth orbit, with a wheel radius of one meter,
spinninc at 14,0700 rpm (close to the value at which centrifugal
stresses would tear it apart), would exhibit an E8tvds ratio of order

10—17.' Careful design and a sufficiently large apparatus might

make this effect experimentally detectable, thereby pfoviding
another test of general relativity. Although such a device Woﬁld,
in prihciple, be capable of detecting the difference between an
inertial acceleration and a gravitational field, this would not
necessarily violate the Strong Principle of Equivalence, which is
limited to infinitesimal regions. ‘A spinning body cannot be in-
tinitesimal, even in principle,feséentially'because the‘periphefy
must move at less than the speed of light. Thus this experiment

would constitute a test of the consequences, and not the foundations

: _of~genera1 relativity.

-
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I.2.4 The Electromagnetic Radiation Reaction

At first‘sight, radiation from an accelerated charged particle
séems to violate the Equivalence Principle. How does a charged
bpdy, at rest in a terrestrial laboratqry, know that it is experiencing
a gravitational field and nét an acceletation,'so that it does not
radiate? The usual answer to this, of somewhat dubious validiﬁy,
i$ that radiation phenomena must occur over distances of at least
aiwavelength, and hence cannot be considered as an experiment in an
infinitesimal region. 'In any case, it is of interest to calculate
the anomalous E6tvds ratio which would be expected if a charged
body were compared with an uncharged one in Earth orbit, because of

the radiation reaction.

The power radiated by an accelerated charged particle is given

by the Larmor formulaZ20

.2 ] | ,
P = - mwv Frag'¥v | [7]
where
2¢?
T=3pc3 (8}

where e is the charge. 1In a circular orbit,

TS

2 = (v x g)z = v2q2 : , | [9]
so that [71 may be written

IF



or

2
F = mTtR“(R X ) = - mg x TN

where R is the radius of the orbit. The radiation
reaction force is thus a drag, opposite to the orbital velocity,
whose magnitude is less than the weight of the particle by the
factor 1Q2. The characteristic time T has its maximum value,

6.26 x 10”24

seconds, in the case of an electron, which, in low
Earth orbit, would thus exhibit an EotvOs ratio of at most about

10726, The effect is therefore negligible.

l6.
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CHAPTER TWO

AN EOTVOS EXPERIMENT IN ORBIT

IX.l1 Basic Considerations for a Space Experiment

As discussed in the previous Chapter, there is now good
e&idence that all the forms of energy which make up matter obey
tﬁg Equivalence Principle, with the possible exception of energy
sﬁored in the weak interaction. It‘appears that this last form
of energy can be checked byicarrying out an EOtvOs experiment
with a sensitivity improved by several orders of magnitude, to

about one part in 1014.

The advent ofaspace technology has made possible a substantial
improvement in the experimental conditions for the EStvds experiment.
In low Earth orbit, there exists a balance between gravitational
and centrifugal accelsrations whese: magnltude is close to one gee.
This is to ke compared with the forces avallable to Eotvos~
(1.7 milligee) and Dicke et a1817 (0.6 milligea). Moreovef,«the
free-fall env1ronment in orblt allows great reduction in the problems
assoc1ated with- suspen51on of the apparatus, such as coupling to

amblent noise. In pr1nc1p1e, then, the Eo;vos 51gnal can be 1ncreased

- by three orders of magnitude, and the noise level substantlally

reduced. In view of the importance of the experiment to the
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foundations of general relativity, it is an obvious candidate

for performance in space. As discussed in Section III.3, .
it may be an ideal experiment in terms of making use of the

capabilitigs of the Space Transportation System (space shuttle),

in the development of the apparatus as well as in performance of

the final experiment.

The most obvious technique for carrying out this experiment
in orbit is to use an adaptation of the rotational balances which
have been successful in terrestrial experiments. However, gravity-
gradient torques may swamp those due to EOtvOs forces unless great
care is taken to make the system inertially symmetrical. Without
going into the details of the design of such a balance, some general

" conclusions may be drawn.

For simplicity, consider a system with one of its'principal
axes along the orbit normal. The gravity-gradient torque is then

along the orbit normal and of magnitude (calculated in Section III.2.4).

T o= - %QZAI sin 26 | - [12]

g
where AI is the difference in the moments of inertia
about the principal axes which lie in the orbit plane and 6 1is

the angle between one of these axes and the‘localverticalr

Let us suppose the system is constructed of two different
materials, A and B, for which the ratios of passive to inert

mass are k(A) and k(B), respectively. The EOtvOs torque about

[V S — . e o e | ( T



the center of mass is then

113
4

~ g x [k(B)fy £ dm + k(B) /g dm]

= ng x [fB r dm]

= - 1nNmgxa [13]

where g is the local gravitational field, r is the
radius vector from the CM of the system to an element of mass dm,

and
a= 1 rdnm : [14]

Wiéh appropriate symmetry, a will lie in the orbit plane, but
generally not along one of the principal axes. ge is then along

the orbit normal and of magnitude

T, = = nmga sin ¢ [15]

where ¢ is the angle between a and the local vertical.
In order to estimate the difficulty of inertially balancing the
system, a reasonable condition to"impose is that the frequency
of1gravity-grad;ent oscillations pbe less than that due to EGtvds

tofques. If I is the moment of inertia about the axis along the

‘orbit normal and b the radius of gyration about this axis, this

condition may be written, using [lZ](ahd [i5], as

él‘gnaR '
T T 37 L | [16]
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where R is the radius of the orbit. For a given system
geometry, the gravity~-gradient torques increase faster with the -
size of the system than do the EOtvds torques, so relatively small
apparatus is required to allow adequate inertial balancing. For

a=Db =10 cm, [16] requires

AT -7
T <2x10 [17]

in order to achieve an accuracy of n = 10_14. Inertial

balancing to this accuracy is difficult but not impossible with
current technology, especially as it may be possible to exploit
the double~angle dependence of [12] and a design difference in the
directions of « and a principal axis to effect final balancing

on orbit.

Even if this condition can be met, it must be recognized that
the torques under consideration are extraordinarily weak. From
[15], the angular frequency of oscillation due to the EStvOs

torques is given by

w2 = nakR

which, under the conditions assumed in [17], gives a
period of some 2000 hours: It is clear that very great care
indeed would be required to protect the balance from non-gravitational

disturbing torques, such as those due to the Earth's magnetic

field, radiation pressure orvperhaps residual atmospheric drag. “
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Furthermore, it is highly desirable to design an experiment from

which the data can be extracted more quickly.

II.2 Force-Balance Techniques

In order to overcome the difficulty of inertially balancing an

E8tv8s torgue-measurement apparatus for use in free fall, an alternative

technique is under study in the M.I.T. Measurement Systems Laboratoryzl’zj
(and also at the Hansen Laboratofies of Physics, Stanford University23),
in which the EOtv8s forces are.to be measured directly, without con-
verting them into torqﬁes. The design was motivated by the follow-

. ing considerations: ‘

i) Gravity-gradient forces may be minimized by placing the
N centers of mass of the bodies to be compared as nearly
_as possible at the same point in space.

ii) The tensor propertles of residual gravity-gradient forces
may be used to dlstlngulsh them from the phenomenon
under study.

iii) The E&6tvSs force may be modulated by rotating the apparatus,
allowing operation at higher frequencies and minimizing
the duration of the experiment.

iv) The design allows resonance to be used to enhance the
sensitivity to EOtvos forces.

v) Force-measuring devices (accelerometers) are simpler to
instrument than torque-measurlng deVlces, which must
include gyros and/or star- trackers.

vi) While a force-measurement experiment may seem, at first

o sight, more subject to disturbances due to external forces
(magnetic, residual aerodynamic, etc.) than a torque
balance might be, in fact the force balance technlque
allows discrimination against these effects in a way
which is difficult or impossible with a torque balance.
In any case, i1f necessary these forces can be reduced
or eliminated by well-established "pure gravity orbit"
techniques.
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As sketched in Fig. II, the proposed apparatus is a sateliite~
which consists bhasically of an aluminum wheel, spinning about its | -
axis of symmetry, which is nominally aligned normal to the plane
of the orbit. This orientation is, of course, stable under gravity-
gradient torques. A sensitive electrostatic accelerometer is
mounted radially in the plane of the wheel; it consists of a cylindrical
electrode structure with an internal test mass constructed of .
material A and an external, annular test mass constructed of material
B, as sketched in Figf ITI. The accelerometer is so designed that,
when the two test masses are at their null positions, their centers
of mass are nominally coincident with each other and with the center
of mass (CM) of the satellite. The object of the experimant is,
of course, to compare the EGtvOs ratios of materials A and B, by
a differential measurement’of the forces which they experience as

the satellite moves along its orbital path.

IT.3 Analysis of the Experiment: Ideal Case

Let m, M be the inert and passive masses of test mass A and
m', M' those of testrméss B. The null positions are taken accurately
coincident with the CM of the system and thé aisplacements‘of the
test masses from nullrare‘denoted,by X, x' respectively. The mass
of the wheel is assuméd to be éé'large ghatvhotionbof the test
masses does not appreciably shift the position of the CM within

the system. The Satellite moves in a perfectly circular orbit

about the Eérth;'whiCh is taken to be spherically symmetric, and - ?_.
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no external forces other than gravitation act on the system.

Ideally, the egquation of motion of test mass A is then
‘m¥=-mgqg + mwx + .[Mg - mg*].ixb‘_ ' [19]

where w is thé inertial angular velocity of the wheel,
q is a servo restraint force applied to the test mass, ix is a unit
vector along the (commbn) accelerometer axis, g is the gravitational
field at the test mass and g* is the inertial accelération of the
CM of the system, due to terrestrial gravitation. In this equation,

forces which are perpendicular to the sensitive axis, such as the

25,

Coriolis term, have been dropped: the cross-=coupling between support

and sensitive axes of the accelerometer is assumed zero.

A similar equation to [19], using appropriately primed quantities,

applies to test mass B.

Without loss of generality, the EOtvds ratio of the satellite

as a whole may be taken as unity. This is equivalent to defining

the gravitational constant as that measured in a Cavendish experiment

using masses of the same average composition as the system. Then
g* = - Q2R e - , [20]

where Q is the orbital angular’velocity of the satellite

and R is the geocentric position vector of its CM.

The gravitational field may be expanded in a Taylor series

about the CM, most conveniently in tensor notatiog. For future
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reference, we write the field for a general position ry (i =1,2,3)
relative to the CM and compute the second-order terms, although .
only the first-order gravity gradients are required at present.

For test mass A,

Mg; - mg} m[kg; - g7l

K-1) gt 0.1 . K Bzgi
- o¥ 2 ¢ — [UE———
m ( )gi + krj[aR;] * 5 rjrk[aRjBRk] + ...] [21]

where k = M/m and * means the quantity is to be computed

at the CM. Since k is very close to unity (as demonstrated by

terrestrial Eotvos experiments), it may be taken as such in [21],

except in the first term, so that

\ - e

Mg, - mg¥ = m[(k-1)g* + T,.r. + T
' o bl 1] ijkrjrk toeeed ' [22]

~here the first- and second-order gravity gradient tensors

are given by the partial derivatives of the terrestrial gravitational

field as
o 198i1x = & r_eMR73R.]*
y; = [Deil* = 3 [-OMgR "Ry
j 3
-2 )
— 2 -
= - [aij 3R RiRj] , | [23]
and
2
T = lpjlfiq* . e
ijk 2 BRjBRk - 7 ;
_ 3,22 ‘ , 20 oo (241
= FRR; &y ¢ RjGik + RS, - 5R RiRij]V
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where Mg is the mass of the Earth and Sij is the unit

tensor.
Substituting the first—ordér,terms in [19] yields
3 2 z 2p=2 . 42 _ S . '
X +qg - [w® - Q% + 30°RT4(R.1,)"1x = (k'l)i*lx [25]

or, since ix is rétating with respect tovthe local

vertical (i.ei,‘g) with an angular velocity (w=-92) ,
i;+ g - [w? + %nz +-%92 cos 2(w-Q)tlx = (k-1)g cos (w-Q)t [26]
If g is a simple spxing restraint,
g = Kx o - o [27]

this is recognized as a standard Mathieu equation, driven
by sinusoidal forcing function proportional to the difference

between the EOtvl0s ratio for test mass A and that for the whole

system.

By writing out the egquation similar to [26] for test mass B,

using primed quantities, and subtracting from [26], we obtain
¥ + Aq = [w? + %92 + %ﬂz cos 2(w-Q)tly = ng cos (w—Q)t [28]

where y = x~x', Aq = -q', and n = k - k' is the E6tv0s
number for materials A and B. A Mathieu equation for the differential
motion of the two test masses results if g' is alsc a spring restraint

with the same spring constant per unit mass as q.
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The ideal performance equation [28] demonstrates the possibility
of carrying out an ECtvOs experiment with apparatus of this type.
It would, of course, be possible to use an accelerometer with a
single test mass, made of the material to be tested against the
satellite as a whole, according to [26]. The advantages of the dual
accelerometer are:

i) Any pairs of materials may be compared, merely by changing
proof masses. This flexibility may be used to enhance
accuracy in the search for violations of equivalence by
different forms of energy, as discussed in the previous
chapter.

ii) More importantly, as shown in the next Chapter, the con-
: figuration allows discrimination against many disturbing
forces, which do not appear in the ideal equation [26].
It is to be noted that the ampliinde of the EStvds acceleration
in [28] is Ng. 1In designing a force-balance EOtvos experiment with

an abcuracy of one part in 1014

, a prerequisite is an accelerometer
with a sensitivity (to sinusoidal acceleration) of 10'14g. The
problem of designing and, most importantly, testing such an accelero-

meter is taken up in Chapter IV.
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CHAPTER THREE

SATELLITE SYSTEM DESIGN

III.1 Preliminary Stability Analysis

In beginning a more detailed design of the'fdrcé—balance
satellite experiment discussed in the last Chapter,‘the first question
éo be taken up is‘that of determining the conditions under which
Eq. [28] (dr Eqg. [26]) has stable solutions. To this end, we assume

a servo restraint force between the test masées of the form
Ag = Ry + 2Ay [29]

which represents a simple spring, with damping. The

equation of differential motion [28] is then

v+ 2A§ + [W2 - %92 cos 2(w-Q)tly = ng cos (w=Q)t {30]k
where
W = K - w? - %82

For resonance, one might first'choosekx = 0 and

w2 = (0-9)2 G | , o q31)
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but unfortunately this ideal, infinite-Q case results in
divefgent solutions of the Mathieu equationzs. The degree of damping
required for stability may be calculated by the techniques described
in Ref, 23. We consider the homogeneous version of [30] and, to

put it in a standard form, first write

T = (w-Q)t [32]
which yields (with %% now denoted by y, etc.)

y +;(i§9) v+ TB%QTT[WZ - 30% cos 20]y = 0 - [33]
The substitution

y = e At/ (0=02) 2 (1) | [34]
reduces this equation to the standard form

£+ (a - 2b cos 21)z = 0 R [35]
with

a= (W2 - 42)/ (w-0)2 R 1361

and _
b = %92/(w-9)2 _ . 137

If [3Sj has stable solutions, then [33]’Cértainly does also;
but, because of the'damping factor in [34], it is possible for [33]

to be stable evenTthough.z(T) is divergent. We must theréforeif

»
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investigate the properties ofuthe unstable sdlutions»of [351,

for different values of a & b. The stability diagram is Fig. 8

of Ref. 25: the releVant region of the a-b plane, for operation
near resonance (a = 1) is shown in Fig. IV. The curves separating

stable from unstable regions are given by26

= L2 _ l.3_ 1 4 |
and
J_.jz 1.3 1,4
at =1-b-73b +5g° - T536® = --- | [38b]

If the point (a,b) lies on the cuive [38a], the solution
of7[35] is periodic and even int If it lies on [38b], it is periodic
and odd in t. Between these cﬁrves, the solution is divergent;
i£ may be written in the fprm27

= =0

z(t) = Re¥T 1 cpe2lkT 4+ Be Mt g cke'ijT [39]
. -0 =00
where the summations represent periodic functions, A & B
are constants detexminedyby the initial conditions, and p is
a function of“a & b. It is clear from [34] that the solutions to

the original equation [30] will be stable if

A > () [u] = Ay, [40]

Between the curves [38a] and [38b], we may choose a parameter

o such that??
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a=1~-Db cos 26‘+ %bz(%cos 40 - l)'+‘;lb3cos 20

64
S 1,4,1 11 _
+ g0 (5 - 3308 40) ceo o [41]

which reduces to [38b] for 0 = 0 and to [38a] for ¢ = w/2.

Given values of a & b, [41l] may be solved numericallv for ¢ and

then?25
R T 3.3 . 3 .4, _
= -2b sin 26 + 1—2—8-b sin 20 - T02—4b sin 4o PP [42]

We consider two modes of operation of the system which might

be used in practice:

i)  w>>Q

If the wheel is spinning at an angular velocity much larger
than orbital angular velocity, [37] shows b<<l. It is then sufficient
to retain only upjto the quadratic terms in b in [41]. To estimate
the required damping, we assume operation at resonance (a = 1),

and thén [41] becomes

%bz(% cos 40 - 1) - b cos 20 = 0
or ;
29 - & - 3.
cos4é20 peos 20 5 = 0 : [43]

which may be solved to yield, to second order in b,

cos 20 = - %b | | - 144]



To this accuracy, [42] then gives

W= - 3D [45]
and,. from [40], the minimum damping for stability is
2
Apin = %(w—Q)b = % (w?Q) [46]

Under these conditions, the time-varying coefficient in [30]
produces a small perturbation to a simple second-order harmonic

system, which, according to [46], has

= (U)"‘Q) = l = ,;L__ £ i _w_ - 2
Ymax = ~zx - “3fwT b "3 @Y [47]
min

It is thws clear that very light damping may be used if w is
high enough. For example, in low orbit, with w = 10 rpm, a value

Omax = 1069 is obtained.

If the solution [39] is substituted in [34] and T replaced by

t, by [32], it is easily seen that the effective damping factcr is

Aeff = A = (w-9) |u| ' ' [48]
so that
: = (w-0)
Qaff = 55—= [49]
© zkeff

can be much higher than Q

fase if A is close to Am

in°®
Comparison with an accurate numerical calculation shows that
[46] is an adequate expression for Amin if w is greater than about

3Q.

34.
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ii) © = 0 (Inertially stationary wheel).
In this case, from [37], b = %.

the resonant condition [31] in [36], we find, using [40],

If we put A = A and use

min

a=1-=- uz k ’ [50]

Since we cannot be assured a priori that u is small, this
expression must be used in [41] and the equation solved simultaneously

with [42]. An iterative numerical procedure (reguli falsi) gives
A= 365 Q o [51]

Note that the expression [46] gives a result which is éccurate
wiéhin about 3% even in this extreme case. While high effective
Q can still be achieved in principle, in the presence of the
heavy damping implied by [51], in such a case small changes in the

damping could lead to instabilities. This is one of the reascns

- the spinning system is preferred for this experiment.

In practice, of course, a simple spring with damping‘is a
very elementary servo. A more realistic design requires study of
disturbing forces acting on the system, and the question of system
stability must be examined again‘in the light of this ahaiysis.
For example,”it would be possible tQ compute and apply a-correction
for the timé-varying coeffigient in [30], if this‘should prove
deéirable. However, [46] provides a gbod rule of thumb for estimat-
ing the minimum allowable damping in thé absence of such compensa-

tion.
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III.2 Disturbing Forces

In the system under consideration the EGtvOs acceleration,
if it exists, always lies along the local vertical, and is modulated
by rotation of the wheel. Any forces applied to the wheel or to
the test masses which appear, in a reference frame attached to the
wheel, at frequencies close to (w=-Q), the angular velocity of the
wheel with respect to a local vertical reference frame, may
masquerade as EOtvOs forces, although considerable diécrimination
is possible when the differential motion of the two test masses
is regarded as the output of the system. Limits to this filtering
action of the dual aécelerometer will be considered below, but,
to maximize scnsitivity, it is clearly desirable to minimize extraneous
forces, in particular those, such as residual atmospheric drag,
which are approximately constant in the orbital frame. Those

forces which have constant components along the local vertical may

_prove especially troublesome.

Techniques exist?8 for isolating the system from most external
forces, by making it "drag-free". 1Indeed, it was the availability
of such techniques which provided one motivation for designing
the system to measure EStv8s forces directly. However, only those
forces which, directly or indirectly, appéar,along the sensitive
axis of.the accelerometer are of interest, and this may allow a
simpler mechanization than that involved_ih fo;cing thé entire

satellite to follow a pure gravity orbit. This possibility of

course depends on the feasibility of designing an accelerometer

T
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with sufficiently low cross-coupling between the support and

sensitive axes.

The list of possible disturbances which must be taken into

account includes at least the fbllowing effects:

1.
2.

g.

10.

11.

The orbit of the satellite is slightly elliptical.

The center of mass of the system does not coincide with
the center of gravity.

The system moves in the vicinity of a massive object,
which exerts gravity gradient forces on it (for example,
the experiment is free-flying in the shuttle payload bay).

The wheel angular momentum is not along a pr1nc1pal
axis, nor along the normal to the orbit plane.

The null positions of the test masses do not coincide
with each other, nor with the CM of the system.

The sensitive axes of the dual accelerometer are not

coincident, nor are they perpendicular to the spln axis
of the wheel.

Support forces for the test masses couple into thé sensitive
axes, due to Coriolis effects as well as to mechanical and
electromagnetic imperfections. :

- The CM of the system shifts when the test masses move.

The test masses are affected by stray electromagnetic
forces, generated by the satellite or arising from aatural
ambient fields.

Various mechanical forces (noise) are applied to the
wheel.

The displacement detector is noisy, exerts forces on the
test masses, and possibly exhibits non-linearities '
(e.g., threshold). R

System design for this experiment is not yet complete, and

‘not a11,of these effects have as yet been taken into account.
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I11.2.1 Orbit Eccentricity

If the orbit is not precisely circular, the first-order gravity- s

gradient tensor [23] must be written
Pij = - GMgR™3[8 34 - 331341 [52]

where j; is a unit vector along the local vertical,
to allow for variations in the orbit radius R. The equation of

motion [25] of the first test mass is then
£ +q - [02 - GMeR™3(1 - 3(3.1i,)%1x = (k-1)GM R™2j.i_  [53]

If we assume for simplicity that the accelerometer sensitive

axis is along the local vertical at perigee, then
" J.iy = cos (wt - ¢) [54]

where ¢ is the true anomaly, the instantaneous geocentric
angle away from perigee in the orbit. The radius of the orbit is

given by29

R = p | [55]
1l +e ccs ¢

where e is the eccentricity and p is the semi-latus

rectum, which is the radius of the orbit when the true anomaly

is 909,

In ordef to find the variation of ¢ with time, we first ‘ .

~introduce a new;variable'E, calléd the eccentric anomaly, by

the relation

s o b O 142 2oL+ e sranit s e i
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| | 1/2
- A £ __E _ A
tan %_, (-I:g) Lan“-z-v : [56]
E The eccentric anomaly is the solution qf Kepler's equation29
it E - e sin E = Qot [57]
ﬁ where Qo is the mean orbital angular velocity. This
z; equation may be solved in terms of a Fourier-Bessel series
%; expansion for E, but, to first order in e, the solution is obviously
; E = Oyt + e sin Qgt » ~[58]
;; If we write
6 = 8ot + 5 S O (591
% and insert this and [58] in [56], we find, after
% some reduction, to first order in § and e,
; § = 2e sin Qut ' | [60]
% and then [54] gives

J-iy =:cos(w-ﬂo)ty+ 2e sin Qgt sin(u-Qo)t ' [61]

Now, to first order,”
i GMQR'3(1 - 3(j‘i')2) = 02(1 + 3e cos Q t)[l - 3 cosz(w-g )t
i " TetIx o e, D ‘ o
AT | o L = 12e cos(w-o)t sin 9ot sin(w-0g)t
L S EAAAN R A
g ny = 93[— 7 - 3908 2(u-Qo)t

+ 3el- %‘¢ds %t - % cos (2w - 3%)t + %.cos(waQO)t]] (621
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and, on the right side of [53],
GMQR-zi.ix = gg(l + 2e cos §yt) (cos(w~Qg)t + 2e sin Qgt sin(w-0Qy)t)
= golcos (w-0,)t + 2e cos(w-20,)t] , [63]

Suppose now that there is a steady state offset Ayo between
the null positions of the two test masses. When the equation of
differential motion is formed, analogously to [28], by subtracting
from [53] a similar equation for the other test mass, the first
order effects of the 6rbit eccentricity will be, firstly, to
change slightly the time~-varying coefficient, according to [62];
and, secondly and more importantly, to introduce a driving force

which, apart from coastant terms, is given by
£ ='92Ay [3 cos 2(w-Q. )t + 3e(l cos .t + / cos (20-30x) t
o~4oty o , 5 o T 0
- 1 cos (20-90) )1 . [64]

Note that there is no component of this force with the principal
frequency (w-9Q) at which the EOCtves acceleraﬁion appears. In
fact, the double harmonic term (independent of the ecceﬁtricity)
can be used to drivekthe null pqsitions of the two test masses

into coincidence.
If the wheel is inertially stationary, however, a term

(£ = 302e bygeos ot S



is n =10

‘aﬁd g¥ is now the gravitational field at the CM. By definition

of the CM, | ‘ N -

41,

+

appears in [64], at the same frequency QO exhibited
by the EStv8s acceleration in this case. Since the amplitude of

the E6tvds signal is ng = anRo, we must have
AY A << £ﬂ§<3 ‘ : | 66
Yo 3o . ’ [66]

if £, is not to be falsely interpreted. Fdr e =~ .002,
é reasonable value for 1ovaarth orbit, and if the design sSensitivity
114, the null,offset.must be small compared to 40 microns.
ihis is not a difficult requirement, but the effect could become
troublesome if it were desired to attempt much greater sensitivity.
In any case, the problem can be avoided by operation in the spinning
mode..

—

I11.2.2 CM-CG Deviations

Consider an arbitrarY‘rigid body in circular orbit. Set up

a teferegce frame with origin at the center of the Earth, rotating —

#

atgorbital angular velocity so as to keep the l-axis along the
orbit normal and the 3—éxis along the local vertical. In this
fréme, the total (gravitational plus centrifugal) force acting on
aﬂ element of mass dm in the~body, located at a position vector

rj with respect to the CM, is (cf. Equ [23] and [24]).

dF; = - 0% (R; + rj)dm + g¥dm + Tjyridm + Tjqpryrpdm + ... [67]

where R; is the geocentric position vector of the CM
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Jrjdm = 0 [68]
so that integration of [67] over the body yields
F, = m(g; - QzRi) + Tijk frjrkdm + ... [69]
The definition of the inertia tensor of the body is30
Ijk = f(rnrnrsjk - rjrk)dm t70]

so that the last term in [69] may be written

AFy = Tijkyx /Fn¥nd® = Tijxlyk
"7 Mgk
= - %ng'2[Rinj + 2RSI g - 5R‘2RiRijIjk] | [71]
since, from [24]
Ty 5x85k = Tijj = 29°RTZI3R; + Ry + Ry - 5R;] = 0 [72]

Now let us suppose that the principal l-axis of the body lies along

the orbit normal, and that the principal 3-axis makes an angle 6 with

"~ the local vertical. In the principal-axis frame, Ijk is of course

‘diagonal, and

Ri = R[0, sin 9§, cos 6] ‘ ' ,; o ST R [73]

Rinj = R[0, I2sin Q, I3cQs e]k ‘ ‘ I74]
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and

= v 2 X 2. 2
R.RkIjk (1251n g + I, cos?H)R [75]

J 3

so that [71] may be written, after scme trigonometric

reduction, as

AF = _éng-Z
2 | o [76]
2 - 3 2 o l 2 3 ) 5 2_ 2 .
(El 3'52 T 53)51n 0 +z.(g2 53)51n 38
2 o1 ;2 _ 3 ;2 5 2_r2 ;
(El T Ez T 53)cos 6 +Z.(g2 53)cos 386

whereg,, 52, 53 are the radii of gyration. Compared ‘to
an infinitesimal body, a finite-sized body in orbit thus, in

general, experiences a small additional gravitational acceleration.

"We note first that, if 6 = 0, the incremental acceleration is

along the local Vertical, and of magnitude

e = - 3 grR72(g} + &3 - 2£)) [77]

If gé = g%l as in the case of a wheel spinning about the normal
td the orbit, then, as is to be expected, f76];shoﬁs'that the accelera-
tion is aldng'the,localivertical, regardless of 6, If the wheel

is taken as a uniform disc of radius a, then [77] gives

e=32(3% | | [78]

ooj W

For low Earth orbit (R = 6550 km) and'a = 50‘¢m,

e =2 X 10f159 ' B . : v - [79]
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The test masses are physically much smaller, so the acceleration
applied to them is expected to be at least two orders of magnitude ‘
smaller than [79], depending on their design. Thus [78] appears

in the system exactly like an EOtvds acceleration, as if the ratio

of passive to inertial mass of the wheel were greater than unity,

except that it is sensed by both test masses. The filtering

capability thus provided should permit, as far as this effect is
concerned, operation down to about n = 10-17, At this level, it
becomes necessary to take into account the differences in the

detailed inertial properties of the two test masses ~- specifically,

the difference obtained when [76] is applied to each of them. ' -

The effect [79] could perhaps be reduced by an order of
magnitude by making the entire apparatus as small as possible.
A better technique would be to make the "wheel" isoinertial, as
[76];aﬁd [77] vanish if the radii of gyration are all egual. 1In
this cése, however, the system would not be positively stable in
its nominal attitude under gravity-gradient torques, and a separate

attitude control system would be required.

0f course, it is not necessary that the system be isoinertial

in order for‘[77] to vanish. If we choose
g1 = 28} - &3 i f | [80]

then it iszeasy to see that the principal l-axis will have

o0

maximum moment~of'inertia, as desiredkfor attitudé stability, as
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long as &3 > Es, These conditions are met, for example, by a flat
rectangular plate, lying in the plane of the orbit with its long
dimension horizontal, if the length-to—width ratio is 42:1. However,
the fact that the acceleration vanishes for particular orientations
of particular asymmetric bodies is academic, since it is necessary
to rotate the apparatus* to modulate the Edtvds forces. What is
significant is the componeﬁt of [76] along the sensitive axis of
tte accelerometer, with 6 = (w-Q)t. If, for example, the accelerometer
is along the principal'z—axis, it would be desirable to have
Ei i} % 55 N % E% [81]
since the third-harmonic term may Be‘filtered out; From
this, however, the condition Eij>vg§ implies 53 > g;; ﬁheteas
£ > Eg'implies Eé > £%. Thus [8l] is incompatible with g being
the maximum radius ofvgyration: the best that can be achieved is

inertial symmetry.

IIT. 2.3 Nearby Massive Bodies

For a preliminary evaluatlon of the fea51b111ty of ope ating
the experiment in the v1c1n1ty of other equipment (e.g., free-
flying in the payload bay of the space shuttle), we consider here

the gravitational effects on the system of a body of masskym, located

‘at a vector position R° with respect to the CM of the system. For

‘numerical estimates, we take M° = 1 ton, R° = 2 meters.

L e T s e e N S

*The apparatus is, of course, rotating relatlve to the orbital f*ame

even in the 1nert1ally statlonary case.’
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At the CM of the apparatus, the gravitational field of this
object is of order 10‘9g. The presence of the body thus makes a v
negligible change in the EGtvds signal (the right-hand side of
[28]). The direct effect of this field, the acceleration of the
apparatus towards the body, is also negligible, being two orders
of magnitude smaller than the apparent relative accelerations due

to the terrestrial gravity gradient.

j | The first-order gravity gradients due to the disturbing body
can be more significant, changing the time-varying coefficient in
[28]. Close to the surface of a spherical body of density p, the

gravity gradient tensor will have components of orxder

GMR™3 = %’ TGP ; ' ; [82] )

and thus can be comparable with the terrestrial gravity
gradients if the density is comparable to that of the Earth. We

can in fact write [28] as
¥+ Ag - [w? + %,GMG)R"3(1 + 3 cos 2(w-9)t)
+ %GM°R°“3(1 + 3 cos{uwt —6))]Y = ng cos (w-Q) [83]

where 8 is the angle between B°‘and an inertial reference direc—é
tion and it has been assumed for simplicity that R° lies in the
plane of the orbit. If R°®°.R is constant (e.g., if the shuttle is

Stabilized with respect to the local vertical), the time dependence
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of the disturbing gravity gradients will be the same (apart from
a phase angle) as that of the terrestrial term. 1In this case, the
principal effect is an increase in the coefficient b in [35]; by

[47], this may increase somewhat the damping required for stability:

With the numerical values for M° and R° given above, the disturbing
gravity gradients are two orders of magnitude smaller than the

terrestrial term. The conclusion is thus that, if it is desired

to operate the experiment in the shuttle, a more careful study of
the effects of first-order vehicle gravity gradients is warranted,
but it appears probable that the sensitivity cf the experiment will

.not be compromised by this effect.

Further difficulties arise when the second-order gradients
are considered. If R° is in the plane of the wheel, whose radius
is a, then the acceleration of the wheel towards M?°, due to the

difference in position of the CG and the CM, is given by [78] as
e=JaZawr? = 4 x107Hg [84]

with the numerical values and a = 50 cm. Cbmparison with
[79] shows the effect is three orders of magnitude larger than

that due to the second-order terrestrial gradients.

The acceleration [84] is, of course,rextraOrdinarily small ;
by ordinary standards. If the‘ekperimehtal apparatus has a mass

of 100 kg, for example, tue force exerted on it due to this effect
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is only 4 millidynes; this is equal to the radiation pressure

exerted by reflection of a light beam whose power is 6 watts! .

It is not possible to avoid the effect [84] by attaching the
experimental apparatus in a suitable bearing to the structure of
the vehicle (even if the mechanical noise problems thereby introduced
could be overcome), because the test masses would then sense the
direct gravitational field of the disturbing mass ($10‘9g) as well
as terrestrial gravity gradients (v10~7g if the attachment point

is 2 meters from the CM of the shuttle). Free flight is essential.

The acceleration g is similar to an EOtvSs acceleration but of

course does not represent a limit to the accuracy of the experiment

if carried out in a large vehicle in orbit. In the first place, -

the effect is sensed equally by both test masses; the discrimination
afforded by the differential measurement depends on the design of
thefdﬁal accelerometer, but is expected to be several orders of
maghitude. Further discrimination is possible if the vector R°
varies in direction or magnitude, with frequency components different
to th¢se involved in the E6tv6s‘measurement. For example, a slow

rotation of the shuttle would remove the acceleration ¢ from the

passband of the accelerometer. In order to avoid the essentially

continuous thrusting which this might involve if the experiment were
not quite ciose to the CM of the vehicle, a possible technique would
be tofalign the roll axis of the shuttle approximately along the

local ve:tical.and allow it to execute dumbbell gravity gradient B
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»

oscillations, of an amplitude sufficiently small so that the apparatus
does not strike the walls of the paYload bay. In this case, there
would be a constant component of e, but measurement of the component
at the dumbbell freéuency (in the sum motion cf thc test macsses)

would allow computation and subtraction of it in data processing.

More Herculean measures are éossible to counteract this effect.
For example, measurement of the acceleration, as discussed above,
would provide tﬁe data needed to exert a compensating force on the
apparatus (perhaps by radiation pressure!). Alternatively, it is
in principle possible to add compensating masses, attached to the
shuttle, around the apparatus, ih such a way as to reduce the
second~ocrder gravity gradients.

I .

Without going to such lengths, it is probably possible to carry
out the experiment in the shuttle payload bay, with an accuracy of
pgrhaps one part in 1014*, 1f higher accuracy is required, launching
the apparatus as an independent satellite is probably the preferred
téchnique, paying the price for the increased autonomy which would

then be needed.

%At this level, it may be necessary to take into account second-
order gravity-gradient forces on the test masses themselves.

e o ot e ot U g o o
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IIX.2.4 Attitude Motions of the Apparatus

a) Torque-free Nutation .

"To start with the simplest possible case, we assume that the
system is inertially symmetric about the spin axis, having a moment
of inertia IS about that axis and I, about transverse axes, and
that the test masses are so small that their motion does not affect
the motion of the system as a whol#., The motion is then that of
a classical rigid body. For future reference, we start by sketching
the well-known derivation of the nutation frequency, in the absence

of gravity-gradient or other torques3l.

The equation of motion is determined by conservation of
angular momeniuam:

[_Ij]I = [g]B +wxH=0 | [85]

where [g]I is the rate of change of angular momentum relative to
inertial space;

[é]B is the rate of change of angular momentum relative to
body axes; and

w is the inertial angular velocity.
In body axes,

w=lo g, wyr wil ‘ ' [86]

2'

and

i
I

[Towg, Tpwy, Igws] i o - [87]

RN P
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and [85] reads, in components,

wg = 0 . [88a]

by + wpug = 0 v '7 ~ [ssp)

wy = wpupy = 0 | S [88c]
‘where

wy = [?I.s ~ 1lug - | [89]
t

Differentiating [88c] and substituting from [88b] yields

(1')3 + “31:21‘”3 = 0 . [90]
" with the solution
wy = A cos wpt ' [91]
which, wheh used in [88b], vields
wy = = A .sin wpt | | e [92]

Let us now suppose that the 2-axis is along the accelerometer
axis. Due to the nutation, the test mass experiences a centrifugal

acceleration
a = = ng = - A2x cos2 wht = - % A2(l + cos ant)x [93]

If the accelerometer is a ‘simple’ sprlng w1th damplng, its equatlon

of motion (neglectlng grav1ty gradlents) 1s then




4 2% + [(K - o} -

so that, in many
the system are similar to

amplitude of the nutation

ng cos(w-Q)t

%.Az) —'%.Azcos 2w tlx

respects, the effects of nutation on
those of gravity gradients. If the

is variable, however, it shifts the

resonant frequency of the system, which limits the allowable Q;

if the nutation is uncontrolled, we must have, in fact,

A < (0-9) (2/Qg¢¢)

[95]
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[94]

in order to stay within the 3-db bandwidth of the accelerom-

eter, assumed resonant at (w=Q).

this condition ~an be achieved during start-up of the experiment

by the use of nutation damping devices.

The stability of the test masses under nutation may be in-

vestigated by the methods of Sec. III.1l, using the homogeneous

form of [94].

[35], where now

— 2. 12 2
a= (W A-.)/wn

with

2

“and

W=K~0w:-21n
s 2

The equation can be reduced to the‘standard form
[96]

[97]

‘ o - 198]

For reasonable values of Qeff'




"allows control of the nutation frequency w

Assuming the damping is small, the system is tuned to the

E6tvos signal,
a= (m»sz)z/mr?1 | [99]

and, from [95],

1,0-0,2 a ’
b < Z(—=)“/Q = ol : [100]
2 W eff ZQeff

According to [89], choice of the ratio of moments of inertia

n which appears in the

time-varying coefficient in [94]. As Wy is varied, according to

{100] the operating pointfin the a-b plane remains closer to the
g—;xis than a line through the origin, of slope 2Qeff' For any
reasonable Qeff' examination of the stability diagram from the
Mathieu equation25 shows that the solutions of f941] Qili be stable

except for quite restricted regions around
a = n2 e e ‘ [101]

where n is any integer. 1In other words, the condition

{95] is sufficient to ensure stability as long as
un # 2(0-0) | S S o o2
or, frqm [89] (siﬁée wg = w)
‘Is/It' # 1""4-%(1 - 3 : L ~ [103]

where n is close to integral.

53.




The result [102] merely states that the nutation frequency
should not be close to a submultiple of the resonant freguency of
the accelerometer. This imposes some constraints on the design
of the apparatus: for example, the wheel should not be closely
similar to a thin disk in'its inertial properties if w >> Q,
for then IS/It = 2 and approximate equality will hold in [103] for

n =1,

b) Gravity-Gradient Torques

?he first-order terrestriai gravity gradients exert a torque
on the satellite which may be calculated as follows: In an orbital
~inertial frame (oi-frame), which is an inertially non-rotating
frame whose oxigin is comoving with the CM of the satellite, the
net force oﬁ an element of mass dm'of the satellite, located at

vector position r; with respect to the CM, is (cf.[23])

2

dF, = I;z2r.dm = - Qz[ri - 3R 'RiriRj]dm . [104]

where it ié'assumed the satellite is in a circular orbit.

In vector notation,
dF = - Q%[x - 3R"2(B_.£)g]dm‘ ' ; : [104a]

The total torque exerted on the body by the gravity gradient
is the integral over the body of the moment of the force [104]

(unless otherwise noted, all integrals below are over the body) :

o [ pimree | I S ) e e 4
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]

f£ x 4r

302R™2  [(R.z) (r x R)dm

= - 32°R"2Rx g

[105]

where we have uséd the fact that r x r = 0 and where

J = J(R.r)xr dm

[106]

‘Reverting now to tensor notation, we use the definition

[70] of the inertia tensor to write

1

= =2 -
J. Rj frjrldm R][Ir Gj;dm I

5] | [107]

The first term on the right, in vector notation, is gfrzdm,

which Will vanish when the cross product with R is taken in {105].

It is therefore sufficient to consider the vector

In principal axes i,ﬂi, k in the

,R-1 3 - I3Rk k

Jd = ’Ilg‘iri.‘ 1,

- so that [105]'gives

M= 30°R72[1, (R.0) (R x ) + I,(R.3) (R

[108]
body, this vector is

[109]

x ) + I,(R.k) (R x k)] [110]

55.
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Assume now that the body has an axis of symmetry, so that

I = Is
; [111]
I =I3= I
and then
M= 30°R2[I (R.1) (R x 1) + TR x ((Re3)3 + (R.K)K)]
= 30°R™2[ig(R.4) (R x 1) + IR x (R - (R.1)1)]
= 302(Ig - T)R2(R.1) (R x 1) [112]

The gravity-gradient torque is thus always perpendicular
to the plane containing the symmetry axis (i-axis) and the local

vertical, and its magnitude is

M = 202 (Ig-I.)sin 26 | > [113]

where © is the angle between the symmetry axis and the

local vertical.

Average torque:

The spin angulcr momentum is'Isw comparison with [113] shows

o7
that the precessional angular velocity wp will be smaller than

the orbital angular velocity, approximately in the ratio of Q to
“wg. In this case, components of the torgue at orbital and twice-

orbital frequency are largely filtered out by the gyroécopic

dynamics. Whilé the effects of these higher-frequency cOﬁpOnents
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should be examined in a more complete analysis, because of the %
Qossibility that they might excite resonances which could be
mistaken for E&tvss forces, attention is restricted here to the

effects of the torque averaged over an orbit.

To compute the average torque, set up a triad of inertially ;
fixed unit vectors 1l,m,n, with n along the orbit normal. Let the
éomponents of the symmetry-axis unit vector i along these directiéns
be iy,ij,i53: these will be assumed not to change significantly during
a single orbit. Measuring the geocentric angle ¢ from the instant

when 1 is along the local vertical, we calculate the integral

£ Mg (g ® g
where
ER =1 cds o + g‘sin¢ _ [114]
is a unit vector albng the local vertiéal. " Now
iﬁ.i f ilcés ¢ + iésin o : | : ’ [115]
ip x i = S S T n

cos ¢ sin § O

o i, i,

= issin ¢ l'- i3c05‘¢ m +‘(i2cos ¢ - iysin ¢)n [1lle]
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The integral is then
1 2T . . s s .2,
s fo {(111351n ¢ cos ¢ + i,igsin 1

cosz¢ + iji,sin ¢ cos ¢)m

- 3,1 213

3
+ [i. 2 .2 .2 V2
1112(cos ¢ = sin<4¢) + (12 - 11)51n ¢ cos¢ln} d¢ [117]
which reduces readily to
113,10 - iqiml = 3i (i xn) = 3(i.n) (4 x n) [118]
27273~ 1-3- 73T = P REAL LI

all other terms integrating to zero.

This integral can now be used to find the average value of

the torque [112] over an orbit:

=l
1l
vl

2(1, - It)(i.g)(i x n) [119]

The average torque is thus perpendicular to n (i.e., it lies

in the orbital plane) and is of magnitude

._.— 2 _ . N
M= (IS It) sin 2y . [120]

. -

where 7y is the angle between the symmetry axis and the

orbit normal.

¢) Gravity-Gradient Induced Precession and Nutation
The relationship between the set of unit vectors i,jk alongk'

the principal axes of the'satellite and. the set ;,m,g_Which are

‘fixed in the oi-frame can be described by three Euler angles, s

as shown in Fig. V:

et e v by g

i
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Y, the angle between the symmetry axis i and the orbit
normal n;

, the azimuth angle of the symmetry axis about n; and

B, the rotation angle about i.

The order of rotations from the oi-frame to the body frame
(b-frame) is first, a rotation & about n, a rotation Y about the
displaced j-axis, and finally a rotation B about the displaced

i-axis.

In body axes, the angular velocity of the body is given in

terms of the rates of change of the Euler angles by

g? = 8 + o cos Y ! Wy s
. . ) = [121]
Y sin 8 - o sin Y cos B. w,
l B
Y cos B 4+ 0 sin Y sin B; Wy

and the angular momentum is given by

Hb = I(:l)
, s 1 [122]

There is no component on the average torque [119] along i
or n. The components of angular momentum in these directions

aré therefore conserved.  In particular, from [121]%*

*a and b are not to be confused w1th the coeff1c1ents 1n the standard "

form of the Mathleu equations.

e AR e - QU MRS 0 AT ars e Sen e zeeit b
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Ry ve— . P

T w = Is(é + & cos Y) = Isb = constant [123]

In body coordinates,

b
n = cos Y [124)
- ¢cos B sin y

sin B sin vy

so that the component of angular momentum along n may be

written

= * . 2

Hn = Ibcosy+ a I,siny = Ia = constant [125]

from [121]. Thus

o_. O' ) * '

@ = ———[a - b cos y] [126]
sin‘y '
where

o =11,
s'Tt [127]

and
ér'b~&cosy=b-g-—99—§3-y-[a-bcosy] [128]

sin®y
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We have thus found that o and é depend only on the value of
Y. To determine the values of the constants a and b, the variation
of Y with time, we need another equaticn, which can be obtained
from the donservatidn of energy. The rotational kinetic energy

is

,,,,,,

1 2
K = -i-[I-w

2 2
W * Ly +wgl

_1 . 1 *2 2 . 2
= §'Isb + > It(Y + 0o sin"y) [129]

from [121]. The potential energy in the gravity gradient

force field uay be obtained by integration of the magnitude [120]

of the average torque: E N
vV = {Zifdy
= - g-QZ(IS-It) cos 2y
. : : [130]
The total energy is then
E = K 4+ V = constant | ‘ : [131]
An equiyalent coﬁstan£ of the motion is
d = %t[;a - %— S T ’ &Zsix;zy - %Qz(;—i)c0§. [132]

since b is constant. Substituting for o trom [126] yields

2 y s | | .
(a - becos y)" + 3'92(0-1) cos 2y + d :

°2
Y

sin”y



or
. 7.2
siny ¥ = - o®(a - b cos 1) + 2 02(0-1) cos 2y sin’y + d sin®y [133]
If we put
u = cos y [134]

the equation becomes

ﬁz = f(u)
. = o - v (2l - 1) v aQ - ud) - o?(a - bu)? [135]
where ,
c = %-92(0-1) 361

The perlem has thus been reduced to quadratures, in terms of
eﬁliptic integrals. Some useful information may however be derived
without carrYiﬁg through the general integration. For example,
the amplitude of the motion in f may be found by noting that, at

the limits. of such motion, u is zero, and therefore the limits are

AT A T T L S T g

given by the roots of f(u).

/

To simplify the discussion, we consider the motion which
develops if the spin axis is initially inertially staticnary:

i.e., we choose the initial conditions & = 0, y=0at t = 0.

Let the initial value of u be uo; Then, from [126] at t 0,

a = buo | | . . ’ [137]




and then, since 0 is zero at t = 0, [135] gives
= 2
_d = - c(2uo -1 - [138]

so that, at general times[135] may be written

32 = f)

Hj

ze(1-u”) @¥-ud) - 0?2 (u-u )’

(u—uo)[Zc(l—uz)(u+uo) - szz(u-uo)] (139]

.- - . e g

Apart from u,, the roots of f(u) are those of

2. . 22
2¢c(1l-u )(u+uo) - 0D (u-uo) =0 [140]
With the above initial conditions

b =y
S

the spin angular velocity, so that

2 2 3 Q2 :
2c/0“b” = o2 (0-1)/0% << 1 [141]

72

if the spin angular:vélocity is much greater than the
orbital angular velccity. An approximate solution to the cubic
[140] may be found by writing it in the form

2¢
o%b

u=-u =
[o]

= (1 - uH + u) ) o B 1421

According to [141], the quantity on the right is small, so
'that the root is close to U, s which means in turn~that u may be

repléced by ugy on the right, to §ive the apprOXimate root
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sraeagramyan

u, =u [1+ A - W2y - :
1 =Yl 27 -l [143]
The other two roots of [140] are imaginaiy.
If now we write
u, = cos 70
[144]
u, = cos(Yo f Sl? = cosy, - Glsin Yo
and insert these into [143], we obtain
i . 3(0-1) ., 2.,
5, = -5-02) @/w)?sin 2y, [145]
4

- for the amplitude of the gravityégradient'ihduced nutation

(i.e., fluctuation in y). The effect is very small indeed, less
‘
than 0.1 seconds of arc if wg = 10 rpm, in low orbit.

The'nutation frequency may be obtained by writing
u=cos(y, + §) = cos Y, - & sin Y, [1456]

When this is'inserted in [139];‘we obtain, to second order

iné§,
§2 = - S[A, + AE] 2 ERNRETE S ' |
8% = - 8[Ap + A8] , _ : ) (147}
| where
Aj=2csinzy, S R [148]
[ Lo 1
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. 22 2
A2 = 0b" + 2c(5u0 -1) = gzbz [149]

The solution of [147], meeting the initial conditions, is

1 .
§ = 5161(1 - €Os W t) ‘ [150]
where i
p =00 | [151]

is the nutational frequency. Comparison with [89] shows
that the indvced nutation has the same frequency as the free-body
nutatioar. Since its amplitude is so small, it is expected to have

a negligible effect compared with the free-body effect. B :

The precessional angular velocity can now be obtained from [126]:

. ob obd§
o .= (u~-u) = —
. sinzy o sin Y,
1 (1 - cos w_t) ‘
=TS T [152]
sin vy, 7

- The precession thus varies with time, ranging from zero to

" twice the average value

_ 1 s
wp = k§-0w$61/31n Yo

Q2 -1 : ©153]
w, 057 s Y,

=3
. 2 Cia
s P - R #

 As seen from the oi-frame, the motion thus consists of a steady

coning of the spin axis~ardund the orbit normal at the arngular
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_except that A is replaced by w

velocity (153], with a very small superimposed circular motion,

with an amplitude %61.

In order to find the effects on the experiment of precessional

motion, we neglect the nutation. Then [128] gives
s | | [154].

If the accelerometer sensitive axis is along the 2-axis, the

test mass experiences a centrifugal acceleration given by
a, = - wz x = wzx sinzy sinzm t [155]
c 3 P o st .
from [121].

This is similar to the form [93] found for free-body nutation,

sin_yo énd wy by wg. One may then

P S

carry through a similar investigation of the stability of the
solutions of the resulting Mathieu equation of motion. Analogously
to [99] and [98], the coefficients in the standard form of the

Mathieu equation are found to be in this case

= (1 - 252
2= -g) [156]
and 7
Coowosin vy ’ :
% 0,2 3.0-1, . 2 4
b = '[_2‘*’5 ] [g(—c—) 5in ZYO], V(Q/UJS), R [157]

By elimination of (Q/ws), one can obtain an equation-showihg

~the path followed by the opérating point in the a—bkélahe as this

parameter is varied. It is not difficult to see that this path

is confined to the stable region near the origin in Fig. IV.
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It thus appears that gravity-gradient induced nutation and
precession should not have a 51gn1f1cant effect on operatlon of
the experiment. The effects can, of course, be minimized by making

Yo as small as possible, but stringent tolerances in the alignment

of the spin axis with the orbit normal do net appeer to be required.

A more detailed analyeis nevertheless should be carried out,
retaining higher frequency terms in the gravitational torque [112],

which were eliminated in the averaging process to obtain [119].

IITI.3 Conclusions from Systems Analysis

We have now considered in some detail the first four of the
possible dieturbances listed in Sec. III.2. No effects have been
fouhd which might prevent operation of the experiment’down to the
design sensitivity of one part in 1014 in the measurement of the

EOotvos ratio.

It'appears to be possible to carrxy out a useful experiment -
in the payload bay ef the shuttle, if it is feasible to‘loeate the
experlment reasonablj close to the CM of the shuttle and if the
RCS system can be used to fly the shuttle SO as to follow the .
experlment.' An average fuel flow of order_S kg/hour would probably

~be sufficient for this task.

The STS (Shuttie) proVidee an ideal vehicle for carrying out
‘this experiment, which can make good use of the capabilities of

the crewmen. If flown unmanned, the very sensitive accelerometers
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would require caging to withstand the boost environment and soine

form of orbital gyrocompassing would be needed in order to erect

the wheel spin axis to the orbit normal. Furthermore, if it is
desired to measure the ECtvds ratio of several materiais, a mechanism
Qould be required for changing the test masses. Finally, experience
with the low-level accelerometers in orbit32 suggests that
difficulties may arise'which are very difficult to solve in an
automatic system. The crewman may make final design choices as

the result of on-orbit experience (e.g., in selecting servo compensatisn
networks), deploy the‘System in its optimum cpnfiguration, monitor

- the performance and investigate any anomalies obserVed, and modify
the experiment (e.g., by installing new test masses) to extendkthe
investigation. At the 'same time, the equipment may be conSiderably

simplerkthan would be needed for an unmanned launch.

©

The development program for this experiment might involve three
separate shuttle-born phases. In the first, component parts of the |
“apparatus (particularly the accelerometer) would be tested in free
fall, s» that commitment to final development could be postponed
until the design performance had been demonstrated. In the second
phase, a limited experiment would be carried out in the payload bay,
if further analysis'shOWS that this is feasible and that significant
simplifications could be effected by,opétation in this,modsl vFinally,
(and particularly if any E6tv85 ancmalies were discovered in the
second phase), a fully autonomous exéeriment wculdkbe launghed from

the shuttle,‘at'the maximum sensitivity whiCh may prove feasible.
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CHAPTER FOUR
DESIGN OF A MAGNETIC MICROBALANCE

FOR ACCELEROMETER TEST

Iv.1l Introduction

'As discussed in Chapter II, the heart of the orbital Eotvos

-experiment ig a very sensitive dual accelerometer, the two test
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masses being constructed from the materials whose ratio of gravitational

to inert mass 1s being compared. In low orbit and in the absence
of external disturbances, the sensitivity of this accelerometer,
in gees, is equal to the limiting accuracy in measurement of the
EGtvSs ratio. For example, to reach an accuracy of p= 1071° in
the»experiment, the dual accelerometer must be capable of detecting
a relative acceleration between the test masses of 107159, This

is many orders of magnitude beyond the sensitivity of conventional

accelerometers, so that design of the accelercmeter system becomes

the most critical task in development of the experiment.»»The
frequencyﬂat'which the acceleration must be measured éan however
be chosen by fiiiné the-énguiar velocity of thévapparatus, a
freedom which can be usedktb*discriminatevagaihstvSomé'sources'of

measurement noise.




At the present time, both cryomagneti¢ and electrostatic
techniques for suspension of the test masses are under study, the

first primarily at Stanford and the second at M.I.T.

A fundamentql difficulty in the development of any sensitive
accelerometer for use in space is that, if the device is to be
tested on Earth, much stronger suspen51on forces than are needed
in orbltimust be provided. This problem has, in the past, generally
led either to design compromises or to a reliance on analytical
design techniques, without specific test of the final configuration

before commitment to flight.

In the .Bell Miniature Electrostatic Accelerometer (MESA), for

structure is comparable to that normally found in electrostatically
supported instruments for terrestrial application (i.e., thousandths
of an inch), so that it can be operated on Earth by applying not
unreasonably high voltages. For operation 1n space, the electrode
voltage is merely reduced, so as to prov1de support agalnst the
expected small transverselacceleretrons. The cross—coupllng between
forces along the*suSpension’axee and the sensitive axis, which is
due primarily to geometrical imperfections of the test mass and

! . L ‘
electrodes, electrode edge effects, etc., is_thus no better than in
terrestrial instruments; and little advantage is taken of-the benign
orbital environment to meximize performance; £ v

-
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Most satellites designed for "pure gravity orbit" are examples
of the other approach to this problem. Such satellites are driven
SO aévto follow an ugsupported test mass, which is protected from
external fbrces.32‘ This system can be regarded as an accelerometer
which is sensitive to accelerations in all three axes. It is
essential to minimize the forces (primarily electrostatic and
graviiational) which are applied to the test mass by the satellite
itself. This is usually achieved by careful analytical design,

but there is generally little opportunity to test the resulting

concept except by -an actual flight in space. .

An intereiting approach to testing an electrostatically-
supported space instrument is that of de Bra et al33, in which a
test mass of sufficiently low density is used so that it may be
floated in a heavy gas (SFg). This technique is not howevex
considered appllcable to the problem of testing accelerometer
designs for the EGtvls experiment: it obviously will not work
ét the low temperatures required in a cryomagnetic suspgnsion and,
at the higher temperatures which may be used with an electrostatic

suspension, it introduces convective disturbances and damping forces.

In order to-allow experimental investigation of design con-

'Acepts for an electrostatically-supported accelerometer'fbr the

orbltal EOtvos experlment, it would be highly deSJrable to q1mu-

1ate free fall in the Jaboratory. The feasibility of u51ng nag-

‘.netlc forces for thls purpose is 1nveatlgated in thlS chapter.
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Magnetic suspensions have of course been employed for a wide
variety of purposes. The present concept is unusual in that it
is desired, not to provide stable suspension of the test mass, but
to buck out its weight, using forces generated by appéopriate sus-
pension coils, in such a way that additional magnetic forces do
not result when the test mass is displaced from its nominal posir-
tion. With the magnetic suspension providing the main support force
and neutral stability, 'an electrode structure can be built to con-
trol the tes£ mass whose dimensions and voltages are similar to
those which might be used in space.

It is assumed here initially that the magnetic material em-
bedded in the test mass is linear -- i.e., the magnetization vector
induced inkit is proportional £olthe external field. ‘The reasons
fof this condition and means for implementing it are discussed in

Séction IV.5 below.

IV.2 Basic“Relationships

The force on a sample of linear magnetic material in an ex-
ternal field B is given by34

F = k VB2 [158]

‘where k is a constant depénding}on the size, shape and
maénetic properties of the object. If the body is diamagnetic

(e.g., if it is superconducting), k is negative.

The external field is given in terms of the vector potential 2 by



B=VxA [159]

and the vector potential is given by an integral over

the current density J in the coils:

e Jx') 3
A = -——-—f a’r!
- an ¢ Jx - x'] ; [160]

where 1° is the permeability of free space and r, r' are
vectors from the origin of coordinates to the observation point

and to a source point in the coils, respectively.

Fo£ constructional simplicity, it is proposed to build the
suspension from a set of cylindrical coils of rectanguiar cCross-
section, with the symmetry axis (the z-axis) wvertical. Figure VI
shows a vertical section through one of the coils: the centroid
of the cross-section is at radius b and height a aboﬁe the origin,
and the cross-sectional area measures 28 by 20. The current density

i has only a circumferential component, which is

g, = 0 ‘elsewhere
[ k : . o
ﬁf where I is the current and n the number of turns/unit

area.

‘Because of the cylindrical symmetry, we may chcose the observa-
tion point in the r-z plane. From the geometry of the perspective

'sketch of the coil shown in Figure VII, we may write




28

Figure VI.

Coil Cross=Section
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Figure VII; Geometry of Source and Observation Points

73b‘



74.

i
Ttem = fr- e

1/2 ‘ [162]

[(z-z')2 + r2 + 2o 2rr'cos ¢'] -

where ¢' is the angle between the horizontal projections

of r and r'.

— —

To compute the integral [160], we must write J in rectangular

components, which are

T inn » [163]
Jy‘k=‘ Jycos ¢'

It is clear from [160] that A also has only a circumferential
component, so that, at the observation point,’the integral over
J, must vanish. The vector potential from all the coils can then

be written '

b+8 a+o 2T

A¢ = %%, z nt [ rrar' [ dz' [ f(x, z)cos ¢' d¢’ 1164]
coils b =B a-g o

The ¢'~integral mayrbe exprésséd in elliptic integrals,
but, for present'purposes, it is more convenient to expand £ (r,z)
in a Tayloxr series in r about the symmetry axis, so that the

integral becomes

27 '
o o 4 Ll 1l . 2.ii l 3 111
¢ = fo [£° + r£7(0,2) + 3 r’f (0,2) + = (0,2) 11651

1 4 1
e +Z,r £(0,2) +§,r 5eY(0,2) + ...]cos b do*

L I . . | ——————— s e e e B

T . AnE : -
where £2(0,2z) = SR ", so that
. r=o '



f° = f£(0,2) = [(z-z')2+r'2]“l/2 [166]

A straightforward computation of the indicated derivatives

of [162] with respect to r yields

£00,2) = £3ricos ¢! ' [167a]
' £10,2) = 36070 200529t ~ g03 | [167b]
fiii(o,z) - 3[5fo7r'3cos3¢' - 3£°7ricos ¢'] - [167c]
.-fiv(o,z) = 3[35f°9r;4COs4¢>' - 3082 et 2c0s?gr + 36°°1 o [167d]

~ 33 o7
0,2) = 1506382  rPc0s 9 - 70£27r Jcos ¢! + 15£° 'r'cosd’l  [167e]

When these expressions are used in [165], all odd powers of

cos ¢' integrate to zero. We are left with

d = 'Ir[f°3r'r + ;23_(_2_ f°7r‘3- fosrn)r3

% f°9r'3 + f°7r')r5 + e

- E(_Z_]; follr's B 1 ’ [168]

8 8

The vector potential may thus be written

LI

L By = 0@+ kI + N@E® s L., R [169]

where

o b+B a+q
Q(Z) = E Z nI ) '2 °3 , .
: 4 coils i-.S £~ocr £ dz : f {170]

!’3@‘{ R
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3 b ata o o ; 2 - ~
K(z) = gwe [ nrf [ ge£'c" - %jaraz [171]
coils b-B a-a : ' :
T mbaa, -7
v . 2 . :
coils b-f a-a ) : -
- | g
1f we differentiate [170] wunder the integral twice with :
respect to z (denoted .by primes), we obtain the important result '
Q"(z) = - 8 K(z) ) [173]
¥rom [159], in cylindrical coordinates, the axial and radial
: components of the magnetic field are given by
]
B, = T 5;(IA¢)
. 2 U4 ,
= 20(z) + 4K(z)r”™ + ©eN(z)r + ... [174]
and
Br. = - KZ-AQ) ]
o 3 .5 §
= - [0'(z)r + K'(2)r + N'(z)r” + ...] [1751] :
S H L. L . o .
Using [173]1, the square of the magnetic field is then :
.Bz = B® 4+ g2
z - r

]

1% + @' %(2) + 16K(2)Q(2)) 1

42083 (2) + Q' (@K' (2) + 120(2N(2))e + o(r®

40%(z) + (Q'%(2) - 20(2)0" (2))r>

+ 2(8K2(2) + Q' (2)K* (2) + 120(2)N(z))r* + 0D (1761
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' Since there is no term linear in r, there is, at the origin
of coordinates, only an axial component of force (as one would

expect from symmetryf, which is, from [158] ,*

F - 8k0°0°
z koo [177]

where 0" = Q(0), Q°' = g—zQ(Z) |z=o

The objective of the suspension is to simulate free fall:
the support force should be as nearly constant as possible (and

equal to the weight of the suspended object) in a region around

the origin. 1In Cartesian tensor notation, the force at a position
x; (1 =1,2,3, with the 3-axis vertical) is given by a Taylor

expansion around the origin

F, = Fp° X,
i i slj$j + Pijkxjxk + [178]
where
9 2 :
F¢ = kX 5B :
i 3xi x,=o0 . - | - [179]
32 2 : :
SlJ k 9x.09x ,x.,x.=0 : [180]
i i’y L
_ k8 o
I'ijk T2 BxiBX ..S;kB Ixi,xj,xk=0 [181]

The simulation will be successful at the origin if we can make

' the stiffnesses Sij zero, and the "playing area" (i.e., the region

LE *Notice that, to give an upward forée, Q° and Q°' must be of opposité
B sign if k < 0 and of the same sign if k 3 0. »




in which the simulation is acéeptable) will be maximized ifkwé can
also make the second-&rder stiffnesses rijk zero, In calculating
these quantities, we take derivatives ﬁf [L76] and then place r = 0,
so i£ is clear that we can neglect the term in r4. In the present

e g

notation, [176] thus becomes
L n2 ‘2
B = 4Q -+ (Q|2 - ZQQ") (xi + xg) + ... » [182]

where Q is a function of Xy alone.

The force is now

F, = k|~ 2(0°2 - 200") %, [183]
20'% - 200")%,
[, " 2 : 2
800 200 fxl + xz)
which, at the origin, of. course reduces to 1771.
The matrix of second derivatives of B2 is
252 2(Q'"-200") 0 --4QQ"'x1 ‘ :
—-——-——axiaxj =‘ | 0 2(0" 2-2QQ") -400™ x2 [184]
. ‘.4QQ'" xl ‘4m". x2 8(QI2+QQ")_2 (Q!QI" +QQ”" (xi‘*_x;) .

At the origin, the only surviving components are the radial
stiffness

S‘ =:s

r 11 = 522 = 2k(Q°'2 - IZQOQQH) [185]
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and the vertical stiffness

S, = Sy, = 8k(@°'? + goge) | [186]
It is clear from these expressions that Sz and Sr cannot both -
be zeroc. Moreover, in‘conformity with  Barnshaw's theorem, it is
impossiblewto make the suspension stable in all directions if k is
positive. We therefore choose to make the radial stiffness zero,

relegating control along the vertical axis to an external stabiliza-

tion system (see below). The design goal is thus
Qo'2 = 2Q°Q°" [187]

Note that, when this ¢ondition holds, the vertical stiffness

becomes

s, = 12ko°'? [188]

so that the system is vertically stable for diamagnetic test
masses (k- < 0) and unstable for k > 0. A useful figure of merit

for suspensions of this type is the characteristic length

0o

_ _ 290
7 = sz/sz = 3gor [139]

which will be negative if k < 0 and positive if k > 0.
For a given support force, Z is maximized (i.e., the vertical
inhomogeneity is minimized) by making Q° as large as possible and-

Q°' small. Under the condition [187],
ou L o,2, 1 o ‘
e = et = Soom | 11301

and so must be small but finite.



The second-order stiffnesses, calculated by taking the
de?ivatives of [184], form a three-dimensional matrix, but most of
the terms vanish at the origin. By inspection, we find in fact
that the finite terms are

T = = = = = o
113 T3 Ty23 T3p = I = Ty, = =2kQ°Q°

[191]

P333 4k(3’Q0l.Qou‘ +' QoQonn)‘

The expansion [178] of the force may now be written

in vector form as

|Rl

= K[80°0°" + 8(Q°'240°0°") z - 20°0°" (xZ4y?) +4(3Q°'Q°"+Q°Q°“')zz]iz .

+ k[z (Q° ' 2_éQoQo "Mx - 4Q0Qo m XY) _J:x

<4 k[Z(Qo|2_2QaQOU|>Y - 4Q0Qom XY).'L ’ [192]
< .- ol . R4
where ix'iy'iz are unit vectors along the axes.
If the condition [187] holds and if, in addition, we can
achieve
oM = o = [193]
then the force reduces to
E = k[SQoQo' + 12 °'2 ortnon 2.
Q 2 +  120°'Q°"z ]}_z [194]
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z , lz2
7t 597

. et

Achievement of these conditions thus means that, to the
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[195]

second order in the displacement of the suspended object from the

origin, no forces are generated in the horizontal plane. Further-

more, the variation in the vertical force is independent of

horizontal displacements, to this order. The gquadratic term in

[195] merely means that the vertical stabilization servo should

have a slightly non-linear characteristic.

The quantities needed for design of this system are obtained

from [170] as

] b+BR a+0, .
Q° = W D oni [ [ 2%z % ?) 7 %5004,
coils b-B a-0o

o 3 b+B a+a 5
Q' == gwe I onrf [ r%a0(z20 %0375 2504,
coils b-B a-o )

b+B a+a

onm _3_ 2 2 -
> 4 U°Co§lsnl £—B i'ar' (4z 'r'z)(z'2+r'2 7/2dr'dz'
b+B a+0
"o 15 '
Qou - . _‘_liuo z nl f j’ r..ZZ.(4Z.2_3r.2) (z'2+r'2 _9/2dr'dz'

coils b-R a-o

[196]‘
[197]
[198]

[199]
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Iv.3 Ideal Coil Design

To simplify selection of a configuration for the suspension,
we assume at first that the coils are of infinitesimal cross—-section.

The above expressions then take on the simpie forms

-3/2

Q° =,%<u°coilsu; b2 (a®+b?) | [196a]
Q' = %'“°c§§isNI b2a(a2+p2) 0 [197a]
gem =3 u°c0§lsNI’b2(4a2—b2)(a2+b2)“7/2 [198a]
Qe = 111—5111°c0§lSNI b%a (4a2-~3b?) (a2"+b2)-9/‘2 [199a]

whére N is the number of turns in each coil. To reiterate,

the conditibns we wish to achieve are [187] and {193]:
Qo'z = 2Q°Q°" - - [200]

and

Qe = 0 k ~ | [201]

At the same time, we wish to maximize the support force at the
crigin

F? = 8kQ°Q°! ; , [202]

and the length which characterizes the vertical homogeneity

z = 290000 R e [203]



Iv.3.1 Single-Coil Suspension

‘Let us first consider the possibility of a suspension using

a single coil. From the above expressions, the condition [200]

gives, for this case

al = %bZ | [204]
There is thus a point on the axis of a thin coil of radius

b, at a distance Jg b from the plane of the coil, where the

transverse gradients of the magnetic force wvanish. At this point,

the characteristic length (203) is

2 a24p2 _ 7 Jf .
2 =T =3 \§ b .492 b | [205]
The support force is

F° = gkQ°Q°'

3 bia , 5
= 2 ’kuozNZI.. :
2 @Zmh)"

3 (5% kuoln’r?
vio ‘7 . b

-
il

r

0.247 Sogre e [206]

It is clearly impossible to satisfy the condition [201] at
this point. We therefore turn to suspensions containing two or

more coils.
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IV.3.2 Helmholtz Coils

From [198a], Q°" vanishes is

~a = [207]

“E

or if the coil lies on a cone with apex at the origin

and semivertex angle

oy = tan~12 = 63.43° [208]

Now suppose we have a pair of such coils, symmetrically
located at 2 = + a on the Helmholtz cone, with the same number of
turns in each and the same current flowing. Then [196a] to [199a]

give for the pair

+=3/2
Q° = %M°N1b2(a2+b2)
= _2. M°NI : [208a]
g372 a
ony = Q°" = Qonl= 0 ‘ ) [208b]

This is, of course, the Helmholtz coil arrangement which is

frequently used to produce a uniform magnétic field.

~ If the current ih'the'HelthItz pair flows in opposite senses,

-~ we obtain

Q0 = Q°" = g S Lo [210a]

3

‘ 5.9 =5/2
Q' = FU°NI b%a (a%+b?) N

_ .6 u°NI S : i
e i o)



-9/2
Qo'" = lg L°NI b2a(4a2-3b2) (a2+b2) /

- 48 u°NI
57/2 44

[210c]

Neither a Helmholtz nor anti-Helmholtz pair, by itself, can

provide a lift force.

IV.3.3 Maxwell Coils

Frbm [19%a], Q°'" wvanishes if

[211]

or if the coil lies on a cone with apex at the origin

and semi-verte-. angle

_1 2 _ °
= tan = 49,11
¢M /3

A pair of similar coils, symmetrically located at 2

Maxwell cone, with current in the same sense, yield

0° = Lyont b2/ (a24p2)3/2 = 273 uenz
; 23/2 a

Q°" = §p°NI b2(4a2—b2)/(a2+b2)7/2 - 16.35/2 UONI
2 77/2 a3

Q°' = Q°'"™ = O
If the currents are in oppoéite senses, we obtain

‘Qo = Q“’oqv = Q.o_,‘iu.. =0

[212]
+ a o.. the

[213a]

[213b]

[213c]

[214a]
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Qer = %“°NI 1:>2a/(a2+b2)5/2 = 2(%)5/2 H‘%l [214b]
a

IV.3.4 Coil Combinations

It should be clear that, by appropriate choice of Helmholtiz
and Maxwell coils, it is possible to provide independent control of

Q°, Q°', Q°", Q°', as follows:

1) Q° alone is generated by a Helmholtz pair.

2) Q°' alone is generated by an anti-Maxwell pair.

3) Qé" alone may be generated by a Maxwell pair, together

with a Helmholtz pair so connected as to subtract the
Q° generated by the Maxwell pair.

4) Q°'" will be zero, as desired, if the suspension is made

up of combinations of the above coil sets.

Suppose we wish to generate Q°" alone. For a compact design,
it will be convenient to use a Maxwell pair and a Helmholtz pair
With the same radius b. For stability, we assume the same current
T is flowing in both sets of coils (i.e., they are wired in series).

From [213b] and [211] the Maxwell pair, with NM turns in each coil, -

produces

on — 384 M°NMI ' ' 215
Q Y _ [215]

but it also produces an unwanted

{ o = 4 U°NMI , k 216
- [216]

o e e T D SR " N e N . P - SO



This can be compensated by a Helmholtz pair of Ny turns each,

with current flowing in the opposite sense, to give

4 UON"II
0 — o ks
from [20%a]. We thus require
3/2
= (L = « 23
NM/NH = (5) 1.657 = 3 [218]
IV.3.5 A Maxwell-Coil Suspension
The Maxwell coil has the advantage that Q°"' = 0 automatically.

If we now consider a pair of coils, symmetrically located on the
Maxwell cone, with the same current I flowing but with Ny turns

in the upper cuvil and N2 in the lower, [l196a] to_[199a] give

0° = % ueT (N1+N2)b2/(a2+b2)3/2 .
= 37y (N [219]
0ot = %.u°I(NL—N2)b2a/(a2+b2)5/2
= %%%g'(Nl-N2>i§}-7 | [220]
Qo = %fu°I(Nl+N2)b2(4a2—b2)/(a2+b2)7/2
= ;—?,'725(N1+N2) l‘—g—} | . s S [221]
Geven o g - | | ‘ [222]

e ey ? B St
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The condition_[ZQO] is now

w12 = N 12
9 (N, =N,)“ = 8(N;+N,) [223]

The solutions of this»equation are easily seen to be

3+ /8
3~ /8

Nl/N’2 = = 34 o [224]

or the inverse of this. Which coil is to have more turns is

readily determined by considering the force at the origin, which

is
F° = 8kQ°Q°"’
‘ °2.2
- lggzlz'(nlz - 8,8k BE [225]
b

The lower coil must have the greatest number of turns in the
test mags is diagmagnetic (k € 0j. Test masses of equal but op-
.posite susceptibility could be supported by mefely inverting the
suspension.

With [f24], the support force becomes

Fe = 0,138 |k| u°°

N%12 /b3 [226]
where N is now the number of turns in the larger coil.
Conparison with [206] shows that, for coils of the same radius

and number of turns and the same current, the‘single coil suspension

produces a considerably stronger force than this Maxwell suspension.

However, the characteristic length for the Maxwell suspension is,

from [219] and [220]

b = .714b [227]

i
i Zg-——.—q_

14 ;
; . 12 v3 N7V,
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which is considerably better than the single-coil case. 1In
other words, the vertical inhomogeneity is less pronounced.

As it stands, this suspension nominally meets the design re-
quirements. However, in order to allow for construcﬁion tolerances,
it is proposed to add an extra set of Helmholtz and Maxwell coils,
outside the main coils, connected as discussed in the previous
Section so as to produce Q°" only. Current flowing in these trim
coils should have no effect on the 1lift force nor on the charac-
teristic léngth, but can be used to trim the radial stiffness of
the suspension to zero.

The resulting coil configuration is shown in Fig. VIII. Some
modifications to the turns ratios are required when the finite
cross-sections of the coils are taken into account (i.e., when

[196] to [199] are used instead of [196a] to [199%a]l).

IV.3.6 Vertical Servo

Varying the current in the coils will not affect the condi-
tions [200] and [201], but it will change the vertical force.
This effect can be used to ¢ompensate for the gradients in the
verﬁical force indicated by [195], using‘thé'measured vértiqal'dis_
placément of the proof mass to control the cﬁrrent. This feedback
control is essential for stability if the proof mass’is not dia-
magnetic.

To simplify current stabilization it is proposed to provide
an aaditional pair of coils (éalled ﬁhé servo coils), having turns

'n; and n, in the ratio [224] and situated on the'Maxwéll cone.
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For simplicity, it is assumed hefe‘that the servo coils are WCund
with the main coils, although they might have to be separated if
the inductive coupling between the two sets of coils is excessive
(espécially if superconducting coils are used). An accurateiy
stabilized current I thén flows in the main coils, while a current
i(#) flows ;n the servo coils, in response to the measured vertical

diéplacemenf z of the proof mass. The vertical equation of motioi

is now
b o 2 z 1,2, 2
mz = k'(NI + ni(z))° [1 + 7+ 3 (E) + ...] - mg [228]
where, from [226], 7
-]
k' = 0.138 |k | & | [229]

b3 |
and N, n are the numbers of tﬁrns in the larger of the main
and servo coils, respectively. Since it is assumed that the larger
coil is the lower (upper) one, according as thé proof mass is dia-
maqnetic (paramagnetic), k' is always a positive quantity. Recall,
however, thét 2 is negative for diamagnetic proof masses..
If the main coil current is adjusted so as to balance the

weight of the proof mass at the origin, then from [226]

mg = k' (NI)? | [230]

and [228] becomes

.e . ; 2
z /g = 1232 & BEL2) q v 24 2B 4Ll
L2z 1l ,z
+—z-+§(§-) + aeo . | [231]
~We now write
i@ =M e Zac, (B [232]
' 12 2 Z
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in [231]). Retaining only up to guadratic terms gives
e Z 2 1, ,z 2
z/g = (2cl+1) 7t (zcl+c1 +2c2+§')(§) + ... = C [233]
if
= -1
¢ =-2
[234]
_ .5
€2 =27
If, then, we make
N, I
. _ 171 _z 5 (2,2
i(z) = 5 7;;'( 7 + 13 (Z) + ) [235]

this servo control will make the first- and second-order

vertical force gradients zero at the origin.

Under these conditions, the suspension will support the magnetic
proof mass in 4 neutrally stable region near the origin: no addi-
tional forces are produced, up to the second order in displacements

in any direction from the origin.

The objective of this suspension is to buck out the weight of
a test mass so that it may be mounted in a weak eleetrostatic sus-
pension of the type‘which might be used in the Eotvos experiment
in free fall. In testing such an accelerometer, it is expected
that the sensitive axis will be horizontal. The displacement de~
tector reguired for the electrostatic support in this accelerometer

may provide the signal for the vertical magnetic servo.

It is clear that this system provides a high degree of isola-

tion to the proof mass from vibrations of the support structure
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(e.g., microseisms), since the suspension force is invariant up to

the second order in displacements relative to the coils. The sys-

tem is however sensitive to relative vibrations of the component
parts. For example, suppose that the displacement detector for the
vertical magnetic servo is displaced vertically by a distance ¢,
relative t6 the coils, while the proof mass is at the origin (z=0).
The signal to the vertical servo will then be - ¢ and the current

in the servo coil will be, by [235]

.1
i=1 [236]

n.,?z

‘ 1
to the first order. According to [228], the force produced

on the test mass will be approximately

F k'(NlI)2 e/

mge/% | [237]

from [230]. The system must therefore be sufficiently rigid
so that relative vibrations of its component parts, in the frequency
range of interest, are very small compared to the characteristic

length 2.

IV.4 Disturbing Magnetic Fields

The vertical component of any external, spatially uniform,
constant magnetic field merely adds a constant term, presumably
small, to Q(z) in [174]. This will make a small change in the

vertical force at the origin, according to [177], and it will al-"

R so change slightly the radial stiffnesses, an effect which may

be compensated by current in the trim coils so as to maintain

the condition [187].
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The horizontal component of any external field is somewhat

more troublesome. Suppose that there is an externai field Be
along the xl—axis, so that the magnetic field within the suspen-
sion is
~ B=|B_sing+ B, [238]

r

Br cos ¢

Bs

where @# is an azimuth angle and B., B, are given by [175],

z
[174]), respectively. The square of the field is then

2 _ .2 2 2 .
B® = Bz + Br + Be + 2BeBrslnv¢

2, 2 2, L2 .
= B2 + B2 -~ 2B_ [0'(x5)%; + K' (x5} (x] + x5)x; + ...1 [239]

from [175]. Bo is the field in the absence of the external

field.

The force on the proof mass when it is at the origin is given
by [179]. The first-order effect of the external field is thus to

produce an additional force in the xl—direction given by

Y

Fl - 2kBeQ°'

1 Be

- 3z=mg | [240]
(o} .

from [177] and [174].

‘it appears from»this equation that the field of the Earth, in
particular, will produce an'acceleratibnkof the proof mass in the
north-south direction whose magnitude,kdepending on the value
achiéved fpr B°,~may be of order one milligee. In using thé sus-

pension for accelerometer test, it would of course be possible to
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orient the sensiéive axis east-west (or, more generally, perpen-
dicular to the horizcontal component of any external field). If “
it is desired to simulate free fall to higher accuracy, it would
be necessary to buck out the external field, for example by a large
Helmholtz coil pair, outside the suspension with its axis horizontal.
The maximum field produced by this compensating coil need only be
of order 0.2 gauss, and its direction and magnitude could be adjus-
ted so as to produce a null field at the origin with the suspension

switched off, as measured by a magnetometer.

It is important to avoid time-varying external magnetic fields,
especially in the frequency range of intereét for testing accelerom-
eters. In principle, it would be possible to measure the variable
component of +“he external magnetic field with a 3-axis magnetometér
situated outside the suspension (and far enough away so that it is "
not swamped by the main suspension field). The signal produced
could be used to vary the main {(or servo) coil current, the trim
coil current, and external Helmholtz compensation coil currents in
such a way as to null the forces on the proof mass, but it is

highly desirable to avoid this additional complexity.

From [240], the 60 Hz field due to power wiring will produce
a jitter in the position of the proof mass, but the amplitude will
be only a few hundred Angstroms even if the field amplitude reaches

one gauss. This effect is therefore negligible.

In the calculations presented here, it has been assumed that

the suspension is constructed of ideal coils, of infinitesimal
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cross—-section. It is not difficult to show that the requisite
suspension conditions [187] and [193] can be achieved using coils
of finite;cross-section. Realistic calculations require other
design decisions about the suspension (in particular, whether it
is to be constructed of superconducting coils or not) and there-

fore are not reproduced here.

Disturbing magnetic fields can be produced by two other
mechanisms: (i) errors and distortions in windingvthe coils,’so
that the turns density is not unifofm and the shape is not identi-
cal to that assumed in the calculation; and (ii) distortions of
the suspension field due to magneﬁic materials in its vicinity.

To some extent these disturbances, being constant, may be corrected
using the trim and compensation coils, but it is clearly desirable,
from [240], to keep the fractional distortion of the field as small
as possiblc. The limits to fhe simulation of free fall imposed

by manufacﬁuring tolerances have not yet been thoroughly studied.
It is, in any case, important to build the support structure for

the suspension from non-magnetic materials.

IV.5 Proof Mass Design

In the work presented here it has been assumed that the mag-

netic material of the proof mass is linear =-- i.e., that its
magnetic moment may be written3?

where V is the volume of magnetic material and x _ is its
magnetic susceptibility. Under these circumstances, the change
in energy in the suspension when the proof mass is introduced,

with the coil currents held constant, is
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_ 1
U= 3 M.B, [242]
where B =y H is the field without the proof mass. The
force exerted by the magnetic field is then
F= yu=23v@p) =21y gp? [243]
= 2 —-"~o 2 o

o
from [241]. This is of the form [158].

In order to achieve strong support forces, the obvious choice
is to use a ferromagnetic proof mass. In this case, however,
[242] is only a rough approximation, especially when hysteretic
effects are included: the energy may depend on the path by which
the proof mass is introduced to the suspension. Furthermore, the
force on a ferromagnetic proof mass will not geherally be of the
form [243], ever if [242] may be taken as sufficiently accurate.
The use oflmagnetically soft and hard materials must be considered

separately.

Iv.5.1 Magnetically Soft Proof Mass

If the magnetic field is sufficiently weak, a soft ferromagnetic
object 'will exhibit»é linear relationship similar to [241] (neglect-
ing hysteiesis). A reasonable support force can then be provided by
using a strong gradient in the magnetic field at the origin. Un-
fortunately, a weak field and a strong gfadient leads, according to
[189], to a small value of the characteristic length Z of the sus-

pension.

In order to build a suspension of adequate perfdrmance, it is
almost certainly necessary to use a field at the origin which is
strong enough so that the proof mass is saturated. The magnitude

of the magnetic moment will then be fixed, but its direction will
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be along t::i :xternal field, or nearly so. We may thus write

M=M i | [244]

where M is the saturated magnetic moment and ij is a unit

vector along the original field. Then [243] gives

F=3M VB " [245]

so that the force is proportibnal to the gradient of the
magnitude of the field} rather than to the gradient of the square
of the field. The analysis given’in this chapter then fails. It
may still be .possible to build‘a suspension with the desired prop-
erties using a soft magnetic éroof mass, but the analysis will’be

Eonsiderably more complicated.

'IV.5.2 Magnetically Hard Proof Mass (Permanent Magnet)

If the prbof mass‘contains a permanent magnet whose magnetic
moment is go and whose dimensions are much smaller than the
characteriséic length 2 in the field, it will experience a ‘torque
giVen by |

T =My xR ; , [246]

In the absence of restraining forces, the magnetic moment
will execute an oscillation about the field direction at an angular
frequency given by

w? =M p/mg? i [247]

where m is the mass and £ the radius of gyration about an
axis perpendicular to the maghetic axis of the proof mass. As-
suming for the moment that the period of this oscillation is very

much less than the time constants characteristic of rectilinear
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motion of the prdbf mass in the suspension, and that there is some
damping of the angular oscillation (e.g., by eddy curreﬁts), the
magnetic moment may be taken as being along the field direction in
calculatihg the force on the proof mass. Equation [244] then ap-
plies and, at the origin, the force is given by [245] as

g.# - mg = % Mo VB . [248]

According to [174]), the field and field gradient at the origin

are given by

Bz = 2Q°

3B,/0z = 20°' [249]

so that [247] and [248] give

2 .29 B .29 9° _ 392
w 'Ez VB 2 0% = 2 [250] .

The angular frequency of oscillation is then that of a pendulum
of length 52/32 and will generally be quite high if the maguet is

small, as assumed in this section.

An important difference between the hard and soft cases is
that, if the magnetic moment is aligned with the field,va permanent
magnet must physically rotate when it is displaced horizontally
from the origin.v It’is easily seen from [174] and {[175]1 that the

magnetic field at a radial distance r from the origin makes an angle
R S
¢ * 37 - | [251]
- A proof mass containing such a magnet must therefore exhibit

a rocking motion:when it oscillates horizontally, an undesirable

defect in the simulation of free fall.
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A possible solution to this difficulty arises from the ob-
servation that, unlike the soft case, it is not necessary to
provide a magnetic field at the origin when a permanent magnet is
used. Apart from second-order effects unaccounted for in [246],
the torque vanishes at the origin if the field is zero there --
i.e., by [174] and [175], if Q° = 0. 1In the use of the suspension
for accelerometer test, the magnetic moment may then be kept
vertical by relatively small torques exerted by the electrostatic
suspension system. We then have

M=M i [252]

where i, is a unit vector along the vertical. Equation
[242] then becomes

u-= % M.B, = M, [Q(z) - % Q"(Z)(X2+Y2) +oeee ] [253]

from [174) and [175]. The force at the origin is then given

by

F = vU| =M 0°' i =0Q°'M [254]

X,Y,2=0 =z -

and the stiffnesses at the origin are

= - J-_ " ’ ’
8i3 =My |~ 3 Q° o 0 [255]
o _]; on
’0 5 Q 0
0 0 QOII

The only nen-vanishing terms in the 3-dimensional second-order

stiffness matrix are

= ez = = = = - ovee
Ty13 = T131 T Ta23 = T3 T Tapp = T31y 3 Q
(2561

r333 QO 1
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It thus appéars that a suspension using a permanent magnet
can be constructed by choosing a suspension coil configuration
such that

Qo = QO" = QOIH = 0 ‘ [257]

with Q°' finite. It was shown in Sec. IV.3.4 that an anti-
Maxwell pair (i.e., a pair of identical coils, symmetrically
located on the Maxwell cone, with the same current flowing in

opposite directions through them) meets these specifications.

Notice that, in this permanent-magnet suspension, it appears
to be possible to make the first- and second-order force gradients
all zéro. By Earnshaw's theorem, it would clearly be necessary
to provide some form of feedback stabilization, but the lowest
order terms in the destabilizing force appear to be cubic in the
displacement from the origin. The performance of the system may
thus be supericr to that using a linear magnetic proof mass: in
particular, it may be less sensitive to the type of relativ- vi-

brations of the components discussed in Sec. IV.3.6.

This'interesting possibility deserves further investigation.
For a permanent magnet, the principal defect of [242] is that it
assumes that the proof mass is a perfect magnetic dipole. 1In a
more complete analysis, multipole moments would be expected to
interact with higher-order gradients of the magnetic field. As
it turns out, however, the desired configuration is one in which
at least the next two gradients of the field vanish, according to

[257], so that the dipole approximaticn may prove quite accurate.
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IV.5.3 Diamagnetic Proof Mass

We now return to the question of constructing a proof mass
of magnetically linear material, for use in a suspension of the

type described in previous sections.

With the impractical exception of liquid oxyg.en,34 the dia-
magnetic or paramagnetic susceptibilities of ordinary simple
magnetic materials are too small to allow their use in a suspen-
sion employing reasonable (kilogauss) fields and field gradients.
As is well known, however, a superconducting body is perfectly

diamagnetic - i.e., its permeability is zero.

One solution to the problem, which may be practical if the
suspension coils are superconducting (so as to maximize the
achievable field and eliminate‘problems with heat dissipation),
is to embed a’sﬁéérconducting element inside the prdof mass,
which will otherwise be constructed of nonmagnetic mate:ials. To
eliminate torques on the proof mass, the superconducting element
may be spherical. 1Its magnetic moment is then given in Gaussian

units by35

=

=-§-VB | [258]
-V B

where V is its volume. The force is then given in cgs units

by
_ . 3 2
F=-qgg7V VB [259]
so that, in [158]
. o, RER . IR |

The principal difficulties expected in the use of a super-

conducting proof mass are those that have been encountered in the
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development of superconducting gyroscopes. These are:
(i) Elimination of trapped flux. In order that the suspended -
superconducting sphere not exhibit a permanent magnetic moment
and hence anomalous forces, great carekmust be taken during the
transition:to the superconducting state. To avoid trapping the
field ofvtﬁe Earth, it may be necessary to provide a mechanism
whereby the proof mass may be kept outside the suspension, in
the normal state, while the suspension coils are cooled and
supercurrents established. The proof mass would then be inserted
part way into the suspension, to a region where there is a
definite field gradient in all directions, and allowed to cool‘
until transition occurs. Only then would it be moved to the cen-

ter of the suspension. ‘ *

(ii) Cooling of the suspended proof mass. If the proof mass is -
suspended in vacuum, it can be cooled only by radiation, a very
inefficient process at cryogenic temperatures. The total power
dissipation in the proof mass (for example, due to eddy currents

in the non-superconducting parts) must be of the order of nanowatts.
This condition may be relaxed by retaining a pressure of several

torr of helium around the proof mass, so as to provide a convec-

tive mechanism for heat dissipation.

An alternative possibility, avoiding the problems of a super-
conducting proof mass, is to use a pseudo-diamagnetic test body
of the type which has been investigated by Wilk36. In this con-

cept, the magnetic element in the proof mass would consist of
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tﬁree concentric, orthogonal coils-of small cross-section, with
a 3-axis (Hall effect) magnetometer at their center. The three
coils carry currents delivered by servo amplifiers so as to drive
the magnetic field at the center to zero. The element then behaves
very nearly like a perfectly diamagnetic body. | o

An active proof mass of this type of course‘requires a power
source for the coils and internal electronics. However, in
Wilk's analysis, the power requirements were found to be only of
order 15 mW per gram of 1lift force, so that the possibility exists
of building a proof mass with an internal power aiSSipation below
one watt. If so, the power could be supplied by a photovoltaic
cell forming’one‘end‘of'the proof mass, illuhinated by a light beam

with a power of order 5 watts.

At the present time, neither the superconducting nor pseudo-
diémagnetic proof masses have’been‘adequately studied. The latter
type, in particular, requires careful analysis in order to optimize

the internal coil design for this application.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

V.l The Magnetic Microbalance

The analysis presented in Chapter TV has shown interesting
possibilities for simulation of free fall in the testing of ac-
celerometers. Of particular promise are magnetic suspensions
using either (i) a linear magnetic element consisting of a Wilk

pseudo—diamagnet39

;3 or (ii) a permanent magnet with its axis
vertical, embedded in the proof mass. The suspension coil design
to eliminate first- and second-order force gradients at the

origin is quite different in these two cases and further work is

required before a choice can be made between them.

The oriéiﬁal motivation for this study of ‘magnetic suspen=-
‘eions was that 1t is . 1mp0551ble to test in the laboratory electio—
statlc accelerometerq of the sen51t1v1ty required for the orbltal
Eotvos experiment, if it is necessary to buck out the weightyqf

the‘proof mass with electrostatic forces. For the specific pur-

poses of the EGtvos experiment, it may now be more cost-effective
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to test candidate accelerometer designs on an early flight of
the shuttle (STS), rather than to construct a suspension of the
type considered here. It is estimated that a shutﬁle accelerom-
eter test facility could be constructed as a "minilab"37 weighing
leés than 200 kg. The direct launch cost, according to the NASA

38

pricing formula”" and not including allowance for the services of

a payload specialist, may be less than $200,000.

To allow resolution of this issue, it is recommended that
sfudies of the magnetic microbalance be continued to the point
wﬁere a choice can be made between the above two typés, the de-
sﬁrability of using superconducting coils in the suspenéion can
be evaluated, and a realistic cost estimate for an operating
system can be ptepared. A parallellstudy should be undertaken
of an accelerometer test’facility for flight in the STS, so that
shuttle interfaces may be identified, crew involvement specified,
and preliminary estimates made of RDT&E expenses. Comparison of
the cost and expected performance of the terrestriai‘and orbital
aécélerometer test optibns wiil provide the data needed for the

orbital EOtvos experiment development plan.

In making this decision, it should be noted that there are
applications of the magnetic micrébalance other than development
of ﬁhe Edtvds experiment. These inélude: |
(;) Use of the apparatus as a facility for testing electrostatic
aécelerometér designs for che;:space applications, in guidance
aﬁd’contrdl of low-thrust vehidleé; control of the éttitude

dynamics of satellites, establishment of "pure gravity orbit"
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éatellites, etc. Once the system has been built, its use for
these purposes will be much cheaper and more convenient than tests

carried out on STS missions.

(2) Construction of a sensitive long-period seismometer/tiltmeter

based on the microbalance.

(3) Use of t@o microbalances to support the proof masses in an
electromagnetically coupled gravitational-wave antenna39 for use
on Earth. The isolation from microseismic and other disturbances
provided by the system is particularly important for this applica-
tion. Experience gained with such a terrestrial instrument, espec-
ially if it proved possible to detect gravitatiocnal radiation from
one of the expected cosmic sources (e.g., the Crab pulsar) would

be of great vai.e in the design of a larger and more sensitive

antenna for deployment in orbit by the STS.

V.2 The Orbital Edtvds Experiment

Ac discussed in Section III.3, the present state of develop-
ment of the experiment allows confidence that it will prove pos-
sible to compare the ratios of passive to inert mass of various

materials in orbit with a sensitivity of at least one part in 1014.

‘This will allow a preliminary evaluation of the passive mass of

energy stored in the weak interaction. Further analysis is how-
ever required to ensure that none of the possible disturbances
listed in Section III.2 (or others) will preclude operation at

the design sensitivity.

The following immediate tasks have been identified for further

development of the experiment:
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(1) Continued analysis of disturbing forces.

(2) Establishment of a firm candidate design for a dual electro-
static accelerometer for this application. Of particular impor-
tance is a realistic servo design toc allow evaluation of the dis-

crimination which is feasible against the identified disturbances.

63) Development of a plan for testing the accelerometer design,
either using the magnetic microbalance or as an experiment on an

early STS flight, as discussed above.

(4) More detailed analysis of the feasibility of an EStvos experi-
meht to be carried out in the payload bay of the shuttle, including
identification of shuttle performance limitations, shuttlé»énd’crew
interfaces, etc. If the performance suggested by‘prelimiﬁary
analysis is confirmed, finalization of system design for this ex-

periment.

(S) Firm estimates of the performance improvement which may be
achieved by use of an autonomous,iffee—flying experiment which is
erected in and launched from the shuttle. If the expected perform-

ance warrants, detailed system design for this experiment.

(é) Development of a firm program plan, ihcluding cost and schedule
estimates, for carrying out the various phases of the EStvds ex-

- periment which are disCussed above.
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