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;I

The advent of the space shuttle (STS) will make it possible
to carry out relativistic experiments in a laboratory in free
fall.	 One of the most important such experiments, because it
is essential. to the foundations of general relativity, is the
test of the universality of the ratio of passive gravitational
to inertial mass for bodies, which is known as the EOtv0s ex-
periment.	 This report presents analyses of a direct force-
balance technique for carrying out this experiment in space,
which is intended to give sufficient_ sensitivity to allow in-

{	 vestigation of the gravitational interactions of energy stored 1
in the weak interaction.	 It is found that a sufficiently sensi-
tive experiment may be possible in which the apparatus is al-
lowed to float in the payload bay of the shuttle, although maxi-
mum sensitivity requires a fully autonomous, free-flying experi-
ment.

The heart of this experiment is an exceedingly sensitive dualf
accelerometer, containing two proof masses constructed of the

se EOtv0s ratio is to be compared.	 It is hoped tomaterials who,
use an electrostatically-suspended accelerometer for this appli-
cation; but it is impossible to test such an accelerometer in a

`	 terrestrial laboratory if electrostatic forces are used to sup-
port the proof, mass, because of cross-coupling between the support
and sensitive axes.	 For use in development of the accelerometer,
a magnetic microbalance is proposed in which the weight of the
proof mass is supported by 'magnetic forces which vary very slowly
with the proof mass position.	 It may then be possible to build
an electrostatic suspension to control the proof mass with elec-
trode spacings, voltages, etc., similar to those 'which are needed`
in free fall.	 It isshown that at least two different mechaniza-
tions of the magnetic suspension may be feasible.

f
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CHAPTER ONE

THE EOTOVOS EXPERIMENT

I.1 In'troduction

In Newtonian gravitational theory, the force acting on a

particle of inertial mass ml , due to the gravitational field of

another particle of mass M2 is given by

F = mir	 GM1M2r 3r ,	[ 1]

where G is the gravitational constant, r is the

position vector of the particle relative to the source of the

field and Ml is the gravitational mass of the particle. As has

been noted by Bondi l three logically distinct concepts of mass

occur in this equation: (i) inertial mass m l , which determines

the acceleration of the particle under a given force; (ii) passive

gravitational mass M1, which determines the force on the particle

in a-given gravitational field; and (iii) active gravitational

mass M21 which determines the strength of the gravitational field

generated bya particle. The equivalence of active and passive

gravitational mass is a consequence of the law of action-reaction

[which is not a Lorentz-invariant concept, so that it must be

handled with care in relativistic generalizations of the theory],

6	 ti.



is a constant for all bodies (at least, for all bodies

Which are so small that gravity-gradient effects in the external

gravitational _field are unimportant). The value of G is normally

an chosen that this ratio is unit

but the universality of gravitational phenomena depends on the

separate assumption that the Eotvgs ratio

k = 1d/m
	

[2l

y
4

i

y• i

The hypothesisthat k is independent of the chemical composition	 j-	 s
or internal structure of a sufficiently small body is a statement of

i
the Weak Principle of Equivalence, which is an axiom in general

relativity and in most other theories of gravitation, although in

some (for example, the Brans-Dicke cosmology 2 ) the ratio is allowed

to vary from point to point in spacetime. It should be noted that

the Weals Principle is necessary but not sufficient for the validity

of general relativity (and especially for its geometric interpretation

in terms of the metric of ,spacetime), the theory developed by

Einstein requires the Strong Principle of Equivalence, which states

that no self-contained physical measurement, carried out in an

infinitesimal region of spacetime, can distinguish between gravitation

and a suitably chosen _iner
t
ial acceleration.' As a 'corollary, a

free-fall coordinate system, if sufficiently limited in extent,

is physically absolutely equivalent to an inertial frame (local

Lorentz frame) .
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The Strong Principle is subject to direct experimental proof

only if it is believed that it is presently possible to enumerate

every feasible type of physical measurement. However, it is

possible thatthe Weak Principle implies the Strong Principle,

a suggestion known as the Schiff Conjecture 3 which has, as yet,

been satisfactorily demonstrated only for restricted cases. 4 If

it can be proven, the Weak Principle will become the primary

foundation of gravitational theory.

I

The Weak Principle of Equivalence is obviously supported by

the common observation that all bodies fall with the same accelera-

tion under gravitation (as in the famous and perhaps apocryphal

test by Galileo at the Leaning Tower in Pisa)	 This phenomenon

was demonstrated dramatically on television by David Scott on

Apollo 15, when he dropped a feather and a hammer together to

the lunar surface. Accurate evidence for the validity of the

principle however consists of experiments of the Eotvos type,

whose distinguishing characteristic is that they are null measure-

ments, taking advantage of some situation in which there is a

nominal balance between inertial and gravitational forces in order

to achieve quite remarkable precision. Given two bodies, of

1	 materials A and B, these experiments may be regarded as measurements
1

x
of the Eotvos number

TI (A F B)	 k (A)	 K (B)	 [2A]
{

i	 i	 I

J
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Eotvos himself used the fact that, in a horizontal plane

determined by a plumb bob, there is (in the northern hemisphere)

a small southward component of centrifugal acceleration, due to

the diurnal rotation of the Earth, and an equal but opposite

component of gravitation.	 The magnitude of these horizontal

accelerations reaches a maximum of about 1.7 cm/sec t at 450 latitude.
A torsion pendulum was constructed in which bobs of different

Materials were attached to opposite ends of an arm which was ?

suspended by a fiber at its balance point. 	 If n for the two bobs

differed from zero, a small torque would be produced about the

vertical,, which would affect the rest orientation of the arm

relative to the laboratory. 	 Because this Eotvos torque was a

sinusoidal function of the azimuth angle of the arm, the arm

orientation would not then change by exactly 150 0 when the fiber

suspension was rotated through precisely that angle. 	 In a series

of painstaking experiments between 1889 and 1922, Eotvos showed5

that, for a variety of pairs of materials, Tl differs from zero by

at most a few parts in 109. 1

In 1962, Dicke et alb built an improved torsion balance, which

possessed triangular symmetry to reduce the effects of local gravity

gradients and which was designed to take advantage of the balance ?

which exists between the gravitational pull of the sun and the

` centrifugal force due to the motion of the Earth in its orbit. 	 F

The accelerations involved here were somewhat smaller (c. 0.6cm/sec2)

than in the experimerits of Eotvos, but they were modulated with a

r
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24-hour period by the rotation of the Earth, allowing frequency

discrimination against some interfering torques and, more importantly,

eliminating the need to disturb the system by rotating the suspension

relative to the laboratory. The accuracy achieved was about one

part in 10 1.1 , in a comparison of gold and aluminum test masses.

9

C	 Using a modified form of the Dicke experiment, Braginski 7 in

1972 improved the accuracy further, by about one order of magnitude.

As discussed in Chapter II, the advent of space technology

has opened up opportunities for Eotvos experiments of unprecedented-

accuracy.

L.2	 Possible Violations of the Equivalence Principle

General relativity is a theory of gravitation which is

self-consistent, complete, and in agreement with all experiments

to date.	 Moreover, it is compellingly elegant, in a way unmatched
^

'	 by any other theory which has been proposed. 	 Even if other gravita-
w

tional theories are to be considered,, there are strong arguments8

that the only viable theories are metric theories -- i.e., theories

in which spacetime possesses a metric which satisfies the Equivalence

Principle by exhibiting locally Lorentz frames. 	 The best confirma-

tion of the Equivalence Principle (and especially of the Strong

`	 Principle) lies in the nature of-the theories to which it leads,

rather than in the direct experimental evidence for it.	 Nevertheless,
r

f
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an unsatisfactory aspect of metric theories of gravitation is that,

despite much effort which has gone into unified 'field theories,

gravitation remains conceptually quite distinct from the other fields

of physics, being regarded as an expression of the curvature of

spacetime. Furthermore, as will be shown, there are difficulties

with the Equivalence Principle itself which suggest that anomalies

might be revealed by continued experimentation

In designing such tests, a theoretical: framework would obviously

be useful which predicted where violations might be found. It is

Inot reasonable to discuss tests of the Equivalence Principle in

i	 terms of a theory which assumes its validity. What is needed is
i

a gravitational theory which starts with minimal assumptions

(e.g., Lorentz covariance and reduction to Newtonian theory in

that limit), identifies clearly the additional assumptions which

,j

	

	 lead to a metric theory, and then systematically explores the

consequences of changing those assumptions. The spin-two field

theory of gravitation9,10 , which leads to general relativity when

non-linear terms due to the energy density of the gravitational

field itself are included, may provide a model for such a development.11
I

-In the absence of a comprehensive theory, the best that can

^f
	 be done is to consider some isolated possible anomalies.

I.2.1 Differences in Composition: The Weak Interaction

The classical Eotvos experiment is a test of the possibility

that the ratio of passive to inert mass of a body depends on its

s
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chemical composition. In more fundamental terms, :;he hypothesis

to be tested is that one or more of the forms of energy which make

up matter exhibits an anomalous value of this ratio. Examination

of this hypothesis will show the motivation for further improvements

in the accuracy of the experiment, as well as providing some important

design considerations.

Ordinary matter may be regarded as consisting of energy stored

in a combination of the following forms:

(i) The elementary particles (both real and virtual) which
make up atoms, particularly protons, neutrons and electrons.

(ii) The strong interaction, which binds protons and neutrons
together to form nucleii.

(iii) The electromagnetic interaction, which binds electrons'
and nucleii together to ,Hake atoms, atoms together to
make molecules and crystal lattices, and which weakens
the strong attraction of protons in a nucleus

(iv) The weak interaction, which is responsible for ^-decay
processes.	 -

(v) The gravitational interaction, which holds stars together
and binds planets and stars into 'solar systems and solar
systems into galaxies, but which is very weak indeed
on the laboratory, scale.

Eotvos ` experiments using bodies of widely different composition

allow conclusions to be drawn concerning the passive mass of some
_	 f

of these forms of energy (excluding the gravitational interaction,.:_

which is discussed in Section 1.2.2) Energy conservation requires

conservation of passive mass in reversible transformations between`'

forms of energy, since otherwise it would in principle be possible;

to convert a system to its heavy form, extract energy by lowering 	
F
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it in a gravitational field, and then lift it after conversion

back to its light form, allowing a perpetual motion machine. However,

this does not prohibit equal and opposite changes in passive mass

amongst components of such transformations, so that anomalous

results of the E6tv6s experiment are possible.

In order to estimate the accuracy required in such experiments,

assume for simplicity that only the i th form of energy exhibits an

E6tv6s anomaly, with ki the ratio of passive to inert mass. If

a i (A) is the fractional contribution of this energy to the overall

inert mass--energy of body A, Eq.- (2A) reads

n (A,B) - 
(1 _ ki) [ai 

(B)	
ai (A)	

[31

Since the mass fractions of the different energy forms

add to unity for a given body, the difference in the particle mass 	 a
i

fractions for two bodies is equal, apart from sign, to the difference

I' in the binding energy mass fractions. Figure I shows the difference

between the total binding energy for an element of atomic number Z

and that of beryllium, which is arbitrarily chosen as a reference.

This curve, which is obtained from the semi-empirical mass formula

of Weizsacker 12 , may be useful in designing tests of the hypothesis

that particles, of whatever type, exhibit an anomalous Ebtvbs ratio.

f, For example, it is clear that this anomaly, if it exists, would

be maximized in a test which compared beryllium with copper or

iron. Such a choice `would in fact give a test 6 times as sensitive

as one using gold and aluminum, with no other changes in the

experimental conditions.
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The total binding energy is made up basically of the electromagnetic

and strong interaction energies, the latter being negative since

it is an attractive force between nucleons. The weak and gravitational

interactions are negligible by comparison. The electromagnetic

and strong components of the difference in binding energy of an

element of atomic, number Z and that of beryllium are also shown 	 .^

in Fig. I, where it is seen that the optimum choice for test of

the hypothesis that one of those energies has an anomalous Eotvos

ratio is beryllium and an element of high atomic number, such as

gold or uranium. The achievable improvement over gold and aluminum

is by a factor of 2.4 for the strong interaction, but only by

about 50 % for the electromagnetic interactio n.

1

	

	 The shape of the curves in Fig. I suggest that an Eotvos	 T

experiment in which beryllium is used as a standard for comparison

with both copper and gold would give; optimum sensitivity fc_ each

of the three above forms of energy -- and if an anomaly were

detected, it would be possible to determine, from therelative

magnitude of the results for copper and gold, which energy was

responsible.

The Dicke test, showing that -n(Au,Al) < 10_1y, allows the

following conclusions to be drawn from Fig.' I:

kparticles is less than 2 x 10-8

kstrong is less than 5 x 10`9

`  -9kelectromagnetic is less than 6 x 1Q 	 Y

x
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I
Note that this simple analysis applies to particles only when

they are considered as a group. Drawing conclusions from the

Eotvos experiment about the passive mass of particular types of

	

f	 particles (e.g., neutrons) requires a more detailed analysis, as

the differences in mass fractions are not necessarily given with

sufficient accuracy by the semi-empirical mass formula and, in

any case, depend on the particular isotopic composition of the

samples tested. An analysis by Schiff 13 suggests that Eotvos

experiments to date have demonstrated with convincing precision

that protons, neutrons and electrons (and their antiparticles)

x	 do not exhibit anomalous gravitational behavior.

Energy stored in the nucleus by virtue of the weak interaction

is typically of order 107 times less than that due to the strong

interaction14; in other words, weak interaction energy may contribute

a fraction of order one part in 10 9 to the mass of an atom. In

view of the uncertainties in this calculation, and of the fact that

only differences in the mass fraction between different materials

contribute in an Eotvos experiment, it is clear that such experiments

to date are insufficient to allow any statement about the passive
=a 

mass of weak energy. on the other hand, the Eotv6s experiment in

orbit which is discussed in C,zapter II, which is intended to have

a:sensitivity of about one Hart in 10 1 , is fully capable of detecting

y substantial violation of thee Equivalence Principle by weak

energy. It is this possibility which provides the strongest motivation

	

is	 for the Eotvos experiment in space. 	 c	 z
i

	

11	
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I.2.2 The Gravitational Self-Energy

For an approximately spherical body of radius r, the fractional

contribution of the energy in its gravitational field to the overall
x

inert mass is of order

Gm	 1ag
rc2	 [41

where c is the speed of light.	 This number is of order
s

10-25 for laboratory bodies, much too small to be of any experimental

interest, but it is of order 10- 9 for the Earth and 10
-6
 for the 

..Sun, so that solar system experiments are much more promising.

F	 a

As was	 c^_r_ted out originally b	 Nordtvedt15p y 	, a differential	 a,

acceleration towards -the Sur, of the Earth and Moon would result if 	 }

gravitational self-energy lacked passive mass. 	 The resulting

polarization of the lunar orbit about the Earth is detectable by 	 -

].wear laser ranging using; the retroreflectors left on the Moon

during the Apollo program.	 Results to date indicate no anomaly,

G	 ! the accuracy in the measurement of the Eotvos ratio of gravitational

energy being about 2016.

If this effect existed, the Earth would exhibit; an anomalous

r
acceleration towards the sun of order 10-12g.	 While this could in

principle be detected by a sensitive accelerometer in a laboratory,

difficulties with first- and second-order solar gravity gradients,	 a

tidal effects,, seismic noise, etc., probably preclude such an experi-

ment.
r
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It would be quite surprising if this type of Eotvos anomaly

°	 were discovered. One third of the anomalous precession of the

perihelion of Mercury can be construed as arising from the active

mass of energy stored in the solar gravitational field10 (there

,s more spherically symmetric mass inside the planet's position at

aphelion than at perihelion). Moreover, if the passive mass of a

gravitating system changes when gravitational energy is converted

to other forms (e.g., kinetic), it is clearly possible to conceive

gedanken experiments which would exhibit small violations of energy

conservation.

4

A somewhat similar effect can arise in those theories which,

while obeying the Equivalence Principle, allow spatial variations

in the gravitational constant (e.g., the Brans-Dicke theory2).

Because the gravitational. self-energy depends on G, spatial gradients

of G can produce small anomalous forces on a massive bodyl7.

1.2 .3 Spin-Orbit Interactions

It is predicted b general' p	 y g	 l relatvity18 that a sp i nning body

does not follow exactly a geodesic in the Riemannian space-time

determined by neighboring bodies, when it is in acted on by no

forces In other words, a gyroscope in a gravitational field experiences 	 {

an anomalous acceleration, which has been calculated by Schiff19

for the case of a spherically--symmetric, static field as

a - 3GM [ (r • x) (r x v) + (r •v) (r x H)]	 [ 51
-s	 - - - -	 -	 -mc2r5

_ ,	 ^.r	 !
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where M is the mass of the source of the field, m is the mass

of the gyro, r is the radius vector to the gyro, H is its angular

momentum, and v is the orbital velocity. For a circular orbit, for

which r•v 0, with. H lying in the plane of the orbit, an Eotvos

experiment which compared the gyro with a non-spinning body would

reveal an Eotvos ratio which varied sinusoidally at orbital period,

of amplitude
i

3HS2

I's	 I6]

where Q is the orbital angular velocity. For example,

a large gyro in low Earth orbit, with a wheel .radius of one meter,

spinning at 10,000 rpm (clo8e to the value at which centrifugal

stresses would tear it apart), would exhibit an Eotvos ratio of order

10 17 . Careful design and a sufficiently large apparatus might

make this effect experimentally detectable, thereby providin	 i

another test of general relativity. Although such a device would,

in principle, be capable of detecting the difference between an 	 -

inertial acceleration and a gravitational field, this would not

necessarily violate the Strong Principle of Equivalence, which is

limited to infinitesimal regions. A spinning body cannot be in-

finitesimal, even in principle, essentially because the periphery

must move at less than the speed of light. Thus this experiment

!

	

	 would constitute a test of the consequences, and not the foundations

of general relativity.

yy
j



I.2.4 ' The Electromagnetic 'Radiation Re'act'ion

At first sight, radiation from an accelerated charged particle
	 3

seems to violate the Equivalence Principle. How does a charged

body, at rest in a terrestrial laboratory, know that it is experiencing

a'gravitational field and not an acceleration,'so that it does not 	
4•

radiate? The usual answer.to this, of somewhat dubious validity,

is that radiation phenomena must occur over distances of at least

a wavelength, and hence cannot be considered as an experiment in an

infinitesimal region. In any case, it is of interest to calculate



or

Fr ad = mTO (R x 0) _ - mg x T 

where R is the radius of the orbit. The radiation

reaction force is thus a drag, opposite to the orbital velocity,
a

whose magnitude is less than the weight of the particle by the

factor TO. The characteristic time T has its maximum value,

h	 6.26 x 10 2 4 seconds, in the case of an electron,, which, in low
1

Earth orbit, would thus exhibit an Eotvos ratio of at most about

10-26 . 	 effect is therefore negligible.

i

a

i

I	
_

f^
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CHAPTER TWO

AN EOTVOS EXPERIMENT IN ORBIT

II.1 Basic Considerations fora Space Experiment

As discussed in the previous Chapter, there is now good

evidence that all the forms of energy which make up matter obey

*	 the Equivalence Principle, with the 'possible exception of energy

stored in the weak interaction. It appears that this Last form

of energy can be checked by carrying out an Eotvos experiment

with a sensitivity improved by 'several orders of magnitude, to

about- one part in 1014

The advent of space technology has,made possible a substantial

improvement in the experimental conditions for the Eotvos experiment.

In low Earth orbit, there exists a balance between gravitational

and centrifugal accelerations whose magnitude is close to one gee.

This is to be compared with the forces available to Eotvos^'
j

(1.7 milligee) and Dicke et al6'7 (0.6 milligee)	 Moreover, the

free-fall environment in orbit allows great reduction in the problems
1

associated with suspension of the apparatus, such as coupling to

ambient noise. In principle, then, the`Eotvos signal can be increased

by three orders of magnitude, and the noise level substantially

reduced. In view of the importance ofthe experiment to the

I
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foundations of general relativity, it is an obvious candidate
i

for performance in space. As discussed in Section III.3,
it may be an ideal experiment in terms of making use of the

capabilities of the Space Transportation System (space 'shuttle),

in the development of the apparatus as well as in performance of

the final experiment.

The most obvious technique for carrying out this experiment

in orbit is to use an adaptation of the rotational balances which

have been successful in terrestrial experiments. However,_ gravity

gradient torques may swamp those due to Eotvos forces unless great.

care is taken to make the system inertially symmetrical. Without

going into the details of the design of such a balance, some general'

conclusions may be drawn.

For simplicity, consider a system with one of its'principal

axes along the orbit, normal. The gravity.-gradient torque is then

along the orbit normal and of magnitude (calculated in Section I11.2.4)

T	 -0 AI sin 20	 [12]
g

j

	

	 1
where AI is the difference in the moments of inertia'

about the principal axes which lie in the orbit _plane 'and 6 is
ii

the angle between one of these axes and the local vertical

Let us suppose the system is constructed of two different

materials, A and B, for which the ratios of passive to inert

mass are k(A) and k(B), respectively. The Ebtvas torque about`

i
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the center of mass is then j

T_ ° cox { k (A) fA rdmyk(B) rBr dm]
e

- nq x [ IB r dm]

-^ nmgxa	 [13]

where	 is the local gravitational field, r is the

radius vector from the CM of the system to an element of mass dm,

and

= 
1a mt8 r dm	 [14]

With appropriate symmetry, a will lie in the orbit plane, but

~ generally not along one of the principal axes.Te is then along

the orbit normal and of magnitude

Te =	 nmga sin	 [15]

where	 is the angle between a and the local vertical.
ii

_ 3

In order to estimate the difficulty of inertially-balancing the

system, a reasonable condition to impose is that the frequency

of gravity--gradient oscillations be less than that due to E6tv6s

s
torques.	 If I is the moment of inertia about the axis along the

i

f

F
orbit normal and b the radius of gyration about this axis, this

i condition may be written, using [12] and [15] , as

AI ^,naR
I	 5bz 	 [161

t
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P

where R is the radius of the orbit. For a given system

geometry, the gravity-gradient torques increase faster with the

size of the system than do the Eotvos torques, so relatively small

apparatus is required to allow adequate inertial balancing. For

a	 b	 10 cm, [i6] requires

Ii < 2 x 10-7	
[17]

in order to achieve an accuracy of f 10 -14 , Inertial

balancing to this accuracy is difficult but not impossible with

current technology, especially as it may be possible to `exploit

the double-angle dependence of [12] and a design difference in the

directions o` and a principal axis to effect final balancing

on orbit.

Even if this condition can be met, it must be recognized that

the torques under consideration are extraordinarily weak. From

[151, the angular frequency of oscillation due to the Eotvos

torques is given by

W e = 
n	

'	 [181
b

which, under the conditions assumed in [171, gives a

period of some 2000 hours! It is clear that very great care
a

indeed would be required to protect the balance from non-gravitational

disturbing torques, such as those due to the Earth's magnetic
r

field, radiation pressure or perhaps residual atmospheric drag.

a

7
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i

I

k^	 Furthermore, it is highly desirable to design an experiment fromw;

{	
.

which thedata can be extracted more quickly.

II.2	 Force-Ba lance Techniques

In order to overcome the difficulty of inertially balancing an

Edtvbs torque-measurement aq	 apparatus for use in free 'fall, an alternative 'r

technique is under study in the M.I.T. Measurement Systems Laboratory 21, 2

(and also at the Hansen Laboratories of Physics, Stanford University23)11

in which the Eotvos forces are.to be measured directly, without con-
i

verting them into torques.	 The design was motivated by the follow-

_	 ing considerations:

i)	 Gravity--gradient-forces may be minimized by placing the
centers of mass of the bodies to be compared as nearly
as possible at the same point in space.

ii)	 The tensor properties of residual gravity-gradient forces
.	 may be used to distinguish them from the phenomenon

under study.	 .
i

iii)	 The Eotvbs force may be modulated by rotating the apparatus,-
a

allowing operation at higher frequencies and minimizing
G	 the duration of the experiment.

iv)	 The design allows resonance to be used to enhance the
!	 sensitivity to Eotvos forces.

v)	 Force-measuring devices (accelerometers) are simpler to
instrument than torque-measuring devices, which must

f ;	 include gyros and/or star-trackers.

vi)	 While a force-measurement experiment may seem, at first
sight, more subject to disturbances due to external forces
(magnetic, residual aerodynamic, etc.) than ,a torque

r	 balance might be, in fact the force balance technique
!	 allows discrimination against these effects in a way p

Which is difficult orimpossible with a torque balance.
In any case, if necessary these forces can be reduced
or eliminated by well-established "pure gravity orbit"
techniques.24

}
E+	

1

^	

l

t



As sketched in Fig. II,, the proposed apparatus is a satellite

which consists basically of an aluminum wheel, spinning about its

axis of symmetry, which is nominally aligned normal to the plane

of the orbit.	 This orientation is, of course, stable under gravity-
i

gradient torques.	 A sensitive electrostatic accelerometer is

mounted radially in the plane of the wheel; it 'consists of a cylindrical

electrode structure with an internal test mass constructed of

material A and an external, annular -test mass constructed of material

B, as sketched in Fig. III.	 The accelerometer is so designed that,

where. the two test masses are at their null positions, their centers

of mass are nominally coincident with each other and with the center

of mass	 (CM) of the satellite.	 The object of the experiment ir-,_

of course, to compare the EotvQs ratios of materials A and B, by

a differential measurement of the forces which they experience as

the satellite moves along its orbital path.

P II.3	 Analysis of th e Experiment:	 Ideal Case _

Let m, M be the inert and passive masses of test mass A and

t m', M' those of test `-mass B.	 The nullpositions are taken accurately

coincident with the CM of the system and the displacements of the

test masses from null are 'denoted by x, x' respectively.	 The mass
b

F of the wheel is assumed to be so large that motion of the test

-masses does not appreciably shift the position of the CM within

the system.	 The satellite moves in a perfectly circular orbit

about the Earth, which is taken to be spherically symmetric, and

E

A771
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i
no external forces other than gravitation act on the system.

F	 ideally, the equation of motion of test mass A is then
{

8

m_X =	 m q + m .wzx +` [M2 ° mg*].ix	 [19]
1

where w is the inertial angular velocity of the wheel,

q is a servo restraint force applied to the test mass, ix is a unit

vector along the (common) accelerometer axis, g is the gravitational-_ 1i

field at the test mass and g* is the inertial acceleration of the
CM of the system, due to terrestrial gravitation. 	 In this equation,

i-
forces which are perpendicular to the sensitive axis, such as the

n	 Coriolis term, have been dropped: 	 the cross-coupling between supportPP	 P	 g	 PP

and sensitive axes of the accelerometer is assumed zero. I

A similar equation to [19], using appropriately primed quantities,

: applies to test mass B.

Without loss of generality, the Eotvos ratio of the satellite

as a whole may be taken as unity.	 This is equivalent to defining

the gravitational constant as that measured in a Cavendish experiment

using masses of the same average composition as`the-system.	 Then 3a

where Q is the orbital angular velocity of the satellite

and R is the geocentric position vector of its CM.

The gravitational field may be expanded in a Taylor series

about the CM, most conveniently in tensor notation. 	 For future

III
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F

reference	 we write the field for a general position r i (i _ 1,2,3)

relative to the CM and compute the second-order terms, although

only the first-order gravity gradients are required at present.

For test mass A,

Mg	 - 
mgl	

-	
m[kgi - 

gi b a

_	 m[(k-1)g	 + kr.[ag	
a2g

]*	 + k r.r[	 i	 ]	 +	 ...]	 [21]	 r."
aRj	2:	 J k aRj aRk

z

where k _ NI/m and * means the quantity is to be computed

at the CM.	 Since k is very close to unity (as demonstrated by

terrestrial Eotvos experiments), it may be taken as such in ['21], 	 {

except in the first term, so that	
x

Mgi - mgi	 =	 m[(k-1)gl + TljrJ
	

Tijkrj rh + ...]

---	 {22?

-,here the first- and second-order gravity gradient tensors

are given by the partial derivatives of the terrestrial gravitational

field as

Dg.	 a	 GM R-3R:
s ^	

3

SZ2 [S ij
	- 3R-2R.R.	 [23]

and
$

21	 a gi

Tijk	 2 DRjaRk]*

E
[24]

_	 -:2f0 R-2 [Ri S j k + Rj S ik + Rk Sl j - SR	 R. R RkJ

6	 ',3

-

r
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where M® is the mass of the Earth and 6 i 	 is the unit
3

tensor.

Substituting-the first-order terms in [19) yields
A,

x + q	 [wz - 0' + 30 2R-2 (R. X) 2 ]x = (k-1)g*ix	[25)

or, since Lx is rotating with respect to the local

vertical	 (i.e., R) with an angular velocity	 (w-SZ)

x + q	 [wz + 2 z + 2 z cos 2 (w-SZ) t) x = 	 (k-1) g cos	 (w-St) t	 [261

If q is a simple spring restraint,

q	 KX	
[27]

' this is recognized as a standard. Mathieu equation, driven;

by sinusoidal forcing function proportional to the difference

between the EOtvos ratio for test mass A and that for the whole

system.

y
By writing out the equation similar to [26) for test mass B,

using primed quantities, and subtracting from [26] 	 we obtain

'
z	 1y + Aq -	 [w	 +	 2 + 2 z cos 2 (w-Q) t] y = ng cos	 (w-SZ) t	 [28]

where y = x-x', Aq	 -q', and rj	 k - k' is the Egtvos' s

" number for materials A and B. 	 A-Mathieu equation for the differential

w motion of the two test masses results if q' is also 'a spring restraint

with the same spring constant per unit mass as q.

k	
=i g



The ideal performance equation [28] demonstrates the possibility

of carrying out an Eotvos experiment with apparatus of this type.

It would, of course, be possible to use an accelerometer with a

single test mass, made of the material to be tested against the

satellite as a whole, according to [26] 	 The advantages of the dual

'.	 accelerometer are:

i) Any pairs of materials may be compared, merely by changing
proof masses. This flexibility may be used to enhance
accuracy in the search for violations of equivalence by
different forms of energy, as discussed in the previous
chapter.

ii) More importantly, as shown in the next Chapter, the con-
figuration allows discrimination against many disturbing
forces, which do not appear in the ideal equation [26]

It is to be noted that the ainpli =̂ ^--de of the E6tv6s acceleration

in [2B] is ng. in designing a force-balance Eotvos experiment with

an accuracy of one part in 10 14 , a prerequisite is an accelerometer

with a sensitivity (to sinusoidal acceleration) of 10 `148. The
i

problem of designing and, most importantly, testing such an accelero-

meter is taken up in Chapter IV.
1

i

E
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CHAPTER THREE

SATELLITE SYSTEM DESIGN

-III.1	 Preliminary Stability Analysis

In beginning a more detailed design. of the force-balance

satellite experiment discussed in the lastChapter, the first question

to be taken up is that of determining the conditions under which

Eq.	 [28]	 (or Eq. [26]) has stable solutions. 	 To this end, we 'assume

a servo restraint force between the test masses of the form

•	 o	 _
pq _ Ky + 2ay [29]

which represents a simple spring, with damping.	 The

equation of differential motion, [28'] is then y

y + 2Xy +	 [W2, -	 Q2 cos 2 (w-Q) t] y = n g cos (w-R) t	 _ [307

where r1

_	 2W2 - K - w 2 - 2
a

For resonance, one might first choose X = 0 and

2-
	

2W	 -	 (w-St)	 _ [311



30,

b ►at unfortunately this ideal, infinite-Q case results in

divergent solutions of the Mathieuequation 25 . The degree of damping

required for stability may be calculated by the techniques described

in Ref. 23. We consider the homogeneous version of [30] and, to

put it in a standard form, first write

T	 (w-Q)t	 [32]
3

which yields (with 
dT 

now denoted by y, etc.)

3

.. + 2X	 +	 l	 W2-- 3Q2 cos 2T ]y 	 0	 33
ff

q3

1

The substitution

y	 e-XT/(w-Q)Z( T )	 [34]

reduces this equation to the 'standard form

z + (a - 2b cos 2T) z = 0	 [35]

with

a	 (W2 - k2 )/ (w-Q) 2	 [36]

and

b	 -3-9 z / (w-Q) 2	 L371
P

If [35]` has stable solutions, then [33] certainly does also;

'but, because of the damping factor in [34], it is possible for [33]

to he stable even though z(T) is divergent. We must therefore

I	 I^	 r
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investigate the properties of the unstable solutions of [35],

for different values of a & b. The stability diagram is Fig. 8

of Ref. 25: the relevant region of the a-b plane, for operation

near resonance (a = 1) is shown in Fig. IV. The curves separating

stable from unstable regions are given by26

a*	 1 + b ._ g 2 - 6-1-4b3 - 1536b4 + ...	 L38a]

and

2	 1 3	 1 4	
[38b]at = I - b -	 +	 153	 ...

f	
.If the point (a,b) lies on the curve [38a]', the solution

of [35] is periodic and even in T. If it lies on [38b] , it is periodic

and odd in T. Between these curves, the solution is divergent;

it may be written in the form27
'	

1

k=cok=^
Z(T)	 AeuT E cke 2jkT + Be--PT	 cke-2jkT	 [39]

k=- oo	k=-CO	 3

t

where the summations represent periodic functions, A & B
p

are constants determined by the initial conditions, and u is

a function of a & b. It is clear from [34] that the solutions to

the original equation [30] will be stable if

}

F X > (w-Q) u^ - Amin	 [40]

Between the curves [38a] and [38b] , we may choose a parameter

v such that27

is

L
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33.

a = 1 - b cos 2a ± 1b2 ( 1 os 4a - 1)'+	 lb3cos 2a
4	 2	 64

+ 
-
lb4 ( 1 _ cos 4a) - .. o [41116	 3	 32

which reduces to 138b] for a = 0 and to [38a] for a =	 7T/2.

Given values of a & b, [41] maybe solved numerically for a and

then25

u _ - lb	 sin 2a +	 4a -	 ...8 3 sin 2a -1	
104b 4sin [42]

We consider two modes of operation of the system which might

be'used in practice:

i)	 w>SSt

if the wheel is spinning at an angular velocity much larger

than orbital angular velocity, [37] shows b<<l.	 it is then sufficient

to y retain only up to the quadratic terms in b in 141]. 	 To estimate

the required damping, we assume operation at resonance (a = 1),

and then [41] becomes
a

4 2 (2 cos 4u- 1) - `b cos 2c = 0
a

or 1

i

cos22a	 b os -2a - 2 = 0 [43]

which may be solved to yield, to second order in
a

b,

cos 2a = - 8
iLoa]	 R

l



To this accuracy, 142] then. gives

[45 1

and,. from [401, the minimum damping for stability is

z	 i

'min = 2 (^^-0)b _ 8	 [46]	 3

N - 0)
s

3

Under these conditions, the time-varying coefficient in -[30]

produces a small perturbation to a simple second-order harmonic	 S
s

system, which, according to 	 [46], has	 3
1

9	 (w-0)	 =	 l	 = 1 = 4	 (w - 1) 2	 [47]
-max -	 2 ^	 2 }^	 b	 3	 S2

_min

It is th,1 3 clear that very light damping may be used if w_is

high enough.	 For example, in low orbit, with w 	 10 rpm, a value

Qmax = 10 6 is obtained.

If the solution [39] is substituted in [34] and T replaced by

r' t, by [32] , it is easily seen that the effective damping factor ^.s

Xeff - 	 [48]

so that

Qeff -	 [49]
2a eff

can be much` higher than Qrnax if a is close to `min'

F

Comparison with an accurate numerical calculation shows that

[46] is an adequate expression for A 	 if w is greater than about
min

r i

^ i
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i

0

ii)	 w = 0	 (Inerti,ally stationary wheel).

In this case, from [371, b 	 3 .	 If we put T _ Xmin and use

the resonant condition [31] in [361, we find, using [40] ,

a= l o p2	
[50]

Since we cannot be assured a priori that u is small, this

expression must be used in [41] and the equation solved simultaneously

with [42].	 An iterative numerical procedure (reguli falsi) gives

a 365	 [51]

_
ny	 Note that the expression [46] gives a result which is accurate 3

3

within about 3% even in this extreme case..	 While high effective

u	Q can still be achieved in principle, in the presence' of the

heavy damping implied by [51], in such a case small changes in the

damping could lead to instabilities.	 This is one of the reasons

the spinning system is preferred for this experiment.

In practice, of course, a simple spring with damping is a
;i

very elementary servo.	 A more realistic design requires study of

disturbing forces acting on the system, and the question of system

stability must be examined, again in the light of this analysis.
For example, it would be possible to compute and apply a correction

for the time-varying coeffi gient in [30], if this should prove

desirable., However, [46] provides a good rule of thumb for estimat-

ing the minimum allowable damping in the absence of such compensa-

tion.

i

y
r
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a

x,

III.2	 Disturbing Forces
r

In the system under consideration the Eotvos acceleration,

if it exists, always lies along the local vertical, and is modulated

by rotation of the wheel. 	 Any forces appliedto the wheel onto

the teat masses which appear, in a reference frame attached to the

wheel, at frequencies close to (w-Q) , the angular velocity of the ....

wheel with respect to a local vertical reference frame, may

masquerade as Eotvos forces, although considerable discrimination

is possible when the differential motion of the two test masses

is regarded as the output of the system. 	 Limits to this filtering
9

action of the dual accelerometer will be considered below, but,

to maximize s,:— sitivity, it is clearly desirable to minimize extraneous
Y

forces, in particular those, such as residual atmospheric drag,

which are approximately constant in the orbital .frame. 	 Those

forces which have constant components along the local vertical may

prove especially troublesome,.

Techniques exist 28 for isolating the system from most external

forces, by making it "drag-free". 	 Indeed, it was the availability
E

of such techniques which provided one motivation for designing
,r

E the system to measure Eotvos forces directly.	 However, only those

G forces which, directly or indirectly, appear . along the sensitive
k
"i axis of.the accelerometer are of interest, and this may allow a
t

simpler mechanization than that involved in forcing the entire

satellite to follow a pure gravity orbit.' 	 This possibility of

course depends on the feasibility of designing an accelerometer x
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with sufficiently low cross-coupling between the support and

sensitive axes.

The List of possible disturbances which must be taken into
i

account includes at least the following effects:

l	
1. The orbit of the satellite is slightly elliptical.

j	 2. The center of mass of the system does not coincide with
the center of gravity.

3. The system moves in the vicinity of a massive object,
which exerts gravity-gradient forces on it (for example,
the experiment-is free-flying in the shuttle payload bay)

4. The wheel angular momentum is not along a principal
{	 axis, nor along the normal to the orbit plane.

`	 5. The null positions of the test masses do not coincide
with each other, nor with the CM of the system.	 -

6. The sensitive axes of the dual accelerometer are not
coincident, nor are they perpendicular to the spin axis
of the wheel.

7. Support forces for the test masses couple into the sensitive
axe=:., due toCoriolis effects as well as to mechanical and
electromagnetic imperfections.

8. The CM of the system shifts when the test masses move.
c
f	 5. The test masses are affected by stray electromagnetic

forces, generated by the satellite or arising from natural
j	 ambient fields.

10 `. Various mechanical forces (noise) are applied to the
wheel

f11. The displacement detector is noisy, exerts forces on the
test masses, and possibly exhibits non-linearities
(e.g., threshold)

f
!	 System design for this experiment is not yet complete, and

i not all of these effects have as yet been taken into account.

7

37.
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III.2,,1	 Orbit Eccentricity
r

If the orbit is not precisely circular, the first-order gravity-	 y

gradient tensor [23] must be written

rij _ - GMOR-3 [S iJ	 - 3j ijj]	 [521
a

where ji is a unit vector along the 'local vertical, .,..

to allow for variations in the orbit radius R. 	 The equation of

motion [25) of the first test mass is then_

}C + q -	 [ w 2	 -	 GMOR-3 (l - 3 ( -" . 1_x) ? }x _	 (k-1) GM R-2j . iX	 [53]
{

If we assume for simplicity that the accelerometer sensitive

axis is alonr.; the local vertical at perigee, then

j.^ 	 cos	 (wt -)	 [54]

where ^ is the true anomaly, the instantaneous geocentric

angle away from perigee in the orbit.	 The radius of the orbit is

i given by29

N

R =	 P	 [55]
1 + e cos

a

where e is_ the-eccentricity and =p is the semi-latus

rectum, which is the radius of the orbit when 'the<true anomaly

<< is` 900.

In order to find the variation of	 with time, we first	 a

introduce a new variable E, called the eccentric -anomaly, bya_
^

s
a

the relation

`L I.
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an	
l+ 1/2( Fj	 tan 2t	 -	 [561

T

The eccentric anomaly is the solution of Kepler's equation 2-	 j

r
' E - e sin E = Pot [57]

where 0	 is the mean orbital angular velocity. 	 This ry

equation may be solved in terms of a Fourier-Bessel series 4.

expansion for E, but, to first order in e, the solution is obviously

E= 00t+ e sin Slot [ 5 8

If we write .
}
,, tl got + S [59]

and insert this and	 [5,8]	 in [56] , we find, after

some reduction, to first order in	 Sand e,

6	 _ 2e sin Slot [601

and then [54] gives

j.!x = cos (w-0o ) t + 2e sin Slot sin (w°SZo) t;	 [61]
i

;tM Now, to first order,

GM®R-3 (1 - 3 (j . 	 ) 2) 02(l + 3e cos Slot) [1 - 3 cost (w-no) t

° - 12e cos (w-20 ) t sin Slot sin (w-SZo) t

I,
Sto [- 

2 - 2 cos 2 (w-Qo) t
s

.,

y
---cos ^t-+ 3e j 	 1a	 o

7	 —
cos(2w

1
3Slo) t ^-	 cos(2 w-Qo)t]]	 [62]4 4^. t a



and, on the right side of ,[53], 	 I

GM®R- 2 j . iX = go (1 + 2e_ cos Slot) (cos (w-20 ) t + 2e sin Slot sin (w-20) t)

= go [cos (w-S2o )t + 2e cos (w-2Q )tl 	 [631

1
Suppose now that there is a steady state offset Dyo between

the null positions of the two test masses. 	 When the equation of

differential motion is formed, analogously to [28], by subtracting

from [53] a similar equation for the other test mass, the first
3

order effects of the orbit eccentricity will be, firstly, to

change slightly the time-varying coefficient, according to [62];

and, secondly and more importantly, to introduce a driving force 	 f

which,, apart -1-ro Il constant terms, is given by

f = Q2Ayo [3 cos 2 (w-Q ) t + 3e (2 co s Slot + 4 cos (2w-3S2o) t

-	 cos (2 w- S2o)t) ]	 [64]

F Note that there is no component of this force with the principal

frequency (w-2) at which the Eotvos acceleration appears.` 	 In

f fact, the double harmonic term (independent of the eccentricity)

k can be used to drive the null positions of the two test masses

into coincidence.

If the wheel is inertially stationary, however, a term

' fI; = 3p2 e Qyocos 2ot	 [65]
a,

o

f

f	 4Aa^
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appears in [64], at the same frequency 11, exhibited
r

I by the Eot%76s acceleration in this case. 	 Since the amplitude of

the Eotvos signal is ng - na0 R., we must have

43
Ayo « 

e o
	 [66 1

if fi is not to be falsely interpreted. 	 For e = .002,

a reasonable value for low Earth orbit, and if the design sensitivity

is n - 10 
14 , the null offset must be small compared to 40 microns.--

This is not a difficult requirement, but the effect could become,

troublesome if it were desired.to  attempt much greater sensitivity.

In any case, the problem can be avoided by operation in the spinning
j

mode.

111.2.2	 CM-CG Deviations

j	 r Consider an arbitrary rigid body in circular orbit. 	 Set up

a_ reference	 frame with origin at the center of the Earth, rotating 	 -'

at orbital. angular velocity so as to keep the 1-axis along the
i

j or bit normal and the 3-axis along the local vertical, 	 In this 1

a _ frame, the total (gravitational =plus centrifugal) force acting on
I

an element of mass dm in the body, located at a position vector

I ri with respect to the CM, is (cf. Eqs. 	 [23] and [24],).
3

F:
dFi = - SZ 2 ( Ri + r i )dm + g*dm + ri •r •dm + Ti kr^rkdm _+ ...	 [67]

i	 7	 7	 7

where Ri is the geocentric position vector of the CM
to

and g	 is now the gravitational field at the CM. 	 By definition

of the CM,
i.

j.
i
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I
fridm	 0 _[68]

4,'	 (
so that integration of [67] over the body yields- ..	 1

F'i = m(g	 - Q 2 Ri ) + Tijk_ fr j rkdm + [69]

s

The definition of the inertia tensor of the body	 s30

Ijk = f(rnrn 6jk - rjrk)dm [70]

so that the last term in [69] may be written

AFi	 Tijk6jk frnr_ ndm	 Tijkljk

_ Tijkljk

_ 2 
2 R-2 [R.I..	 2R.I..	 - 5R- 2R.R.Rk1. k 1

1
[71]

J7	 ]

since, from [24]

Tij
Oj

k _ 
Tijj - 2 

2 R-2 DR- + Ri + Ri - 5Ri ] = 0 [72]

Now lot 'as suppose that the principal 1-axis-of the body lies along

the orbit normal, and that the principal 3-axis makes an angle e with

the local vertical.	 In the principal-axis frame, I l k-is of course

diagonal, and

' R.	 = R,[O,	 sin; 0,	 cos	 61 [73]
S

r

Rjlij	
R[0,	 I2 sin 8,	 I'3cos	 8] [74]	 :>

k	 i

^
g

x	 l	 t
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and

RaRkl^k W
	 (22sin2e t° 13Cos 2 0) R2 	 [75]

so that [71] may be written, after score trigonometric

reduction, as

6R	 -^mgR`2
_	 2 0 [76]

(	 2	 -	 3 ^2 - 1 E 2 )sin 8 +5 (	 2 - 2 )sin 381	 4 2- 4	 3	 4	 2 	 3
(	 2 _	 1
l	 4

g2 _ 3 C 2 )COS 0 +5 (^ 2 -E 2 )cos 382	 4	 3	 4	 2	 3

where^ l , 2 ,	 3 are the radii of gyration.	 Compared,to

an infinitesimal body, a finite-sized body in orbit thus, in

general, experiences a small additional gravitational acceleration.

'We note first that, if 0 0, the incremental acceleration is

along the local vertical, and of magnitude'

e - gR 2 {j	 +2 2E)	 [7713 	 }

If,	 _	 3	 as in the case of a 'wheel spinning ` about the not-mal

` to the orbit, then, as is to be expected,	 (761 shows that the accelera-

tion is along the local vertica l, regardless of 8.	 If the wheel

is taken as a uniform disc of radius a, then [77] gives

For low Earth orbit (R = 6550 km) and a = 50 cm,

e = 2 x 10°159 j791q

1
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The test masses are physically much smaller, so the acceleration

applied to them is expected to be at least two orders of magnitude

smaller than [79] depending on their design Thus [78] appears

in the system exactly like an`E6tv6s acceleration, as if the ratio
`;	 3

of passive to inertial mass of the wheel were greater than unity,

except that it is sensed by both test masses. The filtering

capability thus provided should permit, as far as this effect is

concerned, operation down to about = 10-17 . At this level, it

becomes necessary to take into account the differences in the i

detailed inertial, properties of the two test masses - specifically,

the difference obtained when [7'6] is applied to each of them:

The effect [79] could perhaps be reduced by an order of

magnitude by making the entire apparatus as small as possible.

A better technique would be to make the "wheel" isoinertial, as

[76] and [771 vanish if the_radii 'of gyration are all equal. In

this case, however, the system would not be positivelystable in

its nominal attitude under gravity-gradient torques, and a separate

attitude control system would be required.

Of course, it is not necessary that the system be isoinertial

in order for [77] to vanish. If_ we choose
f	 -
^	 r

^l = 2C 2	E2	 [80]

then it is easy to see that the principal 1-axis will have

maximum moment of inertia, as desired for attitude stability, as

x

f~

^ 	 ^^^	
lkij 	.....
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long as	 3 >	 2a	 T:Zese conditions are met, for. example, by a flat

rectangular plate, lying in the plane of the orbit with its long,

dimension horizontal, if the length-to-width ratio is 	 2:1.	 However,

the fact that the acceleration vanishes for particular orientations

of particular asymmetric bodies is academic, since it is necessary

to rotate the apparatus* to modulate the Edtvds forces.	 What is

significant is the component of [76] along the sensitive axis of

the accelerometer, with 6 	 (w-Q)t.	 If, for example, the accelerometer

is along the principal 2--axis, it would be desirable to have

E2 = 3 ^2 +1 E21	 2	 34	 4	
[81]

r	 since the third-harmonic term may be filtered out.	 From

this, however, the conditon1 >3 	 mpliesZ > 2r, whereas
3

E 2 >  E 2 implies E 3 > ^ 2 . 	 Thus [81] is incompatible with E j being

the maximum radius of gyration: 	 the best that can be achieved is

inertial symmetry.

I1I.2.3	 Nearby Massive Bodies

For a preliminary evaluation of the feasibility of operating

the experiment in the vicinity of other equipment (e.g., free-

flying in the 'payload bay of the space shuttle), we consider here!

the gravitational effects on the system of a body of mass M°, located

at a vector position R° with respect to the CM of the system. 	 For

numerical estimates, we take M°'= l ton, R° - 2 meters.

*The apparatus is, of course, rotating relative to the orbital frame
`	 even-in the inertially stationary case.'
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At the CM of the apparatus, the gravitational field of this

object is of order 10 -9g. The presence of the body thus makes a

negligible change in the Eotv6s signal (the right-hand side of

[28]). The direct effect of this field, the acceleration of the

apparatus, towards the body, is also negligible, being two orders

of magnitude smaller than the apparent relative accelerations due

to the terrestrial gravity gradient.

The first-order gravity gradients due to the disturbing body

i

can be more significant, changing the time-varying coefficient in

[28].	 Close to the surface of a spherical body of density _p, the

i

gravity gradient tensor will have components of order

GMR 3 - 3 ffGp	 [82]

and thus can be comparable with the terrestrial gravity

gradients, if the density is comparable to that of the Earth. 	 We

can in fact write [28] a

Y + pq -	 [w2 +	 ®R-3 (1 + 3` cos 2 (w-S2) t)2GM

2
GI^1°R°'-3 (l + 3 cos (wt -0))1y = -Og cos	 (w-0)	 [83]

where e is the angle between R° and an inertial reference direc-

tion and	 it has been assumed for simplicity that R° lies in the

plane of the orbit.	 If R°.R is constant (e.g._, if the shuttle is

stabilized with respect to the local vertical), the time dependence

^.
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of the disturbing gravity gradients will be the same (apart from

w	 a 'phase angle) as that of the terrestrial term. In this case, the

principal effect is an increase in the coefficient b in [35]; by

[47], this may increase somewhat the damping required for stability.

With the numerical values for M° and R° given above, the disturbing ...'

gravity gradients are two orders of magnitude smaller than the

terrestrial term.	 The conclusion is thus that, if it is desired

to operate the experiment in the shuttle, a more careful study of

the effects of first-order vehicle gravity gradients is warranted,

but it appears probable that the sensitivity of the experiment will

not be compromised by this effect.

Further difficulties arise when the second-order gradients

are considered.	 If R° is in the plane of the wheel', whose radius`

is a, then the acceleration of the wheel towards M*, due to the

difference in position of the CG and the CM, is given by [78] as
a

`.

C =	 2GM°R-4 -	 4 x 10-119	 [84]
3

$

with the numerical values and a = 50 cm. 	 Comparison with

['79] shows the effect is three orders of magnitude larger than
J

that due to the second-order terrestrial gradients.

The acceleration [84] is, of courses extraordinarily small
(

1
by ordinary standards. If the experimental apparatus has a mass

!'	 of 100 kg, for example, t:ie force exerted on it due to this effect



is only 4 millidynes; this is equal to the radiation pressure

exerted by reflection of _a light beam whose power is 6 watts!

It is not possible to avoid the effect- L841 by attaching the

experimental apparatus in a suitable bearing to the structure of

the vehicle (even if the mechanical noise problems thereby introduced

could be overcome), because the test masses would then sense the

direct gravitational field of the disturbing mass ( ti10`9g) as well

as terrestrial gravity gradients (ti10 -7g if the attachment point

is 2 meters from the CM of the shuttle)	 Free flight is essential.

The acceleration s is similar to an Eotv6s acceleration but of {

course does n.-, t represent a limit to the accuracy of the experiment

if carried out in a large vehicle in orbit. In the first place,

the effect is sensed equally by both test masses; the discrimination

afforded by the differential measurement depends on the design of

the dual accelerometer, but is expected to be several orders of

magnitude. Further discrimination is possible if the vector RG

varies in direction or magnitude, with frequency components different

to those involved in the Ebtv6s measu,r_ement. For example, a slow

rotation of the shuttle would remove the acceleration e from the

passband of the accelerometer. in order to avoid the essentially

continuous thrusting which this might involve'if the experiment were

not quite dose to the CM of the vehicle, a possible technique would
i

be to align the roll axis of the shuttle approximately along the

local vertical and allow it to execute<dumbbell -gravity gradient
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oscillations, of an amplitude sufficiently small so that the apparatus

~	 does not strike the walls of the payload bay. In this case, there

would be a constant component of e, but measurement of the component

at the dumbbell frequency (in the sum motion of the test gasses)
would allow computation, and subtraction of it in data processing..

More Herculean measures are possible to counteract this effect.

For example, measurement of the acceleration, as discussed above,

would provide the data needed to exert a compensating force on the

apparatus (perhaps by radiation pressure!). Alternatively, it is

k

in principle possible to add compensating masses, attached to the

shuttle, around the apparatus, in such a way as to reduce the

second-order gravity gradients.

Without going to such lengths, it is probably possible to carry

out the experiment in the shuttle payload bay, with an accuracy of

perhaps one part in 1014*. If higher accuracy is required, launching 	 a

the apparatus as an independent satellite is probably the preferred 	 }

technique, paying the price for the increased autonomy which would

then be needed.

t

i

5

Q

At this level, it may be necessary to take into account second-
order'gravi.ty-gradient forces on the test masses themselves.'

_	 S
v

l
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IIL.2.4	 Attitude Motions of"the' Apparatus
t

a)	 Torque-free Nutation

To start with the simplest possible case, we assume that the

system is inertially symmetric about the spin axis, having a moment a

of inertia Is about that axis and It about transverse axes, and
,,.

that the test masses are so small that their motion does not affect

the motion of the system as a wholo.	 The motion is then that of

a classical rigid body.	 For future reference, we start by sketching

the well-known derivation of the nutation frequency, in the absence

of gravity-gradient or other torques3`l.'

The equation of motion is determined by conservation of

angular mome_z:an

[H]	 [H]	 w x H=	 0	 -[ 851I _ 	B +

where, [H]	 is the rate of change of angular momentum relative to
I inertial space;

[H]B is the rate of change of angular_ momentum relative to
body axes; and

W	 is the inertial angular velocity.;
t

In body axes,

F

and

H _	 [I ws 	Itw2,	 Itw 3 1	 [87)
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and [85] reads, in components,

ws = 0 [88a]

L3 	 wnw2 	 0 [88c]

where

Wn c [2	 - 1]ws _[891t
i

Differentiating [88c] and substituting from
I.

[88b] yields
3

_W3 + wnw3 - 0 [90]_

p

with the solution

W	 _ A cos wnt [911

which, when used in [88b], yields-

W2 
	 A sin wnt [921

Let us now suppose that the 2-axis is along the accelerometer

G	 axis.	 Due to the nutation, the test mass experiences a centrifugal

' acceleration_

ac - -^ Wax = - A2x cost wnt = - 2 A2 (l + cos 2Wnt)x	 [931

E	 If the accelerometer is a simple spring with damping, its equation

of motion (neglecting gravity gradients) is then

^`
4



3^ A2)	 A2	 t]x, = Tjq Cos(W-Q)t	 [941+ 2'^_i +	 I (K -- WS2	 cos 2w n
2	 2

so that, in many respects, the effects of nutation on

the system . are similar to those of gravity gradients. 	 If the

amplitude of the nutation is variable, however, it shifts the

resonant frequency of the system, which limits the allowable Q;

if the nutation is uncontrolled, we must have, in fact,

)1/2A <	 (w-Q)(2/Q	 [951eff

in order to stay within the 3-db bandwidth of the accelerom-

eter,	 assumed resonant at (w-Q). 	 For reasonable values of Qeff'

this conditioli ^.,an be achieved during start-up of the experiment

by the use of nutation damping devices.

The stability o r, the test masses under nutation may be in-

vestigatea by the methods of Sec. III.1, using the homogeneous

form of [94].	 The equation can be reduced to the standard form

[35], where now

a	 W2	 X_2)/W2	 [961
n

with

W 
2	

K	 w 2	 1 A2	 [971
S	 2

and

A 12b	 (981
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f

Assuming the damping is small, the system is tuned to -the

Eotvos signal,

a -	 (w-9) 2 /wn	 1991

and,	 from [95] ,

I l w-Sda b <	 2/Q	 a,[100]2( w 	 2Q'
n	 off	 -

A

According to [89], choice of the ratio of moments of inertia

allows control of the nutation frequency wn which appears in the

j

time-varying coefficient in [94]. 	 As wn is varied, according to

[100] the operating point in the a-b plane remains closer to the

a-axis than a line through the origin, of slope 2Qeff'	 For any

reasonable Qeff' examination of the stability diagram from the

Mathieu equation25 shows that the solutions of [94] will be stable

= except for quite restricted regions around
1

a = n2 	[101]

i

where n is any integer. 	 In other words, the condition
Y

u -[95] is sufficient to ensure stabilit y as long as	 !
1

Y Wn	 (w-S2)	 {102]	 i
i n

t a
or, from [89]	 (since ws = w)	 3

I /I`	 + 1 (1 - ^)	 [103]
ts	 n	 w

,r ^ x

where n is close to integral.

37j
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The result [102] merely states that the nutation frequency

should not be close to a submultiple of the resonant frequency of

the accelerometer.	 This imposes some constraints on the design

of the apparatus:	 for example, the wheel should not be closely

similar to a thin disk in its inertial properties if w » 0,

for then I s/It = 2 and approximate equality will hold in [103] for

n	 1. ;3
1

b)	 Gravity-Gradient Torques

The first-order terrestrial gravity gradients exert a torque

on the satellite which may be calculated as follows: 	 In an orbital
1

inertial frame (oi-frame), which is an inertially non-rotating f

frame whose origin is comoving with the CM of the satellite, the

net force on an elementof mass dm of the satellite, located at

vector position r i with respect to the CM, is	 (cf.'[23])

dFi = r ij r j dm	 - 52 2 [ri - 3R- 2 RiriRj ]dm	 [104]

where it is assumed the satellite is in a circular orbit.

In vector notation,

dF `_ - 0 2 [r - 3R-2 (R.r)R]dm	 [104a]

The total torque exerted on the body by the gravity gradient

is the integral over the body of the moment of the force [104]

(unless otherwise noted, all integrals below are over the body):

f

^ 4_
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M d Ir x dF

-	 3 g 2R. 2'	 I (R. r) (r x R)dm

° 3Q R 2 R x J [105]

where we have used the fact that r x r _ 0 and where

E

t

J	 f(R.r)r dm [106]

Reverting now to tensor notation, we use the definition

i	 [70] of the inertia tensor to write

Ji _ R^ lr^r idm = R^ [Ir 2 S^ ldm - Iii ] [107]

j The first term on the right, in vector notation, is Rlr2dm,

which will vanish when the cross product with -R is taken in	 [105].

It is therefore sufficient to consider the vector 	 i

Ji = v R 1 (1081	 3

1

In principal axes i,	 k in the body,
`

this vector is
s

J 	 2_.-T R. i, i e I R	 T7 7	 3_R.k k_  
[1091

so that [105] gives

-
M -'3S2

2	 [	 (. _) (R	 ')	 2 (_ j) (_	 j)R	 T	 R.^	 R x	 + T	 R.	 R' x + I. (R.k) (R x k) ]	 [110]
— —	 —+	 _ _	 - -

•

t	 ,

J

-'3

,a

—	 Y,.,.
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Assume now that the body has an axis of symmetry, so that

I = I1	 s

[111]
12 	 13 = It

and then

i
M = 30 2 R-2 [j 

s (R.i)(R x i) + ItR x ((R.j)j + (R.k)k)]

q

= 3Q 2 R-2 [ - s (R.i (R x i_) + ItR x (R - Mi) i_) )

352 2 ( Is - 1 t ) R-2 (R.i) (R x i)	 [112)

The gravity-gradient torque is thus always perpendicular

to the plane c:untaining the symmetry axis (i-axis) and the local—	 a
vertical, and its magnitudeis

M 
= 2Q 2

(IS-It )sin 20	 [113]

where 0 is the angle between the symmetry axis and the

local vertical.

Average torque:

The spin'anguler momentum is IS W s _comparison with [113] shows

that the precessional angular velocity wp will be smaller than

the orbital angular velocity, approximately ` in the ratio of Q to

r	 Ws. In this case, components of the torque at orbital and twice

orbital frequency are largely filtered out by the gyroscopic

dynamics. While the effects of these higher-frequency components'
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i should be examined in a more complete- analysis, because of the

Possibility that they might excite resonances which could be

mistaken for Ecitvos forces, attention is restricted here tothe

effects of the torque averaged over an orbit.

To compute the average torque, set up a triad ofinertially

fixed unit vectors l,m,n, with n along the orbit normal. 	 Let the

components of the symmetry-axis unit vector i along these directions

be il,i 2 ,i 3 :	 these will be assumed not to change significantly during

A single orbit.	 Measuring the geocentric angle	 from the instant

when 1 is along the local_ vertical, we calculate the integral-

12 it
zR .i	 iR x i d^

where

ig _ 1 cos	 + m sin	 [114]

,j

is a unit vector along the local vertical...	 Now

IR,.i = i lcos	 + i 2 sin	 [115]

iR 	x i=	 1	 m	 n—	 —	 —	 —

cos	 sin	 0

it	 ^2	 13
r

i: 3 s-in	 1 - i 3cos	 m +	 (i 2cos	 - ilsin ^)n	 [116]

*4 4., j I
4

r
I



L	
f -, {(i i Sill ^ Cos	 + i i sin-fll0	 1 3	 2 3

2(i i Cos	 + i i sin	 cos flm1 3	 2 3

2	 2^)	 (i2	 2[i i	 (Cos	 sin	 i )Sin	 cosflnj d^	 [11711 2 2

which reduces readily to

2	 2	 31.	
M]	 i	 (i x n)	 1(i.n)(i x n)	 [11811 3	 IZ 3	 2

all other terms integrating to zero.

This integral can now be used to 'Lind the average value of

the torque [1121 over an orbit:

Q,3	 -(1	 it)(i.n)(i x n)	 [119i
2	 s

The average to. .̂-que is thus perpendicular to n (i.e., it lies

in the orbital plane) and is of magnitude

3__S^ 2	
1	 sin 2y	 [1201s	 t4

where y is the angle between the symmetry axis and the

orbit normal.

c)	 Gravity-Gradient Induced Precession and Nutation

The relationship between the set of unit vectors i,j,k along

the principal axes of the satellite and the set 1,m,n which are

fixed in the oi-frame can be described by three Euler angles,

as shown'in Fig. V:
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Y, the angle between the symmetry axis`i and the orbit
normal n;

a, the azimuth angle of the symmetry axis about n; and
s

the rotation angle about i.

The order of rotations from the oi-frame to the body frame

(b-frame) is first, a rotation a about n, a rotation Y about the

displaced j-axis, and finally a rotation	 about the displaced

i-axis.

In body axes, the angular velocity of the body is given in
h

terms of the rates of change of the Euler angles by

wb	-	 {3	 + a cos Y"	 W^	 I

- [121 1 w

Y sin 0- a sin Y cos w2 a

cos	 + a sin Y sin ^^	 ^w3
^1 P

k

and the angular momentum is given by

Hb	 =	 Iswl
a

— [1221

Itw2
a

I Itw3

?t

'	 There'is no component on the average torque [119] along

or n.	 The components of angular momentum in these directions

are therefore conserved. 	 In particular, from [121]*

`	 *a and b are not to be confused with the coefficients in the standard
form of the Mathieu equations.

4

K

^ III y	 {J

t
r
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ti	
Tsw1 = Is (R + a cos Y)	 I 

s 
b = constant	 [123]

s

In body coordinates,

5

nb - cos Y [124]

cos	 sin Y

sin S sin Y

so that the component of angular momentum along n may be
i

written

H..n =	 I sb cos Y +	 a Itsin2Y	 =	 ISa	 =	 constant [125]
t _

from [121]. 	 Thus

r a	 - 2	 [a - b cos Y] [126 1
:. sin Y

where

' o IS/It

A
[127]

and

S	 - b -acosY=	 b	 QcosI 
[a -b cos y] 128{	 ]

f sin Y

^.	 o

,

fir....
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We have thus found that & and depend only on the value of

y. To determine the values of the constants a and b, the variation

of Y with time, we need another equation, which can be obtained

from the conservation of energy. The rotational kinetic energy

is

I	
K=	 { I sW2 + Lt (w2 + w3) ]

2 Isb + 2 It ( y2 + a2sin2Y)
[129]

from [121]. The potential energy in the gravity gradient

force field !"-y be obtained by integration of the magnitude [120]

of the average torque:

V - lY M dY
o

8 
02

(Is-Lt) cos 2Y	
[130]

The total energy i.s then

i	 E	 K + V = constant	 [131]
i

Is	 ,
An equivalent constant of the motion is

d	 ? [E - I I b2 ]	 Y2 + a2sin2y	
3 

^22 (cs- 1)cos 2y	 [1.32]
I t	 2 s	 4

j	 since b-is constant. Substituting for a from [126] yields

2 x

y2 =

	

	 CF
	 - b cos Y) 2 + 452 2 (c^-1) cos 2Y + d

sin Y

n
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or

sin 	 Y2 	 _	 ^2 (a e b cos Y) 2 + 4 22 (C-1) cos 2y sin2y + d sin 2y 	 [1331

If we put

u= Cos y	 [134]

the equation becomes

u2`	
f (u)

c(I _ u2)(2u 2	 1) + d(1 - u2)	 a2 (a _ bu)2
	 [135]

where

C

	 - 

3 q2 (Q-1)	
1

[1361

I

The problem has thus been reduced to quadratures, in terms of 	 a

elliptic integrals.	 Some useful information may however be derived

without carrying through the general integration. 	 For example,

the amplitude of the motion in y may be found by noting that, at

the limits of such motion, u is zero, and therefore the limits are

given by the roots of f(u).
r

To simplify the discussion, we consider the motion which

develops if the spin. axis is initially inertia.1 1y stationary;

i.e., we choose the initial conditions a = 0, Y = 0 at t = 0.

Let the initial value of u be uo .	 Then, from [1261 at t = 0, -

i

a	 buo	 [137]



d	 _ - c (2uv - 1) [138 ]

so that, at general times,[135] may be written

i 2 =
	 :F 	 2c(1-u2) (u2

-uo)	 a2b 2 (u-u ) 2
o

(u-uo) [ 2c (1-u2) Cu+U	 - a b2 (U-u ) ] [139 ]
o

Apart from uo , the roots of f (u) are those of
i

2c(1-u2 ) Cu+uo) - g2b 2 (u-u0 )	 = 0 [140]
i

With the above initial conditions •
;j

b -wS y

the spin angular velocity, so that

2'c/6 2b`	 -	 2 . Cc-1)^c2 «	 1 [141.]
s

if the spin angular.velocity is much greater than the

orbital angular velocity'. 	 An approximate_ solution to the cubic

[140] may be found by writing it in the form

U - uo	
d2 c2 C1 - u

2 ) Cu + u o)
b

[142]

According to ,[141], the quantity on the right is small, 8o
E

that the root is close to uo , which means in turn that u may be

replaced by uo on the right, to give the approximate root a

s ;

r
r

a
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_	 [	 4c -ul	uo 
1 +	 2 2 ( 1	uo)J

ab [143J

The other two roots of [140] are imaginary.

If now we write

uo = cos Yo
[144]

ul = Cos (Y0 + s l )	 =	 cos yo - 8 lsin yo

and insert these into [143], we obtain

T 81	 =	 - 2 -(a2 1) (2/ws ) 2sin 2yo (1451 
Q

for the amplitude of the gravity-gradient induced nutation

(i.e., fluctuation in y). 	 The effect is very small indeed, _less

'; than 0.1 seconds of arc if ws = 10 rpm, in low orbit.
0,

The nutation frequency may be obtained by writing

r -

u = cos (Yo + S )	 _	 cos 'yo - d sin y [1461	 1
O

When this is inserted in [1:39], we obtain, to second order

in S ,

=1

E; where

Ai	2 c sin 2yo [148]

is
}



I

i{

65.
II

A2 2 26 b	 + 2c (Su 	 --1)	 =	 Q2 b2 	[149]

The solution of [147], meeting the initial conditions, is

8	 = 2, 	 - cos wnt)	 [1501

where`

wn 6 ws	 [151.1 

is the nutational frequency.	 Comparison with [89] shows

that the induced nutation has the same frequency as the free-body

nutatio:z. S.i ij r e its amplitude is so small,_ it is expected to have

a negligible effect compared with the free-body effect.

The precessional angular velocity can now be obtained from[126]:

•
a

ab	 ab8
(u	 U)u)	 -

sin Yo
sin2Y

= 1	 (1-- cos w tJ
2, cwsS1	 n	

[152]
i sin Yo

The precession thus varies with time, ranging from zero to
i

twice the average value

wp -	 2 aws 6 1 /sin Yo
-t'i

3	 p2	6-1

(	 )	 Y	
X1531

cos
2	

wS	
Q	 0^j

i,

As seen from the oi-frame, the motion thus consists of a steady

coning of the spin axis around the orbit normal at the angular
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velocity (153], with a very small superimposed circular motion,

with an amplitude 2'1l.

In order to find the effects on the experiment of precessional

motion, we neglect the_nutation. 	 Then [128] given

S	 WS	 [154]

` If the accelerometer sensitive axis is along the 2-axis, the

test mass experiences a centrifugal acceleration given by

[155]ac 	 w3 x	 =	 Wp2x sin 2Y° sin 2wst

from	 [121] .
3

This is similar to the form [93] found for free-body_nutation,

except , that A is replaced by wpsin Yo and Wn by ws .	 One may then

carry through a similar investigation of the stability of the
solutions of the resulting Mathieu equation of motion..	 Analogously

to [991 and, [98] , the coefficients in the standard form of the

Mathieu equation are found to be in this case j

a= fl_0)2
ws	 [1561

and
W Sill 

Y

b = [ P	 °] 2
	

_	 [8 (cQl ) sin 2Y 2 (Q/w ) 4

i

.	 ° ]	
[15712W

s	 - I

By elimination of (0/ws ),'one can obtain an equation showing
E
k the path followed by the operating point in the a-b plane as this

of
parameter is varied. 	 It is not difficult to see that this path

.`	 is confined to the stableregion near the origin in Fig. IV.
Bs



,.	 ^	 I	 I	 l	 i	 I	 ',	 T
67

It thus appears that gravity-gradient induced nutation and

precession should not have a'significant effect on operation of

the experiment. The effects can, of course, be minimized by making

Yo as small as possible, but stringent tolerances in the alignment

of the spin axis with the orbit normal do not appear to be required.

A more detailed analysis nevertheless should be carried out,

retaining higher frequency terms in the gravitational_ torque [112], 	
I

which were eliminated in the averaging process to obtain [119]

II,1.3 Conclusions from Systems Analysis

We have now considered in some detail the first four of the

possible distax')ances listed in Sec. II1. 2. No effects have been
x

found which might prevent operation of the experiment down to the

design sensitivity of one part in 10 14 in the measurement of the

Eotvos ratio.

It appears to be possible to carry out a useful experiment'

in the payload bay of the shuttle, if it is feasible to'locate the

experiment reasonably close to the CM of the shuttle and if the

RCS systemcan be used to fly the 'shuttle 'so as to follow the

experiment. An average fuel flow of order '`5 kg/hour would probably

be sufficient for this task.

4

E	 The STS (shuttle) provides an ideal vehicle for carrying out

this experiment, 	 can make good use of the capabilities of
f

the crewmen.; If flown unmanned, the very sensitive accelerometers

i
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would require caging to withstand the boost environment and some
s

form of orbital gyrocompassing would be needed in order to erect

i	 the wheel spin axis to the orbit normal.	 Furthermore, if it is

desired to measure the E5tv5s ratio of several materials, a mechanism
i

would be required for changing the test masses. 	 Finally, experience

with the low-level accelerometers in orbit 32 suggests that

difficulties may arise which are very difficult to solve in an

automatic system.	 The crewman may make final design choices as

the result of on-orbit experience .(e.g., in selecting servo compensation

networks), deploy the system in its optimum configuration, monitor 	 i

the performance and investigate any anomalies observed, and modify

the experiment (e.g., by installing new test masses) to extend the

investigation.	 At the'same time, the equipment may be considerably

simpler than would be needed for an unmanned launch.

The development program for this experiment might involve three

separate shuttle-born phases. 	 In the first, component parts of the

apparatus (particularly the accelerometer) would be tested in_free 1

fall, so that commitment to final development could be postponed a

until the design performance had been demonstrated. 	 In the second

phase, a limited experiment would be carried out in the payload bay,

if further analysis shows that this >is'feasible and that significant 	 ;: z

simplifications could be effected by operation in this mode. 	 Finally,

(and particularly if any Eotvos anomalies were discovered in the

second phase), a fully autonomous experiment would be launched from

the shuttle, at the maximum sensitivity which may prove feasible.
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A

CHAPTER FOUR

DESIGN OF A MAGNETIC MICROBALANCE 1

FOR ACCELEROMETER TEST

IV.1	 Introduction
}

r.

As discussed in Chapter II, the heart of the orbital Eotvos,

-experiment is a very sensitive dual accelerometer, the two test -'

masses being constructed from the materials whose ratio of gravitationa,2

to inert mass is being compared. 	 -In low orbit and in the absence

of external disturbances, the sensitivity of this accelerometer,

in gees, is equal to the limiting accuracy in measurement of the

Eotvos ratio.	 For example, to reach an accuracy of 	 n= 10_ 15 in

the experiment, the dual accelerometer must be capable of detecting z!

a relative acceleration between the test masses of 10 -15g.	 This

is many orders of magnitude beyond the sensitivity of conventional

accelerometers, so that design of the accelerometer system becomes

the most critical task in development of the experiment. 	 The

frequency; at which the acceleration must be measured can however

be chosen by fixing the angular velocity of the apparatus, a

freedom which can be used to discriminate against some sources of

measurement noise.
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I	 At the present time, both cryomagnetic and electrostatic

.I	 techniques for suspension of the test masses are under study, the
y

first primarily at Stanford and the second at M.I.T.
A

A fundamental difficult in the development of^	 y	 p	 any sensitive
J

accelerometer for use in space is that, if the device is to be

tested on Earth, much stronger suspension forces than are needed

in orbit must be provided. This problem has, in the past, generally

led either to design compromises or to a reliance on analytical
i

design techniques, without specific test of the final configuration

before commitment to flight.

I

!	 In the,Bell Miniature Electrostatic Accelerometer (MESA), for

^^	
C	

example, the gap between the test mass and the supporting electrode
p ,̂ 	 G	 e

j^	 structure is comparable to that normally, found in electrostatically

I supported instruments for terrestrial application (i.e., thousandths

of an inch), so that it can be operated on Earth by _applying not

unreasonably high voltages. For operation in space, the _electrode

voltage is merely reduced, so as to provide^	 support .against the
1

expected small transverse accelerations. The cross-coupling between

forces along the suspension axes and the sensitive axis, which is
.I{}	 due primarily to geometrical imperfections of the test mass and

!	 electrodes, electrode edge effects, etc., is thus no better than in

2	 terrestrial instruments, and little advantage is taken of the benign
t;

r	 orbital environment to maximize performance.

11 	 c

X

tq
1 	 ;t	 {

^.°.71..` 	,.,
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Most satellites designed for "pure gravity orbit" are examples

of the other approach to this problem.	 Such satellites are driven

so as to follow an unsupported test mass, which is protected from _.

external forces. 32	This system can be regarded as an accelerometer

which is sensitive to accelerations in all three axes. 	 It is

essential to minimize the forces (primarily electrostatic and

gravitational) which are applied to the test mass by the satellite

itself.	 This is usually achieved by ,careful analytical design,

but there is generally little opportunity to test the resulting

concept except by-an actual flight in space.

An intece ting approach to testing an electrostatically-

supported space instrument is that of de Bra et a1 33 , in which a

test mass of sufficiently 'low density is used so that it may be
L

floated in a heavy gas (SF 6 ).	 This technique is not howevPY

l	 considered applicable to the problem of testing accelerometer

designs for the Eotvos experiment:	 it obviously will not work

at the low temperatures required in a cryomagnetic suspension and,

at the higher temperatures which may be used with an electrostatic

suspension, it introduces convec..tiVe disturbances and damping forces.
,.

`	 In order 
to 

allow experimental investigation of design con-
cepts for an electrostatically-supported accelerometer for the

orbital_Eotvos experiment, it would be highly desirable to`simu-
late free fall in the Laboratory.	 The feasibility of using mag-

netic forces for this purpose is investigated in this chFpter.

T

..._	 .
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Magnetic suspensions have of course been employed for a wide

variety of purposes.	 The present concept is unusual in that it

is desired, not to provide stable suspension of the test mass, but

to buck out its weight, using forces generated by appropriate sus-

pension coils, in such a way that additional magnetic forces do
i

not result when the test mass is displaced from its nominalposi-

tion.	 With the magnetic suspension providing the main support force

and neutral stability,'an electrode structure can be built to con-,
<i

trol the test mass whose dimensions and voltages are similar to

those which might be used in space.

It is assumed here initially that the magnetic material 'em-

,• bedded in the test mass is linear -- i.e., the magnetization vector a

induced in it is proportional, to the external field.	 The reasons

for this condition and ,means for implementing it are discussed in

Section IV.5 below.

IV.2	 Basic Relationships

The Force on a sample of linear magnetic material in an ex-

ternal field B is given by34

`' = k vB Z	[158]-

_	 where k is a constant depending on the size, shape and

magnetic properties of the object. 	 If the body is diamagnetic

if it is superconducting), k is negative.

The external field is given in terms of the vector potential A by
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A

B = D x A	 [159)

and the vector potential is given by an integral over

the current density J in the coils:

uo r 	 J (r')	 3	 .
A = _	 3

4Tr J	r-r'	 dr	 [160]	 ,.

3

where P° is the permeability of free space and r, r' are

vectors from the origin of coordinates to the observation point

and to a source point in the coils, respectively.

For constructional simplicity, it is proposed to build the

suspension from a set of cylindrical coils of rectangular cross- 	 a

f section, w,,.L-h he _symmetry axis	 (the z-axis) vertical. 	 Figure VI

shows a vertical section through one of the coils:	 the centroid

of the cross-section is at radius b and height a above the origin,

and the cross-sectional area measures 2^	 by 2a.	 The current density

,
has only a circumferential component, which is

J	 -	 nI	 b-Q < r' < b+R
'I a-a < z' < a+R	 [161]

i -	 elsewhere
h

where I is the current and n the number of turns/unit

area.

Because of the cylindrical symmetry, we may choose the observa-

tion point in the r-z plane. 	 From the geometry of the perspective

:r
sketch of the coil shown in Figure VII, we may write
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f (r, z)

[(z-z") 2 + r2 + r12 - _2rr'cos']-,1/2	
[1621

i
where	 is the angle 'between the horizontal. projections

of r and r'.

To compute the integral [160], we must write J in rectangular

components, which are

J'x 	 - iei_n o'
[163]

^Y 	Jo cos c^'
4

It is clear. from -[160] that A also has only a circumferential

component, so that, at'the observation point, the integral over

ix must vanish The vector potential from all the coils can then

be written

o	 b+S	 a+a	 27f
Il

A^ _	 ^.	 I nI j r' dr' ! dz' f f (r, z) cos o' do'
	 L1641

coils b=R _	 a-a	 a

The o' integral. may be expressed, in 	 integrals,

but, for present purposes, it is more convenient to expand f(r,z)

in a Taylor series in r about the symmetry axis, so that the

integral 'becomes
i

= r [f° + rfi (0,z) + 1 r2fi {O,z) + 1 rifiiz(0,z) 	
[165J	 2	 !	 ;0 i

+	 44 rf1°(0',z) + S^rsf°(0,z) + ..a]cos o' do' 	
r

i

n	
-

where	 f (0 z) - 8rn	 so that	 s
r=0

s



75.

A straightforward computation of the indicated derivatives

of [162] with respect to r yields
is	 ..

fl (0,z)	 =	 f°3r'cos
[167a]

fii
(0,z)	 =	 3f° 5r 12Cos 2^'`- f°3 [167b]

f(0,z)	 =	 3[5f° 7r 13cos 3^'	 -	 3f° r'cos ^';] [167c]

' fiv(0,z)	 _	 3[35f° 9r' 4Cos4^'	 -'30f° 7r' 2cos 2^'	 + 3f° 5 l [167d]
3	

3	
7

fV (O,z)	 _	 15[63f° llr' S cosS^' - 70f° 9 r' cos	 ' + 15f° r'cosVI [167e] y

When these expressions are used in [165], all odd powers of

cos 	 integrate to zero.	 We are left with

l
Ti[f°3r'r	 +	 2(	

f°^r' 3 - f°5r')r3

1521	 11	 5	 7	 9	 3	 7	 5+ ,8 (8 f°	 r'	 - 2 f( 	 r'	 + f° r')r	 + ...] [168]

The vector potential may thus be written

A	 Q(z)r	 +	 xOr3 	+	 N(z)rs 	+ ... [169] a

where

_°~ ub+S a+a
Q(z)	 -	 nI	 f	 I	 r'2f°3dr'dz

E coils	 b--^ a-a

r 
170 }

1

Y4

k

j

1

1

4
a

4.
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K(z) =	 3 u°	 nI j	 j`[5 f° 7r' 4 - f°S2]dr'dz'r' [171]8	 coils	 b-^ a-.a 4

N(z) 15	
b+^ a+a

21	 11	 6	 7	 9	 4	 2u°	 nI j	 j	 [	 f°	 r'	 -	 f° r.	 + f° r'	 ]dr'dz' [172]32	 8	 2coils	 b-S a-a

if we differentiate [170] ;under the integral twice with

r respect to
,

z (denoted.by primes), we obtain the important resul4

h

Q" (z) _. - _B K(z) {173]

r'rom [159], in cylindrical coordinates, the axial and radial

i
components of the magnetic field are given by

_
Bz 	 -

Y a 	)
r ar(rA^

_ 2Q(z)	 +	 4K(z)r2 	+	 6N(z')r4 	+	 ... [174]

and

.	 e a—
B	 -
r

o — A
8z

[Q' (z)r	 +	 K' (z)r3 	+	 N' (z)r5 +	 ...7 [175]
,;

Using [173] , the square of the magnetic field is then

f r a

B 2	 = Bz	 +	
Br

kt
4Q2 (z) + (Q' 2 (z) + 16K (z) Q (z)) r

2 `	 ±

+ 2 (SK2 (z)	 + Q''(z)K' (z)	 + l2Q(z)N(z))r4 + O(r6)

:. 4Q2(z)	 +	 (Q'2( z )	 -° 2Q(z)Q"(z))r2.,	
I

+ 2(8K
2
 (z)	 + Q 	 (z)K' (z)	 + 12(2 (z)

	
+ O(r6Q	 } [176]

.	 n ,..	 t
._

T _	
;
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t.

since there is no term linear in r, there is, at the origin

of coordinates, only an axial component of force (as one would

expect from symmetry), which is, from [158],*

F	 8kQ0Qo 1Z	 [177]

d
where 91,	 9 (0) g o I	

---Q (z) z=odz

The objective of the suspension is to simulate free fall:

the support force should be as nearly constant as possible (and

equal to the weight of the suspeaded object) in a region around

the origin. In Cartesian tensor notation, the force at a position

xi (i	 1,2,3, with the 3-axis vertical) is given by a Taylor

expansion around the origin

F	 F? + S. x. + r . x .X	 + [178]1	 13 3	 ijk 3 k

where

21F?	 k -B
ax	 X =0	 [179]

32	 2S ..	 k	 B

	

ax. ax.	 X.,X.=O	 [180 1

k	 93	 21r	 B	 [181]
ijk	 2 @x. Dx..Dx	 Xi1xi rX 0k	 k=

The simulation will be successful at the origin if we can make

the stiffnesses Sij zero, and the "playing area (i.e., the region

*Notice that, to give an upward force, Q 1 and Q*' must be of opposite
sign if k < 0 and of the same sign if k 0.
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t

t	 in which the simulation is acceptable) will be maximized if we can

also make the second-order stiffnesses I' ijk zero. In calculating

these quantities, we take derivatives of [1,76] and then place r = Of

so it is clear that we can neglect the term in r 4 In the` present

notation, [176] thus becomes

2
B 
2 

= 4Q	 4' (Q' 2	2QQ") (x2+ x2)	 ...	 [182]

where Q is a function of x 3 alone.

The force is now
2	

[1831E	 = k	 2(Q' - 2QQ")x^

2(Q' 2 - 2QQ")x2
(
X1 + x2)

i

which, at the origin, of, course reduces to [ y 77 ]

The matrix of second derivatives of B2 is

^B2	
2 (Q,2 -2QQ")	 0	 xi	 3

i axa	
0	 2 (Q' 2a	 -2QQ")	 ._4QQR„ x2 [184]
^^^	 _	 ^^^	 2	 2	 2`4QQ X	 x2	 8 (Q +QQ ) -2 (Q , Q^^^ }^,Q/"^ (X' +x2)

At the origin, the only surviving components are the radial

stiffness

Sr 	 S11	 S22 = 2k(Q O ' 2	2QOQ O ")	[1851

1
i

2
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-.T^q

and the vertical stiffness

—	 8ks z 	 33	 (Q°'	 + Q°Q°")	 [1867

It is clearfrom these expressions that S z and Sr cannot both

-.r

be zero.	 Moreover, in conformity with	 Earnshaw's theorem, it is

impossible to make the suspension suable in all directions if k is

positive.	 We therefore choose to make the radial stiffness zero,

relegating control along the vertical axis to an external stabiliza-

tion system (see below).	 The design goal is thus

i
Q01	 = 2Q OQ o "	 [1,871

Note that, when this c°ondition holds, the vertical stiffness

becomes	 r

Sz = 12kQ o ' 2 	[188]

so that the system is vertically stable for diamagnetic test

masses (k•< 0) and unstable for k 	 0.	 A useful figure of merit

for suspensions of this type is the characteristic length

2 Q0

FzISz	 3 QO'	 - [189]

which will be negative if ;k < 0 and positive if k 	 0.

For a given support force, Z is maximized (i.e., the vertical

.; inhomogeneity is minimized) by making Q° as large as possible and

Q O1 small.	 Under the condition [187],

Q° „ -	 2 Q° I2/QO	 _	 3 Q° 1/z	 [1901
-

.,	 E
and so must be small but finite.

yyI

r!	 ,

i
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f	 The second-order stiffnesses, calculated by taking the

derivatives of [184, form a three-dimensional matrix, but most of

the terms vanish at the origin. By inspection, we find in fact

that the finite terms are

__	 --	 —	 _ ^2kQ o Q:o n 1—

	

113 — x131 — r223	 x232 — x311	 x322 [191]

P333 = 4k(3Q° ' Q o ' +- Q OQ0111 )

The expansion [178] of the force may now be written

in vector form as

0 1 	 2	 _	 2 2	 2P	 k[8Q 0
 Q	 + 8 ( Q 0 ^ +Q 0 Q on ) z	 2Q o Qo^^i 

(X +y.) +4.(3Q 0^ Q ou +Qo Q om ) z J	 '

k[2(Q"'2_2Q'QO^)x 	 4QoQO"l 
XY)?^

+ k[2 (Q n ' 2
-2QOQco) y '_ 4QoQ 	 Xy) i	 {192]y

where ix , y riZ are unit vectors along the axes.
i

If the condition [187] holds and if, in addition, we can

achieve

Q	 [193]
i

then the force reduces to
}	 F	 k[8Q°Qo' + 12QoI2z + 12Qo 'QooZ2]-

	 [194]
f	 ^
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or -

F	 =	 F°[1	 +	 Z	 +	 1(.Z) 2J [195]—	 z	 3 z

Achievement of these conditions thus means that, to the

second order in the displacement of the suspended object from the

origin, no forces are generated in the horizontal plane. Further-

more, the variation in the vertical force is independent of

horizontal displacements, to this order.	 The quadratic term in

1
I

[195] merely means that the vertical stabilization servo should

have a slightly non-linear characteristic.

The quantities needed for design of this system are obtained

from [170]	 as

l	 b+S a+a
Q° 	 n2 f	 f	 r'2(z'2+r,2^-3/2dr'dz'4

coils	 b-S a-a [196]

3	 h+S a+a	 -
go$	

-	 4 P
o	 nI f	 f	 r	 Z 	 (Zi2^,Y. ' 2 ) -5/2dr l dz' [197]
coils	 b-$ a-a

3	 b+O a+a-:	 n	 _	 —Qo	 -	 4 u°	
2X	 nI f	 f	 r'(4z'2-r'2) (z'2+r^2 -7/2 dr , _ [19 8]

az
coils	 b-$ a-a

a

b+^ a+a	
-

5	 ,.2	 ,2	 ,2	 ,2	 2	 9/2QoaI	 =	 Uo	 X	 nI f	 f	 r ,2 	 (4z	 -3r	 )(Z' +r	 ) -	 dr
,	 [199]
dz

coils	 b-P a-a

^ttl
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IV.3	 Ideal Coil Design

To simplify selection of a configuration for the suspension,

we assume at first that the coils are of infinitesimal cross--sectAon.

The above expressions then take on the simple forms

E b2 (a2+b 2 ) [19Ea]Q°	 4 µ°	 NIcoils

Q° 1
- 5/2

b2 a (aZ+b2 )4' u°	 NIE [197a]
coils

3nQ a 	=	 u 0 	B	 NI 2	 2	 2	 2	 2b	 (4a -b )(a +b ) Y^/2 [198a]4 coils

Q  off = 15.	 E	 NI
-9/2

b2a (4a2 °3b2 ) (a2+b2) [199a]
coils

where N is the number of turns in each coil.
9

To reiterate,

the -conditions we wish to achieve are	 [187`]_ and '[193]

Q 	 2QoQon [200]

and

Q ° 	= 0 {201]

At the same time, we wish to maximize the support force at the
F

origin
z

FO = 8kQCQ0E {202]z

} and the Length
,h

which characterizes the 'vertical homogeneity

l
E

Z_ -23Q°^Q O1 [2037
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1V. 3.1	 Single-Coil Suspension

.	 Let us first consider the possibility or a suspension using

a single coil.	 From the above expressions, the condition [2001

gives, for this case

az = 5b 2 [2041 i

^i
There is thus, a point on the axis of a thin coil of radius

b, at a distance 
k57 

b from the plane of the coil, where the

transverse gradients of the magnetic force vanish. 	 At this point,

the characteristic length (203) is

Z	 ? 
a2ab2 

r	 b-	 b.492 [205]9	 Y5

The support force is
n

FO i bkQOQOI

3	 b4a_	 kuozN2x,^
2	 (az+b2)

E	
,	

t

_	 3	
f5)4 

ku°2N'I2
M 10 7^

= 0.247 ku02N?I2'
b ^"-

[206 1

It is clearly impassible to satisfy; the condition [201] at

-'	 this point.	 We therefore turn to suspensions containing two or

more coils.
ih

T	 . i
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IV.3.2	 Helmholtz Coils
a

From [198a], Q°" vanishes is

a	 lb
i

[207]
1

1 or if the coil lies on a cone with apex at the origin ..
^i

and semivertex angle

fiH = tan-12 = 63.43° [208]

_ Now suppose we have a pair of such coils, symmetrically
i

located at Z _ + a on the Helmholtz cone, with the same number of

turns in each and the same current flowing.	 Then [196a] to [199a]	 ji,

give for the pair

i

j
-3/2Q° _	 u°NIb2 (a2+b2)

^I
uN2r	 a5_372 [208a]

` Q°1	 _ Q°q _ Q°1rr_ [208b]

This is, of course, the Helmholtz coil arrangement_ which is
r.;

frequently used to produce a uniform magnetic field.

zi

If the current in the Helmholtz pair flows in opposite senses,

j we obtain

Q°	
Q°^^
	
_ 0 [210a]

}	 r
-5/2

Q° t _ 2 ONI bra (a2+b2)
a.

e 6 	N
a [210b]
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Qo rn = 15 u°NI b 2a (4a 2-3b 2 ) (a 2+b2) -9/2
2

- 48	 u`NI	 [210c]
5 772 a4

Neither a Helmholtz nor anti.-Helmholtz pair, by itself, can

provide a lift force

IV.3.3	 Maxwell Coils

From	 [199a)_, Q 0111	 vanishes if

2 _ 3b2a	
-

[211)

or if the coil lies on a cone with apex at the
{

origin

and semi-verte-. angle

$ M = tan_
1
	_ 49.11 0 [212]

A pair of similar coils, symmetrically located at Z -'+ a o.. the

Maxwell cone, with current in the same sense, yield

O
	 1 0 NI b / (a +b _)Q , -	 2/ (a2
	 2 3/2 

_ 2 F	 u NI [213a]'
2u	

2	
a7

o-	 _ 3 0	 2	 2	 2	 2+b2) 7/2 _Q	 -	 N2 b	 (4a -b ) ^ (a 16 .3 5/2 u °NI [213b]
2u 7 2	 37	 a

Qo	 _	 Q 0111 	
=	

0 ", [213c]

If the currents are in _opposite senses, we obtain

Q 	 c Qo off _ Qo 111 _ [214a]

r

`	 Ikk
I 	 I
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x

8 6 .

QO1	 2u°NI br a/(aZ +b2 )
5/2 = 2(1)

5/2
LONI	[214b]`
a

IV. 3.4 Coil Combinations
,t

It should be clear that, by appropriate"choice of Helmholtz

and Maxwell coils, it is possible to provide independent control of

Qo , Q°	 Qon, QOI" as follows: 	
!

1) Q O alone is generated by a Helmholtz pair.

2) Q°' alone is generated by an anti-Maxwell. pair.

3) Q°" alone may be generated by a Maxwell pair, together
with a Helmholtz pair so connected as to subtract the
Q° generated by the Maxwell pair.

I

4) Q O '" will be zero, as desired, if the suspension is made
up of combinations of the above coil sets.

Suppose we wish to generate Q O1 alone. For a compact design,`

it will be convenient to use a Maxwell pair and a Helmholtz pair

with the same radius b. For stability, we assume the same current

-I is flowing in both sets of coils (i.e., they are wired in series)

From [213b] and ['211] the Maxwell pair, with N M turns in each coil,_

produces

Q° n	 384 u°NMI	 [215]
7 772,	 b

but it also produces an unwanted

k	 a	
Q°342 u°- b	

[216]

G

y
?
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This can be compensated by a Helmholtz pair of Ng turns each,

with current flowing in the opposite sense, to give

Q 0 - -	 4 u ONVI

53 
2	 b	 [217]

	from [209a]	 We thus require

3/2
NM/NH 	(5)	 1.657 = 32	 [218]

IV. 3.5 A Maxv.lell-Coil Suspension

The Maxwell coil has the advantage that Q°"' 	 0 automatically.

If we now consider a pair of coils, symmetrically located on the

Maxwell cone, with the same current I flowing but with N 1 turns

in the upper c uil and N2 in the lower, [196a] to [199a] give

Q°	
4 u°I (N1

+N 2 )b2/ (a 2 Fb2 
3/2

)

2	
(N +N ) 1^

'° I	
[2191

7 3/2	 l • 2 b

5/2
Q° 1 = 4 u °I 	 (NI -N2 ) b 2 a/ (a2+b 2 )

3

12 VT POI
75/ 2 (N1-N2)	 [2201

7/2
Q on = 4 P°I(.N1+N2)b2(4a2-b2) /(a2 +b2)	

3

192	 }10I
77 2 (Nl+N2) b3

	
[221]	

9

y

Q°ln 
= 0	 [222]

,p

a

I

A

1



88.

The cozidition [200] is now

k	 9 (N1'-X.N2) 2 = 8 (N1+N2) 
2

[2231
I

The solutions of this equation are easily seen to be

3 + C
N/N=	 34 1224 1

1	 2
3	 --

or the inverse of this.	 Which coil is to have more turns is

"	 readily determined by considering the force at the origin, which

is

FO _ 8kQOQO1

1 9 4
V3
	

°2 2
(N 1 2 	N22)

	 k
12251

ub3l

The lower coil must have the greatest number of turns in the

test mass is ` diagmagnetic (k < 0). 	 Test masses of equal but op-

posite susceptibility could be supported by merely inverting the

suspension.

With 12241, the support force becomes

F° _ 0.138'IkI	 X
02 

N
2 I2 /b 1225]

3

where N is now the number of turns in the larger coil.

Comparison with 12061 shows that, for coils of the same radius

and number of turns and the same current, the single coil suspension

produces a considerably stronger force than this Maxwell suspension.

However, the characteristic length for the Maxwell suspension is,

from 12191 and 1220]b

'!	 14	 191+N2
a	

Z	 b -	 .714b

s

N1 N2

12271
_	 12 ,^
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which is considerably better than the single-coil case. In

other words, the vertical inhomogeneity is less pronounced.

As it stands, this suspension nominally meets the design re-

quirements. However, in order to allow for construction tolerances,

it is proposed to add an extra set of Helmholtz and Maxwell coils,

outside the main coils, connected as discussed in the previous

Section so as to produce Q° only. Current flowing in these trim

coils should have no effect on the lift force nor on the charac-

teristic length, but can be used to trim the radial stiffness of

The resulting coil configuration is shown in Fig. VIII. Some

modifications to the turns ratios are required when the finite

cross-sPCtion:^ of the coils are taken into account (i.e. , when

[196] to [199] are used instead of [196a] to [199a])

IV..3.6 Vertical Servo

Varying the currentin the coils will not affect the condi -

tions [200] and [201]-, but it will change the vertical force.
tx

This effect can be used to compensate for the gradients in the
a_

vertical force indicated 
by 

[195], using the measured vertical dis -

placement of the proof mass to control the current. This feedback

- control is essential , for <stability if the ;proof. mass is not dia-

magnetic.
)

To simplify current stabilization it is proposed to provide

an additional pair of coils (called the servo coils), having turns

nl and n2 in the 'ratio [224] and situated on the Maxwell cone.

d

4
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For simplicity, it is assumed here that the. servo coils are wound

with the main coils, although they might have to be separated if

the inductive coupling between the two sets of coils is excessive

(especially if superconducting coils are used). An accurately

stabilized current I then flows in the main coils, while a current

i(z) flows in the servo coils, in response to the measured vertical

displacement z of the proof mass. The vertical equation of motion

is now

os	 2

mz = k' (NI + ni(z)) 2 	[1 +	 4	 3 (Z)	 +	 ...] 	 mg
7

[2281

where, from [2261 ►
62

a

k'	 0.138	 k( u [2291

_.	 b 

3

and N, n are the numbers of turns in the larger of the main

and servo coils, respectively,	 since it is assumed that the larger

coil is the lower (upper) one, according as the proof mass is dia-

magnetic	 (paramagnetic), k' is always a positive quantity. Recall,

however, that Z is negative for diamagnetic proof ,masses.

If the main coil current is adjusted so as to balance the

r weight of the proof: mass at the origin, then; from [226]

mg = k' (NI) 2 [230]

and (228] becomes

2

z /g =	 [2 ( nz (z) ) 	+	 ( nz (z_) ) 2 1	
(1	 Z + l	 ( Z)	 +	 ... )'

t
VI	 NI	 2	 3	 Z

_

t 2

+	 + 3 (Z) 	 + .e. [2311

F

i We now write
t

f 2

i (z)	
n^ 

(C
1 

Z + C2	 (Z.)	 ) [232]

T.
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I

if

Cl = - 
1 
2

5

C2	 24

If, then, we make
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in [231]. ketaining only up to quadratic terms gives

..	 2
z/g	 (2C1 + 1) Z + (2C1 + C1 2 + 2C 2 + 3)(} +	 = C	 [233]

i (z) = 1 N12 (- z + 5 (Z) 2 + ...)	 [235]	 #
2 nl	Z	 12 Z

this servo control will make the first- and second-order

vertical force gradients zero at the origin.
G	

!

Under these conditions, the suspension will support the magnetic

proof mass in .j neutrally stable region near the origin:. no addi-

tional forces are produced, up to the second order in displacements
j

in any direction from the origin.

The objective of this suspension is to buck out the weight of

a test -pass so that it may be mounted in a weak electrostatic sus-

pension of the type which might be used in the Eotvos experiment
I

in free fall. In testing such an accelerometer, it is expected

I	 that the sensitive axis will be horizontal. The displacement de-

ltector required for the electrostatic support in this accelerometer
E^

may provide the signal for the vertical magnetic servo.

It is clear that this system provides a high degree of isola-

tion to the proof mass from vibrations of the support structure

x

C

A
r 	 I
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(e.g., microseisms), since the suspension force is invariant up to

the second order in displacements relative to the coils. 	 The sys-

tem is however sensitive to relative vibrations of the component

parts.	 For example, suppose that the displacement detector for the

vertical magnetic servo is displaced vertically by a distance 	 e, 4

relative to the coils, while the proof mass is at the origin (z=O).

The signal to the vertical servo will then be -c 	 and the current

in the servo coil will be, by [235]

N	 IE:

-f -H-JT	 [2361

to the first order.	 According to [228], the force produced

on the test mass will be approximately

2F = k I (N I)	 C/Z

MgE:/Z	 [2371

from 1230].	 The system must therefore be sufficiently rigid

so that relative vibrations of its component parts, in the frequency

range of interest, are very small compared to the characteristic

length Z.

IVA	 Disturbing Magnetic Fields

The vertical component of any external, spatially uniform,

constant magnetic- field merely adds a constant term, presumably

small, to Q(z)	 in [174].	 This will make a small change in the

vertical force at the or i gin, according to [177], and it will al-

so change slightly the radial stiffnesses, an effect which may

be compensated by current in the trim coils so as to maintain

the condition [187].



93.	 r

I
The horizontal component of any external field is somewhat

l

more troublesome. Suppose that there is an external field Be

along the x1°axis, so that the magnetic field within the suspen-

sion is

B	 Br sin 0 ± Be	 [238]

Br cos

B z
where	 is an azimuth angle and Br, BZ are given by [175],

a

[174], respectively. The square of the field is then

B2 = BZ + B + B^ + 2BeBrsin 9^

i
BQ + Be	 2Be [Q' (x3 )x1 + K' (x3 ) (xl +x2)x1 + ...]	 [239]

ofrom [175]_. B is the field in the absence of the external

field.

The force on the proof mass when it is at the origin is given

by [179]. The first-order effect of the external field is thus to

produce an additional force in the x -direction given by
i

r	 E1 - - 2kgeQ01
t

B

	

1 e mg	
[240]

B0

from [177] and [174].

It appears from this equation that the field of the Earth, in

particular, will produce an acceleration of the proof' mass in the

gnorth-south direction whose magnitude, depending on the value
i

.`

	

	 achieved for Bo, may be of order one milligee. In using the sus-

pension for accelerometer test, it would of course-be possible to

(x

e
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orient the sensitive axis east-west (or, more generally, perpen-

dicular to the horizontal component of any external field) 	 If

it is desired to simulate free fall to higher accuracy, it would

be necessary to buck out the external field, for example by a large

Helmholtz coil pair, outside the suspension with its axis horizontal.,

The maximum field,_ produced by this compensating coil need only be

of 'order 0.2 gauss, and its direction and magnitude could be adjus-

ted so as to produce a null field at the origin with the suspension

switched off, as measured by a magnetometer.

3

It is important to avoid time-varying external magnetic fields,

especially in the frequency range of interest for testing accelerom-

eters. In principle, it would be possible to measure the variable 	 j
j	 -	 1

component of -'.-he external magnetic field with a 3-axis magnetometer

situated outside the suspension (and far enough away so that it is

not swamped by the main suspension field). The signal produced

could be used to vary the main (or servo) coil current, the trim

coil current, and external Helmholtz compensation coil currents in

such a way as to null the forces on the proof mass, but it is

highly desirable to avoid this additional complexity.

i

From [240), the 60 Hz field due to power wiring will produce

a jitter in the position of the proof mass,, but the amplitude will

be only a few hundred Angstroms even if the field amplitude reaches
k

one gauss. This effect is therefore negligible.

t

►	 In the calculations presented here, it has been assumed that

`	 the suspension is constructed of ideal coils, of infinitesimal

r
Y	 .`.r....^	 ..,^	 . 	 :...^.	 ....,..	 •	 .. ,..	 .r^r, mow..-. aa., ...	 .^	 .^.
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cross-section. It is not difficult to show that the requisite

suspension conditions [187] and [1931 can be achieved using coils

of finite cross-section. Realistic calculations require other

design decisions about the suspension (in particular, whether it

is to be constructed of superconducting coils or not) and there-

fore are not reproduced here.
_	 a
Disturbing magnetic fields can be produced by two other 	 k'

mechanisms': (i) errors and distortions in winding the coils, so

that the turns density is not uniform and the shape is not identi-

cal to that assumed in the calculation; and (ii) distortions of

the suspension field due to magnetic materials in its vicinity.

To some extent these disturbances, being constant, may be corrected

using the trim and compensation coils, but it is clearly desirable,

from [240], to keep the fractional distortion of the field as small

as possible. The limits to the simulation of free fall imposed

by manufact-qring tolerances have not yet been thoroughly studied.

It is, in any case, important to build the support structure for

the suspension from non-magnetic materials.'

1V.5- Proof Mass Design

In the work, presented here it has been assumed that the mag-

netic material of the proof mass is linear 	 i.e., that its

magnetic moment may be written34

M = X mV H,	 [2411

where. V is the volume of magnetic material and „X m is its

magnetic susceptibility. Under these circumstances, the change

in energy in the.suspension when the proof mass is introduced,

with the coil 'currents held constant, • is
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U = 2 M.Bo	 [242]	
u

where Bo = P O 
H  is the field without the proof mass.	 The

force exerted by the magnetic field is then

F	 vU-= 2 4 (M.B	 = 2	 V OBE	 [243]um_	
o

from [241] .	 This is of the form [158]
a=

In order to achieve strong support forces, the obvious choice

is to use a ferromagnetic proof mass.	 In this case, however,	 a

[242] is only a rough approximation, especially when hysteretic

effects are included:	 the energy may depend on the path by which

the proof mass is introduced to the suspension.	 Furthermore, the

force on a ferromagnetic proof mass will not generally be of the

form [243", eve-1, if 	 [242] may be taken as sufficiently accurate.

The use of magnetically soft and hard materials must be considered

separately.

IV.5.1	 Magnetically Soft Proof Mas s

If the magnetic field is sufficiently weak, a soft ferromagnetic

°. object will exhibit a linear relationship similar to [241]	 (neglect-

ing hysteresis).	 A reasonable support force canthen be provided by

using a strong gradient in the magnetic field at the origin.	 Un-

fortunatel y , a weak field and a strong gradient leads, according to

[189], to a small value of the characteristic length Z of the sus-

pension.

In order to build a suspension of adequate performance, it is

almost certainly necessary to use a field at the origin which is

strong enough so taa.t the proof mass is saturated.	 The magnitude'
z

of the magnetise moment will then be fixed, but its direction will

r.

}
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[244]
w

where Mo is the saturated magnetic moment and 	 B is a unit
vector along the original field.	 Then [243] gives

V_	 ,,".^io	 vB	 [245]
ij

so that the force is proportional to the gradient of the

magnitude of the field, rather than to the gradient of the square

of the field.	 The analysis given in this chapter then fails.' It

may still be•nossible to build a suspension with the desired prop-

erties using a soft magnetic proof mass, but the analysis will be

considerably more complicated.

IV.5e2	 Magnetically Hard Proof Mass (Permanent Magnet)'

If the proof mass contains a permanent magnet whose magnetic

moment is and whose dimensions are much smaller than the

Characteristic length Z; in the field, it will experience a -torque

agiven by i

T	 M^ x	 [246] ^

In the absence of restraining forces, the magnetic moment
3

will execute an oscillation about the field direction at an angular

frequency given by

^ 2 a NIB/m 2 	 [247]

where m is the mass and 	 the radius of gyration about an

axis perpendicular to the magnetic axis of the proof mass. As-

suming for the moment that -the period of this oscillation -J.s very

much less than the time constants characteristic of rectilinear
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motion of the proof mass in the suspension, and that there is some

damping of the angular oscillation (e.g., by eddy currents), the

magnetic moment may betaken as being along the field direction in

calculating the force on the proof mass. Equation [244] then ap-

plies and, at the origin, the force is given by [245] as

F..Y - 
mg = 2 Mo vB	 [248]

According to [174], the field and field gradient at the origin

are given by

Bz = 2Q°

8 Bz/az -- 2Q°	 [249]

jso that [247] and [248] give

ff

W 
2 2,1 B 22gg Q°	 [250]

	

2 QB
	 2 Q°'2

The angular frequency of oscillation is then that of a, pendulum

1	 of length E 2 /3Zand will generally be quite high if the magiiet is

small, as assumed in this section.

An important difference between the hard and soft cases is

that, if the magnetic moment is aligned with the field, a permanent

magnet must physically rotate when it is displaced horizontally

from the origin. It is easily seen from [174] and [175] that the

magnetic field at a radial distance r from the origin makes an angle

6	 3Z	 [251]

N proof mass containing such a magnet must therefore exhibit

a rocking otion when it oscillates horizontally,y, an undesirable

defect in the simulation of free ;fall.

i
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A possible solution to this difficulty arises from the ob-

servation that, unlike the soft case, it is not necessary to

provide a magnetic field at the origin when a permanent magnet is

used.	 Apart from second-order effects unaccounted for in [246],

the torque vanishes at the origin if the field is zero there --

i.e., by [174] and [175], if Q 0 = 0.	 In the use of the suspension

for accelerometer test, the magnetic moment may then be kept

vertical by relatively small torques exerted by the electrostatic
,i

suspension system.	 We then have
I

M = M 	 i z 	[252]
I

where iZ is a unit vector along the vertical. 	 Equation

[242] then becomes

U	 2 Moat 	M.	 [Q ( z )	 - 4 4" (z) {x2
+y2 )	 +	 ...	 ]	 [253]

j from [174] and [175]. 	 The force at the origin is then given

by

j F = DUI
x Y^z=O 

= Mo 
Q o 1 i z - Q 01 M 	 [254]

^	 --

and the stiffnesses at the origin are

Si7 = Mo
	 - 2 Qo,f	 0	 0 [255]

0 00 ?1	 0

0	 0	 Q all
i

The only 'non-vanishing terms in the 3-dimensional second-order
d

j

stiffness matrix are

-	 -	 1	 0r1^
x1.13	 r131 

w 
x223 - r

232 -	 r3 22 -	 r311 - .. .^ 
Q j

1
[256]

}E.
r
F

r	 _'QO11,
333

;

r

y

;

1
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It thus appears that a suspension using a permanent magnet

can be constructed by choosing a suspension coil configuration

such that

Q O = Q 011 = Q 0 101 = 0	 [2571

with Q*' finite. It was shown in Sec. IV.3.4 that an anti-

Maxwell pair (i.e., a pair of identical coils, symmetrically

located on the Maxwell cone, with the same current flowing in

opposite directions through them) meets these specifications.	 dA

Notice that, in this permanent-magnet suspension, it appears

to be possible to make the first- and second-order force gradients

all zero. By Earnshaw's theorem, it would clearly be necessary

to provide some form of feedback stabilization, but the lowest

order terins in the destabilizing force appear to be cubic in the

displacement from the origin. 	 The performance of the system may

thus be superior to that using a linear magnetic proof mass:	 in

particular, it may be less sensitive to the type of relativ-. vi-

brations of the components discussed in Sec. IV.3.6.

This interesting possibility deserves further investigation.

For a permanent magnet, the principal defect of [2421 is that it

assumes that the proof mass is a perfect magnetic dipole. 	 In a

more complete analysis, multipole moments would be expected to

interact with higher-order gradients of the magnetic field. 	 As

it turns out, however, the desired configuration is one in which

at least the next two gradients of the field vanish, according to

[2571, so that the dipole approximation may prove quite accurate.

k;;;—.	 TV
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IV.5.3 Diamagnetic Proof Mass

We now return to the question of constructing a proof mass

of magnetically linear material, for use in a suspension of the

type described in previous sections.

With the impractical exception of liquid oxygen, 34 the dia-

magnetic or paramagnetic susceptibilities of ordinary simple

magnetic materials are too small to allow their use in a suspen-

sion employing reasonable (kilogauss) fields and field gradients.

As is well known, however, a superconducting body is perfectly

diamagnetic	 i.e., its permeability is zero.

One solution to the problem, which may be practical if the

suspension coils are superconducting (so as to maximize the

achievable 'field and eliminate problems with heat dissipation) ,

is to embed a-superconducting element inside the proof mass,

which will otherwise be constructed of nonmagnetic materials. To

eliminate torques on the proof mass, the superconducting element

may be spherical. Its magnetic moment is then given in Gaussian

units by35

M = 8n V B	 [258]

	where V is its volume. The force is then given in cgs units 	 9

by
;l
a

F	 a 16^r V VB 2 	 [`259]

so that, in [158]

k =	 - V	 ['260]'

The principal difficulties expected in the use of a super-

conducting proof mass are those that have been encountered in the

•	 -..... .. - --^rxw-* . .tea	 _^_,__ .	 -.	 -	 -	 —	 ,
ff



(i) Elimination of trapped flux. In order that the suspended

superconducting sphere not exhibit a permanent magnetic moment

and hence anomalous forces, great care must be taken during the

transition to the superconducting state. To avoid trapping the

field of the Earth, it may be necessary to provide a mechanism

whereby the proof mass may be kept outside the suspension, in

the normal state, while the suspension coils are cooled and

supercurrents established.	 The proof mass would then be inserted

` part way into the suspension, to a region where there is a

definite field gradient in all directions, and allowed to cool

until transition occurs. 	 Only then would it be moved to the cen-

ter of the suspension. 	 r

(ii) Cooling of the suspended proof mass. 	 If the proof mass is	 y

suspended in vacuum, it can be cooled only by radiation, a very

inefficient process at cryogenic temperatures. 	 The total power

dissipation in the proof mass (for example, due to eddy currents

in the non-superconducting parts) must be of the order of nanowatts.

This condition may be 'relaxed by retaining a pressure of several

torr of helium around the proof mass, so as to provide a convec-

tive mechanism for heat dissipation.

An alternative possibility, avoiding the problems of a super-

conducting proof mass, is to use a pseudo-diamagnetic test body

of the type which has been investigated by Wilk 3 6. 	In this con- d

r
t

cept, the magnetic element in the proof mass would consist of

9

F

`
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three concentric, orthogonal coils--of-small cross-section, with

a 3-axis (Hall effect) magnetometer at their center. 	 The three

coils carry currents delivered by servo amplifiers so as to drive

the magnetic field at the center to zero.	 The element then behaves

very nearly like a perfectly diamagnetic body.

An active proof mass of this type of course requires a power

source for the coils and internal electronics.	 However, in

Wilk's analysis, the power requirements were found to be only of

order 15 mW per gram of lift force, so that the possibility exists

of building a proof mass with an internal power dissipation below

one watt.	 If so, the power could be supplied by a photovoltaic

cell forming one end of the proof mass, illuminated by a light beam

with a power of order 5 watts.

! At the present time, neither the superconducting nor pseudo-
,

diamagnetic proof masses have been adequately studied. 	 The latter
t	 J

type, in particular, requires careful analysis in order to optimize
i

the internal coil design for this application.

I

I 

a

!
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CHAPTER FIVE

i CONCLUSIONS AND RECOMMENDATIONS

V.1_	 The Magnetic'Microbalance

The analysis presented, in Chapter T17 has shown interesting

possibilities for simulation of free fall in the testing of ac-

celerometers.	 Of particular promise are magnetic suspensions

using either (i) a linear magnetic element consisting of a Wilk

pseudo-diamagnet 39 or (ii) a permanent magnet with its axis

vertical, embedded in the proof mass'.	 The suspension coil design

to eliminate first- and second-order force gradients at the

origin is quite different in these two cases and further work is

required before a choice can be made between them.

! The original motivation for this study of magnetic suspen-

sions was that it is impossible to test in the laboratory electro-

static accelerometers of the sensitivity required for the orbital

Eotvos experiment., if it is necessary to buck out the weight of
^

l

E

L the proof mass with electrostatic forces. 	 For the specific pur-

poses of the E6tv6s experiment, it may now be more cost-effective
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to test candidate accelerometer designs on an early flight of
y'

the shuttle (STS), rather than to construct a suspension of the

type considered here. It is estimated that a shuttle accelerom-

eter test facility could be constructed as a "minilab" 37 weighing

less than 200 kg. The direct launch cost, according to the NASA

pricing formula 38 and not including allowance for the-services of

a payload specialist, may be less than $200,000.

To allow resolution of this issue, it is recommended that

studies of the magnetic microbalance be continued to the point

where a choice can be made between the above two types, the de--

srability of using superconducting coils in the suspension can

be evaluated, and a realistic cost estimate for an operating

system can be prepared. A parallel study should be undertaken

of an accelerometer test facility for flight in the STS, so that

shuttle interfaces may be identified, crew involvement specified,

and preliminary estimates made of RDT&E expenses. Comparison of

the cost and expected performance of the terrestrial and orbital,

accelerometer test options will provide the data needed for the
y

orbital Ebtvos experiment development plan.

In making this decision, it should be noted that there are

applications of the magnetic microbalance other than development

of the Eotvos experiment. These include:

(1) Use of the apparatus as a, facility for testing electrostatic-

accelerometer designs for ,other space applications, in guidance

and control of low-thrust,_ vehicles, control of the attitude

dynamics of satellites, establishment of "pure gravity orbit"
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satellites, etc. Once the system has been built, its use for

these purposes will be much cheaper and more convenient than tests 	 K
carried out on STS missions. 1

(2) Construction of a sensitive-long-period seismometer/tiltmeter

based on the microba.lance.

s
(3) Use of two microbalances to support the proof masses in an

electromagnetically coupled gravitational-wave antenna 39 for use

on Earth.	 The isolation from microseismic and other disturbances

provided by the system is particularly important for this applica-

tion.	 Experience gained with such a terrestrial instrument, espec-

ially if it proved possible to detect gravitational radiation from

one of the expected cosmic sources (e.g., the Crab pulsar) would

be of great vts_..e in the design of a larger and more sensitive

antenna for deployment in orbit by the STS.

I
V.2	 The Orbital Edtvbs Experiment1

As discussed in Section III.3, the present state of develop-
1

ment of the experiment allows confidence that it will prove pos-

sible to compare the ratios of passive to inert mass of various

materials in orbit with a sensitivity of at least one part in 1014_
1

This will allow a preliminary evaluation of the passive mass of 	 '?

energy stored in the weak interaction.	 Further analysis is how-

ever required to ensure that none of the possible disturbances

ff listed in Section III.2 	
3

(or -others) will preclude ` operation at

the design sensitivity.

The following immediate tasks have been identified for further

I

development of the Experiment:
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(1)	 Continued analysis of disturbing forces.

(2)	 Establishment of a firm candidate design for a dual electro-

static accelerometer for this application. 	 Of particular impor-

tance is a realistic servo design to allow evaluation of the dis-

crimination which is feasible against the identified disturbances.

(3)	 Development of a plan for testing the accelerometer design,	 .,► •

either using the magnetic microbalance or as an experiment on an

early STS flight, as discussed above.

(4)	 More detailed analysis of the feasibility of an Eotvos experi-

merit to be carried out in the payload bay of the shuttle, including

identification of shuttle performance limitations, shuttle and crew

interfaces, etc.	 If the performance suggested by preliminary

is analysis is confirmed, finalization of system design for this ex-

periment.

i
(5)	 Firm estimates of the performance improvement which may be

I achieved by use of an autonomous, free-flying experiment which is

erected in and launched from the shuttle.	 If the expected perform-

ance warrants, detailed system design for this experiment.

(6)	 Development of a firm program plan, including cost and schedule

estimates-, for carrying out the various phases of the Eotvos ex-

periment which are discussed above.
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