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SECTION 1.0

INTRODUCTION

a

The GEOS-3 spacecraft, launched on April 9, 1975, began

operational activities on April 21, 1975. Since that time,

the GEOS-3 altimeter has taken data on several thousand

passes. On most of these the altimeter was operating in the

more precise short pulse, or intensive, mode. However,

several hundred long pulse, global mode passes of data have

been taken.

In order for the altimeter data to fulfill its goal in

the determination of a global geoid, it is necessary that

the GEOS-3-altitude data be corrected so that it gives correct

measurements of the distance from the spacecraft center-of-

mass to the instantaneous mean sea surface height at the sub

satellite point. This requires that any bias between the

measured and true altitudes be determined so that the data

can be appropriately used in absolute geoid determination.

Two such estimates of both global and intensive mode altimeter

biases have been made 	 The first estimates, based on pre-

launch measurements on the actual GEOS-3 flight model altimeter

by G.E. [1], gave center-of-mass bias values of (negative

biases mean measurements are short):

Intensive Mode	 -	 6.55 m

Global Mode	 -	 -0 68 m

The second set of bias es^tim

[2] , based on analysis of 19

during the first operational

Intensive Mode

Global Mode

ates was made by Martin and Butler

passes of in-flight data taken

month. Biases estimated were:

-0.79 m

+0.11: m	 ,
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The latter study also concluded that, based on the consistency

of intensive mode bias estimates from North-South and

j	 South-North passes, the accuracy of altimeter data time

i
tags for data processed at Wallops Flight Center was approx-

imately 20 msec or better.

The above agreement between the two global mode biases

appears satisfactory enough, but the intensive mode bias dis-

agreement suggests that something may be systematically wrong

with one calibration or the other. In addition to these agree-

ments and disagreements, two other items added to the uncertainty

in the altimeter calibration:

•

	

	 Calibrations of the first month's (and other) data

using a different, more detailed, geoid model*
gave bias numbers some 3 meters smaller than the

j `

	

	above in-flight numbers for both intensive and
global modes.

•

	

	 In approximately mid 1976, it was discovered and

verified [4] that the NASA STDN timing for GEOS-3

contained a 20.8 msec bias. Altimeter data analyses

did not appear to indicate a timing error of this
magnitude.

In addition to these disturbing and confusing developments,

several other developments took place which, together,
allowed a resolution of most of the uncertainties. Among these 	 9

were.

a
4	 •	 A number of altimeter passes through the GEOS-3

f,	 calibration area occurred with supporting ground

*The earlier calibrations were performed using a 15' x 15'
geoid [3]	 The later calibrations used one or more versions
of a 5' x 5' geoid.

2
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tracking from the NASA lasers at Bermuda, Grand

Turk, and Greenbelt, Maryland (GSFC). After appro-

priate relative station adjustment, this allowed

the estimation of very precise laser orbits.

•	 Several intensive mode altimeter passes over Bermuda

took place, including one which was tracked by the

Bermuda, Grand Turk, and GSFC lasers. The latter

pass was almost overhead at the Bermuda laser.

•	 A data smoother was developed for GEOS-3 altimeter

data. The smoother allows smoothing across bad or

deleted data points and was used to smooth data

across Bermuda with the land data deleted, resulting

in an effective altimeter measurement to me_.A sea

level at the tracking site. In addition, the smoother

allows very precise comparisons of altimeter measure-

ments at crossovers

The bias calibrations presented in this report make

extensive use of orbits determined by lasers when available,

and by C-Band radars at Wallops Island and Bermuda when 3

laser tracking is not available. In the case of global mode

calibrations, only one pass was supported by 3 laser tracking,

and C;-Band support was thus essential. With the exception
of some of the intensive mode calibrations using extended

data segments and the geoid model; as a reference, all - cali-
brations used the altimeter data smoother.

The calibration results presented in Section 3 for

E	 the intensive mode appear to be consistent, to within expected
k	 accuracies, both between different in-flight calibrations and

with current interpretations of pre-launch altimeter calibration

data. Global made calibration results appear to be consistent-

f between different passes, although they are not consistent with

3
i



lthe pre-launch calibration data. Timing errors are treated

{	 somewhat differently than the altitude biases. An analytical

C

	

	 derivation of the appropriate time tag for altitude data is

given in Appendix A, and a correction. computed which should

be applied to the time tags of altimeter data processed at

Wallops plight Center. This correction is applied in both

the intensive and global mode calibrations. Consistency of

altimeter crossovers for passes —12 hours apart is then used

to verify that the time tags are correct. The crossover tests

using smoothed data should be sufficiently sensitive to detect	 ..
timing errors of more than 2-3 msec, provided temporal sea

surface height variations are negligible between passes. In

t

	

	 fact they are not always negligible, but the overall cross-
over analysis is consistent with the processed data being

time tagged correctly.	 j

The recommended biases which should be applied to global

and intensive mode altimeter data are summarized in Section

5.

i

r

:

i
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SECTION 2.0

CALIBRATION METHOD

In general, the calibration of the GEOS-3 altitude

measurements requires the computation of the measurement that

the altimeter should be making and comparing it with the

observed altitude measurement. Any discrepancy is then

attributed to a net uncompensated system bias. The imple-

mentation of this procedure is most readily accomplished in
4

	

	
terms of heights above a reference ellipsoid. The satellite

height above the ellipsoid is determined through the use of

ground tracking data, and the sea surface height above the

" ellipsoid is determined through one of several different

procedures. In all cases, we consider the sea surface height

above the reference ellipsoid to be composed predominantly of

a stationary geoid height and a time varying tidal height.

Three different procedures have been utilized for the compu-

tation of geoid heights for use in the GEOS-3 altimeter

data analysis. These are:

1. The use of a geoid model based upon gravimetric

data taken in the calibration area.

2. Geoid height estimation by the altimeter data

itself on the same pass.

3. Geoid height estimations made by the GEOS-3

altimeter on other passes

1	 In all cases, a tide model is necessary to account for temporal
g
'

	

	 variations of sea surface height. Quasi-stationary departures

of the sea surface from the stationary geoid + periodic tides

are neglected in the sense that no corrections are made for

them. They are, however, believed to be observed, and will

be discussed in connectionwith intensive mode calibration in

Section 3.
5
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Calibration procedures involving the three different

techniques for accounting for geoid heights are discussed

below in Sections 2.1 - 2.3. The geoid and tide models

utilized are then discussed in Sections 2.4 and 2.5, respectively.

Two of the calibration techniques require that the altimeter

data be smoothed, so that the comparison of sea surface heights

can be made as accurately as possible at altimeter crossovers.

The -technique used for data smoothing is discussed briefly

in Section 2.6. Finally, it should be noted that the GEOS-3

altimeter global mode is significantly affected by off-nadir

pointing errors. An attempt is made to correct for such

effects based on certain characteristics of the altimeter

return pulse shape. The remaining difference between measured

and calculates global mode altitudes will then hopefully be

a constant, and is then the desired bias calibration. The

off-nadir correction technique is discussed in Section 2.7.
	 j

2.1	 CALIBRATION BASED ON GEOID MODEL

The original method planned, and used, for GEOS-3

altimeter calibration is sim le enou h in conce t	 Thep	 g	 p .
essential elements are:

,a

1. The orbit is calculated with the best available

set of well calibrated tracking stations, and

using only a single pass of data (< 10 minutes)

so that geopotential model error is essentially

zero._

f
2. A pass of altimeter data, typically several minutes	 {

long, is used in the portion of the pass where the

orbit is considered to be best determined.

6
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The altimeter measurement is calculated, accounting

for

a. The height of the geoid above the ellipsoid

based upon a geoid model.

b. The tide height above the geoid based upon a

tide model.

4.	 The tracking station heights are rectified to

the geoid model by computing their ellipsoid

height as the sum of mean sea level and geoid

heights. Mean sea level heights are obtained

from local surveys and geoid heights are obtained

from the geoid model

Assuming unbiased trackers, good station coordinates, and good

geoid and tide models, this method is capable of a high degree

of accuracy.' Because several minutes of data are used, the

effects of measurement noise are, for all practical purposes,

negligible.
3

The area chosen as the GEOS-3 calibration area was
basically the quadrangle formed by ground tracking stations

at Wallops Island, Bermuda, Grand Turk, and Merritt Island.

Original calibration plans called for C-Band radars and Doppler

Geoceivers at each of these sites and for S-Band radars at Bermuda

and Merritt Island. These instruments were to be supplemented by

mobile lasers at Bermuda and Grand Turk and by permanent laser

installations at Wallops Island and Merritt Island (actually,

Patrick AFB)	 In addition to these four primary sites, tracking

stations at Antigua (C-Band radar), Goddard Space Flight Center

(laser and S-Band) and Rosman (S-Band) were potentially available

for improving the satellite orbits. Instruments which turned out

to be available and which have produced data most useful for cal-

ibration purposes were.



•	 NASA Mobile Laser at Bermuda

•	 NASA Mobile Laser at Grand Turk

•	 NASA Stationary Laser at GSFC

a

•	 Two NASA C-Band Radars at Wallops Island

•	 NASA C-Band Radar at Bermuda

The mathematical model used for this altimeter calibra-

tion mode is based on the geometry shown in Figure 1. The

altimeter makes a series of measurements to the instantaneous

electronic mean sea level ( IEMSL) while passing between a set
of ground stations which are tracking GEOS-3 simultaneously.

Based on data from the ground tracking stations, the satellite

height above the reference ellipsoid, h ell can be estimated.

From the geometry of Figure 1, hel has a number of components
which can be broken down as

h el	 halt -b * hgeoid + h tide + &h	 l

where

halt	
the actual altimeter measurement corrected for

(	 propagation effects (noise is neglected here)-,
but not bias.

b	 altimeter bias,

h	 the height of the geoid at the subsatellitegeoid
point _above a reference ellipsoid.

8
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h	 = the height of the ocean tide above the localtide
geoid at the subsatellite point.

ah	 = the instantaneous deviation of the actual

instantaneous mean sea surface from the mean

sea level height after tidal corrections.

This term includes such effects as currents,

eddies, any deviation of the true mean sea
surface from the "electronic" mean sea surface

(i.e., effects of waves), etc.

In the actual calibrations, the term Sh is neglected

since most of the time it will be small (-10 cm) and, in any
event, there is no reliable procedure for calculating it.	 3

The Gulf Stream is on the western edge of the calibration

area, and can have sea surface height effects on the order

of a meter at its boundaries. However, altimeter data for
the Gulf Stream region is generally not used in the calibra-

tions. Height effects greater than 50 cm can also exist

for cold water eddies which do exist in the calibration area,

particularly in the northern portion. When these occur, we

simply live with their effects. But if they occur rather
infrequently and /or over limited regions, their effects will
be minimized since this calibration technique averages effects
over a number of passes, each of which is several minutes
long. It may be noted, however, that the effects of eddies

C on the calibration bias would be expected to be systematic,
`	 producing a bias which is too large algebraically, since the

E	 sea surface height over the cold water eddies will be abnormally
f

low and the resulting altimeter measurements abnormally long.

The GEODYN program [5] at WFG was used for the simul-

taneous estimation of the altimeter bias and the satellite
orbit for a- single pass through the calibration area. The
estimation algorithm used was such that, although both altimeter

and ground tracking data were weighted in the solution, only the
ground tracking data was used in the orbit estimation. When

10



C-Band radar data was used in these calibration solutions,

biases were always fixed, having been separately determined
in previous one or two revolution orbital solutions.

It should be noted that the accuracy of this calibration
method is highly dependent upon the accuracy of the geoid model
available. And the most significant factor here is the accuracy
with which the model is tied to the island tracking stations.

Since geoid variations in the vicinity of islands are almost
always quite high, it is not surprising that the tie of an

island to the at sea geoid should be particularly difficult.

To a lesser degree, station position errors in latitude

and longitude are also a significant source of error in the
calibrations which do not involve a pass near a tracking
station. This problem, however, is considered to have been

satisfactorily solved for the laser tracking stations. See

Appendix B.

i

2.2	 HIGH ELEVATION CALIBRATION

The geometry for the pass of the satellite directly
over a tracking, station is shown in Figure 2. This figure

also shows the components of the calculationof the ellipsoid
to satellite measurement based upon both the orbit and upon
the altimeter measurement. Equating these two,

y	halt	 b + 8h + htide + h geO1d (Alt)

f

5

	R + hMSL + hgeoid (Sta)	 (2)
	

r 

1

-E:

= Height of orbit above ellipsoid

	

11	 -.	 5





r

Solving for the altimeter bias, and noting the source of the	 r^

measurements required in the bias computation, we obtain

Measurement	 Source

b - halt R	 Measurements from

satellite pass

hMSL	
Local survey

+ bride	
Tide model or tide

gauges	 (3)

+ [h geoid(Alt) - hgeoid (Sta)]	 Geoid model

+ Sh	 Non-geoidal, non-tidal

variations	 assumed

negligible	 l

This 'relation differs in two important respects from the bias

determined through the use of Eqn. (1). In the first place,

the most important error source in the use of Eqn. (1) was

the geoid model error. In Eqn. (3), any such errors cancel._

Secondly, the tide model may not necessarily be expected to

be valid for the overhead calibration. This means that, in

order to use the overhead calibration method, an alternative

means of determining sea surface height above mean sea level

may be required. Tide gauges, suitably located, are an

acceptable substitute

In principle, then, the overhead calibration method

is really very simple, and the use of such a technique in-

volving a laser tracker on a ship at sea was one of the origina l
calibration proposals for GEOS-3. It was never proposed for

a land tracker because of the infrequency of overhead passes

and the perturbing influence of land in the footprint. The

fact that it can be used for GEOS-3 must be considered quite

fortuitous in that	 ='

13
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•

	

	 A pass occurred so nearly overhead at the Bermuda

laser tracking site.

•

	

	 The direction of the pass was across the narrow

dimension of Bermuda so that land was in the

footprint for less than 1.5 sec.

•

	

	 The pass was supported by both laser and radar

tracking at Bermuda, as well as by lasers at

Grand Turk and GSFC.

Only one such pass has occurred during the lifetime of GEOS-3.

Altimeter data was scheduled for this pass and the ground stations

all supported. The a priori probability of all these events

was certainly not very high.

Even with the altimeter data across Bermuda, passing

directly over the tracking station, it is not immediately

obvious how the calibration could be accurately performed

without the use of an accurate geoid model in the vicinity

of Bermuda. This subject will be discussed in more detail

in Section 3.2 when the actual data reduction is considered

for the overhead pass.

2.3	 CALIBRATION BASED ON COMPARISON WITH CALIBRATED PASSES

This method is both simple and self explanatory. In

practice, the GEOS-3 intensive mode was calibrated first and

was found to be reasonably stable. In the process a number of

precise orbits were obtained. Consequently, it was decided

to base the global mode calibrations on cross-over differences
with the good intensive mode passes. The primary problem

lay in choosing the portion of the pass to make the comparisons,

since the global mode orbits were generally not as accurate as

14
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GEOID MODEL

those for the intensive mode passes* due to a lesser amount
of supporting ground tracking. This choice could normally

be made on the basis of ORAN [6] analysis of the propagation of

measurement biases and station position errors into orbital
height errors-. In general, this area was in the northern

portion of the calibration area.

In addition to the intersections of the global mode
passes with intensive mode passes, there were several cases

IS 	 in which global mode passes essentially overlapped intensive
k

mode passes. In such cases, a graphical matchup of altimeter

residuals along a several minute orbital segment was considered

superior to the intersection differences. Smoothed residuals
were always used in these comparisons.

All altimeter data reductions for theGEOS-3 calibration

effort have used the Marsh-Chang 5' x 5' geoid model	 [7]	 for
the calibration area between the latitude bands of 16°N to
39 0N, and between the longitude bands of 278 0 E to 300 0 E.	 In

all cases, the use of the model facilitated data smoothing
and the identification of significant orbit error trends.	 For

the first calibration method, requiring the correlation of mean 	 1

1 sea level at the tracking sites with mean sea level at sea,
the geoid is critical and systematic errors in it can be expected

to be passed on into the estimated altimeter biases,

c

x	

f *Because of the much larger number of intensive mode passes,
it was possible to be very selective in requiring 3 laser
tracking and still obtain a reasonable number of passes.

. The same_ criterion applied to the _global mode passes 'would
have resultedin only one pass. 	 Consequently, tracking
requirements were relaxed to require only two stations with
good geometry relative to the pass.

{ 15
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In order to rectify the tracking stations being used [2] to

the Marsh-Chang geoid, the following shifts in height were required:

Goddard	 + 2.78 m

Grand Turk	 + 2.64 m

Wallops Island	 + 2.78 m

Bermuda	 + 5.67 m

As is evident, there is a tilt of about 3 m about a SE axis be-
tween Bermuda and the other stations. Based on -a large number

of station height estimations by various people, it appears that

some of the tilt is in the station positions and some is in the

geoid model. In any event, it is not a source of great concern,

since the rectification- rocess is su osed to eliminate a lam eP	 PP	 g
percentage of the effects of a tilt in the geoid model. The
tie of the geoid model to the island tracking stations is of
considerably more concern, and errors here do indeed introduce

systematic errors into recovered biases.

2_.5	 TIDE MODEL

Ocean tides appear to have amplitudes on the order of
half a meter, and it is necessary to account for such effects
in order to make calibrations at the sub-meter accuracy level.,
The model which has been used for all altimeter calibrations

i=
is an empirical model obtained by Mofjeld [8] specifically

for GEOS-3 calibration purposes. The approximate boundaries	 x

of applicability of the model are 27 0 -35°N latitude and

285°-295 0 E longitude as shown in Figure 3. Within this region,
the model is specified by Mofjeld to have an accuracy of

j	 +5 cm. The degradation of the model outside the region
indicated in Figure 3 particularly in the north-east direction,

I	 =`
16
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is not considered to be very rapid, and some calibrations

were performed outside the proper area for which the tide

model was derived. Resulting contributions to altimeter

calibration uncertainties are not considered to be very

serious.

i

2.6	 OFF-NADIR MODEL	 R

The GEOS-3 altimeter global mode, due to its long pulse

width, can be significantly affected by the antenna not point-

ing exactly along the nadir direction. Although the spacecraft

is considered to be stabilized to within a degree of nadir
better than 90 of the time, off-nadir angles greater than

0.5 0 still produce effects which should be taken into account

in both the instrument evaluation and the use of the data.

The GEOS-3 spacecraft instrumentation includes both a

digital solar sensor and a magnetometer for use in determining
spacecraft attitude. This instrumentation was intended, however,

primarily for use in spacecraft capture and its use for definitive
attitude has produced results estimated to be accurate to —0.5

A potentially somewhat more accurate approach has been
proposed by Applied Science Associates [10,11]. In this approach,
measured altimeter return pulse characteristics are averaged over

some period of time and then used to estimate the off-nadir
angle. The off-nadir angle can th'e'-n 'use transformed into a'

global mode altitude bias [12] relative to the altitude that

would have been measured had the altimeter antenna been pointed

towards nadir. The effective bias as a function of off-nadir

angle is shown in Figure 4.

18



FIGURE 4i -- GEOS-3 GLOBAL MODE
ALTITUDE BIAS VARIATION
WITH OFF-NADIR ANGLE

(CON>rVTATIONS BY G. BROWN, ASA)
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Both the ASA algorithm for off-nadir angle computation

and the corresponding bias given by Figure 4 are programmed

in the Wallops GEODYN program and global mode calibrations

are automatically referenced to a "nadir" looking altimeter.

To the extent that the resulting biases are consistent for

different computed off-nadir angles, it really does not matter

whether the computed off-nadir angle is correct or not. 	 The

interpretation can be made that the altimeter return pulse

is distorted, and the "off-nadir" correction then properly

accounts for the effects on measured altitude. 	 Making this

correction and the constant bias correction then produce the

proper satellite to sea surface- measurement,

It should be noted that the altimeter intensive mode is

also a ffected by off-nadir viewing angles, although the magnitude

Of the effects has been estimated to be only at the few centi-

meter level [13].	 If these estimates are indeed valid, off-nadir
'

i

effects are negligible compared to other known error sources.

r 2.7	 DATA SMOOTHING

The a priori noise levels expected for GEOS-3 cumulative

altitudes (i.e., data at the 10 pps rate) are approximately

- 60 cm for intensive mode

- 1 m for global mode.

A number ofmethods have been proposed for smoothing altitude

` data so that it can be used at less than the 10 pps rate with-

out losing any significant information. 	 The simplest scheme

proposed, and the easiest one (by far) to implement, is toper-,

form a-linear fit in time to the altitude data over a major	 a

frame (-2 or 3.2 seconds).	 The smoothed altitude on the GFOS-3

altimeter data tapes is computed in this manner, and probably

^, 2 0 	 9



represents near optimum smoothing so long as each frame of
x	 data is handled separately. As a smoothing technique, however,

the procedure has some severe limitations. The most important

limitations are:

1.	 The smoothing operation should involve data over

a time period longer than a major frame. This

conclusions has been reached in an analytical study

[14] • , based on the optimum estimation of geoidal

heights in the presence of nominal noise levels

and geoidal undulations. Based on the expected

1	 h	 d	 1'd	 f	 d 1	 d 1wave en	 agt s an	 mp itu es o	 non-geoi a	 un u a-

tions..such as those due to current boundaries,

the conclusion is believed to be valid for all

sea surface heights estimated from GEOS-3 data.

2.	 Extrapolation from periods of "good" data to

periods of bad or nonexistent data is virtually
impossible. f, =

3.	 Identification of bad data points is difficult,

I'	 particularly when a significant portion of a'
major frame is bad.

Limitation No. 2 would not normally be 'considered a serious, {

I	 problem for global geoid production., since a procedure for
1

extrapolation or interpolation would have to be incorporated r

anyway.	 For one of the calibration techniques, however, 
interpolation between good datap	 g	 pints is required to as

high degree of accuracy as possible. ,;

1 k	
A solution to the above data smoothing/interpolation

problems has been implemented in the ALTKAL [15] program,

developed explicitly for the smoothing of GEOS -3 altimeter

data.	 The basic _elements of this program are:

1.	 A Kalman filter, operating on cumulative altitude•	 p	 g
data, nominally available at -10 pps, with a state

21 ` __
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model based upon random noise errors in the altimeter

measurements and a third order Markov model for

geoid undulation features. Missing data points

can be simply skipped across and bad data points
can be deleted using rather tight edit criteria.

2. A Kalman filter operating on the data exactly

as in 1, except that it starts at the end of a

data pass and proceeds backward in time.

3. An optimum combination of the forward and back-

ward filter results to produce optimum estimates

of both heights and slopes.

For altimeter calibration purposes, ALTKAL was operated with

the input of GEODYN output residuals, with orbit, tides and

the Marsh-Chang 5' x 5' geoid already removed. In plots of

ALTKAL output, no high frequency noise is evident*, and altimeter

crossover comparisons are thus greatly facilitated. However,

the most useful feature of the program is its ability to

accurately smooth across missing (or deleted) data points'
in the presence of rapid geoid undulations. Without such a

capability, the overhead calibration technique could not

have been applied.

i

I	
-

*Noise on the data does propagate as low frequency effects,
with the amplitude and frequency dependent upon the filter

f	 parameters. See Section 3.2.1`.

i
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INTENSIVE MODE CALIBRATION

-

	

	 The primary objectives in the calibration of altitudes

from the GEOS-3 altimeter intensive mode have been to:

9

1. Determine the true measurement bias which can be

used to correct the data, producing a measurement

from the spacecraft center-of-mass to the instan-

taneous mean sea level at the subsatellite point.

2. Determine the stability of this bias.

3. Determine the existence of any time tag errors

in the data.

It is believed that these objectives have all been met to a

level that is consistent with the accuracy of the data itself,

and the results are given below in Sections 3.1 and 3.2. In

the calibration process, however, certain other problems arose

whose explanation or solution are significant if maximum

accuracy is to be achieved in the utilization of the data.

These problems include:

i	 1.	 Apparent anomalies, occurring irregularly, in which

the altitude measurements are long by on the order
of 4-6 m for periods of —0.5 second.

2.	 Altitude bias variation as a function of TM mode.

These problems are also discussed in this section.- It is be-

'

	

	 lieved that at least a phenomenological explanation of the

anomalies is available, so that the proper handling of them

can be made. The differences between biases for different TM

modes appears to be satisfactorily resolved on the basis of the

data itself, although other analyses have predicted conflicting

results.
23
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3.1	 BIAS DETERMINATION

Two different methods have been used for the estima-

tion of the GEOS-3 altimeter intensive mode bias. The

first method has been used for 16 different passes through the

calibration area. Results from these calibrations will be

described first. Next, we consider the single sample of the

overhead type calibration. An assessment of the accuracy

achieved will be made in Section 3.5 after the consistency of
different passes at their intersections has been examined in

Section 3.2.

3.1.1 Bias Determination Using Geoid Model	 f

The technique used for bias estimation based on a
geoid model has been described in Section 2.1. Initially,
it was planned that all altimeter passes through the calibra-

tion area with sufficient ground tracking for the estimation

of a good orbit would be processed for altimeter bias estima-
tion. In some cases, this requirement extended to the

existence of tracking on adjacent revolutions in order that

radar calibrationscould be performed. However, the altimeter

calibration was always performed using ground tracking data

from only a single pass through the calibration area.

a
The Marsh-Chang 5' x 5' geoid model [7], transformed

to a 6378145 m ellipsoid, was used as the reference geoid, with
the resulting set of bias estimates shown in Table 1. Ground-

tracks for these passes, showing the approximate segment of
altimeter data used, are _shown in Figure S. Also included
in Table 1 is the set of tracking stations used to determine

the orbit for each calibration pass.

It will be noted from Table' 1 that the pass to pass
bias estimations, have a la spread of less than 30 cm about a

24
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TABLE 1. INTENSIVE MODE BIAS ESTIMATIONS USING
RADAR/LASER ORBITS AND MARSH-CHANG 5'x 5' GEOID MODEL

REV NO. DIRECTION	 ESTIMATED BIAS	 TRACKING STATIONS USED*
;

203 S-N - 4.10 m WAL/BDR/BDL/GRT

246 S-N - 4.80 m WAL/BDR /STA/G R T

524 N-S - 4.46 m WAL/BDR/GRT

530 S-N - 3.99 m WAL/BDR/GRT

1107 N-S - 4.60 m WAL/BDL/GRT

1312 S-N - 4.76 m WAL/GRT

1710 S-N - 4.32 m STA/BDL/GRT

1966 S-N - 3.92 m WA L/STA/G RT

1974 N-S - 4.56 m STA/BDL/GRT

2017 N-S - 4.00 m STA/GRT

2037 S-N - 3.98 m BDA/GRT

2094 S-N - 4.48 m STA/BDL/GRT

2102 N -S - 4.44 m STA/BDL/G R T

2108 S-N - 4.22 m WAL/STA/BD L

2165 S-N - 4.45 m STA/GRT

2244 N-S - 4.23 m WAL/BDL/GRT

AVERAGE -4.33 m + .271n
(1Q SCATTER)

,N.

I'

WAL — NASA FPQ-6 or FPS-16 C—Band Radar at Wallops Island
BDR - NASA FPQ-6 C-Band Radar at Bermuda
STA — NASA Staionary Laser at GSFC
BDL - NASA Mobile Laser at Bermuda
GRT — NASA Mobile Laser at Grand Turk
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mean bias of -4.3 m. Based on this apparently consistent

bias recovery, passes other than these 16 were not processed

for bias estimation using the geoid model technique. Instead,

attention was concentrated on identifying the possible existence
of systematic errors in all passes. The analyses discussed

below in Section 3.1.2 were the result.

It might be noted that several of the passes listed in

Table 1 have 3 laser tracking, and that these passes are very
consistent (total spread	 16 cm). Their mean is also very
close to the overall mean. This might be interpreted to mean

that the laser only orbits give a more accurate result.

Because of the small sample size and the known problems with
geoid rectification, we prefer to attach little significance
to this consistency, although it is definitely to be expected
that the 3 station orbits would be more accurate than the 2

station orbits.

No set of error components has been formally prepared
for the results shown in Table 1. In order of importance,
these are considered to be geoid rectification errors and
horizontal station position errors, with all other error

sources on the order of 10 cm or less. The geoid and station
position errors would be expected to have both systematic and
random components from one pass to the next, due to the varying
geometry from pass to pass. These error sources could easily

account for the observed scatter in estimated biases although,
at this stage, pass to pass variation by the altimeter has
not been ruled out. The systematic component of the geoid

and stationposition errors is difficult to estimate without
reliable covariances for the geoid model error. These, in
turn, are difficult to obtain. However, systematic effects
on the order of 1-2 -m are probably in the right ballpark.
Given the nature of historical geoid model changes, it might
be expected that the geoid height of Bermuda (the most important

f
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station) would be underestimated relative to the surrounding

ocean areas, and so the resulting bias estimates would be

more likely to be too large (algebraically) than to be too

small. Comparisons with the bias value estimated by G.E.

[1] from the analysis of altimeter system delays would tend

to support this contention,

3.1.2 Bias Calibration Using Rev 4553

Several altimeter passes have passed sufficiently close

to Bermuda to have land in the footprint. Groundtracks of

several of these passes are shown in Figure 6. However, only

Rev 4553 was supported by ground tracking from Bermuda. Laser y:
data taken by the three NASA lasers on this pass is listed

in Table 2. The data from several of the other passes across

Bermuda have been processed, including smoothing, and their

measurement of the geoid in the vicinity of Bermuda are con-

sistent with Rev 4553. Since these other passes have no

tracking tie to Bermuda, we will not make use of them in the

calibration discussion, although they could be used in a re-

determination of the appropriate rectification of the current

calibration area geoid.

A `plot of the altimeter residuals after orbit estima-

tion is shown in Figure 7. These residuals are the measured

cumulative altitudes minus the computed orbit height above

the ellipsoid, with corrections made for tropospheric _propa-

gation, tides, and the Marsh-Chang 5' x 5' geoid. The laser

tracking station position used, however, had a height above

ellipsoid of -25.90 m, consistent_ with the "best" set of 	 M

station positions discussed in Appendix B. Considering the

mean sea level height of 13.45 m, this is equivalent to

I	 using a geoid height of 39.35 m, whereas.the,geoid model height

at the laser site is -33.69 m. There is thus a discrepancy of
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FIGURE 6. GROUND TRACKS OF ALTIMETER PASSES ACROSS BERMUDA
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Station

Start of Track End of Track Max.
El.

Total No.
of Points

No.	 of
Wtd.Pts.

RMS of
Wtd.Pts.Time Elevation Time Elevation

Grand Turk 19h1.2m06S 230 19h16m075 200 280 146 145 4.96 cm

Bermuda* 19h13m04s 370 19hism51s 740 740 33 30 5.21 cm

19h 16m 54 s 480 19h17m02s 460 460 3 3 3.80 cm

Goddard 19h18m17s 580 19h18m24s 580 580 2 2 .81 cm

Totals_	 184

t

4
r

*Data segments before and after-1 minute data gap are summarized separately.
k

Table 2. Laser Tracking Support on..GEOS-3 Rev 4553,

February 25, 1976.
n.`'

180	 4.96 cm

i

4
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5.66 m between the geoid height used in computing the orbit

and the geoid height used in computing the geoid correction

to the altimeter measurement. But there should not be any

orbit error induced over Ber*^uda because of station rectifica-

tion to fit the geoid. This factor is of considerable signifi-

cance for this pass because, as shown in Table 2, Bermuda did

not track continuously on this pass and indeed did not track

through maximum elevation.

Figure 7 also shows the smoothed residuals across

Bermuda, after zero-weighting pouts which would have Bermuda

in the footprint, based on the nominal footprint diameter of

3.5 km. Assuming minimal error from the smoothing operation

and that the tide model is valid across Bermuda, the altimeter

residuals as smoothed across Bermuda represent the Marsh-Chang

geoid minus the geoid as measured by the altimeter. Figure 7

*hen says that the geoid model underestimates the geoid height

of Bermuda relative to adjacent deep sea areas by something

on the order of a meter. This suggests that the bias estimates

given in the previous section in Table l would indeed be

systematically large, algebraically, as we have previously

speculated.

Before proceeding further we must dispose of the two

assumptions required in order to interpret the smooth curvep	 a	 P
in Figure 7 as representing error in the geoid model:,

1.	 Tide Model Validity

s

The tide model is not, according to'Mofjeld [3],

valid within ocean depths of ` 2000 m or less.

There was, however, a tide gauge [16] along the 4553

ground track and its measurements were consistent

with the tide model predictions to within approx•

imately 7'cm. Tidal corrections are discussed in

Appendix C.
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The ALTKAL smoother is based upon geoid undulation

and altimeter noise models which have no require- 	
x

ment for continuous data. When data points are

deleted or not weighted, the uncertainty in the 	 ^*

estimated height goes up. Within the limits of

this expanded variance, there is no reason for the

smoothed residuals across Bermuda not to represent

local geoid model error. The smoothed height sigma

across Bermuda reaches approximately 17 cm, conpared

to an —12 cm sigma with no data deletions, based

upon nominal noise and geoid model parameters.

We can now proceed to an expanded view of the smoothed

residuals across Bermuda as shown in Figure 8. Here the

deleted data segment is explicitly shown, as is the time of

closest passage of the spacecraft ground tracks to the Bermuda

laser. The time of this passage is 19 h 15m 1956272 UTC time

on February 25, 1976. The subsatellite track passes about

32 m SW of the laser site. From the ALTKAL run, the altimeter

residual at this time is 0.533 m.

`-

	

	 Table 3 summarizes the components of the bias computa-

tion based on the altimeter "measurement" crossing the Bermuda

Ilaser tracking site. The data reduction was performed using

measured meteorological data from Bermuda for making tropospheric

refraction corrections for the altimeter data. However, an

ionospheric propagation correction is needed since the local

time -is -j,ust prior to 3_P.M. This correction has been estimated

_using ORAN [6] to be about 10 cm. Since the tide model

correction is estimated in Appendix C, the only other needed

components of the bias computation are the "observed" re-

sidual and the separation, in geoid heights at the laser site
between the geoid model and that corresponding to the station

position used in the data reduction. The net result is a

bias estimate of -5.3 m for the -intensive mode 'bias.
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a

Component Value

d Measurement residual 0.53 m

z + Geoid height used for tracking station
-S.66 m

Geoid height used for altimeter measurement computation

+ Ionospheric propagation correction -.10 m

LA
U1

+ Tide Model correction (Appendix C) -.07 m

Bias -5.30 m

i

Table 3.	 Computation of Intensive Mode Bias From

! I ., Overhead Calibration on Rev 4553
=—

la._
t
[ h

d
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Although the geoid model has been used throughout

this section, it cancels out completely in the final bias

computation.'_ It should be noted, however, that the elimination

of this error source is not without a price. And this

price has already been alluded to as an increase in the

uncertainty in the altimeter geoid height during periods of

no data, or no good data. This increased uncertainty, however,

is believed to be substantially less than the systematic errors

in the geoid model, even though such local errors may be only

on the order of a meter.

3.2	 CONSISTENCY OF INTENSIVE MODE ALTITUDE DATA

There are three reasons for considering the consistency

of the GEOS-3 altimeter data:

f

Alkbhl

1. To ascertain any variability of the altitude bias,

either short term or long term. Particularly is

this of interest since we have obtained our pre-

sumably most accurate bias estimate on the basis

of a single pass.

2. To look for evidence of any remaining timing errors

on the altitude time tags.
_	

4

3. To investigate the accuracy with which the altimeter

is capable of mapping shoat wavelength sea ;surface

features. An in depth answer to this question is

beyond the scope of this report, but certain

aspects must be considered in the interpretation

of altimeter measurements at points at which

different passes "cross over" the same geographic

sub-satellite point.
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In this section, we will consider the available evidence for 	 3
bias stability and valid time tags. The altimeter's measure 	 '

ment of short wavelength undulations will be considered as

necessary in this evaluation.
j:
a

As the primary basis for this analysis, we consider
the set of 18 calibration area passes which were tracked by

the three NASA lasers located at Bermuda, Grand Turk, and.

GSFC.	 As discussed in Appendix B, station positions were

estimated specifically for use in obtaining consistent orbits

for this set of passes. 	 It is believed that the baselines
associated with this set of station positions have accuracies

on the order of 10-20 cm. 	 The heights, however, may be con-

siderably less accurate, even relative to each other. 	 If

there were continuous laser tracking by all stations during

the altimeter pass through the calibration area, trilateration

positioning could be used around each crossover, and noneof

the station position errors would be significant. 	 However,

there appear to be NO crossovers for which trilateration

positioning can be done for both orbits, and we have thus
resorted to the estimation of a single best orbit for each

pass.	 The difference in the orbit height errors at crossover
points depends upon the tracking data available for the two
passes, as well as the station baseline and height errors.
The difference errors will thus vary from one crossover to the

next.	 For a "typical" crossover, however, we estimate that

this error may be on the order of 25-30 cm, but probably are

normally much less.	 A tracking data problem could cause a

larger effect, but no evidence of such exists.

t
Figure 9 shows the agreement of the 18 passes at their

crossover points.	 The crossover differences have a mean of

*This set of 18 is complete for tracking by 3 NASA lasers
on a calibration area pass with altimeter data 'taken with
-operation in the intensive mode.	 Use of the RML laser data
increases the number of 3 laser passes_, some of which will

P,
be considered below.-
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-30 cm, with a one standard deviation scatter about this mean

of 36 cm. So the non-zero value of the mean is only.on the

borderline of being significant.	 On the assumptions that

there are no pass to pass bias variations and no altimeter

time tag errors, the explanation for the crossover differences

must lie in some combination of the following four error

sources:
I

a. Orbit error.	 Regardless of the source (expected

i to be predominantly station position errors), the

effect should be very nearly linear along each 	 ...

pass.

b. Altimeter noise.	 The data has been smoothed prior
to computing the crossover differences.	 However,
the la effect on the residual is still'on the
order of 12 cm, which will be independent from
one pass to the next and, in most cases, from one
intersection to the next.	 i

C. Propagation effects.	 Only Revs 4553 and 1988 have

been corrected for tropospheric propagation effects

based on measured meteorlogical data, and even
i

here only for the conditions at the time of Bermuda
passage.,	 In other cases, a constant correction has
been applied which, in general, underestimates the
correction.	 The maximum-undercorrection is esti-

mated to be on the order of 10 chi.	 No ionospheric	 j

correction has been made for any pass, with the
maximum effect estimated at about 10 cm for daytime

r passes.

d. Temporal sea surface varia1:%ons. 	 Much of the UEOS-3	 a

calibration area is very "smooth" in the sense of
having only very long wavelength geoidal features.	 ..
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However, the area does contain currents and eddies.

The 4 northernmost intersections in Figure 9 lie

north of the nominal western boundary of the Gulf

Stream. Eddies from the Gulf Stream move south,

and the entire area north of approximately the

latitude of Bermuda would be likely candidates
i

for an eddy being present on one pass and not on
another. No part of the calibration area would be

considered totally immune from eddies.

It will be noted from Figure 9 that there are three

i pairs of nearly overlapping tracks from the set of passes

trucked by the 3 NASA lasers. These passes have been used

to attempt to determine the magnitude of temporal sea surface

height variations. Figures 10-12 show measurement residuals

from these 3 pairs of passes. No attempt has been made to

realign the plots to compensate for orbit errors, either in

bias or slope. When no evidence of bias or slope exists,
then the differences must be interpreted either as measure-
ment error (due to noise effects) or to temporal sea surface

variations. The existence of apparent within -pass variations
of 1 m or more indicates that -a significant portion of the

differences shown in Figure 9 may be attributable to temporal

changes in sea surface height

r

Two sets of overlaps have also been examined for which
the RML laser provides the third laser for one of the tracks.

s
Residuals for theseoverlaps are shown in Figures 13 and 14.
In both cases, RML tracked on the same pass as the Bermuda

and Grand Turk lasers. Station positions used for RML are

given -in -Appendix B and the compatible set of positions for

the 3 NASA lasers was used. A timing bias of 550 usec and

i a bias of 14 cm were applied to the RML data for Revs 3950

and 4340 whose residuals are shown in Figures 13 and 14

These biases were indicated by the data reductions discussed

in Appendix B;

40



i

7	 --- l

X

•'	 k	 REV 4334
y	 k
cc •

5	 XREV 7178

!A.	 •

W 4 '.	 • • • i 
M. 

i •ti^i
oex

cc,
xx

w	 x
w

N
3

Q

2X

1

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100 110 120	 130 140	 150 160 170	 180 190 200

TIME IN SECONDS FROM 6h20m52S218 ON 7/2/75 FOR REV 1178 AND FROM 013m 135016 ON 2/10/76 FOR REV 4334

FIGURE 10. ALTIMETER RESIDUALS FOR OVERLAPPING TRACKS ON REVS 1178 AND 4334,
GROUNDTRACK SEPARATION IS 2.4 km



7

I	 A,
6

•	 REV 2102

X	 REV 1576

H
5—

k	 x
W :	^

ca

•	 •

T	 •	 •
Lu

tr yry	 j
W .^

tlNLu3•

•
•

E
0	 10	 '20	 30	 40	 50	 60	 70	 80	 90	 100	 110	 120	 130	 140	 150	 160	 170	 180	 190	 200	 ----^-	 ^^

TIME IN SECONDS FROM 13h5Om42f77 ON 9/5/75 FOR REV' 2102 AND FROM 9 h3l m51s596 ON 7/30/75 FOR REV 1576
FIGURE 11. ALTIMETER RESIDUALS FOR OVERLAPPING TRACKS ON REVS 2102 AND 1576. GROUNDTRACK SEPARATION 1S 2.1 KM,

i Y

...:^.



-

a

7

6

•REV 4604k j(	 •

^•+.	 .•'•.	 X	 REV 1974

W

W
s

•y	 ^^^f^ry^^

^(
•

N
W

W	 ^
-

•

W

W

_3 •

•

Q •	 •

I 2

Y
1

f'

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 110	 120	 130	 140	 150	 160	 170	 180	 190	 200
TIME IN SECONDS FROM 12h42m12s77 ON 8127/75 FOR REV 1974 AND FROM 10 h 15m285156 ON 2129/76 FOR REV 4604

FIGURE 12. ALTIMETER RESIDUALS FOR OVERLAPPING TRACKS ON REVS 1974 AND 4604. GROUNDTRACK SEPARATION IS 5.3 km.



I

"mumps"

J
q

r
r

FIGURE 13. ALTIMETER RESIDUALS FOR OVERLAPPING TRACKS ON REVS 1710 AND 4340..
-	 GROUNDTRACK SEPARATION IS 2.9 KM.

7

X REV 4340

REV 1710
6

W,{	 H
cC
W 5 ^ NK

	

N	 •	 ,y,^ 

.	 a %X	 .X•
•

-Pb	 CA	
XN

W	 .••%•

Lu

Lu

•••	 •N•

',	 1
Q 3

I,	 2

1

0 10	 20	 30	 40	 50	 60	 70	 80	 90 100 110 120 130 140-- 150 160

TIME INSECONDS FROM 17 h 53m 23=384 ON 2/10/76 FOR REV 4340
AND FROM 20n 20M OS729 FOR REV 1710

w"
F,

G,

k
E



w.,	 —	 --	 — --	 — — .. —

i	 r	 v

FIGURE 14. ALTIMETER RESIDUALS FOR OVERLAPPING TRACKS ON REVS 3950 AND 4476.
7	 GROUNDTRACK SEPARATION IS 4.1 KM.

X REV 3950

REV 4476
v^

5—
X

W
W	 '.

ca

Lu

•

W	 '^•	 X
H 3— •«
W

 J	 •
•	 is

2,	

7ii

a

0

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100 110	 120 130 140 150	 160 170 180 190

TIME IN SECONDS FRr 4 h 48M 32!167 ON 1/14/76 FOR REV 3950 AND FROM
9 7m 3.685 ON 2/20/76 FOR REV 4476



.r.• 1

i

3.2.1 Bias Stability

If the scatter in the altimeter crossovers is to be

interpreted as temporal sea surface height variations, the

bias stability should be nost reliably revealed from the

overlapping tracks. In Figure 10, showing residuals for

data taken in July 1975 and February 1976, there is no obvious

offset between the two sets of residuals. There is a slight

indication of an overall slope difference between the two
passes, which could be indicative of a significant amount

of orbit error. In Figure 11, showing residuals for data

taken in July 1975 and September 1975, there is no evidence

of a consistent offset between the two passes during the

last 2 minutes. During the first minute, however, there

are differences on the order of a meter for a distance in
excess of 200 km, which could be due to a cold water eddy
on Rev 1576 and not on Rev 2102. This explanation is cer-
tainly physically credible.

Figure 12 comes closest to showing a systematic diff-
erence between two different passes. Even here, however, the

mean difference is only on the order of 20-30 cm, and there
are several segments for which the twopasses seem to be in

much closer agreement. Overall, the differences are not con-
sidered to be too large to be explicable as some combination
of orbit error, propagation error, and temporal sea surface
height variations of a type which are knownto exist at times
in the calibration area.

Figure 13, showing residuals for Rev 1710 in August

1975 and Rev 4340 in February 1976 show almost perfect overall

agreement. This set of passes comprise the only South-North
overlaps included. It may be noted that the geographic area
covered is mostly in the southern to central regions of the

calibration area, where the other passes have also shown

rather good agreement.

i

i
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Figure 14 shows another set of passes for which the RML

laser data was used to obtain one of the orbits. One of the

passes, Rev 3950, is in January 1976 and the other, Rev 4476,

is in February 1976. After the first minute, which again

E

	

	 shows symptoms of an eddy on one of the passes, the two passes

show perhaps the best agreement of any of the overlaps, with
no indication whatsoever of a systematic offset between the

I	 two.

We thus conclude that the data shows no evidence of a
significant bias variation between the times of Rev 1178 and 	 r"

Rev 4624. Assessment of the bias stability before Rev 1178
and after Rev 4624 would have to be done via the bias estima-

tion method using the geoid model (see Section 3.1.1). However,

Section 3.1.1 considered passes prior to Rev 1178,, with no 	
3

apparent bias variation between Revs 203 and 2244.

it may have been noticed that Figures 10-14 all show 	 j

"high frequency" undulations with periods of about 10 seconds

or 60-70 km. The question then arises as to whether or not

these undulations correspond to physical undulations in the

E

	

	 real sea surface. The answer to this question is that the

large amplitude undulations are real, but that undulations

of --15 cm amplitude can exist due to measurement noise. This r
is demonstrated in Figure 15, which shows the effects of

random noise of 72 cm amplitude (the average altimeter noise
level, to be computed in Section 3.4) when passed through
the filter used for the residuals shown in Figures 10-15.
The amplitude and frequency of the undulations in Figure 15

is very similar to the high frequency oscillations in Figures
10-14, thus suggesting that the latter are dueto measurement

noise effects,

3.2 .2 Timing Validation

Barring temporal sea surface height variations, verifica-
tion that the correct time tags have been applied to the altimeter

-
	

data canbe performed through crossover analysis, since altitude

4
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rates for North-South and South-North passes are opposite in

sign. The effects on altimeter residuals are not very large,

however, since the altitude rates for the calibration area passes

have magnitudes only in the range 10-30 m/sec. Nevertheless,

a time tag error should exhibit itself in the form of a systematic

bias in the crossover differences such as are shown in Figure

9. Indeed, we have already noted above that the mean crossover

difference is -30 cm, suggesting that the North—South residuals

are systematically too small, which could be due to the time

tags being too small.

"

	

	 The overlapping passes shown in Figures 10-14 have shown,

however, that temporal variations of a meter or greater can

occur between passes, particularly in the northern portion of

the calibration area, and the average crossover difference could

be significantly affected by such variations. To minimize

temporal effects on the crossovers, only the set of 4 crossovers

consisting of passes 6-8 revs; apart were examined. These

crossovers are summarized in Table 4, with estimated corrections

included for propagation effects. The two southernmost cross-

overs show residual differences after propagation corrections

of 5 cm or less, which is more than consistent with measurement

noise effects alone.

The other two crossovers must beexplicable as indications'

of an actual timing error, an altimeter bias variation, orbit

error, or a temporal variation in sea surface height between 	 j

passes. Analysis of the 4604-4610 crossover using different

sets of station positions (the largest contributor to orbit

error) suggests that station position errors cannot be a-large

contributor to the observed 49 cm difference. Since no overlap

showed real evidence of a bias variation, and the first two

crossovers show no evidence of time tag errors, the most plausible

explanation for the two discrepancies in Table 4 must be the

passage of eddies into (or out of) the area between passes.

We thus conclude that the crossover differences shown

in Table 4 are consistent with the altimeter datahaving been

properly time tagged.
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1718-1710 -14 cm	 +3 cm +7 cm -4 cm
t	 ,

2102-2094 0	 -5 cm 0 -5 cm

I 4476-4482 -68 cm	 —0 +7 cm -61 cm

` 4604-4610 -54 cm	 0 +5 cm -49 cm

un

E

t,

0

Table 4.	 Crossover Differences for Passes Half Day Apart,"

Including Approximate Corrections for Propagation Effects
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Bias Variation With Telemetry Mode

-s-

In all the above discussion of intensive mode bias esti-

mation, validation, and stability, essentially no mention has

been made of telemetry mode. 	 In fact, some of the data was

taken in Telemetry Mode 1 and some in Telemetry Mode 2. 	 Bothoy
of these modes transmit cumulative altitudes, which consist

of on-board averaging of ten altitude measurements. 	 This is

the data that was used in all the above analysis.

j

In Telemetry Mode 3, however, "instantaneous" or indi-

vidual altitude measurements are telemetered to the tracking

stations.	 Keeney and Hofineister of General Electric [17] have

calculated, based on analysis of differences between spacecraft

manipulation of instantaneous and cumulative altitude data,

that the TM 'Mode 3 data should have a bias which is algebraically
47 cm smaller than the cumulative altitude data.	 Accordingly,

an attempt was made to assess that the data is consistent with
this bias difference.

No TM Mode 3 data exists through the calibration area

with 3 laser tracking.	 A limited number of passes do exist,

however, in which there was a transition within the pass from
one telemetry mode to another.	 Two such transitions have been
examined, and the altitude residuals before and after the TM

mode change areshown in Figures 16 and 17. 	 For these figures,

the TM Mode 3 altitudes have been increased by 47 cm and have

been averaged over groups of ten in ground data processing in
order to produce equivalent cumulative altitudes:

s
In processing the Rev 246 data .,	 the Marsh-Chang S' x 5"

E

geoid model was used, and the overall residual pattern shown

j	 f	 ; in Figure 16 has no apparent trend.. 	 Rev 248	 data did notE
pass through the GEOS-3 calibration area, and no geoid model

was applied.	 The resulting: residual pattern shows an overall
linear trend, 'which would be expected on the basis of geoid
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model and orbit error. There is no discernable change in the

residual level at the time of the telemetry mode change for

either pass, although the noise levels are sufficiently high

that the visual test of consistency cannot be considered

conclusive.

It should be noted that the time tagging of the TM Mode 1

and TM Mode 3 data was performed according to the procedures

described in the GEOS-C Preprocessing Report [18], corrected

as indicated in Appendix A of this report. Although it is

again a rather weak confirmation, the consistency across mode

changes in Figures 16 and 17 does indicate that the time tagging
procedure is valid to within approximately 20 msec.

We conclude that the TM Mode 3 data appears consistent

with thealtitude bias (relative to TM Mode 1) calculated by

G.E. and the time tagging procedure given in the GEOS-3 Pre-

processing Report.

3.3	 ANOMALOUS DATA PERIODS

Analysis of the GEOS-3 altimeter data has shown that

there are times when the measurement is anomalously long by

a magnitude on the order of 4-6 m for a time duration of

several tenths of a second. In the process of smoothing
residuals, all such periods that have been identified have

been deleted and thus do not have any influence on the bias
estimations or crossover analysis'. However, if they are not

deleted, spurious short wavelength undulations (of a meter or

so in amplitude) will be introduced in the smoothed data.

Although the cause of these anomalies has not been
definitively identified, certain of their characteristics

are quite well known Figure 18 shows the residuals for an

anomalous data period on Rev _4553. On a different scale,

these anomalous residuals have already been shown without
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comment on the beginning of the plot in Figure 7. The anomalous

period lasts for about 0.4 seconds as noted on Figure 18.

Three cumulative altitudes during this period are rather clearly

outliers from the rest of the residuals, and editing could be

accomplished on this basis alone.

Further evidence that the points should be considered

invalid is obtained from the waveforms during this period.

Figure 19 depicts in 3 dimensional form the return waveforms

during the period around the anomaly. The points plotted in

Figure 19 are obtained from averaging 5 instantaneous waveforms.*

As may be seen in the Figure, the anomalous period is characterized

by excessive (i.e., above noise level) energy return in the
early gates, starting as early as Gate 2. In some of these
waveforms, there is also a valley in the vicinity of the Ramp

Gate (No. 10)

Both of these features are perhaps more clearly evident

in Figure 20, which shows some waveforms in the immediate vicinity

of the anomaly. Each of the waveforms shown is a 10 sample

(--.1 sec) average. The first waveform shown is reasonably
normal. In the second and third waveforms, the leading edge

of the return pulse can be seen to move closer to Gate 1, until
Gate 2 has a visibly abnormal return in the fourth waveform.
In the following waveforms, the return pulse becomes later and
later until it appears to be near the normal time in the seventh
waveform. The valley mentioned above is most evident in the
fourth and fifth waveforms, with Gate No. 10 located near the
minimum. In the sixth waveform, however, Gate 10 is on a peak,
which should indicate to the tracking algorithm that the gates

r	 should be moved forward in time 	 In the last two waveforms,

this movement has taken place.

*Rev 4553 is a TM Mode 2 pass and waveform data is thus
available at the --100 samples/second rate.

S6



-	 ------- --

q	 t

2.

W

Q
H
J

-0.5

4

I

9

FIGURE 19. THREE DIMENSIONAL WAVEFORM IN THE VICINITY OF AN INTENSIVE MODE
ALTITUDE ANOMALY. GRAPHED POINTS ARE 5 SAMPLE AVERAGES.

c

.	
J^



i

_

8S

c
m
NO

Z
p

D	

O^^

0

Z
Av'

i	

C

Z	
O

y` 9
O

i	 alp ^O

C
m
D	 ZO
Z
O
3
D
r

o

^O ow	 ^

col
	

a

,r

♦•
t
#`M`

o	 a
^

SAMPLER VOLTAGE

IN

;

o

o



i

f

No attempt has been made to compile any statistics as

to the frequency of the--6 m anomalies, but almost all of the

passes analyzed contained at least one. A ballpark estimate

of frequency would be 1/minute. Some question has also arisen

k as to the existence of —3 m anomalies. However, no study has

been made to determine whether data points deviating by --3 m

from the local mean should be considered anomalies, or may be

satisfactorily treated as measurement noise. No such data

periods were edited in any of the smoothing operations. However, aw,,
depending upon the origin of the 6 m anomalies, 3 m anomalies

could very well also exist.

3.4	 DATA NOISE LEVELS

In the process of smoothing the altimeter data to

perform the crossover analysis, the root sum of squares (rss) of

the raw measurements about the smoothed data were also calculated.

These numbers should be very nearly the measurement noise levels

and are summarized in Table 5 on a pass by pass basis. All the
"6m anomalies" have been deleted before the computation of

the rss.

i
Typical data used in the computation is that shown in

Figure 18, with the rss computed about the smoothed residuals

and the anomalous data segment deleted. Overall, the computed

noise level is 72 cm, with a range from 57 cm on Rev 4604 to

82 cm on Revs 4334 and 4462. It is of some interest that the .	 J
lowest rss was obtained for a pass for which there is some
suspicion of having slightly anomalously short measuremencs.

Indeed, such a correlation should exist if the tracking for the

pass were near specular. However, examination of the waveforms

for this pass gives little support to the hypothesis that the
I

return pulses for 4604 are significantly different than for the
other passes.

IL
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No. of
Revolution	 Points	 RSS (cm)

1178	 2200	 76

1576	 2091	 77

1710	 1632	 79

1718	 2300	 74

1974	 2260	 64

1988	 2395	 67

2094	 1720	 74

2102	 1917	 81

`	 2151	 2020	 71

4334	 1395	 82

4391	 576	 74

4462	 346	 82

4476	 1882	 68

4482	 1952	 77
4553	 1452	 66	 1
4604	 2336	 57

4610	 1760	 68

4624	 1441	 67
I

Total	 31675	 72	 I

I

k

i

Table 5. Root Sum of Squares of Raw Cumulative

Altitudes About Smoothed Altitudes

f	 ^	
^

i
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INTENSIVE MODE BIAS ACCURACY ANALYSIS

As indicated in Section 3.1.2, the most accurate cali-

bration for the GEOS-3 altimeter intensive mode is considered

to be the overhead calibration for Rev 4553	 The error
sources which are expected to have an effect on this calibration

are listed in Table 6, along with their estimated magnitude

and the corresponding contribution to the uncertainty in the

calibration accuracy.

r
It will be noted from Table 6 that

1.	 The overwhelmingly dominant error source is

measurement noise.

2.	 There is no geoid model term listed.

As has been pointed out in Section 3.1.2, the calibration
method inherently avoids the need for a geoid model, but at
the expense of a larger error contribution from measurement

noise since, in essence, the data is required to determine

the local ocean geoid and extrapolate to the tracking site.

If an error free geoid model were available, the altimeter

noise contribution to calibration accuracy could be reduced
to no more than the few centimeter level, although there would

4	 then be a non-negligible contribution from station position
errors.

Many of the 5 cm error sources 2i ncluded in Table 6 are

r	 upper limits and may have considerably smaller magnitudes.

E.g.,'there is no evidence for a'laser bias, but the normal
specifications for the laser accuracy are that the bias does
not exceed the noise level which is on the order of `5 cm.

Any Bermuda bias would propagate directly into the estimated
altimeter bias.
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Magnitude of Effect on Estimated
Error Source Assumed Error Altimeter Bias

Altimeter Noise 72 cm 18 cm

Tropospheric j

Propagation 2% 5 cm

Ionospheric
Propagation 500 5 cm

Ground Tracker 5 cm for each 2 cm
Noise laser station

Ground Tracker 5 cm at Bermuda 5 cm
Bias

Tides 5	 cat
I

5 cm

Station Position 20 cm baselines
Error 1 m heights <3 cm

Sea State/ Wave height <1 m
Off-Nadir Off-nadir angle
Effects < 0.50 <5 cm

Total 21 cm
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r

Finally, we may compare the estimated bias from Rev	 }'

4553 with the bias currently estimated by G.E. [1,17] on the 	 3 ^

basis of calculated spacecraft delays within the altimeter

hardware and in data transfer. Referencing the G.E. value to

the spacecraft center-of-mass to be consistent with our esti-

mated bias, we have for the intensive mode cumulative altitudes:

G.E. Bias Estimate*	 -6.08 m + .5 m

Rev 4553 Bias Estimate" 	 -5.30 m + .2 m

These values are very close to agreement within la, and we

would thus consider them to be consistent.

;W

y

z

x

I	 ^

i *This value differs from the number given in Section l by 47 cm,
the G.E. computed difference between biases for TM Mode 3 and
TAB-Modes 1 and 2. Since the existence of a bias difference
was not determined until subsequent to the preparation. of Ref.
2, the earlier number was referenced in Section 1. 	 Data taken
on Rev 4553 was in TM Mode 2.

^	 -
i
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	 SECTION 4.0

GLOBAL MODE CALIBRATION

The procedure which has been adopted for the estimation

of the GEOS-3 altimeter global mode bias has been heavily in-

fluenced by

1. The existence of intensive mode passes with

relatively well determined orbits (from 3 laser

tracking) .

2. The approximately 1 m discrepancy between the

intensive mode biases estimated from the Bermuda

overhead pass (Section 3.1.2) and the set of

passes based upon the geoid model (Section 3.1.1).

Thus, if satisfactorily good orbits can be obtained for the
global mode passes, the crossovers with the intensive mode
passes discussed in Section 3.2 can be used for global mode

bias estimation. Using this procedure, systematic geoid model
errors will not influence the results.

Section 4.1 presents the comparisons of the global mode
passes with the previously presented intensive mode passes.

Based on these comparisons an estimate is made of the global
mode bias. Sections 4.2 - 4.4 then analyze the global mode

results to assess the bias and overall data accuracy.

i	 9

4.1	 BIAS DETERMINATION

Two types of comparisons of global mode and intensive
mode passes are possible. In addition to the crossovers, the
groundtracks for some of the global and intensive mode passes

1
4
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lie within less than a footprint diameter, thus allowing
a bias estimation on the basis of the shift necessary to

make the global mode pass agree with the intensive mode pass.

The opportunity is also presented for comparing the abilities
of the two modes for measuring short wavelength sea surface

features. Whenever overlaps are possible, they will be used

in place of the crossovers, although both will be computed in
order to establish the consistency of the two methods.

A total of 14 global mode passes have been utilized in

the bias estimation process, 7 North-South passes and 7 South-

North passes.	 This set of passes is complete in terms of passes
through the calibration area with sufficient ground tracking

for satisfactory orbit estimation.-	 Geometrically, the tracking

requirements were that there be tracking by at least two cali-

bration area ground stations (C-Band radar and/or laser), and
that the satellite groundtrack pass between two of the track-

ing stations.	 ORAN analysis shows that orbit errors for
these 14 passes will be expected to vary approximately linearly

through the calibration area, with the slope dependent upon`
'	 the actual measurement biases and station position errors, as

I	 well as the geometry of the pass relative to the tracking
t

'	 stations.	 The existence of large trends in the crossover

differences along a'global mode pass should thus be indicative
that orbit errors are indeed present and that the pass should
be used with caution.

Figure 21 shows the crossover differences* between the
North-South global mode passes and the South-North intensive

mode passes.	 Figure 22 shows the corresponding crossovers

for the South'-North global mode passes and the North-South

*Crossover differences are the differences between residuals
for the North -South passes and for the South-North passes. `-
Residuals are observed altitudes minus computed altitudes,
with corrections included for tides and tropospheric propa-
gation effects.

r
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intensive mode passes. In the absence of effects from orbit

error, measurement noise, and uncompensated temporal sea surface

height variations, the differences shown in Figures 18 and 19

should contain only effects due to propagation correction errors

(tropospheric and ionospheric, in general expected to total

less than 20 cm), errors in the global mode off-nadir model

(amount unknown, but not expected to exceed —1 m), and any

pass to pass variation in the global mode bias. It is apparent,

from analysis of the crossover difference magnitudes and patterns

in Figures 21 and 22, that orbit errors and measurement noise

effects are not negligible.

Table 7 summarizes the average crossover differences

for the global mode passes, along with the tracking stations

used in the orbit determination and the off-nadir correction

applied for each pass. Based on the average crossover difference

alone, two of the passes (Revs 254 and 268) appear to be

anomalously low and one (Rev 410) appears to be anomalously

high. Before computing an overall average, we will eliminate

two of these passes for the following reasons:

Rev 254 - From Figure 21, the crossover differences

indicate that there is an approximately 5 m
slope in the differences across the calibration
area, indicating a probable orbit problem for
this pass. Since the orbit is basically a
two station solution, the orbit is expected

to be good only around the-Wallops-Bermuda

line, and indeed the crossover differences
in this region are more consistent_ with the
other passes	 However, we will simply delete
the pass rather than attempt to select the most
accurate intersections.

f
Rev 410 - Rev 410 also has only a two station orbit

determination. Instead of trending, however,

68
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Average Difference
Tracking Stations Computed from Crossovers

Rev Used For Off-Nadir Angle/ with Intensive
No. Direction Orbit Determination Correction Mode Passes

254 N-S WAL/BDR/STA 0.77°/-1.55 m -.06 m

w	 268 N-S WAL/BDR/GRT 0.92°/-2.30 m .07 m

I	 274 S-N WAL/BDR/GRT 0.740/-1.44 m 1.72 m

325 N-S WAL/BDR 1.24°/-4.34 m 1.61 m

331 S-N WAL/BDR/STA 0.74*/-1.45 m 1.90 m

339 N-S WAL/BDR 0.92°/-2.32 m 2.08 m

34S S-N WAL/BDR 0.73°/-1.38 m 1.76 m

382 N-S WAL/BDR 1.18°/-3.95 m 2.50 m

402 S-N WAL/BDR/STA 0.80°/-1.71 m 2.01 m

410 N-S WAL/BDR 0,90°/-2.68 m 4.78 m

1269 -S-N WAL/BDL/GRT 0.80°/-1.72 m 1.47 m

1582 S-N WAL/BDR/STA/GRT 0.73°/-1.39 m 2.41 m

1696 S-N WAL/STA/GRT 0.88°/-2.10 m 1.63 m

1704 N-S WAL/BDL/GRT 0.95°/-2.47 m 1.54 m

Trucking Station Legend:`

WAL - Wallops Island C-Band radar (FPS-16 or FPQ-6)

BDR - Bermuda FPQ-6 C-Band radar

STA,- Goddard stationary laser

BDL - Bermuda laser

GRT - Grand Turk laser

Table 7.	 Average Crossover Differences of

Global Mode Passes with Intensive

Mode Passes

1
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the crossover differences show primarily ex-

cessive scatter. In large measure, this

j

	

	 scatter is attributable to altitude anomalies

in the data, near the time of Bermuda passage,

whose effects were not completely eliminated

from the smoothed data. These anomalies consist

primarily of two -r10 m anomalies separated by
4

	

	 about 30 seconds in time, but with a third

anomaly of --6 m amplitude within the 30 second

span. These anaomlies are no doubt related to
an --10 db enhancement in AGC in this region,

but no detailed analysis has been made to

further pin down the reason for the observed

altitude behavior. Since the residuals away

from Bermuda are suspect because of the two
station orbit estimation, it was decided to
also eliminate Rev 410 from the bias estima-

tion process. i

Although Rev 268 may indeed have a couple of meters of orbit
height error, its agreements with the intensive mode passes

are very consistent, and there is no real basis for eliminating
the pass.

j

As 'indicated above, several of the global mode passes
have near overlapping groundtracks with one or more of the
intensive mode passes: One such global mode pass is Rev 1704,

whose groundtrack is only about 3.7 km from that of Rev 1178, an

intensive mode pass. Figure 23 shows the smoothed residuals for
these two passes after a shift of 1.75 m for Rev 1704 to obtain
the best overall agreement between the two passes. Rev 1704 had

i 3 laser tracking, as did Rev 1178, and so their orbit errors should

be very nearly the same. The 1.75 m figure is seen to be only 21 cm
different from the crossover average:

1
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Table 8 summarizes the differences of the remaining

12 global mode passes from the intensive mode crossovers or

overlaps. In general, the overlaps are considered to be

somewhat more accurate and are used for those 3 passes for

which they are available. The result, giving equal weight 	 -^

to all the passes, shows the global mode bias to be 1.75 m

larger (algebraically) than the intensive mode bias. This

number turns out to be exactly the same as that given by the

1178-1704 overlap, which is gratifying even though it is only

fortuitous.

Our best estimate of the global mode bias is then

5.30 m + 1.75 m = -3.55 m. This number should be used to

correct the measurements to the spacecraft center-of-mass,

assuming that an off-nadir correction is made separately.

ri
4.2	 BIAS STABILITY AND VALIDITY OF OFF-NADIR MODEL

For the twelve global mode bias differences listed in

Table 8, the rms scatter about the mean is 62 cm. If Rev

268 is deleted, the rms is only 36 cm, although the mean

increases to 1.90 cm. The latter rms could be expected on

the basis of orbit error alone, so the 11 passes do not show

any real evidence of bias variation with time. Rev 268, however;

does appear to be almost 2 m different from the other 11 passes'.

This pass, along with Rev 410 ;, are the only ones that show

evidence of deviating from the 11 ,passes that are grouped

together within a standard deviation of 36 cm,'

In the process of assessing the pass to pans bias sta

t it is necessar to take into account that a `correctionY^	 Y

has been applied for the effects of the GEOS-3 antenna pointing

in a direction other than nadir. The off-nadir angle itself

has been calculated from measured characteristicsof the return
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Bias Difference
f

Rev From Intensive
No. Mode Source of Difference

,r
268 .07 m Crossovers with 6 intensive mode passes
274 1.72 m Crossovers with 8 intensive mode passes

325 1.61 m Crossovers with 6 intensive mode passes
331 1,90 m Crossovers with 8 intensive mode passes
339 2.08 m Crossovers with 6 intensive mode passes
345 2.40 m Overlap with Rev 4553

382 2.50 m Crossovers with 5 intensive mode passes
y—; 402 1.50 m Overlap with Rev 4610

1269 1.47 m Crossovers with 8 intensive mode passes

U4	 1582 2.41 m Crossovers with 8 intensive mode passes
_ 1696 1.63 m Crossovers with 7 intensive mode passes

f
_1704 1.75 m Overlap with Rev 1178

Av.	 1.75 m

.k

,r Table 8.	 Summary of Components of Global Mode Bias Estimate

e
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pulse (ratio of average"attitude-specular" gate voltage to

average "plateau" gate voltage) during the pass. In particular,

the algorithm [12] for using this voltage ratio to estimate

the off-nadir angle does not compute an off-nadir angle less

than about 0.70", and has been suspected of being biased.*

To investigate possible deficiencies in the off-nadir model,

Figure 24 shows the 12 global mode biases from Table 8 as a

function of off-nadir angle. The only obvious systematic

behavior seen in this figure is that the South-North passes
all have (computed) off-nadir angles which are less than any

of the North-South passes. Most importantly, after eliminating

the Rev 268 point, there does not appear to be any systematic

relationship between the bias and off-nadir angle. This could

be interpreted as meaning.that if the computation of an off-

nadir correction is in error, the error is a constant rather

than being a function of off-nadir angle.

It may be further noted from Figure 24 that the Rev

268 point is at an intermediate value of off-nadir angle,

which strongly suggests that the slightly anomalous bias for

this pass is not due to off-nadir effects. Since an off-nadir

correction of -2.3 m has been added to the Rev 268 bias as a

correction for off-nadir pointing, it cannot be completely

ruled out that the off-nadir algorithm has computed an excessively

large off-nadir angle. Other explanations, however, appear

to have a higher probability.

In summary, then, all but 3 of the set of 14 global

mode passes give results which appear randomly distributed

about the mean. Of the 3 exceptions, one . (Rev 254) has been

identified as having characteristics strongly indicative of

*The suspicion stems in part from the fact that the corresponding'
algorithm for intensive mode data frequently estimates an off
nadir angle less than 0.5°. The 'accuracy of the on- board
attitude sensors [ 9 ] is insufficient to resolve the question,
and no other information is available.
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orbit errors. Of the remaining two, only Rev 268 is of real

concern. The most likely explanation is orbit error, in spite

of the lack of visible evidence. The next most probably are

sea state effects, and an actual pass to pass bias variation.

As indicated above, Rev 410 suffers from probable orbit

problems as well as apparent sea sta ge effects in the vicinity

of Bermuda.

We thus conclude that:

t

	

	 Only one pass shows any suspicion of pass to pass

bias variation, and other explanations are considered

much more probable for the ^-2 m deviation of this

pass from the mean of the remaining consistent

passes.

•	 There is no evidence of error in the algorithm used

for computing the off-nadir effects on global mode

altitudes, other than a possible bias which would

be absorbed in the estimated global mode bias.

4.3	 DATA NOISE LEVELS 

As with the intensive mode data, the global mode passes

were all smoothed, and the rss's of the raw measurements about

the smoothed data calculated. 	 Again, these numbers should

closely approximate the measurement noise levels, although

they may be slightly optimistic because of the 1 m a priori

noise level assumed in the smoothing operation, whereas the

-actual noise level is somewhat higher. 	 Figure 25 shows

approximately 20 seconds of raw data for a_rather typical

(noise-wise) global mode pass, along with the smoothed altitudes

obtained by ALTKAL.

C's

I. 76	
_.

r

_u '



•	 RAW DATA POINTS
SMOOTHED RESIDUALS

3
S 14

13 ^•

3
's

12
•	 •

11 _

-
.o	 •

j 10 •	 •	 i	 a

W' •	 •	 •
W

9
•	 ^^ •	 _^__-•

Q 8 •	 •	 .	 •	 •	 •	 •	 _ ^^
i •	 •	 •	 •	 •	 •

to
Lu

 7 •	 •
cc

0 •
6

•	 ♦ 	 •
•	 •	 _	 •	 •	 •

t •	 .	 .	 ^,_

_t
a

`s
i

3

2

1 I

0	 2	 4	 6'	 8	 10	 12	 14	 16	 18	 20
TIME IN SECONDS FROM 10h39m54y35 ON 8/8/75

FIGURE 25. GLOBAL MODE CUMULATIVE ALTITUDES FOR A 20 SECOND SPAN OF REV 1704
SHOWING TYPICAL GLOBAL MODE NOISE LEVELS



jl	 i	 I	 I	 f	
^	 ^-f _ -.

Noise levels estimated for the 14 global mode passes

are Listed in Table 9. Similar to the intensive mode, 6-10 m

anomalies are occasionally observed in the global mode data

and have been edited in the smoothing operation. Such data

points are not included in the rss computations. The overall

rss for over 26000 points is 1.81 m, and there is no great
	

i

spread of any pass about this value. The smallest rss is

1.59 m, and the largest is 1.93 m.	 a

4.4	 GLOBAL MODE BIAS ACCURACY ANALYSIS

The accuracyof the global mode bias can be assessed

in several different ways, depending in part upon the method

by which the bias is assumed to have been derived. One

appealing method is as follows:

a.	 Assume the intensive mode bias to be pans to

pass stable (as has been shown to be at least
-	 very nearly the case).

i	 b.	 Assume the off-nadir correction procedure to be

completely accurate, and no evidence of systematic

error has been found.

C.

	

	 Estimate the accuracy with which residuals from

Revs 1178 and 1704 can be aligned for the complete

calibration area pass.
i

d.

	

	 Assume that the global mode bias is pass to pass

stable. Again, the evidence to the contrary is

quite weak.

ti
	

Having made these assumptions, there are only three constituents

in the global mode bias error;
1

{
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j
Revolution No.	 of Points RSS	 (m)

254 2140 1.88
4	 268 1607 1.70
t

274 1180 1.70
325 1979 1.96
331 1155 1.82
339 2160 1.91
345 1527 1.70	 s

382 1926 1.93
402 1720 1.79
410 1755 1.92

1269 1333 1.78
1298 950 1.79
1312 1740 1.59
1582 1660 1.64
1696 1760 1.79
1704 2326 1.82

9

Total 26918 1.81

k

Table 9.	 Root sum of Squares of Raw Cumulative Global
Mode Altitudes About Smoothed Altitudes

1
ii
3
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1

2.

3.

I'
The intensive mode bias error.

The error in alignment of Revs 1704 and 1178.

The difference in the average orbital height

error between Revs 1178 and 1704.

Of these three error sources, the first has been calculated

to be 21 cm, the second does not exceed 20 cm, and the third

is virtually negligible. The resulting sigma is about 30 cm. 	
a*,. 7

Although the average bias listed in Table 8 was not

derived from Rev 1704 alone, our bias estimate is the same as

if we had and we will adopt a variation of the above argument

for the bias accuracy assessment. We simply drop the assumption

of the validity of the off-nadir model error and include an

error component to account for its being only approximate.

We then need only estimate a reasonable bound for the off-nadir
model error.

Dropping Rev 268 as being unaccountably anomalous, the

scatter in the remaining 11 entries in Table 8 is due to the

combined total set of errors: measurement noise, station

position errors, radar bias errors, varying propagation effects,

as well as off-nadir model errors	 Since the total rms of these

11 values in only 36 cm, the off-nadir component must be less

than this, and we will adopt the pessimistic value of 30 cm.
The 'resulting bias uncertainty, summarized in Table 10, is

42 cm. For errors at this magnitude, differences in propaga-

tion errors for Revs 1178 and 1704 have been neglected.

Unfortunately, comparison of the bias estimate obtained

by G.E. [1] for the global mode does not show very close

agreement with the Table 8 value Again, based on the center-

of-mass for a calibration reference, the respective values are:

80
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Magnitude of Effect on Estimated
Error Source Assumed Error Global Mode Bias

Intensive Mode

Bias Error 21 cm 21 cm

Alignment of Revs

1178 and 1704 <20 cm 20 cm

Difference in Orbit

Error between Revs
1704 and 1178 —0 —0

Error in Model for

Correcting for Off-

Nadir Pointing of

GEOS-3-Altimeter

Antenna 30 cm 30 cm

Total 42 cm



Table 8 1.75	 -	 5.27	 =	 -3.52 m

G.E. -0.68 m

The difference is almost 3 meters.	 Presumably, however, the

G.E. number is for nadir pointing, a;rnd we have noted that the T

off-nadir model which we have used may be biased, thus in-

ducing a corresponding effect on our bias estimate. 	 This bias,

however, cannot be less than -1.4 m, since this is the

largest (algebraically) applied correction for off-nadir

effects.	 This still leaves a discrepancy of at least 1.5 m

unaccounted for.

f
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SECTION 5.0

SUMMARY AND CONCLUSIONS

I

The altitude biases and noise levels that have been

estimated for the GEOS-3 altimeter are summarized in Table ll.
Also included is the timing bias that is calculated in Appendix
A and which appears to be consistent with the data analysis

R	 results. The intensive mode bias was estimated using a TM

Mode 2 pass. The consistency of the bias was validated using

both TM Mode 1 and TM Mode 2 data. On the basis of a sample

of 2, the TM Mode 3 data appears to be consistent with the

G.E. calculation of a 47 cm difference between the bias in
TM Mode 3 and TM Modes 1 and 2. For the 3 TM modes, there is
reasonable C-1a) consistency between the Table 11 results and

the G.E. bias estimates obtained from hardware analyses.

The global mode bias number is based upon the applica-
tion of an off-nadir pointing correction, using average plateau:
and attitude-specular gate voltages. Although the model com-

putes off -nadir angles which are suspected of being biased,
the resulting altitude corrections do not show evidence of
being off-nadir angle dependent. The correction model for

off-nadir effects thus appears quite satisfactory for its in-
tended application. Agreement of the estimated bias and the
bias obtained by G.E. is not good, differing by about 3 m.

The calculated timing correction of -11.59 msec should

be applied to the time tags of "last effective transmitted pulses,"
in the vernacular of the GEOS-C Preprocessing' Report [181, and
acc..ounts for both STDN timing error and altimeter lag error.

Time tags for smoothed altitudes on GEOS-3 data tapes have
included a l msec lag correction and need `a timing bias cor-

rection of -10.59 msec.

:.r
The average altimeter data noise levels listed in Table

11 are for cumulative altitudes, or ~10 pps data. These values
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Altimeter Mode	 —
Altitude

Bias	 -
Average

-	 Noise Level

Calculated Timing Bias

Instantaneous Altitudes Smoothed Altitude::
(10 pps data rate)

Intensive Mode

Cumulative Altitudes

(TM Formats 1 & 2) -5.3m+.21m 72cm

Instantaneous Alti-
tudes

(TM Format 3) -5.87m* ** -11.56msec -10.S6msec

Global Mode

Cumulative Altitudes

(TM Format 1) F 3.55m+.42m 1.81m

i

*Based on TM Mode 2 calibration and G.E.	 calculation [11 of bias difference between instantaneous
and cumulative altitudes.

"Not estimated, but no apparent difference from cumulative altitudes at same data rate. -^-

Table 11.	 Summary of Estimated Altimeter Biases, Noise Levels,

and Timing Errors. Negative Altitude Bias Means that Measurements are
Short.	 Negative Timing Bias Means that Time Tags are too Long.

7
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are based on 18 intensive mode passes and 16 global mode passes,

and were computed from residuals about the smoothed altitudes

produced by the ALTKAL data smoother.

Both the intensive and global modes exhibit anomalous

periods in which the measurements are long by 6-10 m for
about half a second. Although it has been observed through

the intensive mode waveforms that the tracking (ramp) gate

is misplaced in the return pulse, no real explanation was

obtained for why the pulse became misplaced. When using the

altitude data in smoothed form, such as from the ALTKAL smoother,

these anomalies do not generally cause any real problem pro-

vided the anomalous points are edited.

A major conclusion that can be drawn from the calibra-

tion results is that there appear to be inherent limitations

to the accuracy which can be achieved by the at- sea/geoid model
calibration technique, due to the observed temporal sea surface
height variations in large portions of the calibration area.

For a single pass, the accuracy limitation is probably in the

range of 10-30 cm due to the potential presence of eddies and
other sea surface height variations not included in the tide
model. And there is no assurance that averaging a number of
passes would reduce the systematic effects of these (somewhat

random) height changes. These limitations,of course, are in
addition to the problems of obtaining an accurate geoid model,

an accurate tide model, and accurate orbits.

The high elevation passacross Bermuda on GEOS-3 Rev

4553 must be considered fortuitous in that the groundtrack

passed so close to the laser 'tracking station, which actually
tracked on the pass. The procedure used in the bias estima-
tion from this pass, however, is considered to be perfectly

valid for any near-overhead pass of Bermuda, particularly in
a South-North direction. If augmented with the use of tide

f
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gauge measurements on Bermuda, the method appears to satisfac-

torily solve the geoid model problem and the temporal sea

surface height problem. With these hurdles conquered, all

other altimeter calibration problems should be minor.
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APPENDIX A

Altimeter Data Time Tags

1.	 Altimeter Lag

Since the GEOS-3 altimeter tracking loop cannot respond

instantaneously to a variation in the true altitude which

should be measured, there will always be some "lag" in the-

output altitude. Knowledge of this lag is necessary to

properly time tag the output altitudes. In general, the lag

will be a function of:

1. The sea state within the altimeter footprint,

since the tracking loop gain depends upon the
slope ofthe return pulse leading edge.

2. Sea surface undulation features along the satellite

groundtrack.
9

We will derive the proper altimeter time,tag based upon two

assumptions:

1. Low, sea state (<2 m) , which results in the nominal 	 1

tracking loop gain.
i
t

2. A linear variation in sea surface height over

j	
the effective time for obtaining an output altitude.

Neither of these assumptions are believed to significantly'
}	 affect the computed time tag. The derivation technique used

below can, in fact, be used with other tracking loop parameter

and any assumed variation of altitude with time.

i
j
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Consider first the GEOS-3 tracking loop, a diagram of

which is shown in Figure A-1, taken from p. 122 of the Altimeter

Design Error Analysis Handbook [1]. The loop consists of a

simple gain Kg , a loop filter with transfer function H e , and

an accumulator with gain. K. The resulting open loop transfer

function is then

K K H (z)
A(z) = g	 e

Z-1

He(z) is given in Ref, 16, p. 124, as

b z-1 + S(1 -R)
He (z) =	 —

a	 z-R

(A-1)
M•

(A-2)

with the constants given by [Ref. 16, p. 129],

a = 7.792

b = 0.1275

(A- 3)

If	R = exp (-bTs) = 0.9986951867

Ts	0.010240512 seconds (sampling period)

The loop gain Xg K is based upon the altimeter design require-

meat that the lag error not exceed 1 ns. As a part of their

system design to meet the lag requirement, G.E. chose the

value of the velocity error coefficient to be

K,V r 1000/sec.	 (A-4)

A-2





For the chosen design, the loop gain is related to the velocity

error coefficient as [Ref, 1, p. 125]

K K
Kv = —9	(A-5)

Ts

Choosing the equal sign in Eqn. (A-4), the loop gain is then

Kg K = 1000 TS = 10.240512	 (A-6)

Using Eqn. (A-1) for the open loop transfer function,

the closed loop transfer function is given by

A(z)	 b1z +b2
B (z)	 = —z-----=-	 (A-7)

1+A(z)	 z +a1z+a2

where, from (A-3) and (A-6), the constants havethe values

i
b 	 0.167564846

b2	 0.15420289

(A-8)
3

al = -1.831130341

a 2	0.8444922967

a
From (A-7), we can obtain the system output as a function of

the input, since the Z transforms of the input I and output 0 	 a

are related by

0(z) = B(z) I(z)	 (A-9)
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To be able to readily obtain the inverse transforms, however,

we need to express the closed loop transfer function as a

power series in z
-1	

That is, we set

CO

B(z) _

	

	 b(k T s ) z k	 (A-10)

k=0

The loop "weighting sequence", b(k Ts ), or simply b(k)
1
 is

found by comparing term by term the power series in z 	 in

(A-10) with the equivalent series generated by long division

I	 of (A-7). The result is

b(0) = 0

b(1) b 1	(A-11)

b(2) b 2	al bl

with the remaining coefficients given by the recursion relation

b (n) = -a 2  b (n- 2) 	 al b (n-1) ,- n> 3. 	 (A-12)

Substituting (A-10) into (A-9),

CO

0(z)

	

	 b(k) z k I (z) .

k=0

Taking inverse Z transforms of both sides, and considering

that the system is causal with future input not influencing

current output, we have

A-5



n

O(n) _

	

	 b (k) I (n-k)	 (A-13)

k= 0

We are now ready to consider the form of the altitude

input and deduce the appropriate time tag. By definition,

the time tag for the output at time nTs should equal the input

at time qTs

i

I(q) = O (n )	 (A-14)
i

and our objective is to determine n-q. Using our assumption

No. 2, we will take the input altitude as having a linear

I	 time variation,

i

I (t)	 yt	 (A-15)

and thus

I( q) = ygTs	 (A-16)

Using the expression (A-13) for O(n),

n

I(q)	 b ( k) I (n-k)

k=0

Substituting in this relation for I(q) and-I(n-k) based on

the ramp input, we obtain
	 J

n

ygTs 1: b (k) Y (n- k ) Ts	(A-17)	
J

k=0
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from which
	

i

n	 n

qT s = nTSE b (k) - 1] kTs b (k)
	

(A-18)

k=0	 k,0

°	 As n becomes very large, the summation

n
limb (k) -> 1,n+o

k=0

or else a scale factor would be applied to the output altitudes.
From Eqn. (A-18), we thus deduce the delay T to be

CO

T = (q-n) Ts = -

	

	 k b (k) T s	(A-19)

k=0

Using Egns. (A-8), (A-11) and (A-12) to obtain the

coefficients b(k), we find that

T = -0.00100 seconds 	 (A-20)

The low order coefficients computed in the process of obtaining

this delay are shown graphically in Figure A-2. Approximately

120 inputs are necessary in order for the final computed delay
to converge to within 30.

From Egn. (A-11) and as shown in Figure 2, the

weighting of the n th input or the nth output is zero. However,

the output effectively lags less than a tenth of an interpulse
period.

I

Y
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The above discussion has alluded only to a single

altitude form of output, and is thus applicable to GEOS-3

"instantaneous" altitude measurements such as are obtained

using Telemetry Mode 3. Figure A-2, in particular, shows
the weighting of altitudes in an instantaneous altitude

output. The more common telemetered altitudes are cumulative

altitudes which are algebraic averages of ten instantaneous

(individual) altitudes. An effective set of input data

weights can be computed using those computed above. The

resulting set of weights are shown in Figure A-3. Based on

the linear time variation of altitude input, the appropriate

time tag for the cumulative altitude is simply the time tag

as computed above for the last instantaneous altitude used
in the cumulative altitude, and then shifted 4.5 interpulse

periods back in time to the middle of the 10 samples comprising

the measurement.,

The above weighting coefficients, although computed

on the basis of a transfer function given in the G.E. Design

Error Analysis Handbook, are not, strictly speaking, correct.

In the set of weighting coefficients, there is one zero-weighted

pulse. In fact, there should be two zero-weighted pulses,

with a corresponding Ts + 1 msec lag rather than simply 1 msec.

However, the existence of two-,unweighted pulses has been
known since well before launch and has been included in the
time tagging of all altimeter data processed at,NASA/Wallops

Flight Center. There is some complication, however, due to

the extra pulse delay not being incorporated into the transfer

function, with the result that the calculated delay is based
upon a slightly incorrect transfer function which could give

a slightly erroneous lag. It has been estimated by Hofineister

[19], however, that effects should be small, and we will here
3

ignore them. Consistency of the actual data with the above

lag estimates, as has been demonstrated for the intensive l
mode data also confirms that the transfer function used is
not significantly in error.

ry
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Figure A-2

WEIGHTING COEFFICIENTS FOR INSTANTANEOUS ALTITUDES
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2.	 GEO5-3 Altimeter Data Timing

There are two time tags utilized on GEOS-3 altimeter

data tapes. These are:

1. The time tag for the smoothed major frame average

altitude, and the only altitude distributed on

BCD tapes. This time tag should be fully corrected

for transit time and the appropriate lags. This

time tag is not presently correct, as will be

discussed below.

2. Instantaneous and cumulative altitudes, only on

the distributed binary tapes, which must be time

tagged based upon a frame time and a At (different

for instantaneous and cumulative altitudes) which

produces a time defined as the time of the last

effective transmitted pulse going into the sample

of interest. In the context of the above dis-

cussion of weights we should here consider "effective"

as being synonomous with "weighted". With this

interpretation, the time tagging of cumulative

and instantaneous altitudes on distributed data

should be considered correct, except for the STDN

timing of GEOS-3 as discussed below. 	 3

I
i

Accordingly, we will discuss timing corrections that

should be applied to smoothed altitudes on the one hand, and

to instantaneous or cumulative altitudes on the other. We
I

need to account for what "lag" corrections are presently

made, what "lag" corrections should be made, and any known

errors outside the altimeter and its datapreprocessing.

In the latter category is a STDN timing error for GEOS-3

which has been well substantiated [4] as being 20.8 msec, 	 j

with the resulting time tags being too long. For smoothed

a3
$9
`:V
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altitudes, the time tags on distributed data are, effectively,

1 msec earlier than the last weighted pulse in an instantaneous

altitude [20]. For the instantaneous and cumulative altitudes,

the shift of Ts - 1 msec forward should be made from the last

weighted pulse. It may be noted that the result here will be

a transmitted pulse time and that a transit time correction

still needs to be applied. Furthermore, data users who feel

like making lag corrections of their own should feel free to

do so rather than using the numbers given below.

The corrections which should be applied to data processed

and distributed from NASA/WFC are summarized in Table A-1.

"Lag" numbers are referenced to the last weighted pulse,
rather than the first unweighted pulse, to be consistent with

terminology in the Altimeter Processing Report [18].

The STDN timing correction of -20.8 msec is strictly

applicable to the time tags of all data telemetered from

GEOS-3. Only altitudes, however, are likely to be significantly

affected, and here the effect of the net ^-11 msec error will

be a maximum of about 30 cm in altitude. Especially after

considering that the effects on altimeter cross-overs are of

opposite sign (due to the altitude rates having opposite

signs from North-South and South-North passes), the timing



i

1

Error Source Correction

Smoothed Instantaneous and
Altitudes Cumulative Altitudes

STDN Timing -20.8 msec --20.8 msec

- Present Lag Correction -	 (-1.0 msec) Nona

+ Computed Lag Correction(TS-1 msec) + 9.241 msec +9.241 msec

Total Correction -10.559 msec -11.559 msec

Table A-1. Timing Corrections for

GEOS-3 Altitude Time Tags



APPENDIX B

LASER STATIOv POSITION ESTIMATIOIN

All the orbits used in Sections 3 and 4 for altimeter

calibration were based on data from a single Pass of GEOS-3

with tracking by calibration area stations. The passes which

have been used in the altimeter crossover analysis have been

those with tracking by lasers at Goddard, Bermuda, and Grand

Turk. A total of 18 such passes exist with simultaneous

altimeter data, as has been discussed in Section 3.2. If data

from the Range Measurements Laboratory (RML) is included, 3

laser tracking exists for a number of other passes. The RML

data will be discussed below.

In order to obtain positions for the 3 NASA lasers
which would produce sufficiently precise orbits for the cross-

over analysis, baselines between the stations and relative

station heights had to be obtained as accurately as possible.

Such positioning was attempted through the use of single

pass arcs of GEOS-3 with 3 laser tracking, and with good

balance between North-South and South-North passes. Since

such solutions really have only baseline adjustment capability,

one latitude and two longitudes were held fixed and only
slight adjustment in heights were allowed. The a priori

positions used were from an intermediate center-of-mass solu-

tion obtained by Marsh and Conrad [21] using predominantly

GEOS 3 data	 The orientation of the solution and, to a large
degree the station heights are determined by the a,-priori

positions used.

Table B-1 summarizes the results of the 14 arc solution
used for estimating the NASA laser positions. The overall
data fit is 7.4 cm rms, with generally only minimal data

w

	

	 editing. The most anomalous pass is Rev 1576, with unusually

high residual fit for Bermuda. No systematic editing of data

B-1
F
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GEOS-3 Approx. STALAS BERMUDA GRAND TURK
Rev ado. Date Time

No.of RSS i1o,	 of RSS No.	 of RSS
Wtd.	 Pts. (cm) Wtd.	 Pts. (cm) Wtd.	 Pts. (cm)

'I 1178 7/2/75 06h 18
m

126 5,6 188 6.4 14 8.3

1576 7/20/75- 09
h
 30

m
100 6.9 177 21.0 230 6.9

1710 8/8/75 20h19m 63 4.6 125 5.5 185 5.9

K 1718 8/9/75 10h 20
m

29 3.6 105 6.8 123 9.6

1974 8/27/75 12
h
 40

m
172 6.7 68 12.7 84 6.3

1980-' 8/27/75 22
h
 18

m
289 5.4 322 6.3 274 5.6

1988 8/28/75 12
h
 04

m
35 4.9 224 6.8 190 5.0

,
2094 9/4/75 23h42m 107 5.4 148 6.3 147 8.S

2102 9/5/75 131i46m 89 8.9 296 5.8 161 12.3

2151 9/9/75 00h22m 294 5.6 241 5.9 100 8.1

_ 4519 2/23/76 10h 00m 121 6.0 43 4.7 68 4.2

4553 2/25/76 19h09m 2 0.8 33 5.1 145 5.0

4610 2/29/76 19hsom 76 S.6 161 9.0 225 4.0

4624 3/1/76 19h38m 37 4.9 284 5.0 100 5.0

tl

P

Total

PASS TOTAL

No.	 of RSS
Wtd.	 Pts. (cm)

328 6.2

507 13.7

373 5.6

257 8.1

324 8.3

88S 5.8

449 6.0

402 7. 1	 r--^

546 8.8

635 6.2

2S2 5. 4

180 5.1

462 6.4

421 5.0

6021 7.4

^w



on this pass, however, would appear to significantly improve
the fit, and the pass was retained in its entirety. The

only other passes with residual fits greater than 10 cm were

Bermuda on Rev 1974 and Grand Turk on Rev 2102. Many passes

have fits in the 5 cm region.

The station positions estimated in the 14 arc solution

r	 are listed in Table B-2, and the corresponding baselines are

listed in Table B-3. Baseline accuracies are estimated to be

in the 10-20 cm region, with 25 cm probably an upper bound.

Since there are several altimeter passes which have

4 laser tracking, an attempt was made to estimate the position

of the RML laser (RAMLAS) in order to obtain the best possible

orbits for thcse passes. It was found, however, that the RAMLAS

data for the time periods of interest had timing problems at

about the 0.5 msec level._ Several solutions were made in which

the position of RAMLAS and its timing errors were estimated

along with the positions of the 3 NASA lasers. Tables B-4

B-6 give the results of one such solution which included 19

arcs (the 14 arcs discussed above, with RAMLAS data added to

Rev 4610, and 5 additional arcs) with an adjustment for both

a range and timing bias for each RAMLAS pass, Table B-4 lists
the station positions adjusted, Table B-5 gives the corres-

ponding baselines, and Table B-6 lists the estimated range

biases and timing biases for RAMLAS.

Baselines for the Goddard lasers listed in Table B-5

differ by 9, 4, and 6 cm from those listed in Table B-3. Since

the solution with RAMLAS also includes 6 bias and 6 timing-

µ	 bias parameters, this agreement should probably not be sur

f prising and really does not serve to significantly validate
the accuracy of either solution, although it does tend to

validate the added NASA laser data,

r

'i
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Name ?lumber Latitude Longitude Spheroid Height*

a STALAS 7063 39001113.1544 283010119:17.51 16.195 m	 -Y----
k

BDALAS 7062 32021113.1967 2950201371.1918 -25.904 m

GRTLAS 7068 21027137.1289 2880521051:004 -21.636 m

*Referenced to anellipsoid with ae = 6378145 m, f _ 1/298.255
--

s
`
f

Table B-2. Estimated Station Positions from 14 Arc Laser Solution

-=

4

k

Latitude for STALAS and Longitudes for STALAS and GRTLAC not Estimated

jw
1

i





The RAMLAS parameter recoveries summarized in Table

B-6 show amazingly consistent timing biases throughout the

month of February 1976 and apparently a significantly different

timing bias in December. 1975. The range bias recoveries are	 x

also surprising in their consistency, with one pass apparently

a significant outlier. The range bias recoveries are all the

more amazing in that they appear to be in rather close agree-

ment with the results obtained by Berbert [22] in the colloca-

tion tests at Patrick AFB in April 1976. At this time, however,'

any timing error on the order of 500 usec,had disappeared. 	 M

Several test orbits using the RAMLAS data and the station

position solution given in Table B-4 indicated that crossover

differences were affected at the sub-10 cm level.

is

a

i
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Name Number	 Latitude Longitude Spheroid Height

STALAS 7063	 39001113VS68 283010119:'751 16.91 m

BDALAS 7067	 32021'°1.4VO17 295020127V941 -24.87 m

GRTLAS 7068	 21027138031 28805215:'051 -20.82 m
to

RAMLAS 7069	 28°13'4O 859 279023139:'327 -25.83 m

Table B-4.	 Estimated Station Positions from 19 Arc Solution

Including 6 Arcs with RAMLAS.	 Latitude for STALAS

F and Longitudes for STALAS and GRTLAS were not Adjusted.

J
9

a

3

wx.-



e

1

Stations	 Baseline Value

(meters)

STA - BDA

(7063 - 7067) 1322742.10

STA - GRT

	

(7063 - 7068)	 2012724.70

BDA - GRT

	

(7067	 7068)	 1364265.22

STA RAM

	

(7063 - 7069)	 1244991.23

{

BDA - RAM

	

(7067	 7069) 1213393.42
l
j

GRT RAM	 a

	

(7068	 7069), 1595083.25

i

Table B-5. Baselines for Estimated Station Positions
from 19 Arc Laser <Solution Including 6 Arcs

with RML Laser Data

B-8



GEOS 3
Rev No. (Dir.)	 Date

,I

Bias Recoveries
Range Bias(cm)	 Timing Bias(usec)

3566 (N-S) 12/18/75 8.41	 + 9.54 358.9	 + 61.4

4340 (S-N) 2/10•/76 63.29	 +	 9.76 523.6	 + 37.2	 j

4391 '(N-S) 2/14/76 17.10	 +	 6.58 549.5 + 33.5

4482 (S-N) 2/20/76 24.41	 +	 18.98 529.6	 + 39.0

4604 (N-S) 2/29/7'6 12.26	 +	 8.48 550.8	 + 32.9

4610 (S-N) 2/29/76 24.64	 + 17.54 513.2	 + 35.0

Wt. Av. of all Wt. Av. of
except Rev 4340 Feb.	 1976 passes

II

14.92	 + 4.3

_

=	 534.5 +	 15.8

E

[

I I
Table B-6.	 Bias Parameter Recoveries for RAMLAS from

i 19 Arc Laser Solution. Sigmas Listed Include only Measurement

Noise of 10 cm for all Stations.
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APPENDIX C

BERMUDA TIDE HEIGHTS FOR REV 4553

The overhead calibration results of Section 3.1.2 are

critically dependent upon the tidal correction applied to

sea surface heights in the vicinity of Bermuda. The Mofjeld

[8] model calculates a tide height of +12 cm for the geographic
position of Bermuda at the time of the Rev 4553 pass. The
tide model, however, was never proposed as being valid around'

islands, so any relation between 12 cm and the true tide at

Bermuda at this time is almost accidental.

There are, however, two tide stations on the island

of Bermuda, the locations of which are shown on Figure C-1.

The Rev 4553 groundtrack is also shown on this figure. Figure
C-2 shows the tide predictions [16] for the two tide stations,

I	 with interpolations between the predicted heights for the

Ferry Reach tide station, the station closest to the altimeter

groundtrack. At the time of the Rev 4553 pass, interpolation

for the Ferry Reach station gives a tide height of 0.15 ft.,

or about 5 cm. Accepting this value, the applied tidal cor-
rection from the Mofjeld model is too large by about 7 cm,
as is summarized in 'Table C-1.

I

In the overhead calibration, it should be noted that
no weight was given to altimeter data for which land was
contained in the footprint. Since the footprint diameter is

j	 about 5 km, the subsatellite point will not be closer than

I	
2.5 km (-1.4 1 ) for any data utilized for the Rev 4553 pass.

On the north side of the island for this pass, the water depths
are on the order of 15 m for an extended distance from land

j	 and the tide ,gauge readings should give a reliable estimate
of tide heights. However, on the south side of the island,
the footprint for the last data point used before the altimeter

C-1
t
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started across the island included ocean depths ranging from

about 10 m to almost a km. Earlier data points, which would

also have had extensive weight in the interpolated altimeter

points across land, would have been for deeper water for which

the deep sea tide model should be nearly valid. Particularly

since the laser site is near the south side of the island,

the net result is that the effective tide effect on the in-

terpolated data across the laser site should be somewhere between
s

the deep sea tide value and the tide gauge values. Having

no valid means of interpolating between the two values, except
R

that the tide gauge values should be given full weight on the

north side of the island and some weight on the south side,

we have adopted the tide gauge tide height. We would expect

that the error incurred is in the direction of underestimating

the tide height, probably by on the order of 3 cm.
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