NASA Contractor Report 145244

```
PLANS - A FINITE ELEMENT PROGRAM FOR NONLINEAR
ANALYSIS OF STRUCTURES
VOLUME II - USERS' MANUAL
```


A. Pifko, H. Armen, Jr,, A. Levy, and H, Levine

NASA Contract NASI-13148

Grumman Aerospace Corporation
Bethpage, NY
May 1977

Natıonal Aeronautics and
Space Admunistration
Langley Research Center Hampton, Virginia 23665

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

PLANS - A FINITE ELEMENT PROGRAM FOR NONLINEAR ANALYSIS OF STRUCTURES

 VOLUME II - USERS' MANUALby
A. Pifko, H. Armen Jr., A. Levy, and H. Levine Materials and Structural Mechanics

FOREWORD

The PLANS system of programs for the nonlinear analysis of structures was developed within the Grumman Research Department with the cooveration, guidance, and partial support of the NASA Langley Research Center.

The programs are an outgrowth of the work reported in a series of NASA Contractor Reports: CR-803, CR-1649, CR-2351, and CR-2568. The last-named document is the theoretical companion volume to this manual.

The princiral developers of PLANS are Drs. A. Pifko, H. Armen Jr., H. Levine, and A. Levy. The successful development of a system as " broad in scope and complexity as PLANS requires the efforts of many individuals. The principal developers gratefully acknowledge the contributions of J. S. Millex for his efforts associated with the initial programming. Special thanks also go-to Ms. P. Ogilvie, P. Zirk, and E. Yander for their diligence and dedication to the programming effort.

TABLE OF CONTENTS
Section Page
1 Introduction and Input Overview 1-1
2 Instructions for the Ụe of BEND, A Programfor the Elastic-Plastic Analysis of Built-Up
Structúres $2-1$
3
Instructions for the Use of HEX, A Programfor the Elastic-Plastic Analysis of ThreeDimensional Solids 3-1
4 Instructions for the Use of REVBY, A Prograinfor the Elastic-Plastic Analysis of Bodiesof Revolution 4-1
5 Instructions for the Use of OUT-OF-PLANE GM,A Program for the Nonlinear Analysis ofBuilt-Up Structures 5-1
Instructions for Use of SATELLITE, A Pre-processing Program for PLANS5-1
7 Example Input 7-1

INTRODUCTION AND INPUT OVERVIEW

The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated incividually based on the physical problem class to be analyzed. On the basis of this concept, each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. Table 1 summarizes the usage, capabilities, and element libraries of the current programs of the PLANS system. These include:

-	BEND	for the plastic analysis of built-up structures where bending and membrane effects are significant
-	HEX	for problems requiring a three dimensional elastic-plastic analysis
-	REVBY	for the plastic analysis of bodies of revolution
-	OUT-OF-PLANE MG	for the material and geometric nonlinear analysis of built-up structures

Supplementing these is a SATELLITE program for data debugging and plotting of input geometries.

TABLE 1 OPERATIONAL MODULES OF PLANS - CURRENT STATUS (5/77)

FPCOFSM	afflicatica	(elemerit	- Eick	\# 100 E	TYFer LAJlins	VATE: iai EEhavior	EQULLIB. CORRSCT	$\begin{gathered} \text { SUB- } \\ \text { TMCRELT. } \end{gathered}$	hestati	hlomitis	NEx.wites
E:T	Ara1/ats or 3-D thin-vsiles built. up structures there bendiris is sieniticant Plastic analysis only	- Bean (3 cross- sections) - Strenger (css- - Triangle Nambran Fayily (CST-LS:) Trinesic berisng \& Kembrane	- Vorkable	- Varioble	- Arrlace - L.oncintrated - $1 . \mathrm{d}_{\mathrm{g}} \mathrm{e}$ - 'hermal (Ex. - roperintlon:al -niy - יyclis	- ImotropicGitnoterise Kamnestle Hareenlre horilinear Yarznisng - Idently Flas:1c	Yes	${ }^{\text {Ho }}$	Yes	$\begin{gathered} \text { Yes } \\ \text { (sec } \\ \text { Satelilite) } \end{gathered}$	Sone
HET	Aualjels of erassive 3 -i kotios Plactic anolysis only	3-D Hexahedron 8 node - 20 node Isoporametric	-2500	- 2500	- Surface - Toncentrated - 'Thernal - Ayclle - Proportional only	- Isytrople Kine-atic herjandra - Lerpar 4 bonisncar hay゙dning Is=trople Ortiotropic - iceaily Elastic	Yes	\%	yes	nose	$\left\{\begin{array}{l} \text { Limsted ts } \\ 8 \text { nole res. } \end{array}\right.$
mevay	Ax1symectric onsiysis of bodies or revolution Flastic analysis only	- Isoparuactric Stuc. 11 of Rey. - Kev. Triangle - Thin RLrg	- 600	- 900	- Burfoce - :3rcentrated - inte - Zjelic - Arsportional only		No	Ho	ко	$\begin{aligned} & \text { Yes } \\ & \text { (see } \\ & \text { soteliste) } \end{aligned}$	$\mathrm{K}_{5} \mathrm{re}$
Cftaic-ch	hnsizsis of 3-D trin-salled buitt- ut eirueturec viero シnimbe 1: not sennificant Flastic \& Chometric Honkiceurs:y (seail etrain-ladee deflect.)	- Bear (9 cross - Strinert 	-600	- 900	- Sarface - : \quad ricentrated 50 - Mierma: (Ex. bcan.) - Cycilc - Non-Proportiona	$0 \text { As } 10$	Yes	No	Yea	$\underset{\substack{\text { (see } \\ \text { sate } 11.1 t e)}}{ }$	noos

In addition, a number of spin-off special purpose modules have been developed: FAST for fracture analysis, AXSHEL for the nonlinear analysis of shells of revolution, and BENST for the buckling analysis of large built-up structures. A general purpose nonlinear dynamic analysis module, DYCAST, is in final stages of development. These modules are not included in this document.

The modules that analyze material nonlinearities alone employ the "initial strain" concept within an incremental procedure to account for the effect of plasticity and include the capability for cyclic plastic analysis. The "initial strain" approach does not require that the stiffness matrix be updated at each step in the analysis but rather, the effect of plasticity enters into the analysis as an effective load vector. The cyclic plastic behavior is accounted for by implementing the Prager-Ziegler kinematic hardening theory. Geometric nonlinearities are included in the PLANS system programs by making use of an "updated" or convected coordinate approach, which requires the reformation of the stiffness matrix due to changes in the geometry and stress field during the incremental procedure.

The theoretical foundations upon which the PLANS system programs are based can be found in a companion volume, "PLANS - A Finite Element Program for Nonlinear Analysis of Structures, Volume I Theoretical Manua1," NASA Contractor Report NASA CR-2568. .

This present volume describes the input data preparation for the four principal modules of PLANS, BEND, HEX, REVBY, and OUT~OFPLANE MG as well as the SATELLITE program for input checking. In keeping with the philosophy of the PLANS system, the description of the input for each of the modules is in a self-contained section. Also presented is a section that shows the input data decks for a representative number of sample problems.

The input for all the modules begins with a title card that allows for any 80 character title (specified in columns 1-80). This title serves as a page heading for subsequent computer output. The input data following this card is divided into a number of functional groups, each describing a specific type of input information. These groups are briefly described below and schematically shown in Fig. 1. Each input group must be read in the specific order shown in the figure. In general, each group is delineated with a specific section end card. This is the alphanumeric SEND, left justified on the input card, in columns 1 through 4 or a blank card. The input groups are as follows:
I Title Card

II Program Control Parameters and Options
III Node Specification
This section defines an allowable set of node point identification numbers

IV Element Connectivity
-Defines each element by specifying its type (i.e., beam, triangle, ..., etc.), identification number and connecting node points

V - VII Node Point Coordinates Defines the location of each node point in a global cartesian coordinate system

VIII Node Point Single and Multipoint Constraints Defines boundary conditions and nodal constraint equations

IX Element Material and Section Properties Section properties include element thickness, area and moment of inertia where applicable.

Fig. 1 Order of Groups of Input Data

Material properties include such quantities as Young's modulus., Poisson's ratio, and quantities defining the plastic response such as yield stress and hardening parameters.

Applied Load Defines spatial distribution of applied load

The last card in the deck is an alphanumeric STOP or END left justified on an input card in columns 1 through 4. STOP indicates that the job is complete and END indicates another problem deck follows.

Some general rules have been used in designing the input. These rules are listed below:

- Some of the data sections make use of a "keyword" of up to four characters, left justified in their appropriate field to specify an item of data. For example, cards specifying element connectivity for membrane triangles begin with TRIM, and material properties by MAT1. All sections that make use of keywords end with a section end keyword SEND
- Sections that specify data without keywords end with a blank card section delimeter
- The data deck ends with one of two keywords. If END is used, the program reads a new problem data deck. If STOP is used, as will probably be the case for most problems, the job ends
- Two formats for input are used, E15.7 for floating point input (fields of 15) and 15 for integer or fixed point input (fields of 5). The fixed point
(integer) data must be right justified. The floating point data can be written in several forms. For example, 10.0 can be input as:
10.0 any place in the field, or
$1.0 \mathrm{E}+01,1.0 \mathrm{E}+1,1.0 \mathrm{E} 1$, where the
field is right justified
There are a number of places in the program where applicable node points or elements must be specified with a set of data. In these cases the nodes or members are specified by entering the appropriate number on the input cards in fields of five. However, for this purpose the user can also utilize a shorthand form of the input. That is, specifying m and $-n$ consecutively is the equivalent of the specification of nodes or elements $\underline{m}, m+1, m+2,2$ \ldots, n and specifying $m,-p$, and $-n$ consecutively is the equivalent of the specification of nodes (elements) $m, m+p, m+2 p, \ldots, m+k p$ where $m+k p$ is the highest integer of the form less than or equal to n. For example, the specification of nodes 1 through 100 is written as $1-100$ and nodes $1,3,5, \ldots, 99$ as $1,-2,-99$. This card input appears in fields of 5 (I5 format) with 16 items per card. Any number of continuation cards may be used. A blank I5 field ends the specification.

INSTRUCTIONS FOR USE OF BEND

A Program for the Elastic-Plastic Analysis of Built-up Structures

INSTRUCTIONS FOR USE OF BEND

BEND is a finite element program to treat the elastic, elasticplastic or elastic-cyclic plastic response of arbitrary built-up thin walled structures where bending and membrane effects are equally important. The finite element library consists of the following elements:

- Three-node uniform strain triangle
- Six-node linearly varying strain triangle
- Four- and five-node hybrid triangles to be used as transition elements between three- and six-node elements (see Fig. 1a)
- Two-node uniform strain stringer
- Three-node linearly varying strain stringer
- Beam with various cross sections subjected to bending about two planes as well as torsion
- Highex order triangular plate element with bending and membrane capability

The program is capable of treating the elastic and elasticideally plastic, linear strain hardening, and nonlinear strain hardening behavior of orthotropic materials. Further, the kinematic hardening theory of plasticity is used (Refs. 1-3) so that provision for cyclic loading conditions involving reversed plastic deformation is included.

The input to the program is categorized in the following sections:
I. Problem Title FORMAT (20A4)

Any 80-character title describing the problem.
II. NPNTC, NPRNT, IRESRT, NUTAP, INPRT FORMAT (5I5)
$0 \leq$ NPNTC ≤ 63 :

NPNTC is the sum of the following integers corresponding to the option desired.

If $N P N T C=0$ No intermediate printout
$=1$ Print the load vector
$=2$ Print element stiffness matrix
$=16$ Print each element stiffness matrix entry to be stacked with its stacking index
$=32$ Print the total stiffness matrix
For example, if it is desired to print the load vector and the total stiffness matrix, $N P N T C=1+32=33$.

NPRNT:
If ≤ 0, perform elastic analysis only
If >0, perform plastic analysis, printing output every NPRNT increments of load

IRESRT: (See Section XVIII.)
0, Elastic (and/or) plastic run. Do not generate a restart tape
1, Elastic (and/or) plastic (cyclic) run. Build a new restart tape
2, Plastic run with elastic values from previously created restart tape
3, Plastic restart run starting at some specified load level

4, Cyclic restart run
NUTAP:
Applicable only if restarting from a restart tape
0 , No new tape written
1, Complete \#ew tape created and additional restart data written

INPRT:
0 , Write restart tape only at $P=$ PMAX (i.e., at maximum load)
N, Write restart tape every N increments of load III. Node Specification (16I5)

This section defines an allowable set of external node point numbers. The maximum node number that can be used is 9999. The program uses this information in two ways. First to set up a table of allowable node points that is used to cherk all subsequent node point input. Secondly, the program converts each external node number to an internal number consecutively in the order that the node appears on the input card. Consequently the order of the input of external node numbers is completely arbitrary and need not be increasing monotonically. In practice the node numbers should be numbered so as to minimize the bandwidth. Once the input is.read the program operates with the internal numbers whirh are now numbered frpm 1 through the number of nodes in the model. In this manner the node ordering and therefore the bandwidth of the stiffness matrix can be easily changed and nodes can be inserted or deleted by changing the external node specification.

The input is specified by entering the appropriate number on the input cards in fields of five. However, for this purpose the user can also utilize a shorthand form of the input. That is, specifying m and $-n$ consecutively is the equivalent of the specification of nodes $m, m+1, m+2, \ldots, n$ and spenifying $m,-p$, and $-n$ consecutively is the equivalent of the sperifiction of nodes $m, m+p, m+2 p, \ldots, m+k p$ where $m+k p$ is the highest integer of the form less than or equal to n. For example, the specification of nodes 1 through 100 is written as $1-100$ and 1, 3, 5, ..., 99 as 1-2-99. This card input appears in fields of 5 (I5 Format) with 16 items per card. Any number of continuation cards may be used. A zero or blank I5 field ends the specification.
IV. Member Connectivity (Node Numbers of Each Member)

FORMAT (A4, 6X, 9I5)
The first alphanumeric field defines the element type:
TRIM - Triangular membrane element (Ref. 3)
BEAM - Beam element
STRG - Stringer element (Ref. 4)
TRIP - Triangular plate bending element (with membrane effects) (Ref. 5)

The first integer field designates the member number. The next integer fields designate the connecting nodes as follows:

TRIM - The nodes for the triangular family of elements are specified around the perimeter beginning with a major (vertex) node, and followed by a minor (midside) node and then alternatively major and minor as shown in Fig. 1. The absence of a minor node must be indicated by a zero or blank field in the proper position.

BEAM - Three node specifications are necessary for the beam element.

Nodes i and j (Fig. 2) which designate the element end points and a third node k, defining the normal to the beam axis about which the section properties are specified. This additional node may be a node of the structural idealization or it may be a "fictitious node" specified just for the purpose of defining the beam section properties. This is shown in Fig. 2.

STRG - Three node specifications are necessary for the stringer element. Nodes i and j, connecting the end points and if desired an additional node designating a midpoint node. This is shown in Fig. 3. A zero or blank for the midpoint node specifies a two-node stringer. The midside node is the third node specified.

Fig. la Triangular Family of Finite Elements Used

Fig. Ib Flements Topology

Fig. 2 Beam Element

Fif. 3 itringer Filement

Fig. 4 Triangular Plate Element - Bendirp and Meinorane

TRIP - Three nodes are used to specify the plate
element i, j, k as shown in Fig. 4.
If a planar structure is being analyzed using triangular plate and membrane elements, stress and strain output can be calculated. with respect to the global coordinate system rather than the element. local system by specifying one of the following cards:

GLXY - Structure in the $x-y$ plane
GLXZ - Structure in the $x-z$ plane
GLYZ - Structure in the $y-z$ plane
SEND - Ends the section.
V. X-Coordinates of Nodes FORMAT (E15.7. 13I5)

The x-coordinates of the nodes appearing in the 15 fields are set to the value in the E15.7 field. Any number of continuation cards may be used; their first fifteen columns are ignored. A zero or blank 15 field terminates the card scan for a given x-coordinate. A zero or blank first I5 field (columns 16-20) on a noncontinuation card ends the section. Both shorthand representations of Section III are allowed.
VI. Y-Coordinates of the Nodes. Same as Section V.
VII. Z-Coordinates of the Nodes. Same as Section V.

VIII. Boundary Conditions FORMAT (12I1, 3X, 13I5, /, 15X, 13I5)

The first twelve fields give the boundary conditions specifications in the order: $u, v, w, \theta_{x}, \theta_{y}, \theta_{z}, \epsilon_{x}, \epsilon_{y}, \epsilon_{x y}, k_{x}, \kappa_{y}, \kappa_{x y} ;$ where u, v, w are global displacements in the x, y, z directions, respectively; $\theta_{x}, \theta_{y}, \theta_{z}$ are global rotations with respect to the x, y, z axes; $\epsilon_{x}, \epsilon_{y}, \epsilon_{x y}$ are membrane components of the local membrane strain tensor; $K_{x}, K_{y}, k_{x y}$ are components of the local curvature tensor. The last six fields for the local membrane strains and curvatures (higher order degrees of freedom) are only used if a plate element is attached to the node. Both tensors are calculated in the local coordinate system (see Fig. 4) of the plate element. This local coordinate system is defined by the first plate element connecting that node that appears in the input stream. For example,
$\left.\begin{array}{lllll}\text { TRIP } & 3 & 6 & 3 & 2 \\ \text { TRIP } & 4 & 3 & 6 & 7 \\ \operatorname{TRIP} & 5 & 7 & 4 & 3\end{array}\right\}$.

Node 3 is not listed previously in the element input

The tensor quantities at node 3 are all defined in the local coordinate system of element 3. See Appendix IV for examples of plate boundary conditions.

The rotational degrees of freedom $\theta_{x}, \theta_{y}, \theta_{z}$ are applicable only for beam and plate elements. If nonzero values are given to rotational or higher order degrees of freedom at a node and beam and/or plate elements are not attached to the node then a singular stiffness matrix will result.

Zero denotes a fixed degree of freedom
One denotes a free degree of freedom
Two will result in the application of a unit generalized displacement, or a corresponding card may be included in Section IX (dependent degrees of freedom) designating the magnitude of the applied generalized displacement.

The 1315 fields give the applicable nodes for the boundary condition specifications, with both shorthand notations of Section III permitted. Any number of continuation cards may be used for a given specification. However, only the 1315 fields are used on a continuation card. A zero or blank I5 field terminates the card scan for a given boundary condition specification. Note: If the last field of a card (columns 76-80) is the last specification, an additional blank card (continuation card) must follow. A zero or blank first I5 field (columns 16-20) on a noncontinuation card ends the section. If a node's boundary conditions are not specified in this section, all the degrees of freedom are assumed to be free. To change this default condition, the first card of this section should be set to the desired default (i.e., in the absence of beams and plates, 111000000000) with all nodes used in the problem specified. In the absence of plate elements the default is automatically 111111000000.
IX. Dependent Degrees of Freedom FORMAT (2I5, 2(5X, 2I5, E15.7))

This section designates the input for both single and multipoint constraints as well as applied displacements of the form:

1) $\quad \delta_{i}=\alpha_{1} \delta_{j 1}+\alpha_{2} \delta_{j 2}+\cdots \alpha_{n} \delta_{j n}$
where δ_{i} is a dependent degree of freedom, $\delta_{j 1} \cdots \delta_{j n}$ are independent degrees of freedom, and $\alpha_{1}, \alpha_{2} \cdots \alpha_{n}$ are coefficients.
2) Rotation of displacements at a node

$$
\begin{aligned}
& \delta_{i}=\alpha_{1} \tilde{\delta}_{i}+\alpha_{2} \tilde{\delta}_{j}+\alpha_{3} \tilde{\delta}_{k} \\
& \tilde{\delta}_{j}=\beta_{1} \tilde{\delta}_{i}+\beta_{2} \tilde{\delta}_{j}+\beta_{3} \tilde{\delta}_{k} \\
& \delta_{k}=\gamma_{1} \tilde{\delta}_{i}+\gamma_{2} \tilde{\delta}_{j}+\gamma_{3} \tilde{\delta}_{k}
\end{aligned}
$$

where the α, β, γ 's are the direction cosines of the rotation, $\delta_{i}, \delta_{j}, \delta_{k}$ are the displacements with respect to the original global directions and $\tilde{\delta}_{i}$, $\tilde{\delta}_{j}, \tilde{\delta}_{k}$ are the components of displacements at the node with respect to the new coordinate axes. An example of this capability is given in Appendix I.
3) Applied generalized displacement
${ }_{i}=\alpha_{1}$
where the coefficient α_{1} is the applied generalized displacement.

The first two-fields designate a node number and a degree of freedom (i.e., 1-12). The dependency is defined in the following three fields. The two integer fields designate the node number and degree of freedom number and the coefficient by the floating point field. If there is another dependency for the node, it is designated in a similar fashion in the next three fields. Any number of continuation cards can be used with the first two fields blank. The section is ended by a blank or zero in the third integer. field (blank card). Examples of the use of multipoint constraints are in Appendix I.

X. Material and Section Properties

The format for this input is dependent upon the member type. Each type of input begins with a word of up to four characters.

MAT1 Material properties for plane stress, necessary with membrane triangles (TRIM) and bending triangles (TRIP). For use with initially isotropic materials which exhibit perfectly plastic or strain hardening behavior and initially orthotropic materials that exhibit perfectly plastic behavior.

MAT2 Material properties for plane stress, necessary with membrane triangles (TRIM) and bending triangles (TRIP) with initially isotropic or orthotropic behavior that require orthotropic kinematic hardening theory

MBM Material properties for a beam element
MSTG Material and section properties for a stringer

THIK Member thickness for triangular membrane (TRIM) and plate (RRIP) elements

MBET Angle between local axes and principal directions of orthotropy for TRIM and TRIP elements (see Figs. 1 b and 4)

NLRS Layer and layer output information for TRIP elements

SREG Beam section properties for a solid rectangular section

SCIR Beam section properties for a solid circular section

ZSEC Beam section properties for a Z-section
ISEC Beam section properties for an I-section

HCIR Beam section properties for a hollow circular section

HREC Beam section properties for a hollow rectangular section

LSEC Beam section properties for an L-section
TSEC Beam section properties for a T-section
CSEC Beam section properties for a Channel section
SEND Ends the section.

MAT1 - Plane Stress Material Properties - FORMAT (A4, 1X, 5E15.7, /, 2E15.7, /, 4E15.7, /, 5E15.7, /, (16I5))

The first four cards specify material properties, as follows:

CARD 1: MATl
EONE = Young's modulus in principal property axis (1)
ETWO $=$ Young's modulus in principal property axis (2)
BETA $=$ No longer used. Set equal to zero.
GONTO $=$ Shear modulus in (1)-(2) principal property plane
VONTO $=$ Poisson's ratio, v_{12}

$$
\text { Note: } \begin{aligned}
\quad_{1} & =\frac{\sigma_{1}}{E_{1}}-\frac{v_{12}}{E_{2}} \sigma_{2} \\
\epsilon_{2} & =\frac{-\nu_{21}}{E_{1}} \sigma_{1}+\frac{\sigma_{2}}{E_{2}} \\
\gamma_{12} & =\frac{\tau_{12}}{G_{12}}
\end{aligned}
$$

CARD 2: TALF-1 $=$ Coefficient of thermal expansion in 1-axis direction, α_{1}
TALF-2. $=$ Coefficient of thermal expansion in 2-axis direction, α_{2}

CARD 3: SIGOX = Yield stress in principal 1-direction SIGOY $=$ Yield stress in principal 2-direction
SIGOZ $=$ Yield stress in principal 3-direction
SIGXY $=$ Shear yield stress in principal 1-2 plane

$$
\begin{aligned}
& \text { CARD 4: } \quad \text { RMOSN }=\text { If } \text { RMOSS } \neq 0 ; \quad \text { RMOSN }=n \text {, the shape } \\
& \text { parameter used in Ramberg-Osgood repre- } \\
& \text { sentation of stress-strain behavior } \\
& \text { If } \operatorname{RMOSS}=0 ; \quad \text { RMOSN }=\bar{\alpha} \text { the slope of } \\
& \text { the linear strain-hardening stress-strain } \\
& \text { representation, i.e., } \bar{\alpha}=E_{T} / E \text { where } \\
& \mathrm{E}_{\mathrm{T}} \text { is the tangent modulus } \\
& \text { RMOSS }=\text { If } \text { RMOSS } \neq 0 \text {; RMOSS }=\text { Ramberg-Osgood } \\
& \text { parameter } \sigma_{0.7} \text { (see Ref. 7) } \\
& \text { Note 1: If RMOSN }=0 \text { and RMOSS }=0 \text {, } \\
& \text { the material for the element (s) } \\
& \text { is assumed to be elastic-ideally } \\
& \text { plastic }
\end{aligned}
$$

Input for the yield-stress in tension and compression has been maintained in order to accommodate materials that exhibit initial anisotropic plastic behavior. In this case an initial translation of the yield surface is made consistent with the kinematic hardening theary. Note: Only initially isotropic materials can be treated when considering linear or nonlinear strain hardening using this property card.

Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank 15 field ends each member listing.

[^0]MAT2 - Plane Stress Material Properties - FORMAT (A4, 1X, 5E15.7, /, 2E15.7, /, 4E15.7, /, 5E15.7, /, E15.7, /, (16I5))

The first five cards specify material properties, as follows:

CARD 1: MAT2
EONE $=$ Young's modulus in principal property axis
ETWO $=$ Young's modulus in principal property axis
BETA $=$ No longer used. Set equal to zero.
GONTO $=$ Shear modulus in (1)-(2) principal property plane
VONTO $=$ Poisson's ratio, $\quad{ }^{\prime} 12$ Note: $\quad{ }^{\epsilon}{ }_{1}=\frac{\sigma_{1}}{E_{1}}-\frac{v_{12}}{E_{2}} \sigma_{2}$

$$
\begin{aligned}
& r_{2}=-\frac{\nu_{21}}{E_{1}} \sigma_{1}+\frac{\sigma_{2}}{E_{2}} \\
& \gamma_{12}=\frac{1}{G_{12}} \tau_{12}
\end{aligned}
$$

CARD 2: TALF-1 = Coefficient of thermal expansion in 1-axis direction, α_{1}

TALF-2 $=$ Coefficient of thermal expansion in 2-axis direction, α_{2}

CARD 3: SIGOX = Yield stress in principal 1-direction
SIGOY = Yield stress in principal 2-direction
SṬGOZ $=$ Yield stress in principal 3-direction
SIGXY = Shear yield stress in principal 1 -2 plane

ĊAR̈D 4: RMONX \equiv İf RMÓṠX $\neq 0 ;$ RMONXX $\equiv n$, the shape parameter used in tithe Ramberg-Osgood representation of the $\sigma_{1}={ }^{{ }^{1}} 1$ com= poneñt of the stress̄str̈än béhavior. If RMŌSX $=\dot{0} ;$ RMONXX $=\bar{\alpha}_{1}$ the slope of the linèar sträjinoharadening strèss-sträin represèntátion in thè I =direction, i:e., $\stackrel{\rightharpoonup}{\dot{\alpha}}_{\dot{1}}=\frac{\mathrm{E}_{\mathrm{T} 1}}{\overline{\mathrm{E}}_{1}}$ where $\mathrm{E}_{\mathrm{T} 1}$ is the tangent modulus of the $\dot{\sigma}_{1}={ }_{1}$ curve.
RMOSX If RMOSX $\neq 0$; RMOSX \doteq Rämberg-Osgood parameter ${ }_{0} 0.7$ in principal 1-direction
RMONY Sáme as RMONX in principal 2-direction RMOSY Sȧmé ás RMOSX in priäcipal 2-đirection RMONXXY Sáme as RMONX for shear component in 1-2 plane; $\tau_{12}-\gamma_{i 2}$ stress-strain curve

CARD 5: RMOXXY Same as RMÓSX for shear component in i-2 plane; ${ }^{\tau}{ }_{12}-\gamma_{12}$ stress-strain curve

Noté: No component of the stress-strain curvies may be ideally plastic, i.e., RMOÑX or RMONY or RMONXY $=0$ is not allowed: If either is zero all must be zero and a MATI card should be used. The Ramberg-Osgood representation of the stress-strain curve is given by

$$
\begin{aligned}
& \gamma=\frac{\sigma}{-}+\frac{3 \sigma}{7 E}\left(\frac{\sigma}{\sigma_{0.7}}\right)^{\mathrm{n}-1} \\
& \gamma=\frac{\tau}{\mathrm{G}}+\frac{3 \tau}{7 \mathrm{G}}\left(\frac{\tau}{\tau_{0.7}}\right)^{\mathrm{n}-1}
\end{aligned}
$$

Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank I5 field ends each member listing.

$$
\begin{aligned}
& \text { MBM - Beam Material Properties - FORMAT (A4, 1X, 5E15.7, /, E15.7, /, } \\
&(16 \mathrm{I} 5))
\end{aligned}
$$

```
CARD 1: MBM
```

 \(\mathrm{E} \quad=\) Young \({ }^{\text {' } s}\) modulus
 ANU = Poisson's ratio
 RMOSS \(=\) If not equal to zero, RMOSS equals
 Ramberg-Osgood parameter, \(\sigma_{0.7}\)
 RMOSN \(=\) If RMOSS \(\neq 0 ; \quad\) RMOSN \(=n\), the shape parame -
 ter used in Ramberg-Osgood representation of
 stress-strain behavior. If RMOSS \(=0\);
 RMOSN \(=\bar{\alpha}\), the slope of the linear strain-
 hardening stress-strain representation, i.e.,
 \(\bar{\alpha}=\mathrm{E}_{\mathrm{T}} / \mathrm{E}\) where \(\mathrm{E}_{\mathrm{T}}\) is the tangent modulus
 YLDST \(=\) Yield stress
 CARD 2: TALF = Coefficient of thermal expansion

Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank I5 field ends each member listing.

MSTG - Stringer Properties - FORMAT (A4, 1X, 5E15.7, /E15.7 /, (16I5))
CARD 1: .MSTG

$$
\begin{aligned}
& \mathrm{E}= \text { Young's modulus } \\
& \mathrm{A}= \text { Cross-sectional area } . \\
& \text { RMOSN }= \text { If RMOSS } \neq 0 ; \text { RMOSN }=\mathrm{n}, \text { the shape } \\
& \text { parameter used in Ramberg-Osgood repre- } \\
& \text { sentation of stress-strain behavior. } \\
& \text { If RMOSS }=0 ; \text { RMOSN }=\bar{\alpha}, \text { the slope of } \\
& \text { the linear strain-hardening stress-strain } \\
& \text { representation, i.e., } \bar{\alpha}=E_{T} / E \text { where } E_{T} \\
& \text { is the tangent modulus } \\
& \text { RMOSS }= \text { If RMOSS } \neq 0 ; \text { RMOSS }=\text { Ramberg-Osgood } \\
& \text { parameter }{ }^{\sigma} 0.7 \\
& \text { Note } 1: \text { If RMOSN }=.0 \text { and RMOSS }=0, \\
& \text { the material for the element }(s) \\
& \text { CARD 2: } \quad \text { TALF }= \text { Coefficient of thermal expansion }
\end{aligned}
$$

Succeeding cards give applicable members; both shorthands of Section III are permicted. Any number of continuation cards may be used for a given specification. A zero or blank I5 fieldmends each member listing.

THIK - Element Thicknesses - FORMAT (A4, 1X, E15.7, /, (1615)) (Necessary with membrane elements TRIM) and plate elements (TRIP))

CARD 1: THIK
THICK $=$ Element thickness
Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank 15 field ends each member listing.

> MBET - Orientation of Axes of Material Anisotropy - FORMAT (A4, 1X, E15.7, /, (16I5))

CARD 1: MBET
BETF = Angle β in degrees between local x -axis and principal 1-axis for material orthotropy. See Figs. Ib and 4. Only applicable for TRIM and TRIP elements

Note: This card is an optional card. The default is $B E T F=0.0$ for all members. It should be used with initially orthotropic materials or those exhibiting orthotropic strain-hardening characteristics.

Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank 15 field ends each member listing.

NLRS - Layer and Print Option for TRIP Elements - FORMAT (A4, 1X, /, 2I5)

CARD 1: NLRS
CARD 2: NLRS = Number of layers through the thickness at which stresses are calculated for TRIP elements. NLRS must be an even number ≤ 20

NPLT $=$ Print out option:
$=0$; Print stresses, strains, etc. only at top and bottom surfaces
$=1$; Print stresses, strains, etc. at each layer through the thickness as well. Note: This is an optional card. The defaults are NLRS $=10$ and NPLT $=0$. If one is changed both should be specified. This card controls option for all TRIP elements.

Beam Section Properties - FORMAT (A4, 1X, 5E15.7, /, 3E15.7, /, formats for Cards 3 and 4 (see below), /, (16I5))

The cards specifying beam section properties all start with the following information:

If the quantities, $A, I_{y y}, I_{z z}, I_{y z}$ are input as zero or blank then these quantities are calculated automatically.

Fig. 5 Definition of Coordinate Axes in Cross Section of Beam Element

CARD 2: Yo = Eccentricity of attachment point in the y_{o} direction
$20=$ Eccentricity of attachment point in the z_{o} direction
$\bar{\beta} \quad=$ angle defining the transformation of the Iy, Iz, Iyz to another reference axis (see Fig. 5)

Additional cards are required according to which section is specified. The notation for each section is shown in Table 1.

SREC - FORMAT (2E15.7)
CARD 3: A = Width
B $\quad=$ Depth
SCIR - FORMAT (E15.7)
CARD 3: • $\quad=$ Radius
ZSEC, ISEC, and CSEC - FORMAT (3E15.7, /, 3E15.7)
CARD 3: A1 = Dimension of upper flange (parallel to y-axis)
A2 = Dimension of web (parallel to z-axis)
A3 $=$ Dimension of lower flange (parallel to y-axis)
CARD 4: T1 = Thickness of upper flange
T2 = Thickness of web
T3 = Thickness of lower flange
HCIR - FORMAT (2E15.7)
CARD 3: $R=$ Outer radius
$\mathrm{T}=$ Thickness

HREC, LSEC, and TSEC - FORMAT (4E15.7)
CARD 3: A1 = Width (paralle1 to y-axis)
A2 $=$ Depth (parallel to $z^{-a x i s}$)
T1 = Thickness of upper and/or lower flanges
T2 = Thickness of vertical webs
Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank I5 field ends each member listing.

SEND Ends the section.

TABLE 1 SECTION INPUT AND GEOMETRY

TABLE 1 SECTION INPUT AND GEOMETRY (CONT)

Section	Keyword	Input	
Hollow Rectangular Section	HREC	Area, moment of inertia, $I_{y y}, I_{z z}, I_{y z}$, J eccentricities, y_{0}, z_{o}, transformation angle $\overline{3}$. Width, a_{1}, depth, a_{2}, thickness of upper and lower flanges, t_{1}, thickness of vertical webs, t_{2}	
I-Section	LSEC	Area, moment of inertia, $I_{y y}, I_{z z}, I_{y z}$, J eccentricities, y_{0}, z_{0}, transformation angle $\bar{\beta}$. Dimension of flange and web a_{1}, a_{2} thickness flange, and web, t_{1}, t_{2}.	
T-Section	TSEC	Same as for L-Section	

TABLE 1 SECTION INPUT AND GEOMETRY (CONT)

Section	Keyword	Input	
z-Section	ZSEC	Area, moments of inertia, $I_{y y}, I_{z z}, I_{y z}$, J eccentricities, y_{o}, z_{o}, transformation angle $\overline{\hat{p}}$. Dimension of upper and lower flange, a_{1}, a_{3}; Dimension of web, a_{2}, thickness of upper and lower flange, t_{1}, t_{3}, thickness of web, t_{2} NOTE: $a_{1}=a_{3} ; t_{1}=t_{3}$	
I-Section	ISEC	Same as Z-section $a_{1} \neq a_{3} ; t_{1} \neq t_{3}$	
Channe 1 Section	CSEC	Same as Z-Section $a_{1}=a_{3} ; t_{1}=t_{3}$	

TABLE 2 NUMBER AND LOCATION OF STRESS POINTS

Section	Keyword	Number Stress Points	Location of Stiess Points	Location of Stress Points
Solid Rectangle	SREC	16	$\pm \mathrm{y}$ $\pm \mathrm{z}$ 1 0.430568 a 0.430568 b 3 0.430568 a 0.169991 b 9 0.169991 a 0.430568 b 11 0.169991 a 0.169991 b	Shear Center at Centroid
Solid Circular	SCIR	18	r $\pm \epsilon^{\circ}$ 2 $0.887 a$ 12.1 4 $0.887 a$ 60.98 6 $0.887 a$ 137.05 8 $0.1127 a$ 12.1 10 $0.1127 a$ 60.98 12 $0.1127 a$ 137.05 14 $0.500 a$ 12.1 16 $0.500 a$ 60.98 18 $0.500 a$ 137.05	Shear Center at Centroid

TABLE 2 NUMBER AND LOCATION OF STRESS POINTS (CONT)

TABLE 2 NUMBER AND LOCATION OF STRESS POINTS (CONT)

	Section	Keyword	$\begin{aligned} & \text { Number } \\ & \text { Stress } \\ & \text { Points } \\ & \hline \end{aligned}$	Location of Stress Points	Location of Stress Points
$\begin{gathered} N \\ \mathbf{\omega} \\ 0 \end{gathered}$	L-Section	LSEC	6	y z 1 $0.88730 \overline{\mathrm{a}}_{2}$ 0.0 2 $0.11271 \overline{\mathrm{a}}_{2}$ 0.0 3 $0.50000 \overline{\mathrm{a}}_{2}$ 0.0 4 0.0 $0.88730 \overline{\mathrm{a}}_{1}$ 5 0.0 $0.11271 \overline{\mathrm{a}}_{1}$ 6 0.0 $0.50000 \overline{\mathrm{a}}_{1}$ $\overline{\mathrm{a}}_{1}$ $=\mathrm{a}_{1}-\frac{\mathrm{t}_{2}}{2}$, $\overline{\mathrm{a}}_{2}=a_{2}-\frac{\mathrm{t}_{1}}{2}$,$l$	 Axes at Shear Center
	T-Section	TSEC	6	$$	 Axes at Shear Center

TABLE 2 NUMBER AND LOCATION OF STRESS POINTS (CONT)

TABLE 2 NUMBER AND LOCATION OF STRESS POINTS (CONT)

Section	Keyword	Number Stress Points	Location of Stress Points	Location of Stress Points
Channe 1 Section	CSEC	9	NOTE: $\quad t_{1}=t_{3} ; \quad{ }^{\prime} a_{1}=a_{3}$	Axes at Shear Center

TABLE 2 NUMBER AND LOCATION OF STRESS POINTS (CONT)

Section	Keyword	Number Stress Points	Location of Stress Points	Location of Stress Points
I-Section	ISEC	9		Axes at Shear Center $\overline{\mathrm{b}}_{2}=\mathrm{b}_{2}-0.5 \mathrm{t}_{3}$

XI. Applied Loads

Many different types of loading are currently admissible concentrated loads at nodes, distributed loads on an edge of a triangular member, distributed surface loads, distributed line loads on beams, and thermal loads. Each loading situation is designated by one of the following four-character key words:

CONC (Concentrated force or moment at a node)
TRIA (Distributed edge load, TRIM elements) SURF (Distributed surface loads, TRIP element) EDG1 (Distributed edge load, side 1, TRIP element) EDG2 (Distributed edge load, side 2, TRIP element) EDG3 (Distributed edge load, side 3, TRIP element) BMLO (Distributed line load, beam element) TMPU (Temperatures at upper surface for TRIP element or temperatures for TRIM element)

TMPM (Temperatures at middle surface for TRIP element)

TMPL (Temperatures at lower surface for TRIP element)

SEND (Section end)

Note: The keywords for the section on applied loads are used as section headings. The keyword appearing on an input card designates that the input to follow is associated with a particular type of applied loading. A blank card (as described in succeeding sections) delimits the input and indicates that the next card contains a different keyword. For example, CONC indicates input that follows is for concentrated loads and TRIA; distributed loads on an edge of a membrane triangle. Thus the input is as follows:

CONC
data
for
concentrated
loads
blank card

TRIA
data
for
distributed
loads
blank card

SEND
It should be noted that the keywords can appear in any order and may be specified more than one time in the applied load section.

TRIA - Distributed edge load (TRIM elements) - FORMAT (A4, /, 4I5, 3E15.7, /, 15X, 3E15.7)

Each card gives the load components applied at a member side (in units of force) as follows:

CARD 1: TRIA

Third I5 field: Number of other end point node (n)
Fourth I5 fireld: NODR - Reference node number
First E15.. 7 field: x load component at node m
Second E15.7 field: y load component at node m
Third E15.7 z load component at node m
CARD 3: First E15.. 7 field: x load component at node n
Second E15.7 field: y load component at node n
Third E15.7 field: z load component at node n
Note: If NODR $=0$ then x, y, z are global directions. If NODR $\neq 0$ then the x -direction is parallel to the element edge specified by m - n; the y -direction is perpendicular to x in the plane defined by the three points, $m, n, N O D R$; the z-axis is perpendicular to the $x-y$ plane.

The program allows for a linearly varying distrfibuted load from node to node. As many load components as desired may be specified. A blank card (i.e. zero or blank first IS field) ends the specification of distributed edge loads for TRIM elements.

CONC - Concentrated loads - FORMAT - (A4, /, I5, 3E15.7, /, 5X, 3E15.7)

Each card gives the load components in global directions at a specified node.

CARD 1: CONC
CARD 2: I5 field: . Node number
First E15.7 field: Force component F_{X}
Second E15.7 field: Force component F_{y}
Third E15.7 field: Force component F_{z}^{\prime}
CARD 3: First E15.7 field Moment component M_{x} Second E15.7 field Moment component M_{y} Third E15.7 field Moment component M_{z}.

A blank card (i.e., zero or blank first I5 field) ends the specification of concentrated loads.

SURF - Distributed Surface Loads (TRIP element) - FORMAT (A4, 1X, 3E15.7. /, 3E15.7, /, 3E15.7, /, (16I5))

CARD 1: SURF
PXI Value of distributed surface load in force/ unit area in local element x-direction at node i of element (see Fig. 4).
PYI 'Value of distributed surface load in force/ unit surface area in local y-direction at node i of element
PZI Value of distributed surface load in force/ unit surface area in local z-direction at node i of element

CARD 2:	PXJ	Same as PXI but at node j
	PYJ	Same as PYI but at node j
	PZJ	Same as PZI but at node j
CARD 3:		
	PXK	Same as PXI but at node k
	PZK	Same as PYI but at node k

Note: A linear variation of the surface loads in the plane of the element is assumed.

Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank I5 field ends each member listing.

BMLO-Distributed Line Load, Beam Element-FORMAT (A4, /, 4E15.7, /,
Card 1: BMLO
CARD 2: PYI Force/unit length in local y-direction (see Fig. 5) at node i
PYJ Force/unit length in local y-direction at node j
PZI Force/unit length in local z-direction at node i

PZJ Force/unit length in local z-direction at node j

Note: A linear variation of the distributed load between nodes is assumed.

Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank I5 field ends each member listing. A blank card ends this section.

EDG1 - Distributed Edge Load; Side 1, TRIP Element - FORMAT (A4, 1X, 3E15.7, /, 3E15.7, /, (16I5))

This card inputs the distributed edge or line loads along side 1 of a TRIP element. Side 1 is the side connecting nodes i and j (see Fig. 4).

CARD 1: EDG1
PXI Local x-component of force/unit length at $i^{\text {th }}$ node

PYI Local y-component of force/unit length at $i^{\text {th }}$ node

PZI Local z-component of force/unit length at $i^{\text {th }}$ node

CARD 2: PXJ Same as PXI but at node j
PYJ Same as PYI but at node j
PZJ Same as PZI but at node j
Note: A linear variation of the edge loads
is assumed between nodes i and j.
Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank 15 field ends each member listing.

EDG2 - Distributed Edge Load, Side 2, TRIP Element - FORMAT (A4, 1X, 3E15.7, /, 3E1J.7 /, (16I5)) .

This section inputs the distributed edge or line loads along, side 2 of a TRIP element. Side 2 is the side connecting nodes j and k (see Fig. 4). All input is the same as in the EDGI section with EDG2 replacing EDG1 as the alphameric clue word and " j " replacing " i " and " k " replacing "j" in the description.

'EDG3 - 'Distributed Edge Load, Side 3., TRIP Element - FORMAT . (A4, 1X, 3E15.7, /, 3E15.7, /, (16I5))

This section inputs the distributed edge or line loads along side 3 of a TRIP element. side 3 is the side connecting nodes k and i (see Fig. 4) . All input its the same as in the EDGl section with EDG3 replacing EDG1 as the alphameric clue word and " k " replacing "i" and " $\overline{\mathrm{i}}$ " replacing "k" in the description.

TMPU - Nodal Temperatures At Upper Surface for TRIP Element cr Nodal Temperatures for TRIM Element - FORMAT (A4, /, E15.7, 13I5, /, (15X, 13I5))

This section is used to input temperatures at nodes of TRIM elements and at the upper surface (i.e., $z=+h / 2$, where h is the plate thickness) of TRIP plate elements. For TRIP elements a parabolic temperature distribution through the thickness is assumed. To input temperatures at the lower surface and middle surface use the TMPL and TMPM cards, respectively.

CARD 1: TMPU
CARD 2: El5.7 field Temperature at node (TRIM) or temperature at upper surface of node (TRIP)
I5 Integer fields Applicable nodes
The temperatures of the nodes appearing in the 15 fields are set to the value in the E15.7 field. Any number of continuation cards may be used; their first fifteen columns are ignored. A zero or blank I5 field-terminates the card scan for a given temperature. A zero or blank first I5 field (columns 16-20) on a noncontinuation card ends the TMPU input. Both shorthand representations of Section III are allowed.

Note: For the TRIM element the nodal temperatures are averaged to obtain one element temperature. For the TRIP element a linear in-plane variation of the temperatures from node to node is assumed.

TMPM - Nodal Temperatures at Middle Surface for TRIP Element FORMAT (A4, /, E15.7, 13I5, /, (15X, 1315))

This section is used to input temperatures at nodes at the middle surface $(z=0)$ of TRIP plate elements. For TRIP elements a parabolic temperature distribution through the thickness is assumed. To input temperatures at the upper and lower surface use the TMPU and TMPL cards, respectively.

The input formats and information for the card are identical to the TMPU card with TMPM replacing TMPU.

TMPL - Nodal Temperatures at Lower Surface for TRIP Element FORMAT (A4, /, E15.7, 13I5, /, (15X, 13I5))

This section is used to input temperatures at nodes at the lower surface $(z=-h / 2, h$ is the plate thickness) of TRIP elements. For TRIP elements a parabolic temperature distribution through the thickness is assumed. To input temperatures at the upper and middle surface use the TMPU and TMPM cards, respectively.

The input formats and information for this card are identical to the TMPU card with TMPL replacing TMPU.

A card with SEND in the first four columns ends the section for applied loading.
XII. Members to be Printed - FORMAT (16I5)

Specifies the members whose strains and stresses are to be printed. Both shorthands of Section III are allowed. A blank card or card with only zero entries ends the section.
XIII. Nodes to Be Printed - FORMAT (16I5)

Nodes whose displacements are to be printed as per Section XII.
XIV. Parameters for Plastic Analysis - FORMAT (2E15.7)

PMAX $=$ Maximum load to be applied for this half cycle

PPCT $=$ Load increment as a decimal multiple of yield load.
XV. Parameters for Succeeding Load Cycles - FORMAT (I5; 2E15.7)

NPRNT $=$ If equal to zero, no additional load cycle and end of problem. If greater than zero, print output every NPRNT increments.

PMAX $=$ Maximum load for this load cycle
PPCT $=$ Load increment as percentage of yield load.
Note: PPCT should be equal to one-half the original value since the plastic range is twice the elastic range for initial loading.
XVI. Change Plastic Material Properties for New Load Cycle

The input for this section begins with a four-character word as follows:

MAT1 New material properties for plane stress membrane triangles (TRIM) or plate (TRIP) elements (see Section X for applicability)
MAT2 New material properties for orthotropic strain-hardening materials (see Section X for applicability
MBM New material properties for beam elements
MSTG New material properties for a stringer element

MAT1 - FORMAT (A4, 1X, I5, /, 4E15.7, /, 5E15.7)
CARD 1: MAT1
IMEM One member number from the group that is to be changed

$\left.\begin{array}{ll}\text { CARD 3: } & \text { RMOSN } \\ & \text { RMOSS } \\ & \text { RMOSE } \\ & \text { YLDST } \\ \text { YLDSC }\end{array}\right\}$ Defined in Section X
One set of three cards is required for each MAT1 group to be changed. A MATI group may be changed to a MAT2 group after a half load cycle.

MAT2 - FORMAT (A4, 1X, I5, /, 4E15.7, /, 5E15.7, /, E15.7)
CARD 1: MAT2
IMEM One member number from the group that is to be changed

CARD 2: $\left.\begin{array}{l}\text { SIGOX } \\ \\ \text { SIGOY } \\ \\ \text { SIGOZ } \\ \text { SIGXY }\end{array}\right\}$ Defined in Section X
CARD 3: RMONX RMOSX

RMONY Defined in Section X RMOSY RMONXY

CARD 4: RMOSXY Defined in Section X
One set of four cards is required for each MAT2 group to be changed. A MAT2 group may be changed to a MATl group after a half load cycle.

MBM or MSTG - FORMAT (A4, 1X, I5, /, 3E15.7)
CARD 1: MBM
or
MSTG
IMEM (One member number from the group that is to be changed)

CARD 2: RMOSN (Ramberg-Osgood parameters defined in Section X). RMOSS

YLDST
The section is ended with a section end card, SEND.
Note: If there is no change in material properties, a SEND card must appear in the appropriate place in the input stream.
XVII. Problem End - FORMAT (A4)

Each problem's input must be ended with a card reading "ENDb" where " b " denotes a blank, in columns 1-4. The last problem. in a run should end with a card reading "STOP" in column 1-4 instead of "ENDb."
XVIII. Restarting a Probiem

The initial restart tape is created on Unit 2%. Subsequent restart jobs mount the restart tape as Unit 21 and if desired (NUTAP >0) copies and continues the restart tape on Unit 22 .

CARD: 1: Problem Title - FORMAT (20A4)
As in Section F
CARD 2: NPNTC, NPRNT, IRESKI', NUTAP, INPRT - FORMAT (5.I5), As in Section II. Here NPNHC is ignored.

If IRLSRT is equal to 2
Restart from an elastic criticall load using a previously created restart tape

CARD 3: PMAX, PPCT - FORMAT (2E15..7)
PMAX = Maximum, load to be applied for this halle eycle PPCT $=$ Load increment as percentage of yield load

Input is then continued from Section XV
If IRESRT is equal to 3
Continuation from some previously plastic load. The job can be restarted from a. previous maximum load or from any intermediate load level.

CARD 3: PMAX, NRSRT - FORMAT (E15.0; I5)
If starting from a previous maximum load NRSRT can be ignored. If starting from some intcrmediate load level, NRSRTis a unique number obtained as nutput from the job that generated the restart tape. This output is of the form;

PLASTIC ANALYSIS VALUES FOR RESTART TAPE HAVE BEEN WRI'TTEN AT P $=1.5000000 \mathrm{E}+03$ FOR PRINT INTERVAL 30 * * * * *

In this case NRSRT is equal to 30 and the load is not necessarily the last maximum value.

Note: For cases when the job ends abnormally (for example when time or lines are exceeded) the job can be restarted with a value for NRSRT obtained from the output. In this case the last value of NRSRT should not be used. This will insure that a complete set of data will be accessed from the restart tape.

If IRESRT is equal to 4
Restart from a previous maximum load level followed by a reversal of a previous load distribution (CYCLE). A reversal of a previous load distribution can be placed on the structure from any previously generated and saved state of stress.

CARD 3: PMAX, NRSRT - FORMAT (E15.0, I5)
If starting from a previous maximum load NRSRT can be ignored. If starting from some intermediate lnad leve 1 , NRSRT is a unique number obtained as output from the job thit generated the restart tape. Thi. outiut has the form shown in the preceding dis" cussion for LRESRT equal to three. The value of PMAX is ignored.

Succeeding cards follow as in Sections XV through XVII.

XIX. Alternate Input Method

A11 or part of the input may be read from a tape. This tape is mounted as Unit 23 with the appropriate job control cards. The tape is accessed by specifying the keyword, TAPE (FORMAT A4), in the proper place in the card input stream. Input will then be read from the tape until a SEND (A4) is encountered on the tape. This returns the input reader to the card input stream.

Note: A11 SEND formats used to end sections must be in card form as the SEND encountered on the tape only sends the reader back to the card input stream. Also blank cards which end sections are best not put on the tape but rather on cards as this allows the user to add card input to tape input, i.e., if a blank ends a section and is encountered on the tape format then the section ends and no new data may be added, but if the blank does not occur on tape the section is still open and can be closed with a blank card in the card input stream.

Example:
Input for member connectivity, Section IV, and coordinates have been generated on a tape in the prescribed manner.

Input cards are as follows:

TITLE
$0 \quad 5$
1-100
TAPE (reads data from a tape)
TRIM

- (additional elements if desiréd)
-
-

SEND

TAPE	(reads X-coordinates from tape)
	(Blank card to end section for X-coordinates)
TAPE	(reads Y-coordinates from tape)
	(Blank card to end section for Y-coordinates)
5.0	(card input for Z-coordinates)
.	

(Blank card ends section for Z-coordinates)
If no additional tape input, remaining card input as usual.

REFERENCES

1. Prager, W., "The Theory of Plasticity: A Survey of Recent Achievements," (James Clayton Lecture) Proc. Inst. Mech. Engrs., Vol. 169, 1955, p. 31.
2. Ziegler, H., "A Modification of Prager's Hardening Rule," Quart. App1. Math., Vo1. 17, No. 1, 1959, p. 55.
3. Armen, H., Jr., Pifko, A., and Levine, H., "Finite Element Analysis of Structures in the Plastic Range," NASA Contractor Report CR-1649, February 1971.
4. De Veubeke, B. F., "Displacement and Equilibrium Models in the Finite Element Method," in Stress Analysis, edited by Zienkiewicz and Hollister, John Wiley and Sons, Ltd., 1965, p. 145.
5. Armen, H., Jr., Levine, H., Pifko, A., and Levy, A., "Nonlinear Analysis of Structures," NASA Contractor Report CR-2351, March 1974; also Grumman Research Department Report RE-454, May 1973.
6. Abramowitz, M. and Stegun, I. A., Eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series, 1964.
7. Pifko, A., Levine, H. S., and Armen, H. Jr., "PLANS - A Finite Element Program for Nonlinear Analysis of Structures, Volume I Theoretical Manual," NASA Contractors Report NAS CR-2568, November 1975.

APPENDIX I - MULTIPOINT CONSTRAINTS

EXAMPLE 1

Node 1 and 2 are fixed.
There is an applied displacement at node 3 in the negative y direction. The distance between nodes 3 and 4 remains constant.

Boundary Conditions

011000000000	$1-4$	default condition
000000000000	124	
021000000000	3	

Dependencies

Node	Dof	Node.	Dof		
3	2	3	2	-.050	(specified displacement)
4	2	3	2	1.0	restraint condition that
4	3	3	3	1.0	$3-4$ remain rigid

Note: In the boundary condition cards for node 4, degrees of freedom 2 and 3 must be specified 0 because they are effectively eliminated from the solution (they are dependent degrees of freedom).

EXAMPLE 2 Rotation of Displacements at a Boundary

For this problem we set the displacement $\overline{\mathrm{u}}$ equal to zero and \bar{v} free. This corresponds to the normal displacement along \bar{x} equal to zero and the tangential displacement (in \vec{y} direction) free. The global coordinates of the problem are. x, y. Thus:

$$
\begin{aligned}
& u=\vec{u} \cos \varphi-\vec{v} \sin \varphi \\
& v=\bar{u} \sin \varphi+\bar{v} \cos \varphi
\end{aligned}
$$

The multipoint constraint cards are:

25	1	25	1	.86602540 E 00	25	2	-.50 E 00
25	2	25	1	.50 E 00	25	2	.8660254 E 00

Note: On the boundary condition cards, since $\bar{u}=0.0$ node 25 degree of freedom 1 is specified to be 0 but node 25 degree of freedom 2 is specified 1 or free since it remains an independent degree of freedom (although rotated). If the normal displacement $\overline{\bar{u}}$ were. not fixed (and the transformation performed merely to apply a normal load), it would have a 1 boundary condition specified.

APPENDIX II - SOLUTION PACKAGE

PODSYM - Solution of Symmetric Positive Definite Banded Matrix Equations

Problem
Solve $A X=Y$, where

is a banded positive definite symmetric matrix; X is the desired solution vector; and Y is the known right side (load vector). PODSYM is the user interface and supervisory routine. It uses the Cholesky algorithm which factors the total stiffness matrix into $L L^{T}$ (where L is a lower friangular matrix) and then solves a pair of triangular sets of equations.

The factorization is carried out by subroutine QFACT which supervised the storage and data set allocation and subroutine QCHOL which generates the lower triangular L-matrix. QCHOL implements the Cholesky algorithm 'to factor the positive definite symmetric A matrix as the product of a lower triangular matrix with its transpose:

$$
\mathrm{A}=\mathrm{LL}^{\mathrm{T}}
$$

A straightforward argument establishes the possibility of decomposing any positive definite matrix in this fashion. Once L has been obtained, it is not difficult to solve the system of linear equations $A X=Y$ by calculating Z as the solution of the lower triangular system $L Z=Y$, and then X as the solution of the upper triangular system $L^{T} X=Z$. The forward solution ($L Z=Y$) is accomplished by subroutines QFSOL and QFOR and the back solution ($L^{T} X=Z$) by subroutines $Q B S O L$ and $Q B A C$. Before the call to QBSOL, subroutine REVERS is called, which reverses the rows of L so that the last row becomes the first row, etc. This is accomplished in order to sequentially access L^{T} during the back solution.

The above algorithm is noteworthy for its assured stability and general efficiency. It is possible to carry out an error analysis of the procedure as it is represented on a digital computer; such analysis shows that the computed L matrix satisfies an equation of the form

$$
\mathrm{A}+\mathrm{E}=\mathrm{LL}^{\mathrm{T}}
$$

with bounds on the elements of E which show that E is small compared to A. The effect of rounding errors made in the subsequent solution of $\mathrm{LZ}=\mathrm{Y}$ and $\mathrm{L}^{\mathrm{T}} \mathrm{S}=\mathrm{Z}$ may then be taken into
account by (implicitly) introducing an additional perturbation F into A, and it is then concluded that the computed solution X_{o} exactly satisfies the equation

$$
(A=E+F) X_{O}=Y
$$

Since $E+F$ can be shown to be small, one would like to infer that X_{o} is almost an exact solution of the original equations, and unless A is too nearly singular, such a conclusion is indeed warranted. But if A is very ill-conditioned, no such result can be guaranteed, and X_{0} may be far from the mathematically correct solution; in this event single-precision computation will not suffice for the calculation of an accurate solution, and since the solution will be very sensitive to small errors in A, it is unlikely that even a high-precision computation will yield satisfactory results unless A and Y are known (and supplied) to more than single-precision accuracy. The PODSYM subroutines make a fairly realistic attempt to detect and report pathological conditions of this sort.

The large positive definite matrices that occur in practical work very often contain a large number of zero entries and the program seeks to benefit from the presence of these elements by modifying the standard Cholesky formulae.

$$
\ell_{k k}=\left[A_{k k}-\sum_{j=1}^{k-1} \ell_{k j}^{2}\right]^{\frac{1}{2}}
$$

and

$$
\ell_{i k}=\left[A_{i k}-\sum_{j=1}^{k-1} \ell_{i j} \ell_{k j}\right] / \ell_{k k} \quad \text { for } \quad i>k
$$

to read instead

$$
\ell_{k k}=\left[A_{k k}-\sum_{j=v(k)}^{k-1} \ell_{k j}^{2}\right]^{\frac{1}{3}}
$$

and

$$
\ell_{i k}=\left[A_{i k}-\sum_{j=\mu(i, k)}^{k-1} \ell_{i j} \ell_{k j}\right] / \ell_{k k}
$$

APPENDIX III - CHANGING THE NUMBER OF NODES
 AND MEMBERS IN BEND

The number of nodes and members allowed for a BEND problem is variable. The following changes must be made in the MAIN program for a successful up-dimensioning or down-dimensioning of nodes and/or members.

- Reset MXMEM equal to the maximum number of members desired
- Reset MXNOD to the maximum number of nodes desired
- Redimension C the main working area so that it is greater than the greater of $10.5 \div$ MXNOD $+6.5 \div$ MXMEM or $24 \div$ MXNOD $+1975$
- Set NCORE equal to the dimension of the C array
- For maximum efficiency set MHCON equal to a prime number approximately $1 / 3$ more than MXMEM
- For maximum efficiency set NHCON equal to a prime number approximately $1 / 3$ more than MXNOD. A table of prime numbers appears in Ref. 6, page 870.
- For CDC versions, dimension IRAC (random. access array) to MXMEM+1.

The following limitations on the number of property specifications exist in $B E N D$. and can only be changed through redimensioning within the program:
Property or Section Current Limitation
Number of MATl and MAT2 property 20
types
Number of MBM property types 20
Number of beam section property 100
types
Number of types of edge loads 100
for EDG1, EDG2, EDG3 arrays
Number of types of surface 100
loads applied (SURF)
Number of multipoint 500
constraint conditions
Number of beam element 100
distributed load specification types
Number of boundary condition 100
type specifications

ALL ZERO
IF NO IN-PLANE LOAD

ALL ZERO IF
NO IN.PLANE LOAD

NOTES
(1) = 0 FOR ZERO OR UNIFORN DIRECT IN-PLANE LOADS
$=1$ FOR NON-UNIFORM IN-PLANE LOADS
(2) = OFOR ZERO IN-PLANE SHEAR LOAD
$=1$ FOR, IN-PLANE SHEAR
NODE 5 COMPLETELY FREE

BOUNDARY CONDITION: $1 \cdot$ FREE; $0=$ FIXED

NODE	U	v	W	${ }^{0} \times$	${ }^{0}{ }_{y}$	O_{2}	${ }^{e} \times$	${ }^{\theta}{ }_{v}$	$\gamma_{x y}$	${ }^{\text {x }}$ (${ }^{\kappa}{ }_{y}$	$\kappa_{x y}$
1	0	0	1	0	0	0	1	1	0	1	1	0
2	1	0	1	0	1	0	1	1	0	1	1	0
3	0	0	0	0	0	0	1	0	0	1	0	0
4	0	1	1	1	0	0	1	1	0	1	1	0
6	0	0	0	0	0	0	1	0	1	1	0	0
7	0	0	0	0	0	0	0	1	0	0.	1	0
8	0	0	0	0	0	0	0	1	1	0	1	0
9	0	0	0	0	0	0	0	0	0	0	0	0

NODE 5 COMPLETELYFREE

BOUNDARY CONDITION: 1 - FREE; $0=$ FIXED

NOTES
(1) = 0 FOR ZERO OR UNIFORM DIRECT IN.PLANE LOADS
$=1$ FOR NON-UNIFORM IN-PLANE LOADS
(2) $=0$ FOR ZERO IN-PLANE SHEAR LOAD
$=1$ FOR IN.PLANE SHEAR
NODE 5 COMPLETELY FREE

BOUNDARY CONDITION: $1-F R E E ; 0=$ FIXED

NODE	U	V	W	${ }^{0} \times$	${ }^{6} \mathrm{y}$	0_{z}	${ }^{8} \times$	${ }^{e} \mathrm{y}$	$\gamma_{x y}$	${ }^{h} \times x$	${ }^{\mathrm{K}} \mathrm{YV}$	${ }^{\kappa} \times{ }^{\prime}$
1	0	0	1	0	0	0	1	1	0	1	1	0
2	0	0	1	0	1	0	1	,	0	1	1	0
3	0	0	0	0	1	0	1	11)	0	0	0	0
3	0	0	0	0	1	0	1	$0^{(2)}$	0	0	0	0
4	0	1	1	1	0	0	1	1	0	1	1	0
6	1	$1^{(1)}$	0	0	1	0	1	$1^{(1)}$	$0^{(1)}$	0	0	1
6	1	$0^{(2)}$	0	0	1	0	1	$0^{(2)}$	$1^{(2)}$	0	0	1
7	0	0	0	1	0	0	$1^{(1)}$	1	0	0	0	0
7	0	0	0	1	0	0	$0^{(2)}$	1	0	0	0	0
8	11)	0	0	1	0	0	$1^{(1)}$	1	$0^{(1)}$	0	0	1
8	$0^{(2)}$	0	0	1	0	0	$0^{(2)}$	1	$1^{(2)}$	0	0	1
9	0	0	0	0	0	0	$1^{(1)}$	$1^{(1)}$	0	0	0	1
9	0	0	0	0	0	0	$0^{(2)}$	$0^{(2)}$	0	0	0	1

NOTES.
(1) WHEN DISPLACEMENTS ARE NOT RESTRAINED IN THE DIRECTION OF THE EDGE
(2) WHEN DISPLACEMENTS ARE FULIY RESTRAINED

NODE 5 COMPLETELY FREE

A Program for the Elastic-Plastic Analysis of Three Dimensional Solids

INSTRUCTIONS FOR THE USE OF HEX

HEX is a finite element program to treat the elastic, elasticplastic or elastic-cyclic plastic response of arbitrary three dimensional solid structures. The program uses a family of isoparametric hexahedra elements (Refs. 1 and 2) consisting of eight-node hexahedra and hexahedra with up to 12 additional midside nodes as shown in Fig. 1. Sample problems from the present program can be found in Ref. 3.

The program is capable of treating the elastic and the elasticideally plastic response of orthotropic materials. In addition, consideration is given to isotropic materials exhibiting elasticideally plastic, linear strain hardening, or nonlinear strain hardening behavior. Further, the kinematic hardening theory of plasticity is used (Refs. 4-6) so that provision for cyclic loading condicions involving reversed plastic deformation is included.

The input to the program is categorized in the following sections:
I. Problem Title FORMAT (20A4)

Any 80-character title describing the problem.
II. NPNTC, NPRNT, IRESRT, NUTAP, INPRT FORMAT (5I5)

$$
0 \leq \text { NPNTC } \leq 63:
$$

NPNTC is the sum of the following integers corresponding to the option desired.

$$
\text { If } \begin{aligned}
\text { NPNTC } & =0 \text { No intermediate printout } \\
& =1 \text { Print the load vector } \\
& =2 \text { Print element stiffness matrix }
\end{aligned}
$$

Local Coordinates

Cartesian Coordinates

Fig. 1 Isoparametric Hexahedra

$$
\begin{aligned}
\text { NPNTC }= & 16 \text { Print each element stiffness matrix entry } \\
& =\text { to be stacked with its stacking index } \\
= & 32 \text { Print the total stiffness matrix }
\end{aligned}
$$

For example, if it is desired to print the load vector and the total stiffness matrix, $N P N T C=1+32=33$.

NPRNT:
If ≤ 0, perform elastic analysis only.
If >0, perform plastic analysis, printing output every NPRNT increments of load.

IRESRT: (See Section XVIII)
0 , Elastic (and/or) plastic run. Do not generate a restart tape

1, Elastic (and/or) plastic (cyclic) run. Build a new restart tape

2, Plastic run with elastic values from previously created restart tape

3, Plastic restart run starting at some specified load level

4, Cyclic restart run
NUTAP:
Applicable only if restarting from a restart tape.
0 , No new tape written
1, Complete new tape created and additional restart data written

INPRT:
0 , Write restart tape only at $P=$ PMAX (i.e., at maximum load)
N, Write restart tape every N increments of load
III. Node Specification (LiI5)

This section defines an allowable set of external node point numbers. The maximum node number that can be used is 9999. The program uses this information in two ways. First to set up a table of allowable node points that is used to check all subsequent node point input. Secondly, the program converts each external node number to an internal number consecutively in the order that the nods appears on the input card. Consequently the order of the input of external node numbers is completely arbitrary and need not be increasing monotonically. In practice the node numbers should be numbered so as to minimize the bandwidth. Once the input is read the
program operates with the internal numbers which are now numbered from 1 . through the number of nodes in the model. In this manner the node ordering and therefore the bandwidth of the stiffness matrix can be easily changed and nodes can be inserted or deleted by changing the external node specification.

The input is specified by entering the appropriate number on the input cards in fields of five. However, for this purpose the user can also utilize a shorthand form of the input. That is, specifying m and $-n$ consecutively is the equivalent of the specification of nodes $m, m+1, m+2, \ldots, n$ and spesifying $m,-p$, and $-n$ consecutively is the equivalent of the specifiction of nodes $m, m+p, m+2 p, \ldots, m+k p$ where $m+k p$ is the highest integer of the form less than or equal to n. For example, the specification of nodes 1 through 100 is written as $1-100$ and $1,3,5, \ldots, 99$ as 1-2-99. This card input appears in fields of 5 (I5 Format) with 16 items per card. Any number of continuation cards may be used. A zero or blank I5 field ends the specifination.

IV. Member Connectivity (Node Numbers of Each Member) FORMAT (A4, 6X, 9I5)

The first alphanumeric field defines the element type as follows

HEX8 - eight node hexahedra element
HX20 - hexahedra element with up to twelve additional midside nodes
MSGN - mesh generator for eight-node hexahedra
SEND - ends the section
The first integer field designates the member number. The next integer field designates the connecting nodes as follows:

HEX8 - The eight corner nodes are specified in the order shown on Fig. 2.

Fig. 2 Order of Corner Nodes

Fig. 3 Order of Midside Nodes

HX20 - The eight corner nodes are specified first in the order shown in Fig. 2. The additional midside nodes are specified on a second card (FORMAT (1215)) according to the order shown in Fig. 3. An element can be constructed with any combination of midside nodes. If a midside node is not specified, a zero is placed in its corresponding position on the card. If a midside node is specified for an element, a midside node should also be specified for every element coincident with that side.

Note: The hexahedra elements with midside nodes can have curved boundaries. The shape of any side is described by a quadratic polynomial through the three node points. If a side containing a midside node is straight, the coordinates of the midside node can be read in as zero. In this case the nodal coprdinates are calculated within the program.

MSGN - The nodal connectivity is automatically generated for eight-node hexahedra according to the convention in Fig. 2. The first card for this input option requires the four-character identifier MSGN. A second card is. required with FORMAT (5I5) which specifies the number of element subdivisions in three coordinate directions. The integers in the five fields are
the subdivisions in the x_{1}, x_{2}, x_{3} directions, and the first node number and element number in the mesh. The coordinate system must be right handed. The mesh generator assumes that the nodes are numbered consecutively along the x_{1} direction specified in the first 15 field then incremented on the $x_{1}-x_{3}$ face until that face is completely specified. The mesh is then incremented in the x_{2} direction and then consecutively numbered on the $x_{1}-x_{3}$ plane. The element numbers are numbered consecutively starting at the specified starting value in the positive x_{1} direction. The mesh generating capability still requires that the nodes be defined in Section IV and that the nodal coordinates be explicitly defined in Section VI. An example of the convention for a $4 \times 3 \times 2$ mesh in Cartesian coordinates with the starting _-node and element equal to one is shown in Fig. 4.
V. X-Coordinates of Nodes FORMAT (E15.7, 13I5)

The global x-coordinates of the nodes appearing in the i5 fields are set to the value in the $E 15.7$ field. Any number of continuation cards may be used; their first fifteen columns are ignored. A zero or blank $I 5$ field terminates the card sean for a given x-coordinate. A zero or blank first 15 field (columns 16-20) on a noncontinuation card ends the sertion. Both shorthand representations of Section III are allowed.
VI. Y-Coordinates of the Nodes. Same as Section V.
VII. Z-Coordinates of the Nodes. Same as Section V.

Fig. 4 Node and Member Ordering Convention for Automatic Mesh Generation
VIII. Boundary Conditions FORMAT (I3, 2II, 5X, 14I5)

The first three fields give the boundary conditions specifications in the order: u, v, w; where u, v, w are global displacements in the global x, y, z directions, respectively.

Zero-denotes a fixed degree of freedom
One denotes a free degree of freedom
Two will result in the application of a unit generalized displacement, or a corresponding card may be included in Section IX (dependent degrees of freedom) designating the magnitude of the applied generalized displacement.

The $14 I 5$ fields give the applicable nodes for the boundary condition specifications, with both shorthand notations of Section III permitted. Any number of continuation cards may be used for a given specification. However, only the 1415 fields are used on a continuation card. A zero or blank I 5 field terminates
the card scan for a given boundary rondition specification. Note: if the last field of a card (columns 7h-80) is the last specification, an additional blank card (continuation card) must follow. A zero or blank first IS field (columns 11-15) on a noncontinuation card ends the section. If a node's boundary conditions are not specified in this section, all the derrees of freedom are assumed to be free. To change this default sondition, the first rard of this section should be set to the desired default with all nodes used in the problem specified. Note: Maximum number of nodes is cirrently 2500.
IX. Dependent Degrees of Freedom FORMAT (215, 2(5X, 2I5, E15.7))

This section designates the input for both single and multipoint constraints as well as applied displacement of the form:

1) $\delta_{i}=\alpha_{1} \delta_{1}+\alpha_{2} \delta_{2}+\cdots \alpha_{n} \delta_{n}$
where δ_{i} is a dependent degree of freedom, $\delta_{1} \ldots F_{n}$ are independent degrees of freedom, and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ are coefficients.
2) Rotation of displacements at a node

$$
\begin{aligned}
& \delta_{i}=\alpha_{1} \tilde{\delta}_{i}+\alpha_{2} \tilde{\delta}_{j}+\alpha_{3} \tilde{\delta}_{k} \\
& \delta_{j}=\beta_{1} \tilde{\delta}_{i}+\beta_{2} \tilde{\delta}_{j}+\beta_{3} \tilde{\delta}_{k} \\
& \delta_{k}=\gamma_{1} \tilde{\delta}_{i}+\gamma_{2} \tilde{\delta}_{j}+\gamma_{3} \tilde{\delta}_{k}
\end{aligned}
$$

where the $\alpha, \beta, \gamma^{1} s$ are the direction cosines of the rotation, $i_{i}, \delta_{j}, \delta_{k}$ are the displacements with respect to the original global directions and \tilde{S}_{i}, $\tilde{\delta}_{j}, \tilde{\delta}_{k}$ are the components of displacements at the node with respect to the new coordinate axes. An example of this capability is given in Appendix I.
3) Applied generalized displacement
${ }^{\sigma_{i}}=\alpha_{1}$
where the coefficient α_{1} is the applied generalized displacement.

The first two 15 fields designate a node number and a degree of freedom (i.e., 1-3). The dependency is defined in the following three fields. The two integer fields designate the node number and degree of freedom number and the coefficient by the floating point field. If there is another dependency for the node, it is designated in a similar fashion in the next three fields. Any number of continuation cards can be used with the first two fields blank. The section is ended by a blank or zero in the third integer field (blank card). Examples of the use of multipoint constṛaints are in Appendix I.

X. Material Properties

The input for material properties consists of cards as fol-- Iows:

CARD 1: FORMAT (A4, 1X, 5E15.7)
MAT1 = four-character identifier
EONE = Young's modulus in principal property axis (1)
ETWO = Young's modulus in principal property axis (2)
ETEE = Young's modulus in principal property axis (3)
VONTO $=$ Poisson's ratio, v_{12}
VTOTE $=$ Poisson's ratio, v_{23}
CARD 2: FORMAT (4E15.7)
VTETO $=$ Poisson's ratio, v_{32}
GONTO $=$ Shear modulus, G_{12}
GTOTE $=$, Shear modulus, G_{23}
GONTE $=$ Shear modulus, G_{13}

CARD 3: FORMAT (3E15.7)

CARD 4: FORMAT (3E15.7)
TALF-1 Coefficient of thermal expansion in the principal I direction
TALF-2 Coefficient of thermal expansion in the principal 2 direction

TALF-3 . Coefficient of thermal expansion in the principal 3 direction

CARD 5: FORMAT (5E15.7)
SIGOX $=$ Yield stress in principal 1 direction
SIGOY $=$ Yield stress in principal 2 direction
SIGOZ $=$ Yield stress in principal 3 direction
SIGOXY $=$ Shear yield stress in principal 1-2 plane
SIGOYZ $=$ Shear yield stress in principal 2-3 plane

CARD 6: FORMAT (5E15.7)
SIGOZX $=\quad$ Shear yield stress in principal 3-1 direction
RMOSN $=$.If RMOSS $\neq 0$; RMOSN $=n$, the shape parameter used in Ramberg-Osgood representation of stress-strain behavior.

If RMOSS $=0$; RMOSN $=\alpha$ the slope of the linear strain-hardening stress-strain representation, i.e., $\alpha=E_{T} / E$ where E_{T} is the tangent modulus.

RMOSS $=$ If RMOSS $\neq 0$; RMOSS = Ramberg-Osgood parameter $\sigma_{0.7}$

Note (1): If RMOSN $=0$ and RMOSS $=0$ the material for the element(s) is assumed to be elastic-ideally plastic.
YLDST $=$ Yield stress (for isotropic materials)
Note (2): Only initially isotropic materials can be treated when considering linear or nonlinear strain-hardening:

RMOSE $=$ Ramberg-Osgood parameter E (Young's modulus) Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank I5 field ends each member listing.

- Note: The transformation between the

1, 2, 3 material axes and the local element x, y, z axes are defined by path dependent angular rotations $\beta_{1}, \beta_{2}, \beta_{3}$. . First a rotation about the 1 axis, β_{1}, then a rotation about the 2 axis in the transformed system and then a rotation, ρ_{3} about the 3 axis in the transformed system

ACUM - Table describing yield stress versus accumulated plastic strain relationship
FORMAT (A4/A4, 1X, I5, /, A4, IX, 2E15.7, /, (16I5))

CARD 1:
ACUM - four character identifier
CARD 2:
ACUM - four character identifier
NUMP - number of pairs of points used to represent the yield stress versus accumulated plastic strain

CARD 3:
ACUM - four character identifier
VARSiG - yield stress
SUMEPS - accumulated plastic strain

Card 3 is repeated "NUMP" times where NUMP is the number of pairs in the table. A maximum of 20 pairs is allowed.

Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank I5 field ends each member listing.

GAUSS or LOBATTO - Designation of stress points within an element
CARD 1: FORMAT (A4, 1X, 3I15)

$$
\text { or }\left\{\begin{aligned}
\text { GAUSS }= & \text { five letter character identifier } \\
\text { LOBAT }= & \text { five letter character identifier } \\
\mathrm{NX}= & \text { number of stress points in local } \mathrm{x} \\
& \text { direction } \\
\mathrm{NY}= & \text { number of stress points in local y } \\
& \text { direction } \\
\mathrm{NZ}= & \text { number of stress points in local } z \\
& \text { direction }
\end{aligned}\right.
$$

CARD 2: Applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank I5 field ends each member listing.

SEND in columns 1-4 ends the section.

Note: Up to 8 Gauss or 10 Lobatto points are permitted in any one direction and a total of 50 points are permitted in any one element. For local coordinate definitions see Figure 2. For a definition of these integration points see Ref. 7.

XI. Applied Loads

Three different types of loading are currently admissible concentrated loads at nodes, distributed loads on a surface of a hexahedron member, and thermal loads. Each loading situation is designated by one of the following four~character key words:

CONC (Concentrated load)
SURF (Surface distributed load)
TEMP (Temperatures for thermal loading)

Distributed load -
CARD 1: FORMAT (A4)
Key word SURF
CARD 2: FORMAT (I5, 5X, 8I5)
First I5 field: number of nodes on the loaded surface. There is a minimum of four nodes per surface and a maximum of eight in order to accommodate midside nodes.

Second through
fifth I5 fields: These four fields contain the four corner node numbers in counterclockwise or clockwise order.

Sixth through
ninth I5 fields: These four fields contain the midside node numbers (if any). If a particular midside node is omitted, a zero or blank is placed in the appropriate field on the input card.
The input order for a given surface is shown below for counterclockwise order.

The magnitude of the surface tractions at each node specified above follow: There is one card for each node specified.

SUCCEEDING CARDS: FORMAT (I5, 3E15.7)
NUM $=$ Node number specified on CARD 2 (I5 field)
$\mathrm{TX}=$ Surface traction in global x -direction
TY = Surface traction in global y-direction
$\mathrm{TZ}=$ Surface traction in global z-direction
A blank card ends the input for surface loads.

Note: The keyword SURF appears only once at the beginning of the specification of surface loads. Additional input for surface loads begin with card 2 .

Concentrated load -

CARD 1: FORMAT (A4)
Key word CONC
CARD 2: FORMAT (I5, 3E15.7)
NUM = Node number at point of application of load (I5 field)
$F X=$ Load component in the global x-direction (first E15.7. field)
$F Y=$ Load component in the global y-direction (second E15.7 field)
$\mathrm{F} Z=$ Load component in the global z -direction (third E15.7 field)

As many load components as desired may be specified. A zero or blank first 15 field ends the specification of concentrated loads.

Note: The keyword CONC appears only once at the beginning of the specification of concentrated loads. Additional input for concentrated loads begin with card 2.

Thermal load -
Each card after the first designates the temperature increment from some reference temperature followed by its applicable nodes. The input format is identical to that described for the input of nodal coordinates in Section V.

CARD 1: FORMAT (A4, 1X, E15.7)
Key word TEMP
TREF = Reference temperature in E15.7 field
The succeeding cards are as in Section V for nodal coordinates. That is, the nodal temperature in the first E15.7 field followed by the applicable nodes. A blank card ends the specification of nodal temperatures.

Note: The nodal temperature specified at the corner nodes of an individual hexahedra are interpolated to obtain the temperature used in calculating stresses and strains at the stress points. SEND in columns $1-4$ ends the section for applied loading.
XII. Members to be Printed - FORMAT (16I5)

Specify the members whose strains and stresses are to be printed. Both shorthands of Section III are allowed. A maximum of 2500 members may be specified. Members in excess of 2500 and undefined member numbers are ignored. A blank card or card with only zero entries ends the section.
XIII. Nodes to be Printed - FORMAT (16I5)

Up to 2500 nodes whose displacements are to be printed for the analysis, as per Section XII. A blank card ends the section.
XIV. Parameters for Plastic Analysis - FORMAT (2E15.7)

PMAX = Maximum load to be applied for this half cycle
PPCT $=$ Load increment as percentage of yield load
XV. Parameters-for Succeeding Load Cycles - FORMAT (A5, I5, 2E15.7)

CARD 1: FORMAT (A5)
Keyword defining the load type as follows: CYCLE $=$ Same load distribution as last half cycle NEW = New load distribution to be specified If any other word (or a blank card) is used the analysis is complete.

CARD 2: FORMAT (I5, 2E15.7)

$$
\begin{aligned}
\text { NPRNT }= & \text { If equal to zero, no additional load cycle and end } \\
& \text { of problem. If greater than zero, print output } \\
& \text { every NPRNT increments. } \\
\text { PMAX = } & \text { New maximum load for this load cycle }
\end{aligned}
$$

PPCT = Load increment as percentage of yield load.
Note: When CYCIE is specified, the original load distribution is maintained. In this case PPCT should be set equal to onehalf the original value since the elastic range for subsequent cycles is twice the elastic range for initial loading.

XVa. If NEW is used in Section XV a new load must be specified. This is accomplished with input identical to Section XI Applied Loads. If CYCLE is specified in Section XV this section is omitted.
XVI. Change Plastic Material Properties When Cycle is Specified

CARD 1: FORMAT (A4, 1X, I5)
MAT1 = Key word
IMEM = One member number from the group that is to be changed.

CARD 2: FORMAT (5E15.7
$\left.\begin{array}{l}\text { SIGOX } \\ \text { SIGOY } \\ \text { SIGOZ } \\ \text { SIGOXY } \\ \text { SIGOYZ }\end{array}\right\} \quad$ Defined in Section X

CARD 3: FORMAT (5E15.7)
SIGOZX
RMOSN
RMOSS \quad Defined in Section X
YLDST
RMOSE \int
The section is ended with a section end card, SEND.

Note: If there is no change in material properties, a SEND•card must appear in the appropriate place in the input stream. Succeeding load reversals (CYCLE) or new loads (NEW) are specified with additional input beginning with Section XV. A blank card (or any alphnumeric other than CYCLE or NEW) branches to Section XVII to end the job.
XVII. Problem End - FORMAT (A4)

Each problem's input must be ended with a card reading "ENDb" where "b" denotes a blank, in columns 1-4. The last problem in a run should end with a card reading "STOP" in column l-4 instead of "ENDb."
XVIII. Restarting a Problem

The initial restart tape is created on Unit 21 . Subsequent restart jobs mount the restart tape as Unit 21 and if desired (NUTAP >0) copies and continues the restart tape on Unit 22.

CARD 1: Problem Title - FORMAT (20A4)
As in Section I
CARD 2: NPNTC, NPRNT, IRESRT, NUTAP, INPRT - FORMAT (5I5) As in Section II. Here NPNTC is ignored.

If TRESRT is equal to 2
Restart from an elastic critical load using a previously created restart tape

CARD 3: PMAX, PPCT - FORMAT (2E15.7)
PMAX = Maximum load to be applied for this half cycle
PPCT $=$ Load increment as percentage of yield load
Input is then continued from section XV

If IRESRT is equal to 3
Continuation from some previously plastic load. The job can be restarted from a previous maximum load or from any intermediate load level.

CARD 3: PMAX, NRSRT - FORMAT (E15.0, I5)
If starting from a previous maximum load NRSRT can be ignored. If starting from some intermediate load level, NRSRT is a unique number obtained as output from the job that generated the restart tape. This output is of the form,

夫 ※ * * *
PLASTIC ANALYSIS VALUES FOR RESTART TAPE HAVE BEEN WRITTEN AT $\mathrm{P}=1.5000000 \mathrm{E}+03 \mathrm{FOR}$ PRINT INTERVAL 30

* * * * * *

In this case NRSRT is equal to 30 and the load is not necessarily the last maximum value.

Note: For cases when the job ends abnormally (for example when time or lines are exceeded) the job can be restarted with a value for NRSRT obtained from the output. In this case the last value of NRSRT should not be used. This will insure that a complete set of data will be accessed from the restart tape.

If TRESRT is equal to 4
Restart from a previous maximum load level followed by application of a new load (NEW) or reversal of a previous load distribution (CYCLE). A new load or ${ }^{\text {(}}$ a reversal of a previous load distribution can be placed on the structure from any previously generater' and saved state of stress.

CARD 3: PMAX, NRSRT - FORMAT (E15.0, I5)
If starting from a previous maximum load NRSRT can be ignored. If starting from some intermediate load level, NRSTR is a unique number obtained as output from the job that generated the restart tape. This output has the form shown in the preceding discussion for IRESRT equal to three. The value of PMAX is ignored.

Succeeding cards follow as in Sections XV through XVII.
XIX. Alternate Input Method

All or part of the input may be read from a tape. This tape is mounted as Unit 23 with the appropriate job control cards. The tape is accessed by specifying the keyword, TAPE (FORMAT A4), in the proper place in the card input stream. Input will then be read from the tape until a SEND (A4) is encountered on the tape. This returns the input reader to the card input stream.

Example:
Input for member connectivity, Section IV, and coordinates have been generated on a tape in the prescribed manner.

Input cards are as follows:
TITLE
$0 \quad 5$
1-100
TAPE (reads data from a tape)

HEX8

-	(additional elements if desired)
-	
-	
SEND	
TAPE	(reads X-coordinates from tape)
	(Blank card to end section for X -coordinates)
TAPE	(reads Y-coordinates from tape)
	(Blank card to end section for Y-coordinates)
5.0	(card input for Z -coordinates
-	
-	
	(Blank card ends section for Z -coordinates)

If no additional tape input, remaining card input as usual.

Note: All SEND formats used to end sertions must be in card form as the SEND encountered on the tape only sends the reader back to the card input stream. Also blank cards whirh end sections are best not put on the tape but rather on cards as this allows the user to add card input to tape input, i.e., if a blank ends a section and is encountered on the tape format then the sertion ends and no new data may be added, but if the blank does not: occur on tape the section is still open and can be r.losed with a blank card in the card input stream.

REFERENCES

1. Zienkiewicz, 0, et a1., "Iso-Parametric and Associated Element Families for Two and Three Dimensional Analysis," Finite Element Methods in Stress Analysis, TAPIR, Technical University of Norway, Trondheim, 1969.
2. Levy, A., "A Three Dimensional 'Variable Node' Isoparametric Solid Element," Grumman Research Department Memorandum RM-587, July 1974.
3. Armen, H., Levine, H., Pifko, A., and Levy, A., "Nonlinear Analysis of Structures," NASA Contractors Report CR-2351, March 1974: also Grumman Research Department Report RE-454, May 1973.
4. Prager, W., "The Theory of Plasticity: A Survey of Recent Achievements," (James Clayton Lecture) Proc. Inst. Mech. Engrs., Vol. 169, p. 31, 1955.
5. Ziegler, H., "A Modification of Prager's Hardening Rule," Quart. Appl. Math., Vo1. 17, No. 1, p. 55, 1959.
6. Armen, H., Jr., Pifko, A., and Levine, H., "Finite Element Analysis of Structures in the Plastic Range," NASA Contractor Report CR-1649, February 1971.
7. Abramowitz, M. and Stegun, I. A., Eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Mathematics Series, 1964.

APPENDIX I - MULTIPOINT CONSTRAINTS

EXAMPLE I

Node 1 and 2 are fixed.
There is an applied displacement at node 3 in the negative y direction. The distance between nodes 3 and 4 remains constant.

Boundary Conditions

| 011000 | $1-4$ |
| :--- | :--- | :--- |
| 001000 | 124 |
| 021000 | 3 |

Blank card

Dependencies

Node	Dof	Node	Dof		
3	2	3	2	-.050	(specified displacement)
4	2	3	2	1.0	restraint condition thet
4	3	3	3	1.0	$3-4$ remain rigid

Note: In the boundary condition cards for node 4, degrees of freedom ? and 3 must be specified 0 because they are effectively eliminated from the solution (they are dependent degrees of freedom).

EXAMPLE 2 Rotation of Displacements at a Boundary

For this problem we set the displacement $\overrightarrow{\mathrm{u}}$ equal to zero and \bar{v} free. This corresponds to the normal displacement along \bar{x} equal to zero and the tangential displacement (in \bar{y} direction) free. The global coordinates of the problem are x, y. Thus:

$$
\begin{aligned}
& \mathrm{u}=\overline{\mathrm{u}} \cos \varphi-\overrightarrow{\mathrm{v}} \sin \varphi \\
& \mathrm{v}=\overline{\mathrm{u}} \sin \varphi+\overrightarrow{\mathrm{v}} \cos \varphi
\end{aligned}
$$

The multipoint constraint cards are:

25	1	25	1	.86602540 E 00	25	2	-.50 E 00
25	2	25	1	.50 E 00	25	2	.8660254 E 00

Note: On the boundary condition cards, since $\overline{\mathrm{u}}=0.0$ node 25 degree of freedom 1 is specified to be 0 but node 25 degree of freedom 2 is specified 1 or free since it remains an independent degree of freedom (although rotated). If the normal displacement \bar{u} were not fixed (and the transformation performed merely to apply a normal load), it would have a 1 boundary condition specified.

APPENDIX II - SOLUTION PACKAGE

PODSYM - Solution of Symmetric Positive Definite Banded
Matrix Equations

Problem
Solve $A X=Y$, where

is a banded positive definite symmetric matrix; X is the desired solution vector; and Y is the known right side (load vector). PODSYM is the user interface and supervisory routine. It uses the Cholesky algorithm which factors the total stiffness matrix into LL ${ }^{T}$ (where L is a lower triangular matrix) and then solves a pair of triangular sets of equations.

The factorization is carried out by subroutine QFACT which supervised the storage and data set allocation and subroutine QCHOL which generates the lower triangular L matrix. QCHOL implements the Cholesky algorithm to factor the positive definite symmetric A matrix as the product of a lower triangular matrix with its transpose:

$$
\mathrm{A}=\mathrm{LL}^{\mathrm{T}}
$$

A straightforward argument establishes the possibility of decomposing any positive definite matrix in this fashion. Once L has been obtained, it is not difficult to solve the system of linear equations $A X=Y$ by calculating Z as the solution of the lower triangular system $L Z=Y$, and then X as the solution of the upper triangular system $L^{T} X=Z$. The forward solution ($\mathrm{LZ}=\mathrm{Y}$) is accomplished by subroutines QFSOL and QFOR and the back solution ($L^{T} X=Z$) by subroutines QBSOL and QBAC. Before the call to QBSOL, subroutine REVERS is called, which reverses the rows of L so that the last row becomes the first row, etc. This is accomplished in order to sequentially access L^{T} during the back solution.

The above algorithm is noteworthy for its assured stability and general efficiency. It is possible to carry out an error analysis of the procedure as it is represented on a digital compu~ ter; such analysis shows that the computed L matrix satisfies an equation of the form

$$
A+E=L L^{T}
$$

with bounds on the elements of E which show that E is small compared to A. The effect of rounding errors made in the subse~ quent solution of $L Z=Y$ and $L^{T} X=Z$ may then be taken into
account by (implicitly) introducing an additional perturbation F into A, and it is then concluded that the computed solution X_{o} exactly satisfies the equation

$$
(A=E+F) X_{0}=Y
$$

Since $E+F$ can be shown to be small, one would like to infer that X_{o} is almost an exact solution of the original equations, and unless A is too nearly singular, such a conclusion is indeed warranted. But if A is very ill-conditioned, no such result can be guaranteed, and X_{o} may be far from the mathematically correct solution; in this event single-precision computation will not suffice for the calculation of an accurate solution, and since the solution will be very sensitive to small errors in A, it is unlikely that even a high-precision computation will yield satisfactory results unless A and Y are known (and supplied) to more than single-precision accuracy. The PODSYM subroutines make a fairly realistic attempt to detect and report pathological conditions of this sort.

The large positive definite matrices that occur in practical work very often contain a large number of zero entries and the program seeks to benefit from the presence of these elements by modifying the standard Cholesky formulae

$$
\ell_{k k}=\left[A_{k k}-\sum_{j=1}^{k-1} \ell_{k j}^{2}\right]^{\frac{1}{2}}
$$

and

$$
\ell_{i k}=\left\{A_{i k}-\sum_{j=1}^{k-1} \ell_{i j} \ell_{k j} \mid / \ell_{k k} \quad \text { for } \quad i>k\right.
$$

to read instead

$$
\ell_{k k}=\left[A_{k k}-\sum_{j=v(k)}^{k-1} \ell_{k j}^{2}\right]^{\frac{1}{2}}
$$

and

$$
\ell_{i k}=\left[A_{i k}-\sum_{j=\mu(i, k)}^{k-1} \ell_{i j} \ell_{k j}\right] / \ell_{k k}
$$

INSTRUCTIONS FOR
THE USE OF REVBY

A Program for the Elastic-Plastic Analysis of Bodies of Revolution

INSTRUCTIONS FOR THE USE OF REVBY

REVBY is a finite element program to treat the elastic, elastic-plastic, or elastic-cyclic plastic response of orthotropic axisymmetric solids of revolution under axisymmetric loadings. Currently, three different types of elements are available for the analysis of thick and thin bodies of revolution:

1. Revolved Triangular Element

The revolved triangular element used is similar to the element presented in Ref. 1, restricted to axisymmetric loading, i.e., independent of the circumferential direction, but including orthotropic material properties (see Fig. 1).
2. Thin Shell Element

The thin shell element used was developed at Grumman and the theoretical derivations are presented in Refs. 2 and 3. Cubic Hermitian polynomials represent the three displacement components. Again, on1y axisymmetric loading is allowed but orthotropic material properties are included (see Fig. 2).
3. Thin Ring Stiffener Element

The thin ring stiffener element is similar to the one presented in Ref. 4 with the exception that the ring may be attached with arbitrary eccentricities. No warping of the cross section is allowed and the shear center and centroid must coincide. Five different cross-sectional geometries are available.

Displacement Assumption:

$$
\begin{aligned}
& u_{r}=a_{1}+a_{2} r+a_{3} z \\
& u_{z}=a_{4}+a_{5} r+a_{6} z \\
& u_{9}=a_{7}+a_{8} r+a_{9} z
\end{aligned}
$$

Initial Strain Distribution:

$$
\epsilon_{i j}(r, z)=\text { constant }
$$

Displacement Assumption:

$$
\begin{aligned}
& \mathrm{u}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3} 5^{2}+\mathrm{a}_{4} \xi^{3} \\
& \mathrm{w}=\mathrm{b}_{1}+\mathrm{b}_{2}+\mathrm{b}_{3} 5^{2}+\mathrm{b}_{4} \xi^{3} \\
& \mathrm{v}=\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3} 5^{2}+\mathrm{c}_{4} \xi^{3}
\end{aligned}
$$

Initial Strain Distribution:

$$
\left\{\begin{array}{c}
\epsilon_{s} \\
\epsilon_{g} \\
\gamma_{s \theta}
\end{array}\right\}=(1-\xi)\left\{\begin{array}{c}
\epsilon_{s}^{i}(\zeta) \\
\epsilon_{g}^{i}(\zeta) \\
\gamma_{s \theta}^{i}(\zeta)
\end{array}\right\}+\xi\left\{\begin{array}{c}
\epsilon_{s}^{j}(\zeta) \\
\epsilon_{g}^{j}(\zeta) \\
{ }_{{ }^{\prime}}^{j}(\zeta)
\end{array}\right\}
$$

Fig: 2 Axisymmetric Thin Shell Element

The plasticity theory used is presented in Refs. 5, 6, and 7 . The input to the program is categorized in the following sections.
I. Problem Title (20A4)

Any 80 -character title describing the problem.
II. NPNTC and NPRNT (215)

NPNTC: is for selective printing. NPNTC is the sum of the following integers corresponding to the options desired. If NPNTC $=0$, no intermediate output
$=1$, print total load vector.
$=8$, print nonzero element stiffness matrix entries with their stacking indices
$=16$, print the total stiffness matrix
NPRNT: If $\overline{=} 0$, perform elastic analysis only If >0, perform elastic and plastic analysis, printing the results of the plastic analysis every NPRNT load increments

III. Nodes by Partition (1615)

This section defines an allowable set of external node point numbers. The maximum node number that can be used is 9999. The program uses this information in two ways. First to set up a ta!le of allowable node points that is used to chenk all subsequent node point input. Secondly, the program converts each external node number to an internal number consecutively in the order that the node appears on the input card. Consequently the order of the input of external node numbers is completely arbitrary and need not be increasing monotonically. In practice the node numbers should be numbered so as to minimize the bandwidth. Once the input is read the
program operates with the internal numbers which are now numbered from 1 through the number of nodes in the mode1. In this manner the node ordering and therefore the bandwidth of the stiffness matrix can be easily changed and nodes can be inserted or deleted by changing the external node specification.

The input is specified by entering the appropriate number on the input cards in fields of five. However, for this purpose the user can also utilize a shorthand form of the input. That is, specifying m and $-n$ consecutively is the equivalent of the specification of nodes $m, m+1, m+2, \ldots, n$ and sperifying m, $-p$, and $-n$ consecutively is the equivalent of the sperifiction of nodes $m, m+p, m+2 p, \ldots, m+k p$ where $m+k p$ is the highest integer of the form less than or equal to n. For example, the specification of nodes 1 through $? 00$ is written as $1-100$ and $1,3,5, \ldots, 99$ as 1-2-99. This card input appears in fields of 5 (I5 Format) with 16 items per card. Any number of continuation cards may be used. A zero or blank I5 field ends the specification.
IV. Node Numbers for Members (A4, 6X,4I5)

The first field defines the element type:

```
TRIR - triangular element designation (Ref. 1)
SHEL - she11 element designation (Refs. 2, 3)
RING - ring element designation (Ref. 4)
```

The first integer field designates a member number and the three following fields give node numbers for the member.

For triangular members, three nodes are specified. The i, j, k nodes are given in counterclockwise order. For shell members, two nodes are specified, i and j, in the positive s direction. For ring members, only one node is specified. SEND in the first field ends the section.

Note: Maximum number of elements (members) allowed is 600 currently. 4-4
v. Global Coordinates (E15.7,13I5)

The coordinates are read in a specified order, r first, then z, and last the PHI coordinates. PHI is the angle in radians between the z -axis and the normal to the shell surface, measured positive clockwise (Fig. 2) from the z-axis. The floating point number designates a coordinate value. Following are the applicable node numbers as in Section III.

Only the integer fields are used on continuation cards. A zero or blank node field other than the first field on a noncoutinuation card ends the card scan. On a continuation card, the floating field is left blank. A zero or blank first node field on a noncontinuation card ends each section for r, z, and PHI. If there are no shell elements, PHI is set to zero by default and need not be specified.

VI. Boundary Conditions (6I1, 4X, 14I5)

The first six fields give a boundary condition specification, in the order:

1) u_{r}, u_{z}, u_{θ}, if the node is attached to a triangular member. The last three fields for such a node must be zero.
2) $u, w, \chi, \epsilon_{s}, v, \gamma_{s \theta}$, if the node is attached to a shell element. See Fig. 2 for convention. u is the meridional displacement of the shell middle surface, w is the normal displacement, χ is the rotation of a normal to the middle surface, ϵ_{s} is the meridional membrane strain, v is the circumferential displacement, and $\gamma_{s \theta}$ is the shear strain. At a pole, the condition $u_{r}=0, \chi=0, v=0, \gamma_{s \theta}=0$, must be prescribed.
3) u, w, χ if the node is attached to a ring member. The last three fields must be zero.

Zero - denotes a fixed degree of freedom
One - denotes a free degree of freedom
Two - denotes an applied displacement and a corresponding card must be included in Section VII, designating the magnitude of the applied displacement.

The integer fields are the applicable node numbers as in Section III. On continuation cards, only the integer fields are used. If a node's boundary conditions are not specified in this section, all six degrees of freedom are assumed free. To change the default, the first card should be set to the desired default (i.e., for triangles 111000) with all nodes used in the problem then specified.

Blank card ends section.

Note: Maximum number of nodes currently allowed is 900 .
VII. Dependent Degrees of Freedom ($215,2(5 \mathrm{X}, 2 \mathrm{I} 5, \mathrm{E} 15.7)$)

The first two fields designate a node number and its degree of freedom. The dependency is defined in the following three fields. The two integer fields are node number and degree of freedom. The coefficient is contained in the following field. If there is another dependency for the node, it would be designated in the last three fields.

If there is yet another dependency, it would appear on a continuation card with the first two integer fields blank. Both single and multipoint constraints of the form $\delta_{i}=\alpha_{1} \delta_{j 1}+$ $\alpha_{2} \delta_{j 2}+\ldots+\alpha_{n} \delta_{j n}$ may be considered as well as applied displacements of the form $\delta_{i}=\alpha_{1}$, e.g.,

Blank card ends section.

1. Linking Up a Shell and a Triangle for a Cylinder

From shell theory restrictions

$$
\begin{aligned}
& u_{r_{27}}={ }^{u_{r_{28}}}={ }^{u_{r_{29}}}={ }^{w}{ }_{26} \\
& u_{z_{27}}=-u_{26}-h / 2 x_{26} \\
& u_{z_{28}}=-u_{26} \\
& u_{z_{29}}=-u_{26}+h / 2 x_{26}
\end{aligned}
$$

The input cards, for this case, would appear as (let $h=0.1$ inches)

27	1	26	2	1.0 E 00			
28	1	26	2	1.0 E 00			
29	1	26	2	1.0 E 00			
27	2	26	1	-1.0 E 00	26	3	-0.05 E 00
28	2	26	1	-1.0 E 00			
29	2	26	1	-1.0 E 00	26	3	+0.05 E 00

Note: In the boundary condition cards for nodes 27, 28, and 29, degrees of freedom 1 and 2 must be fixed (specified $=0$) because they are effectively eliminated from the solution (they are dependent degrees of freedom).
2. Rotation of Displacements at Boundary

For this problem, we set the displacement normal to the boundary equal to zero. We have:

$$
\begin{aligned}
& u_{1}=u_{r} \cos \varphi+u_{z} \sin \varphi \\
& u_{2}=-u_{r} \sin \varphi+u_{z} \cos \varphi
\end{aligned}
$$

Let us assume that the node in question is node 25 and $q=30$ degrees. The multipoint constraint cards are:

25	1	25	1	0.86602540	E00	25	2	0.50	E00
25	2	25	1	-0.50	EOO	25	2	0.86602540	E00

Note: On the boundary condition cards, since $u_{1}=0$, node 25 degree of freedom 1 is specified to be 0 but node 25 degree of freedom 2 is specified 1 (or free) since it remains an independent degree of freedom (although rotated).
If the normal displacement u_{1} were not fixed (and the transformation performed merely to apply a normal load) it would have a 1 boundary condition specified.
3. Applièd Displacement

Suppose for a shell we wish to apply a unit lateral (w) displacement at node 25 . We have the multipoint constraint card as

$$
25 \quad 2 \quad 25 \quad 2 \quad 1.0 \mathrm{E} 00
$$

Note: A 2-boundary condition for node 25 degree of freedom 2 is specified on the boundary condition card. The end of this section is designated by a blank or zero in the third integer field (e.g., blank card).

VIII. Material Properties

The format of this input is dependent upon the member type:
A. Triangle Elements (4(5E15.7),3E15 7,/,(16I5))

	SIGOX	Tensile (or compressive) yield stress in t-direction
Card 3	SIGOY	Tensile (or compressive) yield stress in z -direction
	SIGOZ	Tensile (or compressive) yield stress in r-direction
	SIGXY	Shear yield stress in r- θ plane
	RMOSN	Ramberg-Osgood shape parameter (n), $\epsilon=\sigma / E+(3 \sigma / 7 E)\left(\sigma / \sigma_{0.7}\right)^{\mathrm{n}-1} \text {. If set }=0.0$ material for the group of members is assumed to elastic ideally plastic. If $\operatorname{RMOSS}=0.0$ and RMOSN $\neq 0$, RMOSN is ratio of slope of stressstrain curve for linear strain hardening to Young's modulus ($\alpha=\mathrm{E}_{\mathrm{T}} / \mathrm{E}$ where $\mathrm{E}_{\mathrm{T}}^{\prime}$ is the tangent modulus).
Card 4	RMOSS	Ramberg-Osgood parameter $\sigma_{0.7}$. If zero and RMOSN not zero have linear strain hardening.
	YLDST	Yield stress in tension (or compression)
	RMOSE	Ramberg-Osgood parameter E (Young's modulus)
	SIGYZ	Shear yield stress in $\theta-z$ plane
	SIGZX	Shear yield stress in $z-r$ plane
$\begin{gathered} \text { Card } \\ 5 \end{gathered}$	TALPH (1)	
	$\left.\begin{array}{l} \operatorname{TALPH}(2) \\ \operatorname{TALPH}(3) \end{array}\right\}$	3 thermal coefficients of expansion in $1,2,3$ directions $\left(\theta, z, r\right.$ if $\left.\beta=0^{\circ}\right)$

Note: Orthotropic material properties should not be used for strain hardening problems in the current version of REVBY.

Succeeding cards give applicable members as in Section III. A zero or blank El ends the section. If there are no triangular members, no card is required.
B. Shell Elements ((4E15.7,/,5E15.7,/,3E15.7,/,2E15.7)/),(16I5))

1) Material Properties

E1 Young's modulus in meridional direction

Card
E2

G33

V12
Poisson's ratio in plane of shell median surface

SIGOX Tensile or compressive yield stress in meridional direction

SIGOY Tensile or compressive yield stress in circumferential direction

Card 2

SIGOZ

SIGXY
RMOSN (See Card 3 for triangular members)

	RMOSS Card 3
$\left.\begin{array}{l}\text { YLDST } \\ \text { RMOSE }\end{array}\right\}$ (See Card 4 for triangular members)	
$\left.\begin{array}{ll}\text { Card } & \text { TALPH (1) } \\ 4 & \text { TALPH (2) }\end{array}\right\}$Two thermal coefficients of expansion in meridional and circumferential direction, respectively	

Succeeding cards give applicable members as in Section III. A zero or blank $E \mathbb{I}$ ends the section. If there are no shell elements, no blank card is required.
2) Thickness for Shell Elements (follows the material properties. All nodes must have a thickness specified.) (E15.7,/(16I5))

First field designates thickness value. Applicable nodes follow as in Section III. Section ends with zero or blank in first field.
3) NG and NLRS (2I5). For shell elements, one card. NG designates the number of Ganss points used in integration scheme for shell element, and the second field, NLRS, designates number of layers through the thickness at which plastic strains, stresses, etc., are calculated. NG ≤ 8, NLRS must be even, and ≤ 30.
C. Ring Elements (5E15.7,/, 2E15.7,/, A4. 6X, 3E15.7,/, 3E15.7,/, 3E15.7,/,E15.7,(16I5))

E Young's modulus
A Cross sectional area of ring
IX Moment of inertia of ring about centroidal

Card 1

IXY

IY Moment of inertia of ring about centroidal y^{\prime}-axis

Distance from shell middle surface to ring centroid (normal to shell middle surface).

Card
2

ECCEN(Y) Distance along meridian from ring centroid to point of attachment to shell middle surface. Plus in negative s-direction.

	SREC	Solid rectangular cross section
Card	SCIR	Solid circular cross section
	ZSEC	Z-section
	ISEC	I-section
	HCIR	Hollow circular cross section

Remaining three fields designate section dimensions as shown in the diagrams below.

SREC

SCIR

ZSEC.

ISEC

HCIR
C'ard

3 | SREC | SCIR | ZSEC | ISEC | HCIR |
| :---: | :---: | :---: | :---: | :---: |
| 2 a | a | a | 2 a | a |
| 2 b | | | 2 h | 2 h |
| | | b | b | t |

$\underset{4}{\operatorname{Card}} \begin{cases}\mathrm{t}_{1} & \mathrm{t}_{1} \\ \mathrm{t}_{2} & \mathrm{t}_{2} \\ \mathrm{t}_{3} & \mathrm{t}_{3}\end{cases}$
Note: For ZSEC, $a=b, t_{1}=t_{3} ;$ for ISEC, $2 a=2 b ; t_{1}=t_{3}$.
Card If section name is ZSEC or ISEC, this card is required 4 for three additional dimensions, otherwise this card is omitted.

Card 5	$\left.\begin{array}{l}\text { SIGOX } \\ \text { RMOSN } \\ \text { RMOSS }\end{array}\right\} \quad$ Yield stress in tension or compression
Card	TALPH (1) Thermal coefficient of expansion

Succeeding cards give applicable members as in Section III.
A zero or blank E ends the section. If there are no ring elements, no card is required.
IX. Load Vector Components

This format is also dependent on member type.
A. Triangular Members (I5, 3E15.7,/,I10, 3E15.7)

The integer field gives node number (i-j pairs); the floatingpoint fields give components at the respective nodes as follows:

$$
\begin{aligned}
& p_{r}=1.0 \text { corresponds to an applied unit pressure } \\
& \text { (force/unit area) in the radial direction } \\
& \text { at node } i \\
& \mathrm{p}_{\mathrm{z}}=1.0 \text { corresponds to an applied unit pressure } \\
& \text { (force/unit area) in the } z \text {-direction } \\
& \text { at node i } \\
& p_{\theta}=1.0 \text { corresponds to an applied unit pressure } \\
& \text { at node i }
\end{aligned}
$$

The load between any two adjacent nodes is assumed to vary linearly. Therefore, the load vector is specified by two cards, the first specifying the load at node i and the second, the load at node j. A zero-or blank first integer field ends. the section. If there are no uniform loads, a blank card is required. If there are no triangular elements, no card is required.
B. Shell Members (3E15.7,/,(16I5))

The three fields designate the meridional component, p_{s}, normal component, p_{z}; and the circumferential component, p_{θ}, of applied stresses at nodes. Applied stresses are assumed to vary linearly from node to node. The applicable nodes follow as in Section III. A blank card ends the section. If there are no uniform loads, a blank card is required. If there are no shell elements, no card is required.
C. Concentrated Loads (4E15.7,/, (16I5))

For triangle component, specify F_{r}, F_{z}, and F_{θ} in r, z, θ directions, and for the shell component specify N_{s}, Q_{s}, M_{s}, and $N_{s} \theta$ in u, w, χ, and v directions, respectively, in $1 b / i n$. These are forces per unit length of circumference, except at $r=0$, where $F_{r}=F_{\theta}=0$ and $N_{S}=M_{S}=N_{S \theta}=0$ and F_{Z} or Q_{S} represent an actual force (lbs).

Applicable nodes follow as in Section III. A blank or zero card ends the concentrated loads specification section.
X. Nodal Temperatures (A4, E15.7, /(A4, 3E15.7, $/ 2(16 I 5))$

If the first field is SEND, there are no temperatures and this section ends. If the first field is blank, there are thermal loads and the floating number field designates the reference temperature value ($\mathrm{T}_{\text {ref }}$), which is only for the user's information.

The next cards contain $\Delta T=T-T$ ref at each node (up to three per node depending on the element to which it is attached) in the floating point fields. For a triangular element, one temperature is specified per node. For a shell element, three temperatures are specified, one at the top surface $(+h / 2), T_{1}$, one at the median surface $(z=0), T_{2}$, and one at the bottom surface (-h/2), T_{3}. The program assumes a parabolic distribution of temperature through the thickness (if $\mathrm{T}_{2}=\left(\mathrm{T}_{1}+\mathrm{T}_{3}\right) / 2$, this reduce: to a linear variation). For a ring element, three temperatures are specified. A parabolic distribution is assumed through the ring depth. T_{1} is the temperature at $x=+a$ or $+h . T_{2}$ is the temperature at the centroid, and T_{3} is the temperature at $\mathrm{x}=-\mathrm{a}$ or -b (see diagram in Section VIII).

Applicable nodes follow as in Section III.
XI. Mombers Whose Result ire to be Printed for Elastic Soluticn (1635) 1.5 in seection 111

Blank cards end section.
XII. Nodes Whose Results are to be Printed for Elastic Solution (1615) As in Scction JII

Blank cards end section.
XIII. Same as Section XI for Plasticity, if applicable.

Blank cards end section.
XIV. Same as Section XII fur Plasticity, if applicable.

Blank cards end section.
XV. PMAX and PPCT (2E15.7)

PMAX - Maximum load to be applied for this half cycle
PPCT - Load increment as a percentage of yield load
XVI. NPRNT, PMAX, PPCT (I5,2E1.5.7)

For succeeding load cycles, one card giving new NPRNT, PMAX, and PPCT. Zero NPRNT signifies no new load cycle and end of problem. For succeeding half-cycles, PPCT equal to one-half the original value should be-used since the elastic range is twice the elastic range for initial loading.
XVII. Change in Material Properties (A4)

To change properties of any group of members, read indicator for new material properties (A4).
A. If RING is input, it indicates a change in the RING element material properties. A card with a member number belonging to the group whose properties are to be changed and the new quantities arc read in (I5,4E15.7).

Member Number Member of group to be changed SIGOX

RMOSN
New Values
RMOSS
TALPH
B. NEWM signifies new material properties for either triangle or shell elements. The new values are read in (I5,5E15.7,/, 5E15.7,/,3E15.7)

Member Number Member of group to be changed SIGOX

SIGOX

Card
1
SIGOZ
SIGXY
RMOSN

RMOSS
YLDST \qquad
RMOSE
SIGYZ
SIGZX

TALPH (1)
Card
3
TALPH (2)
TALPH (3)

New Values

New Values
New Values

Nalues
C. SEND as input indicates no new material properties or end of this section.
XVIII. Each Problem's Input Must Be Ended with a Card Reading "ENDb" Where "b" Denotes a Blank, in Columns 1-4. The Last Problem in a Run Should End with a Card Reading "STOP" in Column 1-4 Instead of "ENDB."

References

1. Wilson, E. L., "Structural Analysis of Axisymmetric Solids," AIAA Journal, Vol. 3, pp. 2269-2274, 1965.
2. Levine, H. S. and Armen, H., Jr., "A Refined Doubly-Curved Axisymmetric Orthotropic Shell Element," Grumman Research Department Memorandum RM-496, February 1971.
3. Levine, H. S., Armen, H., Jr., Winter, R., and Pifko, A., "Nonlinear Behavior of Shells of Revolution Under Cyciic Loading," Grumman Research Department Report RE-426J, ApriI 1972; also presented at the National Symposium on Computerized Structural Analysis and Design, Washington, D.C., March 27-29, 1972; to appear in Journal of Computers and Structures.
4. Cohen, G., "Computer Analysis of Asymmetric Buckling of RingStiffened Orthotropic Shells of Revolution," AIAA Journal, Vol. 6, No. 1, 1968.
5. Isakson, G., Armen, H., Jr., and Pifko, A., "Discrete Elements Methods for the Plastic Analysis of Structures," NASA CR-803, 1967.
6. Armen, H., Jr., Pifko, A., and Levine, H. S., "Finite Element Analysis of Structures in the Plastic Range, NASA CR-1649, 1971.
7. Armen, H., Jr., Levine, H., and Pifko, A., "Plasticity-Theory and Finite Element Applications," Grumman Research Department Report RE-438J, August 1972; also presented at the Second Japanese-U.S. Conference on Matrix Methods, Berkeley, California, August 14-18, 1972; published in Advances in Computational Methods in Structural Mechanics and Design, University of Alabama Press, Huntsville, Alabama.

INSTRUCTIONS FOR USE OF OUT-OF-PLANE GM

A Program for the Nonlinear Analysis of Built-Up Structures

ORIGINAL PAGE IS OF POOR QUALITY

INSTRUCTIONS FOR USE OF OUT-OF-PLANE GM ${ }^{\text {: }}$

OUT-OF-PLANE GM is a finite element program for the nonlinear analysis of arbitrary built-up thin walled structures. This program considers the sheet material to be' in states of membrane stress. The finite element library consists of the following elements:

- Three-node uniform stress triangle
- Six-node linearly varying stress triangle
- Four- and five-node hybrid triangles to be used as transition elements between threeand six-node elements (see Fig. la)
- Two-node uni form stress stringer
- Three-node linearly varying stre ss stringer
- Beam with various cross sections subjected to bending about two planes as well as torsion

The program_is_capable of treating the elastic and the elastirideally plastic response of orthotropic materials. In addition, sonsideration is given to isotropic materials exhibiting, elastic-ideal., plastic, linear strain hardening, or nonlinear strain hardeninc, behavior. Further, the kinematic hardening theory of plasticity i. used.

The effects of geometric nonlinear behavior is treated by an n^{-} sidering a convected coordinate system that accounts for chanses jn geometry and by the introduction of an initial stress stiffness matrix. The solution strategy implemented by the program is outlined in a companion volume, "PLANS - A Finite Element Program for Nonlinear Anal:sis of Structures, Volume I - Theoretical Manual," NASA Contractor: Report NASA CR-2568, p. 31.

The input to the program is categorized in the following sectiuns.

I: Problem Title FORMAT (20A4)
Any 80-character title describing the problem.
II. Load and Print Control Parameters FORMAT (6I5./4E15.7)

CARD 1:
NPNTC is the sum of the following integers corresponding to the option desired.

If NPNTC $=0$ No intermediate printout
$=1$ Print the load vector
$=2$ Print element stiffness matrix
$=16$ Print each element stiffnes matrix entry to be stacked with its stacking index
$=32$ Print the total stiffness matrix
For example, if it is desired to print the load vector and the total stiffness matrix, $N P N T C=1+32=33$.

NPRNT $\geq 0 \quad$ Print output every NPRNT increments of load. If NPRNT equals zero the output is printed every load step.

NFORM $\because 0 \quad$ Reform elastic stiffness matrix to account for changing geometry every NFORM increments of load. The effect of the geometric (initial stress) stiffness matrix is still introduced as an "effective load" in this case.

IREST: \quad IREST $=0$ Do not generate a restart tape IREST $=1 \quad$ Build a restart tape IREST $=2 \quad$ Run continuing from a created restart tape

NUTAP:

INPRT:

NRSRT:

CARD 2:
PMAX:

DELP:

PTAN:

Applicable only if restarting from a restart tape. When TREST $=2$ and NUTAP $=0$ no additional restart data is written. If NUTAP . 0 restart tape is continued.

INPRT $=0$ Write restart tape only at $P=\operatorname{PMAX}$ (i.e., at maximum load)

INPRT $=\mathbb{N}$ Restart data written every INPRT time steps

Applicable only if restarting from a restart tape. NRSRT is a unique number that is printed in the job that generated the restart tape for each load that data is written on the restart, tape. This number defines the starting load for the continuation job (see Section XVII).

Maximum load factor. The load factor multiplies the vector of applied load. If the applied loading is normalized to unity then PMAX represents the magnitude of the largest component of th: : f plied load. If the maximum desired load is inp.it then PMAX is equal to one and each load step repre sents a percentage of the total load.

Number of load increments. The load increment $\triangle \mathrm{P}$ is specified by PMAX/DELP.

Load at which full tangent modulus method is used, i.e., the stiffness matrix explicitly includes the initial stress stiffness matrix. If the "tangent modulus" method is to be used for the entire ai: ${ }^{;} ;$ sis, PTAN $=0.0$. In this case the stiffness metix is reformed in every load step. If the "effective

EQMULT: Factor multiplying the equilibrium correction term. EQMULT $=0.0$ indicates no equilibrium correction and $\mathrm{EQMULT}=1.0$ indicates full equilibrium correction.

III. Node Specification (16I5)

This section defines an allowable set of external node point numbers. The maximum node number that can be used is 9999. The program uses this information in two ways. First to set up a table of allowable node points that is used to check all subsequent node point input. Secondly, the program converts each external node number to an internal number consecutively in the order that the node appears on the input card. Consequently the order of the input of external node numbers is completely arbitrary and need not be increasing monotonically. In practice the node numbers should be numbered so as to minimize the bandwidth. Once the input is read the program operates with the internal numbers which are now numbered from 1 through the number of nodes in the model. In this manner the node ordering and therefore the bandwidth of the stiffness matrix can be easily changed and nodes can be inserted or deleted by changing the external node specification.

The input is specified by entering the appropriate number on the input cards in fields of five. However, for this purpose the
user can also utilize a shorthand form of the input. That is, specifying m and $-n$ consecutively is the equivalent of the specification of nodes $m, m+1, m+2, \ldots, n$ and sperifying $m,-p$, and $-n$ consecutively is the equivalent of the sperifiction of nodes $m, m+p, m+2 p, \ldots, m+k p$ where $m+k p$ is the highest integer of the form less than or equal to n. For example, the specification of nodes 1 through 100 is written as $1-100$ and 1, 3, 5, ..., 99 as 1-2-99. This card input appears in fields of 5 (I5 Format) with 16 items per rard. Any number of continuation cards may be used. A zero or blank I5 field ends the specification.
IV. Member Connectivity (Node Number of Each Member) FORMAT (A4, 6X, 9I5)

The first alphanumeric field defines the element type:
TRIM - Triangular membrane element (Ref. 3)
BEAM -: Beam element
STRG - Stringer element
The first integer field designates the member number. The next integer fields designate the connecting nodes as follows:

TRIM - The nodes for the triangular family of elements are specified around the perimeter beginning with a major (vertex) node. Then a minor (midside) node and then alternatively maior and minor as shown in Fig. 1. The absence of a minor node must be indicated by a zero or blank field in the proper position.

BEAM - Three node specifications are necessary for the beam element.

Hybrid Element

Linear Strain Elements

Fig. la Triangular Family of Finite Elements Used

Fig. 1b Elements Topology

Nodes i and i (Fig. 2) which designate the element end points and a third node k, defining the normal to the beam axis about which the section properties are specified. This additional node may be a node of the structural idealization or it may be a "fictitious node" specified just for the purpose of defining the beam section properties. This is shown in Fir. 2.

STRG - Three node specifications are necessary for the stringer element. Nodes i and j, connecting the end points, and if desired an additional node desisnating a midpoint node. This is shown in Fig. 3. A zero or blank for the midpoint node specifies a two-node strinser. The midside node is the third node specified.

SEND Ends the section
V. X-Coordinates of Nodes FORMAT (E15.7, 1315)

The x-coordinates of the nodes appearing in the 15 fields are set to the value in the E15.7 field. Any number of continuation cards may be used; their first fifteen columns are ignored. A zero or blank $I 5$-field terminates the card scan for a given x coordinate. A zero or blank first 15 field (columns 16-20) on a noncontinuation card ends the section. Both shorthand representations of Section III are allowed.
VI. Y-Coordinates of the Nodes. Same as Section V.
VII. Z-Coordinates of the Nodes. Same as Section V.
VIII. Boundary Conditions FORMAT (6I1, 9X, 13I5)

The first six fields give the boundary conditions specifications in the order: $u, v, w, A_{x}, A_{y}, A_{z}$; where u, v, w are global displacements in the x, y, z directions, respectively, and $\theta_{x}, \rho_{y,} \theta_{z}$ are rotations with respect to the x, y, z axes. The last three fields for $\theta_{x},{ }^{A} y,{ }_{z}$ are only used when using, a beam element.

- Fig. 2 Beam Element

Fig. 3 Stringer Element

Zero denotes a fixed degree of freedom
One denotes a free derree of freedom
Two will result in the application of a tnit generalized displacement, or a corresponding card may be included in Section IX (dependent degrees of Ereedom) designating the magnitude of the applied reneralized displacement.

The 1315 fields give the applicable nodes for the boundary condition specifications, with both shorthand notations of Section III permitted. Any number of continuatuion cards may be used for a given specification. However, only the $13 I 5$ fields are used on a continuation card. A zero or blank 15 field terminates the card scan for a given boundary condition specification. Note: If the last field of a card (columns 75-80) is the last specification, an additional blank card (continuation card) must follow. A zero or blank first 15 field (columns 16-20) on a noncontinuation card ends the section. If a node's boundary nonditions are not specified in this section, all the degrees of freedom are assumed to be free. To change this default sondition, the first card of this section should be set to the desired default (i.e., in the absence of beams, 111000) with all nodes used in the problem specified. Note: Maximum number of nodes iis currently 900.
IX. Dependent Degrees of Freedom FORMAT (2I5, 2(5X, 2I5, E15.7))

This section designates the input for both single and multipoint constraints as well as applied displacement of the form:

1) $\quad \delta_{i}=\alpha_{1} \delta_{j 1}+\alpha_{2} \delta_{j 2}+\ldots \alpha_{n} \delta_{n}$
where δ_{i} is a dependent degree of freedom, $\delta_{j 1} \cdots \delta_{i n}$ are independent derrees of freedom and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are coefficients
2) Rotation of displacements at a node

$$
\begin{aligned}
& \delta_{i}=\alpha_{1} \tilde{\delta}_{i}+\alpha_{2} \tilde{\delta}_{j}+\alpha_{3} \tilde{\delta}_{k} \\
& \delta_{j}=\beta_{1} \tilde{\delta}_{i}+\tilde{\beta}_{2} \tilde{\delta}_{j}+\beta_{3} \tilde{\delta}_{k} \\
& \delta_{k}=\gamma_{1} \delta_{i}+\tilde{\nu}_{2} \tilde{\delta}_{j}+\gamma_{3} \tilde{\delta}_{k}
\end{aligned}
$$

where the $\alpha, \beta, \gamma^{\prime} s$ are the direction cosines of the rotation, $\delta_{i}, \delta_{j}, \delta_{k}$ are the displacements with $\underset{\sim}{r e-} \sim$ spect to the original global directions, and $\delta_{i}, \delta_{j}, \delta_{k}$ are the components of displacements at the node with respect to the new coordinate axes. An example of this capability is given in Appendix I.
3) Applied generalized displacement

$$
\delta_{i}=\alpha_{1}
$$

where the coefficient α_{1} is the applied generalized displacement.

The first two fields designate a node number and a degree of freedom (i.e., 1-6). The dependency is defined in the following three fields. The two integer fields designate the node number and degree of freedom number and the coefficient by the floating point field. If there is another dependency for the node, it is designated in a similar fashion in the next three fields. Any number of continuation cards can be used with the first two fields blank. The section is ended by a blank or zero in the third integer field (blank card). Examples of the use of multipoint constraints are in Appendix I.

X. Material and Section Properties

The format for this input is dependent upon the member type. Each type of input begins with a word of up to four characters.

MATI Material properties for plane stress, necessary with membrane trianrles (TRIM)

MBM Mate rial properties for a beam element
MSTG Material and section properties for a stringer
THIK Member thirkness for triangular membrane (TRIM) elements

MBET Angle between local axes and principal directions of orthotropy for TRIM elements

SREC Beam section properties for a solid rectangular section

SCIR Beam section properties for a solid circular section

ZSEC Beam section properties for a Z-section
ISEC Beam section properties for an I-section
HCIR Beam section properties for a hollow circular section

HREC Beam section properties for a hollow rectangular section

LSEC Beam section properties for an L-section
TSEC Beam section properties for a T-section
CSEC Beam section properties for a channel sertion
SEND Ends the section
MAT1 - Plane Stress Material Properties - FORMAT (A4, 1X, 5E15.7, /. 2E15.7, /, 4E15.7, /, 5E15.7, /, (16I5))

The first four cards specify material properties, as follows:

CARD 1: MAT1
EONE = Young's modulus in principal property axis (1)
ETWO = Young's modulus in principal property axis (2)
BETA $=$ No longer used. Set equal to zero.
GONTO $=$ Shear modulus in (1)-(2) principal property
plane
VONTO $=$ Poisson's ratio, ${ }^{v_{12}}$
Note: $\quad \epsilon_{1}=\frac{\sigma_{1}}{\mathrm{E}_{1}}-\frac{{ }^{\nu}{ }_{12}}{\mathrm{E}_{2}} \sigma_{2}$

$$
\epsilon_{2}=-\frac{v_{21}}{E_{1}} \sigma_{1}+\frac{\sigma_{2}}{E_{2}}
$$

$$
\gamma_{12}=\frac{\tau_{12}}{G_{12}}
$$

CARD 2: TALF-1 = Coefficient of thermal expansion in 1-axis direction, α_{1}

TALF-2 = Coefficient of thermal expansion in 2-axis direction, α_{2}

CARD 3: SIGOX = Yield stress in principal 1-direction
SIGOY = Yield stress in principal 2-direction
SIGOZ $=$ Yield stress in principal 3-direction
SIGXY $=$ Shear yield stress in principal 1-2 plane
CARD 4: \quad RMOSN $=$ If RMOSS $\neq 0 ;$ RMOSN $=n$, the shape parameter used in Ramberg-Osgood representation of stress-strain behavior

If RMOSS $=0 ;$ RMOSN $=\bar{\alpha}$ the slope of the linear strain hardening stress-strain representation, i.e., $\bar{\alpha}=E_{T} / E$ where E_{T} is the tangent modulus

```
RMOSS = If RMOSS }\not=0; RMOSS = Ramberg-Osgood
    parameter }\mp@subsup{\sigma}{0.7}{
    Note 1: If RMOSN = 0 and RMOSS = 0,
    the material for the element(s)
    is assumed to be elastic-ideally
    plastic
RMOSE = Ramberg-Osgood parameter E (Young's modulus)
YLDST = Yield stress in tension
YLDSC = Yield stress in compression
```

Input for the yield stress in tension and compression has been maintained in order to accommodate materials that exhibit initial anisotropic plastic behavior. In this case an initial translation of the yield surface is made consistent with the kinematic hardening theory.

Note: Only initially isotropic materials can be treated when considering linear or nonlinear strain hardening using this property card.

S"cceeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank I5 field ends each member listing.

MBET - Orientation of Axes of Material Anisotropy - FORMAT (A4, 1X, E15.7, /, (16I5))

CARD 1: MBET
BETF = Angle $\|^{\prime}$ in degrees between local x-axis and principal 1-axis for material orthotropy. See Fig. 4. Only applicable for IRIM elements.

[^1]Note: This card is an optional card. The default is $B E T F=0.0$ for all members. It should be used with initially orthotropic materials.

Fig. 4 Orientation of Element Local and Material Axes Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero ar blank I5 field ends each member listing.

MSTG - Stringer Properties - FORMAT (A4, 1X, 5E15.7, /E15.7/, (16I5))

CARD 1: MSTG

$$
\begin{aligned}
\mathrm{E} & =\text { Young's modulus } \\
\mathrm{A}= & \text { Cross sectipnal area } \\
\text { RMOSN }= & \text { If RMOSS } \neq 0 ; \quad \text { RMOSN }=n, \text { the shape parameter } \\
& \text { used in Ramberg-Osgood representation of } \\
& \text { stress-strain behavior. }
\end{aligned}
$$

If RMOSS $=0 ; \quad$ RMOSN $=\bar{\alpha}$, the slope of the linear strain hardening stress-strain representation, i.e., $\bar{\alpha}=\mathrm{E}_{\mathrm{T}} / \mathrm{E}$ where E_{T} is the tangent modulus

RMOSS $=$ If RMOSS $\neq 0 ;$ RMOSS $=$ Ramberg-Osgood parameter $\sigma_{0.7}$

Note 1: If $\operatorname{RMOSN}=0$ and RMOSS $=0$, the material for the element(s) is assumed to be elastic-ideally plastic

CARD 2: TALF = Coefficient of thermal expansion

Succeeding sards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank I5 field ends each member listing.

THIK - Element Thicknesses - FORMAT (A4, 1X, E15.7) Necessary with membrane elements TRIM

CARD 1: THIK
THICK $=$ Element thickiess
Succeeding cards give applicable members; both shorthands of Sec. tion III are permitted. Any number of continuation cards may be used for a given specification. Agero or blank I5 field ends each member listing.

MBM - Beam Material Properties - FORMAT (A4, 1X, 5E15.7, /, El.5.7, /, (16I5))

CARD 1: MBM
$\mathrm{E} \quad=$ Young 's modulus

$$
\begin{aligned}
\text { ANU }= & \text { Poisson's ratio } \\
\text { RMOSS }= & \text { If not equal to zero, RMOSS equals } \\
& \text { Ramberg-Osgood parameter, } \sigma_{0.7} \\
\cdots & \text { RMOSN }= \\
& \text { If RMOSS } \neq 0 ; \quad \text { RMOSN }=\mathrm{n}, \text { the shape parameter } \\
& \text { strain behavior. } \\
& \text { If RMOSS }=0 ; \quad \text { RMOSN }=\bar{\alpha}, \text { the slope of the } \\
& \text { linear strain hardening stress-strain repre- } \\
& \text { sentation, } i . e ., \bar{\alpha}=\mathrm{E}_{\mathrm{T}} / E \text { where } \mathrm{E}_{\mathrm{T}} \text { is the } \\
& \text { tangent modulus } \\
= & \text { Yield stress } \\
\text { CARD 2: } \quad \mathrm{TALF}= & \text { Coefficient of thermal expansion }
\end{aligned}
$$

Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of rontinuation cards may be used for a given specification. A zero or blank 15 field ends each member listing.

Beam Section Properties - FORMAT (A4, 1X, 5E15.7, /, 3E15.7, /, formats for Cards 3 and 4 (see below), /, (16I5))

The cards specifying beam section properties all start with the following information:

$$
\begin{aligned}
\text { A }= & \text { cross-sectional area } \\
\text { Iyy }= & \text { moment of inertia about } y \text { axis (see Fig. 5) } \\
\text { Izz }= & \text { moment of inertia about } z \text { axis (see Fig. 5) } \\
\text { Iyz }= & \text { product of inertia } \\
J= & \text { torsional rigidity } \\
\text { CARD 2: YO }= & \text { Eccentricity of attachment point in the } y_{o} \\
& \text { direction } \\
Z 0= & \text { Eccentricity of attachment point in the } z_{0} \\
& \text { direction } \\
\bar{B}= & \text { angle defining the transformation of the } \\
& \text { Iy, Iz, Iyz to another reference, axis } \\
& (\text { see Fig. 5) }
\end{aligned}
$$

Additional cards are required according to which section is specified. The notation for each section is shown in Table 1.

Fig. 5 Definjtion of Coordinate Axes in Cross Section of Beam Element

```
    SREC - FORMAT (2E15.7)
    CARD 3: A = Width
        B = Depth
    SCIR - FORMAT (E15.7)
    CARD 3: R = Radius
ZSEC, ISEC, and CSEC - FORMAT (3E15.7, /, 3E15.7)
CARD 3: A1 = Dimension of upper flange
    A2 = Dimension of web
    A3 = Dimension of lower flange
    CARD 4: T1 = Thickness of upper flange
        T2 = Thickness of web
        T3 = Thickness of lower flange
HCIR - FORMAT (2E15.7)
        & 1
    CARD 3: R = Outer radius .
        T . = Thickness
HREC, LSEC, and TSEC - FORMAT (4E15.7)
    CARD 3: Al = Width (parallel to y-axis)
        A2 = Depth (parallel to z-axis)
        T1 = Thickness of upper and/or lower flanges
        T2 = Thickness of vertical webs
```

Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank 15 field ends each member listing.

SEND Ends the section.

TABLE 1 SECTION INPUT AND GEOMETRY

TABLE 1 SECTION INPUT AND GEOMETRY (CONT).

Section	Keyword	Input	
Hollow Rectangular Section	HREC	Area, moment of inertia, $I_{y y}, I_{z z}, I_{y z}$, J eccentricities, y_{o}, z_{o}, transformation angle $\bar{\beta}$. Width, a_{1}, depth, a_{2}, thickness of upper and lower flanges, t_{1}, thickness of vertical webs, t_{2}	
L-Section	LSEC	Area, moment of inertia, $I_{y y}, I_{z z}, I_{y z}$, J eccentricities, y_{0}, z_{o}, transformation angle $\bar{\beta}$. Dimension of flange and web a_{1}, a_{2} thickness flange, and web, t_{1}, t_{2}.	
T-Section	TSEC	Same as for L-Section	

TABLE 1 SECTION INPUT AND GEOMETRY (CONT)

TABLE 2 NUMBER AND LOCATION OF STRESS POINTS

TABLE 2 NUMBER AND LOCATION OF STRESS POINTS (CONT)

TABLE 2 NUMBER AND LOCATION OF STRESS POINTS (CONT)

TABLE 2 NUMBER AND LOCCATION OF STRESS POINTS (CONT)

Section	Keyword	$\begin{aligned} & \text { Number } \\ & \text { Stress } \end{aligned}$ Points	Location of Stress Points	Location of Stress Points
z-Section	ZSEC	9	y z^{\prime} 1 $-0.88730 a_{1}$ \bar{a}_{2} 2 $-0.11271 a_{1}$ \bar{a}_{2} 3 $-0.5000 a_{1}$ \bar{a}_{2} 4 $0.88730 a_{1}$ \bar{a}_{2} 5. $0.11271 a_{1}$ \bar{a}_{2} 6 $0.5000 a_{1}$. \bar{a}_{2} 7 0.0 $0.77459 a_{2}^{\prime}$ 8 0.0 $0.77459 a_{2}^{\prime}$ 9 0.0 0.0 $\bar{a}_{2}=\left(a_{2}-t_{1}\right) / 2$,$t_{1}=t_{3}$ $a_{2}^{\prime}=\left(a_{2}-t_{1}\right)$,$\quad a_{1}=a_{3}$	Shear Center at Centroid

TABLE 2 NUMBER AND LOCATION OF STRESS POINTS (CONT)

Section	Keyword	Number Stress Points	Location of Stress Points	Location of Stress Points
Channe 1 Section	CSEC	9	NOTE: $\quad t_{1}=t_{3} ; \quad a_{1}=\dot{a}_{3}$	Axes at Shear Center

TABLE 2 NMBER AND LOCATION OF STRESS POINTS (CONT)

Section	Keyword	Number Stress Points	Location of Location of Stress Points Stress Points
I-Section	ISEC	9	

XI. Applied Loads

Two different types of loading are currently admissible concentrated loads at nodes, and distributed line loads on beams. Each loading situation is designated by one of the following four-character key words:

CONC	(Concentrated force or moment at a node)
BMLO	(Distributed line load, beam element)
SEND	(Section end)

Note: The keywords for the section on applied loads are used as section headings. The keyword appearing on an 'input card designates that the input to follow is associated with a particular type of applied loading. A blank card (as described in succeeding sections) delimits the input and indicates that the next card contains a different keyword. For example, CONC indicates input that follows is for concentrated loads and TRIA; distributed loads on an edge of a membrane triangle. Thus the input is as follows: CONC
data
for
concentrated
loads
blank card
BMLO
SEND
It should be noted that the keywords can appear in any order and may be specified more than one time in the applied load section.

CONC - Concentrated loads - FORMAT (A4, /, I5, 3E15.7, /, 5X, 3E15.7)
Each card gives the load components in global dirertions at a specified node.

CARD 1: CONC
CARD 2: 15 field: Node number
First E15.7 field: Force component F_{x}
Second E15.7 field: Force component $F y$
Third E15.7 field: Force component F_{z}
CARD 3: First E15.7 field Moment component M_{x}
jecond E15.7 field Moment somponent M_{y}.
Third E15.7 field Moment component M_{z}
A blank card (i.e., zero or blank first I5 field) ends the specification of concentrated loads.

BMI. 0 - Distributed Line Load, Beam Element - FORMAT (A4, /, 4E15.7)
CARD 1: BMLO
CARD 2: PYI Force/unit length in local y-direction (see -Fig. 5) at node i
PYJ Forse/unit lencrth in local y-direction at node j
PZI Force/unit length in local z z-dirertion at node i

PZJ Force/unit lensth in local z-direstion at node i

Note: A linear variation of the distributed load between nodes is assumed.

Succeeding cards give applicable members; both shorthands of Section III are permitted. Any number of continuation cards may be used for a given specification. A zero or blank 15 field ends each member listing.

A card with SEND in the first four columns ends the section for applied Ioading.
XII. Members to be Printed - FORMAT (16I5)

Specify the members whose strains and stresses are to be printed. Both shorthands of Section III are allowed. A maximum of 600 members may be specified. Members in excess of 600 and undefined member numbers are ignored. A blank card or card with only zero entries ends the section.
XIII. Nodes to Be Printed - FORMAT (16I5)

Up to 900 nodes whose displacements are to be printed for the analysis, as per Section XII.
XIV. Parameters for Succeeding Load Cycles - FORMAT (3I5, 1_{2} 3E15.7)

CARD 1: NPRNT = If equal to zero, no additional load cycle, end of problem. If greater than zero, print output every NPRNT increments of load

NFORM = Reform elastic stiffness matrix every NFORM increments of load
NNEWL = If equal to zero, no new load distribution is to be input. If greater than zero, a new load distribution will be read in

CARD 2: PMAX = New maximum load factor
DELP $=$ Number of load increments for new load cycle
PTAN $=$ Load at which full tangent modulus is used
XV. New Applied Loads

New load distribution is read in if NNiwl $\neq 0$. Formal is identical to Section XI.
XVI. Problem End - FORMAT (A4)

Each problem's input must be ended with a card reading "EnDb" where " b " denotes $a \operatorname{blank}$, in columns $1-4$. The last problem in a run should end with a card reading "STOP" in column 1-4 instead of "ENDb."

XVII. Restarting a Problem

The initial restart tape is created on Unit 21 . Subsequent restart jobs mount the restart tape as Unit 21 and if desired (NUTAP ; 0) copies and continues the restart tape on Unit 22.

CARD 1: Problem Title - FORMAT (2A4) As in Section I

CARD 2: NPNTC, NPRNT, IFORM, IREST, NUTAP, INPRT, NRSRT As in Section II. Here NPNTC is ignored and IREST $=2$

NRSRT is a unique number obtained as output from the job that generated the restart tape. This output is of the form:

* * * * *

RESTART TAPE HAS BEEN WRITTEN FOR $\mathrm{P}=7.100000 \mathrm{E}+04$ NRSRT $=8$.
$* * * * *$
In this case NRSRT is equal to 8 and the job will be restarted at a load factor of 71.0. A restart job can be started at any intermediate load leve1 for which the restart tape has been written.

CARD 3: PMAX, DELP, PTAN, EQMULT
As in Section II
Succeeding cards follow as in Sections XII through XVI.

APPENDIX I - MULTIPOTNT CONSTRAINTS

EXAMPJE 1

Node 1 and 2 are fixed.
There is an applied displacement at node 3 in the negative y-direction. The distance between nodes 3 and 4 remain sonstant.

Boundary Conditions

011000	$1-4$	default condition
000000	124	
021000	3	
Blank card		

Dependencies

Node	Dof	Node	Dof		
3	2	3	2	0.050	(specified displacemel')
4	2	3	2	1.0	restraint condition that
4	3	3	3	1.0	$3-4$ remain risid

NOTE: In the boundary condition sards for node 4, derrees of freedom 2 and 3 must be specified 0 berause they are effectively eliminated from the solution (they are dependent degrees of freedom).

EXAMPLE 2

Rotation of Displacements at a• Boundary

For this problem we set the displacement \vec{u} equal to zero and $\stackrel{\rightharpoonup}{v}$ free. This corresponds to the normal displacement along $\overline{\mathrm{x}}$.equal to zero and the tangential displacement (in \vec{y} direction) free. The global coordinates of thepproblem are x, y. Thus:

$$
\begin{aligned}
& \mathrm{u}=\overrightarrow{\mathrm{u}} \cos \varphi-\overrightarrow{\mathrm{v}} \sin \varphi \\
& \mathrm{v}=\overline{\mathrm{u}} \sin \varphi+\overline{\mathrm{v}} \cos \varphi
\end{aligned}
$$

The multipoint constraint cards are:

25	1	25	1	0.86502540 E 00	25	2	-0.50 E 00
25	2	25	1	0.50 E 00	25	2	0.8560254 E 00

Note: On the boundary condition cards, since $\bar{u}=0.0$ node 25 degree of freedom 1 is specified to be 0 but node 25 degree of freedom 2 is specified 1 or free since it remains an independent degree of freedom (although rotated). If the normal displacement $\overline{\mathrm{u}}$ wiere not fixed (and the transformation performed merely to apply a normal load), it would have a 1 boundary condition spesified.

INSTRUCTIONS FOR'USE
OF SATELLITE

A Preprocessing Program
for PLANS

SATELLITE is the preprocessing program associated with the PLANS system programs that checks and plots the undeformed finite element model. Additionally, it calculates the ordering of the external node numbers that leads to the minimum semibandwidth. SATELLITE is currently not operational for the HEX program.

The input for SATELLITE is as follows:

CARD 1: FORMAT (20A4)
Keywords left justified in fields of four. One of the following is required and indicates the program whose data follows.

PLNE	- PLANE program, In-Plane Membrane Program Used for Fracture Analysis
BEND	- BEND program, Elastic-Plastic Analysis of Built-Up Structures
REVB	- REVBY program, Elastic-Plastic Analysis of Bodies of Revolution
OPGM	- OUT-OF-PLANE GM, Nonlinear Analysis of Built-Up Structures
DYCA	- DYCAST program, Nonlinear Dynamic Analysis of Built-Up Structures

Additional optional keywords can be specified in fields of four. Any number of spaces can be skipped on the input card that are multiples of four.

BAND - Specifies that the optimum semibandwidth is to be calculated. In this case the optimum order of the external node numbers for

Section III data will be printed and punched. These punched data are used with the input deck. If this keyword is not specified the bandwidth will not be optimized.

SCAN - Process and check input data but do not produce any plots

PRIN - Print transformed coordinates to be plotted The input data deck follows Card 1. Input through the nodal coordinates is necessary. The remainder of the deck may be input although the cards are read and not processed until a STOP or END card is reached. Input for the SATELLITE program continues as follows.

CARD 2: FORMAT (5I5)

This card determines the number and type of plots. Up to five different labeled pictures can be obtained. These are specified with the fixed point numbers right justified in any of the fields of five as follows:

1 - labeled unconnected nodes
2 - labeled nodes, unlabeled members
3 - labeled nodes and members
4 - unlabeled nodes, labeled members
5 - unlabeled nodes and members

CARD 3: FORMAT (4E15.7)
ALPHA - rotation of structure about the global x-axis
BETA - rotation of structure about the global y-axis

GAMMA - rotation of structure about the global z-axis ..
IENGTH - maximum width of picture in the paper transverse direction. LENGTH is a function of the plotter being used.

If ALPHA, BETA, GAMMA are zero then the picture is projected on the $x-y$ plane with the y direction in the transverse paper direction. The angles lead to a path dependent-transformation by rotating the body first about the global x then y and z axes, respectively. The resulting viewing plane is still the original global $x-y$ plane. The viewing plane can be changed with the following card.

CARD 4: FORMAT (6A1)
This card specifies the viewing plane to be used by specifying the six alphanumeric characters XYZ $+\boldsymbol{H}$. The first two characters specifying the viewing plane with the first indicating the length direction and the second the width of the paper. The last three characters can be the characters + or - and indicate that the normal to the plane is in the positive or negative coordinate direction. For example:

YZX+H indicates the viewing plane as the global YZ plane with the Z axis in the paper width direction and Y along the paper length

CARD 5: FORMAT (4(A4,1X))
Element types to be omitted. For BEND, OPGM, DYCAST:
BEAM - will omit all beam elements

TRIM - will omit all triangle membrane elements

STGR - will omit all stringer elements
TRIP - will omit all triangular plate elements
For REVBY:
TRIR - will omit all triangle elements
SHEL - will omit all shell elements
RING - will omit all ring elements
If there are no element types to be omitted a blank card must be specified.

CARD 6: FORMAT (16I5)
Nodes to be included in the plot. A11 the shorthand notations are allowed, i.e., 1 through 100 is input as $1-100$ and 1,3 , ..., 99 as 1-2-99. A blank card or card with only zero entries ends the section.

If only a part of the structure is to be plotted, this section should include only the nodes that lie in the section. Only these nodes are considered when scaling the plot so that the subsection will be scaled up to the maximum allowable size.

CARD 7: FORMAT (16I5)
Elements to be included in the plot. Input is the same as for Card 6. All nodes associated with the elements to be plotted must be specified with Card 6.

Note: If all the elements and nodes are to be plotted it is sufficient to specify one negative number in the first I5 field whose magnitude is greater than the largest external element/node number in the finite element grid.

CARD 8: FORMAT (A4)
If this card is blank and
1 END was read at the end of the data deck a new data deck is read starting from Gard 1

2 STOP was read at the end of the data deck, the job is complete

IL this card is REPT the input will be repeated from Card 2 and the same structure with different plotting parameters will be plotted.

EXAMPLE INPUT

EXAMPLE TNPUT

The following pages contain the inout data decks for a number of sample problems. The principal intent in providing sample inFut is to aid the user in better understanding the discussion in the main body of the users' manual. Also provided with each problem is a brief discussion and representative data so that benchmark results are available for comparison. A detailed picture of the sample problem idealizations showing node and element labeling has not been provided. It is suggested that the input plotting program SATELLITE be used to generate computer plots of the input data, if desired.

Many sample problems that demonstrate the capability of the methods used in the PLANS program can be found in Refs. 1-3.

РРРРРРРРРРРРР PPPPPPPPPPPQP	LLL	AA	NNN NNNN	NNN NNN	SSSSSSSSSS SSSSSSSSSSSS
PPP PPPP	LLL	AAAAAA	NNNN	NNN	SSSS SSSS
PPP PPP	LLL	AAA AAA	NNNN	NN NNN	SSSS SSS
PPP PPP	LLL	AAA AAA	NNNN	INN NNN	555
$P P P$ PPP	LlL	AAA AAA	NNN	NNN NNN	SSSS
PPP PPPP	LLk	AAA AAA	NNN	NNN NNN	SSSSSS
РPPPPPPPРPPPPF	LレL	AAA AAA	NNN	NNN NNN	SSSSSSSSSS
НРРРРPPPPPPPP	LeL	A AAAAAAAAAAAAAAA	NNN	NNN NNN	SSSSSSSSSSS
PPP	LuL	AAAAAAAAAAAAAAAA	NNN	NNN NNN	SSSSSS SS
PPP	LLL	AAA AAA	NNN	NNN NNA	555S
$P P P$	LとL	AAA AAA	NNN	NNNNNN	5S5
$P P P$	LLL	AAA AAA	NNN	NNNNN	SSS SSSS
PPP	LiL	AAA AAA	NNN	NNNN	SSSS SSSS
.PPP	CLGLELKLLLLELL	$A A A$ AAA	NNN	NNNN	SSSSSSSSSSSSS
PPP	LLLLLLLELLALMEL	AAA AAA	NNN	NNN	SSSSSSSSSSS

GGG
GGG
-GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
GGCGGGGGGGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGG
GGGGGGGGGGGGGG
GGGGGGGGGGGG
GGGGGGGGGG
GGGGGGGG
GGGGGG
GGGG
GG

REND MODULE

ELASTIC-PLASTIC ANALYSIS

PREPARED BY
THE RESEARCH DEPARTMENT
OF GRUMMAN AEROSPACE CORPORATION
UNDEK PARTIAL FUNDING FRRMM
THE NASA \&ANGLEY RESEARCH CENTER

Example Problem No. I
Program: BEND
Problem Title: Classical Truss - Axial Force Element

Comments: This problem uses the stringer element STGR in a simple 4 element truss. Symmetry conditions were used so that only half the truss was modeled.

The accompanying figure shows the applied load versus the force in the vertical element (element 3). These result's were generated using a load step of $\Delta P=848.5 \mathrm{lbs}$ or 3774.3 N (which is 0.01 of the initial yield load). Agreement with results from an exact analysis was quite good.

Bend Sample Problem \# 1 Classical Truss STRG Axial Force Elements

PROGRAM LISTING OF INPUT DATA CARDS

BLANK CARD
BLANK CARD
BLANK CARD
BLANK CARD
SENU
1 -4
-4
250000.0 .01

BLANK CARD
stop

Example Problem No. 2
Program: BEND
Problem Title: NASA Frame with an End Load - BEAM ELEMENTS

Comments: This problem demonstrates the use of beam elements in an open space framework. Fifty seven beam elements of various cross section (L-section, T-section, rectangular section) connecting 40 nodes are used in the model. Multipoint constraints were used to enforce symmetry conditions between the left and right hand side of the structure. Ideally plastic behavior was assumed with a yield stress of 50130 psi or 345.6 MPa .

The figure shows displacement in the vertical and axial directions at the first bulkhead at the centerline (node 108) and at the midpoint between the first two bulkheads in the upper stringer (node 1001). The results indicate a plastic collapse at a load of $P=15000 \mathrm{lbs}$ or 66.7 KN .

FIRCGRAM LISTING UF INPJT DATA CARDS

FROGKAM LISTING UF INPJT DATA CAZDS

BLANK CARD

EEAM	58	< 05	208	201				
BEAM	64	311	303	315				
DEAM	66	311	316	¢03				
日Еам	E\%	403	400	405				
LEAM	72	411	403	400				
BEA M	73	411	414	400				
Eea	75	1 COL	101	105				
BEAM	76	201	1001	105				
BEAM	77	1003	201	105				
BEAM	78	303	1003	105				
UEAG	79	1005	303	105				
HEAM	80	403	1005	105				
BEAM	81	105	3001	101				
BEAM	82	3001	205	101				
BEAM	83	205	3003	101				
BEAM	84	3003	311	101				
ВЕАМ	85	311	3005	101				
BEAM	86	3005	411	$10:$				
SEND								
	$56.875 E C C$	101	102	105	106	103		
	39.87SEOC	201	202	205	205	203		
	22.625E00	303	304	311	312	315		
	C.C E+OC	403	406	4 Cs	411	414	422	400
	48.3 7SECO	2000	4000	1001	300:	6000		
	$31.25 E C 0$	2002	4002	1003	3003	6002		
	$11.3125 E 00$	2004	4004	1005	3005	6004°	8032	
	$16.56875 E C C$	3000						
	E. $65625 E C 0$	8004						
	C.C E C + 0	108	208	316	400	405	414	5000
	C. 0 C C + 0	6004	8000	8002	3004	6002		
	2.323125 Co	102	106					
-1	-328125500	101	105					
	E.C31250ECC	202	206					
-1	6.C31250ECO	$20:$	205					
19	- 7RGOÓJECO	304	312					
-19	- 7 ESC625ECO	303	311					
	24.71875500	403	411					
	24.71875ECO	408	422					
14	1756875ECO	2000	4000					
17.	¢1C13625ECO	2002	4002					
22.	2Eこ50625EC0	$2 \mathrm{CC4}$	4004					
-14	17 G6875ECC	1001	3001					
-17.	91C15625ECO	1003	3003					


```
-2L.2E{5có25ECO 1005 3000
```

C.C E+CO	400		
1C.1C15625E00	101	102	
-10.1C15625EC0	105	106	103
13.15E3125E00	201	202	
-13.15 $3125 E 0$	205	200	203
16.32C31 2SECC	303	304	
-16.3203125E 00	311	312	315
-8.16C15625ECO	8002		
2 C .4375 ECC	400	403	408
-20.4375ECO	411	414	422
11.6424375ECO	2000	1001	
$14.7578125 E C 0$	2002	1003	
$18.37 E 90625 \mathrm{ECO}$	2004	1005	
-11.0484375LCO	4000	3001	0000
-14.75781 25E00	4 CO	3003	6002
18.37ع50625E00	4004	3005	6004
12.24 C 2343 EECC	8000		
. OECC781 25ECO	8004		

10101 C 10101 C		101 6000	201 0002	$\begin{array}{r} 303 \\ 6004 \end{array}$	8000	8002	8024	103	208	316
10101 C		105	205	311						
cooocc		400	403	408	405	411	414	422		
00000 C		102	106	202	206	354	312			
ccoocc		1001	1003	1005	3001	3003	3005			
102	1	101	1	1.0						
106	1	105	1	1.0						
102	3	101	3	1.0						
106	3	105	3		. 0					
102	5	101	5	1.0						
106	5	105	5	1.0						
202	1	201	1	1.0						
206	1	205	1	1.0						
202	3	201	3	1.0						
206	3	205	3	1.0						
202	5	201	5	1.0						
206	5	205	5	1.0						
304	1	303	1	1.0						
312	$\frac{1}{3}$	311	1	1.0						
304	3	303	3	1.0						
312	3	311	3	1.0						

frogram listing ut input data caizds

304	5		303	5	1.0							
312	5		311	5	1.0							
1001	1		2000	1		1.0						
1003	1		2002	1		1.0						
1005	1		2004	1		. 0						
3001	1		4000	1		. 0						
3003	1		4002	1		. 0						
3005	1		4004	1		1.0						
1001	2		2000	2		. 0						
1003	2		2002	2	1 -1	. 0						
1005	2		2004	2		. 0						
3001	2		4000	2		. 0						
3003	2		4002	2		. 0						
3005	2		4004	2		. 0						
1001	3		2000	3		. 0						
1003	3		2002	3		. 0						
1005	3		2004	3		. 0						
3001	3		4000	3		. 0						
3003	3		4002	3		. 0						
3005	3		4004	3		. 0						
1001	4		2000	4		. 0						
1003	4		2002	4		. 0						
1005	4		2004	4		. 0						
3001	4		4000	4		. 0						
3003	4		4002	4		. 0.						
3005	4		4004	4		. 0						
1001	5		2000	5		. 0						
1003	5		2002	5		. 0						
1005	5		2004	5		. 0						
3001	5		4000	5		. 0						
3003	5		4 CO 2	5		. 0						
3005	5		4004	5		. 0						
1001	6		2000	6		. 0						
1003	6		2002	6		. 0						
1005	6		2004	6		. 0						
3001	6		4000	6		. 0						
3003	6		4002	6		. 0						
3005	6		4004	6		. 0						
MdM		11	2E00		- 33	3 EOO						$50130 . E 00$
	3	4	75	7	8	10	14	$26 \quad 18$	22	24 25	27	29-50
53	54	57	58	0.4		68	72	$73 \quad 75$	-86	5		
SfEE			OEOD		. 105	7 E00		.5667E0)		$0.0 E 00$. 458

FFDGRAM LISTING OF INPJT DATA CARUS

BLANK CARD

BLANK CARD BLANK CARD BLANK CARD BLANK CARD BLANK CARD

BLANK CARD BLANK CARD BLANK CARD
SEN

```
    \(101-13\)
```

 \(102-813\)
 105 -. \(1: 3\)
 \(106-.13\)
 \(10 \varepsilon \quad-.48\)
 SENJ. 29.50
-9000
$5 \operatorname{ccoo} .0$
.01
stor

Example Problem No. 3
Program: BEND
Problem Title: 8 Element Square Plate

Comments: This problem represents a simple statically determinate case that uses all combinations of the triangular membrane element, TRIM. These range from 3-node constant strain triangles, the 6 -node linear strain triangle, and the two interface cases with 4 and 5 nodes. A distributed edge load (using the TRIA feature) is applied on one edge.

The figure shows load versus longitudinal strain for a linear strain hardening material.

BEND SAMPLE PROBLEM \#3 EIGHT ELEMENT SQUARE MEMBRANE

FFCGRAM LISTING OF INPUT CATA CARDS

$\stackrel{Y}{\stackrel{1}{\bullet}} \quad$ BLANK CARD
BLANK CARD
BLANK CARD
BLANK CARD

BLANK CARD
BLANK CARD

BLANK CARD
BLANK CARD BLANK CARD
-1000
-1000
$5 \operatorname{ccc} 0.0 \quad .01$

STOP

Example Problem No. 4

Program: BEND

Problem Title: Collapse of a Uniformly Loaded Circular Plate

Comments: This problem demonstrates the use of the plate elew ment TRIP. One quadrant of a uniformly loaded, simply supported circular plate was modeled consisting of 50 elements, 36 nodes, and 151 degrees of freedom. The multipoint constraint feature was used to transform the edge rotations to their normal' and tangential components in order to apply the simple support boundary conditions $\left(\theta_{t}=0\right)$. To be noted also is that the order of the element input was set so that the local directions of the curvatures at each node (defined by the first element containing that node) line up with the plate boundaries and lines of symmetry. This was done to enforce boundary/symmetry conditions for the higher order degrees of freedom (see Appendix IV, Section 2).

A complete discussion of the plastic analysis of this plate as well as a number of other plate configurations is given in Ref. 2. The figure shown here is for the load versus central deflection up to the collapse load.

Bend Sample Problem \#4 Uniformly Loaded Simply Supported Circular Plate

FRCGRAM LISTING OF INDUT DATA CARDS

12345678901234567890123456789012345678941234567890123456789012345678901234567890

TRIP	42	32	31	21			
TRIF	43	21	22	32			
TRIP	44	33	32	22			
TRIP	45	27	23	33			
TRIP	46	34	33	23			
TRIF	47	23	24	34			
TRIP	50	25	36	35			
TRIP	4 e	35	34	24			
TRIP	49	24	25	35			
SENO							
0.0		1	2	5	10	17	26
1.41422		3	6	11	18	27	
2.0		4					
2.82844		7	12	19	28		
3.74162		8					
4.0		9					
4.24266		13	20	29			
5.29146		14					
5.83 C 2		15					
6.0		16					
5.65628		21	30				
6.78232		22					
7.42328		23					
7.874		24					
8.0		25					
7.0711		31					
8.24 212		32					
9.05538		33					
9.59166		34					
9.89549		35					
10.0		36					
0.0		,	4	9	16	25	36
2.0.		2					
4.0		5	8	15	24	こち	
3. 74162		6					
$2.82 \varepsilon 44$		${ }^{7}$	14	23	34		
6.0		10					
5.83 C 52		11					
$5 \cdot 29146$		12					
4.24266		13	22	33			
8.0		17					
7. 74		18					

PFUGFAN LISTING CF INFUT 『ATA CAFEDS

1234567891234567870123456789012.345678901234567890123455799012345678901234567890

BLANK CARD BLANK CARD

stop

Example Problem No. 5
Program: BEND
Problem Title: Thermoplastic Analysis of a Gircular Disk

Comments: This problem demonstrates the thermal stress capability in conjunction with the triangular membrane element. To do this, an elastic plastic analysis of an annular disk subjected to a steady state axisymmetric radial temperature distribution was performed. Since the response is axisymmetric, only a slice of the disk was modeled with the multipoint constraint feature being used to enforce tangential and normal boundary conditions on one edge. Forty constant strain triangular elements connecting 32 nodes were used in the idealization. The steady state temperature distribution is applied at nodes according to the relation

$$
T=T_{a-}-\left(T_{b}-T_{a}\right) \ln (r / a) / \ln (b / a)
$$

where T_{a} and T_{b} are the inner and outer radius temperature, respective1y.

Results shown in the figure are for dimensionless circumferential stress versus the radial coordinate. Comparison between these results and Ref. 4 are good.

FINITE ELEMENT MODEL OF A SECTOR OF THE DISK

Bend Sample Problem \#5 Thermoplastic Analysis of Circular Disk

PROGRAM LISTING OF INPUT DATA CARDS

SEND	SAMPLE	PRL	LEM	45	RMOP	AST	AN	S 15		CU	R DI				
$\begin{aligned} & 0 \\ & \mathbf{i} \end{aligned}$	$\begin{array}{r} 5 \\ -3 \end{array}$	1	-9	13	-15	19	-2 1	25	-27	31	-33	37	-39	43	-4 5
49	-51	55	-57	61	63										
TRIM		08	01	0	03	0	02								
TRIM		02	03	0	09	0	02								
TRIM		03	09	0	07	0	02								
TRIM		04	07	0	01	0	02								
THIM		05	07	0	09	0	08								
TRIM		06	69	0	15	0	08								
TRIM		07	15	0	13	0	08								
TRIM		08	13	0	07	0	08								
TRIM		09	13	0	15	0	14								
TRIM		10	15	0	21	0	14								
TRIM		11	21	0	19	0	14								
TRIM		12	19	0	13	0	14								
TRIM		13	19	0	21	0	20								
TRIM		14	21	0	27	0	20								
TRIM		15	27	0	25	0	20								
TRIM		16	25	0	19	0	20								
TRIM		17	25	0	27	0	26								
TRIM		18	27	0	33	0	26								
TRIM		19	33	0	31	0	26								
TRIM		20	31	0	25	0	26								
TRIM		21	31	0	33	0	32								
TKIM		22	33	0	39	0	32								
TREM		23	39	0	37	- 0	32								
TRTM		24	37	0	31	0	32								
TRIM		25	37	0	39	0	38								
TRIM		26	39	0	45	0	38								
TRIM		27	45	0	43	0	38								
TRIM		28	43	0	37	0	38								
TRIM		29	43	0	45	0	44								
TRIM		30	45	0	51	0	44								
TRIM		31	51	0	49	0	44								
TRIM		32	49	0	43	0	44								
TREM		33	49	0	51	0	50								
THIM		34	51	0	57	0	50								
TRIM		35	57	0	55	0	50								
TRIM		36	55	0	49	0	50								
THIM		37	55	0	57	0	56								
TRIM		38	57	0	63	0	56								
TRIM		39	63	0	61	0	56								
TKIM		40	61	0	55	0	56								

BLANK CARD

SEND			
1.0	E 00	3	0
1.1	E 60	9	12
1.2	E 00	15	18
1.3	E 00	21	24
1.4	E 00	27	30
1.5	E 00	33	36
1.0	E 00	39	42
1.7	E 00	45	48
1.8	E OC	51	54
1.9	E 00	57	60
2.0	E 00	63	66
. 99452189	E 00	1	4
1.0939741	E 00	7	10
1.1934262	E 00	13	16
1.2928784	E 00	19	22.
1.3923306	E 00	25	28
1.4917828	E 00	31	34
1.5912350	E 00	37	40
1.6814254	E 00	43	46
1.7901.394	E 00	49	52
1.8895916	E 00	55	58
1.9890437	EOO	61	64
1.05	E 00	2	5
1. 15	E 00	8	11
1.25	E 00	14	17
1.35	E 00	20	23
1.45	E 00	26	29
1.55	E 00	32	35
1.05	EGO	38	41
1.75	E 00	44	47
1.85	E 00	50	53
1.95	E 00	56	59
0.0	E 00	3	-3
. 0523359	E 00	2	5
-0.075695	E GO	8	11
-0628031	E 00	14	17
-0680367	E 00	20	23
-0732703	E 00	26	29
. 0785039	E OO	32	35
. 0837375	E 00	38	41
. 08889711	E 00	44	47
-0942047	E 00	50	53

PROGRAM LISTING OF INPUT DATA CAKDS

1234

Example Problem No. 6
Program: BEND
Problem Title: Elastic Plastic Analysis of an SAE Keyhole Specimen

Comments: The accompanying figures show an SAE keyhole specimen, the finite element idealization of half of the plate, and results for the strain at the notch versus load. The idealization uses 92 constant strain elements connecting 64 nodes that leads to 120 degrees of freedom.

ALL DIMENSIONS IN CENTIMETERS

SAE KEYHOLE SPECIMEN

Bend Sample Problem \# 6 Load versus Notch Strain for SAE Keyhole Specimen

PROGRAM LISTING OF INPUT DATA CARDS

TRIM		85	35	44	43
TRIM		86	35	36	44
TRIM		87	36	37	44
TRIM		88	37	45	44
TRIM		89	37	38	45
TRIM		90	38	46	45
TRIM		91	38	39	46
TRIM		92	39	47	46
SEND					
	0.0000 E	00	1		
	1.2500 E	00	2		
	1.2500E	00	3		
	2.2000 E	00	4		
	3.050 ${ }^{\text {che }}$	-	5		
	3.95nOE	0	7		
	4.4500 E	00	8		
	5.0000E	-0	9		
	0.0000 E	00	10		
	0.0000 E	00	11		
	1.2500 E	00	12		
	2.2000E	00	13		
	3.0500 E	00	14		
	3.4300E	00	15		
	3.9500 E	00	16		
	4.4500 E	00	17		
	5.0000E	00	18		
	0.0000 E	00	19		
	1.2500 E	00	20		
	2.2000 E	co	21		
	3.05001	00	22		
	4.4500 E	00	23		
	5.0000 E	00	24		
	3.0500 E	00	25		
	3.0500E	00	26		
	3.4500E	00	27		
	3.9500 L	on	28		
	4.4500 F	oo	29		
	5.0000	00	30		
	2.5125 E	no	31		
	2.5P17E	00	32		
	2.5483E	00	33		
	2. 3 ¢00 E	oo	34		
	2.0421E	00	35		

7000F	00	
2.7579E	no	37
2.8102E	0	8
2.8375E	0	9
2.4500E	00	40
2.4750 E	00	48
2.5250E	00	42
-6000F	00	43
C.7000E	00	44
2.8000	00	45
2.8750E	00	46
2.9000 E	00	
2.3500E	no	48
2.4000 E	00	
2.5500 E	00	50
?.7000F	00	51
?.85005	00	
2.9500F	00	53
2.9750 F	00	54
2.00005	00	
2.2000t	00	
2.3000 E	00	57
2.7000E	00	58
1.6000E	OC	
2.00)OE	no	60
$1-6000 \mathrm{E}$	00	61
2. 1500 F	00	
$2.4000 E$	00	63
2.7000 F	00	64
O.0000E		
0.0000 F	-0	
1.0000t	00	
1.1250E	¢0	
1.2500 E	00	
1.2500F	00	
1.2500 F	00	
$3.2500{ }^{-1}$	00	
1.2500E	00	
1.0000 E	00	10
2.0000 E	00	11
2.0000 F	00	12
2.0000 E	0	13
P. 7500 E		

PROGRAM LISTING UF INPUT DATA CARDS

1．7500\％	00	15
1．7500F	00	16
1．7500f	00	17
1．7500F	00	18
3.0000 E	00	19
3．0000F	00	20
3．0000E	00	21
3．DOOOF	00	22
3．0000E	00	23
3．0000E゙	00	24
0.625015	00	25
O．1250F	00	26
$0 \cdot 1250$ E゙	00	2.7
0．12SすE	00	28
$0.1250 E$	00	29
0.1250 E	00	30
0.5000 E	00	31
0：0579E	00	32
$0.1102 E$	00	33
$0.1517 E$	00	34
0.17831	00	35
－1875E	00	36
0.1783 F	00	37
$0.1517 E$	00	38
0．1250E	00	39
O．0000E	00	40
O．1000E	00	41
O．1750E	00	42
3．2250E	0	43
0.2500 E	00	44
－． 22550	00	45
0．1750F	00	46
$0.1250 F$	00	47
0.0000 E	00	48
0.15005	00	49
0.30005	00	50
$0.3500 E$	00	51
O．3000E	00	52
O．1750E	00	53
0．1250F	00	54
0.0000 F	00	55
O．2000E	00	56
0.4000 t	00	57
$0.5500 E$	00	58

PROGRAM LISTING UF INPUT DIATA CARDS

OPIPPPPPPOPPP POSPD	LLLL	$\begin{gathered} A A \\ A A A A \end{gathered}$	NNN NNNV	NNN NNN	SSSSSSSSSS SSSSSSSSSSSS
PP\％PPPP	とLL	AAAAAA	NNVV	N NNN	SSSS SSSS
כP＞PPP	LLL	AAA AAA	NNVV	VV NNN	SSS5 SSS
คPコ PDP	Lel	AAA AAA	NNNV	VNV NVN	SSS
口ロ，PPD	Lel	AAA AAA	NNN	VNN NNN	SSSS
PPD PPPP	LlL	AAA AAA	NNV	VNN NNN	S5S5S5
PPPPPPP	LLl	AAA AAA	NNN	NNN NNN	SSSSSSSSSS
PPDPDPPDPIDPP	LとL	AAAAAAAAAAAAAAAA	NNV	NNN NVN	SSSSSSSSSSS
PPO	LLL	AAAAAAAAAAAAAAAA	NNN	VNV／NNN	SSSSSSSS
ロロコ	LLL	$\triangle A A$ AAA	NNN	NNN NVN	SSSS
PP\％	LLL	AAA AAA	NNV	NNNNVN	SSS
PPS	LLL	AAA AAA	NNN	NNNNN	SSS SSSS
ロアっ	LLL	AAA AAA	NNN	NNNN	SSSS SSSS
PP	LLLLLLELLELLLL	AAA AAA	NNV	NNNN	SS SS SSSS SSS SS
PPP	LLLLLLLLLLLLL	AAA AAA	NNN	NNN	S SSSSSSSSSS

GGGGGGG厅GGGGGGGGGGGG GG

GEGGGGGGGGGGGGGGGGGGGGEGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGGGGGGGGG
GGGGGGG3GGGGEGGGGEGGGG
GGGEGGG GG GGGG GGGG GGGG
GGGGGGGGGGGGGGGGGGGGG
GGGGGGGGGEGGGGGGGGGGG
GGGGGGGGGGGGGGGGGGGG
GGGGGGGGGGGG GGGGGG
GGGGGGGGGGGGGGGG
GGGGGGGGGGGGGG
GGEGGGGGGGGG
GGGGGGGGGG
GGGGGGGG
GGGGGG
GGGG
GG

Example Problem No. 7

Program: REVBY

Problem Title: Plastic Analysis of a Ring Stiffened Spherical Shell

Comments: This problem demonstrates the use of the shell and ring element. The structure consists of a uniformly loaded spherical shell with a stiffened circular hole at the shell apex. The problem is idealized using 26 axisymmetric shell elements and one ring element connecting 27 nodes.

The figure shows the normal displacement versus applied pressure at the ring shell interface and also results for an unstiffened shell. Sudden collapse occurs for the stiffened shell at $\mathrm{qa}^{4} / \mathrm{Et}^{4}=15000$.

Additional results for this problem are in Ref. 3.

LOAD-DEFLECTION CURVES FOR RING-STIFFENED SPHERICAL SHELL UNDER EXTERNAL PRESSURE

(a) NORMAL DISPLACEMENT AT THE HOLE BOUNDARY

REVBY Sample Problem \#1 Ring Stiffened Spherical Shell

PRIGRAM LISTING OF INPJT DATA CAFCS

2．210641 GE	00	14
2．3955717	00	15
2．5802937	00	16
2．7647915	00	17
2．9490499	00	18
3． 13305285	00	19
3.3167849	00	20
3．4こ14718E	00	21
3．5460434E	00	？ 2
3．6604939E	00	23
3．7462511三	00	24
3．83193785	00	25
3．9175501\％	00	26
4．0C3C89 ${ }^{\circ}$	C C	27

BLANK CARD
－4．0003993E－03 －5．936C676：－03 －8．2523972F－03 － 1.0949340 －-02 $-1.402684 \pi-02$ －1．472206 -02 － 2.8722669 －02 － 2.409358 C＝02 -3.0141219
$-4.1223209^{-}-02$ －5．4034557－ 02 －6：85741315－02 －8．4 ع4CES5：－02 －1．0283279゙－01 －1．2254894＝－01 $-1.43997425-01$ 1.671463 3゙ 01 －1．92023e3z－01
－2．1E61726F－01
－2．4692488－01 －207694398E－01 －2096573C4＝－01 $-3 \cdot 16 \varepsilon 7 C 75=-01$ $-3.37 \varepsilon 3376=-01$
 －3．774326c＝－01 $-308743266-01$
$-4.0471286-01$ 27
BLANK CARD
2．000132 9：－02
 335678901234567890123456737212345573971234567890123456789012345678901234567890

```
    2.4364647E-02
    2. &727578゙-02
    3.3CG1299E-02
    3.7454616E-02
    4.3272387ミ-02
    4.9CG0147F-02
    A.9CG0147F-02
    5.4GC791 8=-02
    6.421631 6E-02
    7.3E24714E-02
    8.2833171E-02
    9.21415595-02
    1.0145003F-01
        1.1c75e42=-01
        1.20066225-01
        1.293752 & - 01 
        1.3868368-01
        1:4799213F-01
        1.4759213=-01
    1.573cc53=-01
    1.5\epsilon6ces3E-01 . 20
    1.7242670E-01 21 
        1.840E224--01
        1.8842554E-01
        1.9278890=-01
        1.9715220%-01
        2.0151556E-01
        111100
    10
```



```
        1 -26
    1.74999c85-02
        1 -27
l
```

$3.0625=-02$
$3.75=-02$
7.81535-05 0.00000000E OO -175EJC
 12345678901234567890123456737012345579901234567890123456789012345678901234567890

PROGRAM LISTING OF INPJT DATA CAFES

Example Problem No. 8
Program: REVBY
Problem Title: Thick Tube Under Internal Pressure

Comments: This problem demonstrates the use of the axisymmetric revolved triangular element, TRIR. Five bays of four triangles each (20) are used to idealize thick tube under internal pressure.

A series of results are shown in the figure and compared with a solution in Ref. 5. Additional discussion of this problem is in Ref. 3.

PRESSURE p VERSUS RADIAL DISPLACEMENT u (b) ANO RADIUS OF ELASTIC-PLASTIC BOUNDARY, ρ

DISTRIBUTION OF RADIAL STRESS

$0 \geqslant \hat{\gamma} 0$ FINITE-ELEMENT SOLUTION $\mathrm{k}=$ YIELD STRESS IN SHEAR

DISTRIBUTION OF CIRCUMFERENTIAL STRESS
REVBY Sample Probiem \# 2 Thick Cylinder Under Internal Pressure

BLANK CARD
BLANK CARD
BLANK CARD BLANK CARD

1011 ・ヵ
1141:'
1.1 - 1 m
$7-12$ 119

BLANK CARD

BLANK CARD BLANK CARD BLANK CARD

BLANK CARD BLANK CARD

BLANK CARD

BLANK CARD

ハやかいのF ．）7	uno！口nt a？	17	3．今1）（0） $0005-01$	O：0nof
（a）dudF＝	¢491540E Gt	S．E491540f 0t	S．R491540E 06	EOU
（1） 1 FF 04		3.600 Oinde 04	？O7R4000E OA	0.0000000 O
いu（a）E Oaj		1．1000才）0F 07	2．07R4000E 04	2．07H4リnuF 04

$1-2!1 F-04 \quad$ O． $1 F=114$

（：．115（1）（1．）f0は

SF：
$->$,
$1-12101-115$
$-3:$
$1-12 \quad 111-105$

st ${ }^{\prime}$
$S t_{1}, \gamma$

Example Problem No. 9
Program: REVBY
Problem Title: Thermoplastic Analysis of a Circular Disk

Comments: This problem is the same as sample problem 5 using the BEND program. Here 10 shell elements are used connecting 11 nodes leading to 22 degrees of freedom. Comparison made with the results of Ref. 4 indicate excellent agreement.

FINITE ELEMENT IDEALIZATION USING SHELL ELEMENTS

REVBY Sample Problem \#3 Thermoplastic Analysis of a Circular Disk Shell Elements

PKGGRAM LISTING UF INPUT UATA CARUS

BLANK CARD BLANK CARD BLANK CARD BLANK CARD

PRGGRAM LISTING OF INPUT DATA CAROS

 123436789012345078901234567690123456749012345078901234507890123450789012.34567890

BLANK CARD
BLANK CARD
BLANK CARD
BLANK CARD
BLANK CARD

STOF

```
KEVOY SAMPLE PFCHLEM=4 THEFMUPLASTIC ANALYSIS UFGCIRCULAK DISK - 
```

 \(\begin{array}{r}1 \\ 1 \\ 1\end{array}-32\)
 | TRIF | 1 | 1 | 23 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| TKIR | 2 | 1 | 2 | 23 |
| TKIR | 3 | 2 | 13 | 21 |
| TKIR | 4 | 13 | 12 | 23 |
| Trik | 5 | 2 | 24 | 13 |
| TRIR | 6 | 2 | 3 | 24 |
| TRIK | 7 | 3 | 14 | 24 |
| TRIR | 8 | 14 | 13 | 24 |
| TRIR | 9 | 3 | 25 | 14 |
| TKIN | 10 | 3 | 4 | 25 |
| TRIN | 11 | 4 | 15 | 25 |
| TKIR | 12 | 15 | 14 | 25 |
| TRIR | 13 | 4 | 20 | 13 |
| TRIR | 14 | 4 | 5 | 20 |
| TKIR | 15 | 5 | 16 | 26 |
| TKIR | 10 | 10 | 15 | 20 |
| TRIR | 17 | 5 | 27 | 10 |
| TRIK | 18 | 5 | 6 | 27 |
| TRIF | 15 | 0 | 17 | 27 |
| TRIR | 20 | 17 | 10 | 27 |
| TRİ | 21 | 6 | 28 | 17 |
| TR1K | 22 | 6 | 7 | 20 |
| TKIR | 23 | 7 | 18 | 28 |
| Thlt | 24 | 18 | 17 | 25 |
| TKIF | 25 | 7 | 29 | 18 |
| TRIR | 26 | 7 | 8 | 29 |
| TR IR | 27 | 8 | 19 | 29 |
| TRIR | 28 | 19 | 18 | 29 |
| TRIR | 29 | 3 | 30 | 19 |
| TRIK | 30 | 8 | 9 | 30 |
| Tが心 | ± 1 | ＇ | 20 | 30 |
| TK゙ IR | 32 | 20 | 19 | 30 |
| TR1隹 | 33 | 9 | $3 i$ | 20 |
| TKIR | 34 | 9 | 10 | 31 |
| TRI的 | 35 | 10 | 21 | $3:$ |
| TKIR | 36 | 21 | 20 | 31 |
| TRIK | 37 | 10 | 32 | 21 |
| TRIF | 38 | 10 | 11 | 32 |
| Trik | 39 | 11 | 22 | 32 |
| Trim | 40 | 22 | <1 | 32 |

Example Problem No. 10
Program: REVBY
Problem Title: Thermoplastic Analysis of a Circular Disk

Comments: Same as sample problem 5 (BEND) and 8 (REVBY). Use here is made of 40 revolved triangular element connceting 32 nodes leading to 53 degrees of freedom. Results shown in the figure are for average stresses at the intersection of the diagonals of each bay. Again comparison with the results from Ref. 4 are good.

REVBY Sample Problem \#4 Thermoplastic Analysis of a Circular Disk

BI．ANK CARD
BLANK CARD

BIANK CARD BLANK CARD

BLANK CARD
BLANK CARD BLANK CARD

1．OECO	1	12
1．1E00	2	13
1．2E゚OO	3	14
1．3ECO	4	15
1．4ECO	5	16
1．5ECO	6	17
1．6ECO	7	18
1．7ヒ00	8	19
1．8t00	9	20
1．9ECO	10	21
2．OECO	11	22
1．05EC0	23	
$1.15 E C O$	24	
1．25ECO	25	
1．35E00	26	
1． 45 CO	27	
1－55E00	28	
1．65ECO	29	
i．75ビC0	30	
1．85ECO	31	
1．95ECO	32	
OO．OECO	1	-11
C． $10 E 00$	12	-22
C．OSECO	23	－32
O．OECO	1	－32
$1 \stackrel{1}{2}$	-11 -32	

1．CCCCOOOE C7	1．0000000E 07	1．0000000E 07	O．SOOOOOOL	00	O． 30000 COE	00
0． 3 CCCOOOE 00	3.8461530 E 0	3.8461530 E 00	$3.8461530 t$	00	0．0000000E	00
2．CCCCOOOE C3	2．0000000E 03	2.0000000 O 3	$1.1547004 E$	03	5．0000000E	00
4．CCCCOOOE Cs	2．0000000E O3	1．000000JE O7	1.15470045	03	1．1547004E	03
$\begin{aligned} & 0.1 \mathrm{CCCOOOE}-\mathrm{C} 4 \\ & 1 \\ & -40 \end{aligned}$	0.1000000 E－04	$0.100000 \text { E-0.4 }$				
C．OOOOCOOE	00					
$1 \quad 12$	00	LOO	EOO			

23	S.2761C67t-01	0.0 EOO	0.0 E00
	E. $624 \div 64 \mathrm{EE}-01$	O.OEOO	$0.0 E 00$
13	$7.9835614 \mathrm{E}-01$	O.OEOO	$0.0 E 00$
24			
	7.309655GE-01	0.0 EOO	$0.0 E 00$
14	$6.7807190 E^{3}-01$	O.OEOO	0.0500
25			
15	6. $2_{4}^{14} 48638 E-01$	0.0 too	O.UEOO
	5.6704CS9E-01	0.0 EOO	0.0 EOO
26	S.1457317E-O1	O.OEOO	O.OEOO
16	$4.639471 \text { Ot }-01$	0.0 EOO	0.0 EOO
27			
	4.1503750E-01	0.0 EOO	0.0 EOO
17	$\begin{gathered} 6 \\ 3.6773178 E-01 \end{gathered}$	0.0 EOO	0.0 EOO
28			
	3.2192と05ヒ-01	0.0 EOO	0.0 EOO
7	2.7753398E-01	0.0 EOO	O.OEOO
29			
-	2.3446525E-01	0.0 EOO	O.OEOO
0	$1.926450 \mathrm{cE}-01$	0.0 EOO	0.0 EOO
30	1.520030 GE-01	$0.0 E 00$	0.0 EOO
S			
	$1.1247473 t-01$	0.0 EOO	0.0EOO
	7.4000581E-02	O.OEOO	0.0500
10	21.		
32	3.6525E79E-02	0.0 ¢00	O.OEOO
	O.OEOO	0.0 EOO	0.0 EO
SENU ${ }^{11}$			
-40			
-32			

BIANK CARD BLANK CARD

BLANK CARD BLANK CARD

```
    -40
    -s2
    2. ccccooor c2 0.0100000E 00
STOP
```

	レᄂレ	A A	NNN	NUS	SSSららゝらうらS
	LLL	MへAA	Nivivi	NNN	SSSc＝SSSSDS
	L．LL	AAAAAA	NNTVi	1 NNN	SSSS SSSS
ト－1¢（rap	LIL	AAA AAA	ivNNi	NN NNN	SSSS SSS
ドトロ	LLL	AXA AAA	WNNT	INN NivN	SSS
ドゼト トドト	とLL	FAA AよA	NIUN	NNN NNN	SSS
	11 L ．	AAA AAA	NIVN	NIVN MNN	SSSSSS
	LLL．	AのA AHF	NivN	TnNN NNN	SSSSSMSSむS
	L．LL		ANN	NINN NNN	SSSSSSSSSSS
＋ド	L．LL	AHんATHAA言AAAAAAA	Niviv	PNNN NNN	SSSSStS
＋ris	とじ	AA\＆AAA	NNN	NNN NNN	\＄5S5
＋ro	LLし	AFA $\quad \dot{A} A$	nNM	MNONNA	Sis
トri）	1．L	AFA A AA	NVNN	NTVNEN	SSS SSらS
トード	＋Lし	$A A^{\text {A }}$ AAA	NNN	NIVN．	SSSS SSSS
HFN		AAA AAA	NNN	NNNN	ここSSSSSSSSSSS
－F゙r		$A A A \quad \therefore A A$	NON	NNN	SSSSSSSSSSS

LUNGGGCGGLGULGCGGGGí
GWGGKOGEGGGNGGGKGGLGG

UGC．CGI．GCLGCGEC，心と，

WGしG6心GEGG

したないしく
ッGuG
6

Example Problem No. 11
Program: HEX
Problem Title: Bar Subjected to an End Displacement

Comments: This is a simple statically determinate problem to demonstrate the use of the HEX element. The automatic mesh generation feature is used (MSGN) to specify a $1 \times 6 \times 4$ mesh of 24 elements. An applied edge displacement is imposed on one end. The figure shows the axial stress versus applied end displacement.

HEX SAMPLE PROBLEM \# 1 BAR SUBJECTED TO AN END DISPLACEMENT

PROGRAM LISTING DF INPUT DATA CARDS

Example Problem No. 12
Program: HEX
Problem Title: Thermoplastic Analysis of a Circular Disk

Comments: This problem is the same as problems 5 (BEND), 8 , and 9 (REVBY). Here the idealization of a slice of the disk is used with 10 hexahedra elements with midside nodes in the radial direction. Thirty Lobatto stress points are used in each direction, 10 in the radial, 3 in the circumference, and 1 in the thickness direction.

FINITE ELEMENT MODEL OF A SECTOR OF THE DISK

HEX Sample Problem \# 2 Thermoplastic Disk

FHEGKAM LISIING LF INWUT DATA CAKLS.

		$E+00$	4%	$4{ }^{1}$							
	1．7ソ01．944	$5+0 \cup$	49	± 32							
	1－どくいいう18	$=+C v$	56	56							
	1．9とい0゙4	$r+v 0$	$\epsilon, 1$	4.4							
		$1 .+00$	2	$\stackrel{L}{1}$							
		$\underline{5}+6$	r.	11							
	1．1503b＝4	$1 .+40$	14	17							
	10ッザぐいご	$\mathrm{t}+00$	cıv	23							
	1－3906013	と tue	ぐ，	$2=$							
	1．4）（444＝	$2+O U$	3：	35							
		$\mathrm{t}+0 \mathrm{O}$	± 2	41							
	1－6！（6） 102	$L+00$	44	47							
	1．以75きミ1	$E+i c$	$5:$	53							
	1．－6¢ 5901	$L+u$	56	59							
		6．tud	cic	05							
	－Cu		101	140							
BLANK CARD											
	0.0	1－00	2	－3	－062						
v	－呺ごきたい	Ltw	$\dot{\prime}$	5							
1		t＋í	ε	11							
0	－Vくっくありぶ	$1+u 0$	14	17							
\checkmark	－Otsesuzer	$E+00$	\cdots	23							
	． 0732703	$\mathrm{i}+60$	＜0	cy							
	－6\％こしざ	$E+0 C$	ら゙く	± 5							
	－すぐ入」ブ	$t+00$	2k	41							
	－90わ4111	E＋，ir	44	47							
		$t+c$	5.	5							
	－U5\％4－65	$E+$ Uu	56	GY							
	－164心11a	$E+U 0$	しぐ	が，							
	－1u4 -6×4	$1+00$	1	4							
	－114 ¢ \％	$t+00$	i	10							
	－16゙上4341	$t+00$	1.	16							
	－1 دistek\％	t－s．ct	1	\cdots							
	－1463．348	$E+u$	c 5	くど							
	－16¢7y＜u	$E+$ Uu	± 1	54							
	－167く4こと	$E+u$ U	3%	40							
	－11才ひりぐ，	$\mathrm{F}+\mathrm{Cu}$	$4=$	$+C$							
		L＋+0	4	5							
	－19¢cuムi）	$1+00$	らご	تく							
		$t+4$ ，	c． 1	c－4							
	U＊N		101	140							
BLANK CARD											
	N•U	EtU0	0	-6	－ 6.5	R	－	－0， 2	1	-6	－-1
	4．01	t．＋C．C	4	－t	－ 6.4	b	－6	－05	θ	－6．	－Cors

[^2]

上：	1	ちら	1		ちも	2	－01045ck4
5t	6	ご	1	－ 10454804	4．5	$\%$	－ 5445 ¢ 18
¢く，	］	勺と	1		be	\dot{L}	－－1045c04
ご，	$<$	50	1	－104らご心4	bt	c	
6.1	1	51	1	－9\％44敇1	61	$\dot{*}$	－． 10452084
1,1	2	4） 1	1	－1：4 5¢ ¢4	t． 1	\％	－-14 ¢
0.4	1	6.4	1		04	i	－ 1945 ck4
c． 4	c	04	1	－1u4EOE4	04	－	
161	1	101	1	－Sy4 cill：	101	$\ddot{ }$	－．1u4 5204
161	4	1ul	1	－1645254	121	${ }^{2}$	－Y445218
$10 \leq$	1	105	1		10	$\dot{4}$	－． $1045<04$
1 こ：＊	${ }^{\prime}$	16	1	－1،34ちぐと	1.5	2	－4445c10
104	1	1uい	1	－ 644512	1：9	$\stackrel{\text { C＇}}{ }$	－$=1$ 145204
179	\leftarrow	$10 y$	1	－105 5ck 4	$1 \cup y$	${ }^{\prime}$	－ 1945
11.	1	11.3	1		113	2	－．1045284
113	$\bar{\sim}$	113	1	－1645ご析	113	2	－ 9445210
117	1	117	1	－194521\％	117	L	－ 1045284
111	＇＇	11%	1	－104こどち4	117	；	－¢y4ちざ8
$1<1$	1	12.1	1		121	＇${ }^{\text {c }}$	－． 1 （．abis4
$1<1$	$<$	$1<1$	1	－104こく04	121	2	－9c4．5c1e
	1	1＜゙＂，	1	－ 994 たと	120	＜2：	－－10452d
14	2	123	1	－104ちcku	12ら	\dot{c}	
120	1	边ら	1	－ 954521 ？	8 299	2	－ 01 1．452．04
13＂	2	1×1	1	－1045idu	129	2	－ 94.3 ćl
133	1	133	1		153	c	－ 1045 204
1－3	$<$	135	1	－164bais	133	＇＇	－ 5945210
137	1	137	1	－ザム	131	$<$	－．1才45204
$1-6$	\because	131	2	－104らぐ场	1.57	4	－ナY4 ニ218
1：＇0＇	1	16安	1	－ 944516	16	＇${ }^{\prime}$	－104bak4
115	${ }^{4}$	102	1	－1045心u4	1＜2	c^{\prime}	． 9445 216
1 ut．	1	140	1	－9945ご心	1 Úo	C＇	－010452．64
1： 2	c^{2}	1 l	1	－1t 45它54	100	c	－ 9×445215
116	1	110	1		110	c	－ $1.45<04$
111）	i	110	1	－104！224	110	2	－Ş4Szl
114	1	114	1	－「34 ぐ1s	114	2	－ $1645<604$
114	く	114	1	－1145でくな	114	$\overline{2}$	－ 545210
11 cid	1	11%	1		118	$<$	－1045č64
11 1	c	11i	1	－164 5íks	118	i．	－ 9645218
14：	1	12．	1		12\％	${ }^{2}$	－－1c4ら2ヵ4
$1 \underbrace{\text { c }}$	$\stackrel{2}{4}$		1	－104bctit	1 ± 2	c	－ 944 ¢ 216
$1{ }^{\text {c }}$（ ${ }^{\text {d }}$	1	$1: 0$	1	a ${ }^{\text {a }} 4$ 4，cis ${ }^{\text {a }}$	120	$\dot{\prime}$	－01045ご囚4
1 120	：	$1{ }^{2} 0$	1	－1【45cr 4	120	\cdots	－勺゙， 5 ごさ10
130	1		1		130	－	－114さぐく4
13	：	1－5\％	1		150	C＇	

[^3]
HRDGNAN: LISTIVG UH INPUY L.A.TA CARDS

 BLANK CARD
sTir

Example Problem No. 13
Program: HEX
Problem Title: Collapse of a Simply Supported Uniformly Loaded Beam

Comments: Ten 20 node hexahedra elements are used to model half of a simply supported beam. A $1 \times 1 \times 8$ array of Lobatto points are used (8 through the thickness) to determine stresses within each element: Lobatto points were chosen in order to have stress points at the surface. Eight points were taken through the thickness in order to accurately define an elastic plastic boundary through the thickness.

The figure shows the central deflection versus load for an ideally plastic material. Results are in good agreement with Ref. 5.

FINITE ELEMENT MODEL OF HALF OF THE BEAM

LOAD VS. NON-DIMENSIONAL CENTER DEFLECTION (WO CORRESPONDS TO DISPLACEMENT AT INITIAL YIELDI OF A SIMPLY-SUPPORTED BEAM. HEX RESULTS CORRESPOND TO AN1X1X8 ARRAY OF LOBATTO POINTS.

HEX Sample Problem \#3 Collapse of a Uniformly Loaded Beam

PROGRAM LISTING IF INPUT DATA CARDS

HEX SAM	PLE	PROELEM			COL	LAPSE	CJ\%	SIMPLY	SUPP	RTEU	UNI	LLY	LOAD	8		
$\begin{aligned} & \mathbf{1} \\ & \mathbf{H} \end{aligned}$	26 -6	1 Cl 1	1 CL		7	-16	103	104	17	-26.	105	106	27	-.36	107	108
37	-46	1091	110		47	-56	111	112	57	-66	113	114	67	-76	115	116
77	-86	117.1	118													
$\mathrm{H} \times 2 \mathrm{O}$		1	1		3	13	11	4	6	16	14					333
z	8	12	7		5	10	$\$ 5$	9	101	102	164	103				
HX20		2	11		13	23	21	14	16	26	24					333
\%	18	22	17		15	20	25	-19	103	104	106	105				
Hx20		3	21		23	33	31	24	26	36	34					333
- 2i	28	32	27		25	30	35	29	105	106	108	107				
1×20		4	31		33	43	41	34	36	46	44					333
32	38.	42	37		35	40	45	39	107	108	110	109				
HK20		5	41		43	53	51	4.4	46	56	5.4					333
42	48	52	47		45	50	55	45	109	110	112	111				
HX20		6	51		53	63	61	54	56	66	64					333
52	58.	62	57		55	60	65	59	1 I 1	112	114	113				
$\mathrm{H} \times 20$		7	61		63	73	71	64	60	76	74					333
62	68	72	67		65	70	75	69	113	114	116	115				
$H \times 20$		8	71		73	83	81	74	76	86	84					333
72	78	82	77		75	80	85	-79	115	116	118	117				
SEMD																
0.0			1		-6											
0.05			7		-10			,								
0.1			12		-16											
0.15			17		-20											
0.2			21		-26											
0.25			27		-30											
4.3			31		-36											
0.35			37		-40											
0.4			41		-46											
0.45			47		-50											
0, 0			51		-56											
0.55			57		-60											
\%06			61		-66											
(x) 7			67		-70											
$0 \cdot 8$			71		-76											
0.9			77		-80											
1-0			81		-86											
0.0			101		102											
0.1			103		104											
0.2			105		106		-									
t-3			107		108											
0.4			$10 ¢$		110											

PRCGRAM IETENG UF INFUT UATA CARDS

WSOGFAV LBSTJMG CIF INPUT DATA CARDS

$\begin{array}{r} 10 \\ 102 \end{array}$						$\begin{aligned} & -1.0 \\ & -1.0 \end{aligned}$		
164						-1.0		
K	13	23	20	16	16	1 C 6	20	104
1.3						-1.0		
16						-1.0		
18						-1.0		
20						-1.0		
23						-1.0		
26						-1.0		
104						-1.0		
100						-1.0		
23	23	33	36	26	28	108 -1.0	30	100
26						-1.0		
28						-1.0		
36						-1.c		
33						-1.0		
36						-1.0		
100						-1.0		
10%						-1.0		
3	33	43	40	30	38	110	40	108
33						-1.0		
36						-1.0		
38						-1.0		
40						-1.0		
43						-1.0		
40						-1.0		
108						-1.0		
11 :						-1.0		
	43	53	56	46	48	112	50	116
43						100 -100		
4%						-1.0		
51)						-1.0		
53						-1.0		
So						-1.0		
110)						-1.0		
112						-1.0		
	53	63	ut	56	58	114	60	112
53						-8.0		
! ${ }_{\text {¢ }}$						-1.0 -1.0		
6:						-1.0		

PROGRAM LISTING IIF INPUT DATA CAROS

 $12345 \cdots 7840123456754012345076401234567 \pi 401234507640123456784012345678901234567890$

STH14

GEOMNL MODULE

FLASTIC-PLASTIC ANALYSIS

PREPAFED GY
TME RESEARCH DEPARTMENT
OF GRUM AN AEROSPACE CORPORATIC UNDER PARTIAR FUNDING FRUM

Example Problem No. 14
Program: OPLANE-GM
Problem Title: Uniformly Loaded Restrained Beam

Comments: Ten beam elements are used to model half a simply supported restrained beam. A full tangent modulus method is used (PTAN $=0.0$) .

The figure shows the central deflection and internal axial force versus the total load.

REFERENCES

1. Isakson, G., Armen, H. Jr., and Pifko, A., "Discrete-Element Methods for the Plastic Analysis of Structures," NASA Contractor Report CR-803, October 1967:
2. Armen, H. Jr., Pifko, A., and Levine, H., "Finite Element Analysis of Structures in the Plastic Range," NASA Contractor Report CR-1649, February 1971.
3. Armen, H. Jr., Levine, H., Pifko, A., and Levy, A., "Nonlinear Analysis of Structures," NASA Contractor Report CR-2351, March 1974.
4. Dastidar, D. and Ghosh, P., "Stresses and Strains in the Plastic Range in an Annular Disk due to Steady State Radial Temperature Variation," International Journal of Mechanical Sciences, Vol. 14, pp. 501-510, 1972.
5. Prager, W. and Hodge, P. Jr., Theory of Perfectly Plastic Solids, J. Wiley and Sons, Inc., 1951.

[^0]: Isakson, G., Armen, H. Jr., and Pifko, A., "Discrete-Elemer.t Methods for the Plastic Analysis of Structures," NASA Contractor's Report NASA CR-803, October 1967.

[^1]: Isakson, G., Armen, H. Jr., and Pifko, A., "Discrete-Element Methods for the Plastic Analysis of Structures," NASA Contractor's Report NASA CR-803, October 1967.

[^2]:

[^3]:

