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ABSTRACT 

There has been considerable speculation as to the energy 

balance of the thermosphere and in particular about the fraction of 

the total energy input supplied by ultra-violet radiation. The 

problem is considerably simplified by considering the energy 

balance of the nighttime hemisphere alone. Sunrise and sunset 

vapor trail measurements provide data on the wind systems at the 

terminator boundary, and temperature measurements provide 

information on the vertical energy conduction. North-south winds 

from high latitude vapor trail measurements provide a measure of 

the energy input from auroral processes. The discrepancy between 

the inputs from the day hemisphere and the observed loss rates is 

discussed in terms of ion-neutral processes and gravity wave 

inputs. 
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CHAPTER I 

INTRODUCTION 

1. 1 General Statement of the Problem 

The thermosphere has received a considerable amount of 

attention since the advent of satellites and it is therefore 

surprising that at this time there is still considerable uncertainty 

about the relative importance of the various energy inputs and 

transport mechanisms in controlling the energy balance. 

Several studies of the overall energy balance of the 

thermosphere have been performed by Swartz et al. (1972), 

Chandra (1973) and Roble and Dickenson (1973). It may be said 

that these investigations have not yet provided any concrete 

results. While there are good measurements of densities at 

satellite altitudes, there are not nearly as many measurements 

of the temperatures and very few are available in the critical 

lower thermosphere where much of the energy is stored and 

dissipated. Very few rocket vapor trail wind observations are 

available at times other than sunrise and sunset and incoherent 

scatter sounding provides little information on the critical zonal 

winds. While extensive series of measurements have been made 

of the EUV fluxes, there are problems with the absolute calibra

tion of the intensities in some of the older measurements obtained 

at higher solar activity levels. The heating efficiency in the 

thermosphere has major uncertainties as well. The Joule heating 

at high latitudes and the processes by which the energy of Joule 

heating is transported to lower latitudes are not well understood. 
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In addition, the energy transported upwards by tidal motions and 

gravity waves into the thermosphere from below is largely 

undetermined. 

When the entire thermosphere is considered, the uncertainty 

in these sources and sinks are of the same order of magnitude 

as the EUV heating which is generally believed to be the major 

heat input and it is difficult to determine whether another major 

source is required. It therefore seemed of interest to examine the 

energy balance of the nighttime thermosphere by itself. The EUV 

heating is a very minor input while the loss rates are almost the 

same as those present during the day and so this approach
 

provides a good opportunity to study the effects of transport from 

the day hemisphere. In addition, the vapor trail wind measure

ments made at sunrise and sunset provide data on the winds at the 

terminator and additional vapor trail measurements at high 

latitudes provide data on the meridional winds at this boundary. 

It is the general aim of the present study to attempt to 

determine the rate of energy loss from the night hemisphere and 

compare this with the energy inputs from the day hemisphere to 

determine if another major energy source is required. 

1.2 Previous Related Studies 

1. Z. 1 Estimates of Solar EUV Radiation 

The importance of accurate estimates of the solar extreme 

ultraviolet (EUV) flux has been recognized for a number of years. 

Decimeter flux measurements (i.e. the F10.7 index) serve as good 

indicators of overall solar activity, but direct observations of the 

EUV flux responsible for photodissociation and ionization processes 



in the thermosphere are required for the bulk of all aeronomical 

calculations in this region. The term EUV has been used to 

designate the portion of the spectrum from roughly 1750 R to 170 

while XUV, often taken to be equivalent to EUV, includes in 

addition the X-ray spectrum below 170 R with no well defined short 

wavelength limit. 

Early low resolution measurements of solar EUV radiation 

were performed by Detwiler et al. (1961) using photographic

photometric equipment aboard an Aerobee-high rocket. The results 

were obtained in the altitude range from 148 to ZZ0 km and covered 

the wavelength range from 850 R to Z600 R. A number of factors 

contributed to uncertainty in the results, including a lack of good 

calibration standards and an uncertainty as to the amount of 

atmospheric absorption along the optical path. 

A synopsis of observations of the thermosphere during 1963, 

including estimates of photoionization cross sections, rate 

coefficients and neutral density distributions was presented by 

Hinteregger and Hall (1965). This paper has been most often 

referred to for its compilation of EUV observations by spectro

photometric methods in the wavelength range from 1750 R to I R. 

Data obtained between July and August of 1963 agreed quite well 

and the uncertainty in these measurements was estimated to be 

less than 30 percent. A much greater uncertainty existed in the 

350 R - 56 R results however, and the fluxes here are thought to 

be uncertain by as much as a factor of 3 to 5. The uncertainty in 

Hinteregger's results were again largely due to a lack of reliable 

absolute calibration standards in the ultraviolet. 
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A major concern of the EUV measuremehts has been 

improved estimates of the flux in the Schunann-Runge continuum, 

in the wavelength range from about 1250 A to greater than 2000 X 

These fluxes are responsible for the rapid dissociation of 02 in the 

lower thermosphere and as such, their knowledge has important 

implications for the global distribution of atomic oxygen in this 

height range as well as the EUV energy input. 

Intensity measurements of the solar continuum from 1400 

to 1875 X using a rocket borne photoelectric spectrometer were 

made in September of 1968 by Parkinson and Reeves (1969) in an 

effort to improve on spectral resolution and the intensity calibration 

employed in obtaining previous data. The data collected were 

limited to the center of the solar disk. Their results suggested a 

blackbody temperature of approximately 4600 K and the intensity 

measurements at the short wavelength end ("1400 R ) agreed closely 

with the results of Goldberg et al. (1968). The derived intensities 

were lower by a factor of three, however, than the then current 

estimate of Whiting and Purcell (1969). 

The next comprehensive tabulation of solar EUV data was 

published by Hinteregger (1970) and included the region of the 

spectrum from about 1800 X to 30 X. The fluxes arrived at here 
-

represented medium solar activity (F 1 0.7 = 130-170 X 10-zzW m 

- 1)Hz and were considerably smaller than those presented in his 

earlier work (Hinteregger and Hall, 1965) and nearly a factor of 

three less than the results of Detwiler (1961) and Parkinson and 

Reeves (1969). This new information, then, suggested a much 

lower intensity of solar flux in the Schumann-Runge continuum 
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with the consequence that previous estimates of 02 dissociation 

rates and EUV heating should be reduced substantially. 

Measurements in the 1300 X - 280 X interval were obtained 

using a scanning spectrophotometer aboard the NASA OSO-IH 

satellite while fluxes in the range Z80 X - 30 X were obtained from 

an AFCRL rocket using an improved scanning monochromator. 

Hinteregger warned against comparing these values with 

earlier estimates for the purpose of deducing solar cycle variations, 

the reason being the poor quality of these earlier estimates and the 

lack of secure absolute calibration in the earlier flights. He 

suggested, rather, that these new estimates supersede the older 

ones and that any knowledge of the variation over a solar cycle 

remains to be determined. 

Roble and Dickinson (1973) calculated global mean temperature 

profiles using as heat sources Hinteregger's (1970) EUV fluxes for 

wavelengths less than 1300 X and the results of Widing et al. (1970) 

for wavelengths greater than 1300 X. Using a heating efficiency of 

33 percent, they balanced these EUV sources against calculated 

values of conduction and 63 micron cooling by atomic oxygen. The 

temperature profiles arrived at were considerably lower than those 

given by the .acchia, 1971 empirical model. The results suggested 

that the Hinteregger, 1970 fluxes were low and it was found that 

uniformly doubling or tripling these fluxes brings both the calculated 

and neutral electron temperature profiles into good agreement with 

observations. 

Further evidence pointing to a combined uncertainty ir 

thermospheric densities and the Hinteregger, 1970 fluxes was 
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provided by Swartz and Nisbet (1973). This study involved a balance 

between electron recombination rates determined using Arecibo 

electron density profiles and production rates based on Hinteregger's 

1970 fluxes, both characteristic of medium solar activity. Photo

ionization and photo-absorption cross sections were taken from 

Schoen (1969) and Huffman (1969). The results showed that the 

calculated recombination rate exceeds the photoionization rate and 

indicated that an increase by a factor of two or three in the EUV 

flux is required to remove the discrepancy. A serious error in the 

reaction rates was thought unlikely since this would involve all of 

the rates of interest. The conclusion reached was that additional 

energy input to the F-region is required, either by EUV or some 

new source of energy not yet considered. 

In constructing a photochemical model of the daytime F-region 

G. Scialom (1974) used neutral profiles from incoherent scatter and 

rocket borne mass spectrometer results obtained during 1973. As 

an energy source he employed Hinteregger's 1970 EUV fluxes using 

a scaling factor as a free parameter. Once again, best agreement 

between experimental ionic concentration profiles and model results 

was obtained when the fluxes were increased by a factor of three. 

From a comparison of chemical production and loss rates, 

Prasad and Furman (1974) reached a ,somewhat different conclusion 

and questioned the need for increasing observed EUV fluxes. Their 

deduced loss rate profiles were considerably smaller than those of 

the above mentioned authors and in fairly good agreement with 

production rates based on Hinteregger's 1970 fluxes. 

An alternative treatment by Prasad and Furman which used 
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electron temperatures consistent with observed ion profiles 

suggested also that Hinteregger's 1970 fluxes were low by no more 

than 20 percent. To solve the problem, they suggested, as did 

Hinteregger, repeated, reliable measurements of the EUV flux 

under a variety of conditions and/or an alternative way of 

examining the problem. 

1.2.2 Mid Latitude Wind Observations 

Studies of the thermospheric neutral wind system at low and 

mid latitudes have proceeded along two fronts; the development of 

models of the neutral wind based on measurements of thermospheric 

pressure and temperature distributions, and experimental techniques 

for the direct measurement of wind velocities. 

Using simplifying assumptions appropriate for the thermo

sphere, model calculations of thermospheric winds can be 

performed using the equation of motion for the neutral gas 

(Rishbeth, 1972) given by 

dU -+ZVn2, 

+ 2XU = + (1.1) 

where U is the velocity of the neutral wind 

0X Uis the Coriolis force (t0being the earth's angular 

velocity) 

F is the driving force per unit mass due to pressure 

gradients 

-Vni ( U- V) is the so-called ion drag term (vni is the ion

neutral collision frequency and V is the ion velocity, 
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controlled both by electric and magnetic fields and by 

coupling with the neutral gas) 

(p/p)V U is the viscous drag term ( L/p being the kinematic 

viscosity) 

g is the acceleration of gravity 

Evaluating the ion drag term in the above expression requires 

an estimate of the ion-neutral collision frequency v . . This 

quantity has been studied by Dalgarno (1964) and Stubbe (1968) and 

has been found to be density dependent and somewhat temperature 

dependent.
 

Empirical models of thermospheric pressure distributions 

have been determined (Jacchia, 1965, 1971) based on the results of 

satellite drag measurements. These models display the density and 

pressure distributions as a function of latitude and local solar time 

and show a characteristic enhancement of the pressure, known as 

the "diurnal bulge", near 1400 hours local time. These results 

allow the determination of the force due to pressure gradients 

given by Fin the expression above. The problem with this approach 

lies with the pressure gradients in the neutral models. It has been 

shown by Blamont et al. (1973) and Thuillier et al. (1976), that the 

maximum temperature is not in the equatorial region but at high 

latitudes in the summer hemisphere. This difference has a 

profound effect on the meridional pressure gradient as shown by 

Nisbet et al. (1977). 

It has been customary to divide the experimental methods of 

determining upper atmosphere motions into two broad classes 

(Kent, 1970). The first involves the measurement of ion motions, 
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from which the neutral motions are derived. The second involves 

the direct determination of the motion of the neutral gas. 

Ion motions at thermospheric heights are commonly derived 

using the incoherent scatter technique. Here, reflections occur 

from a beam of VHF or UHF radio waves as a result of Thompson 

scattering by electrons and give information on electron concen

trations at heights up to greater than 1000 km. The difference in 

frequency between the peak of the thermally broadened return -signal 

and the incident signal gives an indication of the velocity of the 

bulk motion of the ions. 

Using incoherent scatter measurements of electron and ion 

temperatures, and electron density and vertical plasma drift 

obtained at Millstone Hill (42.6 ON, 71.5°W), Roble et al. (1974) 

have calculated neutral winds for two geomagnetically quiet days in 

March and September of 1970. The derived zonal winds near 300 

km show a general west to east flow during the afternoon, peaking 

near sunset. A similar peak was found to occur in the east to west 

wind near sunrise. The results obtained were based on an electric 

field model derived from quiet condition electric field measure- 

ments at Millstone Hill (Salah, 1972). As such, the derived winds 

were considered representative of only geomagnetically quiet 

conditions. 

Of the available techniques for direct measurement of neutral 

thermospheric winds, the rocket vapor trail technique has been the 

most widely employed (Kent, 1970; Haerendal et al.,1969). 

The release of several kilograms of sodium at altitudes up to 

ZOO km has proven an effective means of measuring neutral wind 
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motions near the morning and evening terminators. The sodium 

charge is expelled from the rocket and produces a long visible 

yellow trail as a result of resonant scattering of sunlight at 5890X 

and 58 9 6A, the wavelengths of the sodium doublet. As a result of 

diffusion, trail lifetimes vary from several tens of minutes at 100 

km to roughly 30 seconds at 160 km. An improvement upon the 

sodium vapor technique involves the use of chemilumines cent trails 

which react with atomic oxygen to form luminous trails visible 

throughout the night. Frequently used chemicals are trimethyl

aluminum (called TMA) and nitric oxide (Rosenberg and Edwards, 

1964; Rosenberg, 1966). 

Manring et al. (1964) performed an analysis of ZZ vapor trail 

measurements performed at Wallops Island, Virginia (37.8 ON, 

75.5 0W), utilizing the sodium vapor technique in the height range 

from 85 to 135 km. Data was analyzed in terms of 24, 12 and 8 

hour components and although large variations of the wind profile 

were observed from flight to flight, a general pattern of wind flow 

was revealed. 

Rosenberg and Edwards (1964) used chemiluminescent trails 

in the altitude range from 90 to 150 km to measure winds 

throughout the night of December 3, 1962 and May 17- 18, 1963 at 

Elgin Air Force Base, Florida (30 N, 87°W). The results showed a 

consistent clockwise rotation of the wind with height as viewed 

from above. The direction of the wind displayed a sinusoidal 

pattern with height, the wavelength increasing from 10 krn at 100 

km altitude. 

From an analysis of 25 sodium cloud experiments in the 70 
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to 190 km height range and near the morning and evening 

terminators, Kochanski (1964) attempted to resolve the observed 

motions into contributions from (i) the prevailing seasonal drift, 

(ii) tidal components and (iii) internal gravity waves. He showed 

that the winds in general exhibit large variability in both magnitude 

and direction up to about 130 km and a common feature is a rotation 

of the wind direction with height, in agreement with that observed 

by Rosenberg and Edwards (1964). All profiles showed velocity 

oscillations with wavelengths of about 6 km below 120 km altitude 

and increasing to greater than 80 krn at 180 km altitude, indicating 

the presence of gravity waves; The analysis suggested that between 

IZ0 and 140 kin, during both summer and winter, most of the winds 

near both terminators are in the same direction, indicating that 

either the IZ hour tidal harmonic is dominant, or that tidal 

components are smaller in magnitude than the general drift. 

In similar fashion, Woodrum and Justus (1968) used wind data 

from 38 chemical releases at Elgin AFB (30.40N, 86.7 0W), 

obtained during the period from October, 1962 to November, 1965. 

Their results indicated a predominant vertical wavelength of 23 km 

between 90 and 120 km in agreement with tidal theory (Hines, 1968), 

and a mean downward phase progression from dusk to dawn. Once 

again, the results showed a clockwise rotation of both prevailing 

and diurnal wind components. 

Observations of changes in the orbital inclination of satellites 

allows a coarse determination of the neutral zonal wind velocity in 

a reference frame fixed with respect to the sun. Using this 

principle, King- Hele (1964, 1966) has monitored the orbits of a 
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number of satellites and observed changes different from what 

would be observed if the atmosphere rotated strictly at the same 

rate as the earth. Among the results obtained by King-Hele was an 

indication that the atmosphere superrotates in the altitude range 

from 200 to 300 km with an angular velocity of about 1.4 times 

that of the earth. The possible effects of gravitational forces, both 

terrestrial and luni-solar were investigated and found to be 

negligible for the purposes of the study. 

Some success has been achieved in deriving wind motions 

from atomic oxygen airglow emissions at both 577.7 nm and 630.0 

nm (Kent, 1970; Nagy et al., 1971). Successful measurements of 

-1strong (> 300 m sec ) meridional winds were obtained at the 

Michigan Airglow Observatory (4Z N, 83 W) during the night of 

March 14 - 15, 1969. In addition, a comparison between airglow 

winds and those deduced from incoherent scatter measurements at 

Millstone Hill during October of 1969 indicated good agreement. 

Important questions remain, however, about the interpretation of 

these observations in deducing neutral gas motions. 

1. 2. 3 Joule Heating and the High Latitude Neutral Winds 

Joule heating, or resistive heating of the neutral atmosphere 

through collisions between neutrals and ionospheric currents, 

constitutes a large energy source at thermospheric heights, 

particularly at high latitudes. Discussions of the basic parameters 

involved in the theory of electrodynamic heating by the ionospheric 

plasma, including the effects of viscous dissipation, are given by 

Cole (1971) and Egelend (1975). The driving force for the ions 

originates in the ionospheric convection electric field, of magneto
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spheric origin. The energy of the field is transferred to the 

neutral atmosphere via collisions between the ions and neutrals. 

This process results in enhanced neutral temperatures and 

pressure gradients which transfer energy from the region in the 

form of neutral winds.
 

In order to establish improved global thermospheric models, 

it is essential to understand the effect of high latitude heat sources, 

particularly Joule heating, on the global wind and temperature 

structure of the thermosphere. To this end, a number of authors 

have examined the temporal and spatial variation of the high 

latitude electric and geomagnetic fields and the motions of both 

ions and neutrals at ionospheric heights. 

Neutral wind and velocity measurements in the range from 

90 to 230 km have been made over Esrange, Kiruna (Rees, 1971) 

using rocket borne chemical releases. The results showed that 

high neutral wind velocities in this region result mainly from ion 

drag acceleration. A comparison of disturbed and quiet condition 

results also showed a correlation of the zonal neutral wind 

component above IZ0 km and the south-north magnetic perturbation 

vector. This relationship arises since ionospheric currents and 

neutral winds are both functions of the electric field and the 

electron density. Under disturbed conditions, high neutral wind 

speeds have been found near 130 - 140 km and Rees suggested that 

the southerly propagation of these winds gives rise to anomalously 

high winds at lower latitudes following geomagnetic disturbances. 

The relationship between such disturbances and the neutral 

temperature was discussed by Chanin et al. (1972) using 
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temperature measurements from two series of rocket launchings 

during 1969 and 1970. The experiments were performed at Heiss 

Island (80.4 0 N geographic latitude; 740N geomagnetic latitude) and 

temperatures were obtained in the range from 120 to 160 km by 

measuring atmospheric absorption of sunlight through sodium clouds. 

Combined with the results of earlier experiments at this location 

(Polaskov et al., 1969) the complete data set represented the 

results of approximately 20 launchings, and suggested a relation

ship between the neutral temperature and the time rate of change 

of the horizontal magnetic field component several hours prior to 

each measurement. In addition, the data suggested that a slight 

local cooling preceeds the heating from the magnetic disturbance 

in each case. The authors conjectured that most of the observed 

heatings are small scale phenomena resulting from the local 

precipitation of soft (< I keV) electrons. The rapid disappearance 

of the sodium clouds during magnetically active periods was 

thought to imply a-connection between this localized heating and 

strong winds. 

Using a simplified analysis, Fedder and Banks (1972) 

demonstrated the importance of ion drag at high latitudes in 

establishing the thermospheric wind system. The model employed a 

spatially uniform time-dependent electric field in the dawn to dusk 

direction, chosen to be representative of the onset of a magnetic 

disturbance, and a uniform magnetic field directed vertically 

downward. The results of this study showed that through ion drag, 

electric fields largely control the flow of neutrals and generate a 

twin-cell pattern over the polar regions. This pattern describes a 
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general night to day flow in the an roral zone and large day to 

night flows over the cap itself where solar tidal winds are the 

dominant driving force. These processes have important implications 

for a global heat balance, since the system is a source of both 

kinetic energy of motion and thermal energy as a result of the gas 

being heated from various polar processes. 

In an attempt to establish statistically appropriate boundaries 

for the polar cap and the auroral zone, Heppner (1972) has analyzed 

the results of OGO-6 electric field measurements at high latitudes 

from a large number of orbits. In this study the polar cap was 

taken to be the region of dawn-dusk electric fields, and the 

auroral zone the adjacent lower latitude region of poleward and 

equatorward electric fields in the evening and morning sectors 

respectively. While the measurements showed a large variability at 

the daytime boundary location, it was found that the overall high 

latitude electric field pattern is fairly consistent and does not 

fluctuate on a large scale during the incidence of substorms. 

A transition in the electric field from the evening to the morning 

pattern was found to occur in the premidnight sector-near 2200 

hours geomagnetic local time. 

Meriwether et al. (1973) observed the motion of both ions and 

neutrals at high magnetic latitudes (>650) from electrically neutral 

luminous cloud and barium ion cloud pairs. These releases were 

made at various locations in the polar cap, the auroral belt and 

the transition region and the neutral cloud motions were determined 

using the photographic triangulation technique. The resultant height 

averaged wind vectors were plotted in geomagnetic latitude and 
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geomagnetic local time. The location of the auroral zone and the 

polar cap boundaries, as defined by Heppner (1972) was found to 

vary depending on convection conditions at the time of flight. As 

such, the choice of latitude and local time coordinates for certain 

of the wind vectors was somewhat a matter of discretion. Figure 1 

shows the relative positions of the neutral wind vectors and the 

auroral zone as determined statistically by Heppner (1972). 

Meriwether et al. observed a significant spatial rotation of 

the wind in the transition region between the auroral zone and the 

polar cap and in addition, a transition from westward to eastward 

convection near local midnight. With the exception of the early 

morning hours, it was found that the observed wind velocities 

could be modeled fairly well in terms of ion drag forces. 

A quantitative analysis of the variation of the Joule heating 

rate at various latitudes was performed by Ching and Chiu (1973) 

using measurements of ionospheric electric fields on a global basis 

(Baerendel, 1970; Mozer, 1971; Cauffman and Gurnell, 1971). This 

study showed the variation of Joule heating rates over a solar 

cycle and included both the altitude and latitude dependence as well. 

The calculated Joule heating rate at high latitudes was shown to be 

similar in magnitude and height distribution to the global solar EUV 

heating rate. Joule heating was thus thought to be a major 

contributor to the maintenance of the nighttime thermosphere. 

Using the incoherent scatter radar at Chatanika, Alaska 

(geomagnetic and geographic latitudes, 65.1 0 N, invariant latitude 

A = 65.5 0 N), Brekke and Doupnik (1973) have derived neutral 

winds for the E-region from measurements of ion drift motions for 
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Figure I 	 Neutral wind vectors and the auroral zone in geomagnetic
 
coordinates. (Reference: Meriwether et al., 1973)
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both magnetically quiet and moderately disturbed days (Kp,< 3). The 

results represented the height range from 110 to 170 km and were 

modeled assuming a day to night motion from the solar tide, as 

well as the ion drag force in the polar cap and auroral zone. The 

neutral atmosphere employed in the model was taken from Banks 

and Kockarts (1973). In summary, their observations indicated; 

(i) 	a strong poleward flow of the neutral winds near local 

noon and an equatorward motion in-the morning (0700 

Alaskan Standard Time) and evening (ZOO0 Alaskan 

Standard Time) hours.
 

(ii) 	 a clear correlation between electric field directions 

(deduced from ion motions near 170 km where ion

neutral coupling is minimal) and neutral wind directions. 

(iii) 	 the importance of knowing the observers location relative 

to the auroral oval in making sense of observed wind 

vectors. 

Nagy 	 et al. (1974) performed simultaneous neutral wind 

measurements from Fabry-Perot interferometer studies of the 

6300 X atomic oxygen line at Ester Dome, Alaska and ionization 

drift measurements from the Chatanika radar station. Their results 

represented motions near 200 km with a spatial resolution of ion 

and neutral motions of about 150 and 400 km respectively in the 

horizontal 'direction. In geomagnetic latitude and local time 

coordinates, the observations fell within the general region of 

convective motion from the nighttime to the daytime region, as 

determined statistically by Heppner (197Z). The results conformed 
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to the general pattern observed in this region by Meriwether et al. 

(1973) and show a generally westward motion of ionization and the 

zonal component of the neutral wind in the pre-magnetic midnight 

sector. In the post midnight sector, the neutral gas did not, in 

general, follow the reversal of direction to the east as exhibited 

by the ion motion, implying either some additional unexplained 

force on the neutrals or a decrease in the ion drag force, 

presumably the effect of recombination. In order to explain 

occasional departures from the above general pattern, the authors 

suggested a combination of effects, including diurnal pressure 

gradients, energy input from auroral activity, Joule heating and 

energy deposition from fast particles. 

Using a uniform neutral density distribution and assuming 

height independent electron and ion densities, Maeda (1976) has 

solved the equations of motion for both ions and neutrals in the 

polar cap and auroral zone in the height range from 100 to 200 km. 

The electric field configuration used in the analysis was similar in 

magnitude and latitudinal variation to that observed by OGO-6 

(Gurnett, 1972). The model results were represented by polar plots 

of ion and neutral gas motion at altitudes of 110 and 200 km. 

Better agreement between the model and observations was 

found in the motion of the ions than that of the neutrals. The 

calculated neutral wind pattern, however, was found to depend 

critically on the degree of coupling between ions and neutrals and 

hence, on the assumptions made concerning the ion densities. In 

addition, certain of the observations used for comparative purposes 

were obtained on fairly disturbed days, whereas the density 
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distributions assumed in the model corresponded to a relatively 

quiet state of the polar ionosphere. 

.Z.4 Dynamical Heating at Thermospheric Heights 

In addition to solar energy input, a major source of heating 

at thermospheric heights has long been thought to be due to 

dynamical heating from atmospheric tidal motions of various scales. 

One of the early discussions pertaining to these tidal motions 

was given by Hines (1960). Hines asserted that a variety of 

irregular motions observed in the upper atmosphere can be 

explained in terms of upward propagating gravity waves generated 

low in the atmosphere and deriving their energy from either tidal 

oscillations and their harmonics or the low altitude wind system. 

Hines discusses gravity waves in terms of propagating adiabatic 

waves and cites direct evidence for the existence of these waves as 

shown by the results of early scattering experiments and height 

variations of the displacement of meteor trails. 

It was easy to account for these effects in terms of a wave 

theory since the wave interpretation accounted for observed large 

horizontal velocity components compared with vertical ones and, 

in addition, the large horizontal to vertical wavelength ratio of 

these disturbances. 

According to the theory developed by Hines (1960), the 

general pattern of these disturbances is revealed by a cyclic 

variation of wind direction with increasing height. Phase propaga

tion is in a downward direction and energy propagation generally 

upward, the energy of a given mode being removed by damping 
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effects as height increases. This effect is greater for modes with 

shorter periods and thus the longer period modes dump their 

energy at preferentially higher altitudes. 

Hines (1965) reviewed some aspects of his earlier theory in 

the light of observational data obtained after 1960. From an 

analysis of mid latitude wind profiles obtained from rocket vapor 

trails, Kochanski (1964) found a relationship between the density p, 

the height z and the wave induced horizontal wind speed given by 

p U Z 
x Const. exp (-9.Z6 z/zo) z =140 km (I.Z)0 

This exponential decline in the product p UZ tended to confirm the 

losses discussed by Hines (1960) and in addition, dominant modes 

observed both by Kochanski (1964) and by Zimmerman (1964). This 

decline also gave excellent agreement with the theoretical cutoff of 

smaller wavelength modes by viscous damping. 

Hines stated that gravity waves may profoundly affect the 

structure of the entire thermosphere and may in fact be the source 

of the rapid increase in temperature with height in the region 

from 100 to 110 km. As a source of heating at F-region heights, 

particularly at times of high geomagnetic activity, Hines proposed 

that the energy of gravity waves at high geomagnetic latitudes 

propagates horizontally over large distances to the low and mid 

latitude thermosphere, and is the source of heating observed by 

satellite measurements (Jacchia, 1964). In discussing the energy 

input to the E-region from the semi-diurnal tidal flux, Hines (1965) 

suggested that the semi-diurnal tide may be created in-situ and 
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that it may, in fact, be the diurnal tide and the prevailing winds 

that are responsible for electrodynamic heating at higher altitudes. 

This has been discussed more recently by Salah and Evans (1973). 

Direct confirmation of the presence of wavelike density 

variations in the thermosphere was provided by Newton et al. (1969) 

using density gauges aboard the Explorer 32 satellite. Data was 

obtained in the altitude range from Z86 to 510 km with a spatial 

resolution along the orbital path of about 16 kin. Their results 

indicated a general north-south phase propagation with maximum 

horizontal wavelengths of several hundred km, in agreement with 

earlier analyses by Thome (1964) and Georges (1968). These 

observations were best explained in terms of gravity waves 

propagating predominantly horizontally in a north to south direction 

with horizontal wavelengths between 130 km and 520 km. 

Observations of the F-region from incoherent scatter at 

St. Santin - Nanjay during magnetically disturbed conditions have 

been performed by Testud (1970). These results revealed an 

enhancement of oscillations in the wind and temperature structure 

following magnetic events, with a time delay of about 1 hour. These 

disturbances have been interpreted in terms of gravity waves, and 

simultaneous observations by the European network of ionospheric 

observatories showed that the disturbances propagate southward 

(Testud and Vasseur, 1969). They are thus thought to be of auroral 

origin, in agreement with the theory of Hines (1965) and Newton et 

al. (1969). A theoretical analysis by Testud once again supported 

the view that large scale travelling ionospheric disturbances (TID) 

are generated at high latitudes and transport energy to mid and 
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low latitudes. 

Klostermeyer (1973) performed a theoretical study yielding an 

estimate of the height distribution of reversible heat input from 

gravity waves and the resulting temperature increase of the neutral 

gas. The calculations were performed using parameters typical of 

both quiet and disturbed conditions. In the quiet condition set, the 

author employed the 1966 U.S. Standard Atmosphere Supplements 

assuming an exospheric temperature of 900 K. The ion number 

density distribution was represented by an a-Chapman layer with a 

maximum density of 5xl11m- 3at 300 km. The height distribution 

of heat input from a single wave mode was found to be similar to 

that of solar EUV heating, as presented in a theoretical study by 

Volland (1969) and resulted in an increase of about 40 K in the 

exospheric temperature over a period of about Z hours. 

The calculations for increased geomagnetic activity employed 

a perturbed density distribution and an expression relating the 

exospheric temperature to the Kp index (Jacchia et al., 1967). The 

results showed good agreement with observed temperatures for Kp 

levels >, 5, and best results occured when a time delay between 

disturbance and effect of about 6 hours was assumed, implying 

speeds of horizontal propagation of the waves comparable to the 

local sound speed. 

A study of the effects of viscous and thermal dissipation on 

horizontally ducted acoustic-gravity waves was given by Francis 

(1973a). An important difference between the analysis by Francis 

and earlier ones was the use of a more realistic sound speed 

profile in the thermosphere. The author interpreted traveling 
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ionospheric disturbances (TID) as upper atmosphere gravity modes 

detected by virtue of their effect on the F-region electron density. 

Included as a subset of this broader classification are those waves 

generated in the auroral zone during magnetic substorms. The 

results confirmed that large scale TID with speeds greater than 

300 m sec are ducted horizontally for large distances with 

varying degrees of attenuation, depending on the vertical component 

of the energy flux. In addition, the author discussed the tempera

ture dependence of the horizontal phase velocity in the upper 

thermosphere. The velocity was found to vary by roughly a factor 

of 2 between the extremes of temperature encountered and was 

larger for a given mode during daylight than at night. 

In a later paper, Francis (1973b) suggested that medium scale 

TID are manifestations of freely propagating gravity waves rather 

than ducted modes, used to explain large scale TID, and that 

the direction of propagation is constrained to follow the curvature 

of the earth as a result of refraction by the earth's gravitational 

field. 

In addition to gravity waves with periods above the Brunt 

Vaisalr cutoff and below the viscous dissipation limit, there exist 

atmospheric oscillations related to the solar tide. These periodic 

oscillations are also revealed in temperature and density profiles 

as well as in the winds, and involve a fundamental period of one 

solar day and the various harmonics. In tidal theory these 

oscillations are represented by an expansion in spherical harmonics 

over the indices 1, m and n. It is customary to designate a given 

term by S m where the indices l and m classify the term as toIn
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wave family and the n index further subdivides it into wave type. 

The index 1 specifies the period of the wave, given by 1" of a 

mean solar day, and I and n together (l,n) are normally used to 

specify the tidal mode under consideration. 

Using incoherent scatter data obtained at Millstone Hill 

(4Z.6ON) and St. Santin, France (44.60N), Salah and Wand (1974) 

have studied the average behavior and variability of tidal 

oscillations in the lower mid latitude thermosphere. Good agree

ment was obtained between the results from the two stations. 

Analysis of the data revealed that the dominant tidal component at 

mid latitudes in the lower thermosphere is the semi-diurnal (2,4) 

mode. 

The semi-diurnal oscillations can be resolved into two semi

diurnal tidal modes, the (2,2) and the (Z,4) modes. The results of 

Salah and Wand indicated an attenuation of the tidal (Z,4) mode in 

contrast with theory (Butler and Small, 1963; Richmond, 1971; 

Lindzen and Hong, 1974), yet the contribution of the (2, 2) mode at 

heights between 100 and IZ5 km is significantly less than predicted, 

allowing the (2,4) mode to dominate in this region. Additional 

disagreement between theory and observations was found in the 

height of maximum amplitude of the two modes and in the damping 

rates above these heights. 
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1.3 Specific Statement of the Problem 

It is the intent of this study to; 

I) provide estimates of the energy transported into or out of 

the nighttime thermosphere via conduction, radiation and 

the low and mid latitude thermospheric wind system. 

2) 	 estimate the global energy input from the polar cap to the 

mid latitude nighttime thermosphere via the high latitude 

wind system. 

3) 	 ascertain the need for additional thermospheric energy 

sources based on a comparison of the energy input and
 

loss terms. 



CHAPTER 1. 

METHOD OF ANALYSIS 

2.1 	 Analytic Form of the Contributions to the Energy Balance 

For a composite of-several neutral constituents i, the thermal 

balance of the system under steady state conditions requires the 

solution of the energy equation. The form used here is that given 

by Banks and Kockarts (1973, equation 14.1Z). 

-a NnkT . NnkT	 
t + (N vo) + E + p 'V ° 

- Zn.Fv = PL 	 (.1 ) 
i 

where 	 the heat flow vector E is 

E -V XT -I (1+H) n kTV. 	 (2.2Z)z~ i I 

In addition, the continuity equation for the total density is given by 

1 1 + V"n.m.- = 0(l3
 

an 
t mn V 
I 

M 
1o
v. 0 	 (2. 3) 

In the above expressions 

is the mass average or bulk velocity 

ni , mi , and Vi are, respectively, the concentration, mass 

and diffusion velocity of the i th constituent 

I 
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n is the' total concentration of neutral constituents 

T is the temperature 

X is the thermal conductivity 

p is the total hydrostatic pressure 

k is the Boltzmann constant 

* i are 	6xternal fdrces acting on the ithconstituent 

N 	 is the average number of degrees of freedom for the 

constituents, defined by 

EN.n. ~ 

n - N.n, (2.4)
E;n. n a7 it1 i 	 I 

The work term P- in equation (2.1) can be rewritten as 

pV.V 	 = V. (pv o ) -v .p (Z.5) 

Assuming hydrostatic equilibrium, equation (Z.5) becomes 

pV-vo V.(nkT) - nng) 	 (2.6) 

Writing 

g -V 	 (Z.7) 

where 	 O is the gravitational potential, equation (Z.6) becomes 

p•. - V. (nkTV + v . (nmVif 	 (Z 8) 
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and expanding gives 

pV-v = -V(nkTv ) + " (nMv0 Y) - P-(nm 0) (2.9) 

From equation (2.3) and for steady state conditions, 

V.(nmv) = 0 (Z. 10) 

Thus, equation (2.6) can be rewritten as 

p "v ° = V.(nkTvo) + V.(nmv 0 ) (Z.11) 

In performing the heat balance calculations, the zero of 

potential energy has been taken to lie on the lower system 

boundary at 120 km, as shown in Figure Z. For a flat earth 

approximation, the gravitational potential energy term ( in 

equations (Z.8) through (2.11) is given by g(h- h). This approxi

mation is within 6 percent of the true value at h= 300 km and 

within Z percent at h= 150 km. Making this substitution and 

integrating equation (Z.1) over the entire system volume, one gets 

S[-+l)nkT + ni-ng(h-ho)] -V T 

+ (( + ) n, k T V -S
i 

-7n. Y..V. dV + = w (Z.1Z) 
i vol 
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where Q is the total radiative energy loss rate 
R I 

r is the mean molecular mass 

W is the difference between the total observed losses and 

the energy sources shown
 

The term Zni V7- represents the work done on the type i 
i 

particles by the vector sum Fi of the external forces. The only 

external forces that contribute to this term are frictional forces 

arising from the relative motion between the neutral gas and ionic 

species present in the gas. This interaction is commonly labeled 

ion drag. 

It is among the purposes of -this study to establish the need 

for additional energy source or loss terms based on estimates of 

the conduction, radiation and the thermospheric wind system under 

steady state conditions. These additional terms can be accounted 

for in terms of either ion-drag ,or the quantity W on the right hand 

side of equation (2.12). The thermal balance, then, requires an 

estimate of each of the following established energy input and loss 

terms, expressed as fluxes across the system boundaries. 

Energy input terms: 

(i) thermal kinetic energy of the major constituents 

s + 1) nkT + 3 +1) nikTV dS (2.43) 
Si 
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(ii) gravitational potential energy with respect to the lower 

boundary at iZ0 km 

nmg(h-ho0) 0oc 	 (Z. 14) 

S 

Energy loss terms: 

(iii) 	downward conduction (QC) at IZ0 km due to the 

vertical temperature gradient 8T/z at that height 

oxo' 	 A.I 
S 	 S 

(iv) 	infrared radiative cooling QR 

The 	 energy input terms arise mainly from the transport of 

neutral gas into the nighttime region via the horizontal thermo

spheric wind system. The problem of the energy flow, then, 

requires a simultaneous mass balance, and this entails the 

solution of the mass continuity equation (Z.3). For a steady state 

process, the integration of equation (2.3) over the volume of the 

system yields 

ni m= 0-d 0 	 (2. 16) 
i S 

Thus, a mass flux into or out of the system from the thermo

spheric winds gives rise to a compensating flux at the iZ0 km 
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boundary. This boundary flow, in turn, results in an accompanying 

energy flux across the lower boundary which must also be 

considered in order to arrive at a net energy gain to the system. 

The transport of energy into the thermosphere via gravity 

wave propagation and in addition particle precipitation and Joule 

heating processes at high latitudes has been well established 

(Hines, 1965,1969; Roper, 1966; Justus, 1967). These processes 

constitute independent energy sources in addition to those considered 

above. Recent estimates (Klostermeyer, 1973) show that thermo

spheric heating from these sources is comparable in size with the 

above mentioned processes. The difference between the total energy 

input and loss rates given by items (i) through (iv), then, should 

provide an independent estimate of the thermospheric heating from 

the less well understood processes in the nighttime region. 

2.2 	 The Coordinate System Employed 

The choice of suitable boundaries for the nighttime thermo

sphere is influenced by a number of factors. Estimates of the 

fluxes across the boundaries require a distribution of experimental 

data over at least part of the surface, and hence the choice must 

correspond to the locations of the largest body of available 

measurements. 

The geometry involved in performing the-energy balance of 

the nighttime thermosphere for equinoctial conditions is shown in 

simplified form in Figure Z. The system is defined as the anti

solar region bounded below by a spherical surface 120 km from the 

surface of the earth, and in front by the morning and evening 

terminators. At equinox, the polar axis and the terminator lie in a 
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Figure 2 	 Geometry employed in performing the energy balance of the nighttime thermosphere
 
at equinox.
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common plane and the corotating component of the total horizontal 

wind is normal to the terminator at each point. At other than 

equinoctial conditions, the polar axis is inclined at an angle to the 

plane containing the terminators, this angle being a maximum of 

Z3.5 degrees at summer and winter solstice. The upper boundary 

is typically taken as the height z where the quantity SnkTdz' has 

z 

diminished to a small fraction (<. 01) of the value at 120 km. This 

insures that the contributions to the energy balance from heights 

above this level are negligible in comparison. In practically all 

cases this requirement has been met at an altitude of 300 km. 

As shown in Figure 2, the nighttime thermosphere considered here 

is taken to be fixed with respect to a coordinate system having the 

earth-sun line as one axis. The motion of the neutral gas across 

the terminator boundaries as viewed in this fixed frame is the 

vector sum 

I - -I I¥( 
vfixd vmoving + W X r (2.17) 

where vmoving is the velocity of the neutral wind observed in the 

rotating frame. These relative velocities are 

measured or deduced using rocket vapor trail and 

incoherent scatter techniques. 

w is the angular velocity of the earth's rotation 

Vfixed is the velocity of the neutral gas in the fixed frame 

of reference. This is the velocity used in the 

computation of the horizontal energy and mass fluxes 
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and is related to v and V. discussed earlier by 

Vfixed. v 0 + V. (Z. 18) 
1 

for the i'th constituent. 

r is the radius vector from the center of the earth to the 

location of the observed air parcel. 

The polar regions have been excluded from the nighttime 

system defined here since the energy considerations are completely 

different as discussed by Nisbet and Glenar (1977). While the high 

latitude boundaries are defined by the cutaway portions at the top 

and bottom of Figure 2, the polar winds are ordered in geomag

netic local time and latitude. It has been assumed for the present 

analysis that the average energy transported by the winds across 

the 70 degree geographic latitude into the nighttime thermosphere 

is equal to the energy transported by the winds across the 70 

degree geomagnetic latitude over the corresponding range of 

geomagnetic local times. These south directed energy and mass 

fluxes constitute the energy input to the system from auroral 

processes and are treated in detail in Section 3.2. 

An additional complication arises at other than equinoctial 

conditions when a larger or smaller fraction of the polar cap 

area is contained within the region of interest. In such a case, 

the geometry shown in Figure 2 no longer applies. As discussed 

in a later section of this study, the small number of wind 

measurements made at high geomagnetic latitudes are not sufficient 

to show seasonal changes in the high latitude wind pattern. For 
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this reason, and since the terminator is always within a few 

degrees of the polar cap, the high latitude energy source is in 

each case taken to be the energy outflow from the cap between 18 

and 6 hours geomagnetic local times. 

Figure 3 shows pictorially the contributions to the energy 

balance described in Section 2,1. The treatment of the energy ihput 

from thermospheric winds has been divided into contributions from 

the low and mid latitude wind system and contributions from the 

polar regions. For this reason, the manner of presentation of 

contributing terms differs slightly from that listed in Section 2.1. 

Each quantity in the figure related to the horizontal wind contains 

both the thermal and gravitational potential energy contributions 

to the total flux. The contributing terms in Figure 3 may be 

defined as follows; 

Qp = net energy gain to the nighttime system from the 

polar thermospheric wind system 

CI>p = total mass flow entering the system through the 

polar boundary, induced by the polar winds 

Q L = net energy gain to the system from the mid and low 

latitude thermospheric winds 

= 	 total mass flow entering the system, induced by the 

mid and low latitude winds 

Some additional mention should be made regarding the 

definiltion of net energy gain as it is used here. As shown in 

Figure 3, the net energy gain represents only the portion of the 
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Figure 3 Contributions (symbolic) to the energy balance from the energy input ard loss
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energy conveyed by the horizontal winds across the system 

boundaries which may be considered as energy input in performing 

the heat balance. By the mass continuity equation (Z.16), the mass 

inflow through the terminator or polar boundary is assumed to 

leave the system at the IZ0 krn boundary with some suitable 

estimate for the 120 l1m temperature. The energy leaving in this 

manner must be subtracted to arrive at a net energy gain. Each of 

the terms above is discussed in detail in a later section of this 

study. 



CHAPTER III 

CONTRIBUTIONS TO THE ENERGY BALANCE FROM 
THE THERMOSPHERIC WINDS 

3.1 Energy Transport Via the Low and Mid Latitude Wind System 

As shown in Figure Z, the low and mid latitude thermospheric 

winds convey energy into or out of the nighttime system at the 

terminator boundaries and it is the component of the horizontal 

wind normal to the morning and evening terminators that 

contributes to this exchange. The portion of the energy surface 

integral over the morning and evening terminators QL' expressed 

in polar coordinates, is given by equation (3.1). The diffusion 

velocities V. have been found to be small compared to the total1 

horizontal wind velocity (v2 + and the contribution from V. 
0 i 

in equations (2.1Z) and ('Z.13) has thus been omitted here. 

R +300 700 
R o 12 0 )L= - NE+ nkT v + n r- 5 [(4+1) g 

where v_ is the component of the total horizontal wind velocity v ° 

normal to the termiator (positive into the system) 

R is the radius of the earth (6370 ki) 
0 

SME indicates the sum over both terminators 

The second term on the right hand side of equation (3.1) arises 

from a consideration of the mass continuity equation (Z.16) and 
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represents the thermal energy lost at the lower boundary. Again, DL 

is the mass flux delivered to the system by the horizontal winds. 

R +300 700 

(A7 SMEZ 
i 

0Y 
R +IZ00 

Y 
-70 ° 

(nimiv±) dq r dr (3.2) 

It is clear from equations (3.1) and (3.Z) that an estimate of 

the potential and thermal kinetic energy flow across the terminator 

boundaries requires a knowledge of the height and latitudinal 

dependence of the neutral temperature, the major constituent number 

densities and the thermospheric wind velocities. 

3.1.1 Sources of Wind Data: Vapor Trail Measurements 

Rocket vapor trail measurements provide information on the 

magnitude and direction of the horizontal winds at heights up to 

nearly Z00 km. The results of these flights are particularly 

valuable for the purposes of this study since the technique involves 

a direct measurement of the wind velocity and since a large 

number of the rocket flights are made at or near the terminator 

location so that trails illuminated by the sun can be observed 

against a dark background. 

In this analysis, data has been examined from a number of 

morning and evening pairs of sodium and lithium vapor trail 

measurements made at mid latitudes between the years 1961 and 

197Z. A summary of these flights and associated observations is 

given in Table i. In grouping the results according to season, 

data obtained within thirty days of either equinox was considered 

representative of that equinox, while the remaining firings were 



Table la. Mid Latitude Vapor Trail Measurements
 
Near Fall and Spring Equinox
 

Date Day Time Launch Site K ± F10 7  Altitude Range Ref.
 
Mo/Day/Yr of Day (km)
 

9/7/61 250 PM Sardinia, Italy 0.6 115 90-200 A
 
9/8/61 251 AM 39.6°N, 9.5°E 0.8 117 90-140
 

9/16/61 259 PM Wallops Island, Va. 2.0 133 100-150 A
 
9/17/61 260 AM 37.8 0N, 75.5 0W 3.4 124 100-170
 

10/7/64 280 PM Wallops Island, Va. 1.6 74 90-150 A
 
10/8/64 281 AM 2.8 77 85-160
 

10/16/69 289 AM Woomera, Australia 0.8 116 95-200 B
 
10/17/69 290 PM 1.5 123 95-240
 

4/19/61 109 PM Sardinia, Italy 1.4 105 85-185 A
 
4/20/61 110 AM 39.6 0 N, 9.50E 2.5 .03 110-190
 

4/19/61 109 AM Wallops Island, Va. 2.0 105 90-160 A
 
4/20/61 110 PM 1.0 103 80-160
 
4/21/61 ill AM 0.2 104 85-160
 

3/1/62 60 PM Wallops Island, Va. 2.1 121 70-125 A
 
3/2/62 61 AM 1.9 112 65-125
 

4/12/72 102 PM Elgin AFB, Fla. 1.4 128 104-168 C
 
4/13/72 103 AM 30.4N, 86.7°W 2.9 128 123-174
 
4/14/72 104 PM 2,5 124 82-132
 
4/14/72 104 PM 2.5 124 183-194
 

References: A. Bedinger (1966), B. Lloyd et al. (1972), C. Roper and Edwards (1974), D. Justus and
 

Edwards (1965), E. Rees et al. (1972), F. Montgomery et al. (1968).
 

Average of three values preceding measurement.
 



Table lb. Mid Latitude Vapor Trail Measurements
 
Near Summer Solstice
 

Date Day Time Launch Site K F Altitude Range Ref.

Mo/Day/Yr of Day 
 p JI0.7 (km)
 

6/5/62 156 AM Hammaguir3 Algeria 2.8 85 100-150 A 
6/5/62 156 PM 310 N, 3 W 1.6 85 105-140
 

6/5/62 156 AM Reggan, Algeria 
 2.8 85 95-140 A

6/5/62 156 PM 26.7 0 N, 00 
 1.6 85 95-120
 

5/20/63 140 PM Sardinia, Italy 0.5 91 95-195 A
 
5/21/63 141 AM °
39.60 N , 9.5 E 0,5 88 95-160
 
5/21/63 141 PM 
 1.6 88 85-180
 

5/17/63 137 PM Elgin AFB, Fla. 0.6 
 100 95-170 A

5/18/63 138 AM 30.4 0N, 86.7 0W 
 0,4 98 100-160
 

5/17/63 137 PM Elgin AFB, Fla. 
 0.6 100 71-170 D
 
5/18/63 138 
 AM 0,4 98 99-105

5/21/63 141 PM 
 69-140
 

5/31/68 151 
 AM Woomera, Australia 145 95-240 E
 
5/31/68 151 PM 310 S, 137 0E 
 145 95-240
 

References: A. Bedinger (1966), B. Lloyd et al. 
(1972), C. Roper and Edwards (1974), D. Justus and
 

Edwards (1965), E, Rees et al. (1972), F. Montgomery et al. (1968).
 

± Average of three values preceding measurement.
 



Table ic. 	 Mid Latitude Vapor Trail Measurements
 

Near Winter Solstice
 

Date Day Time Launch Site K F 7 Altitude Range Ref.
 

Mo/Day/Yr of Day 	 p 10.7 (km)
 

11/27/62 331 PM Chamical, Argentina 1.7 75 105-170 A
 
11/30/62 334 AM 30.50S, 66 W 	 3.5 77 100-170
 

11/30/64 334 PM Sonmiani, Pakistan 3.4 74 120-155 A
 
12/1/64 335 AM 26°N, 670E 1.9 76 100-205
 

11/11/64 315 PM Ship-at 34.4 0N, 74,7 0W 0.8 72 80-155 A
 
11/12/64 316 AM 34.40N, 76.3 0W 2,4 72 90-155
 

11/17/65 321 PM Elgin AFB, Fla, 0.5 74 97-155 F
 
11/18/65 322 AM 30.4 0 N, 86.7"W 1,5 75 94-152
 
11/18/65 322 AM 1.5 75 89-171
 
11/18/65 322 AM 1.5 75 78-138
 

1/16/67 16 AM Elgin AFB, Fla (Upleg) 2.7 124 86-158 F
 

1/16/67 16 AM (Downleg) 2.7 124 100-156
 
1/16/67 16 PM (Upleg) 1,7 124 88-162
 
1/16/67 16 PM (Downleg) 1.7 124 92-102
 

References: 	 A. Bedinger (1966), B. Lloyd et al. (1972), C. Roper and Edwards (1974), D. Justus and
 
Edwards (1965), E. Rees at al, (1972), F, Montgomery et al. (1968).
 

Average of 	three values preceding measurement.
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considered representative of either summer or winter solstice. 

With the exception of the two pairs of Australian rocket firings 

shown in Tables ib and ic, all of the morning-evening rocket 

flights were performed in northern latitudes. For computation 

purposes the average wind profiles in Figure 4 are thus considered 

to represent only the northern hemisphere. 

For each date involved, the wind flow into the system is 

evaluated by first considering the angle between the east-west 

direction and the terminator and then evaluating the component of 

the wind normal to the terminator. By averaging the results 

obtained at each terminator in increments of 5 kin, irregularities 

in the wind system from propagating waves of various scales has 

been largely removed and a consistent trend in the variation of wind 

propagation with height is revealed (Figure 4). 

The effects of changing magnetic activity have been taken into 

account by monitoring the magnitude and daily range of the 1p 

index for the date of each firing. The observed Kp values are all 

characteristic of low or medium levels of magnetic activity and in 

no case is there a wide daily range in Kp indicating a sudden 

increase in magnetic activity between the morning and evening 

firings. Thus, the contribution from this variable to the daily wind 

variations is thought to be small. 

Another of the uncertainties involved in these calculations is 

the effect of variations in solar activity as indicated by the F 1 0 7 

index, on the energy transported into the nighttime region and 

hence on the observed zonal fluxes at the terminators. A density 
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Figure 4 	 Height variation of the average eastward neutral wind at twilight, from mid-latitude
 
vapor trail measurements. The numbers in parentheses are the number of flights used
 

in obtaining the respective profile.
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weighted average velocity v above IZO km was defined by 

cO 

Hi, v dz (3.3a) 

-- H1z lz IZO z 
12 1 2 2 

-- expi- --- I v (z) dz -3,. 3b) 

Izo 120 z Li"0 z' 

where pz , and T are the density, mean scale height and 

temperature at height z. Here, v. is defined such that a positive 

value of vL indicates wind flow from the dayside to the nightside 

hemisphere. This quantity should provide an indication of the 

direction of height integrated mass and energy flow above 120 km. 

To check the effect of solar activity on the values of v, a 

correlation study was made between the values of vL for each flight 

and the F 1 0 . 7 value at the time of each flight. Representative 

temperature distributions were taken from the COSPAR International 

Reference Atmosphere (CIRA, 1972). No significant correlation 

between the values of vL and the FIO" 7 index was observed, and 

since the range in observed values of F10.7 was not excessive 

(7Z-145), no restrictions were placed on values of the solar index 

in selecting applicable data. 

The profiles obtained by averaging wind data for the same 

season are shown in Figure 4. Figure 4c has been included to 

illustrate the height variation of mass and energy transport from 

the dayside to the nighttime region. At heights above 140 kin, these 

profiles invariably show, as expected, an anti- solar flow, 

presumably the result of dayside solar heating. With the exception 
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of the summer solstice results, the direction of the net wind 

curiously reverses in the region near 135 kin, and the density 

-weighted average velocity v. is found to be -ZZ and -20 m sec -1 

for equinox and winter solstice periods. For comparative purposes, 

a similar analysis was performed on characteristic summer and 

winter wind profiles deduced by Kochanski (1964), and extending to 

140 km. These were based on 25 mid latitude morning and evening 

twilight rocket vapor trail measurements. 

A negative value for v_ was obtained using Kochanski's 

summer data, but will not be discussed since the data is not 

completely independent of that used in this study. All of the 

morning and evening flights grouped into Kochanski's winter 

classification are different from those used here, however, and 

application of equation (3.3b) to these results shows a value for 

1-I v of -15 m sec , in reasonable agreement with the winter solstice 

value stated above. 

At heights above 140 km, Figure 4 shows a westward flowing 

wind at the morning terminator and an eastward flowing wind at the 

evening terminator with an accompanying day to night energy flow, 

in agreement with tidal theory. A significant change in wind 

direction is evident at lower altitudes, however, particularly in the 

equinoctial results. The effect of this is to produce a complete 

turn-around in the direction of the height integrated mass and 

energy flow at the terminator as the lower integration limit is 

moved from 135 down to 120 km. 
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3.1.2 	 Analysis of Temperature and Density Data from 
Arecibo and St. Santin 

In order to calculate the energy transport across the morning 

and evening terminators, it is necessary to make use of the wind 

results from the previous section. In addition, estimates of the 

densities and temperatures at both terminators and at the altitudes 

of interest are required. An additional source of data, then, are 

incoherent scatter measurements of densities and temperatures at 

the terminators as provided by the Arecibo (18.30N) and the 

St. Santin (44.6 0 N) incoherent scatter facilities. 

The Arecibo facility provides measurements of the total 

collision frequency at selected heights in the altitude range from 

90 to 110 km which have been scaled to provide the total collision 

frequency and hence the total density at 120 km. In order to 

estimate the atomic oxygen number density at 120 km, it was 

assumed that the CIRA, 1972 model represents the atomic oxygen 

density correctly at 3Z0 km and that diffusive equilibrium allows 

the calculation of the IZ0 km density with the aid of the tempera

ture profile discussed below. The molecular number density was 

divided between 0 Z and NZ in the ratio 1:7, again following CIRA. 

The temperature profile at the altitudes of importance is 

deduced using observed ion temperatures at heights between 118 and 

Z60 km where it is assumed that the neutral temperatures do not 

depart significantly from that of the ions. An additional neutral 

temperature at 320 km is obtained according to the procedure of 

Swartz and Nisbet (1971) from the CIRA, 197Z densities and the 

observed ion and electron temperatures. Bates (1959) represents the 
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height distribution of the neutral temperature by 

T = 'W - (T - T ) exp'(-sP) 	 (3.4) 

where T is the neutral temperature at height zz 

T. is the exospheric temperature 

T o is the neutral temperature at some reference altitude 

z , here taken to be 1Z0 km 

s is the shape parameter 

P is the geopotential altitude 

(z 	 - zo)(R+ zo 
00 zz- z for z<< R (3.5) 

0
R+z 

Equation (3.4) has been solved using the least squares technique 

to obtain the best fit values of the temperature parameters TI2 0 , 

T. and s. The uncertainty in T. is not of any consequence here, 

since only temperatures well below Z00 km are important in the 

computation of energy fluxes height integrated above 120 kn. 

Table A. 1 summarizes the temperatures and densities derived 

in the above manner using data from 18 days observations at 

Arecibo between August IZ, 1974 and November 17, 1976. The data 

used in this analysis represent low or medium levels of magnetic 

activity (Kp < 4.0). The dates were selected from a body of 41 days 

observations and represent those days where runs were made 

within 1.5 hours of both terminators and where the error in the 

observed collision frequencies was less than 50 percent of the 

stated value. By examining results of the first few observations in 

the morning and the last few in the evening of each day, one can 
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infer the temperatures and densities at the location of the 

terminators. Since each of the observation days listed has been 

classified according to season, together with the appropriate wind 

profile (Figure 4), the values should provide the information 

necessary to determine the low latitude contribution to the energy 

surface integral, expressed by equation (3.1). 

Figure 5 shows the calculated energy flux per unit terminator 

length at the time of each observation and the extrapolated flux 

across the terminators for each of the observation days considered. 

The term "net flux" is used to represent these values since a 

correction has been applied in each case for the lower boundary 

flux, as discussed at the beginning of this section. The base 

temperature used in applying this correction is the average of the 

120 km temperatures at the morning and evening terminators for 

the appropriate observing day. The terminator fluxes have been 

determined using a linear least squares fit to the data. The error 

bars represent the uncertainty in each determination which arises 

from both the error in the derived collision frequencies and the 

intrinsic variability with local time of the densities in this altitude 

range. Table 2 lists in summary form the terminator fluxes 

obtained for each of the 18 -observing days. The quantities AW and 

AR in the table represent the contributions to the daily net flux 

from the measured winds and the corotating winds respectively. 

As can be seen in Figure 5 and Table Z, both the magnitude 

and sign of the net energy flux vary between measurements. When 

grouped according to season, the average net fluxes were found to 

"1
be 0.Z8, -0.62, -0.93 and -Z.ZOXI0 4 Wm for summer solstice, 
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Table 2. Summary of Arecibo Results 

Date L.S.T. Season 

Net Flux Into 
Nighttime 

Thermosphere 
(W m - ±) 

Daily Net Flux 
AW+AR (W m-1) 

Error 
(Wm-1 ) 

IAWI 
IARI 

Aug. 12, 1974 5.66 
18.34 

Summer -l.lxl04 
4.8xi04 3.7xi04 5.8xi04 0.22 

Aug. 14, 1974 

Sept. 17, 1974 

5.67 
18.33 

5.95 

18.05 

Summer 

Fall 

-4.9x104 
5.1x104 

-5.0x104 

2.6x10 4 

4 

0.2xlO 

-2.4xi0 4 

4 

2.3xi0 

1.6xl04 

0.12 

0.19 

Sept. 18, 1974 5.96 
18.04 

Fall -4.3x10 4 

4.4xl04 
44 

0.1xl04 2.2x104 0.92 

April 15, 1975 5.78 
18.22 

Spring -6.9x104 

4.4xi04 -2.5x104 2.0x104 0.60 

April 16, 1975 5.77 
18.23 

Spring -5.4xi04 

3.2x10- -2.2x104 3.2x104 0.29 

May 22, 1975 5.53 
18.47 

Summer -3.4x104 

4.5x104 l.lxl04 1.4x104 1.84 

June 10, 1975 

June 11, 1975 

5.46 
18.54 

5.46 
18.54 

Summer 

Summer 

-4.6xi04 

3.2x104 

4 
-3.8xi04 
2.9xi04 

-1.4xlO 4 

-0.9xlO4 

2.0x104 

1.5x104 

0.23 

0.50 

Oct. 14, 1975 6.18 
17.82 

Fall -5.4x104 

2.3x104 -3.1x104 2.8x104 0.11 



Table 2. (Continued) 

Date 

Jan. 20, 1976 

L.S.T. 

6.47 
17.53 

Season 

Winter 

Net Flux Into 
Nighttime 

Thermosphere 
(w m - ) 

-6.1xl 4 

5.3xi04 

Daily Net Flux 
AW+AR (W m -1 ) 

-0.8x10 

Error 
(W m-1 ) 

1.3xlO 

AWl 
N-R 

0.23 

Jan. 21, 1976 6.46 
17.54 

Winter -5.0xi04 
2.9xi0 

4 
-2,lx10 

4 
1.4xlO 0.13 

Mar. 17, 1976 6.02 
17.98 

Spring -7.1xlO 4 

5.2xi04 -l.9x104 2.6xi04 0.29 

May 13, 1976 5.57 
18.43 

Summer -4.4xi0 4 

3.4xi0 4 -l.0xl04 1.7x104 0.20 

Sept. 22, 1976 6.00 
18.00 

Fall -2.2xi0 4 
4.4xi04 

A 
2.2x10 1.3x104 0.19 

Oct. 19, 1976 6.23 
17.77 

Fall -2.8xI04 

2.9x104 0.1x104 1.4xl04 6.00 

Nov. 16, 1976 6.44 
17.56 

Winter 4-3.2xi04 
3.lxlO 

4 
-0.1xl0 0.x10 

0 
0.57 

Nov. 17, 1976 6.44 

17.56 

Winter -2.9x10 4 

2.2x104 -0.7x104 1.2x104 0.16 
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fall equinox, winter solstice and spring equinox respectively. These 

values suggest that the net day to night flux varies in a cyclic 

fashion over the course of a year and that at the latitude of Arecibo, 

energy tends to leave the nighttime region, particularly in the 

winter hemisphere. Because of the large uncertainties involved, 

however, the error in each of the above values is of the same 

order, or larger than, the value itself and any order which appears 

in the above seasonal fluxes must be viewed with caution. Using 

the standard deviation of the individual determinations for each 

season and the average values quoted above, the day to night energy 

between flux at the latitude of Arecibo has been found to lie 

-1.6X104 and Z.ZXIO4 Wm for summer solstice, -Z.-8XIO4 and 

1.5X 10W4 m - I for fall equinox, -l.8XI04 and -0.lXlO 4 for winter 

Wm " I solstice and -2.5XI04 and -l.9XI04 for spring equinox. 

In order to examine the latitudinal dependence of the termin

ator energy fluxes, the wind results of Section 3.1.1 have also been 

used in connection with incoherent scatter results at mid latitudes. 

Data on the height distribution of electron and ion temperatures and 

the electron density at altitudes above 95 kin, and the total 

collision frequency between 95 and 120 km are available from the 

St. Santin incoherent scatter facility (44.6 N). 

In the case of the St. Santin facility, each measurement does 

not furnish an entire height profile, but only data at a single 

height with a repetition period of about 1.Z hours for the E-region. 

Further, on a given observing day, B-region measurements are 

made from about sunrise to close to sunset, followed by F-region 

measurements made during the next Z6 to 30 hours. To obtain data 
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at the terminator, the collision frequencies and temperatures for 

each height were plotted as a function of time and extrapolated 

visually to the time of sunrise and sunset. The total density at 120 

km was calculated from these values and used, together with the 

120 km temperature for the terminator flux calculations. Although 

the temperature profiles at the terminators were constructed from 

the F-region data from the following day, in no case was there a 

significant difference between the temperature parameters esti

mated for two successive mornings or evenings. 

Using this scheme, the St. Santin results were analyzed to 

obtain the temperature and density distribution at the morning and 

evening terminators during nine days in,1969, and 1970.. These 

selected days are characterized by low and medium levels of 

magnetic activity and minimum variation in Kp values between the 

morning and evening hours. Table A.AZ shows, the boundary conditions 

obtained from the St, Santin analysis and Table 3 lists the results 

obtained using the measured and corotating winds discussed 

previously and the listed boundary conditions. In contrast to the 

Arecibo findings, these results consistently indicate a net flux into 

the nighttime region. After grouping the results according to season, 

the energy flux into the nighttime thermosphere at St. Santin has 

been found to lie between L.OXI04 and 3.6Xi04 W m I for summer 

-solstice, L.OXlO 4 and 3.8XI04 Wm for fall equinox and 1.0X10 4 

and 3.1X10 4 Wm - I for winter solstice. 

It should be mentioned that in no case were measurements 

made at St. Santin before local sunrise or after local sunset. As 

a result, the derived temperatures and densities at the terminators 



Date 


Aug. 26, 1969 


Oct. 7, 1969 


Nov. 25, 1969 


Dee, 23, 1969 


Feb. 5, 1970 


Mar. 17, 1970 


April 28, 1970 


June 9, 1970 


Sept. 1, 1970 


Table 3. Summary of St. Santin Results
 

L.S.T. 


5.30 

18.70 


6.36 

17.64 


7.46 

16.54 


7.69 

16.31 


7.09 

16.91 


6.09 

17.91 


5.04 

18.96 


4.36 

19.64 


5.45 

18.55 


Season 


Fall & 

Summer 


Fall 


Winter 


Winter 


Winter 


Spring 


Summer 


Summer 


Fall 


Net Flux Into
 
Nighttime
 

Thermosphere 

(W m- ) 


4-2.7xl04 


6.5x104
 

-4.7x104

5.8x104
 

-4.4xi04 

5.3x104
 

-3.7xi04 


6.6xi04
 

-2,1x104 

4,4xi0 4
 

-4.5xi04 

11.7x104
 

-4.7x104 

6.0x104
 

-4.8xI04 

6.7x104
 

-4.2xlO4 

6.5x104
 

Daily Net Flux 

-
AW+AR (W m 1)IAR
 

A
3.8xlO 


l.lxlO4 


0.9x104 


2.9x104 


2.3x10 4 


7.2xi04 


1.3x10 4 


l.9x104 


2.3xi04 


AW
 

0.16
 

3.00
 

1.40
 

0.28
 

0.23
 

0.13
 

1.60
 

1.00
 

0.53
 



62
 

were in each case obtained by extrapolation. This undesirable 

feature, combined with the coarse height and local time resolution 

of the St. Santin facility, combine to make the St. Santin results 

somewhat uncertain, as are those obtained from the Arecibo 

measurements. 

Since the boundary values are important in controlling both 

the magnitude and direction of the terminator fluxes, it is 

worthwhile to examine whether the reversal in direction of the net 

flux that occurs between the Arecibo and St. Santin results can be 

anticipated by comparison of the boundary densities and tempera

ture parameters in Tables A.1 and A.. An examination of the 

tables reveals a positive correlation between the 120 km densities, 

when corrected for variations in the temperature parameters, and 

the corresponding computed terminator fluxes. Also, while the 

computed exospheric temperatures in Table A.1 are consistently 

higher near sunset than close to sunrise, the reverse is true for 

the 120 km temperature and it is these latter values, along with 

the boundary densities, that largely determine the magnitude of 

the height integrated energy fluxes. These same trends in both the 

exospheric and 120 km temperatures at Arecibo have been observed 

by Swartz and Nisbet (1971) using data from one summer day 

(June 26) and two winter days (Jan. 13, 14) in 1968. A gradual 

decline in the 120 km temperature from the morning to the evening 

hours is readily apparent from the summer data and is suggested 

by the winter results also, although not as conclusively. 

Fontanari (1973) has performed a harmonic analysis of data 

from St. Santin obtained during equinox and solstice periods for 
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the years 1969 and 1970. His results show the height variation of 

the mean temperature for each season along with the amplitude and 

phase of the diurnal temperature variations and reveal enhanced 

temperatures at the evening terminator during summer solstice and 

at both equinoxes. These findings tend to confirm the IZ0 km 

temperatures summarized in Table A.2 and together with the results 

of Swartz and Nisbet (1971), point up the latitudinal dependence of 

the lower boundary temperature at the terminators. 

In arriving at global flux estimates under equinoctial condi

tions, the geometry of the problem allows the use of symmetry in 

the latitudinal dependence of the energy flux between the northern 

and southern hemispheres. Using the equinox flux values appropriate 

for the latitudes of Arecibo and St. Santin, this assumption provides 

four points which represent the variation of the energy flux with 

latitude. A similar scheme is employed using the solstice results 

by using the values appropriate for the latitudes of St. Santin and 

Arecibo in the northern hemisphere and applying these results to 

the conjugate hemisphere six months later. 

Using this approach and the naximum and minimum values 

quoted previously, the energy flow QL into the nighttime thermo

sphere via the low and mid latitude thermospheric winds was found 

to lie between -3.9XI010 W and 1.ZXI0 10 W at equinox and between 

-1.5X1010 W and 9.4X1010 W at solstice. 

3.Z The Polar Thermospheric Wind System 

The complexity of the polar thermospheric wind system has 

been deduced from observations and has been considered in detail 
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by a number of authors (Fedder and Banks,, 1972; Meriwether et aL, 

1973; Nagy et al., 1974; Brekke and Doupnik, 1973; Maeda, 1976). 

The actual wind system is thought to be a superposition of the 

solar tidal winds and the winds due to the motion of the ions which 

are, in turn, influenced by a general dawn to dusk electric field. 

The resultant pattern of the horizontal wind field changes with 

height, since it depends on the degree of coupling between the ion 

and neutral motions. This interaction between the ions and neutrals 

allows a transfer of the electric field energy (of magnetospheric 

origin) to the neutral atmosphere with a resulting temperature 

enhancement and an overall outflow of gas from the polar region 

at heights above IZ0 km (Brekke et al., 1973; Nisbet and Glenar, 

1977). 

3.2.1 Method 

The polar region is treated here as an independent energy 

source which supplies a flow of the neutral gas at elevated 

temperatures to the low and mid latitude nighttime thermosphere 

via the south component of the .horizontal polar wind system. The 

global energy flux transported by the neutral wind from the high 

latitude regions into the mid latitude thermosphere can be obtained 

using equations (2.13) and (2.14) where in this case the integral is 

over the surface separating the polar caps and the nighttime 

thermosphere, as shown in Figure Z. 

Letting dt be an increment in local time, and assuming 

symmetry in the wind system between the north and south polar 

regions, we may write the energy- input to the nighttime sector as 
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6
 

QP= (Z)(ir/l2) YEM(6, t) R0 sinedtt - [dk 	 6):ZO4 
18 

where EM(E) 0 	 I~ ?(4+1)n ikT + nimig(h-120)]vM dh 

i 120 -(3.7) 

In the above relations v M is the meridional component of the 

horizontal neutral wind directed into the nighttime region. In 

addition, the variation of i with height h is neglected and R is° 

taken to be the radius at the lower boundary (6490 km). The first 

term in equation (3.9) represents the outflow from the polar 

regions between 18 and 6 hours local time. The second term 

represents the energy leaving the system at the lower (120 km) 

boundary. Here,(:p is the magnitude of the mass flow leaving the 

nighttime system and by the mass continuity equation (2.16), the 

defining equation for this quantity can be expressed as 

6 

i- Y sine dt (3.8) 

18 

where PM(Et) = (nimivM) dh (3.9) 

i IZ0 

The expressions EM(E), t) and PM(e,t) represent the meridional 

component of the energy and mass flow entering the system at 

geomagnetic colatitude ±e, and local time t. Similar expressions 

may be obtained for the zonal components using the corresponding 
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zonal component of the horizontal wind. 

An estimate of these quantities, then, requires both the 

direction and magnitude of the neutral wind velocity vector as a 

function of height above 120 km and this has been established using 

the results of Z6 high latitude vapor trail measurements. For the 

purposes of this paper, the pattern of outflow is examined using 

geomagnetic latitude and geomagnetic time as the coordinate 

variables. Table 4 shows the geomagnetic latitudes of each of the 

flights, ranging from about 590N to 740N with a mean latitude of 

about 67 0 N. Since all of the information is contained in this 

latitude region, the boundary defining the emitting region has been 

taken to lie at 70°N latitude (E= 200). 

3.2.2 Boundary Conditions 

The results of each flight provide information on the height 

distribution of the horizontal neutral wind at a fixed local time and 

fixed geomagnetic north latitude near 70 ° . Using suitably chosen 

boundary conditions, then, it is possible to estimate the meridional 

components of the energy flow EM(e, t) and mass flow PM(E, t) for 

each of the flights using equations (3.7)'and (3-.9).'. 

Rees (1971) has analysed fluorescent emissions from aluminum 

oxide (AlO) and barium oxide (BaO) during a number of twilight 

rocket launches at high latitudes. The results indicate that a 

correlation exists between the morning and evening twilight 

temperatures at 140 and 165 krm, and the C9 daily magnetic 

character. This relation is linear in the magnetic index and is 

expressed quantitatively by Rees as 



Table 4. High Latitude Vapor Trail Measurements
 

Location Time Date Geomagnetic K Altitude 
No. N.Lat. E.Long. UT Day Year GLT. G,Lat. p 10.7 Range(km) Pef. 

1 65.1 212.5 16.7 hr 288 72 4.6 71.2 3.0 95 110-160 A 
2 65.1 212.5 15.2 hr 288 72 3.1 71.2 3.0 95 100-180 A 
3 65.1 212.5 22.1 hr 23 76 9.6 71.2 3.4 72 105-125 B 
4 65.1 212.5 9.6 hr 86 73 21.6 71.2 0.2 74 95-160 C 
5 65.1 212.5 7.7 hr 50 74 20.0 71.2 .5 85 95-132 C 
6 58.8 265.7 3.5 hr 142 63 21.8 73.4 .7 91 80-175 D 
7 58.8 265.7 4.1 hr 143 63 22.4 73.4 1.2 89 80-160 D 
8 58.8 265.7 8.3 hr 143 63 2.2 73.4 .6 89 85-160 D 
9 58.8 265.7 6.0 hr 306 64 0.4 73.4 1.2 75 95-130 D 

10 58.8 265.7 0.0 hr 58 65 18.0 73.4 1.8 74 90-160 D 
11 67.8 20.4 7.7 hr 32 68 10.9 58.5 1.6 262 90-160 E oS 
12 67.8 20.4 7.6 hr 35 68 10.8 58.5 3.8 227 90-165 E 
13 67.8 20.4 18.5 hr 289 68 21.3 58.5 1.3 138 90-155 E 
14 67.8 20.4 6.7 hr 306 68 9.8 58.5 4.3 156 90-170 E 
15 80.6 58.0 13.6 hr 57 70 18.3 65.9 2.6 182 100-160 F 
16 80.6 58.0 16.9 hr 76 71 21.7 65.9 2.2 117 100-160 F 
17 80.6 58.0 17.2 hr 77 71 22.0 65.9 1.1 115 100-160 F 
18 80.6 58.0 10.2 hr 307 71 15.2 65.9 .8 117 100-160 F 
19 80.6 58.0 9.3 hr 311 71 14.4 65.9 2.2 107 100-160 F 
20 80.6 58.0 12.9 hr 52 72 17.7 65.9 2.4 194 100-160 F 
21 80.6 58.0 16.9 hr 76 72 21.7 65.9 2.7 135 100-160 F 
22 80.6 58.0 21.8 hr 79 72 2.4 65.9 1.2 136 100-155 F 
23 80.6 58.0 12.3 hr 46 74 17.1 65.9 1.1 86 100-140 F 
24 80.6 58.0 17.5 hr 78 74 22.3 65.9 .2 81 100-140 F 
25 80.6 58.0 16.3 hr 72 71 21.0 65.9 4.9 114 110-160 F* 

26 80.6 58.0 22.9 hr 72 71 3.5 65.9 5.0 114 115-160 F* 

References: A. Bedinger (1973), B. Nielsen (1976), C. Bedinger (1975), D. Bedinger (1966), 

E. Rees (1971), F. Andreeva et al. (1975). 

i values represent average of 12 hrs. preceding flight. 

*Data obtained from six spherical clouds. 



1
 

T(140km) = 420 + 25. C9 K (3.10) 

T(165 kn) = 450 + 50 . C9 K (3.11) 

for morning twilight and 

T(140 kin) = 500 + 25" C9 K (3.12) 

T(165 km) = 550 + 50" C9 K (3.13) 

for evening twilight. 

In the absence of any additional experimental information, it 

is assumed here that the temperature change between the evening 

and morning sectors at these altitudes varies linearly with local 

time in the nighttime hemisphere. This assumption allows the 

temperatures at 140 and 165 km to be estimated at each of the 

launch times for the rocket firings previously discussed. For 

purposes of this study, then, the adopted temperatures between 18 

and 6 hours become 

T140 = 540 - 6.67 mod (t+IZ, 24) + 25. C9 K (3.14) 

T165 = 600 - 8.33 mod(t+1Z, Z4) + 50" C9 K (3.15) 

where t is the geomagnetic local time in hours. 

Additional boundary parameters to be employed are the 
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120 km atomic oxygen and molecular nitrogen densities and the 

exospheric temperatures at the times and locations of each of the 

rocket flights listed in Table 3. The OGO-6 satellite quadrupole 

mass spectrometer has been used to measure 0 and N2 densities 

in the height range from 400 to 600 km (Hedin et al., 1974). In 

addition, neutral temperatures in the altitude range from 200 to 320 

km have been obtained using 630 nm oxygen emission line results 

from the Fabry-Perot interferometer on board the OGO-6 (Blamont 

and Luton, 1972). The neutral temperatures at these altitudes are 

within 100 K of the exospheric temperature and a good approxi

mation of T. is obtained by using the method of Nisbet et al. (1973). 

The vertical temperature distribution above 120 km can then 

be found using this value for T. and the temperatures at 140 and 

165 km obtained from equations (3.17) and (3.18). Using these 

values, equation (3.4) can be solved to obtain 

S I TI40]1T (3.16) 

165 

and 

/5T- T 4 0 

T = TM -T L4 0 ) T'- 140 (3.17)
IZO LI T 165 I 

The results of the OGO-6 density and temperature measure

ments have been grouped according to latitude, season, geomag

netic local time and Kp range. Measurements made between 650 

and 75°latitude and near spring and fall equinox are particularly 

useful, since the polar boundary is fixed at 70°N latitude and since 
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the symmetry of the problem during equinox allows the use of data 

from both hemispheres. The local time variation of the densities 

and temperatures is examined by collecting and averaging all data 

obtained in increments of 1 hour. The time variation can then be 

represented by a series of 24 values, from 0 to Z4 hours 

geomagnetic local time. 

In using these results to estimate the atomic oxygen densities 

at 1Z0 km, the diffusive equilibrium assumption is first made and 

the effects of departures from diffusive equilibrium are then taken 

into account. Nisbet and Glenar (1977) have shown that the atomic 

oxygen densities at 120 km and near 70 N geomagnetic latitude can 

be related to the diffusive equilibrium values by 

loglO n(O)izO = loglO n(O) 2 0  + 0.96 Vz(O)120 (3.18) 

where n(O)iz 0 is the estimate of the 1ZO km atomic oxygen density 

taking into account the effects of diffusion 

n(O)i is the diffusive equilibrium value 

vz(0)2 0 is the average upward vertical velocity of atomic 
-l
 

oxygen at 1Z0 km, in msec 

Using horizontal winds obtained from the vapor trail 

measurements listed in Table 4, Nisbet and Glenar have derived a 

-of for 

latitudes close to 70 degrees. Inserting this value in equation (3.18). 

the required correction for the atomic oxygen densities at 

geomagnetic latitudes near 70 degrees becomes 

value for v 1z(O)Z0 0.76 m see , appropriate geomagnetic 
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5.4 Can(O) = n(O) 0 (. 19) 

Figure 6 shows the boundary conditions calculated in the 

above manner using the temperature results of Rees (1971) and the 

OGO-6 temperature and density data. Since the rocket firings 

occur under a variety of geomagnetic activity levels, boundary 

,parameters have been determined for three ranges of Kp: 0.0-1. 2, 

1.3-4.0 and 4.1-9.0. In each case one sees an enhancement of 

both the temperatures and the atomic oxygen densities near the 

evening terminator and a corresponding depression near the 

morning terminator. 

3.2.3 Results of the High Latitude Analysis 

Analyses of the motion of rocket vapor trails released at high 

latitudes show the height variation of wind velocity and direction 

at the location of each firing. Using these results, and values of 

the boundary temperature and density profiles appropriate to each 

flight, equations (3.6) and (3.8) have been used to estimate the 

height integrated horizontal energy and mass flux above 120 km in 

each case and the resulting net energy exchange from the high 

latitude region to the nighttime thermosphere. 'The results from 

three of the twenty six flights listed in Table 4 have not been used 

in evaluating these fluxes. Wind velocity data for flight number 3 

was only obtained to an altitude of 1Z5 km. Also, the results of 

measurements 25 and Z6 were obtained from observations of 

spherical clouds during magnetically disturbed periods with a Kp 

index at flight time of approximately 5. The choice was made to 
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restrict our analysis to data representative of only relatively quiet 

magnetic conditions (Kp<4.0), The results of these measurements, 

then, were also excluded. 

Figures 7 and 8 show the height integrated energy and mass 

fluxes above iZ0 km as determined for each of the 23 high latitude 

rocket flights. As is expected, the flow patterns in both cases are 

similar, while slight differences in the relative lengths of the 

arrows between the figures are the result of weighting effects from 

the different height distributions of the parameters involved. 

Most of the flights observed here were in or near the 

statistically determined auroral belt (Heppner, 197Z), Accordingly, 

many of the features seen in Figures 7 and 8 have been observed 

previously using results from a number of high latitude barium 

cloud releases (Meriwether et al., 1973) and simultaneous 630 nm 

airglow and incoherent scatter observations (Nagy et al., 1974). 

Figures 7 and 8 show;
 

(i) 	Large, southerly directed flows in the predawn sector.. 

(ii) 	 Reversal of the zonal component near 2300 hours 

geomagnetic local time. A shift occurs here from a 

westward zonal component in the premidnight sector to a 

generally eastward drift in the morning sector. 

(iii) An anomalous west to east drift for the flights in the 

prenoon sector, where the effects of the diurnal solar 

tide would be expected to have the greatest influence and 

so give rise to an east to west drift component away from 

the afternoon diurnal bulge. The three flights used to 

provide flux estimates in the prenoon sector have been 
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Figure 7 Total mass flow above 120 km derived from 23 high latitude
 

vapor trail measurements. The center of each arrow
 
corresponds to the location of each measurement.
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Figure 8 Energy flow above 120 km derived from 23 high latitude 

vapor trail measurements. The center of each arrow 
corresponds to the location of each measurement. 
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taken from Rees (1971), who has found a correspondence 

between the west to east neutral winds and south directed 

ground magnetic fields, which are present during each of 

the prenoon rocket flights employed here. No relationship 

of any kind has been found relating the ground magne

tometer data and the north- south neutral wind, however, 

Thus, it has been assumed that the north components 

obtained here are representative of that geomagnetic 

latitude and local time. 

A correlation has been found to exist between the local time 

dependence of the meridional components £M(e, t), P'A(e,t) and that 

of the 120 km atomic oxygen boundary densities, plotted on a 

logarithmic scale (Nisbet and Glenar, 1977). These relationships 

are shown graphically in Figures 9 and 10. Data for Kp 0.0-i. Z 

has been used here, although the same correlation exists for 

results from the other Kp ranges as well. Since data on the 

boundary densities are available over the entire 24 hours, this 

relationship allows one to estimate the meridional flows between 

5.0 and 12.0 hours geomagnetic local time where there is a 

paucity of experimental wind results. Linear regression analyses 

between the densities and the fluxes were performed and the 

following relationships found. 

EM(9 t) = 1.638X105 logl0 n(O)iZ0 - Z.806XI06 W m 

(3.20) 

S=-l = O.3 2 94 1og 1 0 n(O)i 2 0 - 5.640 kgm sec PM(e~t) (3.21) 
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The primes in equations (3.20) and (3.Zl) have been included to 

distinguish between the experimental values and the best fit values 

obtained from the regression analysis. Positive values of these 

quantities are those directed to the north in the northern hemi

sphere. Using these relations, equations (3.6) and (3. S) have been 

solved to obtain a value of approximately 2.3XI10 W (Z3 GW) as 

the energy input from the north polar region into the system at 

70 0 N geomagnetic latitude (E= 700). Since symmetry has been 

assumed between the high north latitude and the conjugate south 

polar regions, the estimate arrived at for the net energy input 

Q to the nighttime system is, for Kp values from 0.Z- 4.0, 

X 10 1 0 Qp = 4.6 ± 2.3 W (3.ZZ) 



CHAPTER IV 

ENERGY LOSS PROCESSES 

4.1 Downward Conduction at the Lower Boundary 

The major heat loss from the night hemisphere is downward 

conduction due to the large vertical temperature gradient. The 

important parameters in establishing absolute magnitudes of the 

conduction loss are the temperature gradients, and to a lesser 

extent the absolute value of the temperature and the relative 

densities of the atomic and molecular major constituents which 

affect the conduction. 

From equation (2.15), the downward conduction at the 120 krm 

boundary is given by 

8T 2Z -I 
C = I J m sec (4.1) 

Here, 8T/8z is the vertical temperature gradient, and N is the 

weighted mean thermal conductivity for the gas mixture. The values 

used for the thermal conductivity of N2 , 0 and 0 are those given 

by Bauer (1972) and are expressed as follows 

X,(o z ) = 1.86X10 - 4 Tn *84 (4.2) 

-X(N = 2.7ZXl0 4 T (4.3) 

(O)= 6.71X 10 - 4 Tn 71 (4.4) 

The mean thermal conductivity can then be expressed as 
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XNNZ) + >jOz) n(Oz)/n(N2 ) + (O) n(O)/n(N2 ) 
- (4.5) 

1 + n(Oz)/n(Nz) + n(O)/n(N2 ) 

Using the 1972 Cospar International Reference Atmosphere (CIRA, 

1972), representative density ratios at 120 km have been evaluated 

and used to compute the mean thermal conductivity. The result is 

= 1.8X10 4T'80 + 1.72X105 T 84
n n 

- 4 71 -1 -1 _ l 
+ 1.64X10 T1 

n 
Jm - sec- K (4.6) 

A number of difficulties are encountered in making experi

mental measurements of thermospheric temperatures at night. 

Probably the best estimates of temperature in the region above 

120 km are obtained from incoherent scatter (Wand, 1974; Swartz 

and Nisbet, 1971). Unfortunately, electron densities at night in the 

region are so low that up until now only daytime measurements at 

these heights have been available. Individual rocket measurements 

of temperature in this region show a pronounced wave structure 

with considerable day to day variation with amplitudes of the order 

of 50 K and a phase variation with height. These factors combine 

to make individual in-situ measurements rather difficult to relate 

to average nighttime energy fluxes. 

While the incoherent scatter data do not provide nighttime 

temperature gradients, it appears that the dominant tidal component 

is semidiurnal rather than diurnal (Salah and Wand, 1974) so that 

the uncertainty should not be large. In accord with the analysis by 

Fontanari (1973) of the temperature amplitudes and phase 
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distributions and their associated errors (Section 3.1.4), the height 

and local time dependence of the temperature at St. Santin is 

given by 

T(t, z) = T (z) + A(z) cos (rllZ)(t -0(z)) 

+ B(z) cos (r/6)(t- Os(z)) (4.7) 

where T 0 (z) iS- the seasonal mean temperature 

A(z) is the amplitude of the diurnal component 

B(z) is the amplitude of the semidiurnal component 

@d(z) is the phase of the diurnal component in hours 

s (z) is the phase of the semidiurnal component in hours 

The average value of the conduction over the night hemisphere 

at the latitude of St. Santin can then be obtained using equations 

(4.1), (4.6) and (4.7) and is given by 

t r 
<C>= 24- (t -t S T/z dt (4.8) 

5- r 
s 

where t and t are the times of local sunrise and sunset at 
r s 

St. Santin for the season under consideration 

The conduction rate associated with the steady or diurnal average 

- 4 " , 1
temperature gradient was calculated to be 5.ZX10 Jm sec

" 4 z - Ifor spring equinox, 4,1XI J m - sec for fall equinox and 

4.8X10-4 Jm-2 s-i4.8X0 Sm sec for sumnmer solstice. The korresponding 
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ranges of solar F10.7 flux were 123- 232, 102- 207 and 109- 239 

" W m Hz for spring equinox, fall equinox and summer solstice 

respectively. No analysis was performed for winter solstice, since 

the results of the measurements made were inconclusive. While 

there is considerable uncertainty associated with the diurnal 

component, the 120 km conduction averaged over the nighttime 

hours is found to be lower than the seasonal mean in each case 

with considerable variation in the amount of reduction. The values 

of average nighttime conduction were found to be 3.7 :1.4 X 10- 4 , 

- 4 - 4 - I3.4l.6 Xi0 and 4.7-±.7 X 10 Jm sec for spring equinox, 

fall equinox and summer solstice respectively. 

Similar analyses have been made at Millstone (42.6 0 N) by 

Salah (1974) and at Millstone and St. Santin (44.60N) by Salah and 

" Wand (1974) for values of F 1 0.7 between 95 and 186 X 10-zzWm- ZHz ! 

These studies provide estimates for the diurnal average conduction 

-of 5.7 and 6.6 X 10' 4 Jm - sec respectively. 

Based on a statistical analysis of measured temperatures 

between the years 1966 and 1970, Rohrbaugh(197Z) has analysed the 

local time variatipn of the 120 km conduction at Arecibo. The 

results are represented by the Fourier series 

6 

z [tA cos'0 + B. sinz--t (4.9) 
2 24j/120 Ijij=O
 

where the sets of coefficients A. and B. have been determined byJ 3 

Rohrbaugh for equinox and winter and summer solstice conditions. 

When the steady state temperature given by the A 0 term is used to 
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determine the thermal conductivity, the average nighttime conduc
- 4 

tion calculated using equation (4.8) is found to be Z.8 L.8 X 10

- - - 4 - zjm sec for spring and fall equinox, 2.3*=.5X 10 Jm sec 

- 4 m - -for summer solstice and 2.2 ±-. 9 X 10 J sec for winter 

for values of F10 . 7 flux between 100 and ZZ5 X 10- 22
solstice, 

m -W Hz 1. The uncertainty in each of the above values has been 

deduced from statistical uncertainties as well as from the errors 

in the temperatures near 120 km, as deduced from the Arecibo data. 

Figure 11 shows the results derived from both the St. Santin 

and the Arecibo data and indicates a marked difference in both the 

steady state conduction and the amount of variability between the 

two stations. For comparative purposes, individual values of 

conduction derived from isolated pitot tube measurements at 

Arecibo, Wallops Island and Ft. Churchill have been included. 

These data were obtained for values of F10.7 between 108 and 174 

-W rn Hz . A discussion of the method of obtaining temperature 

gradients from pitot tube measurements has been given by Smith 

et al. (1967). 

The variability of these individual measurements is assumed 

to be the effect of reversible heating from atmospheric gravity 

waves which exhibit a characteristic phase variation with height. 

Hines (1965) has shown that the amplitude of temperature fluctua

tions increases from roughly 10 K low in the E-region to as much 

as 30 K near 110 km. In addition, from an analysis of Na cloud 

drifts, Kochanski (1964) has deduced vertical wavelengths of the 

order of 16 km near 120 kin, thought to result primarily from the 

effects of gravity waves. Assuming a temperature amplitude of 

http:2.3*=.5X
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Figure 11 Diurnal variation of downward heat conduction at 120 km.
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30 K and a representative vertical wavelength of 18 km, a maximum 

departure from the steady state temperature gradient of about 

10 K/km is found to occur. At a 1Z0 km temperature of 350 K, 

J m -
this corresponds to deviations of the order of 3Xi0 - 4 sec-1 

from the steady state conduction at 120 km. The size of this 

deviation is represented by the error bars in Figure 11. 

If the latitudinal dependence of the nighttime conduction rate 

is adequately known, the total conduction over the 120 kn boundary 

of the nighttime thermosphere for a given season is expressed as 

700 
QC= 1.85X0 1 1 " ' <C> L cosq9 dP W (4.10) 

_700 

where L is the length of night in hours 

< C > is the average nighttime conduction rate in V m-Z 

V2 is the latitude in degrees 

As in the treatment of-the horizontal winds, the geometry at 

equinox allows the assumption of latitudinal symmetry in the 

conduction rate between the northern and southern hemispheres. 

Using the equinoctial conduction rates at the latitudes of Arecibo 

and St. Santin, four points are available which represent the 

variation of the conduction with latitude. This allows an approxi

mate solution of equation (4.10) and yields a value of 

X10 1 0 QC = 8.6 :h Z.7 W equinox (4.11) 

for the total downward conduction at times close to equinox. 



89
 

For either summer or winter solstice conditions, the latitude 

dependence of the conduction is again obtained by using the rates 

appropriate for the latitudes of St. Santin and Arecibo in the 

northern hemisphere and applying these results to the conjugate 

hemisphere six months later. 

Since it has not been found possible to estimate the winter 

solstice conduction rate at St. Santin, however, two cases have 

been studied. The first case assumes that the conduction rate is 

the same at winter solstice as it is at summer solstice. The 

second assumes that the rate oscillates around the equinox value 

with a 12 month period so that based on the results obtained, the 

winter solstice value lies below either of the equinox values. When 

this approach is taken, the following values for the total conduction 

result. 

QC = 8.1 ± 2.6 X10 W solstice maximum (4.1Z) 

QC = 6.6 + Z.1 XI010 W solstice minimum '(4.13) 

4.2 Infrared Radiative Losses 

4.2.1 Emission at 63 p. from Thermospheric Atomic Oxygen 

Kockarts and Peetermans (1970) have discussed the contri

bution to thermospheric cooling by infrared radiation from atomic 

oxygen in the height range between 50 and Z50 km. The ground 

state of atomic oxygen consists of three low lying levels 3 PO0 3P 1 

and 3PZ, and the kinetic energy of motion of the constituents is 

converted into infrared radiation by collisional excitation and 

subsequent spontaneous deexcitation to either the 3 P 1 or the 3P 
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levels. As shown in Figure 1Z, the levels 3P 0 and 3P 1 lie .028 and 

020 eV above the ground level 3P Z and emit at 147 p. and 63 p. 

respectively. The transition probabilities A.. are simply the 

spontaneous transition rates per atom and are listed by Wiese et 

- 5 " 5al. (1966) as A 01=l.70XI0 sec and A 1Z=8.95X0 sec . The 

energy lost per unit volume from this mechanism may then be 

written 

S L + (4. 14a) 

L EI A1Z n1(0) + ( 0- el ) A 0 1 n 0 (O) (4'. 14b) 

where e and e are the energies of levels 3P and 3 P with
0 1 0 1 

respect to 3P (here, E is taken to be zero). 

AIZ and A01 are the spontaneous emission coefficients from 

levels 1 to 2 and 0 to 1 respectively 

n 1 (O) and n 0 (O) are the populations of levels 1 and 0 

respectively 

In the region of interest here, the collision frequency between 

atomic oxygen and all constituents is assumed high enough to 

maintain a Boltzmann distribution, which relates the population of 

level i, i.e. ni(O), to the total number of atomic oxygen atoms. 

This relation is given by 

g. exp (- E i/k T)n.(O) = n(O) 1(4.15)Sz gj exp(-j/kT) 

3 
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Figure 12 	 Atomic oxygen ground state transitions. (Reference:
 
Kockarts and Peetermans, 1970)
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where g, and g. are the statistical weights of levels i and 5 

respectively 

T is the temperature 

n(O) is the total atomic oxygen density 

At temperatures of the order of 500 K, nearly all atoms are in 

one of the above three levels. Using values for the statistical 

weights of g 0 =l, gl-3 and g,=5, the volume emissions L63, 

and L147 are found to be 

1.69XI0- 5 n(O) exp'(-ZZ8/T) Wm-3 

63 =1 + 0.6 exp(-ZZ8/T) + 0.2 exp(-326/T) (4.16) 

"2 7L = 4.59XI n(O) exp(-326/T) Wm-3 
147I =1 + 0.6 exp(-228/T) + 0.2 exp(-3Z6/T) (4.17) 

-3 
where n(O) is the number of oxygen atoms per m 

Inspection of the above equations quickly shows that for the 

same values of T and n(O), the 147. contribution to atomic oxygen 

emission is negligible. In consequence, only emission at 63 L will 

be considered. 

The emission rate given by equation (4.14) applies only for an 

optically thin atmosphere, where the radiation travels unimpeded 

and ultimately leaves the atmosphere. In reality, some absorption 

of the radiation occurs in the reexcitation of atomic oxygen from 

the 3P. level and the rate of this process is directly proportional 

to the population of the 3P 2 level. As a result, the emission at a 
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given height is reduced and the departure from optically thin 

emission increases as height decreases. Kockarts and Peetermans 

have obtained a reduction factor X to be applied to equation (4.14) 

expressed as a fraction of the emission. Their results are shown 

in Figure 13 where curves corresponding to exospheric tempera

tures of 750 K and Z000 K have been included. The average of 

the two curves shown was chosen to represent a IZ00 K exospheric 

temperature and used to compute the height profile of the emission. 

The resulting curve was fitted using the least squares technique 

and a good representation for z>i0 km is given by 

"I - X = (z 1 15 343 TM IZ00 K (4.18) 

where z is the height in km. 

For the purpose of estimating radiative losses, a first order 

approximation to the atomic oxygen density distribution above IZ0 

km is obtained assuming diffusive equilibrium. Using the tempera

ture distribution given by equation (3.4), the height distribution of 

atomic oxygen (z in kin) is thus given by 

nzO = lz0O)- T z x kT z- 0o z0n (0) n 0 ) T[ mog ( z- z + (l/s)ln(Tz/T 

(4.19) 

with z = 1Z0 km. 

The emission (q6 3  ) from a column of unit cross section and 

extending upward from 120 km can then be calculated using 
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Figure 13 Reduction factor resulting from radiative transfer applied
 
to 6 3p emission. (Reference: Banks and Kockarts, 1973)
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q = S L 6 3 
( I- X ) dz Wnm- (4.20) 

120 

where L 63 and i- X are determined uslhg equations (4.14) 

through (4.19) with appropriate boundary values. 

Donahue et al. (1973) have determined the distribution of 

atomic oxygen as a function of altitude and latitude from OGO-6 

observations of the atomic oxygen IS- ID night airglow emission. 

They find that at 120 kin, a value fot-the -atomic :oxygen density 
-of l. lXl01 m represents all but the most unusual conditions, 

177 -3 
3while the observed values ranged from 0.41X 1017 to 1.35Xi01 7 m 

(Donahue, 1976). It seemed appropriate, then, to assume that the 

120 km atomic oxygen density lies usually between 0.9 and 

.zXI0 17 m-3 

In order to establish a representative temperature profile, 

temperature parameters derived from the September 17, 1974 

Arecibo incoherent scatter data (Table A.1) have been employed. 

This day represents low geomagnetic activity and the scatter 

results obtained on this date were among the best of the available 

measurements. The extremes of temperature listed in Table A.1 

for this day should represent the maximum and minimum tempera

ture over the entire 24 hours since the temperature oscillations 

at these heights are predominantly semidiurnal and since data was 

collected over a period of about 1Z hours. 

Using the above extremes in the density and temperatures, 

equation (4.20) has been evaluated and the 63 ± loss rate per square 
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meter was found to be 

- 4 W m - z  =63= 0.86 0.i13 X 10 (4ZI) 

4.2.2 Emission at 15 . from Thermospheric Carbon Dioxide 

An additional source of infrared radiative loss above 80 kn 

arises from radiative deexcitations of the V2 bending vibration band 

of CO at 15 [L . The basic considerations involved in calculating 

the radiative loss rate from this process -are given by Houghton 

(1969). For total pressures significantly less than 10- 6 atmospheres, 

collisional deexcitation of the excited states in the Vz band becomes 

negligible compared to radiative deexcitation and in addition, the 

medium becomes optically thin for this transition. The radiative 

loss rate per unit volume over the entire v band is then given by 

I=n(CO) h 2ggl exp ! - I ] 

l15 2) gL VkTJ (.) 

In equation (4.2Z) hV is the average transition energy over the vz 

band (hvi Al.33X10 - 13 erg) while g, and g. are the statistical 

weights with values of 1 and 2 respectively. The estimate obtained 

by Houghton for the vibrational relaxation time T at Z0 K isc 

6.0X10- 6 /p sec where p is the total pressure in atmospheres.
 

This value will be used in this analysis, although Houghton
 

indicates that the value of Tc decreases with increasing temperature.
 

The term (gz/gl) [exp(hv/kT) - I] is the ratio of the probabilities
 

of excitation from the ground state to deexcitation from an excited
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state when allowance is made for all excited states that comprise 

the Vz band. Assuming a height independent volume mixing ratio 

for CO2 of 3.3X10- 4 (HoughtoA, 1,9169), equation (4.9) becomes 

L1 1.99 X1046T[n(N9z + n(O2 ) + n(O)] 

exp (964 W m- (4".23)Y 

The emission above 1Z0 km from a column of unit area is then 

given by 

-q15 = L dz W m (4.4) 
120 

Because of the quadratic dependence on the total density, 

rather large variations in the 151± emission rate would normally 

be expected. Using the range of 120 km N2 and 0 z densities found 

in Table A,1 for Septdmber ,17, along with the previous boundary 

values, the 15 fi emission has been found to be 

- Z= 0.30 E0.20X10 "4  Wm (4 .25) 

4.Z.3 Total Radiative Loss 

From the preceeding sections, the sum of the 63 p. and 15 ± 

emissions above IZ0 km from a column of unit cross section is 

- 4+ q1 5 1.16 :L0.24X10 Wm Z (4.26) 



where the error is determined by the bounds placed on the 120 km 

boundary values, as discussed previously. Over the entire 

nighttime thermosphere, the above value corresponds to a total 

loss rate QIR of 

= 3.0 =0.6 X 101 0 W (4,Z7)QR 

for the contributions of 63 ± and 15 p. emission by thermospheric 

atomic oxygen and carbon dioxide to the energy balance. 



CHAPTER V 

RESULTS OF THE-ANALYSIS 

5.1 Conclusions 

5.1.1 Conductior and--Radiation Losses 

Two sources of data examined in establishing the lower 

boundary temperature gradients were incoherent scatter and rocket 

pitot tube measurements. From the St. Santin measurements, it 

was found that the mean nighttime conduction flux was 3.5X10- 4 

m - "W at equinox and 4.7X10- 4W m at solstice for values of 

m - - I . the 10.7 cm solar flux between 102 and 239X10- zzW Hz 

The values for Arecibo were measured at times when the 10.7 cm 

- z m -solar flux was between 100 and 225X10 W Hz - and were 

found to be Z.8X10-4 W m - at equinox and Z.3X10-4 W m - at 

solstice. 

In the case of the pitot tube measurements it was found 

difficult to make adequate estimates of the average temperature 

gradients because of the large wave components that are always 

4 
present. The pitot tube estimates were found to lie be tweer3 X10 

and 9X10-4 W m "2 at equinox and between ZXI0 - 4 ank 10Xl0 - 4 

-2 
W m at solstice. 

It appears that the incoherent scatter sounders provide the 

best data for measurements of the daytime temperatures and their 

gradients in the region near 120 km. It is not possible at the 

present time, however, to measure nighttime temperatures in this 

region at mid latitudes using incoherent scatter. Using only 

daytime data to estimate the diurnal component of the temperature 
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variation is not at all desirable. The small number of incoherent 

scatter stations also makes any assumed latitudinal variation 

conjectured. All that can be said for the pitot tube measurements 

is that they do not show any large diurnal component in either the 

temperatures or the gradients at 120 km and that the values are 

not inconsistent with the estimates based on incoherent scatter 

observations. 

Based on the available data it was estimated that at equinox 

the downward energy conduction over the hemisphere was between 

5.9XI10 and 11.3X10 10 W at equinox and between 4.5XI01 0 and 

10. 7X010 W at solstice. The radiation loss from the nighttime 

thermosphere from atomic oxygen and carbon dioxide was estimated 

to be between 2.4XI10 and 3.6X1010 W. 

5.1.Z High Latitude Thermospheric Winds 

The contribution from the neutral winds blowing in the 

meridional direction was estimated using 23 high latitude rocket 

vapor trail measurements. These were made at different times, 

seasons and latitudes. Because of the complexity of the high 

latitude neutral wind system, a far larger data base would be 

desirable. Still, the general features of the wind pattern appear to 

be understood and the clear correlation with the 000-6 density 

data makes it appear that the results are of the right order of 

magnitude. Based on these wind velocities and high latitude density 

data it was estimated that this source provided between 2.3XI 100 

and 6.9X10 W to the nighttime thermosphere. This includes the 

contribution from high latitude heating as well as that from the day 

to night flow across the pole. 
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5.1.3 Low Latitude Thermospheric Winds 

Because of the coordinate system chosen for this analysis 

it is convenient to consider two components separately, one due to 

the winds measured by an observer on the ground and the second
 

due to the motion of the terminator with respect to that observer. 

For these components, quite different pieces of experimental data 

control the estimates of the energy. For the winds measured with 

respect to the observer fixed to the earth, the difference in the 

wind profiles at the morning and evening terminators is of prime 

importance. For the component due to the motion of the thermo

sphere across the terminator the velocity is known exactly and the 

dominant terms involve the difference in the densities and tempera

tures at the two terminators. 

The winds relative to the ground were measured using data 

from 23 pairs of morning and evening rocket flights. Based on 

these measurements alone, the derived energy fluxes ranged from 

0.24X104 W m - I to 0.48X104 W m - of terminator length. 

The preceding term has attracted most attention in estimates 

of energy transport from the day to the night hemisphere. The 

reason for this is that little direct data has been available regarding 

density and temperature variations in the region near 120 km. 

As a result, CIRA 1965 and CIRA 19,7Z use approximately constant 

densities, temperatures and temperature gradients at IZ0 km. When 

changes are incorporated, they reflect primarily attempts to 

compensate for the shortcomings of diffusive equilibrium models in 

explaining the variations in density at satellite altitudes. Because 

of effects due to tidal components and wind induced diffusion, such 
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models cannot be expected to provide good estimates of the relevant 

parameters in the 120 km region. It is thus not possible to use 

them in theoretical investigations of these effects.. 

In the present work it has been shown that the corotating 

winds, rather than the measured winds, are the dominant contri

butor in determining the energy gain or loss to the system from 

the winds, and that there is little density and temperature :data -on 

which to base good estimates of the energy exchange from this 

source. The semidiurnal tidal modes, although they can be well 

determined from incoherent scatter, do not affect the calculations 

in the first order and it is not possible to accurately resolve the 

diurnal amplitude from data obtained only during daylight hours. 

The estimates of the densities near the terminators were found to 

introduce large errors, and while the temperatures at the 

terminators rarely change by more than 15 or 20 percent of the 

average value, as observed in Tables A.l and A.2, the densities 

quite commonly change by a factor of Z or more. The conclusion 

to be drawn is that a knowledge of the boundary densities is of 

even greater importance than the temperatures in establishing the 

terminator energy and mass fluxes. 

5.Z Summary of Contributions to the Energy Input and Loss 

Processes 

The estimates arrived at for the energy input and loss terms, 

as previously discussed, are listed in summary form in Table 5. 

From a comparison of the inputs and losses, there would appear 

to be a need, under both equinox and solstice conditions, for an 

additional energy source to satisfy the energy balance. The 



Table 5. Summary of Energy Inputs and Losses
 

Average Average 
(Unlts of Range (Units of Range 

Input Terms 10 W) (Units of 1010 W) Loss Terms lO W) (Units of 1010W) 

Low and Mid Latitude Winds Conduction
 
Equinox 3.7 -3.9 11.2 Equinox 8.6 5.9 11.3
 
Solstice 4.0 -1.5 9.4 Solstice 7.6 4.5 10.7
 

High Latitude Winds 4.6 2.3 6.9 Radiation 3.0 2.4 3.6
 

TOTAL: TOTAL:
 

Equinox 8.3 Equinox 11.6
 
Solstice 8.6 Solstice 10.6
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average deficit is 3.3XI010 W (Z.0XI I 0 W) for equinox (solstice) 

with a possible range from a 16.5XI010 W (13.5X10 W) deficit 

to a 7.8X1010 W (9.4XI10 W) excess. 

It is interesting to compare these estimates of the energy 

deficit with terms that have not been included in the analysis. 

Ching and Chiu (1973) have modeled the volume Joule heating rate 

at local noon under spring equinox conditions and include the day 

to night heating ratio as well. If their rates are considered 

representative of the entire nighttime thermosphere, the total 

Joule heating is found to be 1.7XI00 W. 

Using the results of satellite observations of neutral density 

perturbations, Klostermeyer (1973) has selected a dominant gravity 

wave mode and determined the energy dissipation by viscosity and 

ion-drag at thermospheric heights and for geographic latitudes 

near 50 0 N. By height integrating the calculated heat input above 

m -120 km, a value of 1.7XI04 W is obtained. If this rate is 

applied over the entire nighttime thermosphere, the total heat 

dissipation from this gravity wave mode becomes 4.2XI00 W. 

These estimates of Joule and gravity wave heating constitute 

a sizable portion of the apparent discrepancy between the energy 

input and loss terms arrived at in this preliminary study. It is not 

proper to considerrthe above two sources as completely independent, 

however, since mechanisms have been proposed which couple Joule 

heating energy into that of gravity waves (Hines, 1965; Testud, 1970). 

Indeed, Chiu (1976) has discussed the problem of thermospheric 

response to auroral heating and points out the interdependence of 
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auroral activity and the generation of an entire spectrum of wave 

perturbations, ranging from Rossby to acoustic- gravity modes. 

An additional energy input to the nighttime thermosphere is 

thought to result from the influence of thermal tides, originating in 

the lower atmosphere. From an analysis of incoherent scatter 

measurements at Millstone Hill and St. Santin, Salah and Wand 

(1974) and Salah et al. (1975) have observed a predominantly semi

diurnal temperature oscillation at heights near IZ0 kin, with a 

downward phase progression. This implies an upward flow of energy 

and the dissipation of this energy at higher altitudes. An earlier 

estimate of thermospheric heating from the semidiurnal- tide, 

performed by Lindzen and Blake (1970), led to a mean upward flux 

at 1Z0 km between 3 and 4Xl0"4 W m - from this source. This 

corresponds to a rate of 7.4 to 9.X1010 W for the total heating of 

the nighttime thermosphere from the semidiurnal tide. 

The values for the energy deficit deduced from Table 5 are 

of the same order of magnitude as the above estimates and indicate 

a need for an additional energy input to the low and mid latitude 

nighttime thermosphere. 

5.3 	 Recommendations for Further Experimental Work 

It is clear that further studies of this type will require an 

improved and expanded body of neutral density and temperature 

measurements at altitudes near 120 km. Regarding the incoherent 

scatter technique, measurements made over a 24 hour period would 

be an enormous advantage even if a complete sequence cannot be 

obtained. A number of observations over several nights during 

times when the electron density is sufficiently large would be 
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valuable in improving estimates of the odd harmonics in the density 

and temperature fluctuations. Secondly, since meaningful results 

can only be obtained on a statistical basis, a regular and systematic 

program of density and temperature measurements is required to 

ascertain seasonal variations and reduce the statistical uncertainties. 

A larger body of temperature measurements would also be useful 

in refining the conduction estimates. 

Although the emphasis here has been placed on improved 

boundary values, there remains a need for additional morning

evening rocket vapor trail measurements in the lower thermosphere. 

Additional twilight flights at a variety of latitudes and for different 

seasons would be of great help in revealing the nature of the wind 

system in the lower thermosphere and improving the overall heat 

balance. 

Finally, a coherent series of high latitude rocket measure

ments, organized in terms of geomagnetic coordinates, would be 

invaluable in the study of the wind system at high geomagnetic 

latitudes. 
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APPENDIX A: 	 BOUNDARY CONDITIONS FROM ARECIBO 
AND ST. SANTIN 

Tables A.1 and A.2 list the temperature parameters and 120 

km densities used in this study. The results in Table A.1 were 

derived from 18 days of observations at Arecibo between August, 

1974 and November, 1976. The data in Table A.2 were obtained 

from the St. Santin facility between August, 1969 and June, 1970. 



Table A.1. Arecibo Boundary Conditions
 

Temperature Parameters 


Date Season L.S.T. Kpt F10.7 T120 T S 


Aug. 12, 1974 Summer 6.40 1.8 97 264 779 .02188 

6.77 266 772 	 .04685 

7.14 300 781 	 .04424 

7.57 315 785 	 .06208 


17.09 1.0 304 922 .02338 

17.46 	 307 967 .02950 

17.83 	 310 986 .01774 

18.26 	 284 920 .02678 


Aug. 14, 1974 Summer 5.85 1.7 91 357 795 .01789 


6.28 334 758 	 .02550 

6.65 335 850 	 .01234 

7.02 319 809 	 .02497 


17.11 0.7 367 875 .03753 

17.48 	 366 909 .02803 

17.85 	 354 972 .01412 


Sept. 17, 1974 Summer 6.29 2,0 99 364 706 .04931 


6.65 387 723 	 .02182 

7.09 	 359 728 .04618 


.04892
7.46 	 337 727 


7.83 339 760 	 .03832 

15.75 0.7 347 964 .03563 

16.12 	 330 996 .02502 

16.55 	 309 1004 .02114 

16.92 	 277 998 .02326 

17.29 	 291 979 .02593 

17.72 	 297 1012 .01578 


t Average of three values preceding measurement.
 

-
3)
120 km Densities (M


n(02 ) n(N2) n(O)
 

16 17 17
 
5.51xlO 3.86x10 1.72xi016
 
4.80 3.36 9.92x10
 
4.68 3.27 8.49
 
3.56 2.49 7.06 	 17
 
4.37 3.06 1.17x101 6
 
6.68 4.67 7.99x017
 
3.12 17 2.19 1.12x10
 
1.26x10 8.81 1.04
 

1.17x101 6  8.21 9.15xi016
 

2.65 1.86 9.62 	 17
 
2.11 1.47 1.35xi 	16
 
4.08 2.85 9.15x-O
 
2.54 1.78 6.79
 
5.83 4.08 6.89 	 17
 
5.85 4.09 1.03x10
 

8.02 5.62 1.0Oxl017
 

6.82 4.78 1.26 	 16
 
7.00 4.90 9.97x01
 
7.37 5.16 1.12x101 7
 

6.30 4.41 1.09 	 16
 
5.38 3.76 7.53xlO
 
5.30 3.71 9.17 	 17
 
7.13 4.99 1.13x1O
 
8.53 5.97 1.25
 
5.89 4.12 1.06
 
8.52 5.97 1.46
 



Table A.1. (Continued)
 

-
3)
120 km Densities (M
Temperature Parameters 


Date Season L.S.T. Kp F10.7 T120 T S n(O2)  n(N2)  n(O) 

Sept. 18, 1974 Fall 6.31 0.2 99 379 755 .04023 7.15x106 5.00xlO17 6.28x1016 
6.68 362 775 .03182 4.61 3.23 7.13 
7.05 349 755 .03873 5.80 4.06 7.82 
7.48 317 772 .04124 5.59 3.91 8.58 17 
7.85 
8.23 

322 
295 

874 
834 

.01843 

.03720 
4.65 
6.64 

3.26 
4.65 

1.04x1O16 
8.55x10 

14.91 3.7 444 1020 .01677 2.94 2.06 8.91 
15.32 424 989 .03374 3.84 2.6916 9017 6.83.17 
15.82 
16.58 
16.95 

421 
410 
439 

1208 
1114 
1121 

.00872 

.01527 

.01485 

2 . 72x1016  
4.25xi0 
3.59x10 -1 

1.90x10 
2.98x1 7 
2.51xi0 ±1 

1.18xlO16 
8.57,40 
7.32 

April 15, 1975 Spring 6.21 2.2 69 407 879 .00922 171.62Xi016 181.13x1017 
16

9.55xlO 
6.62 
7.02 

386 
370 

740 
831 

.02383 

.01367 
7.34xi0,6 
9.28x101 0 

5.14x017 
6.50x10 

8.75 
1.07x10 i7 

7.47 304 714 .02860 5.33xi0 3.73xi017 1.54 
7.88 321 753 .01705 5.30 3.71 1.85 
8.32 313 754 .01958 5.12 3.58 1.81 

15.43 1.9 378 845 .04334 4.43 3.10 8.00xI0 
15.83 416 849 .02287 2.94 2.06 9.11 17 
16.29 430 1233 .00522 3.79 2.65 1.23xlO 
16.69 412 910 .01219 5.08 3.55 1.16 
17.09 401 1315 .00472 6.60 4.62 1.42 16 
17.55 387 922 .01589 7.27 5.09 9.54x01 

t Average of three values preceding measurement. 



Table A.I. (Continued)
 

-3)
 Temperature Parameters 120 km Densities (k


Kpt Tw S n(02) n(N2) n(O)
Date Season L.S.T. F10.7 T120 


April 16, 1975 Spring 6.15 2.2 69 432 769 .00819 1.18x10i1 8.23x101 7 1.25xi017
 

6.56 396 685 .02089 3.02xlO 2.11 1.18
 
6.96 389 902 .00826 5.78 4.05 1.21
 
7.41 406 863 .00797 3.89 2.73 1.29 16
 
7.82 397 778 .01846 5.35 3.75 9.32xi0
 
8.22 366 755 .03768 6.65 4.66 8.30 17
 

15.45 1.0 347 932 .01457 4.97 3.48 1.37x1016
 
15.85 353 891 .02396 5.07 3.55 9.45xi01 7
 
16.31 368 961 .01244 4.59 3.21 1.22xi0
 
16.72 359 882 .01882 5.23 3.66 1.08
 
17.11 370 969 .01165 3.77 2.64 1.18
 

16
 
May 22, 1975 Summer 6.21 2.2 69 385 739 .02725 4.32 3.02 7.05xi01 7
17
 

6.61 393 914 .00792 4.25 2.98, 1.04x1016
 
7.01 369 787 .02852 5.52 3.86 6.42xi0
 
7.60 363 788 .01902 3.78 2.64 9.33
 
8.00 360 794 .03745 3.70 2.59 6.28
 
8.40 352 810 .02025 3.76 2.63 9.61
 
15.30 3.0 347 910 .03297 3.93 2.75 8.38
 
15.70 350 880 .03107 3.16 2.21 9.31
 
16.56 408 869 .02728 4,92 3.45 7.65 17
 
16.96 409 956 .01192 3.59 2.51 1.05x10
 
17.42 402 953 .01273 4.03 2.82 1.00
 

t Average of three values preceding measurement.
 



Table A.l. (Continued)
 

Temperature Parameters 120 km Densities (M-3)
 

Date Season L.S.T. Kpt FI0.7 T1 20 T S n(02 ) n(N2) n(O) 

June 10, 1975 Summer 5.58 

5.98 

0.8 67 350 

368 

615 

629 

.04911 

.03876 

1.32xi0 
167 .12xlO 

9.27x10 
9 7l 
4.98 

9.54xi016 

8.89 
6.38 
6.84 

356 
361 

715 
746 

.01592 

.01765 
3.68 
3.30 

2.57 
2.31 

1.04xl016 
8.26x10 

7.24 355 771 .01443 2.30 1.61 9.69 
7.64 324 776 .02247 4.38 3.07 8.19 
16.11 0.9 402 902 .01595 5.00 3.50 7.89 17 
16.61 
17.01 

344 
329 

947 
882 

.01372 

.03607 
5.05 
5.20 

3.54 
3.64 

1.09x1016 
6.39xi0 

17.41 330 806 .03823 5.32 3.73 1.97 
18.36 334 858 .02154 6.25 4.38 8.40 

June 11, 1975 Summer 5.73 1.7 66 404 710 .01685 7.57x101 6 5.30 8.18x016 
6.13 393 725 .01755 5.22 3.66 8.12 
7.00 393 755 .02495 7.47 5.23 6.02 
7.40 402 738 .03231 4.62 3.24 5.71 
7.80 411 866 .01294' 4.84 3,39 6.32 

16.23 3.2 383 837 .03414 4.03 2.82 8.25 
16.63 371 935 .01696 4.05 2.83 9.88 
17.03 350 911 .03108 3.78 2.65 7.35 17 
17.49 356 857 .02224 5.88 4.12 1.03x10 
17.89 328 828 .02164 4.85 3.39 1.05 
18.29 335 943 .01749 5,96 4.18 1.01 

t Average of three values preceding measurement. 



Table A.l. (Continued) 

Date Season L.S.T. Kpt 

Temperature Parameters 

FI0.7 T120  T S 

120 km Densities (M- 3) 

n(02 ) n(N2 ) n(0) 

Oct. 14, 1975 Fall 7.07 
7.48 

1.2 80 414 

405 

695 

703 

.04568 

.04098 

4.65xi16 

6.24 

3.26xi 17 

4.37 

8.06xlO16 

8.61 

7.89 390 719 .04373 9.25 6.48 8.59 

8.39 383 749 .03292 6.11 4.28 9.18 17 

9.04 379 778 .02637 3.81 2.67 1.00x101 6 
9.45 

15.04 2.7 
360 
348 

799 
911 

.03189 

.02989 
7.75 17 
1.01xl016 

5.42 
7.05 

9.49xi017 
1.08x10 

15.73 349 887 .02651 7.97x1O 5.58 1.23 

16.13 317 927 .02262 4.87 3.41 1.42 

16.54 318 865 .02837 9.19 6.43 1.43 

17.04 303 943 .01648 7.08 4.96 1.91 

Jan. 20, 1976 Winter 6.64 

7.90 

2.6 77 399 

363 

705 

698 

.01591 

- .01906 

1.15xl 17 

4.10x10 

8.04 

2.87 

1.20x10 17 

1.55 

8.30 
15.11 
15.51 
15.91 
16.37 
16.77 

1.9 
352 
321 
342 
387 
384 
410 

658 
846 
829 
813 
810 
837 

.03828 

.03970. 

.05690 

.04253 

.04884 

.02063 

5.48 
3.53 
3.02 
3.34 
4.06 
5.44 

3.83 
2.47 
2.11 
2.33 
2.84 
3.81 

1.43 16 
9.63xl0 

7.89 
7.69 
7.30 
8.74 

17.17 441 956 .01021 7.02 4.91 8.64 

t Average of three values preceding measurement.
 



Table A.1. (Continued)
 

Temperature Parameters 120 km Densities (M-3 )
 

Date Season L.S.T. Kp F10.7 T120 T S n(02) n(N2) n(O) 

Jan. 21, 1976 Winter 6.81 3.5 75 451 765 .00964 5.42x10 16  3.79x10 17  1.07xl01 7 

8.08 
8.48 

14.57 
14.97 
15.43 

3.7 

397 
381 
332 
416 
413 

718 
725 
839 
876 
875 

.02208 

.02844 

.06093 

.02910 

.02446 

3.93 
5.34 
4.72 
3.14 
3.46 

2.75 
3.73 
3.31 
2.20 
2.42 

1.17 
1.10 16 
9.21x10 

7.83 
8.65 17 

15.83 
16.23 

411 
399 

999 
902 

.01138 

.01957 
3.50 
3.35 

2.45 
2.34 

i.09x1016 
9.42xi0 

Mar. 17, 1976 Spring 6.32 
6.72 
7.18 
7.58 
7.98 

14.84 
15.25 
15.65 
16.10 
16.51 
16.91 

3.1 

2.8 

75 432 
453 
431 
416 
385 
393 
392 
396 
356 
362 
339 

686 
711 
762 
790 
786 
930 
872 
934 
892 
901 
851 

.04829 

.02206 

.01438 

.01474 

.02764 

.01745 

.02752 

.02122 

.03208 

.02821 

.02866 

7.11 
8.62 17 
1.02x1016 
7.24xi0. 
1.00xl01 
5.00xi ± 

4.62 
5.27 
6.43 
7.36 
5.41 

4.98 
6.04 
7.15 
5.07 
703 
3.50 
3.24 
3.69 
4.50 
5.15 
3.79 

8.00 
8.85 17 
1.06xi0 
1.07 16 
8 170xi06 
1.10 l6 
9.62xi0 
9.00 
9.28 
9.22 
1.18x1017 

H 

t Average of three values preceding measurement. 



Table A.l. (Continued)
 

Temperature Parameters 120 km Densities (M-3)
 

Date Season L.S.T. Kpt F10.7 T120 T S n(O2 )  n(N2) n(O)
 

May 13, 1976 Summer 5.80 1.6 72 408 773 .01250 7.92xi016 5.54xi017 8.99xi016
 

6.21 365 772 .02893 5.35 3.75 6.41
 
6.61 369 823 .01888 7.03 4.92 7.07
 
7.07 353 805 .02810 5.97 4.18 6.51
 
7.47 321 758 .03368 8.26 5.78 8.88
 
7.87 295 766 .04037 7.85 5.50 9.29
 

15.15 1.9 420 904 .01900 5.00 3.50 8.43
 
15.55 395 974 .01436 5.42 3.80 9.62
 
16.41 372 909 .01459 5.37 3.76 1.26x1017
 

16.81 352 893 .01928 5.52 3.86 1.12
 
17.27 346 876 .01997 6.57 4.60 1.15
 

Sept. 22, 1976 Fall 6.63 3.5 70 323 816 .01341 5.78 4.05 1.80x1O 17
 

7.02 341 747 .02066 3.90 2.73 1.45
 
7.49 335 717 .02817 4.06 2.84 1.46
 
7.89 320 725 .04823 5.09 3.57 1.18
 
8.28 335 746 .04226 3.93 2.75 1.09
 
8.74 326 746 .04444 3.63 2.54 1.18 16
 

15.26 3.2 432 780 .04320 2.62 1.83 9.47xi0
 
15.66 441 839 .02716 2.60 1.82 8.58
 
16.05 436 858 .02270 3.60 2.52 8.84
 
16.52 428 885 .01892 5.41 2.79 9.16
 
16.92 401 897 .02466 4.94 3.46 8.13
 

t Average of three values preceding measurement.
 



Table A.d. (Continued)
 

Temperature Parameters 120 km Densities (M-3)
 

Date Season L.S.T. Kpt F10.7 T120 T S n(02) n(N2) n(O) 

16 17 17 
Oct. 19, 1976 Fall 6.41 0.8 77 384 717 .01899 6.54xi0 4.58xi0 1.08x1016 

6.81 376 687 .03214 5.01 3.51 9.97xi017 
7.68 362 693 .03832 3.72 2.60 1.04x10 
8.08 372 697 .03338 2.91 2.04 1.10 
8.48 367 748 .02298 3.57 2.50 1.13 
15.64 2.8 376 877 .02993 3.86 2.70 1.01 
16.04 366 868 .03064 5.30 3.71 1.06 
16.90 372 897 .01778 4.99 3.49 1.30 
17.30 356 864 .02289 3.48 2.44 1.26 

Nov. 16, 1976 Winter 7.52 1.0 73 341 672 .05455 6.25 4.38 171.05xl01 
8.10 328 708 .05666 3.26 2.29 9.48xlO 
8.58 
9.03 

356 
365 

668 
767 

.06963 

.01954 
3.13 
2.98 

2.19 
2.08 

8.69 
1.20xlO1 7 

9.48 338 735 .04490 3.43 2.40 1.03 
14.98 1.7 347 899 .02140 3.91 2.73 1.18 
15.38 346 950 .02081 3.69 2.58 1.02 
15.91 328 892 .02692 5.61 3.93 1.08 
16.49 352 856 .02862 3.43 2.40 1.00 
16.89 336 879 .02408 4.28 3.00 1.10 
17.29 321 861 .02483 6.47 4.53 1.21 

t Average of three values preceding measurement. 



Table A.I. (Continued)
 

-

Temperature Parameters 120 km Densities (M 3)
 

Date Season L.S.T. Kp FI0.7 T20 TS n(02) n(N2) n(O)
 

Nov. 17, 1976 Winter 6.90 2.2 75 392 753 .01797 4.17xi016 2.92xi017 1.07x10i1
 
7.37 
 360 711 .06276 3.18 2.23 8.08xi0
 
7.77 370 736 .05167 3.55 2.49 7.98
 
8.16 369 721 .04695 3.90 2.73 9.37
 
9.01 396 771 .02755 3.39 2.37 9.22 17
 
9.80 377 
 777 .02312 4.35 3.05 1.21x10
 

14.96 1.3 336 866 .02804 3.74 2.62 1.11
 
15.36 330 858 .02640 4.65 3.26 1.21
 
15.83 314 844 .03667 4.32 3.02 1.10
 
16.23 318 821 .04185 5.05 3.54 1.07
 
16.62 364 1000 .00973 2.32 1.03 1.54
 
17.08 311 929 .01808 3.27 2.29 1.33
 

t Average of three values preceding measurement,
 



Table A.2. St. Santin Boundary Conditions
 

L.S.T. + 
Temperature 
Parameters 120 km Densities (M

-3) 

Date Season SR/SS KP F10.7 T120 Tw n(02 ) n(N2 ) n(O) 

Aug. 26, 1969 Fall & 
Summer 

5.30 
18.70 

1.2 
2.4 

153 398 
428 

1025 
1170 

4.11x1016  
7.34x10 ±1 

2.88x10 17  
5.13xi0 ±1 

9.26x101 6 
8.42xi0 ±° 

Oct. 7, 1969 Fall 6.36 2.5 145 460 820 4.86x10116 3.40x10 17 17 1.41x10 17 416. 
17.64 0.6 485 1115 4.48xlO 3.14xi017 7.76x0 1 

Nov. 25, 1969 Winter 7.46 
16.54 

1.1 
1.8 

191 455 
357 

895 
1125 

4.23x101 
7 .65x10 i 

2.96xi0170 
5.35x10 

1.08xl0 17 

1.57xi0' 

16 17 1 
Dec. 23, 1969 Winter 7.69 2.0 162 422 860 4.91xi06 3.44xi17 1159x0 7 

16.31 2.9 380 1100 9 . 87x0 0 6.91xi07 1.24xi0 
16 17 17 

Feb. 5, 1970 Winter 7.09 2.4 125 300 850 2.95x1016 2.07x1017  2.87x10 1 
16.91 2.1 420 1050 4.19xil0 2 .93x10 1.17xlO 

Mar. 17, 1970 Spring 6.09 0.6 135 398 960 
166 .87xi016  

4 174 .81xO 17  
171.14x101 7 

17.91 2.1 490 1150 9.71xi0 6.80x0- 7.52xl106 

Apr. 28, 1970 Summer 5.04 2.1 147 408 970 
16 

6.21xi01 
17 

4.35xi0 1 
16

1.26xi01 

18.96 1.0 475 1105 4.75xi0 3.33x10 9.27xil0 O 

June 9, 1970 Summer 4.36 1.2 134 443 1060 
166 .95x1016  

17 
4.87xI017  

16
8.35x10 16 

19.64 1.6 457 1170 6.78xi0 4.74xil0 7.20x0 

Sept. 1, 1970 Fall 5.45 1.9 151 425 1160 
16 

6.05x101 6  
17 

4.23xd017 
16 

7.86xi0l6 

18.55 4.0 408 1185 7.02xlO 4.92xi0 8.86x1O 

+ Average of three values preceding measurement. 
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