
NASA Conference Publication 2015 

(NASA-cp-2015) STANARDZATON-
CERTIFICATION, HAINTENANCE, AND 
'DISSEMINATION OF LARGE SCALE ENGINEERING 
SOFTWARE SYSTEMS (NASA) 103 p HC A06/MF A01 Unclas 

- _ _ CSCL09B G3/61 50892 

Standardization, Certification,
 
Maintenance, and Dissemination
 
of Large Scale Engineering
 
Software Systems
 

A panel discussion held at 

The George Washington University 

Washington, D.C. 

March 29-31, 1976 

AND. Zo-X 
0z0 

OON 0,\O 

https://ntrs.nasa.gov/search.jsp?R=19770026932 2020-03-22T08:04:47+00:00Z



NASA Conference Publication 2015
 

Standardization, Certification, 
Maintenance, and Dissemination 
of Large Scale Engineering 
Software Systems 

Editors 

Theodore G. Toridis, The George Washington University 
Harvey G. McComb, Jr., NASA Langley Research Center 
Khalil Khozeimeh, The George Washington University 

A panel discussion held as -a part of the Second 
National Symposium on Computerized Structural 
Analysis and Design sponsored by NASA Langley 
Research Center, Hampton, Virginia, and the 
National Science Foundation, Washington, D.C. 
at The George Washington University, 
Washington, D.C., March 29-31, 1976 

NASA 
National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Office 

1977 



FOREWORD
 

The Second National Symposium on Computerized Structural Analysis
 

and Design was held on the campus of The George Washington University
 

on March 29-31, 1976. The purpose of the Second Symposium was to
 

facilitate the exchange of information among structural analysts and design
 

and research engineers on recent developments in structural engineering
 

and applied mechanics with special emphasis on the utilization of com

puters in the analysis and design of structures and their components.
 

As a part of the symposium, a panel discussion was held on Standardi

zation, Certification, Maintenance, and Dissemination of Large Scale
 

Engineering Software Systems. The panel moderator and panel members
 

are listed on the following page. The panel discussion consisted of
 

two basic parts:
 

PART I - PRESENTATION BY PANEL MEMBERS: Each member of the panel presented
 

a brief discussion on a specific topic associated with the theme
 

of the panel discussion.
 

PART II - AUDIENCE RESPONSE AND DISCUSSIONS: This consisted of a cross

discussion between the audience (symposium participants) and the
 

panel members on topics that were either discussed earlier by the
 

panel members or that were pertinent to the discussion.
 

±
 



The discussions by panel members and the response by the audience were
 

recorded on magnetic tape. In view of the interest shown by many individuals
 

both during the meeting and subsequent to the symposium, a written documen

tation of the panel discussion was prepared although the proceedings of the
 

symposium itself will not be published. To a great extent, this report
 

represents a verbatim transcript of the presentations of the panel members
 

and the responses of the audience. Mr. Mehmet I. Basci, Graduate Research
 

Assistant at The George Washington University, helped in the drawing and
 

preparation of the figures appearing in the publication.
 

Theodore G. Toridis
 

Conference Co-Chairman
 
Professor, School of Engineering
 
and Applied'Science
 
George Washington University
 
Washington, D. C.
 

ii 



PANEL MEMBERS
 

MODERATOR
 

Harvey G. McComb, Jr.
 
Head, Computer Aided Methods Branch
 
Structures and Dynamics Division
 
NASA Langley Research Center
 
Hampton, Virginia
 

Stanley D. Hansen Harry S. White, Jr. 
Manager, Flexstab System and Associate Director for ADP Standards 
Advanced System Development Institute for Computer Sciences and 
Boeing Computer Services Technology 
Seattle, Washington National Bureau of Standards 

Washington, DC 

Robert E. Nickell James R. Johnson 
Supervisor, Design Technology Aerospace Engineer 
Division, Nuclear Fuel Cycle Air Force Flight Dynamics Laboratory 
Development Department Wright Patterson Air Force Base, 
Sandia Laboratories Ohio 
Albuquerque, New Mexico 

Steven J. Fenves Michael P. Ganus 
Professor, Department of Civil Head, Engineering Mechanics 
Engineering Section 
Carnegie-Mellon University Engineering Division 
Pittsburgh, Pennsylvania National Science Foundation 

Washington, D. C. 

ii
 



SECOND NATIONAL SYMOSIUM ORGANIZATION
 

Conference Co-Chairmen
 

Harold Liebowitz Theodore G. Toridis
 

The George Washington University, Washington, D. C.
 

Technical Program
 
Committee
 

Michael P. Gaus, 

Co-Chairman 

National Science Foundation
 

Ahmed K. Noor, 

Co-Chairman 

The George Washington University Joint
 
Institute for the Advancement of Flight 

Sciences 


Bo 0. Almroth 

Lockheed Palo Alto Research Laboratory 


Robert M. Bader 

Air Force Flight Dynamics Laboratory 


Steven J. Fenves 

Carnegie-Mellon University 


Robert E. Fulton
 
NASA Langley Research Center 


Richard H. Gallagher 

Cornell University 


Donald S. Griffin
 
Bettis Atomic Power Lab, Westinghouse 


Harold Liebowitz
 
The George Washington University 


Pedro Marcal
 
MARC Analysis Corporation 


Harvey G. McComb, Jr.
 
NASA Langley Research Center 


Richard D. McConnell
 
Veterans Administration
 

Robert Melosh
 
MARC Analysis Corporation
 

William W. Murray
 
David W. Taylor Naval Ship
 
Research Development Center
 

Nicholas Perrone
 
Office of Naval Research
 

David R. Schelling
 
Greiner Engineering Sciences, Inc.
 

William C. Schnobrich
 
University of Illinois at Urbana-Champaign
 

James A. Stricklin
 
Texas A & M University
 

Local Arrangements Committee
 

Khalil Khozeimeh,
 
Chairman
 
The George Washington University
 

John B. Ferriter
 
The George Washington University
 

Roy J. Robison
 
The George Washington University
 

Theodore G. Toridis
 
The George Washington University
 

Harold Liebowitz
 
The George Washington University
 

iv
 



Publications Committee
 

Theodore G. Toridis,
 
Chairman
 
The George Washington University
 

Khalil Khozeimeh
 
The George Washington University
 

Harry G. Schaeffer
 
University of Maryland
 

V 



PART I - PRESENTATION BY PANEL MEMBERS
 

Harvey McComb, NASA Lanley Research Center, Moderator:
 

Good afternoon ladies and gentlemen. Welcome to our panel discussion on
 

Standardization, Certification, Maintenance, and Dissemination of Large
 

Engineering Software Systems. We are aware that the field of computerized
 

structural analysis and design is growing at a very rapid rate. It has been
 

described as chaotic and undisciplined. This situation is natural, I suppose,
 

in a field so relatively new and where many bright, aggressive, and innovative
 

people are involved. It means that people trying to make effective use of
 

computerized methods have may options available, but it also means that
 

difficult choices must be made both in terms of software and hardware. Many
 

people feel that it is important to bring some sort of order or discipline
 

into the field if it can be done without stifling too much the rich variety
 

and innovation. To try to get some handle on the subject, we have asked
 

the people in the panel to address specific areas in their opening remarks.
 

This breakdown is not clear but rather arbitrary and overlapping. Neverthe

less, perhaps, it will help focus our thoughts. I will introduce -he panel
 

members now.
 

Starting on my right we have Stan Hansen, who is Manager of Flexstab
 

System and Advanced System Development for Boeing Computer Services. 
I
 

would like to ask Stan to address himself to Program Design and Development.
 

1 



Next is Harry White, who is Associate Director for ADP Standards of the
 

Institute for Computer Sciences and Technology of the National Bureau of
 

Standards. He will be talking about Standards and Documentation.
 

Robert Nickell, Supervisor of the Design Technology Division of Nuclear
 

Fuel Cycle Development Department at Sandia Laboratory. Bob will be dis

cussing Software Validation and Certificition.
 

Then on my left is James Johnson, Aerospace Engineer at the Air Force
 

Flight Dynamics Laboratory. Jim will address himself to Dissemination, Porta

bility, and Maintenance.
 

Next is Steve Fenves, who is Professor of Civil Engineering at Carnegie-


Mellon University, and I asked Steve to address the subject of Education.
 

Then on the far left is Mike Gaus, Head of the Engineering Mechanics
 

Section of the Engineering Division of the National Science Foundation.
 

I want to give the panel members a chance to make opening remarks
 

first. This will take us up to the coffee break. After break we will
 

allow the panel to react to what they have heard from each other and
 

make any other comments they wish. Then we will open up the discussion
 

to members of the audience.
 

We do hope to put out a publication which captures the essence of
 

this discussion and we are trying to tape the discussion here. (Please
 

keep that in mind when you make your comments.) In addition, if there
 

are things later on, if you would like to send us a written digest of
 

remarks or comments you would like to make, we will be glad to include
 

this material in our published volume if it seems appropriate.
 

2 



Ok, we will get started. We will start off with Stan Hansen on my right.
 

Stan, as I mentioned, will be talking about Program Design and Development.
 

Stan Hansen, Boeing Computer Services:
 

I should place myself in context, that is, I have-worked in the aerospace 

industries since the initiation-of my career in this field. We deal with very 

large systems. Therefore, what I am going to say will seem a little bit diffe

rent to some of you who are dealing with smaller systems. I keep figure I on 

my bulletin board. When I began my present assignment, the subsystem of which 

this subroutine is a part was being documented. This and several other flow

charts like it had been prepared for inclusion in the documentation. This flow

chart would be humorous if the process that produced it had not been so seriously
 

deficient.
 

This particular subsystem had been developed on an emergency basis. A pro

grammer had been brought in on loan from another organization, told there were
 

no specifications, no time for design, that he was to take his direction from
 

the other engineers and programmers, and to finish in three months. Nineteen
 

months later, when I came on the project, the programmer was still working. He
 

had generated 15,000 new coding statements in addition to the 10,000 that had
 

existed.
 

We managed to close out the work in another two months. Today, eighteen
 

months later, we are finding that the code in this subsystem is so much more
 

complex than the functions being computed, in many cases, it is more cost effec

tive for us to reprogram than to attempt to maintain.
 

And this is the point: complexity. Engineering software systems are com

plex. They become unmanageable if the complexity is out of control, as illus

3 



trated by the above example and by figure 2. Uncontrolled complexity is a
 

major contributor to today's software problems (fig. 3):
 

Unsatisfied user requirements
 

Unpredictable costs and schedules
 

Low technical quality 

Functional unreliability
 

Fragile software 

Difficult maintenance
 

Complexity seems to be produced by three factors (fig. 4):
 

The number of components interacting
 

The number of interactions between components
 

The complexity of the interactions
 

These three factors apply whether the components are individuals, organi

zations, engineering specifications, software design, code, etc. If the software
 

system and the organizations and functions which produce and maintain it are to
 

be controlled, they must be kept simple enough for a single man's intelligence to
 

grasp completely that part for which he is responsible.
 

The objective, as shown in figure 5, is to, first, develop a software system
 

design of minimum complexity and, second, to manage the remaining complexity to
 

achieve system quality and control costs and schedules. This point is further
 

illustrated in figure 6. There will exist a bounded design space within which the
 

system requirements are satisfied. Within this system space, the least complex
 

design will be the better design. Some important factors in achieving this ob

jective are discussed in the following paragraphs.
 

4 



MANAGEMENT ATTENTION
 

Figure 7 is a common diagram, but appropriate. The ability of managers and
 

technical developers to influence the outcome of a project is very high at the
 

outset but declines rapidly as commitments are made, schedules and budgets are
 

used up, and code and documents are produced. If ideas, decisions, commitments,
 

etc., are not well defined and communicated, management attention will be required,
 

as shown by the curve dominant on the right side of figure 7. Disproportionate
 

attention will be required at acceptance when the disparities between requirements
 

and system capabilities are found and again during use when the system is applied
 

to problems other than those demonstrated at acceptance. As shown, these are the
 

very times when little ability remains to influence the outcome of the system ex

cept by rebuilding the deficient parts.
 

The goal is to give management attention as shown by the middle curve on the
 

left hand side of figure 7. This curve follows the same form as the curve repre

senting ability to influence outcome (i.e., management attention is given to the
 

system development at the time of greatest effectiveness).
 

It is important to note that a marked distinction should be made between
 

management, of which there is often too little, and manager presence, of which
 

there is often too much. Management is that work involved in planning, organizing,
 

leading, and controlling the project, regardless of who does it.
 

INFORMATION REQUIREMENTS
 

The general information requirements are shown in figure 8. These require

ments are shown as isolated islands of "things, knowledge and data" pertaining to:
 

Problem characteristics
 

External system characteristics
 

Internal system characteristics
 

5
 



Generally, a great deal is known about each of these, but this knowledge is,
 

in the general case, diffused among many individuals and organizations. More
 

importantly, it is not organized relative to the new system being developed.
 

To amplify, new systems are usually developed as a further increment in
 

capability and productivity in an existing environment. Users in the problem
 

solving environment possess a great deal of information essential to the success
 

of a new system. Similarly, those who have advanced the engineering technology
 

will have developed-new external system characteristics compatible with that
 

advancement. Further, new advances will have been made in computing hardware and
 

operating systems, software languages, control logic, numerical methods, etc. that
 

will have an important effect on the internal system characteristics. The task in
 

developing a new system is the organization of this information.
 

TOP DOWN SYSTEM DEVELOPMENTS
 

The organization of information cannot be achieved until two conditions exist:
 

1. Communication is established between the isolated islands.
 

2. A disciplined procedure is imposed for organizing and iterating
 

between and within the isolated islands.
 

The approach is that shown in figure 9.
 

1. 	A problem analysis is performed to establish a model for the
 

process or problem the new system is to support or solve.
 

2. 	A requirements definition is made based on the problem
 

characteristics that were organized as a result of the
 

problem analysis. This requirements definition establishes
 

usage procedures, technology, and relationships that form the
 

external system characteristics, or, more conventionally, the
 

engineering specifications.
 

6 



3. 	The external system requirements thus organized form the
 

foundation for performing the various levels of system
 

requirements. The system can then be implemented.
 

This bridging and organizing process is illustrated in figure 9. The bridges
 

shown are two way. They will be much traveled while the system characteristics
 

are iterated to achieve an optimum implementation. This process of organizing
 

and iterating prior to implementation is essential and should consume about fifty
 

percent of the project budget and schedule. A discipline is required, however,
 

for organizing and iterating information in a consistent manner that will converge
 

to the objective stated in figure 5. This discipline is the structured approach.
 

THE STRUCTURED APPROACH
 

There are three basic elements in the structured approach (figure 10):
 

1. 	A hierarchal grouping, or tree structure, is formed by
 

decomposing general statements into levels of more detailed
 

statements. This grouping must be complete (i.e., all functions
 

or processes to the lowest level must be shown) and it must be
 

self consistent (i.e., the functions or processes shown must be
 

implementable). When complete, this grouping represents the
 

static relationships of data.
 

2. Each node in the hierarchal grouping has the characteristics
 

defined by the basic node. In the illustration of figure 10,
 

the basic node is a process. The process is fed by known
 

7 



control, data, and devices and produces a known output.
 

Other basic node characteristics may be defined as required.
 

3. The nodal relationships are established by analyzing control
 

and data communication between the nodes at each level in
 

the hierarchal grouping. When complete, this analysis es

tablishes the dynamic relationships of the system.
 

The process begins with a very general but complete statement of the output
 

required of the new system. The process by which the output can be obtained is
 

then defined. Necessary control data and device information, again general but
 

complete, are then determined. The process in the top level node is then decom

posed into its component parts and each of these is analyzed in precisely the same
 

manner as top level node. In addition, the dynamic relationships between nodes
 

are analyzed to determine control structures, data structures, and device require

ments. Decomposition is continued downward until all primitives necessary for
 

implementation of software are defined and designed.
 

This structured approach then forms the basis for organizing all of the
 

work and products associated with the system development (i.e., management of
 

the system development becomes possible and takes on a meaningful role).
 

SYSTEM MANAGEMENT
 

The work of management, as shown in figure 11, is to plan, organize, lead,
 

and control. Through the structured approach, a work breakdown structure can be
 

established for each stage of the system development.
 

The work breakdown structure forms the basis for estimating schedules and
 

8 



budgets and for making work assignments. Since, in the structured approach, the
 

design process and its documentation are always highly risible, control can be
 

exercised over budgets, schedules, and quality through meaningful reviews as the
 

system is decomposed and its components designed. Since the development proceeds
 

in an orderly controlled manner always within the intellectual grasp of the developers,
 

the system always remains manageable. The complexity that results from plunging
 

immediately into the details of the system has been replaced by a controlled step

wise procedure in which each step is no more complex than the previous one.
 

In conclusion, this process is not new. It is used routinely under other
 

titles for the organization of complex information and for the development of
 

essentially all fabricated products from lawnmowers to airplanes to satellites.
 

Everyone who has used a dictionary, obtained a part from a Sears store, or used
 

engineering drawings has used the structured approach. Its application to software
 

development is recognition that software is a fabricated product. It has been diffi

cult to think of software as a fabricated product since the medium of expression is
 

not metal or glass or plastic. In fact, there is no parallel to these in the
 

software product. The medium of expression is logic and language and mathematics.
 

The formation of the product consists wholly of organizing this medium of trans

forming data successively through a series of processes until the output require

ments are met.
 

The use of the structured approach makes possible a fabrication of the software
 

product in which efficiency, modularization, extendability, reliability, and main

tenance can be meaningfully designed into the system. Thank you.
 

9
 



SUBROUTINE SHRK 

READ THE ROW OF THE GLST MATRIX 

INTO A SCRATCH HOLDING ARRAY 

U COMPONENT M-ATRSIX 14 COMPONENT 

FOR 

V COMPONENT 

SLBROLTINE PROCESS IN APPROPRIATE PROCESS AS PROCESS AS 

FILLIN MANNER REQUI FED NEEDED 

Figure 1 



AUTOMATED ENGINEERING
 

SYSTEMS ARE COMPLEX
 

Figure 2
 



ORIGwnAj PAME IS 
OF Poop QUALTY 

PROBLEMS RESULTING FROM 

CONTROLLED COMPLEXITY 

UNSATISFIED USER
 
REQUI REMENTS
 

UNPREDICTABLE COSTS
 
AND SCHEDULES
 
LOW TECHNICAL
 

i , QUALITY 
UNCONTROLLEDQULT
 

COMPLEXITY FUNCTIONAL
 
UNRELIABILITY
 

FRAGILE SOFTWARE
 

DI FFI CULT
 
MAINITENANCE
 

Figure 3
 

12 



SOURCE OF COMPLEXITY
 

0 

00NLfUvBER OF UNSATISFIED USER 
REQUI REMENTSCOMPONENTS 

0UJPREDICTABLE COSTS 
AND SCHEDULESC l~ "" LOW TECHNICAL
 

UNCONTROI ED QUALITY 

COMPLEXITY FUNCTI ONAL 

COMPONEN *UNREALIABILITY 
INTh IONS FRAGILE SOFTWARE 

DI FFICULT
 
MAINTENANCE
 

COMPLEX
 
INTERACTIONS
 

Figure 4 

13.
 



SOFT'IARE DEVELOPMENT OBJECTIVES
 

DEVELOP A SOFTMARE SYSTEM DESIGN OF MINIMUM COMPLEXITY
 

MANAGE THE REMAINING COMPLEXITY TO ACHIEVE SYSTEM
 

QUALITY AND CONTROL COSTS AND SCHEDULES
 

DEVELOP MINIMUM COMPLEXITY DESIGN
 

MORE COMP EX DESIGN 
LZIMANAGEAB 

DESIGN SPACE 

COMPONENT 
INTERACTION 

COMPLETE INTERACTI " 
SATISFYINGREUTIREENTS 
R 

LESS COMPLEX DES IGN 

MIIM IN[TERACTIONS
 

COMPONENTS
 

Figure 6
 

14 



TYPICAL SOFTWARE SYSTEM MANAGEMENT CHARACTERISTICS
 

100 ....... .
!ii!!. 


...... ABILITY To 
. .. . . . . .80..... ... . °• 

INFENCE OCOE 

6....." "MANAGEMENT 
IDEAS NOT 

ATTENTION 
DEFINED 

OR COMMUNICATED 
PERCENT 

MANAGEMENT ATTENTION 
40 IDEAS WELL DEFINED-AND COTMUNICATED 

20 

0 
PROBLEM 
ANALYSIS 

REQUIREMENT
DEFINITION DESIGN 

IMPLEMEN-
TATION ACCEPTANCE USAGE AND MAINTENANCE 

Figure 7 



INFORMATION REQUIREME NTS
 

SYYETEM
 

EXTERNALITIC
 

INFORMTION 

0 
DA\TA 

Figure 8 



TOP DOWN SYSTEM DEVELOPMENT
 

* HappeningsActivity 
f !•Process 

EX€[TE RNA L
 

~SYSTE M
 
k~CHARACTERISTICS , 

00 

CHHARACTERISTICS 

* Things 
•9 Information 

0 Dat a 

Figure 9 



H 

THE STRUCTURED APPROACH ANECESSARY DISCIPLINE
 

Use Basic Elements 

* HIERARCHAL GROUPING 

CONTROL 

DATUT
BASIC NODE 

DEVI CE 

NODAL RELATIONSHIPS 

To Develop Structured: 

* DOCUIENTATION DESIGNSYSTEM TESTING 

0 
PROBLEM ANALYSIS SOFTWARE ORGANIZATION 

* REQUIREMENTS ANALYSIS 

Figure 10 



THE STRUCTURED APPROACH-MAKES MANAGEMENT POSSIBLE
 

BASIC MANAGEMENT WORK 

* PLANNING - PREDETERMINE COURSE OF ACTION 

* ORGANIZING - ARRANGE AND RELATE WORK 

* LEADING - CAUSE PEOPLE TO TAKE ACTION 

* CONTROLLING - ASSESS AND REGULATE PERFORMANCE 

NOW BECOMES POSSIBLE 

* WORK BREAKDOWN STRUCTURE 

* ESTIMATING 

* WORK ASSIGNMENTS 

* BUDGET / SCHEDULES / QUALITY 

* REVIEWS 

* REPORTING 

Figure 11 



Harvey McComb:
 

Next speaker is Harry White, from the National Bureau of Standards, to discuss
 

Standards and Documentation.
 

Harry White, National Bureau of Standards:
 

I start off first of all conversing. I would like to take an exception to the
 

previous speaker. And sincerely the point- is that software is not the dully mess
 

that we found it to be several years ago. But there are still many professional
 

aspects which we have not been able to determine, standardize, or handle that we need
 

to consider in order to adequately address essential software as a tangible resource.
 

The last couple of years we have been able to more accurately identify the cost
 

of software, which is one of the most essential aspects of computer systems. We
 

have found that software is the most expensive element in computer systems, software
 

and data generation. Unfortunately, from a management standpoint, we concentrated
 

in the early days on the aspect of the hardware. We can count the number of computers
 

and the number of peripheral equipment and the number of tapes that are in the library.
 

But this is not where the real problem is in management of computer systems.
 

As far as users are concerned, they care less about the hardware as long as
 

they effectively get the job done. And looking at the investment made over the years,
 

it has become clear that the cost of software and cost of maintenance have been grossly
 

underestimated. Therefore, in the last 15 years we have been concentrating upon es

20 



tablishing standards for software development and maintenance. Essentially, that is
 

one of the highlights of the presentation I want to give this afternoon. First of
 

all, there is a little bit of background that I think you might be interested in.
 

What is the Bureau of Standards doing in the computer area, and particularly what
 

do our standards mean? Essentially, our charter for the work at the Bureau of
 

Standards is very recent, recent in terms of 10 years, and it is based upon the
 

legislation enacted back in 1965, referred to as the Brook Act, which placed with
 

the Secretary of Commerce the responsibility for establishing standards for the
 

effective uses of computer services within the federal government. To this end, we
 

work very closely with industry on a voluntary basis, manufacturers, the American
 

Standards Institute, and International Standards Organization on an international
 

basis in arriving at the standards in computer area. 

Furthermore, we have a number of federal test groups and public advisory com

mittees that we work with on a day to day basis in arriving and identifying the 

standard parts in the Federal ADP communities. 

The highlights of the presentation today are the role of documentation and
 

standards as it pertains to the aspects of determining compliance with software, the
 

capability of being able to share software and, furthermore, the very hairy question
 

of how do we certify software and what does that mean.
 

The position of the National Bureau of Standards, and this is arrived at over
 

many years of studies, is that the key element to assuring functional fidelity for
 

computer based information systems is precise documentation. Documentation serves
 

as the standard for testing,a system against expected design and performance specifi

cations.
 

The testing of computer programming language compilers for compliance is
 

21 



always performed using a standard (documentation) as the basis. All deviations
 

are reported in terms of their departure from the standard.
 

Documentation standards and the capability to precisely deszribe systems
 

requirements must be recognized, demanded, and practiced before computer techno

logy truly becomes a profession rather than an art. Without documentation
 

standards and practices, it is impossible to validate or certify the performance
 

of a computer system.
 

Now let us talk about standardization in the computer field and how this
 

relates to users. Essentially, standardization in the computer field is depen

dent upon user's demand for standards; we cannot assume, based upon our current
 

market place practices, that the vendor, whether it is a hardware or software
 

vendor, is going to provide you with product standards. Our experience cur

rently in the market place is that corporate standards are the market place
 

practice, and if you as users want standards, you are the one that has to demand
 

them. IBM and Sperry are not going to give you voluntary standards. There
 

is a very good marketplace reason why this is being practiced today since
 

this type of situation is being handled more or less on a legal basis, and
 

is a subject of antitrust.
 

Another problem that we experience essentially is that documentation standards
 

have not become part of the professional standards. In the ADP (Automatic Data
 

Processing) field, since it is essentially a new evolving technology, we have not
 

progressed to the point that we have in other professions of recognizing the im

portance of standards as part of the professional practices.
 

And here I challenge you as professionals in your field to consider the aspects
 

and the importance of standards, documentation practices as they pertain to the im

portance of your profession. And finally professional standards and practices must
 

22 



be user defined and implemented. It 4- not the role of vendors to define the
 

type of standards that you need; this is your problem and the solution rests with
 

you.
 

The National Bureau of Standards has the responsibility for the development of
 

standards to provide for the effective acquisition and use of computer systems within
 

the federal government. This responsibility is derived from the provisions of Public
 

Law 89-306 which was enacted in 1965. One of the highest priorities for standards
 

is for documentation that will facilitate the specification, operation, maintenance,
 

and sharing of computer software. Software costs now far exceed the costs for hard

ware. Unfortunately, we have not yet learned how to effectively account for and
 

manage software as we have hardware. NBS has a major program that is focused on
 

software management. We have developed and published five federal standards and
 

guidelines that are current1y being implemented by federal computer activities.1
 

These standards and guidelir.s were developed based upon active participation and
 

inputs from government, industry, and using ADP (Automatic Data Processing) organi

zations. A brief description of these standards is provided below:
 

Vocabulary for Information Processing, Federal Information Processing Standards 

Publication 11 (FIPS PUB 11). This publication provides an alphabetic listing of 

over 1200 terms and definitions used in information processing.
 

Guidelines for Describing Information Interchange Formats (FIPS PUB 20). Also
 

lInformation concerning the availability of these Federal Information
 

Processing Standards may be obtained from the Office of ADP Standards
 

Management, National Bureau of Standards, Washington, D. C. 20234.
 

(Phone 301-921-3157.)
 

23
 



American National Standard XI0.1-1973. These publications provide documentation
 

guidelines for identifying and describing the physical and logical characteristics
 

of formatted information involved in automated interchange.
 

Flowchart Symbols and Their Usage in Information Processing (FIPS PUB 24). This
 

publication provides standard flowchart symbols and specifies their use in the
 

preparation of flowchart documentation used to describe computer systems and pro

grams. 

Software Summary for Describing Computer Programs and Automated Data Systems (FIBS
 

PUB 30). This publication provides a standard software summary form (Standard Form
 

185) and instructions for describing computer programs and automated data systems
 

for purposes of identification, reference, and dissemination. This standard is used
 

for documenting software that is developed or acquired for federal government use.
 

This standard is also used by the General Services Administration as a basis for 

registering and identifying software in the Federal Software Exchange Program. 

Guidelines for Documentation of Computer Programs and Automated Data Systems (FIPS 

PUB 38). These guidelines provide a basis for determining the content and extent of 

documentation needed for effectively describing computer programs and automated data 

systems. Ten document types are provided for the various aspects of systems design, 

operation, and maintenance. These include:2 

1. Functional Requirements Document. Provides a basis for the mutual
 

understanding between users and designers of the initial definition
 

of the software, including the requirements, operating environment,
 

and development plan
 

2. Data Requirements Document. Provides, during the definition state of
 

software development, a data description and technical information
 

24 



about data collection requirements
 

3. 	System/Subsystem Specification. Specifies for analysts and program

mers the requirements, operating environment, design characteristics,
 

and program specifications for a system or subsystem
 

4. 	Program Specification. Specifies for programmers the requirements,
 

operating environment, and design characteristics of a computer program
 

5. 	Data Base Specification. Specifies the identification, logical charac

teristics, and physical characteristics of a particular data base
 

6. 	Users Manual. Describes the functions performed by the software in
 

non-ADP terminology such that the user organization can determine its
 

applicability and when and how to use it. It should serve as a reference
 

document for preparation of input data and interpretation of results
 

7. 	Operations Manual. Provides computer operations personnel with a
 

description of the software and of the operational environment so that
 

the software can be run
 

8. 	Program Maintenance Manual. Provides the maintenance programmer with
 

information necessary to understand the programs, their operating
 

environment, and their maintenance procedures
 

9. 	Test Plan. Provides a plan for the testing of software; detailed
 

specifications, descriptions, and procedures for all tests; and test
 

data reduction and evaluation criteria
 

10. 	 Test Analysis Report. Documents the test analysis results and findings;
 

presents the demonstrated capabilities and deficiencies for review; and
 

provides a basis for preparing a statement of software readiness for im

plementation
 

25 



In summary, there are several key observations concerning documentation and
 

standards that should be noted by users and managers of computer systems and
 

services:
 

1. 	Documentation is the key element for the eventual standardization,
 

validation, and maintenance of computer software. Documentation
 

standards and practices must be included as an integral part of
 

systems management, development, and operation.
 

2. 	Currently, the computer profession does not adhere to or utilize
 

accepted documentation procedures as do other professions. Standards
 

have been developed and are now available. The responsibility for stan

dards implementation now rests with individual systems managers and
 

computer professionals.
 

3. 	Currently, users and managers must explicitly cite the use of stan

dards when acquiring or developing computer systems. Unlike other
 

industries, the computer marketplace is currently dependent upon the
 

individual corporate practices of the major vendors. Unless the users
 

and acquirers of computer services and systems demand standards, this
 

will continue to be the marketplace environment which inhibits compat

ibility and sharing of computer hardware, software, and data across
 

different product lines.
 

In conclusion, I hope I have been able to whet your appetite for some of these
 

standards. I have provided you with information about where they can be acquired.
 

As I mentioned, they are available from the National Bureau of Standards and we also
 

have a complete set of all our standards that has been published to date, which is
 

39 standards included in a specialized three way binder that holds these. Thank you
 

very much.
 

26 



Harvey McComb:
 

Next is Bob Nickell, from Sandia Corporation, and his topic is Software
 

Validation and Certification.
 

Bob Nickell, Sandia Corporation:
 

I guess I feel like we all have been here before or at some other similar
 

place. It is more like reincarnation, we seem to resurrect this animal periodically
 

every couple of years or so; we examine it to find out whether or not it has ob

tained the proper purity that we placed alongside the godY; and then we dispense with
 

it and resurrect it again in two years.
 

The two topics that I am supposed to address today (very briefly by the way and 

I will save most of the session for the discussion between the audience and
 

the panel members later on this afternoon) are two very different concepts. The
 

idea of validation is a operational requirement on software whereas the concept of
 

certification is a quasi-legal or even possibly legal requirement for software and
 

quite possibly for people that use software substantially. And in the past few years
 

while we have all been talking about the subject, now very quietly down at the grass
 

roots level, a software vendor and software users are reaching a marketplace accom

modation on just which of these concepts is important, what kind of certification
 

seems to be in order, and so forth.
 

27
 



Although large software systems have been developed for a variety of engi

neering disciplines, the title for this symposium suggests that the emphasis
 

should be upon the validation and certification exercises that have been under

taken relative to structural analysis. This discussion, therefore, will attempt
 

to describe the terms validation and certification in their structural analysis
 

context, point out some current efforts in both regards, considering both advan

tages and limitations, and speculate on the trends of the future.
 

Two of the components of the validation process - verification and qualifi

cation - have been defined by Griffin (ref. 1) and are shown in figures 1 and 2.
 

Verification, which is primarily the responsibility of the software developer,
 

involves the demonstration that the theories and models upon which the program is
 

based are correctly coded, irrespective of their applicability to design. Examples
 

might be a particular constitutive model (say, a dilatational-dependent plasticity
 

theory) or a particular finite element description (say, an arbitrary doubly

curved deep shell element). Qualification, which is primarily the responsibility
 

of the software user, involves the demonstration that the program capabilities will
 

not be exceeded by combinations of elements, boundary conditions, initial conditions,
 

material models, etc., that are typical of the user's design analysis requirements.
 

This exercise should also determine that the logical flow paths and program config

urations (core size, backing storage, dimensions, and other critical parameters)
 

are consistent with analytical needs. The developer also maintains a set of quali

fication problems which serve two purposes: (1) to requalify the program after each
 

28 



set of updates or increment of capability and (2) to provide a mechanism for work

shop training of prospective users.
 

An additional component of validation that has become prominent in recent
 

years is calibration, (see fig. 3) the pro.edure by which simplified models of
 

complex physical events (sometimes involving experimental correlations) are incor

porated into the software, often through free parameters. An example might be the
 

calibration of an uncertain mass distribution through a free vibration survey,
 

followed by transient design analysis.
 

These three components of validation have been supplemented by occasional
 

thoughts on user qualification (refs. 2 and 3), which deals with the education
 

and training of analysts in such ateas as numerical integration, solution
 

algorithms, linear algebra, .and the like.
 

Certification, on :he other hand, is not a technical concept but, instead,
 

implies legal standing for the software package (program certification) or for the
 

user (professional certification). The interest of somebody with an ability to
 

provide legal sanctions against uncertified software or users is also required. A
 

somewhat weaker form of certification would accompany an ability to impose economic,
 

or perhaps moral, sanctions. For example, most governmental agencies with
 

large research and development budgets (such as those shown in fig. 4) would
 

be able to exert considerable influence over software and users of software
 

under contract to them although no formal attempts at certification by such
 

agencies have come to my attention. Instead, validation has received major
 

emphasis, as can be seen by examining the ERDA-sponsored (ORNL) High-


Temperature Structural Design Methods Program and Validation of High-


Temperature Design Methods and Criteria Program (figs. 5-9).
 

29
 



Other official bodies do have implied legal standing with regard to software,
 

should they choose to become involved. Two of these bodies are listed in figure 10.
 

Neither has chosen to venture into the treacherous waters of certification al

though the NRC position on benchmark calculations often wavers precariously between
 

software qualification (for certain types of safety analysis) and software certi

fication. The ASME Boiler and Pressure Vessel Code is not apt to be extended to
 

treat certification either, with the possible exception of postprocessors (i.e.,
 

software that converts stress analysis output into a form that can be compared to
 

Code allowables). A likely course of action would be to address postprocessing
 

procedures but to avoid explicit consideration of the postprocessors themselves.
 

Professional societies have a vested interest in promoting certification of
 

individuals, both through the legal formalism of professional registration and the
 

quasi-legal accreditation of professional schools or institutions of higher learning.
 

A recent development is the adoption of the concept of 7ecertification through
 

continuing education by the professional societies - a concept that might eventually
 

lead to a form of software user certification.
 

A more likely candidate description for people certification was offered by 

Don Griffin at the Winter Annual Meeting at the American Society Mechanical Engi

neering of 1972. He viewed people certification from a viewpoint similar to the 

AMA view. At present we require registration which is our legal certification for 

determining qualification to design structures, buildings, and engineering parts.
 

His view was that registration may be (he did not say it was) but it may be insuf

ficient to protect the public safety. In other words, if it becomes widely accepted
 

30 



that 	the registration exam and the registration certification are no longer suffi

cient to guarantee the public safety (as it is not in the medical field) then we
 

must have another level of certification. In the case of AMA, they specify the
 

certification requirement and also require an oral exam and written examination
 

in a submedical specialty.
 

Now it may be that in the software area such sublevel certification is a
 

requirement because most registered engineers are assigned complex tasks these
 

days and need to use complex algorithms, probably without sufficient understand

ing of the algorithm and its limitations, even though it is used to perform
 

complicated stress analysis. If in fact that turns out to be the case, we can
 

make an argument, a serious argument, for some type of certification of software
 

users.
 

One last concept I would like to discuss, the Nuclear Regulatory Commission,
 

does in fact have a certification or a quasi-certification document on the accep

tability of computer programs for the design analysis of mechanical systems, and
 

it put these programs in a precategory and I would like to just read to you
 

three short sentences. Either of the programs must fall into these categories:
 

1. The computer program is a recognized program in the public domain
 

and has had sufficient history of use of justified complexity covering
 

the entire domain.
 

2. 	The computer program's solution to a series of test problems with
 

accepted results has been demonstrated to be substantially identical
 

to those obtained by similar independently written programs in the
 

31 



public domain. In other words, you may wish to use a
 

proprietary piece of software but you must demonstrate
 

that it has the same general procedure, plus the same
 

solution, as a program in a public domain.
 

3. 	The program solution to a series of test problems is
 

substantially identical to those obtained by hand calcu

lation or accepted experiments or analysis results
 

published in the Technical Literature. Thus, you have a
 

choice.
 

The 	situation, both today and in the future, could be summarized
 

as follows: (a) the verification process is well understood since it
 

involves a one-to-one correspondence between concepts of structural
 

mechanics and the programmer's ability to replicate these concepts;
 

(b) the qualification process is not well understood since the inter

action between program logic, solution algorithms, and user-controlled
 

factors (e.g., program configuration, space and time discretization,
 

etc.) does not lend itself to formal academic presentation; those
 

engineers with expertise in program qualification tend to acquire such
 

skill piecemeal, over a period of years; and (c) the certification of
 

software, in addition to its troublesome legal implications, does not
 

appear to offer any relief to the natural tension between the owner of
 

a structure, the designer/analyst, and the software developer. Thank
 

you. 

32 



References
 

(1) 	Griffin, D. S.: The Verification and Acceptance of Computer
 

Programs for Design Analysis. On General Purpose Finite
 

Element Computer Programs, F. V. Marcal, ed., American Soc.
 

Mech. Eng., c.1970, pp. 143-150.
 

(2) 	Nickell, R. E.: Qualification - People, as Well as Programs. 

Engineering Computer Software - Verification, Qualification,
 

Certification, I. Berman, ed., American Soc. Mech. Eng.,
 

c.1971, pp. 51-59.
 

(3) 	Nickell, R. E.: User Education: The Finite Element Short Course.
 

The Software User: Education and Qualification, H. Kraus, ed.,
 

American Soc. Mech. Eng., c.1972, pp. 9-15.
 

33 



VERIFICATION
 

VERIFICATION IS DEFINED AS THE DEMONSTRATION THAT A
 

COMPUTER PROGRAM CORRECTLY SOLVES THE MODEL THAT 

WAS PROGRAMMED, INDEPENDENTLY OF WHETHER OR NOT 

THE MODEL IS A VALID REPRESENTATION OF ANY PARTICULAR 

SYSTEM, 

Figure 1 

34 



QUALI F I CATI ON 

QUALIFICATION IS CONCERNED WITH THE USE OF COMPUTER 

PROGRAM FOR SOLVING THE REAL PROBLEM ENCOUNTERED IN 

DESIGN. GIVEN THAT A COMPUTER PROGRAM CORRECTLY SOLVES 

THE MODEL PROGRkqvTED, DOES THE COMBINATION OF 

MATHEMATICAL MODEL, DISCRETIZATION, DESCRIPTION OF 

MATERIAL PROPERTIES, REPRESENTATION OF THE LOADING AND 

TEMPERATURE HISTORIES, AND BOUNDARY CONDITIONS, ALL 

CONSISTENT WITH THE PROGRAM LIMITATIONS, GIVE AN 

ACCEPTABLE SOLUTION TO THE PHYSICAL PROBLEM ? 

Figure 2
 

35 



COMPUTER PROGRAM VALIDATION
 

VERIFICATION - DEVELOPERS' RESPONSIBILITY
 

QUALIFICATION - COMBINED DEVELOPER AND USER
 

RESPONSIBILITY
 

(CALIBRATION) 

Figure 3 

ECONOMIC AUTHORITY
 

DEPARThENT OF DEFENSE 

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Figure 4
 

36 



Table 1. Typical Set of Verification Benchmark Problems
 

Problem No. 


1.1 


1.2 


1.3 


1.4 


1.5 


Description 


Uniaxial specimen subjected to 

reversed cyclic loading into 

plastic range 


Uniaxial relaxation specimen 

under isothermal conditions 


Uniaxial specimen subjected to 

stepped and reversed creep 


loading 


Thick-walled cylinder subjected 

to transient radial temperature 

gradient producing plastic 

behavior 


Biaxially loaded plate or 

cylindrical shell subjected to 

specialized nonproportional 

loadings into plastic range 


Figute 5
 

Comments
 

Analysis should produce cyclic
 
stress-strain curve. Good for
 
studying load incrementing
 
choices.
 

Analysis should reproduce simple
 
calculations or actual relaxa
tion test results. Good for
 
studying time increment choices
 
in creep analyses.
 

Analysis should produce simple
 
creep curves with hardening
 
rules considered. Good for
 
time-increment selection.
 

Results can be checked
 
analytically. Good for studying
 
choice of temperature increments
 
for plastic loading.
 

Results can be checked
 
analytically or, in the case of
 
cylindrical shells subjected to
 
pressure, axial, and torsional
 
loads, by experimental results.
 
Good for checking program treat
ment of nonproportional loading.
 



03 
La 

Table II. Typical Set of Qualification Benchmark Problems
 

Problem No. Description 	 Comments
 

2.1 	 Simply-supported beams For plane 2D-solid and beam
 
subjected to various center analyses. Test results being
 
loading histories producing obtained under ORNL High
elastic-plastic creep behavior Temperature Structural Design
 

Methods Program.
 

2.2 	 Simply-supported circular For axisymmetric 2D-solid and
 
plates subjected to various flat plate analyses. Test
 
center loading histories results being obtained under
 
producing elastic-plastic ORNL High-Temperature Structural
 
creep behavior Design Methods Program.
 

2.3 	 Capped circular cylindrical For axisymmetric 2D-solid and
 
shells subjected to varying shell analyses. Test results
 
internal pressure loading being obtained under ORNL High
producing elastic-plastic Temperature Structural Design
 
creep behavior Methods Program.
 

2.4 	 Finite-width flat plate with For plane ZD-solid analyses.
 
circular hole subjected to Results being obtained under
 
cyclic axial load producing ORNL High-Temperature Structural
 
elastic-plastic creep behavior Design Methods Program.
 

2.5 
 Stiffened shear lag panel For plane 2D-solid analyses.
 
subjected to cyclic external Results being obtained under
 
loading producing elastic- ORNL High-Temperature Structural
 
plastic creep behavior 	 Design Methods Program.
 

Figure 6
 



(Table II cont.)
 

Problem No.
 

2.6 
 Pipe thermal ratchetting 

specimens (straight pipe 

subjected to internal pressure 

and to periodic thermal down-

shocks in contained fluids) 


2.7 	 Piping elbows subjected to 

external loadings producing 

elastic-plastic creep behavior 


2.8 	 Nozzle attachment thermal 

ratchetting specimen 

(conditions as above) 


2.9 	 Nozzle-to-spherical shell 

attachments subjected to 

internal pressure and 

external loadings causing 

elastic-plastic creep
 
behavior
 

2.10 	 Intersecting cylindrical 

shells or piping tees 

subjected to external 

loadings producing elastic-

plastic creep behavior 


Figure 7
 

For axisymmetric 2D-solid or shell
 
analyses. Results being obtained
 
under ORNL High-Temperature
 
Structural Design Methods Program
 
and by LMEC.
 

For shell and special piping
 
analyses. Test results being
 
obtained under ORNL High-Temperature
 

Structural Design Methods Program
 
and Validation of High-Temperature
 
Design Methods and Criteria Program.
 

For shell analyses. Results being
 
obtained under Validation of High-

Temperature Design Methods and
 
Criteria Program.
 

For axisymmetric 2D-solid or shell
 
analyses. Results being obtained
 
under ORNL High-Temperature
 
Structural Design Methods Program.
 

For shell analyses. Test results
 
being obtained under ORNL High-

Temperature Structural Design
 
Methods Program and Validation of
 
High-Temperature Design Methods
 



Italee 

(1) Reversed Cyclic 
Loading Into 
Plastic Range 

(2) Relaxation 
(Fixed Total 

Strain) Loading 7IME 

UNIAXIAL DAR 
S CNA 

'(3) Stepned and Re- "

versed Creep e, 
Loading u 

(4) Thick-Walled Cylinder Subjected To
 
Radial Temperature Gradient Producing
 
Plastic Behavior
 

(5) Flat Plate Or Cylindrical Shell 
Subjected To Special Nonproportional 
Biaxial Loadings Prodiring Plastic
 
Behavior
 

Eigure 8. 	Simple Benchmark Problems for User Training and Basic
 
Program Verification.
 

40 



-- -

47 Nop 

(1) Simply-Supported Beams 


(2) Simply-Supported Flat
 
Circular Plates 


t-*--

(3) Capped Circular-

Cylindrical Shells
 

(4) Finite-Width Flat Plate 

With Circular Hole
 

(5) Stiffened Shear Lag Panel 


(6) Pipe Thermal Ratchetting
 

?_(Forces)
 

-Nu01oments) 

(7)Piping Elbows
 
hInternal Pressure)
 

_o
 

(8) Nozzle Attachment Thermal Ratch
etting (With Internal Pressure)
 

(9) Nozzle-To-Sphere Attachments
 

(10) Intersecting Cylindrical
 
Shells (With Internal
 
Pressure)
 

Figure 9. Advanced Benchmark Problems Qualification of Program
 
and User.
 

41 



LEGAL AUTHORITY
 

ASME -BOILER AND PRESSURE VESSEL CODE 

U. S. 	 NUCLEAR REGULATORY COMMISSION 

Figure 10 

42 



Harvey McComb:
 

Next is Jim Johnson, from AFFDL, Dissemination, Portability, and
 

Maintenance.
 

Jim Johnson, AFFDL:
 

Yesterday I managed to get soaking wet; it rained in Washington, yet I
 

had a raincoat in the Motel where I was staying. Sure enough I was unable to
 

maintain all in good health; consequently my throat is a little raw and I may
 

lose my voice before 5:00 p.m. Also, the Department of Defense is suffering
 

from an economic recession. Consequently we are a little unable to get you
 

visual aids for this presentation. While that was going on we had a reorganiza

tion in the laboratory, and I got a physical relocation. Perhaps I should
 

avoid any such remarks and focus primarily on Dissemination, Portability, and
 

Maintenance of Large Engineering Software Systems.
 

My discussion does not address the many subtle problems of our panel theme.
 

Nor will I attempt to define a workable solution to every aspect of our panel
 

theme. Instead, I shall focus primarily on Dissemination, Portability, and Main

tenance of Large Engineering Software Systems.
 

The complexities and problems in connection with the development, distri

bution, and maintenance of large engineering software systems are widespread.
 

Within the past decade, most of us have been bombarded with large computer
 

programs such as ASKA, COSMOS, ASTRAL, SAS, STAIR, STAEDYNE, FORMAT, MAGIC, ASOP,
 

NASTRAN, FLEXSTAB, etc. for the solution of our engineering problems. Upon
 

receipt of one of the large general purpose structural analysis computing systems,
 

43 



we attempt to load the program and execute a check case. At this point, we usually
 

face the harsh realities of life. In most instances, it is not possible to success

fully load the program on the first try. Other abortions result from tape/card
 

processing problems, inadequate definition of minimum machine resources required,
 

etc. Yet we continue to obtain other people's software in spite of the many frus

trations to be expected because of our need to utilize the latest technological
 

developments of other engineering organizations. Thus, the most important aspect of
 

dissemination, portability, and maintenance is technology transfer. To date, I
 

believe that too much emphasis is placed on the costs of doing this job rather than
 

the objective of technology transfer. Since the large general purpose programs are
 

developed to serve the scientific and engineering community, it is only necessary to
 

maintain a proper balance between the needs of the practitioners and the costs of
 

computer program maintenance and distribution. Enough for costs. Let us examine
 

software design and development procedures to facilitate maintenance and those
 

procedures and organizations to facilitate dissemination in the light of our ob

jective to effect good technology transfer.
 

For large engineering software systems, good technology transfer is accom

plished via:
 

1. Documentation
 

2. Users' Meetings
 

3. Education and Application Seminars
 

Inasmuch as documentation and user education will be discussed in detail by
 

other panelists, I shall focus primarily on those procedures and practices that
 

must be considered as an integral part of the aforementioned areas to effect
 

44 



technology transfer.
 

When a computer program cannot be understood by a potential user, the
 

Would-be recipient may write his own program, which results in an unnecessary
 

duplication of effort, or the problem to which the program would have been
 

applied will remain unsolved. First, and foremost then, the dissemination and
 

portability of large computer programs require "good communication". Although
 

good criteria for the dissemination of large computer programs have been around
 

for more than a decade, for completeness I shall restate a lis of requirements
 

that insure good communication when disseminating large general purpose computer
 

programs:
 

1. 	Complete statement of the program, its problem formulation, and com

plete equipment description
 

2. 	Functional flow charts
 

3. 	Fully documented source program listings
 

4. 	A complete user's manual containing a clear description of the inputs
 

and outputs, operating instructions, and symbol definitions
 

5. 	Adequate test cases
 

6. 	All assembly (machine) language shall be easily identifiable and
 

emphasis will be placed on localizing assembly language coding
 

7. 	Master code media
 

Most of us are quite familiar with all of the above items. We at WPAFB have
 

contractually required the satisfaction of this list since about 1962 or 1963.
 

In spite of our familiarity, let us amplify a few of the items.
 

Functional flow charts: A complete description of each function must be in

cluded. This definition includes the title, purpose and use, system inputs, ex

pected output and results, relationship to other functions, and summary of function
 

operation.
 

45
 



User manual: A complete description of the operating instructions and phi

losophy. The operating instructions must include step-by-step procedures required
 

to initiate (or implement) the program, maintain computer program operation, ter

minate and restart the program (normal and unscheduled termination), software
 

system modification/generation ("octal-in" and creation of a new version if the
 

master code media), symbolic updating procedures, and minimum machine resources
 

required.
 

Assembly (machine) language: Programs containing machine language code are
 

strongly dependent upon the characteristics of the computer itself, and programs
 

containing assembly language code are generally not portable to any machine other
 

than the one Zor which they were written.
 

Master code media:, The usual mode for dissemination of large programs is by
 

magnetic tape. The master tape description is a must, and this description must
 

define the format, density, blocking, mode, contents, and processing procedures. The
 

normal (or recommended) procedure for dissemination of master code is to copy the
 

source program and test cases onto a magnetic tape, then compile the program from the
 

copy, and exercise this compiled program on the test cases from the copy. This pro

cedure insures that no malfunction occurred during copying and, since this output is

also sent to the recipient, it aids him in putting the program up on his system.
 

Now let us turn our attention to maintenance procedures. Maintenance, at most,
 

implies the requirement to "stay current". Technology is dynamic and maintenance of
 

large engineering software systems necessitates a "constant process" of modification/
 

46 



updating to provide for new capability and error fixes. Is this new information
 

automatically distributed? Who makes the necessary modifications? When? Why?
 

Is there feedback from users? These are the questions posed by the engineering
 

community, however, program maintenance involves these simple procedures:
 

Program code revision/modification: Anyone can perform this task. It re

quires some knowledge of the program to be changed. Changes (enhancements and
 

errors) must be documented (symptoms and conditions), must work and not adversely
 

effect the rest of the program, must be verified and validated, and must be disse

minated.
 

Reference program version: Must be clearly identified and used for maintenance
 

work.
 

Release of new version: 24 to 48 months during which time a significant
 

number (possibly 50) of code modifications have been made.
 

Up-to-date user identity: Addresses and identities of users (old and new) are
 

required to maintain currency.
 

Dissemination: Changes, modifications, error fixes, and the like have no real
 

significance unless they are available and distributed in a timely manner.
 

The foregoing remarks outlined software design and development procedures to
 

facilitate dissemination, portability, and maintenance. Let us briefly turn our
 

attention to procedures and organizations to facilitate dissemination.
 

Large engineering software systems are disseminated in one of two ways.
 

Firstly, the program is distributed to a customer (requestor) via master code
 

media. This procedure requires customer (local) implementation and maintenance.
 

Secondly, the program is available to the customer via some network system. This
 

47
 



procedure requires no customer (local) implementation and maintenance. Programs
 

available via network systems only require dial-up procedures. For this reason, the
 

following information pertains to procedures of organizations for direct distribution
 

of large programs via master code media.
 

1. 	Programs are stored in a central depository.
 

2. 	Information defining the availability of these programs is
 

published via computer program abstracts, newsletters, and
 

technical reports.
 

3. 	The costs for obtaining a program from one of the depositories
 

vary from zero, to exchange programs, to annual leases (or
 

purchases), up to $40,000.00.
 

4. 	Several program distribution centers have defined, or are in the
 

process of defining, criteria for program inclusion in the depo

sitories.
 

5. 	Checkout procedures for requested programs consist of compilation
 

and execution of test cases, at most.
 

6. 	Available documentation is supplied. Implementation instructions
 

vary from no information to "customizing". 

7. 	Very limited maintenance, if any, is attempted. 

The Air Force Flight Dynamics Laboratory at Wright-Patterson Air Force Base
 

has distributed engineering software since the early sixties. The Aerospace
 

Structures Information and Analysis Center (ASIAC) was established in 1974 to
 

collect and disseminate information on aerospace structures. Products and services
 

available from ASIAC include:
 

1. 	Technical Inquiry Services on Aerospace Structures Problems
 

2. 	Bibliography Service
 

3. 	Monographs and Reference Books
 

48 

http:40,000.00


4. Current Awareness Publications.
 

5. Computer Program Distribution.
 

Approximately 40 structural computer programs are currently avail

able from ASIAC. These programs are distributed, if not generally avail

at other computer program dissemination centers. In some instances,
 

ASIAC has permission to distribute proprietary codes to government agencies
 

only. To date, the AFFDL and ASIAC have distributed programs at no charge.
 

Our future plans are to recover the handling costs.
 

AFFDL and ASIAC perform a significant amount of maintenance and documen

tation for the computer codes in our depository. This procedure is the
 

notable exception to the generally widespread practices noted above. Thank
 

you. 

Harvey McComb:
 

Next speaker is Professor Steven Fenves, from Carnegie-Mellon University,
 

representing the Educator's viewpoint.
 

Steven Fenves, Carnegie-Mellon University:
 

I was not quite sure what aspects of education to cover so I decided to
 

put in some personal thoughts. There are three sets of considerations that one
 

has to keep in mind in talking about educational aspects of standardization:
 

certification, maintenance, and dissemination of large engineering software
 

systems.
 

49 



First is the distribution of the population to be served by educational
 

programs. The vast majority of engineers are program users; their only con

tact with computer programs is through preparation of input and interpretation
 

of output for programs written by someone else. A much smaller number of
 

engineers are ad hoc program developers; they write, modify, or maintain pro

grams for their own use, or at most, for use by small groups with which they
 

are intimately connected. A miniscule number of engineers are software system
 

developers.
 

Second, essentially all large engineering software systems are proprietary
 

in nature. Many of the aspects of software systems addressed by this panel
 

constitute the principal competitive advantage of such systems.
 

Third, there is a serious generation gap between engineering software
 

system developers on one hand and software engineers on the other. Most of
 

the application system developers, myself included, are graduates of the old
 

ad hoc school of programming and are not fully aware of recent revolutionary
 

developm its in software engineering such as structured programming, formal
 

modularization, and program assembly testing and verification techniques.
 

I must call upon a past experience in that category. Exactly 12 years
 

ago we made a presentation to IBM of the program we were developing at that
 

time, STRESS, and one person asked: "What procedure did you use to resolve
 

conflicts at the interfaces?" To me this was an unexpected question, and not
 

knowing how to respond, I said: "Well, let's see: there is this group of
 

five of us working on the project, my office is in the middle, and I only have
 

four chairs, so we borrow a chair to sit down and resolve the conflicts of the
 

interfaces." But that was 12 years ago. I think a lot of people have learned
 

something since then.
 

50 



In an attempt to put large-scale software development into some focus, the
 

writer has proposed a model of the development process (refs. 1 and 2). An
 

extended version of the model used in a recent study (ref. 3) is shown in figure 1.
 

It can be seen that education is shown as a professional activity, reflez

ting the above mentioned need to service the largest'number of people involved
 

(i.e., the end users). Figures 2, 3, and 4 taken from the same survey, in fact,
 

classify the available educational activities on the basis of application areas
 

covered. Such educational efforts, in general, accomplish their major objective
 

of making end users aware of, or even proficient in the use of, existing programs
 

without directly exposing the proprietary, competitive aspects of these programs.
 

Although comparable survey data are not available, it is fair to state that
 

most computer-based courses in formal engineering curricula are geared to the
 

second group of engineers (that is, future ad hoc programmers (either graduate
 

students who will have to write ad hoc programs to satisfy their engineering
 

thesis requirements or students who aspire to use their programming skills to
 

secure a competitive advantage in employment)). Needless to say, courses aimed
 

at this group are generally taught by people who are themselves ad hoc programmers.
 

Education specifically geared to the small number of software system deve

lopers is practically nonexistent in the engineering disciplines. From an
 

educational productivity standpoint, it is unrealistic to expect a major effort
 

in this rather narrow area.
 

In summary, while we all may want more and better educational activities, the
 

first two groups of engineers are relatively well served by existing educational
 

51 



activities. In order to provide the proper education for the third group, two
 

things must be done:
 

1. An organizational structure must be developed whereby the technical ac

tivities shown in figure 1 are open for scrutiny and evaluation without destroying
 

the valid proprietary, competitive aspects of the software systems 

2. The educational horizons of software system developers must be considerably
 

broadened so that they can apply the relevant aspects of software engineering to
 

the development of engineering software.
 

Thank you.
 

52 



References
 

1. 	Fenves, Steven J.: Current Attempts at Software Coordination in Civil
 

Engineering. Papers Prepared for the Special Workshop on Engineering
 

Software Coordination, Robert L. Schiffman, compiler, Rep. No. 72-4,
 

Univ. of Colorado, Apr. 1972, pp. 53-65.
 

2. 	Fenves, S. J.: Software Products for Engineering Applications. Auto

mated Procedures Engineering Consultants Journal, vol. 6, no. 3, May
 

i971, pp. 912.
 

3. 	Civil Engineering Programming Applications, Inc.: A Proposal for a
 

National Institute for Computers in Engineering, Oct. 1975.
 

53 



Software Activity Model 

Professional 
Activities 

States Technical 
Activities 

Definition 

" " Concept 

Evaluation 

Algorithm 

Desi-gn 

Development 

ation.Manufacture 

~Software 

EffectiveProduct 

Utilization 

54 

Figure 1 



User Group Based Continuing Education
 

Courses Offered to Practicing Engineers by Computer User Groups
 

25-Total Number of User Groups Identified (Base)
 

27-Total Number of Courses Identified (Base)
 

KEY Courses
 

E User Groups
 

'ydraulic/Fluid
 
Mechanics
 

Sanitary/
 
Environmental
 

Project
 
Management
 

Traffic
 
EngineerxnZ
 

Soil
 
Mechanics
 

Highway
 
Design
 

Planning
 

Surveying
 

Mathematics
 

Structures
 

Other
 

Figure 2 

55 



- -

University Based Continuing Education
 

Courses Offered to Practicing Engineers by Civil Engineering Depts.
 

111-Total Number of Departments Responding (Base)
 
164-Total Number of Courses Offered (Base) 

KEY Courses
 

E Departments 

Hydraulic/Fluid
 
Mechanics
 

Sanltary/
 
Environmental
 

Project
 
Management
 

Traffic
 
Engineering
 

Soil
 
Mechanics
 

Highway
 
Design
 

Planning
 

Surveying
 

Mathematics -

Structures 

Other
 

Unidentified 

Figure 3 

56 


