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Preface

The work described in this report was performed by the Information

Systems Division of the Jet Propulsion Laboratory.



Abstract

Modified divided differences (MDD) provide a good way of representing 	 -

a polynomial passing through points with unequally spaced abcissas.

This report gives recurrence relations for computing coefficients in

either the monomial or Chebyshev basis from the MDD coefficients, and

for computing the MDD coefficients for either the differentiated or

the integrated polynomial. The latter operation is likely to be

useful if MDD are used in a method for solving stiff differential

equations.
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1. Introduction

A modification of divided differences was first suggested by

Blanch [1] as a means of getting some of the desirable characteristics

of differences when working with unequal intervals. Modified divided

d i fferences of the form used here were introduced in [2] and developed

further in [3]. Shampine and Gordon use them in [4] and Jackson [5]

has made a careful study of related computational approaches, concluding

that the form used here is best. Jackson has also showed that the

round-off characteristics of these modified divided differences are

excellent.

The polynomial of lowest degree passing through the points

(t i , w(t i )), i = n, n-1, ..., n-q+l can be expressed in terms of the

MDD coefficients i (n) according to the formula

q-1
(1)	 Pq-l,n(t) = Pq-l,n(tn + h h T) = 

1iD 

^ i (n) ci,n(T)

Where we use notation similar to that in [3].

-1-



f I I	 I^ f T -^-
77-46

(2) hi = t i - ti-1

T = (t-tn)/hn

Ci(n)	
hn + 

hn-1 + ... + hn-i = 
t n -t

o-i-1	
Ci-l(n-l) + h 

a i ( n ) = hn/&i(n)

SO (n) = 1

a i+l (n) = (q (n) /ci(n- 1))ai(n)

^O( n ) = w(tn)

^ i+l (n) _ ^ i (n) - si(n)^i(n-1)

c0,n = 1

c l'n = 't0 (n)T = T

c i,n	 ta i-1 (n)T + ^i-2(n)/^i-1(n)] ci-1,n, i Z 2

Here we think of the ^ i (n) as coefficients of a polynomial expressed in terms

of the basis polynomials c i,n (T). In [3], the orientation was focused more

on the ^ i (n) which are the modified divided differences of w computed at t=tn.

2. Converting to Coefficients for Other Basis Polynomials

Salzer [6] gives a general recurrence for converting coefficients for

one set of polynomial basis functions to coefficients for another set of poly-

nomial basis functions. In Salzer's notation the c i (T) (Henceforth we no

longer explicitly include n when referring to the various parameters defined

in eq. (?)) satisfy the recurrence.

(3) cm+l(T) + (a(m) + b(m)T) CM(T) + c ( m ) cm-1(T) = 0

where	 a(0) = 0, a(m) = ^m-1/gym' m ? 1

b(m) = -am

c(m) = 0

-2-
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(4)

a00)	

^

a(k1_ )	 +(^A	 ) a(k)0	 qk2	 g _ k_	 k _ 23g 	 0

(k+l)	 (k)	 (k)

y	 am	 - aq-k-2`'m-1 +(Cq-k-3Aq-k-2) a
m , m = 1, 2, ..., k

(k+l)	 (k)

•	 ak+l	 - 'q-k-2 a 

where k = 0, 1, ..., q-2, and C_ 1 = 0. The desired coefficients are then

am	 , m=0,1,..., q-1. Since a0 = 1, 
amq-1)	

amg 1 2) for 	m > 0. Substitu-

ting (a '.k)/aq_k_2) for amk) , (4) simplifies to
M+l

0)
(5) a17. aq-2^q-1

(k+l)	 (k)

^ 1	= 
aq-k-3^q-k-2 + 81

(k+l)	 (k)	 (k)

am+l	 = 'q-k-3am	
+ am+l , m= 1, 2, ..., k

(k+1)	 (k)

^k+2	
= 'q-k-3 ak+l

(q-2)
where k =0, 1, ..., q-3. The desired coefficients are then given by 

+ 0' am

m= 1, 2, ..., q-1. The operations in (5) require only a single vector of
(k)

storage since 
^m 

and aq+m-k-2 ' k=0, 1, ... can all occupy the same location.

Denoting this location by ym , we nave

(b)	 VPq-1 = "q-2`)q-1

'Wq+m-k-2	 `xq-k-3 + q+m-k-2 `q+m-k-1, m=0,1, ..., k

_ 	 k=0, 1, ..., q-3

`q-1	 `q-k-3"q -1

-3-



71-46

One gets a similar recurrence from 9q. (5.11) of [3] by replacing the itera-

tion indices k = 1, 2,	 i; i=q-1, ..., 1 with i=q-1, ..., k; k=1, 2, ..., q-1,

then replacing i with q+k-j-1 and then interchanging the order of iteration

indices once again.

For the case of converting to the Chebyshev basis, we have A(m) = 0,

B(0) = -1, B(m) = -2, m > 0, C(m) = 1. Substituting as before, and then seLcing

(8
k) 

/2a
	 = a0k), (a

m
k)/aq-k-2^ = 4mk), rn > 0, one obtains

(0)

(7) a0	 - 2aq-20q-1

(k+ 1)	 (k)	 (k)	 (0)
a0	

- 
a
q-k-3 

[2m
q-k-2 + al
	

+ a0	 = (2aq-3^q_2 + a
0	if k=0)

{ k+1 )	 (k)	 ^{k)	 {k)
am	

- (l/2)aq-k-3 [am-1 + a
m+1 ] + âm	m=1, 2, ..., k-1

(k+1)	 (k)	 (k)
ak	

(112)aq-k-3 a k-1 + a 

a k+1 1) - (1/2)aq-k-3 a
k)k

(q-1)
where k =0, 1, ..., q-3, and the desired coefficients are a m	given by

( q- 1 )	 (q-2)
(8) a0	 = ^ 0 + (112) a1

( q - 1 )	 (q-2)	 ^(q-2)
am	 - (112) [am-1	

+ am+l ], m=1, 2, ..., q-3

q-2	 q-3

( q -1)	 (q-2)

aq-1	 = (112) aq-2

.4-
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As before, the --alculations in (7) can be done in a single vector

of storage as follows (initially ' gym = gym)

( g )	 V q-1 = 2aq-2^ q-1

^ q-2 = 2aq-3yq-2 + ^ q-1

^q-1	 (1/2)aq_Pq-1

^q-k-2 = aq-k-3 [2^q-k-2 + ^q-k ] + ^q-k-1

^ q-k-2+m	 (1 J2)aq-k-3 1^ q-k-2+m + ^ q-k+ml + ^ q-k-l+m

m= 1, 2, ..., k-1
k=l, 2, ..., q-3

^q-2	 (1/2)aq-k-3' q-2 + ^q-1

^ q-1	 (112 )aq-k-3^ q-1

The final Chebyshev coefficients are then obtained, using (8) as follows

(10)	 ^O = ^O + (1/2)Vpl

^m = 0/2)[Vm + ^ m+2 ], m=1, ..., q-1

^q-2 = (1/2)^q-2

^q - i = (1/2)^q-1

If one is using the method outlined in [3] or the code in [4], the

a's are available at the time of integration. Clearly some time can be saved

in the above calculations if z is redefined to be (t-t n )/2h, since this has

the effect of setting bm = -2am and as a result the multiplications by 112 are

-5-
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eliminated. (For this case, simply replace a i by 2a i in (9), and replace all

1/2's in (10) with 1. For t = t-t n , divide by h everyplace we just indicated

a multiplication by 2.)

If one wants to approximate thesolution of a differential equation

by a Chebyshev polynomial, and thus wants to get the coefficients for the in-

tegrated polynomial, one can save alittle computation by computing the integra-

ted coefficients after the calculations indicated in (7) or (9). Thus for

3 s n < q-4 one has for 3n , the n-th coefficient of ;he integrated polynomial

( 11 )	 (q-1)
(1/200 n-I

an =	 (q-2)

(1/400 n-2

(q-1)
- an+l ) after (8)

(q-2)
- an+2 ) after (7)

3. Computing Coefficients for the Integrated or Differentiated Polynomial

When integrating stiff equations, the best integration method is

different depending on how far the most active component is from its local

equilibrium point. If a procedure such as that in [3] is used, changes in

the method involve either getting coefficients for the integrated polynomial

when leaving a transient region, or for the differentiated polynomial when a

transient is encountered. We have also encountered a desire for such a

transformation in another context.

The best general algorithm we have been able to find for the case

of variable stepsize involves running through the recurrences in (6), repla-

cing 
^k 

with 4'k-1/k, k=q, ..., 1 for integration (or with 
(k+1 N

+1 , k=0, It

..., q-2 for differentiation). For integration, ^0 is set to the constant of

-6-
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integration. Then simply run th? recurrence (6) in reverse order

(12) ^q'_l = ^q,_1Jaq'-k-3

Wq'+m-k-2 = ( ^q'+m-k-1 - ^q'+m-k-2)/c'q'-k-3' m
= k, ..., 0	 k=q'-29 ..., 0

W-1 = Vq'_1/aq'-k-3

where q' = q+l, for integration, and q' =q-1 for differentiation. In the case

of a constant stepsize, one can accomplish this goal more efficiently by re-

peated differencing of the corrector equation

q-1
k

(13) oYn = h 1: Y*Vy,n
k=Q

Thus

q-j	 k+j-1

(14) V^yn = !'	 yn	 y' n	 j=1, 2, ..., q9

k=Q

and the reverse operation simply involves treating eq. (14) as a triangular

k
system to be solved for the V y'n.

-7-
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