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ABSTRACT

st

Unstcady aerodynamic modeling techniques arce developed and applied
to the study of active control of elastic vehicles, The problem of i~
active control of a super-critical flutter mode poses a definite design

goal--stability, and is treated in detail in this thesis,

The transfer functions relating the arbitrary airfoil motions to

the airloads are derived from the Laplace transforms of the linearized

airlnad expressions for incompressible two~dimensional flow. The trans-
fer function reiating the motions to the circulatory part of these

loads is recognized as the Theodorsen function extended to complex
values of reduced frequency, and is termed the generalized Theodorsen

function, A brief critique of previous attempts to generalize the

Theodorsen function is given, Inversion of the Laplace transforms yields
exact transient airloads and airfoil motions. Exact root loci of aero-
elastic modes are calculated, providing quantitative information regard-

ing subcritical and supercritical flutter conditions,

The technique of generalizing simple harmonic airload calculations
to complex values of reduced frequency is extended to compressible flow
regimes, It 1s conjectured that computer programs which calculate air-
loads for oscillatory motions can be generalized in a fairly straight-
forward manner to calculate airloads due to arbitrary motions. This

is accomplished for the *wo-dimensional supersonic case,

The ability to calculate airloads for complex values of reduccd
frequency allows approximate techniques of calculating thesc loads to
be cvaluated. Matrix Padé approximants of airloads for two-dimensional

airfolls are evaluated in this manner,

The exact airfoil motions contain portions associated with rational

v

transtforms and portions associated with nonrational transforms, The ..

oscillatory response characteristic of a fluttering airfoil is asseeiatled

|
|
|
{
|
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with the rational portion and a theorem is proved regarding the con-
struction of a unique finite-dimensional, lincar, constant-cocificicent—
model of this portion of the system, This rational model does not
require state augmentation to model unsteady aerodynamic coffcets and may
be used 1o design active aeroelastic control systems,

The rational.model and Padé model are used to design flutticr suppres-
sion systems for alrfoils in incomprcssible and supersonic [lows using
the optimal regulator design technique, Both techniques are shown to

produce valid flutter mode control designs,
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Chapter 1 -

INTRODUCTION

During the past decade, an aircraft design philosophy has emerged which
attempts to gain performance improvements by means of an interactive de-
sign process involving structural dynamics, aerodynamics, and control
systems, This philosophy involves the use of active control systems to
achieve aerodynamic and/or structural designs which have better perform
ance, stability, or economy than can be achieved with conventional passive
techniques, Many of these concepts have been implemented in the B-52
load alleviation and mode stabilization (LAMS) [Ref, 1], and control con-
figured vehicle (CCV) [Ref, 2] programs, The concepts used in this control
configured vehicle philosophy include: augmented rigid body stability,
maneuver load control, ride control, fatigue. reduction, gust allevia-
tion, and flutter mode control, The first five items involve the static
and dynamic performance of the flexible aircraft, The design goal of these
items is typified. by the C-5A .active load distribution control system [3]
which was designed to reduce the wing root bending moments experienced

by the aircraft and thus increase its service life.

The last item, flutter mode control, is fundamentally different from
the others in that the structural stability of the flexible vehicle is
involved., While loss of the former items would result in degraded per-
formance or a shorter vehicle life, loss of a flutter mode control system
at a supercritical flutter condition would usually result in loss of the
aircraft, Although the risk is high, the potential performance gains are
correspondingly high and flutter mode control systems can be designed to
reduce the structural weight of a vehicle or to incrcase the flight enve-
lope of the vehicle by expanding flutter speed placards, Roger and
Hodges [4] describe the flutter mode control system implemented for the
B~-52 CCV program and successfully flight tested, while Sandford et al,

(6], document a system installed on a wind tunnel modcl,
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The analysis tecehnigues required are common to all of these CCV pro-
grams and involve the study of unsteady acrodynamics Cor arbitrary motions,
structural dynamics duce to unsteady loading, and acrodynamlce loading
causced by control surface motion, The design of flutter mode control
systems places severe demands upon the analyst;  the primary design goal
is structural stability, Hence, this dissertation focuses attention upon
techniques of analyzing flutter mode control systems, Of course, thoe

techniques will also be applicable to the other CCV concepts,

A, SURVEY OF LITERATURE

The finite element method of structural dynamics is well developed
[6] and will be assumed as the basis of the analysis of aircraft struc~
tures, The infinite dimensional spaces required to describe solutions
are reduced to finite dimensional spaces by the familiar technique of

truncated normal modes [7],

The study of unsteady aerodynamics has progressed along two direc-
tions:

(1) The calculation of the indicial loading due to impulsive motion;

(2) The calculation of the loads due to simple harmonic oscillations

of the wing or section,

The former area was first investigated by Wagner {8] for two-dimensional
incompressible flow, R, T, Jones [9] and Lomax et.al, {10], continued
this line of investigation, A method for calculating the louads due to
simple harmonic oscillations of a wing section in incompressible flow
was first given by Theodorsen {11}, The corresponding solution fgr sub-
sonic flow was given by Timman and Van deVooren [12], and for supersonic
flow by Garrick and Rubinow {13], Methods for calculating the loads on
three-dimensional wings due to oscillations of assumed or normal mode
shapes have derived from Possio's integral equation [14], Techniques of
treating the singularities of the kernel function and obtaining solutions
were given by Watkins et al, [15], and have been extended to wings with

control surfaces by Rowe, et al,, [16]. Another calculation process,
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analogous to the finite-clement method of structures, is the doublet-

lattice technique of Alhano and Rodden [17],

The prevalence of aerodynamic analysis techniques based upon the
assumption of simple harmonic motions is undoubtedly due to the success
of the theory in predicting flutter boundaries, Theodorsen and Garrick [18],
and Smilg and Wasserman [19], are representative of the methods traditionally
used in the calculation of flutter boundaries, The latter reference intro-

duced the concept of artificial structural damping,

Attempts to extend Theodorsen's theory to deal with arbitrary motions
(e.g., converging or diverging oscillations) were made by W.P, Jones [20],
and by Luke and Dengler [21]. Jones concluded that Theodorsen's solution
could be extended to diverging (unstable) oscillations but not to converg-
ing (stable) oscillations while Luke and Dengler's attempt to extend
Theodorsen's solution to stable motions was rejected in a series of articles

[22] - [26].

The inability of U-g flutter analysis and oscillatory aerodynamics
to give quantitative information regarding stable, subcritical flutter
conditions [Richardson, 27],[Hassig, 28], 1ed to methods of approximating
this behavior based.upon convolution techniques, R,T, Jones [29] indicated
the method of exponential approximation of Wagner's indicial loading func~
tion and used the convolution integral to obtain results for arbitrary
motions, Jones' work was followed by Goland and Luke [307], Baird and
Kelley [31], and Dugundji [32], Recently, Vepa [33, 34] applied the tech-
nique of Padé approximation of oscillatory loads to derive expressions for
loads due to arbitrary motion. Also, Morino [35, 36] has developed a ncw
formulation based on the Green function solution of the governing partial

differential equation which is valid for arbitrary motions,

Whereas the ability to calculate airloads for arbitrary motions is
of interest fo the aeroelastician for the insight gained concerning the
approach to flutter, it is a necessity to the controls engineer who desires
to design a flutter mode control system, The application of the design
techniques of modern control theory requires that the plant to be controlled

be described by a mathematical model, preferably by linear, constant-
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coclficient, ovdinary diftevential cquations, Approximation techniques
hased upon exponential approximations to indicial response funetions or
Padd approximants lead naturacly to such models in which the unstoeady

acrodynamic eflects are simulated by augmented state varlables, The B-562

CCV flutter mode control system was designed using this type of model [27]

and utilized the {requency domain control synthesis method,

Optimal control theory is ¢ well developed methodology for the syn-
thesis of control laws to minimize a suitable performance index [Bryson ‘
and Ho, 371, Designs of flutter mode control laws using augmented state
methods to represent the unsteady aerodynamics and implementing the

optimal regulator solution are described by Turner [38] and Dressler [39].

ol

A program designed to study the active control of flexible aircraft which
incorporates Morino's aerodynamic theory is described by Noll and

Morino [40], However, it has yet to be applied to a flutter mode control

PPN |

problem,

A different approach was taken by Nissim [41] who developed a flutter

suppression scheme based upon the concept of aerodynamic energy., A wind

tunnel program testing Nissim's design technique is described by Sandford,
et al, [5].

Flutter mode control system designs are actually problems in distrib-
uted parameter system theory. Wang and Tung [42] surveyed the field and
references [{43] - [48] typify the results of the theory, Sung and Yu [49]

present a formulation within which the flutter control problem can be !

treated, while Wang [50] presents a technique of stabilizing a system with

a finite number of unstable modes which resembles the flutter problem,

B, THESIS OUTLINE

Chapter II presents the equations of motion of the tyvical section
treated in this thesis and derives the generalized Theodorsen function for :
arbitrary airfoil motions, The Laplace inversion integral is usced to de=- 3
rive loads due to transient motions and gencralized unsteady acrodynamic :

loads are studied in compressible flow,
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In Chapter III, the generalized loads developed 4n Chapter II arc
incorporated into the cquations of motion, and the locus of roots of the
acroeclastic system is determined, The Laplace inversion integral is used

to calculate exact airfoll motions due to flap command inputs,

Chapter IV treats the problem of approximation of unsteady acrodynamic
loads, R,T, Jones' approximation of the Theodorsen function, and Vepa's
matrix Padé approximants of compressible loads, arc compared to the exact

solutions for aribtrary motions,

The active control of aeroelastic systems is treated in Chapter V,
Controllability and observability of such systems are investigated and the
aerodynamic energy design technique is studied, The "rational model" is
presented and compared to the Padé model, The models are used to design

optimal regulator solutions to the flutter mode control problem,

Chapter VI presents the conclusions of this thesis and recommendations

for future research,

C. SUMMARY OF CONTRIBUTIONS

1, The problem of generalized aerodynamic loads due to arbitrary air-
foil motions is investigated, The-generalized Theodorsen function for in-
compressible flow is derived using Laplace transform techniques, The same
technique is applied to compressible unsteady airload calculations and
results are presented for the case of two-dimensional supersonic flow,
Exact root loci of aeroelastic modes are calculated and examples of exact

transient responses due to stable motions are given,

2, The transient motions contain portions associated with rational
transforms and portions associated with nonrational transforms, It is
shown that the oscillatory motions typifying flutter phenomena are due

entirely to the rational portion of the response,

3. The generalized aerodynamic loads aie used to evaluate approxi-
mate techniques for calculating these loads, It is shown that exponential
approximations of indicial loading functions and matrix Padé approximants

of oscillatory airloads provide valid models of unsteady airloads for
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values of complex reduced frequency near the lwaginary axis,

4, The generalized Theodorsen funetion is used to study statile
divergence of typical scetions, It is shown that static divergence
corresponds to the emergence of @ real positive pole of the system trans-—

fer function and occurs, in addition, to the original structural poles.

5, Flutter mode control systems are investigated, The contrella-
bility and obscrvability of airfoils is studied, A thecorem is given
concerning the ability to construct a unique, linear model of the
rational portion of the acroclastic system which does not require state
augmentation, The resulting rational model and the Padé model urc used

to design flutter mode control systems.
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Chapter II

UNSTEADY AERODYNAMIC MODELING

A, TYPICAL SECTION EQUATIONS OF MOTION

The typical section which.will be analyzed is shown in Fig, II-1, It
has leading=- and trailing-edge control surfaces which are aerodynamically
unbalanced (hinge lines at leading/trailing cdges), simplifying the des-~
cription of the aerodynamics.T Linear and torsional springs (kh and ka)
at the section elastic axis restrain motion in the plunge (h), and pitch

(@) degrees of freedom, while torsional restraining springs (k. and kY)

B
restrain control surface.deflections. All linear coordinates (x, z, h)
have been nondimensionalized by the semi-chord, b. The equations of motion
are derived in App, A following the conventions of Theodorsen [11], and

Theodorsen and Garrick [51, 18] as

MX = -Kx-B %+
s= s= s=

L + Gu (2.1

2

m b
s

where the subscript s indicates that the matrix operators are of struc-

tural origin, and

1 Xy XB XY
x - [ro+x_(c~a)] [x (d—a)-rz]
[0 a BB Y Y
M = 2 2 .
S - -
xa [rB+xB(c a) ] ra 0
: 2 2
LXY [xY(d-a)-rY] 0 X, J

The matrices M, K, B, and G arc
8 s s

T On an acrodynamically balanced control surface, the hinge line is some

distance away from the leuding/trailing edge such that the aerodynamic
pressure distribution may be used to advantage in reducing the hinge
moments developed by surface motion,
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The use of control surface spring and dumping constants to approximate

irroversible position control systems is discussed in App, A, FKquation

(2,1) describes a four degree—of-frecdom (DOF) model, Two and threce DOF 1
models may be obtained-from (2,1) by deleting appropriate rows and columns

of the.-matrices and vectors,

The specification of the aerodynamic load vector, 1., completes the

system description and is the subject of the remainder of this scction,

1
' B. UNSTEADY AERODYNAMICS i
The development of the linearized, small disturbance partial differ~
|
ential equation for unsteady aerodynamic loads is presented in numerous
textbooks and the presentation.of Bisplinghoff, et al, [7], will be ?

followed, The exact, nonlinear, unsteady flow partial differential equa-

tion satisfied by the velocity potential is

9 o 9
Vz(p 21|, 97 +q - grad(g-—) = 0 (2.2) |
2|3t ot 2 '

and the flow velocity is given by
q = V¢ (2,3)

where the ¢ and V? operators imply the use of dimensional coordinates

x* = bx, v o= by, z¥ = bz . (2.4)

| The flow velocity is related to the pressure through Kelvin's equation i
| or the unstecady Berrnoulli equation l
q - e 1 i

st (a e V)a = -5 Vp . 2.5 i

St + (a4« Vg 5 Vp (2.5) i

|

Equations (2,1) through (2,3) are linearized by assuming that the fluid ¥
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velocity vector, a, varies only slightly from the free-stream velocity,

U, A disturbance velocity potential o' is defined such that

& = o' 4 UX*

where the disturbance velocity components

Wwo= w-u o= S, %t dot
Ix* oy* Oz*

are assumed to be small compared to U. Then the linearized partial

differential equation for unsteady, compressible flow is

o . L Tot e % (2.6
az atz ag 0x*dt ax*z ’

subject to the boundary conditions

* *
Lt
w =5—t—+UFX¥—, ~bs x¥< b 2.7
* *
R )
w = St + U il -bs x"<b (2.8)
Ox

where zB(xT t) and z;(xf t) describe the location of the upper and lower

surfaces of the section as shown in Fig, I1I-2, The linearized versicn of

(2,5) gives the pressure coefficicent

] = p~p°° = ...E—é?.:.-.?.iﬂ (2.9)
p 3o U? v 5t v axt
[--]

yielding the pressures on the top and bottom surfaces of the airfoil as
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FIG. 1I-2 CROSS SECTION OF A THIN AIRFOIL
1 X + a ] * 0- ) (2 lO)
Py - Py = - 0gU o1 (x*, 07, t) = p_ — &' (x*, O, t .
ox* ot

- - p U 6%* o' (x*, 0, t) = p, %; o' (x* 0, t) . (2.11)

T

ja
]
(o]
]

Since the governing differential equation, (2,6) is linear, the solu-
tion may be constructed as a super-position of elementary solutions, The

airfoil profile may be separated into a portion representing thickness,

z:, and a portion representing angle—of-attack and camber, :j
* * *
= +
%y Za T Bt (2.122)
* * *
= - 2 . . b
ZL za + ) (2.12b)

The thickness distribution, z:, represents a symmetrical airfoil at

zero incidence and, by symmetry, can provide no lift or pitching moment,

-12-
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The distribution, Z represents a cambered, zeroe thickness, inclined

mean line which produces the 1ift and pitching mowents acting on the air-
foil, This distribution may be further separated into a steady portion

containing the airfoil camber and a nonsteady, mean-line portion nominally
at zero angle~of-attack, It is the latter, 'flat-plate' airfoil which is
the starting point for linearized, unsteady acrodynamic theory. Hence-
forth, zZ(xf t) refers to this flat-plate airfoil and ¢ will be the

velocity potential satisfying (2,6) subject to the boundary condition 4
I
. x az: azz :
X
w(x", t) =w = + U =—
a ot Ox* (2.13)

The flow prescribed by this boundary condition is antisymmetrical

avat

with respect to the x-y piauc, as described in Bisplinghoff [527], and

the perturbation pressures at corresponding points on the top and bottom !
satisfy pU(x*, O+, t) = -pL(x*, d-, t). Thus the pressure difference act-— 3
ing on the airfoil, positive for downward loading, is 1
s . oF ) -
A p(x*,t) = py-p = -2 U——0(x*,0",t) - 20— o(x¥,0,t). (2.14)
Ox* Jt 1

The aerodynamic loads acting on the airfoil are determined by integrating

this pressure difference over appropriate portions of the airfoil,

b
P = g p(x*, t)dx* (2.15)
-b
(04 b !
M = S (x*¥ - ab)p(x*,t)dx* (2.16) i
-b !
i
b |
Mﬁ = S (x* =~ cb)p(x*,t)dx* (2,17) |
cb
db i
M S (db = x*)p(x*,t)dxx (2.18) -
b
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The method of solution of (2,6) depends upon the acrodynamic regime
under investigation, In incompressible flow, M - 0, and the cquation

reduces to lLaplace's cquation
2

which is an elliptic partial differential equation, In subsonic and super-
sonic flows, the equation becomes one of hyperbolic type. The solution of
the partial differential equation has traditionally been simplified by
assuming that the airfoil is undergoing simple harmonic oscillations in

the various degrees of freedom, thus removing one of the independent.
variables, t, Further simplification of (2.6) results if two-~dimensional
flow is assumed, making the equations independent of the span-wise coord-

inate, Y.

C. TIWO-DIMENSIONAL, INCOMPRESSIBLE UNSTEADY
AERODYNAMICS FOR SIMPLE HARMONIC MOTIONS

A solution of (2.6) was first obtained for the case of two-~dimensional
airfoils undergoing simple harmonic oscillations in incompressible flow,
Theodorsen [11] was the first to publish the complete solution, although
many other authors obtained similar results independently during the same
period, Bisplinghoff et al, [52], and Garrick [53, 547 present summaries
of the various authors and techniques, Appendix B contains a summary of
Theodorsen's derivation as ﬁresented in Ref, 52, The solution consists
of a superposition of flows due to a source-sink distribution, a bound
vortex distribution along the chord, and a wake vortex sheet distribution
convected downstream from the trailing-edge, The Kutta condition of

smooth flow at the trailing-edge is enforced by Eq, (B.16),

l+0
1 [E+b .
_ Q = - s r, (E,0)dE . (B.,16)
1
-4
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Fquation B, 17, giving the circulatory 1ift, is representative of the

integral cquations involved in the unsteady loads

1t+o ¢
= 3 & ;
P pbU S @2_1 v, (B 0)dE . (13,17)
1

To proceced with the solution, Theodorsen assumed

(1) The airfoil motion, wi(x*,t) consisted of simple harmonic
oscillations (Eq, B,21), producing the wake vortex distribution
given by (B.22);

(2) The motion had been sustained for an indefinitely long period,
allowing the upper limits on the integrals in (B,16) through
(B.18) to be replaced by & ,
It was then possible, using an integral representation of the modified
Bessel function Kv(s) (equivalent to Eg, B,28) to evaluate the ratios

of integrals occurring in Egs, B,24 and B,25 as

ng)(k) Kl(ik)

ng)(k) + iH%zka) ) Kk (ik) + X, (ik) ' (8.92)

c(ik) =

The restriction on the use of the integral representation of KV(S)’ Re(s)
> 0, 1is not mentioned in the early references dealing with the subject,
This restriction, in connection with the assumed airfoil motions (B,21 and
B,22), implies the oscillatory divergent motion and wake vortex distribu-
tion shown in Fig, II-3a, The analysis so far presented would thus appear
to be inapplicable to the convergent oscillations shown in Fig, 1I-3b,

The fact that the theory agreed with cxperimental observations of flutter
boundaries (ec,g., Theodorsen and Garrick, Ref, 18) explains the acceptance
of the theory for Re(s) = 0 (purely simple harmonic oscillations),

although the integrals upon which the theory is based are then divergent,

The simple harmonic loads acting on the airfoil arce given by (B, 35)

and (B, 36) as
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(a) DIVERGENT AIRFOIL OSCILLATIONS
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(b) CONVERGENT AIRFOIL OSCILLATIONS

FIG. II-3 WAKE VORTEX DISTRIBUTIONS CAUSED BY DIVERGENT AND CONVERGENT
AIRFOIL OSCILLATIONS
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L(ik) = \bgUz{-RZM Fik(B  +C(4k)RS,) ¢ (K rC(ik)Rs )}x otk
Al ¢ ne ne ) 2 ne 7 1 =0

(2,20)
. ikt' ; _ .
where  x(x,t) - X5 . Mquation (2,1} specinlived to simple haramonic
oscillations and with u - 0 is then
1 ]
-~ J e o~ - B - AJ
{<Ms T]Mnc) ! l[ u)Bs k ( nc C(ik)RbZ)}
(2,21)

+ {-12 K, + %Z(KHCJ.-c(ik)Rsl)] x, = 0
" X

vhere 1T = 1/,

For a section with n degrees of freedom, (2,21) is an nth order
matrix equation which has a nontrivial solution only if the determinant
of the matrix of coefficients is zero., For a given airfoil section, (2.21)
is a function of 4, w, and k, and the determinant of the coefficients
yields a complex equation, A method of solving this equation is to
assume values of u and k (allowing the aerodynamic loads to be calculated)
and factor the resulting real and imaginary equations, giving two sets of
n values of w. In general, a given value of w will not be a factor
of both equations, and the process is repeated for other values of k
until a value is determined for which the real and imaginary parts of the
determinant have a common factor, Wes the flutter frequency, The small-
est value of U corresponding to a solution is called the flutter speed
given by Uf = wfb/kf. This method of solution, termed Theodorsen's
method, is described in Refs, 11 and 55,

An alternative method of solution which is more commonly used is the
U -~ ¢ method described in Refs, 19 and 52, The artificial structural
damping, g, 1s introduced by replacing the real quantity, (1/w)2, with
the complex factor

1 2
2= (2) 0+ 1g) . (2,22)

For a given choice of u and k, (2,21) now represents a complex cipgen—

value problem for the unknown, 7, With the eigenvalues, 7., determined,
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the corresponding frequency, velocity, and structural damping are deter-

mined by
02 - l .
“s % TRolZ (2,23) :
w b ]
U i e——
{ ” (2,24)

Im(Z -
g = EE%E% . (2,25) !

The critical flutter point is determined by the values of u and k yield-

ing a value of g equal to the assumed structural damping (usually zecro). 3

The U -~.g method is commonly used to perform flutter calculations

for compressible flow in which case the Mach number is an additional inde-

. |

pendent variable, In this case, the calculated flutter speed U may not

£
correspond to the density (altitude) and Mach number assumed in perform-

ing the claculations and the analysis must be repeated at several Mach !
numbers so that a "matched flutter point"” may be determined by crossplotting

the results.

It is obvious that a great deal of the calculation required to deter-
mine a flutter point is of limited further value since the conditions
corresponding to the intermediate solutions are unphysical. Further, the
resulting flutter boundaries give quantitative results only for the case

of nentral stability (simple harmonic oscillations), The information

concerning the subcritical and supercritical flutter conditions is quali-
tative at best, The cause of this situation is the assumption of simple

harmonic motion in the calculation of the unsteady aerodynamic loads,
Hence, an investigation of the possibility of.calculating airloads for

arbitrary motions is appropriate,

D, THE GENERALIZED THEODORSEN FUNCTION

Attempts to generalize the Theodorsen function by evaluating C(ik)

i

for complex values of k were made by W,P, Jones |20], and Luke and

Dengler [21], Jones concluded that C(ik) could be generalized for

-1 8-~
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diverging airfoil wmotions (sec Fig, IT-3a), but not for dampod converglng
motions (Fig, II-3h), Still, on the basis of numerical calculations and
claiming that C(ik). could he analytically continued into the left-half
planc, Luke and Dengler publicshed tables of C(sb/U) for s 0 4 iw,
0 < 0, However, they did not offer a proof of this extenzion and in a
scries of replies [Vaa de Vooren, 221, |Laitone, 23], [W.», Jones, 2417,

[Change, 267, their claim was rejected,

Earlier, Sears [56] had used the technique of Laplace trar-formation to
obtain new derivations of indicial loading functions, Sears' presentation
is essentially a derivation of the generalized Theodorsen function although
this is not discussed in Ref, 56, No mention is made [567] of criteria
for the existence of integrals nor of the evaluation of C(ik) for complex

values of Kk,

The generalized Theodorsen function will be derived in a form closely
following Sears [56], Assume that the airfoil was undisturbed prior to

t

"

0 [w:(x*,t) =0, t < 0] and that the airfoil motion has endured for

*
0

t (xg - b)/U sec, producing a wake that extends from x* = b to x* = x
as shown in Fig, II-3, It is assumed that the airfoil motion wZ(x*,t)

and the wake vortex distribution YW(E*’t) are Laplace transformable func-

tions, Making the change of variables g* = xg - Ut in (B,16) and (B,17)

gives

T
U (2,26)
R = - I s
o)
T 1
5 (r-t) + =
P, = M S BT ‘Yw(t)dt (2,27)
(t=t)" + E‘(T-t)
wvhere ¢ = (xg ~ b)/U. The change of variables has the cffecci of wmuking

the wake vortex distribution r;(gft), a function of a single variable
rw(t). Egquations (2,26) and (2,27) are convolution integrals, and since

the Laplace transform of the conveolution of two functions cquals the

~19~
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product of the transforms of the two functions [671, Fas, (2,26)

hoecome

where

1
()] s - g s [\/l—'—f—’/—”] RACONN

VA

sl (1)1 = s [\/t?‘ + (%/U)t] AN

b, v / -8
Y[‘/T:z ZU']= S E +t2bU 5t
_ ’E s(0/V) S ‘/‘z : i' S(sp/ude
1

and (2.2

(2,28)

(2.29)

= % eSb/U [xo<§3> + K1<%1-)->:|, Re(s) > O ; (2.30)

t + b/U ® t + b/U ‘
S’[vtz + (2b/U)t} = g ‘/;2 + (2b/U)t e 5t qt

o
-] t _
b sb/U S 2 o (sp/U)t
= = e t -1
U
1
b

n/
sb/U (sb) (o
e K \5) Re(s) > 0 .

cl

-20=

dt

(2.31)
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In evalunting these expressions, the change of variables ¢! - (Ut/h) 4+ 1

and (B,29) and (1, 30) were cmployed,  Eliwinating f[yw} from (2,28) and

(2,29)
LIp ()] = -~2q000c(3)elq(t) ] (2,32)
where
sh
- Kl(-tf'")
c(s) = _ (2.33)
K (22) 4+ k(22
o'y 1'U
and g = (s,—b' .

The Bessel functions in (2,33) are defined and analytic throughout
the s-plane except for a branch point at the origin and a branch cut along
the negative real axis [Sect, 9.6, p. 374, Ref, 58], and by analytic
continuation [57], C(E) is the unique operator relating Q(s) and Lc(s)
throughout the s-plane (except along the branch cut), The principal
branch of the Bessel function will be taken as -t < arg s £ 1 and with
the restriction on the real rart of s removed, (2,33) defines the gen—
eralized Theodorsen function. Setting s = ik recovers the Theodorsen
function.,, (B,31)., The remaining unsteady loads (MQ, Mq and MY) all
involive the same ratio of integrals treated above, and the generalized

Theodorsen function can be incorporated into the aerodynamic load ex~

pressions by replacing C(ik) by C(s) in (B,33) and (B.36),

For small values of lgl, KO(;) and Kl(;) are readily calculated by
their ascending power series expansions which are given in Avbp, D, With
5 = ;eig and C(s) = F + iG,. the real and imaginary parts of C(s) are
plotted in Fig, II~4 which extends the figure given by Luke and Dengler
(21] to 4 =+ 60° and 9 = + 180°, The Theodorsen function is given bLy
the curves for A = 90° corresponding to the imaginary axis, As
; - 0, C(E) > 1 and as 1 - ®, C(s) » 0.5 independent of A, The maximum
value of C remains in the range 0,2 <1 < 0,25 independent of 4 and

increases monotonically as 4 increases to 180",
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FIG. I11-4 THE GENERALIZED THEODORSEN FUNCTION C(§) = F + iG

Note F(=0) 1Y), G(=0) = ~G(0).
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Equation (2,32) indicates that C(s) 1is to he regarded as a frequency
domain operator or transfer function relating Q(s) to LC(H>, Equ.tion
(2,32) also proves that the Wagner function and C(g)/g form a Laplace
transform pair as implicd by R,T, Jones [29] and Goland [59], and proven

by Sears [566], For Wagaer's problem, Q(8) : 1/s and

ﬁ[kl(c)] = o 2npyuc§§2

S

It is interesting to note that Scars' development of this relation
implicitly involved analytic continuation of C(s) through the deforma-
tion of the inversion integral contour into the left half-plane, although
Scars does not comment upon this point, Although Sears states that his
method is applicable to arbitrary airfoil motions, it seems that his
intert was to perform such calculations via the convolution integral,
using exponential approximations to the indicial load functions as shown

by R,T, Jones [29],

Equation (2,32) indicates that the transforms of the aerodynamic
loads will be multiple~value functions due to the branch point of c(s)
at the origin., It is of interest to noxve that Q(s) may contribute branch

points also although this is not the case for typical airfoil motions,

Two additional derivations of the generalized Theodorsen function
are available and are presented in App, D, The first derivation was
given by W,P, Jones [20], while the second is based on the convolution

integral,

An outline of the calculation of transient unsteady aerodynamics, and
a. discussion of the difficulties in earlier interpretations of C(g), are

offered in App, E.

The Laplace transforms of the unsteady aerodynamic loads and the
airfoil equations of motion for arbitrary motions are given by (2,20)

and (2,21) with ik replaced by s

2 2 2 - - .
L(s) = pbU {Mncs +[Bnc+C(s)RSZ]s +[Knc+c(s)R81]} X(s) , (2.34)

1
i
|
¢
A




. 2 U PP ‘
(MH“WMnc)h +[Bs-n(b)(nncyc(h)usz)]ﬁ

cla

nce

5 A
' [KS~H( ) (K ‘+C(§)Rsl)] X(s) = GU(s) . (2.35)

Equations (2,34) and (2,35) are matrix polynomial functions of s whose
cocfficient matrices contain the nonrational function C(g), (A rational
functions of s 1is a function which can be expressed as a ratio of
polynomials in s, [p, 60, Ref, 57],) In inverting these expressions,

attention must be given to the branch cut of C(g) along the negative

real axis,

E, INVERSION INTEGRAL FOR UNSTEADY AERODYNAMIC LOADS

The time histories of the unsteady aerodynamic loads can be deter-
mined from (2,34) using the Laplace inversion integral [57], To simplify
the expressions, the unsteady lift, P(t), will be considered for two
degree-of'-freedom plunginrg and pitching motions. Equation (2,34) gives

the transformed lift for this case as

P(s)

where

-ﬁpbs[szh(s)+ & s—asz)a(s)]-2;thUC(§)Q(s) (2.36)

]

Q(s) sbh(s) + Ua(s) + b(3-a)sa(s) . (2.37)

The inversion integral gives

01+iw

il
|-

p(t)

N

st ,
wry J P(s)e” ~ ds (2.38)

ol-iw

where - 01 is to be chosen greater than all singularities of the integrand,

The first expression in (2,36) is the noncirculatory 1lift, PnC, and may

-—24-
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be inverted directly, The generalized Theodorsen function may be written
in terms of the 1lift deficiency function @(;) introduced by Von Karman

and Scars [60] as

c(8) = 1 - ¢(8) —e (2.39)

; K ()
¢(3) = ROETACORR (2,40)

o 1

Substituting in (2,38)
P(t) = =gt [h + % o - aOt] —Zﬂpr[flb + U + b(} - a)éz]

‘ 01+i°° (2.41)

- PBUL o(5)a(s)e®t as .

Ol-iw

The second term in (2,41) gives the '"quasi-steady' 1lift qu which results
from ignoring the effect of the wake while the third term gives the effect

of the wake, The integral may be -simplified by the deformation of the
contour of integration [56] shown in Fig, II~5, The portions of the

contour from a to b and from ¢ to d 1lie above and below the branch

cut of ¢(s) along the negative real axis thus making the integrand single~-

valued within the contour, The damped complex conjugate poles shown in
the figure are representative of the singularities which may be intro-.
duced by Q(s), Sears treated the case of a step change in circulation
[Q(s) = l/s], and proved that C(s)/s has no singularities within the
contour given by N, Nl"Nz' and the branch cut a-b, b-c, c~d, Thus
the integrand is analytic at every point within the deformed contour and
by Cauchy's integral theorem [57], the integral around the contour is
zero, If Q(s) 1is Laplace transformable, then the integrals along the
semicircular arcs, N1 and N2 go to zero as the radius goes to infinity,
The integrals along the cuts from..Nl and N2‘ to the poles cancel since
the integrand is continuous along these paths, while the circular paths
of infinitesimal radius around the poles give 2ni times the residues

of {C(s)Q(s)eSt] at the poles, Therefore, the integral. along the path

~25-
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INVERSION INTEGRAL FOR INCOMPRESSIBLE
FLOW

|
1
|

-0~




ol

)

N is cqual to

b d b
f f(s)ds = S f(s)ds - S f(s)ds + S f(s)ds
N a c c
. ] . (2,42)
+ 2qxi Res[f(s)]s=s1 4+ 244 Res[f(s)]s=s§

- st
wvhere f(s) = ¢(s)Q(s)e ~, Along be, ds = eieiedq and the third
integral on the right—-hand side is

which approaches zero as g - 0 if Q(s) = ® no faster than l/s as
ig

s » 0 which will be assumed henceforth. Along ab, s = re while along
cd, s = re-'iﬂ and
t ® b 4 b -1 gy, ~rt
S 0(3)Q(s)e’‘das = - S [¢(§— e “) -¢<%— e ﬁ)] Q(re"Me " tdr
X ° '(2.43)

1

. 2n1{Res |:¢( §)Q(S)eSt]S=S +Res [¢(§)Q(s)e5t]s=s*l} .

Using the expressions

Ko(reii“) = Ko(r) s niIo(r)
Kl(reiiﬂ) = -Kl(r) ¥ niIl(r)
Ko(r)Il(r) + Io(r)Kl(r) = 1/r .

Sears [56] showed that the integral in (2,43) was

® 2 2 2 -1 Q rein ~rt
-2mi So [(xo:x )T+ o (10+11) ] Jr.mj__l e dr
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where  rb/U  is implied as the argument of the Bessel functions, Finally,

the unsteady 1ift is

P(L) = P PP (2,44) i
nc r nr
where
P = -ﬁpbd[ﬁ 1 J & - n&] (2,45)
nce b
J t |
P = -2nPbU[hb+UOl+b(ﬁ-a)d - Res(o(E)Q(s)es >s~s ] (2.46) I
=1 7 ;
. ]
) Qgr i]’() -rt 1
P = =-2;0bU S =8 dr (2.47) |
nr o Tk -K)2 + nz(I +I)2 -
o 1 o 1

and 1 = rb/U, Pr and pnr symbolize the rational and nonrational por-
tions of the circulatory 1ift, The rational portion Pr is comprised of ;
the quasi-steady circulatory lift P s and a portion due to the residues
of d>QeSt at the poles of Q(s). TEe summation in .- Pr is over all

poles of Q(s), Typical airfoil motions result in rational functions for
Q(s) which may be expanded by partial fractions into a sum of elementary
transforms, The residues at the poles of the elementary transforms may
then be calculated and used in (2,44)., Table II-1 lists several standard f
functions, Q(t), their transforms Q(s), and residue sums required i

in the evaluation of Pr(t).

Table II-1
ELEMENTARY FUNCTIONS AND CORRESPONDING RESIDUES

Q1) o) Iy Rea(o(a)a(s)e") i
8(t) 1 0
1 1/.3 0 1
e Ot 1/s+g (1-F)e O*
e tatn wt m/(a+o)2+w2 e-at[(l-l-‘) sin wt - G cos wt]) :: !
e Tton wt s&o/(uo)zunz e-ot((l-i‘)cos wt:? 8in wt) G@ \s
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In evaluating the residue for «(s) = 1/(s+0) the contour must bhe in-

dented at s = ~0 pgiving scmicircular arcs of infinitesimal radius,

The integral expression for pnr’ (2.47), cannot hc cvaluated analyt-
ically for typical airfoil motions but its integrand is a well behaved
function and the integral may be evaluated numerically. Figure II1-6

is a plot of the denominator of the integrand

I = 'f[(xo(f)-xl(f))2+ﬂ2(10(;)+xl(-f))2] '-1. (2.48)

As an example of the use of (2,44), P(t). is calculated for the case

of a single DOF plunge motion (g pinned) with
~gt
Q(t) = Ue “sin wt .
The plunge motion yielding this function is

h(t). = —————-[ -e-dt(o sin wt + w cos wt)]
(2,49)

and (2,44) through (2,47) and Table II-1 give

' ~Gt!, - - - - ~gt! - -
cy = 3 Pgt ) = 2ndbe ot (0sin wt'-w cos wt!)-e ot (Fsin wt'+Gecos wt!')
cU”)(2b

® -1 - ~pt?

2 2 -

- (K =K. )“4x (I +1 )2] 22 dr
o1 o 1 - - =2 =2

o r[(~r+a)“+w ]

(2.50)
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A
where 0 = ob/U and w = wb/U, The three exprossions on the right of
(2,50) are ¢ , ¢, and ¢ respectively, Fipure IT-7 shows the total
L 4 4
ne r nr ]
and component lift coefficients for o = = O.Z/ﬁ corresponding to i

damped oscillation with 0,7 damving ratio, and 0,2 rad natural fro—em—..

quency, Since Q(t) is continuous at t - 0, the circulatory 1lift must

start at zero which requires that the rational and the nonrational por- o=
tions of the lift cancel at t = 0, Figure II-7 shows this to be the I1

case, with CL(O) = Cg (0), The nonraticnal portion c

’
nc znr

quickly from its starting value for small t' but decays slowly to zero

decays

for large t' and is a monotonic function of t',
A second example is a single DOF (degree of freedom) pitch-motion with ?
gt

altt) = 1 - e cos wt' (2,51) !

For this motion )

-gt! - Tt - - - -
Q(t') = U{}-e T cos Lt + (é-a)ect (0cos wt' + w gin wt')J

and the resulting 1ift coefficient is

_ -5t 5y D - (3 ) -
C£ = 2n{~l+e [F(l- 2) > G]cos wt? +L§<§ - 1)+ 5 Fisin wt!

1 -ot! -2 =2, . - -- - -
+ge ([n(w - )-c]cos wt' =(20wa + ) sin 1.\t‘)

-]

g -

+ S (KO‘K1)2+ﬂ2(I +Il)2 ' é E - (E '1)(;T+U;+§ e I‘t'dr . %

o r|r - - -

o (~r+a)” +u
.
"y
}
A
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TOTAL AND COMPONENT LIFT COEFFICIENTS FOR THE
PLUNGE MOTION OF EQ. 2.49
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Iigure LI-8 shows the total and component lift coefficients for o0 -

0,2/V§. ang a0, Tor this case the value of QL) at t ) is nouzero,
indicating that the circulatory 1ift docs not start at zero, This is
cvident in Fig, L1I-8 where it is seen that Cﬂr(”) 7 uznr(n) and ¢y starts
at a slightly larger value than £ (0) Again, cglr decreases monoton~
ically from its starting value and docdys slowly to «ero for large ',

At L' = 30, ) has scttled to within 1% of its final valuc, while

€y has scttled only to 16% of its final value and contributes 5% of-

the total -1ift,

From these two examples it is clear that the nonrational portion of
the loads will dominate at large t' for stable aivfoil metions, Thus
the asymptotic behavior of the loads is of interest, Sears [56] studied
the asymptotic behavior of the lift in Wagner's problem (step change in
circulation) by using series expansions of the inversion integral integrand
for small s since the behavior of P(t) for large t is detcrmined by

the behavior of P(s) for small s, The nonrational portion of the 1ift

is given by the last term of (2.41)

.O+ie
_ 2mbu - st
Pnr(t) = 53 Sc_im ¢(s)Q(s)e” "ds

Using the ascending power series for K _and K1 given in App, F

[ 52 5 52
~1+——+---](1og—+“/)+~—+~~
Q(s) 4 2 e 4

l‘1 s(1o -+7) ;2(1 'E;"F’Y'-l')"é‘?'(l ré Y -1)

-\ g 8 g T T/ g Nlog g W mL)d e

= -3(log s + Ye) - §2(log g + Yc)2e§? %(1og~§ + Ye-l)
1 5 1 S e
- 5(1og % + YO- E)(log S Y ) (1log % + 70)3{
+ @(§4[10g ;]4) . (2.53)
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It Q(s) is of the form

b s pees i bos o+ b
(s) = m 0 <
Qls) = W, ghtd Ceeer a1 ) mson (2.54)
“n “n-1 A8
then for small s
- ] - - n
Q. = b.' LR s -l a. 8 + eeo ¢ S
(s) ( FER I by® bo)[l (11s J + a8 )
- N\ 2
+ (a8 + .en £a8) —]
and the leading terms of ¢(§)Q(s) are
- 3 v ye2. B
.(g)Q(s) =t -boS(log E + ‘Ye) - (bl bloﬂl)s (1og 2 + ‘Ye)
-3 (log 247 )24 v (2.55)
° 2 e : ¢
If Q(s) = gn then the leading terms of ¢(§)Q(s) are
- - -~n+1 S -n+2 s 2
o(s)o(s) = -8 (1og5 + 'Ye) - S (1og§ + 7@) boeee (2.56)

Thus the asymptotic behavior of the loads is determined by operators of
the form En-l[log(g/Z) + re]m, Sears evaluated (2,52) using this oper-—
ator integrated along a rizformed- contour, Scars' development invelves
the questionable step of utilizing expressions derived from the gamma
function, ["(n), evaluated at negative integer values (wherec T'(n) is
singular), Hence an alternative evaluation will be given which leads
to the same results, Following Secars, the contour in (2,52) may be de~
formed as shown in Fig, II-5, The asymptotic 1lift for stable motions is

given by the nonrational portion (the integral in (2,43) with ¢(;)Q(s)

given by (2,55) or (2,56), The expression which results from the operator

m

n-~1 -
s [log(s/2) + Y.l is
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QF POCR QUATITY R

— i

i
1
!
|




xR
n=-1 - ix m .
1 -1 ( ¢ ) S L
- S — 0 +.
2,118 (r ) log - 'YC e ar |
o
N
i
/s
3
since the integral around the infinitesimal circle about the origin —— {
vanishes, For m =1 this reduces to ‘
° - : ‘a
1 n=l-n-1 r . -rtt - g
- — - -~ ig+ Y )e d
Py S (-1)" "r “(1og > x e) r :
1
® n-l.n-1 T Tt 3
+ S (-1)" °% (1og-2- + dg o+ ’)’e)e dr
0
n ® n

- -n-1 ¥ . -1) T(n 1
t! t? . g
o] ‘

while for m = 2 the expression becomes

[-~]
an- r ~TFtt .
2(-1)" S 1 log = e °° dF !
o

2
n o

= -2—(—--1l- S 'x"n-l e-rl(log . - log 2t')dF ]

n 1 1 1
t! le) . ]
|
n 1'
= 2 [re(n) - 1og(2e)r(n)] 4
t! )
.
since o - |

r'(n) = ‘ ;;1_1 (log ;1)0 1 drl .
o
~-36-




-n—-1 - m
Thus, although = [log(s/2) 4 'd does not possess a Laplace transTorm
for n > 1, the inverse Laplace transform givoen by (2,52) can be cvalu-

ated asymptotically as t' -» o, and s - 0 in terms of this expression,

The correspondence is

_ - n
-n-1[ - .
st [Log-g- T’ ’Y] o f2b) i] 2 s ne&l; (2,57)
t'
- 2 . n
_n~1 S 2(-1 -
S [1og 5+ Y} - —ﬁ——%—ﬁ’(n)—log(Zt')i(n)], n=x=1, (2.58)

£t

Sears evaluated the asymptotic 1ift using the expression given in (2,56)

with n = 1 (Wagner's problem) and obtained

1 2 lo 2t!
nr t! t!
Thus for step changes in Q(t'), the 1ift approaches its final value

asymptotically as 1/t'. For the airfoil motion given by (2,49), the
/ y s

asymptotic 1lift is found from (2,54) with b0 = C)/(BZ + 62), b1 = 0, and
R -2
a; = 20/(02 + w ) giving
-2 I 450 1 20
c, T T3y 2t 3" L3 (F'(3) - 2 1og(2t!) + =*+7 .
nr 7+ (t! 7 +0  t! t!

Thus stable airfoil motions for which Q(s) 1is of the form of (2,54)
’ 2
approach final values asymptotically as 1/t' . In Fig, 1I-7, C/an ~
- =2 -2 2
(~w/0" + w)1/t'", while in Fig, II-8, o 1/t
’ nr
One further case of interest is-that for which Q(s) = -;’n with
ns -2, An airfoil motion of this type is @ = t'(n = ~2), Taen the

leading term in (2.56) has an inverse Laplace transform given by

Nlws

-8 [¢]

.3-1 [-—L; (1og = + Y ):l = log t!

-37-

.

|
i
5
i
i
q
i




and the asymptotic nonrational life cocefficient is Chnr 210 log t°!

while the rational 1ift cocfficient is given exactly by Cpp ™ —2nL',

¥, GENERALIZED COMPRESSIBLE AERODYNAMIC LOADS

I'.1 General Formulation

L/

When the flow is assumed to be compressible, the Mach number M be- !
comes an.additional independent variable and the governing partial differ- i
ential equation, (2.6), is a hyperbolic. equation,. Solutions [15], [12]
have been obtained by assuming simple harmonic motion and making the
substitution ¢(x, z, t) = E(x,z)eiwt which is equivalent to applying
the Fourier integral transform [61] to the time variable of (2,6)., In

attempting to derive solutions for generalized motions, it is natural to

P |

apply the Laplace integral transformation, Defining

o(x,2z,8) = g o(x z,‘c)e-St dt .
o
(2.6) and (2.13) become
2
o+ 0 - S g oM, Py
XX 2z a2 a X XX
© (2,59)
S 1 2M
= - o(x,2,0)~ = ¢t(x,z,0)- -~ ¢x(x,z,0) ;
a %
[==] [~}
. 3 _
= = - — - 2,60
£[wa(x,z,t)] ¢Z|z—o silz ] za(x,z,0)+U ax.ﬁ[zaJ, psxs b, ( )

(The variables x and z are assumed to be dimensional throughout this

section,) Let & = &' + ¢" with ¢" 2 known function to be chosen such

) 2Ms 2
" w5 an_ "o 1
Qxx + ®zz B ¢ a @x M qxx
a“ ? !
) X , (2.61)
= - 79 G(X,Z,O)- ) ¢t(x:J*O) I ¢X(X)Z;O) s
a a
® ® “
. B :
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q,'?' = -z'](x z,0) . (2.62)
| o :

The equation for ¢' 1s then

Ll 1 - .§.—. 1 - -2__§ !l - 2 1 o
Ixx + ¢z ¢ ¢x M wxx = 0 (2,63)
) aco
d
1 = ” 2.
(bz . S£[7a] + U 3% .S[zaJ (2.64)

which is formally identical to the simple harmonic motion problem with the

replacement of iw by s,

Equation (2,63) is a homogeneous equation for &' whose boundary
condition, (2,64), is linear with respect to £[za], while (2,61) is an
inhomogeneous equation linear with respect to the initial condition
¢(x, z, 0) and whose boundary condition (2.62) is linear with respect
to the initial condition za(x, z, 0), Hence the transformed loads L(s)

due to airfoil motions X(s) may be written as a matrix equation

L(s) = K'X(s) + K"x(0) . (2,65)

It is interesting to note that for airfoil motions for which
z (x, 2, 0) =2, (x, 2, 0) =0, 0" 1is identically zero and the entire
sclution is given by &', Also, since stability of a linear system cannot
be a function of initial conditions, the flutter problem is solely depend-

ent upon ',

The formal identity of the equations satisfied by s for simple
harmonic motion and by ¢' for generalized motion implies that existing
solutions of the simple harmonic motion problem may be applied directly
to the determination of ¢' by the replacement of i by s, Thus
the Mathieu function solution of Timman [12] can be generalized to provide

solutions to (2,63) and (2,64),
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It is anticipated that the decomposition indicated by (2,65) occurs
in solutions hasced on the acceleration potential, , since ¢ and ¢
satisfy the same partial differential equation, Also, the generalization
of the above Laplace transform method to finite wings in three-dimensional
flowv offers no difficulties, Thus programs based upon kernel function
techniques (15], [17], [62], {16], may also be modified to calculate the
Laplace transforms of generalized aerodynamic loads, It must be empha-
sized that the resulting transform is not the total solution, but corres-
ponds to that portion of the solution which is linear in the transformed

airfoil displacement modes,

F,2 Generalized Unsteady Supersonic Loads

In the case of two-dimensional supersonic flow, Garrick.and Rubinow
[13] obtained the solution for the simple harmonic loads using elementary
solutions of (2,6) known as source pulses and gave the loads for the
three degrees—of-freedom: plunge, pitch, and trailing—-edge control .sur-
face, Hassig [63] extended Garrick's treatment to cover leading~edge
control surfaces, The loads, due to arbitrary motion, which are linear
in X(s) may be obtained from the expressions given by Garrick by the
formal replacement of k by -is as shown in tfe preceding section,
(The resulting loads do not include those portions dependent upon the
initial conditions of the motion,) The velocity potential of [13] on the

upper surface of the airfoil becomes

b x
- 2 -
o(x,07,t) = VMP-1 S wa(§,5)e-(SM/M -1)(x-§)Jo[-i—§l-(x-§)]d€ (2.66)
0 M -1

with the airfoil lying between x = 0 and x =1,

Alternatively, (2,64) may be derived directly from (2,63) and (2,64).
following the procedure of Stewartson [64] summarized in Ref, 7 [pp, 364~367],
Stewartson's- procedure of Laplace transformation on X applied to (2.63)

leads directly to (2,66) with the recognition ofT

t S)x[,p(x,z,s)] = (I)(sx, Z, S)
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where al = sM/a(M -1), Garrick's solution in terms of J0 is recovered

by use of the relations

I(s) = JO(Se%“i) ; -n< arg s £ % g

-3 i
Io(s) = Jo(se 27, tn< arg s €

and noting that the Bessel function JO is single valued, Thus the

above inverse transform is

J [~1i sM X
( (- 1)

verifying (2,.66) as the generalized velocity potential for supersonic

two—~dimensional flow,

Following the notation of Garrick [13], the axis of rotation is
located at x = XO and the control surface leading edge is located at

X = xl. Ueneralizing the expressions for the loads given by Garrick

produces
r—~ - 1
Pb(s)-T 5 g h(s)
8Pb U
Ma(s) = ‘/M?‘ -1 'sz[Ma‘(é)éz + Ba(é)é‘ + Ka('s‘)] aos)
M (=) B(s)
LP W
where
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r, (13 zx012) 13
M () = | (ym2x ) iq -2x (q, +r yaxy 2,420, (x =x )
a 2 0 2 373 02 3 0 2 33 31 0
L p 2. 2
2 (?’3 2"0"2) 3 %y -

-
lf (2r =x r_ ) 2t 7
2 1 2 01 s
= 2
B (s = - . -2 3 -
a(s) (q1 xorl) <2q2 xo(q1+2r1)+4xorl> (252+4t2(x1 xo))
L Py 2(py=%Py) 289
-
r—~
0 1, 1 ]
21 21
K (s) = 0 (qluxorl) (sl+t1(x1—x0)> .
LO Py bl

The functional dependence of these matrices on s 1is meant to indicate

that the parameters q., ri, Si’ and ti given in Table 1I-2 are functions

of s. All of these parameters may be derived from the 'Schwartz function',

- Taiou I
IO(M,w) = g ew J (ﬁ u)du (2,68)

(o)
Y

{ where W = —i(2§MZ/M2—1)] by the recurrence relation
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r (M,0) = -_—M-é—- {[ﬂ@-j) (é]c i“’.Lo(-‘ﬁ') - -[\17[ e i“),jl(%:))
J w(M™=1) Y "
VI Y|
+ 1(1.-&J)lj_1(M,(.))«(1-3) -mij_z(M,m)j ,
J - 1 2,0 so e
The gx and h>\ parameters are given by
g = f)\(M, (uxl)
h = fk[(M, w(l-xl)] .
Table II-2
SUPERSONIC AERODYNAMIC LOAD PARAMETERS
r. =f P. = q. -~ X, T + x2(g -g.)
1 1 1 1 11 1*"0 "1
r, =f -f P, =4, - 2X,Tr +x3(g-2g+g)
2 o 1 2 2 172 1'"o 1 °2
— - — - 4 - -
rg=f 2f1+f2 Py =d, = 3x 1, + xl(g0 3g,+38, gs)
a, = £, t, = (l-xl)ho
a_ = f -f t=(1-x)2(h-h)
2 o 2 2 1 o 1
2
q, = 2f -3f +f, ty = (1-x1) (h0-2h1 + hz)
2
s, = (l-xl) h
3
s, = (l-xl) (ho - h2)
(1-x,)" (2 )
53 = 1-x1 ‘ ho - 3h1 + h3
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The Schwartz function (Eq, 2,68) is nol expressible in terms of

ciementary functions hut it may be computed from the series

‘ n -y -
‘ - ~iT MZ-]— |'Jn(w) ! iJn+1(“0]
(ML) = e 2: 5 =

(
© n=o' M 2 nt(2n + 1)

given by von Borbely [65] where the Bessel functions of complex argument
are evaluated by their ascending power series given in App, ¥, Although
transient time responses of the loads for specific airfoil motions,

X(s), could be-ccomputed from (2,67) via the Laplace inversion integral,
this has not been attempted, To perform this calculation would require
knowledge of the singularities of the transformed loads which are not
readily available, Note that the loads given by (2,67) do not involve

a single nonrational transform such as C(g) for the M = 0 case,
Fortunately, the exact transient time responses for indicial motions have
been calculated by Chang [66] and Lomax, et al, [10], The time responses
of the loads for indicial motions at supersonic velocities are typified
by discontinuous first derivatives and different functional dependence

for various time zones, These facts indicate that calculation of trans-—
ient loads using inverse Laplace transformation would be laborious, Chang
used the indicial response functions to calculate the simple harmonic
loads from the convolution integral and noted [26] that arbitrary trans-
ient motions could be treated in the same manner, The primary use of

the transformed loads, (2,67), is for the investigution of airfoil

stability-~the flutter problem,
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Chapter IIX

SOLUFION OF TUE AEROELASTIC EQUATIONS OF MOTION

The expressions for the loads,

into thc cquations of motion, (2,1), giving

with

and

Q(s) is derived from either (2.34) or (2,67).

G(s)X(s)

G(s) =

ﬁ(s) = G‘“(S) .

B(s)

Ewssz + Bss + Ks - Q(g)]

(2,34) or (2,67), may be substituted

(3.1)

The primary goals of the

analysis of (3,1) are the determination of the stability of the system

and the calculation of transient motions,

Since the airfoil is a linear system, its stability is determined

by the homogeneous version of (3,1)

G(s)X(s) = 0, (3.2)
Table III-1
METHODS OF SOLUTION OF AEROELASTIC EQUATIONS
Method Aeroelastic Equation Solution %t?bil%by
Criterion
2 - -
P {Mss + K - Q(8)}x(s) =0 s = Tk+ik Y
k {m - Lk - — Q(1k)}X(ik) =0 L (1+ig) g
s Ps 2 = w2
2 -
p-k {Mss + K- Q(ik)}x(g) =0 s = Yktik Y
augmented 2 t -l
zmente 11 t-0t (s 1 = = id S COs G
states {Mss + K1-Q (8)}xt(s) =0 s = gtiw 2 2

A L A o st a2 abitabm A e oo it <)‘_d
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Nontrivial solutions ave given by the zeroes of the characteristic cquation
bet[@(s)] = 0 (3.3)

which are the poles of the system, Table III-1 is drawn from Hassig [28]
and summarizes the prevalent techniques of determining the zeroes of this
equation, The structural dauping matrix BS has been eliminated for
convenience, The matrix @(s) 1involves structural, geometrical, and
aerodynamic terms which influence the solution, The structuiral and
geometrical terms are valid for arbitrary motions, while the motions for
which the aerodynamic terms are valid depend upon the underlying theory,
For instance, quasi~-steady aerodynamics (Q(s) = le + Qz) may be used
to analyze arbitrary motions for low frequency effects, while calculations
of flutter boundaries commonly utilize aerodynamics which are valid only
for simple harmonic motions. The p~method is intended for use in the
former case, in which Q(g) is valid for arbitrary motions, If Q(E)

is a rational function of E, (3.2) becomes a linear eigenvalue problem
and solution by linear matrix techniques is possible, Otherwise, the
roots of the equation must be determined by iteration, The advantage of
the p~-method is that the exact roots and the degrec of stability of the
system are determined, to the extent of the accuracy of Q(s). The
stability criterion is that the real parts of the roots of the equation,

vk, must be negative,

The k~method is the traditional U-g method which is used to determine
the flutter boundary utilizing simple harmonic loads, Complex roots are
obtained by introducing the artificial structural damping factor g, and
a root of the equation rzpresents a point on the flutter boundary if the
corresponding value of g equals the assumed value of g, Disadvantages
of the k-method are: (1) many solutions are required to obtein "matched-
point' flutter boundaries; (2) for a given airspeed, several solutions with
different frequencies may occur, leading to problems of sorting the roots,
and (3) information obtained regarding subcritical and supcrcritical
flutter conditions is only qualitative, Regarding the last point,

Richardson [27] and Goland and Luke [30] give calculations illustrating
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the differences between rates of change of dauping at the flutter speed

calculated by the k-method and by more accurate methods,

The p=k method [67] attempts to improve upon the k-method for sub-
eritical and supercritical flutter conditions (i,e,, non-simple harmonic
motions) by allowing the reduced frequency to be complex instead of intro-
ducing the structural damping factor g, It assumes that if Q(ik) 1is
calculated for oscillatory loads at s = ik, then the same loads will be
good approximations to the truc loads for s = rk + ik if ¢y <1 ,

Results given by Hassig [28] confirm the usefulness of the method,

The augmented state method is fundamentally differcnt frem the first
three methods of Table III-1 in that it attempts to model the unsteady
aerodynamics with a rational transform, The primes on the matrices of
the last row of Table III-1 imply that the matrices have been modified
to include the augmented states, The advantage thus achieved is that
the resulting system may be analyzed by linear eigenvalue techniques,
Note that the p—~method has been used in the past with quasi-steady aero—
dynamics (thus ignoring the effect of the wake) to maintain the rational
form of the equations, while the k- and p~k methods have sacrificed
the rational form to include the wake effects in more accuiate oscilla-
tory aerodynamics, The augmented state method is based upon R.T. Jones
technique [29], [6], of exponential approximations to inddicial loading
functions, and wake effects may be approximated at the expense of the
extra states, Since this form is we: ‘iited to the needs of active
control, it has found application in aircraft stability augmentation

studies .and is studied in detail in the next chapter,

The differences in the stability criteria of the various methods
may be delineated as follows: (1) the p and p—~k methods determine a root

at s = vk + ik; (2) the k-method determines a root at xr + ixl =

(l/wz)(1+ig); (3) the augmented states method finds a root at s = g+ iw.
The stability criterion for the p and p~k methods is given by the signs
of y =tan ¢ where ¢ is the angle between the 1k axis and the

root, wnile the stability criterion for the augmented state method is
—_—

given By the sign of ¢( = ch + wz corresponding to a characteristic
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equation factor (52 4 2Cws 4 w2) = [(s+a)2 o mz], For roots close to-the
iw axis, (¢~ y, The stability criterion for the k-method 1s deduced
from the ?haract;ristéc equation (for a one DOF systoem) mss2 + ks(l+1g)
0, or s 4 igw 4 w = 0, Thus the correspondence hetween g and ¢

i 2Cws Ay ing or g ~ 2C, 'The nonphysical naturce of solutions bhased

on the k-method for nonzero values of g can be secn by factoring the

characteristic equotion:
< K 3
, _J_s_ o) 5 [ A(xte))?
s = ~ (1 + ig)* ~ ~ [0 ]
s s
_ "_{_b_ i(n/2+0/2) ‘s i(-y/240/2)
S ™I ? m. ° y
s

~

The roots of the characteristic equation are not complex conjugate factors,

emphasizing the unphysical nature of the solution,

The remainder of this chapter extends the p-method of solution by
using the generalized aerodynamic loading functions derived in the last
chapter to study arbitrary airfoil motions, In the next section, the
stability problem is’studied and the last section studies arbitrary

transient motions of airfoils,

A, ROOT LOCI OF AEROELASTIC MODES

In Ch, II, analytic expressions for Q(s) were given for two-dimen-—
sional incompressible and supersonic flow, The loads, Egs, (2,34) and
(2,67) are valid for arbitrary motions and give the cxact airloads,

They may be combined with the equations of motion as indicated in (3,1)
and the stability of the aeroelastic systems studied via thc p-method

of Table III-1, Similar calculations are mentioned by Dcengler, Goland,
and Luke [25] in attempting to define their generalized Theodorsen func-

tion but have evidently never been published,
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Since the loads are not rational funetions of &,  a computer program

wvas developed to numerically determine the roots of the characteristic
equation, For the systems Ltreated in this thesis, it was feasible to
numerically expund the determinant in (3,1), A gradient scarch algorithm
was cmployed to locate the zeroes of the determinant which are the poles
of the acroelastic system, The gradicnt was numerically determined by
finite differences in the s-plane and the performance of the algorithm
was quite satisfactory for the systems treated which included systems

of four DOF (degrees of frecdom), (eighth order),

Table III-2 shows the behavior of the algorithm in converging to a
root, Convergence is shown for a three DOF section and a four DOF section,
The nondimensional velocity was U/bma = 3,0, near the flutter speced of
both sections and the search was started at s = 60 rad/sec_ For the
three DOF section, the algorithm locates the root to four significant
figures in three iterations, Five itcrations are required to achieve

the same accuracy for the four DOF section,

A-1 Incompressible Two-Dimensional Flow

Table III~3 lists the structural and geometrical parameters of the
three DOF system used in the following calculaticns, The frequency
ratio wh/wa = 0.5 while the natural frequency of the flap mode is

three times the torsion mode frequency,

The equations of motion, including the loads, were given by (2,35)

and are repeated here:

{
{(LIS-T]MHC)SZ + [Bs-n(%)(snc + c(g)nsz)]s

? (3.4)
+ [Ks-n(%)z(Knc+C(§)Rsl)]‘ §(§) = GU(S>,'..

The loads contain the generalized Theordorsen function C(s) which is a
function of s and U/b, Thus, with the nond}monsionul velocity speci-

fied, the roots of the equations of motion may be determined by iteratien
in the s-plane, Figure III-1 shows the cxact locus of roots of the threco

DOF system of Table 1II-3 as a function of U/bw , The inertia coupling
o
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FIG. III-1
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of the three modes causos the zevo airspeed natural frequencies to be
shifted from their uncoupled values, As the alrgpeed lnereases, the bend-
ing and torsion modes are secen to approach cach other in the stable
left-half plance with the bending branch becoming the flutter wode at
U/m%xfn 3,0, Tne flap mode remains stable throughout this speed range

ceven though g“ = 0,

Becausc.the terms involved in the matrix of coefficients of (3,4)
do not become infinite in the finite s-plane, the determinant has no poles
and examination of the number of 360°% phase changes of the determinant
around a closed contour will directly indicate the number of zeroes
within the contour [57, P 61]. This was accomplished for the section
of Table III-3 at U/bub = 3,0 by evaluating the determinant along the
branch cut on the negative real axis, and along circles of radius
0,0001 and 1000 rad/sec. Six 360° phase changes were obtnined, account-
ing for the six known structural poles and it is concluded that these

are the only isolated singularities of (3,4) at this airspeed,

The root locus format is used for the presentation of results rather
than the conventional U-g, U-w plots since the ability to calculate
generalized aerodynamics makes this a more natural format, It avoids the
numerical problems of root-sorting since the loci do not cross each other

and it is required for active control design applications,

A~2 Supersonic Two-Dimensional Flow

Table III-4 lists. the parameters of the three DOF section used to
illustrate the aeroelastic root loci in supersonic flow, The loads,
(2.67), are functions of the generalized supersonic reduced frequency
parameter, w = -12§M2/(M2-1), and the algorithm described above may
again be used for the determination of the system poles, The equations

of motion, including the supersonic loads, are

i, (3)3s% + [~ (DB (3)] s

(3.5)

+ [xs-:,'(%)?xil(é)}} X(s) = GUW(s),
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Table III-4
THREE DEGREES OF FREEDOM SECTION PARAMETERS ¥OR SUPFRSONIC FI.OW

w_ = 100 ra./sec Xx = 0,2
x ' o
w_ = 50 rad/sec r? . 0,25
h Q ¢
w, = 317 rad/sec X = 0,0125
B £
= 40 2
o= rB = 0,00625
a = 0 = 0
%
c = 0,6 b =1,35m
a_ = 333 m/sec
o«

where T' = 87,72/#1\32 -1,

The locus of roots of this section are shown in Fig, III-2 as a

function of Mach number, At M = 1,25, both the lowest frequency coupled-

bending-torsion mode and the flap mode are unstable, It is suspected that

the flap mode is primarily a single DOF flutter mode [68]., As the Mach
number increases, both of these modes become stable at M = 1.4, Above
M ~ 1.8, the remaining coupled bending-torsion mode flutters, Hence,
for the mass ratio p = 40, the range of stability for this section is
1,4 s M < 1,8,

The aerodynamic matrices Ma’ Ba’ and Ka are derived from terms
composed of finite integrals of exponentially welghted Bessel functions
of integer order as shown by (2,68), Since these Bessel functions are
single-valued analytic functions of s, there will be no hranch points
of (3.5) as in the incompressible.case, However, a cursory review of
supersonic. indicial aerodynamics [e.g,, Lomax et al,, Rzf, 107, leads

to the conclusion that (3,5) must nave more singularities than the six
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structural poles, because these six poles cannot yield the complex indicial
functions, Since the poles of the system arce the zeroes of the determi-
nant of the matrix of coefficients of (3,5), a scarch was made Tor additional
zeroes ol this function, A circular contour of radius 1000 rad/sec centered
at the origin yiclded six 360° phase changes of the determinant, account-

ing for only the six known structural poles, Further scarching located

the first additional zero as a complex conjugate pair at s = -1315 +

i 1501, over ten times the frequency of the flutter mode, No other zerocs

were located since the power series expansions used to evaluate the com-

plex Besscl functions were numerically unstable at larger values of |s .
However, it is anticipated that an infinite sequence of additional zeroes
of increasing modulus does exist, due to the oscillatory nature of the
exponential weighting factor in the integrand of (2,68), and accurate
transient response calculations would require the evaluation of a number
of these zeroes of lowest modulus and their corresponding residues, For-

tunately, the flutter problem can be studied by determining only the zeroes

due to the structural poles, as indicated in Fig, III-2,

B, INVERSION INTEGRAL FOR ARBITRARY AIRFOIL MOTIONS

Returning to the case of incompressible flow, it is possible to
calculate exact transient motions from (3.,4) using the Laplace inversion

integral, With the substitutions S

a(s)

)

B(s) = GU(s) .

H]

ae f

ol




FEquation (3,4) becomes

@(s)x(s) = %(s) (3.6)

where @(s) and §{s) are nXn and nym muatrices whose clements arce func—
tions of s, and X(s) 1is an nxl state vector, The number of degreces
of freedom of the airfoil is n while the number of control inputs ic m,

If Det{@(s)] £ 0, [a(s)]-1 exists and the solution of (3,6) is

x(s) = [G(S)}-lﬁ(s) . (3.7)

Assuming m = 1 (extension of the following results to the multi~input

case is straightforward), the transform of the jth state is

(s) N (s) "(s) (3.2)
X.\8 = = R
J D(s) S
and
g+ie
N.(s)
1 st
- s 3.
gcj(’c) = 2niS e Us)e” ds . (3.9
g-~i®

Cramer's rule is used to evaluate ﬁj(s), with D(s) = Det[@(s)] and

NJ(S) = Det[@(s)] with the jth column of @(s) replaced by G. Due to
the complexity of (3,7), it is no lunger feasible to obtain analytic ex—
pressions for the integrand but it may be evaluated numerically, Since
the elements of ({(s) contain C(E), 53(5) will have -a branch cut along
the negative real axis and the contour of integration may be deformed as

shown in Fig, II-6 giving

N s t g . . X
£ 1 i =14 ~rt
x,(t) = D Resje --,—.S [ac.(re )- 5 (re )}o dr ,  (3,10)
J 4=1 % 2rd o J J
~56~




where Sp' P, 2, o.., N are the poles of (3,8), and the residues are

evaluated at the poles by

Res

b
b

with As = s = S, (Since the poles are determined numerically by
iteration, D(sﬂ) = 0.) The poles due to the structural equations of

motion may hbe assumed to be complex conjugates with s, = a, + ib

2 2 I

Spel T % T ibp. Poles due to 1(s) may be real or complex but for the

following development, it is assumed there are N complex poles within

the contour, Since §j(t) must be real, the integrand must be pure

-19T .
imaginary and therefore x (reln) and §j(re i ) are complex conjugate ex-

J

expressions, With Nj(sz) = N?z + iN§£

N/2 a,t ®
X(t) = ﬁ 2e )/ [NR cos b t“NI sin b t] - _1_ Im X.(reiﬂ')] e"rtdr
=J =1 J,@ £ Jz )/ T | b

= o

(3.11)
or
x.(t) = x. (t) +x. (¢).
J Jr Jnr

The incompressible flow transient response of the three DOF section
of Table III-3 will be calculated for a unit step input command to the
flap U(s) = 5c(s) =1/s, for U/b = 290 sec—l, Figure III-1 indicates
that the bending mode has a subcritical damping ratio of ( = 0,03 at
this airspeed, To study the effect of changes in airspeed on the non~
rational portion of the response, Im[xj(reiﬂ)], j =1, 2, 3 is plotted
in Fig, 1II-3 for U/b = 200,290, and 350 sec—l, At time t, gjnr(t)
is given by the integral of the product of the function shown in the
figure and e—rt, The value of 5Jnr(0) is proportional to the area

under the curves, and since all of the functions go to zero at r = 0,

%im X ; r(L) «+ 0, In other words, the nonrational portion of the response
..;D'—<
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does not participate in the motion characteristic of an unstablce (luttering
airfodl, Note that all of the curves shown in Fip, [11-3 arce smoothly

varying functions of  U/b, cven as the airforl Clutters at  U/b > 300 nuuuj

The peles and residues required to evalute (3,11) were caleulated,
and the integril was cvaluated numerically, The component and total trans-
ient responsces of the plunge and torsion modes arce shown in Fig, TI11-4,

In this casc, the contour integral about the infinitesimal cirele at the

i

origin in Fig., II-6 will be nonzero, its valuc being the steady state

value of §J(L) due to the step change in Qc. These steady state values
were determined from (3,6) by applying the final value thcorem, %ig sxj(s) =
%32 §J(t) rather than by contour integration, The oscillatory harmonic

mode superimposed on ar(t) and to a smaller extent on hr(t) is due to

the very lightly damped flap mode which is not shown, The nonrational
portion of h(t) 1is 75 percent of the rational portion of h(t) at
t = 0, while the corresponding percentage for (t) is only 15 percent,

As in the case of the transient loads, the nonrational portion of the

“._;.A‘_.‘._.‘L“ L

response is characterized by » rapid initial decay followed by a slow
asymptotic decay, the entire function being a monotonically decreasing
function of t, Since the responsec of a mechanical system to a step input
in torque must start at zero, the sum of the rational and nonrational

portions should cancel the steady state value of x Hence, the small

j.
nonzerc value of @(0) and the larger value of h(Q) are attributed {

to numerical inaccuracies in evaluating the residues,

The following comments are made-with respect to Fig, 1II-4,

1, The oscillatory motions typifying flutter phenomena are due
cntirely to the rational portion of the response, If a method
were availlable for modeling only this portion of the systenm,
it would serve to describe the pertinent features of the
flutter problem, This concept will be pursued in Ch, V,

2, The effect of the nonrational response on the oscillatory total
response would tend to complicate the determination of the damp-
ing ratio of the rational portion, Techniques for determining
damping ratios which do not address this fact may produce in-
consistent damping estimates, This effect may be aggravated in
cases with random structural cxcitations, If an estimate of the
nonrational response were available, subtraction of this estimate
from the total response may improve the damping cstimates,
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Chapter IV

’
PADE AI’I’R()I}"#!\IAN'I‘& AND AUGMENTED STATE METHODS

To obtailn solutions of Lhe acroclastic cquations of motion, kg,
(2,1), it is necessary to speceify the acrodynamic loads, 1,  In Chapter
II the exact analytic loads were given for two-dimensional incompressible
and supersonic {low, and a technique for obtaining similar loads for other
(low regimes was indicated, In Chapter IIL, thesce loads were incorporated
into the acroclastic equations, and solutions were obtained by an itcerative
scarch procedure, In the presenc chapter, the usc of Paddé approximants
of the loads to producce augmented state aecroelastic models will be studied,
The advantage to be gained is the-ability to perform analysis with the
resulting c~onstant cocfficient, ordinary differential cquations, The
penalty paid to achieve this advantage..is that higher order models must
be manipulated, An implicit constraint of the technique is the minimiza-
tion of the required number of augmented states to adequately represent

the'loads.

A, INCOMPRESSIBLE TWO-DIMENSIONAL FLOW

Augnented state methods for this flow regime derive from R,T, Jones'
[291, [9], exponentiul approximation of Wagner's indicial loading function,
Many investigators have used the method, including Goland and Tuke !30],
Baird and Kelley [31], Dugundji [32], Richardson-[271, and Lyons et
al,,'69], Jones' approximation is

~0,0455¢" -0, 3t
k (£1) ¥ 1 - 0,165 . 0455E Ty nag, 03t (4.1)

Garrick [70] noted that the lincarity of the governing equations allowed
the calculation of arbitrary transient.lift functions by the convolution

integral

1
p(t) ‘ dQ( 1)
—_ < Ct) - < - el ARV
2aPhu Q(O)l 1 t) S l 1( (=1) dt

)

dt 1.2
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oroequivalently,

L
(L) k (0)Q( 1) + S k! (1 :
= Kk )+ < ~7)Q(1)d, a
25U - 1( Q) A 1< )Q(+) (1,3)

Since kl(U) = %, Laploce transformation of (4,3) yields
‘ ‘r
p(s) = 2eenufo.s v LK (e) fals). @.a) ]
1
Jones' approximation, (4,1), gives the transfer function relating Q to P i
as 4

p(s) 0,552 4+ 0,28085 + 0,01365
— ﬂ * . .- . -
) 210bU > . (4,5) 1

s° 4+ 0,3455s + 0,01365

It is well known from linear.:system theory that the functional relation
given by (4,5) may be described in the time domain by the constant co-

efficient, linear, ordinary differential equations ,

W s ¥ A

51 = 52 (4,6a) !
U 2 U ‘
> = - =) x, = 0,3455(- 4,6b
X, 0,01365(b)_ x, = 0.3455¢2) X, + Qt) ( )
1
U2 U
P(t) = 2nobU{0.00682565) 51 + O.lOBOSGE) §2 + 0,5Q(t)¢,

Garrick proposed the approximation kl(t') T (t'+2)/(t'+4), but this
function does not have a rational Laplace transform and the resulting

approximation to P(t) cannot be given by ordinary differential equations

as in ¢4,6), Hence, in order to ensure the computational efficiency ob-
i tained by differentinl equations, it is customary to utilize approximations
whose transforms are simple functions,

The rational transform in (4,5) may be evaluated at 5 = ?eie and
the resulting real and imaginary portions compared to the generalized
Theodorsen function shown in Fig, 1I-5, Figure IV-1 indicates that the

approximation is a good representation of C(s), especially in the right
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hall-plane, The agreement deteriorates as o inercases heyond 907,
This is primarily due to the proximity of the isolated poles at

S = =0,0455 and -0, 3, |
FVigure IV-2 is a comparison between the exact nonrational 1ift co-
cfficient shown in Fig, [I-7, and the lift coefficient given by (4,5)

for the motion given by (2,19), The exact cocfficient is given by the

last term of (2,50), while the approximate 1lift coefficient was obtained ' }
. . . . -~ = =2 =2 !
by partial fraction expansion with Q(s) = /(s+0) +w as j

-0t!?
~21<0, 5¢ sinpt!

T TR

c =
¢
nr
ab ~0,0455t" -Gt! - 5-0,455 . - ) <
+ 5 e -e (cos wt’ +-—-73———51n wt! :
(0. 0455-0) 2% —
-4
4
b -0,3t' -0t - G~ -
— [e 9tT _ gm0t (cos ot o+ g's sin wtq] f
(0, 3-0) (4.7) )
where O = w = 0,1414, a = 0,0074999, and b = 0,10055, The approximate
lift matches the exact 1ift very closely even for this heavily damped
airfoil motion with ( = 0,707, This would indicate that equations (4.,5) 1
and (4,.6) may be used to calculate accurate circulatory loads for incom— i

pressible flow,

A unique feature of the incompressible case is that all of the cir-
culatory loads involve the single nonrational function C(s), greatly
simplifying the approximation problem, Equations (4,6) are in a form
which is coumpatible with the structural equations, (2,1), The resulting

model uses the augmented states

"1
X
p %, |
and is given by ‘S i
, Al,PP&‘E
-G~
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0 M = -K' Bt -la
1 0 X K B D x | u (1. 8)
0 O I Kp F1 E2 Dp X 0
where
M"Y = M = 1M
S nc
U\2
Wt — - -—
K' = Ko = n(g) (K +0.5Rs)
B' = B_ -~ n(3) (B + 0.5 RS,)
s b ne * 2
p = nE)r|o,006825(2)2, o.1osos(£)]
b b b
0 1
Fp - Ueo U
-0.01365(-5) —o.3455(3)
0
E. = (2) |-
1 D
1
0
E, = -;— .
2

For an airfoil with n degrees—of—freedom,_ X is n-dimensional, while

zp is two dimensional, The submatrices in (4.8) are dimensioned

conformably with these vectors and the tctal dimension of the model is
2n + 2, Since the 'inertia matrix' of the left side of the equation is
nonsingular, multiplication by its inverse gives the standard form used

by control engineers

e
Il

FX + G u (409)
with

-G8~

_o/

B M al = \_

P )




X 0 I 0 o 7
X =% |, po= o |-(0) PR () g ORI Gy = ) el
Xp El Lz Pp 0 -

The elements of F are functions of (U/b) and the eigenvalues of
I are approximate roots of the aeroelastic equations of motion, Figure
1V-3 compares these eigenvalues to the exact roots of the section of
Table III-3, From the close agreement between the exact roots and the
approximate roots, it is concluded that the linear rational model of the
incompressible two-dimensional section, (4.9), is interchangeable with the

exact model, (3,4), for the purposes of engineering design,

It is also possible to compare the frequency responses of the exaect
and approximate models, The frequency response of X due to sinusoidal
oscillation of u; is obtained from (3,4) by tabulating (§i/uj)(iw) -
N;(iw)/D(iw). Similarly, the frequency response is calculated for the
approximate model of (4,9) by tabulating the transfer function of
(Xi/uj)(s) for s = jw, Figure IV-4 compares (h/BC)(iw) and (a/ﬁc)(iw)
for the section of Table III-2, The good agreement between the frequency
responses, especially in the range of flutter at w £ 70 rad/sec, indi-
cates that the poles and zerces of the approximate model provide valid
representations of the exact system. The dip in the amplitude seen on
all of these frequency response plots in the range 70 < w < 80 rad/sec
indicates the presence of complex zeroes near the flutter poles, The

location of these zcroes is critical to any active flutter control

scheme and they will be studied in detail in the next chapter,

To apply the above technique to other aerodynamic regimes, indicial
loading functions must be calculated so that the exponential approximat:ons
may be obtained, Although there is a significant literature concerning
such functions [Lomax et, al, Ref, 10; Drischler, Ref, 717, their calcula-
tion is laborious [e,g,, Rodden and Stahl, Ref,. 727, and the technique

has not been used widely,
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B, VEPA'S PADK APPROXIMANL METIHOD

The problems associated with the enleulation.of indicial loading
functions led Vepan Lo an alternative method {697], [33], [34], The availl-
ability of the acrodynamic loads for simple harmonic motions, from
numerous well=developed techniques (e,g,, kernel function or finite
clement methods), suggested the apprs-ximation of the loads by Padd approx—
imants, A Padd approximant (PA) of a function is o rutio of two poly-—
nomials which approximates the function in.some range of its argument,
Baker [73] gives a thorough summary of the prowerties of Padé approxi-
mants for the case where a Taylor series expansion of the function is
available, The usefulness of PAs is due to the case of the analysis of
the resulting analytic, rational functions as opposed to the original
function. If the original function is known only in tabulated form, as
for the aerodynamic loads, a PA may still be obtained by fitting the
rational fraction N(s)/U(s) to the tabulated values for s = ik using

(for example) a least square technique,

The intent of the application of such approximants to unsteady aero-
dynamic loads is to allow the aeroelastic equations to be solved for
arbitrary motions, i,e,, throughout the s-plane, This assumes the
analyticity of the unsteady loads, a point of some confusion in the past
due to the discussion of the generalized Theodorsen function., Necverthe-
less, such approximations have been utilized, a primary example being
the uesign of the active flutter control system described by Roger and

Hodges [47.

Vepa suggested that the PA of the generalized force, qij’ in the

ith mode due to deflection in the jtI mode could best be represented by

qij(s,M) = _ — . (14.10)

This ts referred to as an [N,N+1] PA, The PA is constructed to yield

the correct steady-state value q91, and may be modeled by N constant
i

i =

‘&J
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coclficient, ordinary differentinl cquations, The high froguency limit,

a s/0M, may be chosen to give the piston theory load, while in incompres-
O

sible flow with M - 0O “o yields the noncirculatory, 'virtunl mass' load,

!
Vepa [383] shows that the numerator coefficlents, Ay, are determined
by the denominator coefficicnts bi’ and by constraints (e,g,, o

1

n+- 1
involves the deter-

Cik, M)

Jn+lqij)‘ Thus the determination of the PA for qij

mination of the N constants, bi’ -2, ,.., N¢1, Haence, if ”ii

is tabuluted for mere than N values of k, the bi may be determined

by a linecar least squares technique,

Vepa ¢comments that in order to obtain accurate PAs, a large number
of reduced frequency values are required in the high frequency and the
low frequency range, In his Ref, 33, tables of [2, 3] PAs are given
for plunge, rotation, and flap modes in two~dimensional flow for M :-

0.3, 0,4, 0,5, 0,6, 0,7, 1,5

’

, 1,75, and 2,0, The location of the
roots of the denominator of (4,10) are of concern since the PAs of un-—
steady loads are approximations to stable dynamic systems and should
themselves be stable, Also, in the incompressible case, the loads are
multiple-valued functions with branch cuts and, since the PAs are single-
valued, they cannot yield valid approximations along the cut, Baker
gives examples indicating that the poles of the PAs cluster along the

cut and conjectures that as the order of the PA tends to infinity, the
poles tend to a 'pole-distribution' along the cut, Since the incom—
pressible loads- have a branch cut along the negative real axis, the poles
of R.T, Jones' approximation would thus be expected to be found therc

and this is indeed the case, the stable poles being located at 5 : -0,0455

and s - =0,3,

This approximation technique would be an attractive method for the
analysis of the aeroelastic system were it not for the high order of the
resulting model, With cach generalized load modeled by its own independent
[N, N+11 PA, the dimension of the model is 2n 4 an, For a three DOF
scction with [2, 3] PAs, the dimension is 24; 6 structural states and
18 PA states, On a realistic design problem, the dimension associated
with the approximants may become ten times that of the original struc—

tural model, The design obtained in Ref, 4 used from 18 to 27 structural
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modes, while the total dimension was as high as 200, It would obviously

be desirable to obtain comparable accuracy with lower arder appraxime

Lions,

C. TIE MATRIX PADE APPROXIMANY

Exumination of the transient responses obtalned by inverse Laplacoe
transformution of the PAs lod Vepa to attempt the approximation of the
generalized load matrix, Q(s,M), by matrix PAs [73,7], The load matrix

velates X(s) to I, as

g 5 = o(5,M) X(s) (4.11)
P U”
and the wmatrix PA is
o(3,M) = Pp(3)R(3)™* (4.12)
N+1 N-1
where - i - -1 _~N
P(8) = 2. P8, R(3) = z: RS + IS .
1=0 1=0

The minimum number of augmented states is given by N = 1

. - n2ar -1
Q(5,M) = [po + P8+ p,37][15 + RI . (4,13)

The properties of Q(E,M) are dependent upon the eigenvalues of the

matrix RO, and the philosophy underlying the use of the matrix PA is that

the individual loads q_J may be approximated by suitable linear combina-
i
tions of 'shared' eigenvalues, As in the scalar case, the numerator

matrices Pi are determined by RO and independent constraints, while

R is determined by a least squarcs procedure,
O

The numerator matrices
allow three constraints, one of which is the matching of the steady-state

loads, Q(O,M), This determines P0 as




po= oo (o, (4,14)
88 QO

O

The remalning two constraints may be used Lo enforce o mateh between Lhe
matrix PA and the tabulated siwple harmonic loads at the antlceipated

reduced frequency of flutter, and with Q(‘ikf, M) & QJ(RI‘) + i,Qz(kj.)

Q, (k 1») R

y o (K (4,15)
o S e
o, (k) o (o.M - q (k)
p - L L, S8 LR RN (4,16)
2 K 2 O
f ki‘

Although the piston theory 1l mit is not enforced, the piston -theory loads

QPT

monic loads are given at m  values of reduced frequency_ yielding

are used with (4,16) to obtain a solution for RO. The simple har-

0 (kz)-QSS(O"M) Qz(kz)

1 A
= == . ; L =1, ,... m, €4.17)
Ro Kk Q 8

Kk I

Equation (4,17) providess nm equations for the n  unknown elements of
RO and with m > n a least squares solution is possible, The matrix PA
of (4,13) requires only one augmented state for each degree~of-freedom of
the structural model, and the resulting model has dimension -3n..as

2]
opposcd to 2n + Nn~  for the previous PA model,

The incorporation of the matrix PA of (4,13) into the structural

cquations is facilitated by transformation to the state spuce model-—

X, = Fplp * G (4.182)
-p p-p p-
—y TR SR U S { F (1,18h)
Ph7U I
vhoere
-7
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q
LN 9.1
o . - PR b} ! > o~ P )
]I) LI)() lll‘n ! lif]{()]l\()l'l() I]RO [ li!“f):]
G b P PR P lt'g
p ) 1 o 20
o o=n
. = (B\(P - PR ),
2 U’ 1 270
i ~
The wmatrix PA- aodel is given by (2,1) and (4,18)
I
r~ ~
) I i B e i
I 0 o-1 X 0 : I - 0 || % Fo
| ]
2 4
.. ) U | U U 2 .
0w, of |5 | = brennnen@updd 5 | 6w e
I : 1
s |
O 0 1 X G 0 i F X 0
= p | p p

The accuracy of the matrix PA will be illustrated in the remainder of

this secction, R

C,1 Supersonic Matrix Padé Approximants

Simple harmonic oscillatory supersonic loads (2,67) were calculated

| for a threec DOF scction with the elastic axis at midchord and a 20 percent

chord aileron (a = 0,0, and ¢ = 0,6), The load matrix, Q(ik,M) was cal- 1
culated for k = 0,05, 0,1, 0,2, 0,3, 1,0, 2,0, and 3,0 for the
Mach numbers M = 1,5, 2,0, and 2,5, The steady-state loads werec cal- i

culated from the Ackeret—formula %

as o

i
? - =1 o 2 : (1.20) f
';)—b-erz = V—I\TZ:T G 8] (1-¢) RN I . E
2 . )
t\‘ (1~c) -(1-¢)” 3
- - ._J
. sl B
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: . . 2
Fhe piston theory loads are derived from the starting pressure Ap/xpU

~ (1,037 /31)

~4,0 0,0 -0,16 n
2 = (D) 0 1,333 0,1386 w (4.21)
R MU .
~0,16 0,1386 ~0, 0486 LS-J
-

The matrix PAs were calculated for M = 1,5, 2,0, and 2,5 for the assumed
flutter frequency k
in Table IV-~1,

g 0,2, and the resulting approximants are tabulated

For this case, the exact loads may be calculated for general values

of s and compared with the equivalent loads calculated from the PAs in

Table IV-1, Figure IV-5 gives this comparison for the loads cﬁh’ cma
and an at M = 2,0 for § = ?ele with 60° £ 8 < 150°, The two sets
of loads are indistinguishable for ]kl =T < 0.25 and generally agree

to within 5 percent for T < 0.5,

The PAs of Table IV-~1 were used to calculate the eigenvalues of
(4.19) for the section of Table III-4, Figure IV-6 compares those eigen-
values to the exact roots of the aeroelastic equations from Fig, II1I-2,
With b =1.35m, and a_ = 333 m/sec, the reduced frequency is 0,11 <
k < 0,23, While the PA was constrained to yield the correct oscillatory
loads at k = 0,2, good agreement between the exact and approximate

roots is seen throughout this range of reduced frequencies,

From the discussion in Ch, III, Sect, A-2, it is known that the
supersonic aerodynamics introduce an infinite sequence of poles of in-
creasing modules to the aeroelastic system, Thus it may be anticipated
that the ecigenvalues of the PAs would provide estimates of these addi~
tional poles, The eigenvalues introduced by the PAs are given in Table
Iv-2, The first column of the table gives the eigenvalues of Ro (scaled
by U/b), These polcs are associated with the 'open-loop' aerodynamic
medium as modeled by the PA,. The sccond column of the table gives the
elgenvalues of (4,19) introduced by the PAs, and may be interpreted as

the 'closed-loop' poles resulting from the interaction of the structural
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dynamics with the aerodynamic medium,

Table [V-2
EIGENVALULS OF SUPERSONIC PADE APPROXIMANTS

Eigenvalues of Eigenvalucs of Eq,
M RO(U b), rad sec (4.19) (rad/scc)

1.5 | =690, ~1938 + 1147 -844, =243 + 1181
2,0 |~-1848, ~484 * 1331 ~1855, -480 + 1333
2,5 1 --2784, -657 * -i448 -2785, -655 + 1407

For this three DOF system, the eigenvalues of the PAs are characterized
by a complex conjugate pair with slightly greater than critical damping
and a real root of larger modulus, All of the eigenvalues are stable
and increase in modulus with increasing Mach number, This correlates
with well-known results of piston theory, in which no augmented states
are required to model unsteady aerodynamics at hypersonic velocities,
The eigenvalues are well above the bandwidth of the bending-torsion
airfoil section (w < 100 rad/sec) and the slight difference between
corresponding eigenvalues in the Table indicates that the modes of the
PAs do not couple strongly with the structural modes, It is interesting
to note that the complex pair at M = 2,0 do not correlate well with
the exact eigenvaluc of the aeroelastic system at s = -1315 * 11501

determined in Sect, III-A-2,

C-2 Subsonic Matrix Padé Approximants

Vepa has calculated matrix Paddé approximants (PAs) for a three DOF
section in subsonic flow and provided them to the author in a private
communication [747, Tables IV-3 and IV-4 present these PAs for M = 0,3,

0.4, 0,5, 0,6, and 0,7, Tabulated oscillatory aerodynamics at k = 0,
, 0,5, 0,6, and 5,0 were used to construct the approximants
of Table IV-3 which assumed kf - 0,86 while the approximants of Table

IV-4 include the reducoed frequency  k 0,01 and assume ki‘ = 0,4,
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Table IV-4

’
SUBSONIC MATRIX PADE APPROXIMANTS FOR A THREE-DEGREE—OF-FREEDOM SECTION Awm = 0.4)
M= 0.3 M= 0.4 M = 0.5
0.3200E0 0,3803E0 0,5514E~1{ 0.1565E0 0,3427F) 0.6050E~1| 0,4140E~1 O0,2176EO0 0.5884E~-1
@O 0.1259E2 0,6564E1 0,2320E1 0.8016E1 0, 3830E1l 0.2016E1 | 0,4400El 0.2533El 0.1684E1l
~0,7083E0 -0,35253E0 -0,1306E0 !-0,4552E0 —0,2056E0 -0,1130E0 {-0,2503E0 -0,1360E0 -0,9403E-1
0.6617E1L 0.1453E2 0.1089E1 0.2483E1 0,8552E1 0.1204E1 |-0,2646E0 0,5338E1 0.1111E1
‘P 1 ~0.3926E1L 0.2502E1 0.2089E0 |-0,5063E1 0,1328E1l 0,4518E0 |—-0,3957E1 0.5395E0 0.6205E0
i 0,1823E-1 0,1378E0 -0,7684E-1;-0.2620E2 O0,7979E~1 ~0,7637E~1{-0,1190E~1 0,4740E~-1 -0, 7996E-1
~0.1102E2 -0,8475E-1 —-0.6862E0 |-0,9525E1 0,1109E-1 -0,5890E0 {-0,7784E1 -0,6080E~1 -0,4942E0
@m ~0,3264E0 -0,3859E1 0.6337E0 {—0,3853E0 —0,2966E1 0.5064E0 |—-0,2677E0 -0,2450E1 0.4181E0
~0,2152E0 0.3298E0 -0,9494E-1{-0,.2060E1 0,.2511EG -0,8566E-1{-0,1849E0 0.2990E0 -~0,8161E-1
0.2529E1 -0,4205E0 -0,1200E0 0.2064E1 O0,2185E0 -0,2410E0 0,1511E1 J,6199E0 -~0,3170E0
mo 0.3611E1L 0,2894E1 0.1033E1 ' 0,3452E1 0,1623El 0.8623E0 0,.1784E1 0.1014E1 0.6798E0
Qd,.9134E1L 0.4607E1 0.1683£1 m 0.5630E1 0,2583El 0.1401E1 | 0,.2920E1 0.1616E1 0.1103E1
; : L
T
(
M= 0.6 M= 0,7
} ~0,8080E-2 0,.1311E0 0.5484E-1]| -0,1730E-1 0.7100E~1 0.4950E-1
wvo 0.2328E1 0.1609E1 0.1398E1 0.1145E1 0.9860E0 0.1143E1
! ' ~),1336E0  ~0,8680E~1 -0,7784E-1| -0,6630E-1 —0,5360E~1 -0,6380E-1
: MIG.memmw 0.3194E1 0.9590E0 ~0,.1564E1 0.1772E1 0.7999EC
WH : ~0,3080E1 0,4246E~1 0,7294E0 | -0,2322E1 —-0.3222E0 0.7857E0
~0.,1020E-1 0.2590E~-1 -0.8720E-1)| -C,4900E-3 0,1170E-1 -0,9953E~-1
~0,6545E1 -0,2000E-2 -0,4176E0 | -0,5661E1 0.5415E~1 -0,3535E0
W@M ' ~0,1574E0  -0,2099El 0.3662E0 | -0,6545E-1 —0,1845E1 0.3214E0
! . ~0.1646E0 0.1873E0 -0,.8130-1 ~0,1447EC 0,1822E0 ~90,8320E-1
¢ M 0.1062E1 0,8643E0 —-0.3594E0 3.6645E0 0.1018E1 -G, 3810E0
MNQ ! 0.873¢EO0 0,.3957E0 0.5210E0 0.3844E0 0.3264E0 0.3801E0
M ' 0,1436E1 0.9507E0 0.8441E0 0,6545E0 0,5227E0 0.6150E0
1




cha's sign conventions differ from those used herein in that: h, P are
positive upwnrds, and ﬁ,Mﬁ are positive for trailingeedge upwards votation of
the adleron, The pitcehing moment is calculated aboutl midchord and a quarter-
chord aileron is assumed., The oscillatory acrodynamics were calcul ot oed hy

Vepa using a kerncl function program described in Ref, 33,

While no calculations are available to check the validity of these
PAs for arbitrary complex valves of. s, they may be compared to known

simple harmonic oscillatory loads, Figure IV-7 compares and

“on my
cnﬁ for s = ik with the Tables (75), [76] based on Timman and Van
deVooren's Mathieu function solution [12], The PA of Table IV-3 gives

an excellent match except for Re(an) which is 10 percent low at k = 0,3,
The approximants of Table IV~-4, with the low frequency point k = 0,01
included, show a deterioration in agreement with the accepted values,

The constraint imposed on the latter PA by requiring agresement at k = 0.4
is clearly seen, however, It is concluded that with appropriate checks,

the matrix PA technique can provide a good augmented state model of
oscillatory subsonic loads which are alsc valid approximations in the

vicinity of the 1w axis,

The eigenvalues of the Ro matrices of Tables IV-3 and IV-4 are
given in Table IV-5, All of the eigenvalues are distributed along tke
negative real axis except for the PA of Table IV-4 at M = 0.3 and 0.4,
Evidently, the irclusion of loads at k = 0,01 causes the approximant
to develop complex conjugate roots with the resulting deterioration in
agreement at higher values of k shown in Fig, IV-7, Henceforth, only

the approximant of Table IV-3 will be used,
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Table (V=5

EIGENVALUES OF li() FOR SUBSONIC MATRIX PADE APPROXIMANTS

M ;1 §2 23
0,3 |~0,09504 -2,807 -5,480
0.4 [~0,1095 -2,560 ~3,250
Table V-3 | 0.5 |~0,1218 -1.863 ~3,081
0.6 [~0,1001 ~1,244 ~1.,798
0.7 |~0,08734 -0,5887  ~1,137
0.3 | ~0.02374 ~3,541 * 1 1.560
0.4 |~0.02262 ~2,533 + i 0,6013
Table 1v=4 0.5 |=~0,02212 -1,263  -2,343
0.6 |~0,02105 -0,6990 -1,782
0,7 |~0,04512 -0,3401 -1,221

D, STATIC DIVERGENCE

If the incremental moment generated by airfoil pitching is greater
than the restoring moment of the torsional spring Ka, the airfoil is
said to be statically divergent, The divergence velocity is given by

[52, p, 193]

K
9
u, = > 802 . (4,22)
2b7 (3 - a) ==
auﬁ }

Static divergence in incompressible flow may be studied using the single

DOF pitch cquation

pﬁ%dgthas) > 2ﬁmﬁu@+nxx§ﬂb(@w)mujds). (4,23)

Substituting (4,22) and assuming acz/aa 277
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(4,24)

. . 2
Since static divergence is a low frequency phenomenon, the s and s terms

may be neglected, giving

[1 - c(é)(%—)z] «s) =0. (4,25)

D

A pole of tne aeroclastic system occurs at values of s for which the
coefficient in (4,25) is zero, Since C(s) is purely real only on the
positive real axis, poles can only occur there, . Also, along the positive
real axis, C(5) decreases monotonically from a value of 1,0 at r = O
to 0,5 at r = », Hence, a pole cannot occur for U < UD and for U > UD’
only one rcal pole can occur, This mode produces the motion of the diverg-

ing airfoil and occurs in addition to the 2n structural poles,

The occurrence of this divergencc modc may be studied by locating
the poles of the system in the s—plane, The exact system model of (3,4)
or the Padé model of (4.9) may be used to locate thesc poles, The airfoil
described by Table I1I-3 was modified to yield a divergencc spced close
to the flutter speced by setting p =5 and a = 0, Table IV-6 compares
the pertinent roots of the exact and Padé models as a function of airspeed,
The plunge and torsion mode poles are given for both models and thc aug-
mented state pole with largest magnitude is given for the Padé model, The
divergence spced of this three DOF section at U/hna = 1,13 1is indicated
for the exact model by the emergence of an additional real pole on the
positive real axis, Since the RIT, Jones approximation to C(s) is

accurate at low i1requencices, the Padé model gives a valid approximatiou to




this mode, Statice divergence of a finite wing was studied by Rodden and
Stahl [72} using strip theory and augmented states, They also found the
static divergence mode vo be given by the augmented state with largest

magni tude,

Table IV-6

STATIC DIVERGENCE IN INCOMPRESSIBLE FLOW
(poles in rad/sec)

—
1%%; Exact Model Padé Model
1,10 7.407 + 1 73,51 6,974 + i 73,29
-36,10 + i 48,14 -25,61 * i 31,79
-0,6253
111 7.825 + i 73,18 7.314 + i 72,96
. -37,02 + i 48,04 -25,85 + i 31,80
-0,347
112 8.150 + i 72,86 7,650 + i 72,63
) -37,94 + i 47,95 -26,09 + i 31,81
-0,0652
8.470 + i 72.55 7.982 + i 72,31
1,13 -38,87 * i 47,85 -26,33 + i 31,81
» +0,1885 +0,2431
|
8,786 * i 72,23 8,309 * i 71,99
1,14 -39.80 + i 47,75 -26.58 + i 31.82
+0,4853 +0,5702
9.098 * 1 71,92 8,632 + i 71,68
1.15 -40,73 * 1 47,60 -26,82 + i 31,83
+0,8172 40,9156

3E 1S
Off POOR QUALITY
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Chapter V

ACTIVE CONTROL, OF ABROKIASTIC SYSTEMS

The advances made during the past decade in the reliability and
acceptability of active control techniques as applicd to the stability,
control, and navigation functions of aircraft have induced similar
advances in the acroclastic design of aircraft, Garrick [77] provides u
synopsis of this activity, while Table V-1 lists the categories commonly

ascribed to chis control configured vehicle (CCV) technique,

Table V-1
CONTROL CONMFIGURED VEWICLES DESIGN CATEGORIES

augmented stability (AS)
maneuver load control (MIC)
ride control (RC)

fatigue reduction (FR)

gust alleviation (GA)
flutter mode control (FMC)

The different categories in the Table have traditionally been characterized
as affecting either the low-frequency, rigid body response or the high
frequency, elastic mode response, This 'bandwidth separation’ in the CCV
functions has become a moot subject as larger and/or more flexible air-
craft are designed and the analysis of the interaction between the rigid

body and elastic modes is becoming commonplace,

To control the acroelastic system, it is necessary to apply a control
force or torque, Although nonaerodynamic controls have been corsidered
[78, Buchek’, current designs use acrodynamic surfaces to produce the
control 1lcads, The B-52 Load Alleviation and Mode Stabilization program
(LAMS) (1] utilized accelerometer measurements at the location of the
control surface to produce augmented damping of subcritical structural
response modes, In the subscquent B-52 CCV program {791, [2], all of

the items of Table V-1 werce incorporuated, Roger and Hodges {4] document
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the flutver mode control system flight tests of this program, which is the
only flight tested FMC system in existence, This FMC design (2] utilized
augmented state Padé approximants for the loads, Grosser ct al, [3],
outline the C=5A active lift distribution control system which incorporates
MCL, FR, and’ GA systems, Wind tunnel studies of FMC systems are reportod
by sandford ct al,{5], and Haidl et al, {80], The former test was de-
signed using Nissim's acrodynamic energy technique [6.] and encountered
difficulty in stabilizing a leading edge control surface, The latter

test studicd wing-=store flutter and incorporated a FMC system designed

using oscillatory loads and a simple damping control law,

It is obvious.that on analysis technique capable of treating FMC
can also be applied to the iess demanding tasks of AS, RC, FR, and GA,
Also, the FMC problem provides a definite design goal-stability, whereas
the other CCV categories have more subjective design criteria, Thus the
FMC problem has been the subject of a number of analytical studies,. .
Turner [38) used a modified p-k method with oscillatory loads to obtain
a model amenable to modern control techniques while Dressler f39]
used a series expansion in s for the loads to obtain an.augmented state

model and applied modern optima® control methods,

This brief review of the literature of FMC focuses attention on the
key role played by the choice of the aerodynamic model., Most of the
above studies were conducted by obtaining a model described by linear,
constant-coefficient, ordinary differential equations, The complexity
of the various aerodynamic modeling techniques ranges from no augmented
states [38] to well over 100 augmented states f4], It is significant
that the only flight tested.system, the B-52 CCV FMC system, used the most
complex aerodynamic model, Garrick [77] compares the predicted flutter
characteristics of the analytical model, the wind-tunnel model, and the
flight test results of this program, The general trends of the damping
of the flutter mode were predicted accurately, although the predicted
Ilutter specd was off by 10 percent, Thus, there is room for improvement
in the modeling of aeroclastic systems, Desirable characteristics of

improved models include:
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(L) dimproved accuracy in predicting arbitrary transient responsc,

(2) uinimization or climination of augmented states requirced to
model the loads,

(3) maintaining the simplicity of ordinary differential cquations
for the model,

(4) applicability of modern control techniques to system synthesis,

(5) applicability to flight test results from the vehicle for
which the active control system is to be designed,

The last item is stressed since it implies the possibility of tailoring a
system to a vehicle during a flight test program, It might be hoped that
future FMC systems will not requirc the degree of analytical study of the
vehicle which was available to the B~52 CCV program. The design technique

which will be developed in this chapter addresses itself to the above items,

A, CONTROL OF DISTRIBUTED PARAMETER SYSTEMS

The structural elements comprising an aircraft are three-dimensional
elements (wings, fuselage, empannage, tail) whose dynamic bqhavior is des~
cribed by partial differential equations with appropriate boundary condi-
tions, Bisplinghoff and Ashley [52] formulate the aeroelastic equations

in terms of operators as

- - d =
(8-a -9a = q (5.1)
where Q,vGe, and J are structural, aerodynamic, and. inertial operctors,

q is a generalized displacement, and Q is a known disturbance 1orce,

D
Depending on the formulation adopted, S, ﬁe’ or J may be algebraic,
differential, or integral operators, For instance, the structural operator
for the bhending displaccument of a simple beam is & = az(EIaz/ayz)/ayz.
Neglecting shear deformation and rotary inertia, the uniform slender-beam

differential equation is

1 2
rI é..% 1 -a—\‘: - 1.‘?/\y‘ 1‘) . (5,2
Jy ot1° "
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For cantilever boundary conditions and (t("~ 0, the solution of (5,2)

can be expressed as [7]

=~
w(yot) = 20 o (9§, (1) (5.3
k=1
with \/—‘ )
w W #) W
~ o _k _k k k
@k(y) = A1<m1nh " y-sin/a y) -t A2<cosh,fz— y-coql;— y
gk(t) = Bk sin w t + C _cos wt
2 EI

a - —_— .

m

The natural frequencies Wy are given by the solutions of the equation

1+ cos‘/z)fz cosh.{—a.@ =0 ,
a a

This example illustrates the key concepts embodied in the study
of the control of distributed parameter systems, This field embraces
the study of lirear operators defined on a Hilbert space and seeks solu-
tions to 'optimal control' problems specified by an appropriate per—--
formance index, The distinguishing feature of such problems is the
infinite dimensionality o.. the solutions- (or the elemcnts of the space)..
This effect is clearly evident in (5,3) where the solution is described
by an infinite sequence of normal modes, Much effort may be expended
in establishing the existence of bounded inverses of the operators since,
in this event, the solution may be uniformly approximated by a finite
sum of 'normal modes', (A given function is uniformly approximated by
u sequence of functions if the approximation invariably becomes better
as additional elements of the sequence are incorporated,) This is the
basis of the well-known method of truncated normal modes in structural

dynamics problems, Since the infinite sequence of orthogonal 'in vacuo'
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modes ol (5,3) span the solution space, the solution to the actunl
problem, with (f(‘ / 0, way be obtained by projecting the applioed
distributed force 'l“,/(y,t.) onto these 'basis vectors', The resulting

goneralized forces (),l are given hy

4

q, = So ¥, (y, ), (v)dy .

In aeroelastic problems, the applied force is composed of forces due to

motion of the structure and
[~~]
0, = Z qi.g.(t)
j=1 JJ

where qij is the generalized force in the ith mode due to deflection

of the structure in the jth mode.

In the above example, the infinite dimensionality of the solution
is explicitly indicated by the partial differential cquation, (§,3),
describing the structure, .The examples treated in the previous chapters
involve pitch and plunge of two-dimensional typical sections which may
be regarded as representing the first bending and torsion modes of a
three-dimensional flexible wing, The dynamics of such typical sections
are described by ordinary differential equations, However, even.these
cases require infinite dimensional solution spaces since the appliced
loads are themselves solutions of partial differential eqguations (e.g,,

Eq, 2,6)., In the former case (elastic structures) the spectrum of the

structural operator contains an infinite sequence of discrete cigenvalues,

Vi while in the latter case (typical section) the aerodynamic operator
may have a continuous spectrum, as tynified by the branch cut of C(;),
or it may be discrete, as in the cuse of two~dimensional supersonic
loads, Note that the clastic structure problem involves the solution
of two distributed paramceter systems and the solution specetrum will be
doubly infintte, Although the mathematical description of the structure

and the acrodynamic medium thus appear to be on an cqual footing, it is
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Lhe structure which is invariably viewed as the object Lo he controlled,

Wang and Tung {427 provided a framework for the study of distributed
parameter control, and outlined.the categories of (1) distributed
input control, (2) boundary input control, and (3) total input control,
They extended the concepts of controllability and obscrvability, which
were developed with regard to finite state space, to the infinitce
dimensional case and exuamined the problem of cxistence of solutions,
Taking the view that an 'optimal control' should be defined with respect
to the complete solution of the mathematical problem, they were led to
performance indices defined on direct sums of Hilbert spaces, Problems
posed in this vein have proven unwieldy with the examples considered
usually having only one spatial dimension, References [43] through [46]
illustrate the theory applied to the one~dimensional heat equations,
while [47] and [48] study the one-dimensional hyperbolic equation and
wave equation, It is of interest that several recent references [46],
7501, and [49] address the more modest goal of 'stabilization' of dis-
tributed parameter systems rather than seeking an ‘optimal control' in

2
L,

In assessing the relevance of distributed parameter control theory
to the aeroelastic problem, it must be noted that none of the three
categories of control given in the last paragraph correctly describe
the problem, The control force available in the aeroelastic problem
is the pressure distribution caused by control surface deflection,

It cannot be considered a distributed input since it is a one~dimensional
function of the control deflection, Neither is it a boundary control

for the structural partial differential equation since the boundary
condition associated with the surface deflection relates to the aero-
dynamic cquation, Hence a broader formulation is to address the prob-

lem properly,

Jian and Ching Yuan [49] have presented such a formulation, They
model a distributed parametoer system with an ordinary feedback controller

as
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m(y) -a--% + 2w Byt Aw = ~Gx (5., 41)
ot at
dX g b shy 4 g2 2% (5.,41)
at - Jx + S*w + S :

«

wherc A, B, and C are matrix operators defined on a Hilbert space Lz,
and G 1is a bounded operator mapping the n-dimensional vector space R"
into L2, G is thus the operator relating contrcl surface deflection,

x, to a pressurc distribution over the surface, The ordinary feedback
control is derived from the n-dimensional vector x. S1 and 82 are
'observer-operators' mapping L2 into Rn. In [49], the model of (5.,4)
is analyzed from a rigorous Hilbert space standpoint, The stability

of the system with feecdback control is studied and several perturbation
theorems regarding the spectrum of eigenvalues are proven, Finally,

the validity of truncated normal mode approximate solutions is verified,

Unfortunately, no examples are given in [42],

The use of the truncated normal mode method lends insight to the
concepts of controllability and observability of distributed parameter
systems, In the context of aeroelastic wings whose motions are measured
by 'point sensors' (e,g., rate gyroscopes, accelerometers, etc,), an
neroelastic mode will be unobservable to a sensor placed at a node of the
mode (i,e,, 1if the measurement distribution vectrr is orthogonal to the
modal eigenvector), Similarly, an acroelastic mode is yncontrollable
by an aerodynamic control surface if the generalized aerodynamic force
in the mode due to control deflection 1is balanced by the remaining
elements of the neroclastic equation, (6,1), 1In control theorctic terms
this implies that the control distributor vector is orthogonal to the
reciprocal eigenvector of the mode, The rigid two-dimensional scctions
unolyzed herein are certainly observable if both displacement and angle
sensors are employed, The controllability of such sections with respect
to leading- and/or trailing—-edge controls will be examined in the next

section,
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B, CONTROLIABIIITY AND OBSERVABILITY OF AEROFIASTIC MODKS

Controllability of the linecar, constant cocf{ficient, finite dimen~

sional system

o
f

X + Glu (5.5a)
y = HX (5.5b)

was examined by Gilbert {82]. The dimensions are

X = N-dimensional state vector
u = m—~dimensional input vector
y = p~dimensional output vector
F = NxN matrix

Gl = NXm matrix

H = pXN matrix,

If F has distinct eigenvalues, the transformation X = Zz where..the..

columns of 7 are the eigenvectors of F, gives

Az + (anGl)u (5.6a)

Ne
Il

(HZ)z , (5.6b)

e
I

The elements of the diagonal A matrix are the system eigenvalues, ).,
i =1, ..., N, Laplace transforming (5,6) gives

v(s) = H(s)u(s) (5.7

with
A

N
Hs) = () (s1 - N7H2Te) = Y
i=1 i

where Ai is a pxm matrix given by the vector outer product

-1
= "1 'l r.g
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. . \ , -1 ) . ) -1,
() M Che iU cotumn of  HZ and (% Gl ). is the ith pow of % (;[,
v ) b

The wmode representoed by }\,1 will bhe uncontrollable if the ith yow of
-1
Z

('l is zero and it will be unobscrvable L the i'h colum o N2 e

zovo, lkgquation (5,9) indicates that in cither of these casoes, Ai O,
and the system transfer funclions given by H{(s) will not contain the
pole at >‘1' In other words, if >‘i is cither uncontrollable or un-
obscrvable, then cevery transfer function in Y(s) will have a zero at
Ki and a pole-zero cancellation will occur, The fact that a pole-
zero cancellation has occurred is not sufficient information to deter—
mine whether the system is uncentiollable or unobscervable, This must
be determined by examining the rows and columns of the input and output
matrices, These obscrvations regarding the relationship of pole-vzero
cancellations and controllability and observability are the basis of
the design technique used for the B-52 CCV flutter ..hde control system
(2], Control surface positions and sensor locations were chosen to
achieve the largest separation between the flutter mode and the nearest
zero, In a realistic design situation, exact pole-zero cancellation
may not occur hut a near pole~zero cancellation may indicate that the
required control power will be excessive, Also, near cancellation fre—

quently leads to severe sensitivity problems,

C, CONTROLLABILITY OF A TWO-DIMENSIONAL TYPICAL SECTION

Since the aeroelastic mode shapes of flexible wings vary contin-
uously as functions of velocity and dynamic pressure, it may be anti-
cipated thot observability and controllability problems will occur at
discrete values of these parameters, il they occur at all, The typical
sections analyzed in the previous chapters are obscrvable if measurements
of h, o, {*, and y are assumed, Tnus, the controllability ol the scc-
tions way bc studied by examining the transfer functions of the Pade
approximant augmented state models ('Padé models') given by (4,9) for

the incompressible casce or by (4,19) for the compressible case,

Table V=2 gives the parameters defining a nominal case for the

four DOF scction of Fig, [1-1 in incompressible flow,
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Table V-2

NOMINAL PARAMETERS FOR A FOUR-DEGREF-OF-FRIEDOM
SECTTON IN INCOMPRUESSIBLE IFLOW

T
o = 100 I':!d/H(—'(Y [ 0,0
a .
w80 rud/goc X 2 0,2
h . «
w, = 509 rad/scc v2 = 0,25
P o ' ;
i
w = 8500 rud/soc X =x = 0,0120
Y p Y
u - 40 I‘Zz p= I‘z Tz 0.()0625 '
fa Y
a = -0,4 = = 0,1
G = ¢,

The leading~ and trailing-~edge control surfaces span 20 percent of the
chord and have natural frequencies five times the torsion mode frequency,
A small viscous damping has been assumed to stabilize the flap modes,

The remaining parameters are identical to those of Table III-3,

It is well known [18] that the frequency ratio wh/wu has a strong
influence on flutter characteristics. Therefore calculations made with
the Padé model (4,9) for wh/wa -0, 0,25, 0,50, and 0,75 are pre-
sented in ¥ig, V-1, A subprogram was written which iterated to determinw
the value of U/bwa at which flutter occurred, The transfer functions
of (h/ﬁg(S), (Q/BC)(S), (h/yc)(s), and (a/yc)(s) were determined at
this value of U/bma and at + 25 percent of this value by the method
of [83]. Iigure V-1 indicates the variation of the poles and rveroes
of these transfer functions as a function of mh/wU and U,bwa. As
mh/ma increases from O to 0,75, the value of U/hnb al flutter decreasces
from 3,41 to 2,13, The variation of the zeroes is of special interest
since they determine the controllablility characteristics ol the sccetion,
It is evident that leading edge {lap control will not experience any

controllability problems, since the locus of zeroes of both (h/yv)(s)

—-102~




n :
0G0 SASHIN NOILDIS IWOdIdFdd-J0-FdYDIA ¥N04 V 40 ST0YIZ ANV STTOd

57+

0°Ir

4]
MOTA TTAISSTUANOONI NI @/ %o any

I-A "DId
sz2°0="o/Mo (@ 0="o/Mo (o
D 0
0 v
. 0 B
§ 0 ¢'- G 0 ¢ -
' 1 0
\ oddv
\
g, /) o |
i N
| =t
1 D R
oAy /
Iq°
\
\
\ Dy
—
7!
D
Ay \o $80487 — — — 2] $30437 110°1
¢ \ ———
! N—~_1 $3j0d »EzJ b $3|0d ——
. \7
\mw mw o E\ %Y O
/ .
, ta / e O
0s’c o / %z o
ng Paq
i

n

03 )
R QUALITY

ORIGINAL PAG
OF POO

O




E

U
bw bw
a a
o 2.13 o 1.70
O 2.84 \Q g 2.13
nw
O 3.5 Ly O 2.8 My
————Poles / hiy Poles . N
" ~——~Zeroes B4 —~ ——Zeroes , 9\: alp Lo
1.0t s ] 41.0i
& o\}, ﬂ
Neg— \ ®
. W
i— SR , a/B
en \ | MZ
AW\QM / Q\%
5ik » \ N 4 5
N t\ /\l hiy
Q:\ \
\
\
\
\
\
\
D / Lw L o
-.5 0 .5 -5 0 .5
o o
) 7
a a .
(c) 85\89 =0.5 (@) 83\89 =0.75
FIG. V-1 CONCLUDED

Qe!e

~104-




and (o/y )(3)  tend to all outside the range ) C(ﬂ'f(?f Since

¢ 1 (
classleal flutter of a typical section occurs with a merging of froe-
quencics within this range, a pole-zero cancellation evidently will not

occur-for leading-cdge control of a two-dimensional scction,

The situation for the trailing-cdge control surface is much differ-
ent, with the locus of zeroes of (h/ﬁc)(s) and (a/ﬁc)(s) tending to be
in the range wh < W <<%1. In fact, at wh/%J = 0,5, there is a near
pole-zero cancellation in both degrees-of-freedom at U/bhb = 2,84,

Hence the flutter mode is nearly uncontrollable at the flutter speed

for this section, This explains the choice of W, = 50 rad/sec for the
nominal case in Table V-1, It represents a 'worst-case' design problem
and parameter variation studies about this configuration are of interest,
The physical cause of the uncontrollable mode can be explained by noting
that for this specific set of values of the parameters of Table V-1

and U/bma, the structural and inertial forces and moments on the main
section cancel the incremental 1ift and pitching moment due to flap
motions when the section is oscillating in this 'uncontrollablc!

mode,

Figure V~2 gives the modal composition of the eigenvectors of the
nominal section (Fig, V-1lc) at U/bwa = 2,13, 2,84, and 3,55, The compo-
nents of the eigenvectors are presented in complex phasor form and are

referenced to the plunge mode, h which is normalized to unity, The

y
uncoupled flap modes (. = 500 rad/sec, ( = 0,1) at s = =50 + i 497
rad/sec have been modified by the coupling, giving a higher frequency
mode at w ~ 590 rad/sec and a lower frequency mode at w ¥ 265 rad/sec
The higher frequency mode is predominantly a trailing—edge flap mode
while in the lower frequency mode the leading-edge flap predominates,
Also, a significant reduction in the leading-edge flap mode damping has
occurred which explains the necessity of the viscous damping CY' The
remaining two modes are the (highly~coupled) bending~torsion modes,

one of which becomes the flutter mode, Additional studies of two DOF
bending~torsion sections (not ghown) indicated a minimal influence of

the flap dynamic coupling on the characteristics of_the flutter wode,
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This is due to the very low inertias of the flaps relative to the main

scction,

Figure V-3 examines the . controllability of the nominal sccetion

with respect to variations of the paramecters: o, a, ri, r‘(r ), .
Xﬁ(xY)' Cp(gy)' and mﬁ(mr), I'he mass ratio, p, is the only quantity

which is directly related to flight condition, The remaining parameters i
are related to structural and geometrical properties of the section,
Variation of | and the parameters related to the main section (xa,

2
a’
As- might be expected, variation of the parameters related to the flaps

r a) have a strong influence on the controllability of the section,
have a small perturbing effect on the controllability., The behavior
of the zeroes associated with the leading-edge flap remains unchanged
for all of the variations of Fig, V-3, Figure V-4 shows the effect on
the critical flutter mode at flutter due to variation of the trailing-
edge flap chord, c¢,. Variations in ¢ ‘'detune' the uncontrollability

condition,

Thus, from considerations of controllability, the leading-edge
flap has advantages over the trailing-~edge flap for active aeroelastic
control purposes, This advantage is offset by (1) the large destabili-
zing hinge moments which the leading-edge flap must carry; (2) the
associated power required to move the flap, and (3) the violation of

the aerodynamic shape of the lifting surface in the critical leading-

edge area, In addition, proper design of a trailing-edge controller
may achieve the objectives without encountering a controllability
problem, The successful flight test of the B-52 CCV FMC system indicatcs

that this is possible.

It should be noted that the desirability of leading-ecdge control
is not so cbvious on finite wings which have a scquence of structural

modes, w Figures V-1 and V-3 shows that the leading-cdge control

k.
does not cncounter controllability problems becausc the zeroes of the

rclevant transfer functiens remain outside the range Wh < < “h”
This reasoning fails when applied to [inite wings since then the zeroces

may cause controllability problems with other modes,
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Controllability of the three DOF section in compressible flow may
be studied using the Padé model of (4,19), Figurc V-5 indicates that
the subsonic scction of Table V-3 has much the same controllability

problem as the incompressible section,

Table V~3
THREE DEGREE~OF~FREEDOM SECTION PARAMETERS FOR SURSONIC .FLOW

Wy = 50 rad/sec Xy = 0.2

w, = 317 rad/sec r2 = 0,25

p o’ '

b =4 ft x, = 0,0125
g
2

a_ = 1000 ft/sec r, = 0,00625

@ &

u = 40 [;B = 0,0

¢ = 0,5

a = ~0,4

Figure V-6 shows the locus of zeroes of the (a/Bc)(s) transfer
function of the three DOF section of Table III-4 in supersonic flow,
The lack of sensitivity of these zeroes to Mach number, and the fact
that the (h/BC)(s) transfer function has no complex zeroes near the
flutter mode indicate that controllability of two-dimensional sections

in supersonic flows is not a problem,

=113~

.
e e




K
.mom B Q Q
N
PG g,
\ y
\\/ 7.@\@ /
N 1\/ Zj\m // d N I\,
hig—"4 B hip~"
iR / \ ,
A ) \ \
a 251 \ K
\ A
me g ab
o 03 |\
O 0.4 \
O 0.5 \
A 0.7 \
\
O r i 1 { _ 1
-.2 0 .05 -.2 0 .05 -.2 0 .95
U o U
EQ SQ EQ
SU\SQ =0.75 8:\89 =0.5 . 8:\8QN =0.25
FIG. V-5

POLES AND ZEROES OF A THREE Um@ﬁmMIOm{mwmchZ SECTION IN SUBSONIC

FLOW CALCULATED USING MATRIX PADE APPROXIMANTS

—114=




SLNVIAIXOUddV JGVd XIYLVIN ONISN QILVINDTVD MOTd DINOSHAINS
NI NOLLO3S NOQdd¥d-JI0-TT40IA JIYHL V 40 SHOYIZ ANV STTOJL 9-A "DId

i
0
I 0 I~ ¢ - £ -

T w T ? w_m .

N N\ O N
.—||-—|(\:C\l
ogdd

Sapoul uolS.49)
-abunid

- 11H=~




D, AEROELASTIC CONTROL BASED ON_TIE CONCEPT OF
ARRODYNAMI(! ENERGY

Nissim [ RL] developed a technique of active flubter suppression which
is based upon considerations of the energy requared te sustain simple
harmonic osceitlations of n two HOF typical section, Il the sipgn of this
cneregy is positive, indicating encergy must bhe suppliced to the section Lo
maintain the oscillation, the scection ks stable, A negutive cnerpy would
indicate that the airstream was supplying cnergy Lo the scction and il is
assumed that the sccection would flutter if relecased, For forced simple

harmonic oscillations of the section the aecrodynamic energy is given by

12 4, LTS i
b= on b mz}F,R[ ANJe e DOANTE
(5,10)

1 2 4 § 2 2 2
PN . 4 B sos - £ +
57 Pb ,mlxl(gn FED )+ e (D

1 1 n n

Iaal
bt
~
S—
.

The complex vectors F’R + i’_-',l are generalized modal coordinates asso-

ciated with the aerodynamic cnergy, and the clements }‘i of the diagonal

matrix IN:(] are the real eigenvalues of the Hermitian matrix

[-(q, + qp) + i(q, - @})] .

The matrices Ql and Q.2 are the real and imaginary parts of the simple

harmonic aerodynamic loads, P, being a quadratic form, will be positive

definite if >‘l >0, 1 =1, ..., n and thus the section will be stable,
Nissim noted that this 'stability criterion' was dependent only upon the

acrodynamic loads Q, + in and did not involve tae structural paramcters

of the scction (y, Wer Xy

could be determined without regard to the structural dynamics of tLhe scc-

ete,), Apparently the stability of the scction

tion, Nissim argued that this was a desirable formulation because of the

wide variations in {light conditions which an aircraft may expertence,

In order to achicve active control of a fluttering sccetion, Nissim !

postulated the control law




3 4 h _ h
= L(;]] 4 ch] . (5,11)
Y i ¢4 v

With the 1lap deflections expressed as functions of  h and 7,  the loads
due to Tlap deflections could he calculated and added to Q1 and Q?,
The stability of the section could then be determined by examining the

sign of )\, and x2' This stabllity criterion had to be checked over a

1
range of reduced frequencies, since the reduced freqguency of flutter is
not determined, Nissim detcrmined the ‘'optimized' valucs of Cl and C?
for a section with leading- and trailing-cdge controls as

-0,05 -1,7 0.45 0.2

0.5 1.0 ~-0.,5 1,0

Nissim | 81] also studied control with only a trailing—cdge flap and found
that it was barely possible to cnsure the positive definiteness of [MAL]
over a range of k, Furthermore, the design was sensitive to variations

in the feedback gain values and Nissim concluded that a practical flutter

suppression system would require both leading~ and trailing-edge controls,

The incompressible Padé model of (4.9) is capable of analyzing
Nissim's design, The control law of (5,11) is implemented by noting that

for an oscillating section ih T h/w, giving the control law

B h N . h
= [c)] +=1lc,] |.]- (5,12)
Y a 'r ¢4

The reference frequency w, is chosen te be in the vicinity of the flutter
frequency, For the section of Table V=2, w, - 76 rad/sec (Iig, V-1lc),

and Fig, V-7 shows the locus of roots as a function of U/bmo for the
uncontrolled and the controlled scction, (The damping, gr Cw - 0,025 in
the figure,) The control law stabilizes the bending and torsion modes
throughout the range of velocities 0 < U/bmo < 3,9 bul the leading=-cdge

flap mode is unstable throughout this range, The c¢losed loop bending wode
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approaches the real axis and leads to a statrceally divergent mode at

U‘ln.:(_{ 3,9, A sccond case with Y 25 rad/sce  was studied and o sime
1

ilar instability was obscrved in the [flap mode, Henee, Nissim's desipn

procedure is scriously deficieont in negleeting Lhe Flap degrees~of=Lreedom,

kvaluating the acrodynamic encrgy design technique, the following

comments ave appropriatoe:

1, The technique is overly conservative in that it atlempts to
suppress flutter for all possibile combinations of values of the

structural and geometrica?! parameters defining the section,

2, The technique, which attempts to define a FFMC system valid for
all possible combinations of structural parameters, is incapa-
ble of producing a good design for a single trailing—edge control
since at lecast one combination of parametcers can he found for
which the section is uncontrollable (viz,, the section of Table

V-1).

Tne technique addresses flutter suppression without regard to
the struc.uaral properties of the section, To assess the flutter
boundary of the final design, a standard U-g analysis must be

performed using the final control law,

4, The aerodynamic ecnergy cigenvalues would appear to have no di-
rect relationship to the locus of roots in the s-plane, Thus
they offer little guidance in design modifications,
1
It would appear possible to modify the aerodynamic ecnergy design technique
to handle the problem of leading~edge flap instability by including the
flap modes in the design, 7The main problem in this extension would be
the complexity of optimizing the control laws of a large order systenm
over a large range of k.,
The technique was extended to the design of a fiuttcy suppression K

system for o delta-wing wind=tunnel model !'5]. Nine flexible modes were
included in the design but the leading— and trailing-cdge control surface
modes were not included,  IU is significant that for this large order 3

system it was not possible Lo schicve o design having all of the ecigenvalues
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ol [SAS] positive over the desired range of  k,  Although the nonpositlive
deliniteness of  [NAN] would scem to imply that flutter suppression had

not been achicved, U-g analysis verificd an inercase in the flutter speed,

The resulting control laws were tested on the wind tunnel model at
Mo0,6, 0,7, 0,8, and 0,9, At the first three Mach numbers, the system
could not be evaluated duc to a scvere lcading—cdge control surface in-
stability, The instability was not encountered at M = 0,9 and the
[lutter suppression system demonstrated a significant increase in the
flutter dynamic pressure, It is suspected that the lcading-edge surface

instability is of a similar nature t that analyzed in Fig, V-7,

E., FINITE STATE MODELS OF THE RATIONAL PORTION OF

AEROELASTIC SYSTEMS

The cowmplexity of current design practices and the difficulties
experienced in implementing designs cmphasize the need for simpler tech-
niques in active aeroelastic control, The ability to calculate unsteady

aerodynamic loads for arbitrary values of s coupled with the insight

¥

gained in the study of the Laplace inversion integral for two-dimensional

flow point to a new technique of aeroclastic system modeling, This
technique is acvelicoped in this section and applied to the study of active

flutter control of a two—dimensional section,

The transformed cquation describing the aeroelastic system is given

by (3.1)

G(s)X(s) = GU(s) (5.13)

If rigid two-dimensional sections are being considered, (G(s) is an nxm
matrix whose clements may contain nonrational transforms (e,g., C(s) in
incompressible flow), while U(s) is an m—dimensional input, For flexible

wings, (6,13) may represent an infinite dimensional operator relation de-

fined on a Hilbert space, More commonly, the infinite discrete spectrum
of such a wing is truncated to the. first n  modes, Thus, both cascs
may be treated by the finite dimensional version fo (56,13).. The two-

dimensional scetion in incompressible flow will be used to illustrate the

=120~




developments of this section, The solution for the components of  X(s)

is

.g N?(s)uj(s)
Xi(s) = J=1 -

(5,14)

~,
il
—
-
n
-
.
.
.
=]

D(éj

i
where Nj(s) is the numerator transform obtained via Cramer's rule for
the ith state due to the jth input, The inversion integral may be used to

obtain

m s.t o X

n
i i 1 ~ :
§j(t) = g;i ;;; Rc-sjk e - = S Im E—(re Jle " dr( . (5.15)

The summation inside the brackets has been termed the 'rational' portion
of the response and is due to the isolated poles introduced by the struc-
tural degrees-of-freedom while the integral has been termed the 'nonrational’

portion of the response,

The examples of the previous chapters have shown that the oscillatory
transient response typifying flutter phenomena is due entirely to the ra-
tional portion. The response of the nonrational portion is nonoscillatory
and decays monotorically to zero., Moreover, it is a small fraction of the

total response, In addition, much of the analytical difficulty in study-

ing the response of the system is caused by this nonrational portion,
Therefore, a model of the rational portion of the system would be desir-
able, since it would avparently describe the principal characteristics

of the oscillatory response,

The method to be described below is similar in spirit to that out-
lined by Wang ([50], who showed that a class of linear distributed systems 1
with purely discrete spectra and a finite number of unstable modes could
be stabilized with a finite-dimensional linear feedback, However, Wang i
did not address the problem of the construction of a simpler approximate

model describing the instability, The realization of the model of o
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rational portion can be stated as a theorem,

THIEOREM: The linear system represented by
@(s)x(s) = G(s)U(s) (5,16)
where X(s) 1is n~dimensional, U(s) is m—dimensional, and @(s) and
G(s) may contain nonrational functions of s, may be approximated

by the linear, constant-coefficient system

X = FX + G,u

1 (5.17)

N

with X ¢ E and._u_g¢g Em. The system matrices are given uniquely by

F o= TAT !
A= diag(sl) 52> ceey SN)
Tyo= Ayl

where Si’ i=1,2, ..., N are the isolated singularities of @(s)
i

jk
the residue at the ith pole of the jth state due to the kth input),

i
and the elements of the NXm matrices Ai are a = Resjk (read;

Note that the finite-dimensional system of (5,17) represents the

rational portion of the system of (5.16) which is due to the isolated

poles at

s;, 101, 2,

o0 8y

No

The following proof assumes that N = 2n

where

n

equals the number of degrees~of-frecdom of the system,

It is

possible that the nonrational functions contained in

ags)

may introduce

singularities into.the spectrum of Q@

over and above the singularitics

due

to the

dimension of

X(s)

(c.f.,

the two~dimensional supersonic case
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of Scet, III-A-2), In this case, 2n of the system poles must he sclected
to construct the approximate system, A natural choice would be those

poles associated with the n  structural degrecs—of-freedon,

The proof of the theorem will be constructive, giving an algorithm
for the construction of F and Gl' The result of the following lemma

wvili be needed,

LEMMA: The matrices of residues, Ai i=1,2, ..., N have rank 1,

PROOQF': This may be seen by noting that (5,15) may be transformed and

reorganized as

A,

N
X(s). = . -S—_%- + R - (5.18)
i=l 7 Ti

with R representing the nonrational portion, The elements of the residue

matrices, Ai’ are given by Ni(si)/b’(si)'

Now consider the linear system obtained from (5,16) by evaluating the
nonrational functions contained in @¢(s) and G(s) at the pole located
at s = si’ Denote the resulting matrices as E(s,si) and a(s,si). The

solution of

&<s,si)g<s> = G(s,s,)U(s) (5.19)

may be written as

A,
[%(s)} . W (5.20)

where Xi = Ri(si) D'(si) are nXm residue matrices, Gilbert [82] proves
that the Ki matrices in (5,20) have rank 1 as is also cvident from (5,9)

At the pole, s = S the systems of (5,16) and (5,19) satisfy the follow-

ing relations




1,)(si) = (s

i

Nilsy) = Nls)

N‘ o ] .
D'(s) A D (s;) .
Thercforo
Nj(s) D' (s, )
U1 i’ ~

Ai = = A
1 t{e

i

showing that Ai and Ai differ only by a complex multiplier, Therefore

the Nxm matrices Ai in (5,18) also have rank 1,

To construct the matrices F and G1 of (5,17) consider the diagonaliz-

ing transformation X = Ty, (The eigenvalues of F are assumed to be

distinct,) Equation (5,17) is transformed to

S, = /\y + gu . (5,21)
In terms of X
: -1
X = TAT "X + Tgu
showing that I = '[‘/\'1‘—l and Gl = Tg, The proof will be complete if

unigque matrices T and g can be found yielding thesc relations, Trans-

forming (5,21) gives

Therefore
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; A, =T .8, . (5.22)

N Ai
x(s) = Z S-8
i=1 i

£ oo

This shows that it is possible to construct a unique realization (5.17)
if and only if the matrices of residues Ai can be constructed as the
outer produce of two vectors, In other words, Rank (Ai).: 1. But the
above Lemma proves that this is the case for the system of (5.,16), We

are free to choose the form of gi as

.

Then the columns of T are given by (5,22) as the first columns of the

matrices, Ai' That is

N

N
G, = Tg = T .8, = A .
1 & E;i «ivdie. 2;; ie

This completes the proof of the theorem,

It is interesting to note that the amount of information available

about the rational portion of (5,16) is sufficient to uniquely determine

v

2 N .
the N+ Nm  unknown clements of ¥ and Gl' There are N  values of s

i_’

T E 1S
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i

NT independent elements of the wmatrices of residuces Ai' and N(m—~1)

1 . .
constants  w ;o i L, 2, ..., Ny §: 1

i 2, e, Wy,

’
Reduced order approximate models of the system of (5,16) muy be con—
structed by deleting sclected poles since the theorem is usually true
for the casce in which the dimension of X 1is N < 2n, This follows
since the proof of the theorem depends only upon the rank of the Ai
matrices being unity, For the case N < 2n, these wmatrices will be
submatrices ol those considered in the theorem and will have rank less
than or equal to onc, Disregarding the very unlikely occurrence of a

rank zero submatrix, the above statement follows,

The models constructed from the algorithm given by the Theorem will
be termed ‘rational wodels', The matrices F and C1 describing the
rational wmodel of the three DOF sccetion of Table III-3 in incompressible

flow are given in Table V-4 for U'b. = 2,9,

Table V-4
RATIONAL MODEL FOR A THREE-DEGREE-OF-FREEDOM SECTION

(M 0, Ube = 2,9, F and G, in sec )
04

1
A 0 0 1.0 0 o
0 0 0 0 1.0 0
0 0 0 0 0 1.0
.
f -3395 =1243 -=1139 -10,04 -0,1475 0, 3564
|
! 1127 -9758 6593 13,33 =29,22 =6,9567 ;
~2838 29344 ~113723 1 ~-27,78 44,98 =5,120
! —
' —
7.279—W

-3,4390

0,9792

|
J1H63R
lﬂ > )
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m : ’ .
I'ne matrices of the Padé model are giver in Table V=5 for the same case,

Table V=5
PADE MODEL FOR A THREE DEGREE-OF~-FREEDOM SECTION

' M =0, U/bwa = 2,0, F and G1 in sec-})
-~ -
0 0 0 1,0 0 0 0 0
0 0 0 0 1,0 . 0 0 0
0 0 0 0 0 1.0 0 0
F =| -29034 -173,1 -993,2 -9,267 -10,47 ~0,9598 -10638 -~583,2
2514 -~11178 6399 12,30 =~15,52 -4,820 14122 774,2
~1579 32302  -113319 | -25,61 16,50 -~8,755 -29396 ~1611
0 o 0 0 0 0 0 1.0
_ 0 290 159.4 1,0 0.9 0.1487 -1148 -100‘2J

Table V-6 compares the transfer functions derived from the rational

model with those of the Padé model, Since the F matrix of the rational
model is constructed by performing a similarity transformation (5,21) on
the matrix of the exact eigenvalues of (5,16), the rational model repro-
duces these exact poles while the Padé model gives a good approximation
to these poles, In addition, the Padé model also contains the two aug~

mented state poles., The nature..in.which the residues used to constructl
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Table V-6
COMPARISON OF TRANSFER FUNCTIONS OF RATIONAL AND PADE MODELS

-1
(M == 0, U/bu& = 2,9, poles and zeroes in sec )

'1) POLES Rational Model Padé Model
% bending -3,711 *+ 168,252 ~-2,659 + 169,149 ‘
| torsion ~15,049 * 180,171 ~17.485 + 179,122
. L flap -3,431 + i340,38 -3,414 + 1340,26
' ~12,523
-74,099

2) ZEROES

'a) Rational
Model Gain

l
x, /B, 7.2785  (~4.09+181,59)(~65,3+1364,68) (+107,43) l
x,/B, ~ ~95.518  (-3,47+180.18)(+110,91¥11173,1)(~30.70) |
!
!
i

XZ/BC ~3,3904 (+2,82+i71,86)(~72,0%1151,21) (-2457)

P , XS/Bc ~8648,6 (+3,3 *+i71,55)(~56,48%1152,21)(+10,44)

b) Padé

; Model Gain
’ h/E 355,26 (-3,25+180,28) (+501,72) (~334,66) (220, 3) (~15,53)
Q/FC ~8938, 89 (+3,84%172,37)(~59,84+1162,29)(~56,09)(~12,01)
o |
Foand Gl were cvaluated places constraints on the system realization given 1
by the rational model which are scen in the structure of the submatrices
of I in Table V-4, The cquation for <, is

1

.

”1 e )({1 + 7,279 ﬁc (5.23)
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indicating the expected relation between the states modeling h (x]) and

n (Xd)' The small 'fLeedforward' term, 7,279 causes the relavion

3
C ’
2 /

- Xl # X4 and is due to the unmodeled nonrationnl portion of (5,15), This
' cffeet is also evident in the zeroes of Table V-6, The Paddé model zerooes
satisfy the relation (ﬁ/VC)(H) .- S(h/ﬁc)(s) while (Xd/ﬁc)(s) #
s(Xl/BC)(s), The magnitude of the fecedforward terms of the upper sub-—
matrix of Gl of Table V-4 is directly proportional to the relative
magnitude of the nonrational portion to the rational portion of the re-
sponse, It is interesting to note that the real zeroes of the rational
model indicate phase changes of approximately 90° between X1 and X4,

and X2 and X5 respectively,

The usefulness of the rational model must be evaluated by its ability
to predict. the response of the system in the bandwidth of interest; that
is, at frequencies near the flutter frequency, Table V-4 shows that the
zeroes near the « axis in the vicinity of the flutter frequency (w =
70 rad/sec) agree well between the raticnal model and the Padé model,
Frequency responses of the rational model are compared to the exact model
in Fig, V-8, The rational model agrees very well with the exact model
in the frequency range of flutter, with the agreement deteriorating with
increasing distance from the system poles, From this comparison and that
of Fig, IV-4, it is concluded that the rational model and the Paddé model

are both capable of predicting system response at frequencies near the

flutter frequency,

In closing this section, it should be noted that the rational model

is not restricted to the two~dimensional incompressible flow case, It is
equally valid for compressible three-dimensional flow when used with
truncated normal mode structural representations and aerodynamic loads

calculated for arbitrary s, The advantage of the rational model. is that

it does not require augmented states whereas the Padé model does, Also,
the rational model might be expected to give better performance than the

Padd model for points well removed from the axis,

~129-




Exact model
————— Rational model

Log E?—

-1.0 —- :

100 ¢

T

Phase —IL, deg  -100

Bc
~200
-300 ! —
0 50 100
@, rad/sec
() PLUNGE
FIG. V-8 COMPARISON OF FREQUENCY RESPONSES OF PLUNGE AND

TORSION DUE TO FLAP DEFLECTION OBTAINED FROM THE
EXACT MODEL AND FROM THE RATIONATL MODEL

~ ) 30




Log -g-

Phase _a_, deg

Be

Exact model
————— Rational model

-.75 - ]
100 1 X
0
-100 +
______ \
-200 s A
-300 , '
0 50 100
w, radisec

F1G

. V-8

() TORSION

~-131-

CONCLUDED




¥ OPTIMAL, CONTROI, 0 AEROBLASTIC S THTENS

In this scecion active flutter desipgn technigues will bhe studlied
using the rational model and the Padd model, Althouph the specific problem
under consideration will bhe the control of a flutter mode ;) the same tech-
niques are applticable to any of the control configured vehicle (CCV) con~

coepls addressing dynamic structural or aireraft responsc,

Several of the wost prominent examples ol aeroelastic control have
been desicqned using augmented state Paddé models [21, [3], which resulted
in quite large order systems, Attewpts to upply wodern optimal control
techniques to these models have not had great success due to the require-
ment of feeding back all of the states of the model, The matrix Padd
approximant method of Vepa promises to alleviate this problem somewhat
by greatly reducing the number of augmented states, The rational model
holds further promise in that augmented states are completely eliminated,
The cost of this advantage is a certain ambiguity in the relationship
of the states of the model to the physical measurements of the structure,
This problem may be assessed by checking the performance predicted by the
rational medel with the corresponding performance obtained with the exact

model using the same control law,

In-the- two~dimensional incompressible case, it is possible to compare
the two models since exact unsteady airloads are available for arbitrary

s (Sec, II-D) and the Padé model of Secct, IV-A involves only two aug-

mented states, In Loth cases, the model is given as
X = FX + G, u.,. (5,24)

An appropriate performance index for the flutter problem is that of the

optimal regulator [37)

=2

2

O

_XIAX ' uTBqut . (5,25)

Minimization of J satisfying the constraint of (5,24) is achicved via

the steady-state solution of the matri: Riccati cquation
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t
. T, D S . )
5 ~SK o= s bh]B hlb - A (H,26)
where  S(0) 0, ‘The tincar feedback control law is given in cerms of
¢
the steady-state Riceati matrix, H', ns
~L T .0 . , -
u( () = =B G)8 X(1) = ox(1) (5,27)

The control weighting matrix B must be positive definite, while the
state weighting matrix A must be positive semidefinite, Hall and Bryson
[84] describe a digital computer program well suited to the solution of
this problem, This program, OPTSYS, was utilized in the control law de-

signs of this secction,

The problem of choosing the weighting matrices A and B remains, A
basic result of the theory is that if A = 0 (i,e,, 7zero-state weighting),
the action of the resulting control law upon the closed loop eigenvalues
is to leave unchanged all stable eigenvalues, while open loop unstable
eigenvalues locoted at s =y + iw are reflected about the 1iw axis to
& = =~y 4 iw, For structures with slightly supercritical flutter modes,
this zero-state weighting technique is an attractive design method since
the result is a modestly stable controlled mode, However, for larger
values of the supercritical flutter speed, the technique leads to unrea-
sonably high damping of the flutter mode, Also, the method cannot be used

to improve the damping of subcritical flutter modes,

Anderson and Moorc [85] describe a method which can be used in con-~
jection with zero—-state weighting to restrict the maximum value of the
real part of all eigenvalues, Equation (5,24) is transformed and the

change of variables s' = s + y made giving

(s'I =~ (FevI) IN(s') = Gf“(s) . (5,28)

The result of the transformation is to shift all eigenvalues of F v units

in the direction of the positive real axis or, equivalently, to shift the

origin v units in the dircection of the negative real axis,  Bquation
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(H.28) indicates that this cigenvalue shift can be accomplished by adding

v to the diagonal clements of ), Hence, if ' contnins an unstable
cigenvalue at s o4 bwooand it 18 desired to constrain all clgenvalues
Ay o osuch that  Re()l) < 1, this will be accomplished by the optimal roep-—

ulator solution with zero-state weighting for the system

e

(10 4 vI)XGlu (h,29)

with v - =M1, BEigenvalues, Ao with Rv(li) < T, arc unaffected

by the resulting control law,

J
The optimal regulator solution was obtained for the scction of Table
I11-3 at U/b%y = 3,25 using the rational model and the Padé model, (The
flap chord, ¢ = 0,5, for this example,) Figurc IV-3 compares the open
loop roots of the two models. and shows that the section damping is
§ ~=0,09, The weighting matrices were A =0, B = 1, Table V-7 gives
the feedback gains and the open and closed loop eipenvalue locations,
Table V-7
OPTIMAL REGULATOR GAINS AND EIGENVALUES FOR A THREE DOF SECTION
(M = 0, U/buy = 3,25, A = 0, B = 1, poles in rad/sec)
Case I: Rational Model
C =1{2,901 ~2,197 -0,09393 50,04124 0.007558 0,0001064)
Mode Open Loop xi Exact Closed Loop Xi
bending (flutter) +6,420 * 171,03 -4,975+ 169,94
torsion ~-28,68 * 173,56 ~-28,68 *+ 173,55
flap -14,59 * 1339,9 ~14,59 + 1339,9
Case II: Padé Model
C = [2,517 -2,519 =~0,1076)
10,0450 0,01168 0,0005183 | ~5,778 0,1436)
Mode Open- Loop Ki Exact Closed Loop Xi
beading (flutter) +6,987 + 171,01 ~5,790 *+ 171,48
torsion -31,27 Vv 172,82 -32,89 1 169,45
flap -14,53 1 1339,6 ~13,856 + i339,7 |
-13,78 . : o= j
-79,93 b
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The roats termed 'open loop! in the Table are the cigenvaluces of the
appropriate uncontrolled P omatrix (viz,, FEq, 5,17 lor the rational
model, and g, 4,9 for the Padd model), The rools tervmed 'exact closcd
loop' were obtained by implementing the feedback control laws in the oxact
system equations and locating the exact closed loop roots by iteration

as described in Sce, III-A, For the rational madel, (5,13) becomes
[G{s) - GCixX(s) = Gﬁg(s) (5, 30)

where l(s) = Mc(s) + CX(s), To implement the Padd model control law,
estimates of the two augmented states are required, This was accomplished
by adding to (5,13) the known structure of the augmented states, In

the notation of (4,8) this yeilds

G(s)-—G(C1+C25) I ~GC X(s) G
L3 (5.31)
-------------- ] | Rl IS o S
|
E1+Ezs ! Fp xp(s) 0

R ’

-

where Cl' C and C3 contain the gains associated with x, x, and fp'

If the linear models represented by X = FX 4+ Glu exactly.-described
the dynamics of the section, then the closed loop roots would be identical
with the open loop roots except for a sign change in the real part of the
unstuble roots, Deviations of the roots away from this condition indicate

the presence of unmodeled (nonrational) effects,

Table V-7 shows that feedback gains from corresponding states of the
two models are comparable and both designs stabilize the flutter mode,
Except for the h feedback gain, the magnitudes of the gains of the
rational model are less than those of the Padé model, The distance from
the cxact closed loop pole location to the predicted pole location is
an indication of the ability of the models to deal with the unmodeled
portion of the system, These distances for the flutter mode are: rational
model, As = 1,566 rad/sec; Padé model, As = 1,29 rad/sec, The corres-
ponding distances for the other two modes illustrate a basic difference

hetween the models, The raticnal model is an exact model of the rational
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portion ol the system at a particular flight condition and the regulator

desipn with zero—stale weipghting leaves the exact stable poles unchanged,
The Pudd model is an attempt to approximate the system throughout a given
pandwidth (region of the s-plane), Thus the closed loop torsion and flap
mwodes arc displaced 3,74 rad/sec and 0,71 rad/sec respectively from their
predicted locations, This effect of Padé models may be of concern in the
design of flutter suppression systems for multi-mode structures in which

there may be several marginally stable modes in addition to a flutter mode,

The characteristic of the rational wmodel of matching the open loop
rational portion of the system exactly emphasises the perturbation nature
of control laws based upon this model, This implies that the deviation
between the predicted and actual root locations will increase as the
distance by which the flutter mode is moved increases, The deviation
indicated in Table V-7 would seem to be acceptable, If the deviation were
unacceptable, a second rational model could be constructed for the system
resulting from the use of the first control law and a second regulator
design performed, giving a second control law, If this attempt resulted -
in a satisfactory design, the final control law would be formed by the
sum of the two control laws, Thus the rational model can be used in an

» iterative fashion, whereas a corresponding capability is not apparent in

Padd models,

| Figure V-9 indicates the effect on the open loop eigenvalues of the

Pad€ model of incorporating the Padé gains of Table V-6 one at a time, It

shows that the main contributors to the stabilization of the flutter mode
are the h, &, and h gains, The ﬁ and ﬁ gains destabilize the flap mode,
an cffect which is counterbalanced by the @, £, and o gains., Inter-
estingly,. the augmented state gains have little effect on the flutter mode,

but they do influence the remaining modes,
Figure V=10 shows the effect on the exact closed loop pole locations
for off-design airspeeds from U/bwa :: 0,5 to 3,75, Both closed loop sys-—

tems are unstable bclow the open loop flutter spced of U/bwa = 3,0, re~ 1

flecting the near uncontrollability of this scction by the trailing-cdge - i

control surface at this airspeed, Above this nirspeed, both control
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laws provide flutter mode control until a static divergence occurs at
approximately U/bub = 3,80, The Padé model waintains slightly better
stability than the rational model throughout this airspecd region., This
is due to the ability of the augmented model to approximate the nonrational
effects over a wider bandwidth than the unaugmented model, However, this
capability requires the complexity of augmented states, with the attendant
problems of state estimation, It should also be noted that although the
rational model control law was designed utilizing a 'nonphysical' model
(viz,, Eq, 5.17), the performance indicated by the 'exact closed loop!’
pole locations was obtained using measurements of real physical states

(h, a, B, h, &, B) and indicates the performance of the systen under

actual operating conditions,

The optimal control of the three DOF section was also investigated
in supersonic flow, The section of Table 111-4 was studied with the
rational model and the matrix Pad€ model of (4,19), Table V-8 gives the
optimal gains and eigenvalues for the two designs, The weighting matrices
were A = 0, B =1, Again, the corresponding gains of the two models are
comparable with the rational model gains having smaller magnitude in all
but two cases, For this compressible Padé model, three augmented states
are required; one for each degree-~of-freedom, The exact closed loop
poles were not calculated for the Padé model, The agreement between the
open and closed loop poles of the rational model indicates that the un~
modecled effects are slight at this Mach number, Figure V-11 shows the
etfect of off-nominal values of M on the closed loop poles when the
M = 2 feedback gains of the rations)l model are held constant, The
figure indicates that the flutter Mach number has becn increased from
M:=1,8 to M =2,2, Comparison with Fig, IV-6 indicates that the control

law also stabilizes the flap mode at the lower Mach numbers,

As a final design case, the four DOF section of Table V-2 was
analyzed using the rational model, Figure V-lc illustrates the nature
of the flutter mode which was studied at U/bub - 3,55, The flutter
mode is unstable with a damping of ¢ : ~0,23 and the airspced is 25 per-
cent above the flutter speed, Also, this section is nearly uncontrollable

by the trailing-cdge control surface at the flutter speed of U/b%x 2,84,
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Table V-8
OPT'IMAT, REGULATOR GAINS AND EIGENVALUES FOR A THREE-DEGREL-QF~
FREEDOM SECTION IN SUPERSONIC FLOW

(M = 2,0, A =0, B: 1, poles in rad/sec)

Case I: Rational Model

C = [0,300 0,132 0,00401 ! -0,00515 0,00932. 0,000349]

Mode Open Loop Ki Exact Closed Loop li
flutter -4,036 * 174,67 -4,078 + 174,24
bending-torsion ~15.69 * 170,67 -15,69 +* 170,67
flap -4,353 + i372,6 -4,346 * i372,6

Case II: Padé Model

C =[0.46 =-0,046--~0,078 |

| -~0.004 0,010 0,0004 | 0,034 0,086 =~0.032)

Mode Open. Loop Ai Exact Closed Loop Ki
flutter ~4,249 *+ 174,67 -
bending-torsion -15,86 * 170,60 -
flap -4,374 + 1372,8 ——

-482,8 + 13323
~1855

Table V-8 gives three designs accomplished with zero-state weighting,
For Case 1. B - diag (1,1), weighting the lcading- and trailing-edge
control motions equally, The deviation of the closed loop flutter mode
from its anticipated location (& - -16.66 + 168,08 rad, sec) 1is accept-
able but the pains relating to the leading~ecdge control are significantly
higher thuan those associated with the trailing-cdge control, The regulator

solution has designed a control law calling for more motion by the leading-
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cdge control since this surface produces greater loads for ua gilven deflece-
tion than the trailing-cdge control, This is undesirable since the
leading-cdge control is also subject to much greater hinge moments and

wvould consume correspondingly greater power,

Thus the weighting on the leading~cdge control motion was .increased
and Case Il was designed with B - diag (L, 16), This change implics
that that lcading-edge control motion is 16 times more texpensive!' than
trailing-cdge control motion, Table V=9 shows that the deviation of the
closed loop flutter pole from its expected value has almost doubled its
value in Case I but is still acceptable, Also, the trailing-edge flap
guins are roughly doubled from those of Case I while the leading~edgc
flap gains have been reduced by a factor of 5 to 10, The increased
weighting on the leading-edge control has produced a design requiring
more activity by the trailing-edge control, The increased deviation of
the flutter mode from its cxpected location is probably due to the prox-

imity of zeroes associated with the trailing—-edge control.

The -final case of Table V-9 illustrates the Anderson-Moore technique
of axis shift in the s—plune to achieve a specified degree of stability.

The desired damping sought by the regulator solution for Cases I and II

is quite high (¢ = 0,23) and a significantly smaller damping would be

acceptable for high frequency structural modes, Using the Anderson—Moore

technique with Vv = -5 rad/sec will result in a control law which attempts h
to place the flutter mode at s == —6,66 + 168,08 with a damping of ( = i
0.10, Case III gives the resulting design for B = diag (1, 1), For 1
this more modest design goal, the deviation of the exact closed loop pole !
from its anticipated location is only 1 rad/sec, les than half of the 1
deviation of Case I, 1

Figure V=12 shows the wigration of the bending and torsion modes
for Cuses 11 and III as a function of U/bubV The fcedback gains of

Tuble V=9 werce held constant and the exact c¢losed loop eigenvalues located

by iteration, The design of Case II is unstablc at low values of U/bhﬁ
and gain scheduling would be required to achiceve acceptable performance,

Kvidently, ground checkout of this flutter suppression system would be !
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Table V-9
OPTIMAL REGULATOR GAINS AND EIGENVALUES FOR A FOUR-~DEGRE}-OF

FREEDOM SECTION URING THE RATYONAL MODE]

M 0, A. o0, u/bu,

= 3.55, poles in rad

,/f;(‘(: )

Mode
beading (flutter)

torsion
L.E, flap
T.E. tlap

[ A
. .

Open loop_&‘
+18,66 ¢ {G8,08
~33,82 ¢ 163,63
~14,71 % §254,38

~62,75 ¢ 1605,10

Caso I: B = dfag (1,1)

§ 0,00333
1]
| 0.,000586

Hode
bending (flutter)

.

torsion
« L.E. flap
T.E, flap

AW N
.

0,787 0,516 0,0369 -0,139

0,62 0,173 0,0105 -0,0760!

|
I
!

0,00823  0,000511 -0,000987

0,0115 0.000733 ~0,00148

Exsct Closed Loop Ai
~15,29 ¢ 169,77

~33,52 £ 163,77
~14,71 % 41254,38
~62,75 ¢ 1605,10

c

Mode

bending (flutter)

torsion
L.E. flap
T.E, flap

[ "I I
DY

[1.479 v.451

Case I1: B = diag(l, 16,)

0.0282 ~0,187

-1
0.118 06,0745 0,00531 =~0,0204 |

-

0.0075 0,0198 0,00124 —0.00239J

! 6.000121 0.00171 0.000108 ~0,00022

Exact Closed Loop )
£

~12,92 ¢ 166,68
~33,52 ¢ 163,63
~14.71 % 1254,38
~62,75 £ 1605,10

Case III: B = diag(l, 1.,),

0,439 0,0899
c:

0.543 0,311
; 0,00277
' 0,00101

Mode
1. bending (fiutter)
2. torsion
3, LB, flap

4, T.%, tiap

v = 3 rad/sec

0.00485  ~0,0494

0,0219 ~0.0899

0,00574 0,000354 ~0,000:577
0,00783° 0,00501 -0,000997
Exuct -Closed Loop )
s
~-53,079 t 188,9]
~23,%2 ¢ (63,63

~14,71 % 1254,38
~62,7% % {605,110

)
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difficult due to the ineretia coupling of the wmodes, Figure V=12a also
shows the influcnee of Lhe uncontroliable meode in the sensitivity of the
locus near the open loop flutter velocity (U,’b:.;(l . 2,84), The perform
ance ol the control law of Casce III at-off-nominal values of U hm(l
(I"ig, V=11bh) indicates a smooth vardiation of the locus throughout the
velocity range studied,  This is due to the increased authority allowed
the leading=cdge flap by the reduction of the weighting on for Casc
IrL,

Both the torsion and the plunge modes of Cases II and III arce stable
for aivrspecds well above U/b(.)a : 4,0, However, at U/bu:a = 3,98  the
section becomes statically divergent due to the emergence of a real
positive root, As the airspeed increases beyond this divergence speed,
this root becomes more positive, This static divergence of the actively
controlled section is of the same nature as the static divergence of the
uncontrolled section studied-in Sect, IV=D, Whereas divergence of un-
controlled sections usually occurs at nigher airspeeds than flutter, it
is seen that active control of flutter may reverse this condition. Hence,
the behavior of active flutter control techniques should always be in-~

vestigated at the zero frequency condition where static divergence oocurs,

The examples given in this chapter illustrate the application of

modern optimal control theory to the design of flutter suppression systems,

The matrix Padé model aad the rational model are both capable of predict-—
ing closed loop performance, The disadvantage of the Padé model is in
the estimation of the augmented states which would be required to imple-
ment the control law, The use of both leading— and trailing-edge control
surfaces will obviously simplify the problem of stabilizing the flutter
mode but the additional control surface introduces other problems of
stability and power requirements, It should be noted that the nominal
incompressible flow scection investigated in this chapter represents a
worst case design situation, in that it was nearly uncontrollable by the
trailing—cdge control surface at the flutter velocity, In a realistic
design situation in which a flutter suppression system is to be designed
for a particular flight condition or range conditions, it may well be
possible to locate and size a single trailing=cdge control surface Lo

achicve the desipn pgoal,
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Chapter VI DR POOR QUALITY

SUMMARY AND RECOMMENDATIONS

A, SUMMARY

1, The transfer function relating airfoil motions to the airloads

due to circulation in two-dimensional incompressible flow is derived and

is identificd as the generalized Theodorsen function, valid for arbitrary

airfoil motions,

2, Examples of exuct airloads due to transient, stable airfoil

motions in two~dimensional incompressible flow are given,

3., It is shown that the solution of the unsteady aerodynamic par-—
tial differential equation for compressible flow contains a portion
which is linear with respect to the transformed airfoil motions and a
portion which is linear with respect to the initial conditions of these
motions, The stability or flutter problem is solely dependent upon the
first portion which is described by a partial differential equation
formally identical to that of simple harmonic motion with the replacement
of iw by s, It is conjectured that computer programs which calculate
simple harmonic airloads may be modified- in a fairly straightforward
manner to yield generalized airloads, The conjecture is shown to be
true in two—-dimensional supersonic flow and the derivation of genecralized

airloads fo. “his case-is-given,

4, ac¢ generalized airloads are incorporated into the equations
of motion and the exact locus of roots calculated, giving quantitative

results regarding subcritical and supercritical flutter conditions,

5, Examples of exact airfoil responses due to command inputs are
given, The responses are shown to be composed of portions due to rational
and nonrational transforms, It is shown that the oscillatory motions
typifying flutter phenomena are due entirely to the rational portion of

the response,




ines

6, The ability to calceulate generalized aerodynamic loads allows
the ovaluation of approximate teenniques of ealculating these londs,  The
R,T, Jones' approximation for incompressible flow and the matrix pPaddé
approximants of supersonic flow are shown to give accurate airloads for

arbiteary motions well removed from Lhe iw axis,

7. 1t is shown that static divergence of typical sections in in-
compressible flow occurs due to the emergence of a real pesitive pole
of the system transfer function, This pole occurs in addition to the
original structural poles and is also predicted by Padé approximant

methods if the low frequency behavior of the approximants is valid,

8., It is shown that the aerodynamic energy design technique for
flutter suppression, which attempts to define flutter mode control laws
valid for all possible combinations of structural parameters, has diffi-
culty treating the typical section with a single trailing-edge control
surface due to the possibility of the section being uncontrollable for
some selection of parameters,  Also, the technique must be extended to
include control surface dynamics in order to circumvent a problem of

leading—-edge control surface instability,

9, A theorem is given stating the possibility of constructing a
unique finite dimensional, linear model of the -rational portion of the
system response which does not require augmented states, The proof is
constructive, giving an algorithm for the derivation of the 'rational

model',

10, Optimal regulator flutter mode control systems are designed
using the rational model and the Padé model for incompressible and super-
sonic flow, Although the rational model represents only a portion of the
total response, it is shown that perturbation feedback contrel based
upon this model yields acceptable flutter mode control systems, It is
also shown that active flutter control techniques may result in systems
with divergence speeds below the actively controlled flutier speed, The
hehavior of such systems should always be investigated at the zero fre-

quency condition where static divergence occurs,
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B, RECOMMENDATIONS

1, Wind funnel studies nnd flight tests should be performed to
establish the validity of the transient responses presented herein, and
to investigate the effects of the rational and nonrational portions of

the response,

2, Existing computer programs which calculate simple harmonic
airloads could be modified to calculate generalized airloads and the -

results compared with existing solutions, experimental wind tunnel, and

flight data,

3, The possibility of obtaining approximating functions of gener-
alized aerodynamic loads over a region of the s~plane should be studied,

These approximations may be of the form

m
qij(s,M) = El £,00,M)g ,(w,M)

and would be useful in calculating the locus of roots of the system, The
merits of this exact root locus technique versus traditional U-g flutter

analysis should be studied.

4, The relative merits of rational models and Pad€ models for the

analysis and design of aeroelastic systems require continuing investigation,

5, The Laplace transform techniques used herein may be applied
to the gust problem, leading to a unified theory of the control of aero—-
clastic systems excited by turbulence, The ability of the finite state,
linear, 'rational model' of such systems to predict the main features of
the total response may serQo as a base for future applicati,ns such as

gust alleviation and vehicle ride control,

6, The problem of estimation of the states of the rational- model
from measurements of the physical airfoil requires coreful study since
the states of the rational model do not correspond directly Lo physical

measurements, To obtain complete coryespendence, the nonrational portion
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(or an estimate therco!) must be included, lence, the operation of filters
or observers for state reconstruction bhased upon the rational model must
be carefully cevaluated,

7, The concept of rati.nal and nonrational portions of the airfoil
response may lead Lo improved cstimates of flutter wmode damping from
Ilight tests, Il the nonrational portion of the response can be estimated,
subtraction of this estimate from the total response measurements would
provide estimates of the rational portion, Application of parameter

identification techniques to this portion may give improved damping

estimates,
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Appendix A

EQUATIONS OF MOTION

The equations of motion of the scction shown in Fig, II-1 are de-

rived from Lagrange's cquations

d 3 , 3
i i
where the kinetic cnergy is
3 1
o= 2 S 22 (x)ax .
2 -1 P
The airfoil deflection for the Sect. of Fig. II-1 is
z = =h-(x-2)@ -(d=-x)YU(d-x) ~ (x-c)BlU(x-c) . (a.2)

The potential energy V, 1is stored in springs attached ~t the control

surface hinge lines (k_, k.) and ~t the elastic axis (kh, ka).

g Y

1 2 2 2
Vo= gln” e ” ke +k,Y)’2). (4.3)

Thus
2.2 2 9 . . .o

mb 04 . -

[ h™ + Ia + IBB + 1772] t Sabha

3
Il
(ST

+ S bﬁé + é

o bhY * [IB + SBb(c-a)]&é

v

+ [syb(d-a) - I,Y]C'X.Y (A.4)

and the cquations of motion for the section of Fig. II-1 arec

OfF POOR QUALITY:




K T N 2T e P O
mbh 18 i+ 8 (0 byY { hhh 1 (AH)

!':

o ' N e N o
ﬁ{hh FL e [I“(b“b(c a) i f[byb(d a) lyJY'H;L = M (A.0)
Sﬂbﬁ +[IV f Srb(c~u)J& + Irﬁ 1 kfﬁ = M(5 (A7)
') ) p 2 2

S.bh H[S.b(d-a) ~ T Jv+ LY r k.Y = M . (A.8)
Y Y Y Y Y

In mechanizations of such typical scctions in a wind tunncl or on
a wing, the control surfaces are commonly controlled by clectrohydraulic
scrvos as described by Edwards [86] and Bergmann [87]. Then kB = ky =0
and additional terms giving the hydraulic pressure control torques would
be added to (A,7) and (A,8). Edwards [86] derives the equations of such
a hydraulic control system and gives the transfer function from control

surface position command to control surface position as

{3 1
5 s) = 52 ZChS (4.9)
¢ & s+1}(—§ + + l)
p {0), (Uh
h

The hydraulic mode, described by o and ;h’
damped mode well above the bandwidth of the servo (given by 1/Tp rad/sec).

is. typically a lightly

To retain the control surface dynamics in the equations of motion
without requiring attention to the servo loop dynamics, the artifice of
control surface springs will be retained and viscous damping terms will
be added to the control surface equations to provide stability., Also,
to provide a mechanism for centrol surface positioning, the control
surface spring constants wili be multiplied by the difference between
surface position and commonded surface position., Thus the teems k3

f

and kY in (A7) and (A.8) are replaced by kV(B—“c) + ZI{m Csﬁ and

Y e
RY(Y?YC) + ZIY“YQY? respectively, The selection of ”ﬁ = . kﬁ/ai‘
v ky/I_j, CV, and Cy alow the flap dynamics to approximate the

hydraulic position servo loop dynamics of (A.Q)




The aerodynamlic loads acting on the section of Fig, II-1 may be
derived from those given by Theodorsen~£11] and Theodorsen and Garrick
[51] for the section of Fig, A-1l, This section has trailing-edge aileran
and tab control surfaces which are aerodynamically unbalanced, Using
a superscrlipt bar notation to identify quantities related to the section

of Tig, A-1, the coordinatcs of the twe sections are related as

- - 1 W alln
h 1 0 0 b(d-a)|{|n
o 0O 1 O© -1 o
X = é = 0 0 1 0 B = V)_{ (A.IO)
Y 0o 0 O 1 04
—  .J - -

™ - r‘ ' r-'t- -
P 1 O O Off Pb
b
e 0 1 o ol i .

L = = g |= vih . (A.11)

i 0 o 1 ofl#m
M p(d-a) -1 0 1 i

- -’ S - -
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Appendix B

UNSTFADY AERODYNAMIC TOADS FOR TWO~DIMENSIONAL

INCOMPRESS IBLE FLOW

This appendix summarizes Theodorsen's [11] derivation of the un-
steady airloads as presented in Bisplinghoff [7] .

The airfoil lying between x* = <b and x* = b, as shown in Fig,
B~1, is mapped onto the circle of radius b/2 by the Joukowski transge
formation,

2

x* + dz* = (X + iZ2) + — 5 (B.1)

U(x + 1i7)

The correspondence between points on the airfoil and points on the
circle is x* = b cos v, z*¥ = 0, Solution of (2.19) subject to the
boundary condition, (2.13) (which is Laplace's equation in the plane) is
achieved by superposition of elementary solutions of Laplace's equation,
To satisfy the boundary condition, a distribution of sources is placed
on the upper semicircle and a corresponding distribution of sinks is
pPlaced along the lower semicircle. The source strength distribution

reguired is
H (x*¢,t) = 2wr(x*, t) . (B.2)

This noncirculatory source~sink distribution gives the tangential vel-

ocity at the circle as

5 (" w*; sin{bdq)
9., = = S (B.3)

—
cos Gp~cos |
0 o ¢ 0

The noncirculatory velocity potential on the upper semicircle and the

pressure difference on the airfeil are
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FIG. B-1 CONFORMAL TRANSFORMATION OF THE x*-z* PLANE TO
THE X-Z PLANE




1
2
Tt wfl sin 4dpdn

. b
\I) (I)’ l) B - - T (H }l )
ne )y, J, cos b o~ cos ot
a¢n( v a’l)n.
: ¢
NoL) e -2 . —1 . 3,
pnc( X Pl 75T h osin 5 o7 (15.5)

The tangential velocity, (B.3), cvaluated at the troiling-cdge
(' :0) is nonzero for general airfoil motions and Kutlta's condition of

smoolh [low off of the trailing-cdge is violated,

To satisfy the Kutta condition, Theodorsen cmployed a bound vortex
distribution over the airfoil chord, and a vortex distribution over the
airfoil wake. Figurc B-2 indicatces the vortex flow for an isolated
vortex pair in the X-7 plane, To maintain the circle as a streamline,
a vortex of strength +To at X = bz/dx is paired with a vortex of

strength -“o at X = x.

Von Karman and Sears [60) show that the corresponding- situation
in the x* -~ z* plane consists of a vortex of strength -To at
& =y + b2/4x and a bound vortex sheet distributed over the airfoil
chord of strength 7Y(x¥,t),

The circulatory velocity potential on the upper semicircle due. to

the vortex pair T° , -I is
o o .

'
(6,t) = 2% tan”: (g%-b)(1+cos 0) (B.6)

(£*+h)(1-cos 0)

®
C

and the corresponding pressurc difference, from (B,5) is

PmUFo[§*+b cos 0]
pc({)‘t) = - (B.?

th sin 0 Jﬁﬁz-bz
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FIG. B-2 BOUND AND WAKE VORTICES IN THE x*-z* PLANE AND

THE X-Z PLANE




The tangentdal veloceity at the circele daduced by fhe vortex paire

. 2 by 2
! N =(35)
oo 0 2 .
A N N e (B,
k v (3) - b cos 0

For arbitrary motions, there will be n distributed wake vortex
sheet of strength VG(E,t) and the effecct of the shed wake is obtained
by replacing VO by —Yw(g,t)dﬁ- and integrating over the wake, Yor
awlrfoil motion al uniform velocitly starting 2t L = O the tangeniiul

veloceity at lhe trailing~cdge is

bUt

q (b;t) =

1
c 75 S (B..‘))

PU

xbsing)

i
1
(1-cosO)+ s COS?JYQ(F§t>dS*'

(B,10)

The velocity at the trailing-edge is given by (B.3) and (B.9) and the

Kutta condition is enforced by requiring that this velocity be zero,

b+U
cos b ~ 1 b

o 1
iw¥ gin hdb
2 a 1 £ X+b " . . ‘ \
S S T " ‘v;'.x._b YR dx = 0, (Bo11)
O

Egquation (B,11) relates the known downwash, W to the unknown wake

¢

vortex sirength Yw(‘”,t). The first integral in (B,11) may be evaluated

ilow is specificed, Theodorsen defined one-hatf this integral as
ol
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‘

2
T w§ sin ¢dop

Q = -7—1r (B.12)
o cos h ~ 1
glving
Q = UX+ hb+ b(} - a)
(B,13)
U - a
7 TPt 5 27r TP + 7 (dw t 5 21r 11(d)7
for the section of Fig, A-1, and
Q = Ux+ hb + b{}-a)a
+ 2 g T..B + —('1‘ (d)-m7
m™ 10 Zv 11 10
_b_ - - R .
+ p (’ru(d) ™1 ~ 2¢)Y (B.14)

for the section of Fig, II-1., The T~functions were evaluated by
Theodorsen [11] and Theodorsen and Garrick [51] and are tabulated in
App. C. Thus the Kutta condition, (B.11l), may be written as

(o]
Q = - 71' S §i+2 Y (g* t)dg* . (B.15)

Integrating the pressure difference (B,10) over the chord, the circu-

latory 1ift and pitching moment are

x* £ *

° [T 2 2
P = pug EXT - BT Y (E¥%,t)dE% (B.16)
C b w

x* g™

]

o
a 1 fi%+1 2 2
, ) = *%a ¥, t)dex W17
M IUbS Vit (a+5)VE b Yw(s, ,t)de (B.17)
b




Fquations (B,15) and (B,17) show that the circulatory loads nre related

Lo the wake vortex stremgth by the two integral cxpressions

xl
. XDy . ,
LI S myw(f,f-,t)du (3,18)
[}
and
x-)(' g’ .
Q
2 N
1, = S st'z-b v (E%, tyarx (B.19)
b

(The hinge moments l\-lf and M7 may be expressed in terms of I] and 12_
also,) Theodorsen noted that if it were assumed that the airfoil had
undergone simple harmonic oscillations for an indefinitely -long period

then

. iwt
wilxt, 1) = W(xr)e (B.20)

and

in(t-ﬁ*/U) _ ei(ko—kg)

Y (rxt) = ¥ (B.21)

w w y@
since the wake is assumed to drift downstream at the freestream velocity
as shown in ¥ig, B~3, The reduced frequency, k = «b/U introduced in
(B,21) serves to indicate the relative 'unsteadiness' of the flow, The
unknown wake vortex strength ?w may now be factored out of the in-—

tegrals and (B,158) to (B,17) become

y 21Q
Y = - *
W S TTT ikt (B,22)
iko S e I (3
e 1 E~1
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P = =21TPhUQ L (B,23)
C [~4]
E4-1  ~ikg dr
; E-1 :
1
i
(-] - "
s o ikt at
£E7-1
M = -2meblugld -(ard) = (B.24)
C 2 ©
S g+1l ~ikg
E-1 © :
1

where £ = gx/b and ¢ = Ut/b are nondimensionalized distance and time,

respectively,

The integrals may be identified as modified Bessel functions of
the third kind, Ky(s), (Ref, 57, p, 22] from the integral definition
(Ref. 58, Eq., 9,6.23] '

N 1C R Re(v) > -3,
K (s) = ———2m e St ¢%a1)V 2y, Ro(s) > O (B.25)
F(v+d) J) ‘ ’
where 7(s) if the Gamma function [57], For vy = 0
© O-st
2
K (s) = S Jt -1 dt (B.26)
1
!
and since Ko (s) = =K!(s) . P
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) dt
Kl(s) = 1%-~1 . (B,27)
1
Therefore
[~
t4+l ~-st
+ = —— "

Ko(s) Kl(s) S 7 ¢ dt (B.28)

1

and the ratio of integrals in (B,23) and (B,24), defined as the Theodor-

sen function C(ik), 1is

Kl(ik) ng)(k)
C( lk) = = ('2) (2) . (B,29)
Kl(lk) + Ko(ik) H) (k) + iH (k)
The Hankel functions are given by Ko(ik) = - 1/2 iHﬁz)(k) and
Kj(ik) = {~-1/2) Hiz) (k) (Ref, 58, Eq., 9.6,4]. Theodorsen [11] did not

mention the violation of the condition Re(s) strictly greater than

zero, in the application of (B.26) to (B,23) and (B.24).

The loads acting on the airfoil may be calculated from (B,5),
(B.14), (B,23), (B,24), and (B,29) and from similar equations for the
hinge moments, The integrals required were evaluated by Theodorsen [11]
and Theodorsen and Garrick [51] and are tabulated in App, C. For the

wing-aileron-tab section of Fig, A-1, the loads may be written as

- - - ) - A 2 2m -
I = L + ool &+ oouB x + AUKR X (B. 30)
C nc nc nce=

where the matrices giving the 'noncirculatory' loads are
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-1 ™ T, T, (d) -1
£l n'(—1~ +'12) a7
- * g a _om
T 13 zam(a)
: 1 1
T ~O7 —]t LAY
L 2Ty 4 Wls T 6
T (d) -2T, (d) -1~Y, Lr ()
1 13 T 6 ™ 3
- -
0O - —T4 ’14((1) T
( &"'%‘ —'T -T
_ Vo mam) 16 Pl
Bnc -
1 1
0 ~T - =T - =Y
17 T 19 T 18
1 1
0 =T (d) -=Y =T (d)
L 17 T 10 T 19 N
0 0 0 0 T
0 0 =T _ =T . (d)
X 15 £
nc
1 1
0 -1 - =Y
0 ~ 18 T 17
1 1
- = - =T _(d
0 0 = ' 18(! )
L J
and the 'circulatory' loads are given by
-~ 2 X ,
L, = Puuc(ik)RQ- (B, 31)

where
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R .
Ty
L-le(d)J
The factor @, (B,13), may be written
. Q = Uslg + bsz;:g (B, 32)
wvhere
Sy [O’ L %~T10’ '% Tlo(d>J
Sy [1’ (3-a), %F T %? T11(d)} '

The loads for the scction with leading— and trailing—cdge control
surfaces (Fig. II-1)..may be obtained from (B.30) and (B3,31) using

(A,17) and A,18), They are

4 . . 2.2 e
L o= 1 o+ oM X+ omouB % + AUK x (B.33)
¢ nc- nc- nc-
wherc T-
M = VM V
ne nc
B Y TR
ne ne
. T=
K = VKV
no no
and
9 T . .
I.(_ Ph e ik)V H'Lh'l\’x . Sz\'.\:] . (13, 31)

1t should be noted that not all factors comprising The circeulatory
loads arce multiplicd by ¢ (i1k),  This results in certamn cancellations

. &
A NV
TR D
1 66- ST &




!

of terms between the circeulatory and noncirculatory loads and the sub-

seripts in (B.30) and (B,33) arc only descriptive,
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Appendix C

UNSTEADY AERODYNAMIC 1.0ADS IN TWO=-DIMENSIONAT,

INCOMPRESSIRIE FLOW

The aecrodynamic loads acting on the scction of Fig, A-1 were cal~
culated by Theodorsen [11], and Theodorsen and Garrick [51] and involve

the following expressions,

”1‘1 -i— (2+02) l-c2 + C cos—lc
1 2 2 2 -
T, = =~ =(l=c7)(Gc +4) + -lc(7+2c ) 1—02 cos 1c
3 8 4
~
2 -1
T4 = C «/l:c - cos ¢

T,7 = - -%c(7+2c2) A/l—cz - (—é—+c2)cos—1c

1 - -1
T8 --3-(1+2<:2) 1—02+ ¢ cos ¢

’1‘9 e —12{.'1—%(1~C2)3/2 + aT4]
T10 A 1—02 + cos ¢
T11 o (2-c) A/:(‘_Z' + (1—2c)c<)s_lc

T i - -}-(T +(c=a)T.)

13 217 1

Tis Ta* Tho

I‘16 T1 - T —(c---a)T4 + —T”

117 —2[‘9 - 'I‘[ + (a - 2)14 !
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' '2 G — — ] -
Yl(c,d) 1o glee” f1=d” — cos 1c cos 1d + d/1=d” cos lu

~1
+/l=¢c" cos “d - (d-c)zlom N(c,d)

-2 ~1
YZ(C’d) = 2J€:d cos ¢ - 2(d=c)log N(c,d)
1 - - 1 -1
Yg(e,d) = Z(c+2d)yl-c MA:;E1+ d os Tc cos Td —';(2+d2) 1-d” cos ¢
1. 2' - <
_-3 (1+30d~02)vﬁ~c cos ld +'%(d—c)3log N(c,d)
v,(¢,d) = Y(d,c)
Ul TR T ) 5 1 2 L cd)eos™Ye cost
Y6(c,d) = - ) vﬁ—c Jﬁ—d <1+§C 1'§d*j§Cd) - (gwcd)cos c cos d
d 5 -
+ —,13[2(% - a?y 4 c(2+d2):] Ji-a? cos”lc
4
1({c (5 2 2 2 -1 {(d-c)
== (& . ¢ -C : — o N ]
+ 3[4 5 ¢ )+ d(2+c ﬂ 1-¢ cos d + 12 log N(c,d)
YQ(C,d) = Y1 - F4(C)T10(d)
, A, e
Yoge,d) = Y, = Y, = 5T, ()T (d)
Y17(c,d) = &1 - T4(d)F10(c)
1., .
YIS(L,d) Y4 - Y3 -3 ﬁq(d)Tll(L)
Y. (c¢,d) Y -~ 2 1—-(12 T
19" ! 2 10
~ -
2 2
N(e,d) l~cd - Jl—c «/1_-()
d - ¢ ﬁgﬁi . i
P\JYQ
A !
0@\(3?00% P
of
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Appendix D

ATTERNATIVE DERIVATIONS'QE THE GENERALIZED

THEODORSEN FUNCTION

L, W,P, Jones [20], using the concepts of bound and free vorticity,
was able to show that the functions involved in Theodorsen's problenm
satisfied the modified Bessel equation, He thus avoided the restriction,
Re(s) > 0, involved in the integral representations of the Besscl func—

tions and derived the genceralized Theodorsen function

K, (8)

C(s) = h,1)

Ko(3) + K (3)

In attempting to compare this form of C(;) with that given-by Theo-

dorsen, Jones used the relation

K (s) = -g i Hgl)(is) (1.2)

without regard to the restriction =77 < arg s < % M. As a result,

. 2
C(s) was evaluated using differeént branches of the functions H( )

0
2 -
Hi )(s) in the first and second quadrants of the s~plane and Jones con-

(s) and

¢luded, incorrectly, that C(s) was discontinuous across the . axis,

2. The convolution integral may be used to verify that the gen-
eralized Theodorsen function is iadecd the correct operator rclating
the downwash, w(s), to the induced airloads for stable airfoil motions,

The 1ift due to circulation is given by

P(s) = 2uppbuc(s)wls) (0. 3)

For some operator, C(s), For the assumed form of (2,33),

ORIGINAL PAGE 18
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Kl(E)
C(s) n e

KO(H) | Kl(s)

and the particulavr dawmped airfoil motion

~at! —g100) 1t
w(t') W e (-0i1 )t}

cos W' = Re[woc ;o> 0 (D)

the inverse Laplace transform of DP(s)  is

01+iw _
1 ) N L .
C(s)w(s)eSJL ds . m.5)

J
[l
!
=
Casante™y

o, =i®
1

The transform w(s) is given by the real part of

W(s) = w [Liiﬂl;t_if] . ®.6)
(.}

(sm)z o

Since 0 > 0, o, may be set equal to zero and with the substitution

S = ik

=]
W ol o
p(t') _ o ( Jﬂi_q;.t_%rg iktt .7
oMby © 2l Clk) (ikto)“ + © dk.
-
i

The symbol under the integral iwmplies that the path of integration
must pass below the branch point at the origin, Garrick {707 showed
that the 1ift could be calceulated for arbitrary motions using the convo-

lution integral
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t
P(1') t aw(1'-1y)
e o WOk (1) S Ky (11) =t (h, )
0 dt!
Alsa, kl(“) and C(k)/k  are related ! 707 by
=]
1 : ik1!
kl(i‘ ) = Tl s E{Jil ot di! h,9)
N
-
ar

wvhere the fact that kl(t') = 0 for t' <« 0 has been used, Substituting

the expressions given by (D,6) and (D,9) into (D,8) yiclds

P(t'** o

c(x) Lkt
27PbU T 2ri (

——

K

dt!

=
Nmagtmn.,

—

8 8

(h,10)

® ~(~g+ic) 1!
Clk J
X J‘ ﬁx) eikﬁ- dkle 1 datr { .
-0 1
u?

The cxpression in brackets inside the lust integral repeesents k]{t')

which is zero for t!' < O and the integrals may be interchanged. giving

-(~g+ic-ik)o

- - =~}
it ~(~g4+iv- !
“ J' c(k) (-0t ik)tldtidk = - Jﬁ C(k) = dk |
o e K - 0 (~atic-ik)
2 v?

Then (D,10) is
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[e]

p(1) Y c(r) kv —o? Y
U Sl k SR ETEE N
w
(D.11)
(=]

w - -
8] o ikt? (ixi10)ric ,
= 5 s C(Kk)« [ _2} dk
-0

-\ a2
(ik+0) +us
popet

The cxpression for the 1ift given by (D,7) and (D.11) are identical,

verifying the choice of (2.33) as the operator relating w(s) to P(s).
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Appendix K

RISCUSSION OF TUI GENERALIZED THEODORSKEN FUNCTION AND

UNSTEADY AERODYNAMICS FOR ARBITRARY MOTIONS

The study of unsteady airloads due to transient motions was pioneered
by Wagner [8] who calculated the 1ift on an airfoil started impulsively

froem rest, The resulting 1ift function klﬁ‘) is known as Wagner's func-

tion and has not been successfully cvaluated in terms of elementary func-
tions, Due to the linearity of the governing partial differential equa-
tions, it was recognized that superposition of elementary solutions could
be used to calculate unsteady airloads for arbitrary motions, Garrick

[707 used the convolution integral to write the 1lift due to motion w(t')

as

t dw(-t!)

P(t') _ . R S

Sotts. = w(O)l\l(t') + S kl(t'-tl) _ dt; . (E.1)
o dti

Garrick [707 also showed that k'l(t!') and C(ik)/k were a Fourier trans-

form pair,

-1 -t
o(1) = ik | e (t)e g (E.2)
o
=]
' 1 clik) kv
L T Y .
k(L) 5T S = dk . (E,3)
S
-0

In (E,2) the fact that kl(L’) = 0 for t' < 0 has been used and the path
of integration in (E,3) must pass below the singularity of the integrand

at k 0,
-1 75~ .1, PAGE 1B
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The .application of Laplace transform techniques to unsteady acro-
dynamic integral cquations was suggested by BT, Jones [297 and Scars [5H6]
used the technique to obtain new solutions to Wagner's problem (indicial
Lift due Lo impulsive plunging), Kussner's problem (indicial 1ift, kz(L'),
duc to penetration of a sharp-edged gust), .and the oscillating airfoil
problem, Scars! presentation is essentially a derivation of the general- M
ized Theodorsen function although this. aspect is not discussed in Ref, 56

and was apparently not pursued, 1

It is interesting to note that the early rcferences in the field do
not mention the restrictions on the .existence of the integrals upon which
the theory is based, Sohngen [881 was apparently the first to recognize
the effect of the branch cut of C(s) upon the loads, He noted that
diverging airfoil motions led to airloads which behaved asymptotically

st!
as e while converging airfoil motions led to asymptotic loads pro-

e i}

portional to l/t'. Thesc correspond to the rational and nonrational
portions identified in the text, This difference was bothersome and it
appeared to correlate with the restriction upon the existence of the
integrals in question (viz,, Re(g) > 0), leading to the conclusion that

C(;) could not be extended into the left half-plane,

The first attempt to evaluate the Theodorsen function for complex
values of k was by W,P, Jones [20] who concluded, incorrectly, that
C(s) was discontinuous across the imaginary axis, Thus, he concluded
that C(ik) could be generalized for divergent oscillations (Fig, I1I-3a)
but was invalid for convergent oscillations (Fig, II-3b), This rcasoning

was reinforced by the fact that Theodorsen had been forced to-assume an

explicit form for the airfoil motion and wakevortex distribution (B,20,

B,21) in order to obtain a solution, This fact may be the source of the

1

i

confusion whercin the Theodorsen function is interpreted as a time dowmain 1
1

operator rather than a frequency domain operator (e,g,, Ref, 22),

During this period, calculations were made of unsteady loads using
the convolution integral (E,1) with the indicial function approximated
by sums of cxponential time factors as shown by R,T, Jones [29], [9].

The exponential approximations were capable of being cvaluated for
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avbitrary wotion, and Goland and Take [30] published root loci of aero-
clastic modes,  The Laplace transform of the exponential approximation

to kl(L') can be interpreted as an ad hoc generalized Theodorsen function
and comparisons of numerical calculations [25] using such functions and
the exact'tabaﬁutcd kl(t') function led Luke and Dengler [21] to the
conclusion thAt. €(ik) could be extended to the entire s-plane, However,
their argument;‘buscd upon analytic continuation, did not secm convincing
in light of the aboye discussion and it was rejected in a series of
articles [227, [23],' [24], [25], and [26], At the heart of the discussion
was the requirement in Theodorsen's derivation of assuming an explicit
form of airfoil motion and wake vortex distribution (i,e,, oscillatory
divergent and infinite extent) in order to evaluate the resulting inte-
grals, It seemed contrary to reason to claim that the resulting function
C(ik) was valid for damped motions when the derivation of the function
required just the opposite assumption, Of course, the assumption of an
explicit motion is not required and the derivation of the generalized
Theodorsen function using Laplace transform techniques is given in the

text, e

It would appear that the difficulties with the generalized Theodorsen
function influenced the subsequent development of compressible finite-wing
aerodynamic load calculations, These techniques [15], [17], [62] and [89]
invariably begin with the assumption of simple harmonic oscillations,
although the text shows that this assumption is not necessary, It must
be recognized that oscillatory loads are entirely adequate for.-the cstab-
lishment of flutter boundaries and, until the advent of active aeroclastic
control schemes, there was little requirement for loads due to arbitrary

motions,

Morino [36] has derived a new formulation of the unsteady aerodynamic
loading problem based upon the Green function solution and claims that
this formulation is the only technique capable of analyzing loads due
to arbitrary wotions, Presumably this claim is based upon the fact-that
Morino's theory analyzes finite thickness wings and does not encounter
the singularities inherent in flat plate theories, However, the text
of this thesis shows that these singularities do not restrict consideration

to oscillatory motions and Morino's claim is false,
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Appendix P

SERTES EXPANSIONS OF BESSEL FUNCTIONS

The following series expansions are given in Ch,
Stegun [58],

9 of Abramowitz and

1, Ascending power series

n o (' 3 2>k
o 1 (F.1)
Jn( ) (2 > 1§0 k'.r‘(n+k+1)
1 2\"
. (ZS ) (F.2)
L(s) = (3s) Eo ERCEEY) |
i -n n-1 (n-k-1)1 /_ 1.2 k (F.3)
K (s) = 3(3 ) k=0 k! -3 )

1 2\k
n1/1 \* <« 1° )
+(-1) ‘(55) :L::) (¥ )y (neier1)] KI(nik)?
where r(n+l) = n!
v(1) = 7,
-1 .
v(n) = Yt :§1 k.l, n=2
Y, = 0.577215664% ... .
518
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Asymptotic expmmsions:

® 2 2 2 2 2 2
I(s) ~ o - in“-1 . (4n”=1)(4n”-9) : (4n"-1)(4n“-9)(4n -25)
I ‘/ 7S

—8 g 21(8s) 34(8s)

+ 0'.} B

7T

arg sl <

K (s) ~‘/-ZE 9-5{1 - oy + (4112-9)(%2-1) + (4n2-1)(4n2-g)(4n2-25)
n s " 8s 21(8s) 31(2s)

+...}, |arg s|<§ﬁ ) (F.5)
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