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ABSTRACT

Unsteady aerodynamic modeling techniques are developed _md applied

to the study of active control of elastic vehicles. The problem of

active control of a super-critical flutter mode poses a definite design

goal--stability_ and is treated in detail in this thesis.

The transfer functions relating the arbitrary airfoil motions to

the airloads are derived from the Laplace transforms of the linearized

airload expressions for incompressible two-dimensional flow. The trans-

fer Zunetion re_ating the motions to the circulatory part of these

loads is recognized as the Theodorsen function extended to complex

values of reduced frequency, and is termed the generalized Theodorsen

function. A brief critique of previous attempts to generalize the

Theodorsen function is given. Inversion of the Laplace transforms yields

exact transient airloads and airfoil motions. Exact root loci of aero-

elastic modes are calculated, providing quantitative information regard-

ing subcritical and supercritieal flutter conditions.

The technique of generalizing simple harmonic airload calculations

to complex values of reduced frequency is extended to compressible flow

regimes. It is conjectured that computer programs which calculate air-

loads for oscillatory motions can be generalized in a fairly straight-

forward manner to calculate airloads due to arbitrary motions. This

is accomplished for the _;wo-dimensional supersonic case.

The ability to calculate airloads for complex values of reduced

frequency allows approximate techniques of calculating these loads to

be evaluated. Matrix Pad6 approximants of airloads for two-dimensional

airfoils are evaluated in this manner.

The exact airfoil motions contain portions associated with rational

translorms and portions associated with nonrational transforms. The

oscillatory response characteristic of a fluttering airfoil is asso@iaied
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t_Lth ih¢_ _':.tional pol'tion alld a t|lt_Ol'_m is p:vov('d _'('KaJ'diul_ Lh_, con-

sLl'tlc[lon of.' tl Ulliqtlo filllL(,-dil]l(,ll_ioll;ll, lill¢,;ll'_ colls'/,;illt-cot, llici(qll_

modcq o1' this portion of t:ht, syst('m. This _.al, ional model doos 11o1

l'equiro sttllo du_nlen[t|liOll to model Ull,%teady ae,'odynmnic (df(.cls ;ind in;ly

be used to d_'sign active aeroola._tic control systems.

The rational...model and Pad6 model al'e used to design l].uttcr ,,mppres-

sion systems for airfoils in incompressible and supersonic flows using

the optimal regulator design technique. Both i echniques are sho_n to

produce valid flutter mode control designs.
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Chapter I

INTR OD UCT ION

During the past decade, an aircraft design philosophy has emerged which

attempts to gain performance improvements by means of an interactive de-

sign process involving structural dynamics, aerodynamics, and control

systems. This philosophy involves the use of active control systems to

achieve aerodynamic and/or structural designs which have better perform-

ance, stability, or economy than can be achieved with conventional passive

techniques. Many of these concepts have been implemented in the B-52

load alleviation and mode stabilization (LAMS) [Ref. i], and control con-

figured vehicle (CCV) [Ref. 2] programs. The concepts used in this control

configured vehicle philosophy include: augmented rigid body stability,

maneuver load control, ride control, fatigue reduction, gust allevia-

tion, and flutter mode control. The first five items involve the static

and dynamic performance of the flexible aircraft. The design goal of these

items is typified, by the C-SA active load distribution control system [3]

which was designed to reduce the wing root bending moments experienced

by the aircraft and thus increase its service life.

Tile last item, flutter mode control, is fundamentally different from

the others in that the structural stability of the flexible vehicle is

involved. While loss of the former items would result in degraded per-

formance or a shorter vehicle life, loss of a flutter mode control system

at a supercritieal flutter condition would usually result in loss of the

aircraft. Although the risk is high, the potential performance gains are

correspondingly high and flutter mode control systems can be designed to

reduce the structural weight of a vehicle or to increase the flight enve-

lope of the vehicle by expanding flutter speed plscards. Roger and

Hodges [4] describe the flutter mode control system implemented for the

}3-52 CCV program and successfully flight tested, while Sandford et al.

[5!, document a system installed on a wlnd tunnel model.

-i-
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'['{l_' :.lllaly._,i.'--_ tL'Clllli(ILl_,_: I'_quirC(I LIPt., C¢)111111(_11tO _1l] (,_|' th{','_ (.'CV l)l'()-

.gt':_.m.'-, :Lad i.nvolve the, .'_tudy oil unsLt,:_dy aoP_db,,lmlLic:_ (',_,' arl)itr'_ry mot;ions,

._ tl'_lC{ era I dy|lalnics duc, Lo unsteady loading_ :rod aez'odyn:_mic .loadi nl_

cau._cd by colltl'o[ slll']!ac.(_ _ll¢)tioll. Tim' design c,f flutbq:r illOdC eontl'o]

systems IJl_Ice_ sevel'u dcmallcls upon tlle analyst; the In'iil;_lr'y design g'oaI.

is sCz'uctural stability. Hence, this dissez'tation focusers attention upon

techniques of analyzing' flutter mode control systems. Of course, tIl,_,

techniq_les will also be applicable to the other CCV concepts.

A_. SURVEY OF LITERATURE

The finite element method of structural dynamics is well developed

[6] and will be assumed as the basis of the analysis of aircraft struc-

tures. The infinite dimensional spaces required to describe solutions

are reduced to finite dimensional spaces by the familiar technique of

truncated normal modes [7].

The study of unsteady aerodynamics has progressed along' two direc-

t ions :

(I) Tile calculation of the indicial loading due to impulsive motion;

(2) The calculation of the loads due to simple harmonic oscillations

of the wing or section.

The former area was first investigated by Wagner [.8] for two-dimensional

incompressible flow. R. T. Jones [9] and Lomax et,al. [i0], continued

this line of investigation. A method for calculating the h>ads due to

simple harmonic oscillations of a wing section in incompressible flow

was first given by Theodorsen [ii]. The corresponding solution fqr sub-

,_onic flow was given by Timman and Van deVooren [12], and for supersonic

flow by Garrick and Igubinow { 131. Methods for calculating tile loads on

three-dimensional wings due to oscillations of assumed or normal mode

,%hapcs have derived from Possio's integral equation [14]. Techniques of

treating the singularities of the kernel function and obtaining" solutions

wcl'o given by Watkins et al, [15], and have been extended to _ving's with

ccmtrol surftlCt, S by l{owe, et al., [16]. Another calculation process,

-2-
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an_llo_ous to tile f:[nltc_element method of structuFe_;, is the doublet-

lattice technique of Albnno and Rodden [17].

Tlle prevalence of aerodynamic annlysis techniques based upon the

assumption of simple harmonic motions is undoubtedly due to the success

of the theory in predicting flutter boundaries. Theodorsen and Garrick [18],

and Smilg and Wassermnn [19], are representative of the methods traditionally

used in the calculation of flutter boundaries. The latter reference intro-

duced the concept of aFtificial structural damping.

Attempts to extend Theodorsen's theory to deal with arbitrary motions

(e.g., converging or diverging oscillations) were made by W.P. Jones [20],

and by Luke and Dangler [21]. Jones concluded that Theodorsen's solution

could be extended to diverging (unstable) oscillations but not to converg-

ing (stable) oscillations while Luke and Dengler's attempt to extend

Theodorsen's solution to stable motions was re_ected in a series of articles

[22] - [26].

The inability of U-g flutter analysis and oscillatory aerodynamics

to give quantitative information regarding stable, subcritical flutter

conditions [Richardson, 27], [Hassig, 28],led to methods of approximating

this behavior based.upon convolution techniques. R.T. Jones [29] indicated

the method of exponential approximation of Wagner's indicial loading func-

tion and used the convolution integral to obtain results for arbitrary

motions. Jones' work was followed by Goland and Luke [30], Baird and

Kelley [31], and Dugundji [32]. Recently, Vepa [33, 34] applied the tech-

nique of Pad6'approximation of oscillatory loads to derive expressions for

loads due to arbitrary motion. Also, Mot|no [35, 36] has developed a new

formulation based on the Green function solution of the governing partial

differential equation which is valid for arbitrary motions.

Whereas the ability to calculate airloads for arbitrary motions is

of interest to the aeroelastieian for the insight gained concerning the

approach to flutter, it is a necessity to the controls engineer who desires

to design a flutter mode control system. The application of the deslgn

techniques of modern control theory requires that the plant to be controlled

be described b-y a mathematical model, preferably by liuear, constant-

J

Jl



ccn,['l.'t.c_'itmt, ordizmt'y dil.'t+_,rc.ntlal equ:_t:ion,g. APl;rOx_vllati.cnl L¢,chn[quc;;

ba_c,d upon ,,,xpon+,ntial :+ppt'(+xilllattoll.4 to IndiuJ.+tt l'<:,+,_pont++, functlot:._; or

lhttI_ alJpPoxiezl+llltS 1Ol_".I nattlra:.ly to su+h models in which the tlnf:t+?ady

aerodynamic e/'i'_,cl+.s art., sllllul;ttt,d by ntl/rlllentetl statt_ + varlabl+,,'_. The 11-52

CCV fluttc'r inotJ(_ control system WaS di_si.gned US[I1 K this type of mr>d_,] [2 I

and ut[li+zud th(' frequency domain eelltl'ol syllthpsi,_4 Iil(.+l:hod.

Opt kmal control theory is a well developed methodology for the syn-

thesis of control laws to minimize a suitable performance index [Bryson

and He, 371. Designs of flutter mode control laws using augmented statc_

ntethods to represent the unsteady aerodynamics and implementing tile

optimal regulator solution are described by Turner [38] and Dressier [:_9].

A program designed to study the active control of flexible aircraft which

incorporates Morino's aerodynamic theory is described by Nell and

Merino [40]. Hav,::.ver, it has yet to be applied to a flutter mode control

problem.

A different approach was taken by Nissim [41] who developed a flutter

suppression scheme based upon the concept of aerodynamic energy. A wind

tunnel program testing Nissim's design technique is described by Snndford,

et _l. [s].

Flutter mode control system designs are actually problems in distrib-

uted parameter system theory. Wang and Tung [42] surveyed the field and

references [43] - [48] typify the results of the theory, Sung and Y[l [49]

present a formulation within which the flutter control problem can be

treated, while Wang [50] presents a technique of stabilizing a system with

a finite number of unstable modes which resembles the flutter problem.

B. THESIS OUTLINE

Chapter II presents the equations of ,lotion of the typical section

treated in this thesis and derives the generalized Theodorsen function for

arbitrary all'foil motions. 'Phc Laplace inversion integral is us_,d to de-

rive loads due to transient motions and generalized unsteady aerodynamic

loads are studied in compressible flow.

-4-
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In Chapter II[, t!!e generalized loads developed in Chapter II are

incorpora.ted into the equations of motion, and tile l.ocm_ of root,_; of t:ho

aeroelastlc system is determined. Tile Laplace inversion integral i,_; u._it::d

Co calculate exact airfoil motions due to flap command inputs,

Chapter IV treats the problem of approximation of unsteady aerodynamic

loads. R.T. Jones' approximation of the Theodorsen function, and Vepa's

matrix Pad6 approximants of compressible loads, are compared to the exact

solutions for aribtrary motions.

Tile active control of aeroelastic systems is treated in Chapter V.

Controllability and observability of such systems are investigated and the

aerodynamic energy design technique is studied. The "rational model" is

presented and compared to the Pad6 model. The models are used to design

optimal regulator solutions to the flutter mode control problem.

Chapter VI presents the conclusions of this thesis and recommendations

for future research.

C. SUMMARY OF CONTRIBUTIONS

i. The problem of generalized aerodynamic loads due to arbitrary air-

foil motions is investigated. The generalized Theodorsen function for in-

compresslble flow is derived using Laplace transform techniques. The same

technique is applied to compressible unsteady airload calculations and

results are presented for the case of two-dimensional supersonic flow.

Exact root loci of aeroelastic modes are calculated and examples of exact

transient responses due to stable motions are given.

2. The transient motions contain portions associated with rational

transforms and portions associated with nonrational transforms. It is

shown that the oscillatory motions typifying flutter phenomena are due

entirely to the rational portion of the response.

3. The generalized aerodynamic loads aze used to evaluate approxi-

mate techniques for calculating these loads. It is shown that exponential

approximations of indicial loading functions and matrix Pad6 approximants

of oscillatory airloads provide valid models of unsteady alrloads for

-5-
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valises; of complex reduced .frequency nonP the .i.mn_,l.nnPy _L×Is.

4. '['he generalized Theodorsen I_UI1CLioI1 Jr; ItH(_([ tO St[|fly ,_LI|L_L(:

¢li_¢_rgence o£ typical ,_¢_c[:lons. It l.._ shown thtlt star.it diw,rgenee

corresponds _o tile emerf_enee of a re.al ]_osLtive pol(_ of the y;yH_.on| trails-

£c,r function m_d occurs, i,n addt.tion, l:o the original :-;tructural poles,

5. Flutter mode control SyS_(.'lns are invostigIltod, 'Pho conl:t'cllt|-

bility and observability of airfoils i.s studied. A thooc¢,,m i..'_ given

concerning tile ability to construct a unique, I.inear model of the

['ational portion of the aeroelastic system which does not require state

augmentation. Tlle resulting rational model and the Pad6 nlodel are used

to design flutter mode control systelns.

-6=-



Chapter I I

UNSTEADY AERODYNAMIC MODELING

A. TYPICAL SECTION EQUATIONS OF MOTION

The typical section which will be analyzed is shown in Fig. II-l. It

has leading- and trailing-edge control surfaces which are aerodynamically

unbalanced (liinge lines at leading/trailing edges), simplifying the des-

cription of tile aerodynamics.T Linear and torsional springs (k h and k(_)

at the section elastic axis restrain motion in the plunge (h), and pitch

((2) degrees of freedom, while torsional restraining springs (k_ and k )T

restrain control surface, deflections. All linear coordinates (x, z, h)

have been nondimensionalized by the semi-chord, b. The equations of motion

are derived in App. A following the conventions of Theodorsen [117, and

Theodorsen and Garrick [51, 18] as

where the subscript

rural origin, and

"l

M =
S

x_

M x = -K x - B _ + 1 L + Gu (2." _

s- s'- s- m b2
S

indicates that the matrix operators are of struc-

xa x_ xr

2 2 . d-a)-_r_ [r_+_(c-_)].,[_( 3

[ r_+x_3(c-a) ] r_ 0

-r2] 0 r2[_r (d'a) r r .

The matrices Ms> Ks_ Bs_ and G arc

On an aerodynamically balanced control surface, the hinge line is some

distance away from the leading/trailing edge such that the aerodynamic

pressure distribution may be used to advantage in reducing the hinge

moments developed by surface motion.
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The u._¢' o,["cc_ntl'o]. ,_ul?.L'.ncc,._;pring ,'incld-umpin_ c:on._t,qnt._ to Upln_c_xiulate

il'rc,vers[ble po.'_iLio|l control systems i._ di._eussc,d in App. A. I,',quuLion

(2. 1) cle._cribe,_ a f'our clegre_,-of-free¢lom (DOF) model. .Two and three I)OF

ii[oclo]._ llb'ly be' obLained-£Pom (2.1) by dc'letJng al-,prolu'iate rows and column._

of the-matrices and vectors.

The specification o:[' tlle aerodynamic load vector, ],, completes the:

system clescription and is tile subject of tile remainder of this sect i.ol,.

B. UNSTEADY AERODYNAMICS

The development of the linearized, small distunbance partial differ-

ential equation for unsteady aerodynamic loads is presented in numerous

textbooks and the presentatio_f Bisplinghoff, et al. [7], will be

followed. The exact, nonlinear, unsteady flow partial differential equa-

tion satisfied by the velocity potential is

a2L_t 2 + _t
4+ q • grad = 0 (2.2)

and the flow velocity is given by

q = VO (2.3)

2
where the _ and 7 operators imply the use of dimensional coordinates

x _ = b% y_ = by_ z_ = bz . (2.4)

The flow velocity is related to tile pressure through Kelvin's equation

or the unsteady Bernoulli equation

_q 1 Vp+ _- . (2.5)

Equations (2.].) through (2.3,) are linearized by assumin_ that tile fluid

-10-
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velocity vector, q, varies only slightly from the free-stream velocity,

U. A disturbance velocity l_otential 5' is defined sucll that

_, = ¢' + Ux*

where the disturbance velocity comp_o/len£s

u v = u - U _, _,

are assumed to be small compared to U. Then the linearized partial

differential equation for unsteady, compressible flow is

V2 , 1 _2¢, 2M _2_t - M _2@' - 0
2

a _t 2 a _x_t _x _2
(2.6)

subject to the boundary conditions

.
w = 57-+u57-, -b _ x _ g b (2.7)

.
W = t_-'- + U-- _

bx_
-bg x_< b (2.8)

* t) and ZL(X,* *where z_(x, t) describe the location of the upper and lower

surfaces of the section as shown in Fig. II-2. The linearized versic,1 of

(2.5) gives the pressure coefficient

P'Pm 2 _' 2 _qb'
c = ..... (2.9)

P ½p U 2 U 2 ()t U bx _

yielding the pressures on thetop and bottom surfaces of the airfoil as

-it- ORIGINAL pAGI_ Is
OF pOOR o UAL1TY
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FIG. II-2 CROSS SECTION OF A THINAIRFOIL

_,(_, o+, t) - p_ -- _,(.*, .o.-, t)
PU " P_ = - p U _X _ _t

(2.10)

PL " Pm= - Om U qb'(x *, O_ t) - O_ _'_ qb'(x*, 0-_ t) . (2.11)

Since the governing differential equation, (2.6) is linear, the solu-

tion may be constructed as a super-position of elementary solutions. The

airfoil profile maz be separated into a portion representing thickness,

z* and a portion representing angle-of-attack and camber, *
t' n

z U = z + Z t
a (2.12a)

9$ 9$ _-

z L = z " z t • (2 12b)

* represents a symmetrical airfoil atThe thickness distribution, zt,

zero incidence and, by symmetry, can provide no lift or pitching moment.

-12-
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i I
The distribution, z _

'a ' represe-nts _I canlbcPed, z{31-'_; tJliCkllOS,_ _ [nclilied

moan liue which produces tile lift and pitching moments acting ¢m the air-

:foil, This distribution may be further separnted into a sLendy portion

conttlilling tile airfoil camber and a uonsteacly, reCall-line portion nominally

at zero angle-of-attack. It is tile latter, '£1at-plate' airfoil which is

the starting" point for linearized, unsteady nerodynamic theory. Ilence-

£orth z*(x,* t) refers to this flat-plate airfoil and r_ will be tile
J a

velocity potential satisfyin_ (2.6) subject to the boundary condition

_Z _" _Z %

-X- * w-X- a a
Wa(X , t) -= - + U

bt bx _. • (2.13)

The flow prescribed by this boundary condition is antisymmetrical

with respect to the x-y p±a,=, as described in Bisplinghoff [52], and

the perturbation pressures at corresponding points on the top and bottom

satisfy Pu(X*, 0+, t) : -PL(X*, 0-, t). Thus the pressure difference act-

ing on the air_oil, positive for downward loading, is

b

P(x_'t) = PU " PL = -2Poo U _()x_ _(x*,O+,t) - 2p0 ° '_t qb(x*,O_,t). (2.14)

The aerodynamic loads acting on the airfoil are determined by integrating

this pressure difference over appropriate portions of the airfoil.

b

P = I p(x -x-, t)dx-X- (2.15)
-b

(z b

M = I (_* - ab)p(_*,t)d_-
-b

Ib= (x_- - _b)p m,t dx_( )
cb

(db - X×-)p(x _-, t)dxX"

(2.t6)

(2.17)

• (2.]8)

-13-



Thc_ mt,thod of solution of (2.6) ch'l_entl,_ upon tho aer,)dynamic regimo

ulldor illvestigation, In inco,lprossiblo flow, M. O, und Lilt, oquatio[l

reduces to l,aplace _ _ equation

2
_7 _ = 0 (2.19)

which is an elliptic partial differential equation. In subsonic and super-

sonic flows, the equation becomes one of hyperbolic type. The solution of

the partial differential equation has traditionally been simplified by

assuming that the airfoil is undergoing simple harmonic oscillations in

the various degrees of freedom, thus removing one of the independent

variables, t. Further simplification of (2.6) results if two-dimensional

flow is assumed, making the equations .i.ndependent of the span-wise coord-

inate, y.

C. TWO-DI_NSIONAL, INCOMPRESSIBLE UNSTEADY

AERODYNAMICS FOR SIMPLE HARMONIC MOTIONS

A solution of (2.6) was first obtained for the case of two-dimensional

airfoils undergoing simple harmonic oscillations in incompressible flow.

Theodorsen [ii] was the first to publish the complete solution, although

many other authors obtained similar results independently during the same

period. Btsplinghoff e t al. [52], and Garrick [53,. 54] present summaries

of the vario4/s authors and techniques. Appendix B contains a summary of

Theodorsen's derivation as presented in Ref. 52. The solution consists

of a superposition of flows due to a source-sink distribution, a bound

vortex distribution along the chord, 8Dd a wake vortex sheet distribution

convicted do%_nstream from the trailing-edge. The Kutta condition of

smooth flow at the trailing-edge is enforced by Eq. (B.16),

Q = 1 .II+° _-b- _.---_ rw(_,_)d _ . (B. 16)

1

-L4-



EquaLion B.i7, giving Lllt_ cil'cul.agory li.ft;, is ropl'esentativo of the

inLegral _qua.Llolls involved in Lho unstt._ndy Ion(Is

To proceed with the solution, Theodorsen assumed

(I) The airfoil motion, wa(x ,t) consisted of simple harmonic

oscillations (Eq. B.21), producing the wake vortex distribution

given by (B.22);

(2) The motion had been sustained for an indefinitely long period,

allowing the upper limits on the integrals in (B.16) through

(B.18) to be replaced by _ .

It was then possible, using an integral representation of the modified

Bessel function K v(s) (equivalent to Eq. B.28) to evaluate the ratios

of integrals occurring in Eqs. B.24 and B.25 as

H_2)(k) KIt ik)

<o - "c(ik) = 2)(k) iH 2)(k) K (ik) + Kl(ik)
o

The restriction on the use of the integral representation of Kv(S) , Re(s)

> 0, is not mentioned in the early references dealing with the subject.

This restriction, in connection with the assumed airfoil motions (B.21 and

B.22), implies the oscillatory divergent ,notion and wake vortex distribu-

tion shown in Fig. II-3a. The analysis GO far presented would thus appear

to be inapplicable to the convergent oscillations shown in Fig. II-3b.

Tl_e fact that the theory agreed with experimental observations of flutter

boundaries (e.g., Theodorsen and Garrick, Ref. 18) explains the acceptance

of the theory for Re(x) = 0 (purely simple harmonic oscillations),

although the integrals upon which the theory ix based are then divergent.

The simple harmonic loads acting on tile airfoil are Kiven by (B.35)

anti (B.36) as
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r....l

a:Lk/ := 9u {-k M , (K ,c( . j'": (2.2¢_)

t k L'

where, _x_(x,t.') : 50u .

oscillations ;ind with

Eqtlation (2.1) spoci;llizcd to ,qimplc_ har',nonic

u 0 is then

"t-I -'_'_K_ S + _-_(Knc+C(ik)RS1)] }XOk

where 1] = I/_.

= 0

(2.21)

For a section with n degrees of freedom, (2.21) is an nth order

matrix equation which has a nontrivial solution only if the determinant

of the matrix of coefficients is zero. For a given airfoil section, (2.21)

is a function of _, _, and k, and the determinant of the coefficients

yields a complex equation. A method of solving this equation is to

assume values of _ and k (allowing the aerodynamic loads to be calculated)

and factor the resulting real and imaginary equations, giving two sets of

n values of _. In general, a given value of _ will not be a factor

of both equations, and the process is repeated for other values of k

until a value is determined for which the real and imaginary parts of the

dcter_linant have a common factor, _f, the flutter frequency. The small-

est value of U corresponding to a solutZon is called the flutter speed

given by Uf = _fb/kf. This method of solution, termed Theodorsen's

method, is described in Refs. ll and 55.

An alternative method of solution which is more commonly used is the

U - g method described in Refs. 19 and 52. Tile artificial structural

damping, g, is introduced by replacing the redl quantity, (I/_) 2, with

the complex factor

2

(2.22)

For a given choice of _i and k, (2.21) now represents a complex c,igen-

value problem for the unknown, Z. With the eigellvalues, Z, determined,

-17-
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the corresponding frequency, velocity, and structural damping are deter-

mined by

2 I.

_Jf - _ (2.23)

f

uf = l-q- (2,24)

g _ (2.25)
= RetZ) "

The critical flutter point is determined by tile values of u and k yield-

ing a value of g equal to the assumed structural damping (usually zero).

The U - g method is commonly used to perform flutter calculations

for compressible flow in which case the Mach number is an additional inde-

pendent variable. In this case, the calculated flutter speed Uf may not

correspond to the density (altitude) and Mach number assumed in perform-

ing the claculations and the analysis must be repeated at several Mach

numbers so that a "matched flutter point" may be determined by crossplotting

the results.

It is obvious that a great deal of the calculation required to deter-

mine a flutter point is of limited further value since the conditions

corresponding to the intermediate solutions are unphysical Further, the

resulting flutter boundaries give quantitative results only for the case

of neutral stability (simple harmonic oscillations). The information

concerning the subcritieal and supercritical flutter conditions is quali-

tative at best. The cause of this situation is the assumption of simple

harmonic motion in the calculation of the unsteady aerodynamic loads.

Hence, an investigation of the possibility of..ealculating airloads for

arbitrary motions is appropriate.

D. THE GENERALIZED 'rHEODORSEN FUNCTION

Attempts to generalize the Theodorsen function by evaluating C(ik)

for complex values of k were made by W.P. Jones 11201, and Luke and

could be generalized forDengler [21J. Jones collcluded that C(ik)

-Ig-
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diverging a[rf(_il motiml,,-' (He_., 1,'ig. II-3n), but not f(n" dnmtmd c:mwerging

inotion._ (Fig. ll-3b). Still, nn th_ basis (_i"nunu,r:Icnl calculations nnd

cl_lilning that C(ik) could be allnlytiv.;|Ily cont:ilIH(,d into the left-hail

plane, l,_d¢,_und I)mip;ler publ:l._:hed tables of C(sb/IJ) fo_" ._ : 0 4 i_,

0 < O. I[()wever, they did not offer n proof of tll_s extel_:-:ion nnd in a

seri.es of l'eplies [Vm". (le Vooren, 221, I LajCone) 23J, [W._>, .Tones, 24],

[Change, 2GI] , their claim was rejected.

Earlier, Sears [56] had used the technique of Laplace trap'formation to

obtain new derivations of indicial ).onding functions. Sears' presentation

is essentially a derivation of tile generalized Theodorsen function although

this is not discussed ill Ref. 56. No inention is made [56_ of criteria

for the existence of integrals nor of tile evaluation of C(ik) for complex

values of k.

The generalized Theodorsen function will be derived in a form closely

following Sears [56]. Assume that the airfoil was undisturbed prior to

t = 0 [w*(x*,t) = O, t < 0] and that the airfoil motion has endured for
a

t = (x 0* - b)/U sec, producing a wake that extends from x* = b to M* = x*0

as shown in Fig. II-3. It is assumed that the airfoil motion w*(x*,t)
a

and the wake vortex distribution Tw([*,t) are Laplace transformable func-

tions. Making the change of variables _* = x O* - Ut in (B.16) and (B.17)

gives

1

Q

_/ 2b'

u I +" 2_"-"b I "_ "_" T (t)dt

o

(2.26)

2 (,-t)

PC = PU _o _ (__t)2 + 2b(_.t ) 7w(t)dt (2,27)

"* - b)/U. The change of variables has the effect of nmkingwhere .r = (x 0

the wake vortex distribution _w_S,*''*t), a function of n single wlrlable

]-w(t). Equations (2.26) and (2.27) are convolution Integrnls, nnd sinct,

the Laplace tr;Insform of the convolution of two functions equals the

-1.9-



I

))rodu¢,t+ <.).f ill+++, t.J+ar-:+f,)r))),,+; o.f l.h+ + tw,') fun(:'l: o)t:; [,+'+7+) ),;q_. (2,2+;) and (2,27)

|)1 'C t)llll)

" a+)-'-_,r' - .... .<i_(+.)] ; (:_._+)

where

:[+_ (ab/U).t.+_+.t.p.:(t):1 .-_ _2._+ + _.t'i'w(t+):i ; (_+.2<))

[,,'+,"++If+_, ,t . = t + 2b/U t
%

0

-st
e dt

¢Q

-_e+_+>I_ °-_'+>'
1

dt

b +b/<,F,<c+,,_ (p)]= _ _ L o\Y/+ K1
_(_) > o ; (2.30)

t 2 + (2b/u) =

0

t + b/U

_/t 2 ' -st+ (2b/U) t dt

b sb/U
---_ -- e

U

t

1

dt

- e K 1U Itc,(._) > o . (2.31)

-2O-
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I

ii1 t_vllll.llltill[',' t]le;-;o oxprc_siOllF, t L|lo c|lllllgl) oi' VlII'_,q|J.|(L,-;

and (P_.29) nud(B,ZO) we)re t, mployecl. Eliminating ;_[Tw]

(_., 2,0)

C' :. (Uv,/b) a 1

from (2.2_) and

zl.p0(t) ] = ] (2.32)

where

Kl( )
= (2. :_a)

Ko(_) + KI(_)

- sb
and s : _ ,

U

The Bessel functions in (2.33) are defined and analytic throughout

the s-plane except for a branch point at the origin and a branch cut along

the negative real axis [Sect. 9.6, p. 374, Ref. 58], and by analytic

continuation [57] C(s) is the unique operator relating Q(s) and L (s)

throughout the s-plane (except along the branch cut). The principal

branch of tile Bessel function will be taken as -_ < arg s g _ and with

the restriction on the real Fart of s removed, (2.33) definez the gen-

eralized Theodorsen function. Setting s = ik recovers the Theodorsen

function, (B.31). The remaining unsteady loads (M_, M_ and MT) all

invclve the same ratio of integrals treated above, and the generalized

Theodorsen function can be incorporated into the aerodynamic load ex-

pressions by replacing C(ik) by C(s) in (B.33) and (B.36).

For small values of I_1, KO(_) and Kl(S) are readily calculated by

their ascending power series expansions which are given in A!_p. D. With

= re iQ and C(s) = F + iG, the real and imaginary parts of C(_) are

plotted in Fig. II-4 which extends the figure given by Luke and Dengler

[21] to 0 = + 60 ° and 9 = + 180 °. The Theodorsen function is given by

the curves for Q _ 90 ° corresponding to tile imaginary axis. As

r -_ O, C(_) -_ 1 and as _ ._ _, C(_) -_ 0.5 independent of O. 'File maxllnul,l

value of C remains in the range 0.2 < _ < 0.25 independent of _ and

increases monotonically as _ increases to 180 _.

]

-21-
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Equation (2.32) indicates tllat C(_) is t¢) bc regarded ns a frequency

domain oporntor or transEtr function relating Q(s) to I, (s). Equ,_!;ion
C

(2.32) also proves that tile Wagner function and C(_)/s form a l,aplac_.

transform pair as implied by R.T..Tones [291] and Goland [59], and proven

by Sears [56]. For Wagner's problem, Q(_) :: 1/_ and

s

It is interesting to note that Sears' 2evelopment of this relation

implicitly involved analytic continuation of C(_) through the deforma-

tion of the inversion integral Contour into the left half-plane, although

Sears does not comment upon this point. Although Sears states that his

method is applicable to arbitrary airfoil motions, it seems that his

intent was to perform such calculations via the convolution integral,

using exponential approximations to the indicial load functions as shown

by R.T. Jones [29].

Equation (2.32) indicates that the transforms of the aerodynamic

loads will be multlp!e-value functions due to the branch point of C(_)

at the origin. It is of interest to no_;e that Q(s) may contribute branch

points also although this is not the case for typical airfoil motions.

Two additional derivations of the generalized Theodorsen function

are available and are presented in App. D. The first derivation was

given by W.P. Jones [20], while the second is based on the convolution

integral.

An outline of the calculation of transient unsteady aerodynamics, and

a discussion of the difficulties in earlier interpretations of C(_), are

offered in App. E.

The Laplace transforms of the unsteady aerodynamic loads and the

airfoil equations of motion for arbitrary motions are given by (2.20)

and (2.21) with ik replaced by

L(s) PbiU2{Mnc _2= +[Bnc+C( )RS2]s X(s) , (2.34)

-23-
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Zs-_l (l<n ,-c(._)l_sI) _X(s) = G11(s). (2.:_;_)

Equations (2.34) and (2.35) are matrix polynomial functions of s whose

coefficient matrices contain the nonrational function C(s). (A rational

functions of s is a function which can be expressed as a ratio of

polynomials in s, [p. 60, Ref. 57].) In inverting these expressions,

attention must be given to the branch cut of C(s) along the negative

real axis.

_. INVERSION INTEGRAL FOR UNSTEADY AERODYNAMIC LOADS

Tlle time histories of the unsteady aerodynamic loads can be deter-

mined from (2.34) using the Laplace inversion integral [57]. To simplify

the expressions, the unsteady lift, P(t), will be considered for two

degree-oi-freedom plunging and pitching motions. Equation (2.34) gives

the transformed lift for this case as

U s. as2)_(s)]_2_PbUC(_)Q(s)P(s) = -_Pb 3[s2h(s)+ (_

where

Q(s) = sbh(s) + U_(s) + b(½-a)s_(s) .

(2.36)

(2.37)

The inversion integral gives

P(t) -- I [%+i- P(s)est ds

2_--?JOl_i_
(2.38)

where o I is to be chosen greater than all singularities t)f the tntegrt_nd.

'File first expression in (2.36) is the noncirculatory lift, P and .lay
11 C '

-24-



bc inverted directly. The genernlizo_d 'Pheoclorscn function may be written

in terms of the lift deficiency function 9(._') introduced by Yon Karman

aad Scars [60] as

= 1 - (2.39)

Ko( )

¢(_) = Ko (§) + K1 (§) . (2.40)

Substituting in (2.38)

+ U _ _I-2_PbU[hb + U_ b(½ a)_]P(t) = -_pb3[h _ - + -

al+i m (2.41)[

-  bUi I st ds .
J
Ol-i_

The second term in (2.41) gives the "quasi-steady" lift P which results
qs

from ignoring the effect of the wake whlle the third term gives the effect

of the _ake. The integral may be _implified by the deformation of the

contour of integration [56_ shown in Fig. II-5. The portions of the

contour from a to b and from c to d lie above and below the branch

cut of ¢(_) along the negative real axis thus making the integrand single-

valued within the contour. The damped complex conjugate poles shown in

the figure are representative of the singularities which may be intro-,...

duced by Q(s). Sears treated the case of a step change in circulation

[Q(s) = l/s], and proved that C(s)/s has no singularities within the

contour given by N, NI, N2, and the branch cut a-b, b-c, c-d. Thus

the integrand is analytic at every point within the deformed contour and

by Cauchy's integral theorem [5?], the integral around the contour is

zero. If Q(s) is Laplace transformable, then the integrals along the

semicircular arcs, N 1 and N2 go to zero as the radius goes to infinity.

The integrals along the cuts from- N1 and N2 to the poles cancel since

the integrand is continuous along these paths, while the circular paths

of infinitesimal radius around the poles give 2_i times the residues

of [C(s)Q(s)e st] at the poles. Therefore, the integral along the path

-25-
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N is equal l:o

ib d bf(s)d -f  (s)ds +I
tl c c

+ 2_i Res[f(S) Js=sl + 2_ri Res[f(S)Js_s_o

)q(s)eSt i_where f(s.) = ¢(s . Along bc, ds = _ie dR and the third

integral o11 the right-hand side is

¢(_ e i$) Q(ce i_) Eid_

(2.42)

which approaches zero as ¢ _ 0 if Q(s) _ _ no faster than 1/s as

s _ 0 which will be assumed henceforth. Along ab, s = re Ig while along

-ix
ed, s = re and

IN ¢( )Q(s)eStd . f_ I¢(u__b ei_).¢(__ e-rb i_)] Q(rei_)e -rtdr
o (2.4s)

÷ 2_IIResI¢(_)Q(s)eStls=sl+ResI¢(s)Q(s)eStl s=s*l I"

Using the expressions

Ko(re +i_) = Ko(r ) ; _iIo(r)

Kl(re +i_) =-Kl(r) ; _iIl(r)

K (r)Ii(r) + Io(r)Kl(r) = I/r .
o

Sears [56] showed that the integral in (2.43) was

-2_i f: [(K°:K1)2 + _2(I°+I1)2]'l Q_iU-_'I e"'rtdr

-27-
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wht'rc, rb,/U is impl.iod as tilt, argtllllOnl: ¢):1' 1.11[_ ll(.ss(,l l'tlnt'.ti¢)ll._. Fimll]y,

the un._tcmtly lift is

P(t) _ P + I:' + P (2.44)
IIC r nr

who re

u & a_i]P = -_rPb 3 h -I- _ -
n c

i=l i

(2.45)

(2.46)

i i_) -rt
Q(re e

P = - 2_PbU [( K1)2 i1)2] dr
nr - + 2( I +

o _ K ° o

(2.47)

m

and r = rb/U. P and P symbolize the rational and nonrational por-
r nr

tions of the circulatory lift. The rational portion P is comprised of
I"

the quasi-steady circulatory lift Pqs' and a portion due to the residues

of _Qe st at the poles of Q(s). The summation in- P is over all
F

poles of Q(s). Typical airfoil motions result in rational functions for

Q(s) which may be expanded by partial fractions into a sum of elementary

transforms. Tim residues at the poles of the elementary transforms may

then be calculated and used in (2.44). Table II-i lists several standard

functions, Q(t), their transforms Q(s), and residue sums required

in the evaluation of Pr(t).

Table II-i

ELEMENTARY FUNCTIONS AND CORRESPONDING RESIDUES

n St .

Q(t) Q(,) I_i R,,(,(,)Q(,)°. ),.,;

6(t)

1

e-ot

e'_tmin wt

e'Otco6 wt

1

_/s

l/s+o

_I(,+o)_+2

0

o

(1.r), "o_

e-gt[(l-F) sin oJt - G cos wt]

e'ot[(1-r)cos _'t: _" sin wt]

-28-



In evaluating the residue for q(s) = 1/(S_l¢) the contour must be in-

dented at s =-_ giving semicircular arcs of infinitesimal radius.

The integral expression for P , (2.47_ cannot be evaluated analyt-
nr

ically for typical airfoil motions but its integrand is a well behaved

function and the integral may be evaluated numerically. Figure II-6

is a plot of the denominator of the integrand

(2.48)

As an example of the use of (2.44), P(t). is calculated for the case

of a single DOF plunge motion (_ pinned) with

Q(t) = Ue-_tsln _t .

The plunge motion yielding this function is

h(t) .... U [_-e'_t(G sin wt + w cos Cet)l
2) (2.49)

and (2.44) through (2.47) and Table II-I give

p(,t,)
c£ (_¢U2)(2b)

{½e._t,
= 2_ (_sin _t'-_ cos _t')-e -_t'(Fsin Gt'+Gcos St')

(2.50)

-29-



q_

c_

! L| ,IT

l

©

©

rj_

r_



whc_re "o _: ob/U anti c,J == _,_b/U. The three e.xpressjr_ns ou the right of

(2.50) are c£ , c£ , and c L'espectively. Fit':ur_ _ [I-7 ._;hows tl_e to_[
nc r _nr

ancl compouent lift coefficients for _ = c,_ = 0.2/_/2 correspondi.nt_ I:¢_a

damped oscillation with 0,7 damping ratio, and 0.2 rad natural fro .....

quency. Since Q(t) is continuous at t :. O, the circulatory lift must

start at zero which requires that the rational and the nonrational por-

tions of the lift cancel at t = 0. Figure 11-7 shows this to be the

case, with c_(0) = c_ (0). The nonrational portion c_ , decays
nc nr

quickly from its starting value for small t' but decays slowly to zero

for large t' and is a monotonic function of t'

A second example is a single DOF (degree of freedom) pitch-motion with

_t t
(_(t') = 1 - e cos _t' . (2.51)

For this motion

Q(t') = U[l-e'_t_cos _ot' + (½-a)e_t'(_co s _t' + o-_sin _ct')]

and the result-ing llft coefficient is

c_ [ ( )
I -_t t

+ -- e
2 a(a*-(_ )-(Y cos _,t' -(25_,,a + _,)sin ":'t'

+

-1

1 _ I" l -r_t
" 7 "Ie d; .
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PLUNGE MOTION OF EQ. 2.49
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l"[gur(' 1[-8 ,_hows Lhe Lotal and eomponenL lift coei'i'ic::i(;nL._ for _ : i,_

().2/%/2- awl a : O. For tlli_ case the value o1' Q(I.) .aLL : () i.,,_ nol_z, er_,

indieaLittg LhaL the circultltol'y lift do(,,_; ltoL ,_LarL aL zero. 'l'hi;_ i;-_

pvid(2nt in Fig. II-_ where it is seen that Cj_r(()) / CJ_nr(O) and c_ stqrts

at a slightly larKer value than c_n.c(O). Again, tin r decreases monoton-

ically from its starting value and decays slowly to zero .for lllrge t'.

At t' = 30, c£j., has settled to within 1% of its final value, while

a_o of
C_n r has settled only to 16°,.'0of its i inal value and contributes r_,

the total lift.

From these two examples it is clear that the nonrational portion of

the loads will dominate at large t' for stable airfoil motions. Thus

the asymptotic behavior of the loads is of interest. Sears [56] studied

the asymptotic behavior of tile lift in Wagner's problem (step change in

circulation) by using series expansions of the inversion integral integrand

for small s since tile behavior of P(t) for large t is determined by

the behavior of P(s) for small s. The nonrational portion of the lift

is given by the last term of (2.41)

Pnr (t) _ rl _+im= ¢(s)Q(s) eStds.

2 _i _- i_
(2.52)

Using the ascending power series for K 0 and K 1 given in App. F

,(s)
1 .2 ] 7e -2

s s _ s
" + 4 + "" ,_(_og-_+ J +_+ ""4

s ; s s
1-;(log _ + *e) + _-(log _ + _e" )" _--(log _ + *e'l)+ ...

: -;(hog _ + Te) - _2(log _ + To) -s /_(l°g _ + 7e-1 )

- g(lo. 7 + _e" _)(log 7 "- _/e) ' (_o_ _ + _'o) j

-3:_-

(2.5:')
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II' ()(,_) i,'_ nf the f(_rm

-III

b s t .... i b 1 t- bnl 0

Q('_) = .-.----
..n .n-i m < n

:111S I 'in.l s I • ..I- a1,_ -I 1
(2.54)

then for small s

) [ al_
-m .n

o(s) _- (b s + ... , bl._-,b° I-( + ... + , s )
In n

+ (alN + .... _ a _n)2 _ ...]n , .

and the leading terms of q_(s)(4(s) are

,(i)Q(s) = -bo_(log _ + To) - (bl-boal)_R(10g _ + Te)

- b 52(log _ ?e )zo _ + + ... . (2.55)

-n
If Q(s) -= s then the leading terms of ¢(s)Q(s) are

_n+2( _ )2,(;)o(;) = -?n+l(l°g 7 + re) " log 7 + _ + "'" • (2.56)

Thus the asymp£Otic behavior of the loads is determined by operators of

-n-i ]In.
the form s [log(s/2) + "Fo Sears eva]uated (2.52) using this oper-

ator integrated along a deformed-contour. Scars' development inv-olves

the questionable step of utilizing expressions derived from the gamma

function, ['01), evaluated at negative integer values (where _(n) is

singular). Hence an alternative evaluation will be given which leads

to the same results. Following Sears, the contour in (2.52) may be de-

formed as shown in Fig. II-5. The as}qnptotic lift for stable motions is

given by the nonrational portion (the integral in (2.43) with ,!(_)Q(s)

given by (2.55) or (2.56).

S . 1 Illn.-Z[log(_/2) + re is

ORIGINM, PAGE IS

OF POUlC QIj:\_1TY

The expression which results from the operator

- 35-



I

i°
n_

f I_ __1 (;_) o_(-=_-)+_ o
2gi

0

since the integral around the infinitesimal circle about the origin

vanishes. For m = 1 this reduces to

1 II0 r Te )e-}t'- _ ( "l)n'l?_'l(l°g 7 " i_ + d_

+ (.1)n-l_n-l(log _ + i_ + Te) d_

0

while

laf I _n-_" lail_t'n rl erl d_l = t'n
0

for m = 2 the expression becomes

since

I .n-I ? -St'2(-I) n r log _ e d?
0

2('l)n I .n-I -_
t,n o rl e (log 91 - log 2t')d_ 1

z(-1)_
n

t'

[r'(n)- log(2t')r(n)]

y'(n)
= -n-1 -_i

= I rl (log _l)e dr I •
0

-36-



'L'hu._, :,lt:hc>ugil _n-]l ]og(_'/2) t y1 m does not I]O._;se._s a l,nplac:e l:ran_form

for n _ [, the inver._c_ l,aplace trmL_form giwn_ by (2.52) can t)e (,wllu-

,'_te(I ,lsyml)i:ot;ic'.all. y as t' -_, _, anti s .o 0 in terms of thi.._ expre:.;._;ion.

Tin, col,rc_:.;l)oildc,n¢,(_ is

] (.=l)"i'(n),_n-t log _-i 7 -_ t 'n - n _- I; (2.57)

n )
t'

n m 1 . (2.58)

Sears evaluated the asymptotic lift using the expression given in (2.56)

with n =: 1 (Wagner's problem) and obtained

, (.____ 2 log (2t') 2 )eg. " 2_ + - .
t12 2 + ''" "nr t'

Thus for step changes in Q(t'), the lift approaches its final value

asymptotically as i/t' For the airfoil motion given by (2.49), the

asymptotic lift is found from (2.54) with b 0 = _o/('_ 2 + _o2), b 1 .-= O,
_,).

a I = 2_I'(_ + _2) giving

c_
nr + 2 _2 (r,(3) - 2 log( t,) ...._2+_2 _ +_.o t)3

and

Thus stable airfoil motions for which Q(s) is of the form of (2.54)

approach final values asymptotically as i/t '2. In Fig. 11-7, c_n r

(-L/_ 2 + _2)1/t'2, while in Fig. II-S, C%n r ~ 1/t'.

-n
One further case of interest is that for which q(s) --- s with

n s - 2. An airfoil motion of this type is 0t = t' (. =-2). 'r,_en the

leading term in (2.56) has an inverse Laplace transform given by

£-I (log_ + 7e) = log t'

--...

• . ,., .

-37-



and the asyml)totlc nonrational llfo coefficlcnt is C_nr _ 2_ Log t )

while tile rational lift coefficient is given exactly by c_r =-2_t'.

l'_'. GENERALIZED COMPRESSIBLE AERODYNAMIC LOADS

F.____i General Formulation

When the flow is assumed to be compressible, the Mach number M be-

comes an additional independent variable and the governing partial differ-

ential equation, (2.6), is a hyperbolic equation.. Solutions [15], [12]

have been obtained by assuming simple harmonic motion and making the

substitution ¢(x, z, t). = _(x,z)e iWt which is equivalent to applying

the Fourier integral transform [61] to the time variable of (2.6). In

attempting to derive solutions for generalized motions, it is natur:_l to

apply the Laplace integral transformation. Defining

_(x,z,s) = I ¢(X z,t)e "st dt .
0

(2.6) and (2.13) become

_:[w (x, ,., t) ]

2

+ _ . --=-s ¢ _ --2Ms _ - M2@
Cxx zz z a x xx

a ¢Q
Q0

s _(×,z,O)- _ ,t(_,,..o)- __ ¢ (×,,.,o) ;2 a x
a a

_xE[Za]_ -b_x_b.= _1 = s_[,al-z(_,z,0)+u _
Z ----O

(2.59)

(2.60)

(The variables

section.) Let

that

x and z :_re assumed to be dimensional throughout this

= _' + ¢" with _" a known function to be chosen such

2

,, _,, S 4,_ 2Ms ¢,, - M2 ,,
_×× + zz ''-_ 7-'- x xx

a

2 _(_,_,o)-. !_t(_,z,O ) _ 2_a_(_,_,o) ,
a a _o

oo Qo

-38--
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el;I = -z (x z,o) . (2. _2)

The equation for _w is then

2

,]J + q_v s 2Ms M2¢_v- --_ ¢7' . _ _I . = 0 (2.63)
XX ZZ X xx

a

which is formally identical to the simple harmonic motion problem with the

replacement of i_ by s.

Equation (2.63) is a homogeneous equation for _' whose boundary

condition, (2.64), is linear with respect to £[z ], while (2.61) is an
a

inhomogeneous equation linear with respect to the initial condition

¢(x, z, 0) and whose boundary condition (2.62) is linear with respect

to the initial condition z (x, z, 0). Hence the transformed loads L(s)
a

due to airfoil motions X(s) may be written as a matrix equation

L(s) = K'X(s) + K"x(0) . (2.65)

It is intcz.esting to note that for airfoil motions for which

za(x, z., O) = Zat(X, z, 0) = 0, @" is identically zero and the entire

solution is given by @'. Also, since stability of a lineaz system cannot

be a function of initial conditions, the flutter problem is solely depend-

ent upon ¢'.

The formal identity of the equations satisfied by _ for simple

harmonic motion and by @' for generalized motion implies that existing

solutions of the simple harmonic motion problem may be applied directly

to the determination of Cb' by the replacement of i_ by s. Thus

the Mathieu function solution of Timman [12] can be generalized to provide

solutions to (2.63) and (2.64).
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It is anticipated that tile decomposltion indicated by (2.65) occurs

in solutions based on the acceleration potential, ,_, since _ and 4,

satisfy the same partial differential equation. Also, the generalization

of the above Laplace transform method to finite ,rings in three-dimensional

flow off_;rs no difficulties. Thus programs based _hJon kernel function

techniques [:15], [17], [62], [16], may also be modified to calculate the

Laplace transforms of generalized aerodynamic loads. It must be empha-

sized that the resulting transform is not the total solution, but corres-

ponds to that portion of the solution which is linear in the transformed

airfoil displacement modes.

F.2 Generalized Unsteady Supersonic Loads

In the case of two-dimensional supersonic flow, Garrick and Rubinow

[13] obtained the solution for the simple harmonic loads using elementary

solutions of (2.6) known as source pulses and gave the loads for the

three degrees-of-freedom: plunge, pitch, and trailing-edge control sur-

face. Hassig [63] extended Garrick's treatment to cover leading-edge

control surfaces. The loads, due to arbitrary motion, which are linear

in X(s) may be obtained from the expressions given by Garrick by the

formal replacement of k by -is as shown in tie preceding section.

(The resulting loads do not include those portions dependent upon the

initial conditions of the motion.) The velocity potential of [13] on the

upper surface of the airfoil becomes

®(x,0 +, t)

b x

IOWa( _ s)e'(SM/M2-1)(x-_)J [.i sM ( )1= , oL- , 00,

with the airfoil lying between x = 0 and x = i.

Alternatively, (2.64) may be derived directly from (2.63) and (2.64)

following the procedure of Stewartson [64] summarized in Ref. 7 [pp. 364-367].

Stcwartson'-s-procedure of Laplace transformation on x applied to (2.63)

leads directly to (2.66) with the recognition of T

* _x[,_(x,z,s)] -¢,(Sx, z, s)
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where a1 = sM/a(M2-1).

by use of the relations

_- lI#s'2 1 2 t ]

x L' x a I j = 10(%x)

Garrick's solution in terms of
JO is recovered

Zo(s) Jo(Se_i)=

io(S ) : _, -_i,,JO k se ) ;

-_ < arg s < ½

½_ < arg s _

and noting that the Bessel function Jo is single valued. Thus the

above inverse transform is

J

_i _M x(M2 - l) )

verifying (2.66) as the generalized velocity potential for supersonic

two-dimensional flow.

Following the notation of Garrick [13], the axis of rotation is

located at x = x 0 and the control surface leading edge is located at

x = x I. Ceneralizing the expressions for the loads given by Garrick

produces

pb(s)
8 pb2U 2

_2[Ma.(g)_2 + Ba(g)g + Ka(g) ]

-h(s)_

a(s) I

L_(s)J

where
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M (_)
a

F

2

.... (q2-2x0r2)

P
w. 2

(r.-2x.,')
3 o v.

2 _2t (.i-×o))3 "_ 3

2

"_ S 3 ..

B (s)
a

i

_r 1 '

= (ql-×0rl)

Pl

(2r2-XOr i )

(2q2-2XO (ql+2rl)+4x2rl)

-l

2t
s

(2s2+4t2 (Xl-xO))

2 (P2-XoP 1 ) 2s 2

K (_)
a

0 --r
21 21

0 (ql--xorl) (sl+tl (Xl-Xo) >

0 Pl Sl

The functional dependence of these matrices on s is .leant to indicate

that the parameters q l, ri, si, and t i given in 'Fable II-2 are functions

of s. All of these parameters may be derived from the 'Schwartz function'.

i _-iT_u -o(M';) = Jo(_'u)du (2.6a)
"0 • -

- (2sM 2 M2_lFw_erc _.-i / )] by the recurrence relation
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The
gk and h k

I[i _l -im. ,r.,, i -_" (_")..,t-.j) _]o '_o_ _ " M " '_i M
5(M2-I)

+ i(l-2J)1'j I(M,_,0+(I-j)2 !i' _')I. "_,) j_2 (M' J

/

j - ] , 2; ....

parameters are given by

(2.69)

gk = fk(M, _xl)

h_ = fX[(M, a(_-x_)] .

Table II-2

SUPERSONIC AERODYNAMIC LOAD PARAMETERS

rl = fI

r 2 = fo-fi

r 3 = fo-2fl+f2

ql = fI

q2 = fo-f2

q3 = 2fo'3fl+f3

2

Pl = ql " Xlrl + xl(go-gl)

P2 = q2 - 2xlr2 + x_(go'2gl+g2)

P3 = q3 - 3xlr3 + x_(go'3gl+3g2-g3)

t I = ( l-x l)h °

t 2 = (I-,i) 2 (_o-_i)

t 3 = (1-h)2(%-2hl + h2)

sI = (l-h) 2 hI

S 2 = (l-Xl)3(ho - h2)

_3 = (I"xI)4(2ho- 3_I+ h_)

-4 :_-



The ZohW;ii'tz function (Eq. 2.68) is nol. exiiressiblo ill t_i'ms of

c'[c,mentnl'y fkulc(ions but it may be computed fr_m the selqes

,_ /M2_1__ n _)) I _,_)]
_'(M,:O : -i:,> l'sn( i'_n-,-l(

e n/.,_o/ ""iv:.-:":,_J E'o 2 n'(_, .I. 1)

given by yon Borbely [65] where the Bessel functions of complex argul,ent

are evaluated by their ascending power series given In App. F. Although

transient time responses of the loads for specific airfoil motions,

X(s), could be computed from (2.67) via the Laplace inversion integral,

this has not been attempted. To perform this calculation would reqllire

knowledge of the singularities of the transformed loads which are not

readily available. Note that the loads given by (2.67) do *lot involve

a single nonrational transform such as C(s) for tile M = 0 case.

Fortunately, tile exact transient time responses for indicial motions have

been calculated by Chang [66] and Lomax, et al. [I0]. The time responses

of the loads for indicial motions at supersonic velocities are typified

by discontinuous first deri',atives and different functional dependence

for various time zones. These facts indicate that calculation of trans-

ient loads using inverse Laplace transformation would be laborious. Chang

used the indicial response functions to calculate the simple harmonic

loads from the convolution integral and noted [26] that arbitrary trans-

ient motions could be treated in the same manner. The primary use of

the transformed loads, (2.67), is for the investigation of airfoil

stability--the flutter problem.
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Chapter III

SOI,Ifl'ION OF TIIE AEROEIASTIC EQUATIONS OF MOTION
, i

The expressions for the loads, (2.34) or (2.67), may be substituted

into the equations of motion, (2.1), giving

G(s)X(s) = _(s) (3.l)

with

and

C(s) = s s + B s + K - Q(s)s s

_(s) = Gll(s) .

Q(s) is derived from either (2.34) or (2.67). The primary goals of the

analysis of (3.1) are the determination of the stability of the system

and the calculation of transient motions.

Since the airfoil is a linear system, its stability is determined

by the homogeneous version of (3.1)

C(s)X(s) = 0 . (3.2)

Method

p

k

p-k

augmented

states

Table III-i

_THODS OF SOLUTION OF AEROELASTIC EQUATIONS

Aeroelastic Equation

[Ms s2 + K s - Q(§)}X(s) = 0

1 1
[Ms- w---_Ks- _ Q(ik)}_X(ik) = 0

[Mss2 + Ks - Q(ik)}X(s)_ = 0

2 + = 0
s s

Solution

= _+ik

1

-_ (i+ig)

Stabilit.y

Criterion

T

T

c
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Nontriviul solutions are given hy the zero_,.¢_ of the character[,,{tic equ_tion

which are the poles of the system, Table III-1 is drawn from IIassig [28]

and summarizes the prevalent techniques of determining the zeroes of this

equation. The structural damping matrix B has been eliminated for
s

convenience. The matrix @(s) involves structural, geometrical, and

aerodynamic terms which influence the solution. The structural and

geometrical terms are valid for arbitrary motions, while the motions for

which the aerodynamic terms are valid depend upon the underlying theory.

For instance, quasi-steady aerodynamics (Q(s) = QI s + Q2 ) may be used

to analyze arbitrary motions for low frequency effects, while calculations

of flutter boundaries commonly utilize aerodynamics which are valid only

for simple harmonic motions. The p-method is intended for use in the

former case, in which Q(_) is valid for arbitrary motions. If Q(_)

is a rational function of _, (3.2) becomes a linear eigenvalue problem

and solution by linear matrix techniques is possible. Otherwise, the

roots of the equation must be de£ermined by iteration. The advantage of

the p-method is that the exact roots and the degree of stability of the

system are determined, to the extent of the accuracy of Q(_). The

stability criterion is that the real parts of the roots of the equation,

_k, must be negative.

The k-method is the traditional U-g method which is used to determine

the flutter boundary utilizing simple harmonic loads. Complex roots are

obtained.by introducing the artificial structural damping factor g, and

a root of the equation represents a point on the flutter boundary if the

corresponding value of g equals the assumed value of g. Disadvantages

of the k-method are: (i) many solutions are required to obtain "matched-

point" flutter boundaries; (2) for a given airspeed, several solutions with

different frequencies may occur, leading to problems of sorting the roots,

and (3) information obtained regarding subcritical and supcrcriticul

flutter conditions is only qualitative. Regarding the last point,

Richardson [27] and Goland and Luke [30] give calculations illustrating
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the (li:ffer(_nc(,s between rat_ of chanfie of damping at th_ fl_ttcr ,_q_t_d

calculatt_d by the k-method atld by mot*(' flacurflt_' method:;.

The p-k method [67] attempts to improve upon the k-method :for sub-

critical and supercritical _".lutter condition.q (i.e., nou-simple hnxm_onic

motions) by allowing the reduced frequency to be complex instead of intro-

ducing the structural damping factor g. It assumes that :if Q(ik) is

calculated [or oscillatory loads at s = lk, then the same loads will be

good approximations to the truc loads for s = yk + ik if y << 1 .

Results given by Hassig [28] confirm the usefulness of the method.

The augmented state method is fundamentally differcut from the first

three methods of Table III-1 in that it attempts to model the unsteady

aerodynamics with a rational transform. The primes on the lnatrices of

the last row of Table III-1 imply that the mat_'ices have been modified

to include the augmented states. The advantage thus achieved is that

the resulting system may be analyzed by linear eigeuvalue techniques.

Note that the p-method has been used in the past with quasi-steady aero-

dynamics (thus ignoring the effect of the wake) to maintain the rational

form of the equations, while the k- and p-k methods have sacrificed

the rational form to include the wake effects in more accu_'ate oscilla-

tory aerodynamics. The augmented state method is based upon R.T. Jones

technique [29], [6], of exponential approximations to ind-icial loading

functions, and wake effects may be approximated at the e<pense of the

extra states. Since this form is we _ited to the needs of active

control, it has found application in aircraft stability augmentation

studies and is studied in detail in the ne.xt chapter.

The differences in the stability criteria of the various methods

may be delineated as follows: (i) the p and p-k methods determine a root

at s = Tk + ik; (2) the k-.method determines a root at lr + ill =

(i/002)(l+ig); (3) the augmented states method finds a root at s = v+ i_0.

The stability criterion for the p and p-k methods is given by the signs

of y = tan ¢ where _ is the angle between the ik axis and the

root, while the stability criterion. :for the augmented state method J scJ

given by the sign of _ = _/_2 + _2' corresponding to a characteristic
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equation factor (s2 2) )24-2¢_s 4. _-=[(s+_ 4, w2]. For roots clo.'w to..tlw

ia_ axis, _ _ "_', The stability criterion for the k-method is deduced
2

from the characteristic equation (for a one DOF syste.m) m s + k (l+ig) :
2 2 s s

O, or s + i_a) "t W =: 0. Thus tll_:, c.orrespolldunce betwee_l g and

; 2_,_ _ ig_) 2 el: g _ 2_. The llonphysical nature of solutions ba._ied

on the k-method for nonzero values of g can be seen by factoring Llw

characteristic equat loll:

i(W/2+¢/2) _ ei( - _/2+dJ2)

S S

The roots of the characteristic equation are not complex conjugate factors,

emphasizing the unphysical nature of the solution.

The remainder of this chapter extends the p-method of solution by

uslng the generalized aerodynamic loading functions derived in the last

chapter to study arbitrary airfoil motions. In the next section, the

stability problem is'studied and the last section studies arbitrary

transient motions of airfoils.

_AA. ROOT LOCI OF AEROELASTIC MODES

In Oh. II, analytic expressions for q(s) were given for two-dimen-

sional incompressible and supersonic flow. The loads, Eqs. (2.34) and

(2.67) are valid for arbitrary motions and give the exact airloads.

They may be combined with the equations of motion as indicated in (3.1)

and the stability of the aeroelastic systems studied via the p-method

of Table III-1. Similar calculations are mentioned by Dengler, Goland,

and Luke [25] in attempting to define their generalized Thcodorsen func-

tion but have evidently never been published.
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Since tilt) load,_ nl_o llot l';.lti_Jllal fu;lc, tiolL_ of ;;, ;i COIlll}lltt'l' pi'ot_rHll!

was dovolopc, d to nulncl'icuLiy detorlnine the roots of the, c, hnractt,ri,_;tic

equation, For the systems Created in this the:_J.s, it was feasible to

numt_rJc'ally expand the deter,linant in (3.1). A gradient search nlgorithm

was employed to locale the zeroes of the determinant which arc_ tlw pc_le._;

of the acroelas-t.ic system. The gradient was numt.rlcally deterlnined by

finite differences ill the s-plane and the performance of the algorkthm

was quite satisfactory for the systems treated which included systems

of four DOF (degrees of freedom), (eighth order).

Table III-2 shows the behavior of the algorithm in converging to a

root. Convergence is shown for a three DOF section and a four DOF section.

The nondimensional velocity was U/b_ = 3.0, near the flutter speed of
ff

both sections and the search was started at s = 60 rad//sec. For the

three DOF section, the algorithm locates the root to four significant

figures ±n three iterations. Five iterations are required to achieve

the same accuracy for the four DOF section.

A-I Incompressible Two-Dimensional Flow

Table III-3 lists the structural and geometrical parameters of the

three DOF system used in the following calculations. The frequency

ratio _h/W = 0.5 while the natural frequency of the flap mode is

three times the torsion mode frequency.

The equations of motion, including the loads, were given by (2.35)

and are repeated here:

s2

(3.4)

The loads contain the generalized Theordorsen function C(_) which is a

function of s and U/b. Thus, with the nondimensional velocity sp_,ci-
$

lied, the roots of the equations of motion may be determined by [teratien

in the s-plane. Figure III-1 sho,s the exact locus of roots of the thre,'

DOF system of Table III-3 as a function of U/bu_ . The inertia coupling
c_
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¢_f thr tl_t'oo mo(h,s eaus_,._; the zel'(_ air:q_ced u_tu_'ul f_-oqucmc:ies to be

slltftod lh'c_m their uncouplc, d values. As tilt' _iir_poed J.ncreas_s, the bend-

i11_ fllld L.c)i,._ioa Inod(_;_ _Ire so¢311 to [Ippi'c)aC]l e£1ch ol;hc,,r ill t]]O stablc,

left-hnl:f l)itlnt' wi.th thc, bencling branch becoming the, flutter mode at

U/b¢0c_ ,'_: 3.0. The flap mode remains stable throughout this speed range

even thour'h _(_ _= 0.

Because-the terms involved in the matrix of coefficients of (:_.4)

do not become infinite in the finite s-plane, the determinant has no pole_

and examinntion of the number of 360 °- phase changes of the determinant

around a closed contour will directly indicate the number of zeroes

within the contour [57, p_ 61]. This was accomplished for the section

of Table III-3 at U/b0_c_ = 3.0 by evaluating the determinant along the

branch cut on the negative real axis, and along circles of radius

0.0001 and i000 rad/sec. Six 360 ° phase changes were obtzined, account-

ing for the six known structural poles and it is concluded that these

are the only isolated singularities of (3.4) at this airspeed.

The root locus format is used for the presentation of results rather

than the conventional U-g, U-00 plots since the ability to calculate

generalized aerodynamics makes this a more natural format. It avoids the

numerical problems of root-sorting since the loci do not cross each other

and it is required for active control design applieation_:.

A-__22 Supersonic Two-Dimensional Flow

Table III-4 lists the parameters of the three DOF section used to

illustrate the aeroelastie root loci in supersonic flow. The loads,

(2.67), are functions of the generalized supersonic reduced frequency

parameter_ _ = -i2_M2/(M2-1), and the algorithm described above may

again be used for the determination of the system poles. The equations

of motion, includin_ the supersonic loads, are

B s" q, U+ s

+ X_(s) =
(3,5)

,i
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Table 111-4

TIIREEDEGREESOFFREEDOMSECTIONPARAS_TERSFORSUPERSONICFLOW

u_ :- I00 rat/see x(_ = 0.2

2 0.25
w h -- 50 rad/sec r(_ =

w_ = 317 rad/sec x_5 = 0.0125

2

l_ = 40 r_ = 0.00625

a = o CI_ = o

c = 0.6 b = 1.35 m

a = 333 m/sec

wr ere = 8T 1.--

The locus of roots of this section are shown in Fig. III-2 as a

function of Mach number. At M = 1.25, both the lowest frequency coupled-

bending-torsion mode and the flap mode are unstable. It is suspected that

the flap mode is primarily a single DOF flutter mode [68]. As the Mach

number increases, both of these modes become stable at M _ 1.4. Above

M -_ 1.8, the remaining coupled bending-torsion mode flutters. Hence,

for the mass ratio _ = 40, the range of stability for this section is

1.4 < M _ 1.8.

Ba, _nd K are derived from termsThe aerodynamic matrices Ma, a

composed of finite integrals of exponentially weighted Bessel functions

of integer order as shown by (2.68). Since these Bessel functions are

single-valued analytic functions of s, there will be no branch points

of (3.5) as in the incompresslble case. However, a cursory review of

supersonic indicial aerodynamics _e.g., Lomax et al,, R2f. I0], leads

to the conclusion that (3.5) must nave more singularities than the six
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struc, tural poles, because t:heso..'_ix poles ealtnot yield l;hc, complex Judicial

functions. Since tile poles of tile system are tile zeroes of the determi-

nant of tile matrix of coefficients of (3.5), a search was made for additional

zeroes of this function. A circular contour of radius i000 tad/see centered

at tile origin yielded six 360" phase changes of tile determinant, account-

ing for only tile six known structural poles. Further searclling located

the first additional zero as a complex conjugate pair at s =-1315 +

i 1501, oyez ten times tile frequency of the flutter mode. No other zeroes

were located since the power series expansions used to evaluate tile com-

plex Bessel functions were numerically unstable at larger values of Isl.

However, it is anticipated that an infinite sequence of additional zeroes

of increasing modulus does exist, due to the oscillatory nature of tile

exponential weighting factor in the integrand of (2.68), and accurate

r.ransient response calculations would require the evaluation of a number

of these zeroes of lowest modulus and their corresponding residues. For-

tunately, the flutter problem can be studied by determining only the zeroes

due to the structural poles, as indicated in Fig. III-2.

I

/

B. INVERSION INTEGRAL FOR ARBITRARY AIRFOIL MOTIONS

Returning to the case of incompressible flow, it is possible to

calculate exact transient motions from (3.4) using the Laplace inversion

integral. Wtth tile substitutions

a(s) = (Ms-TIMnc)S + s'q(_)(Bnc +

r U2 II

+ [Ks"l(_) (Knc + C(_)RSl)J i

re(s) G (s)
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Equa,tion (3,4) becomes

where (i(s) and _(s) are nXn and nxm matrices whose elements arc func-

tions of s, and X(s) is an n×l state vector. The number of degrees

of freedom of the airfoil is n while the number of control inputs i_ mo

If Det[ff(s)] _ 0, [_(s)] -1 exists and the solution of (3.6) is

_(s) = [@(s)]'l_(s) . (3.7)

i

Assuming m = i (extension of the following results to the multi-input

case is straightforward), the transform of the jth state is

and

_xj(s) = D(s)

xj(t) - 2 ri
J

o - i_

N(s)
D--_II(s)e st ds .

(3..8)

(3.9)

Cramer's rule is used to evaluate x.(S), with D(s) = Det[_(s)] and
--3

N.(s) = Det[R(s)] with the jth column of _(s) replaced by G Due to
•

the complexity of (3.7), it is no longer feasible to obtain analytic ex-

pressions for the integrand but it may be evaluated numerically. Since

the elements of _(s) contain C(s), xj(s) will have a branch cut along

the negative real axis and the contour of integration may be deformed as

shown in Fig. II-6 giving

N sZ t

4=I
]" 2_'--[ rei rtdr

0

(3.10)
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whoro s :_ = l, 2,
_! ee.,

evaluated at the poles by

N arc the poles of (3.8), and the residues arc,

Nj(S_) Nj(s_) Nj(s_)

R s_ ~ ( sz) ~ as
D,(s:)

with /ks :: s - s . (Sknce the poles are determined numerically by

iteration, l)(sp) _ 0.) The poles due to the structural equations of

motion may be assumed to be complex conjugates with s_, = a_ + ibm,

s_+ 1 = ap - ibp. Poles due to If(s) may be real or complex but for the

following development, it is assumed there are N complex poles within

the contour. Since _xj(t) must be real, the integrand must be pure

imaginary and therefore xj(re i_) and xj(re -i_) are complex conjugate ex-

expressions. With Nj(s_) = _j_ + iN_

_j(t)

or

cos b_t-Nj_sin b_ -- Im j(re i= 2e _ 1 _) e dr_
_ rt

2,=I j2 _ o -

xj(t) = X_jr(t ) + x (t) ."Onr

(3.11)

The incompressible flow transient response of the three DOF section

of Table III-3 will be calculated for a unit step input command to the

flap _(s) = _c(S) = l/s, for U/b = 290 sec -1. Figure III-I indicates

that the bending mode has a subcritical damping ratio of _ T 0.03 at

this airspeed. To study the effect of changes in airspeed on the non-

rational portion of the response, Im[x (reid)I, j = I, 2, 3 is plotted
J -i

in Fig. III-3 for U/b = 200,290, and 350 sec . At time t, _Jnr(t)

is given by the integral of the product of the function shown in the

-rt

figure and e . The value of _Jnr(0) is proportional to the area

under the curves, and since all of the functions go to zero at _ = 0,

t-_limX)nr (t) :: O. In other words, the nonrational portion of the response
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do¢,._{ not participatt, _n the motion characl, c_ri._;tic c_i ;ill un:_tublc, []utt('r:in_;

airfoil. Nc_L_ tirol all el' th(_' cu1'vc,s shown in 1,'ig. [II-3 at,, ._;moothly

- ]
varying l!unctlons o{' U/'h, ¢_v(Jn _t,q t|it! aiPi['oll [ItltL_'l"; ;It U/|) _ :_()0 :;we •

The pele.,_ and t'e_idues required I;o t.wllutc, (3.11) we,re ca]c'ulatucl,

and the integ_.I was cw_luated numerically. Th(, ('ompon_n_t and total tran._;-

lent response:; oi" thc_ plunge and tor,_;ion modes aJ:'e _hown in ]"ig. [II-4.

In this case, tlle contour intugra] about the infinitesimal circle at the

origin in Fig. 11-6 will be nonzero, its value being tile steady state,

value of xj(t) due to the step change in _e' These steady state values

were determined from (3.6) by applying the final value theorem, s-+olimsXj(s) =

Jim xj(t) rather than by contour integration. The oscillatory harmonic

mode superimposed on C_r(t) and to a smaller extent on hr(t) is due to

the very lightly damped flap mode which is not shown. The nonrational

portion of h(t) is 75 percent of the rational portion of h(t) at

t = 0, while the corresponding percentage for (%(t) is only 15 percent.

As in the case of the transient loads, the nonrational portion of the

response is characterized by :_ rapid initial decay followed by a slow

asymptotic decay, the entire function being a monotonically decreasing

function of t. Since the response of a mechanical system to a step input

in torque must start at zero, the sum of the rational and nonrational

portions should cancel the steady state value of xj. Hence, the small

nonzero value of _(0) and the larger value of h(O) are attributed

to numerical inaccuracies in evaluating the residues.

The following comments are made. wlth respect to Fig. III-4.

I. The oscillatory motions typifying flutter phenomena are due

entirely to the rational portion of the response. If a method

were available for modeling only this portion of the system,

it would serve to describe the pertinent features of the

flutter problem. This concept will be pursued in Ch. V.

2. The effect of the nonrational response on the o,_cillatory total

response would tend to cotaplicate the determination of tile damp-

ing ratio of the rational portion. Techniques for determinitlg

damping ratios whicll do not address thi._: fact may produce in-

consistent damping estimates. This effect may be aggravated ill

cases with random structural excitations. If an u._timate of tile

nonrational response were available, subtraction of this cstimatc

ft'om the total respons0 may improve the (lampir_g cslimates,

- C_O--



I

!

I
I

!

I

o
I

._ m-4

o

u

I

II

v

Z
©

Z

r -_,

©

©

©

0
E_

Z

J
2:

zN
0z£

I

-_ t-,



C_
©

C_

p_

C_

P_

©

I

c_

oo

I

qlb

C'D

!

c_

Q
"ql

!

!

I

I

c_

I

-(_-



C h a p t*.q" IV

PAD],: APlq{OI',L._IANq',q AND AUGM],:_I'F,I) ,S'I'ATI,: MI,:'I.'IIODS

'['c_ clbtMill soltl|.:i(}ll'_ o:f Lhe ncq:oc,l'hqLi¢" eqtl;ll, ions of iil_)l.[oll, I'hl,

(2,1), it is nc,c'.e,'-;.qary go spc.'cify the :lc:roclynamie lon¢le-;, 1,. In Chnl_LC'i"

II the c,xact nnnlyttc loads wet'(? giVell l'of two-clilnc._llsi(HlIil incol,pressil)l_,

Illld sklpel'SOlllC £1()%v 9 and II tet;hllkqtle l'of obt_lillillg Silllllal' lends for other

flow t'egime.s was indicated, In Chaptep III, these loads were ineorpornted

into the, tlt,l'oeltlstic equations, ;llld solutions were obt:lilmd by an iterntivc,

se_ll'ch pl'OdedU['e. In tile p l'esenu chiII)ter , tile use of Pad6 npproximnnts

of tile loads to produce augmented state neroelastic models w.ill be studied.

'l'he advantage, to be g'ained is the-ability to perform analysis with tile

resulting .'._nstnut coefficient, ordinary differential equations. The

penalty paid to achieve this advantage,-.is that higher order models must

be manipulated. All implicit constraint of the technique is tile minimiza-

tion of tile required number of augmented states to adequately represent

the loads.

A. INCOMPRESSIBLE TWO-I)I_ENSIONAL FLOW

Augmented state methods for this flow regime derive from l{.T. Jones'

[29], [9], exponential npproximation of Wng'ner's indicial loading function.

Many investigator's have used the method, including Goland and Luke [30],

Baird and Kelley [31], l)ugundji [32], Richardson 1127], _nd Lyons et

69] Jones' approximation isai.; . .

kl(t') ':&' i - !).1_5e -0'0455t' -0.:{35e -0'3t' . (4.1)

Garrick [70] noted that the linearity of tile governinK equations allo_ved

the calculation of arbitrary transient .lifg functions by tile conw)lution

i ntegra l

p(t) it_ { 0 ] ) U : = [_( O)l(l [, { " _. l [ I kl(t-t) dQ(_ )dt_.¢lt : (,1.2)

O

-(;3-



¢_' oqut V:_ lt,|tt l.y,

t

2_uIbU_ ° (4.3)
0

,.'q,am:t_ kl(¢)) ----_-, Laplace, _. transformaticm of (4.3) yields

(4.4)

.](,nes' approximation, (4.1), gives the transfer function relating Q to P

as

pCs)
Q(s) _ 2nobU19.5_2 + 0.2808E + 0.013651s 2

+ 0.3455s + 0.01365 J

(4.5)

I

"i

It is well known from linear.:_ystem theory that the functional relation

given by (4.5) nlay be described in the time domain by tlle constant co-

efficient, linear, ordinary differential equations

= x (4.6a)
-i -2

2 t

: -0,01365(U) X 1 - 0.3455(-U) x 2 + Q(t)-2 .....

P(t) = 2gobU 0,006825 ) x 1 + 0..10805( ) x 2 + 0.5Q(t) .

(4.6b)

Garrick proposed the approximation kl(t') T (t'+2)/(t'+4), but this

function does not have a rational Laplace transform and the resulting

approximation to P(t) cannot be given by ordinary differential equ.at/ons

as in ¢4.6). He:ace, ill order to ensure tile computational efficiency ob-

tained by differential equations_ it is customary to utilize approximations

whose transforms are simple functions.

The rational transform i,_ (4.5) may be evaluated at .q = _e i@ and

the resulting real and imaginary portions compared to tile generalizecl

"['heo(lorsen function showll in Fig. II-5. Figure IV-I indicates that the

appr_,xiin_ition is a good representation of C(_), [:specially tn tile right
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h;|ll'-I_].;lll_,, 'Phi. _ U u.'I'(_elIIt_I!L d[,l..L_l'ioz';.itt,_ ;a_ o it'lc;l'¢m_¢'t_ I),-:yo,ld 90 °.

"['his t._ In'ima_:ily duo tO the I);ro×imity rYF I:ho isol;_i:_,d poles at

s .-.:-0.(),I,%5 'ind-0,3.

Fkgure IV-2 is a c(_mp_l]'ison between the exact nonrationnl lift co-

e['ficient shown ill Fig. [1-7, and the lift coefficient given by (4.5)

for the motion given by (2.49). The exnct coefficient is given by the

lust term of (2.5D), while tile aDproximate lift coefficient was obtained

by partial fraction expansion with Q(s) _!/(s+_) 2:_ +CO US

e
nr

-2g{O 5e -_t'
. sin_t '

-e cos _t' + sin _t'

(0. 0455-'_) 2+_2

 _o.3-e cos _t' + sin _t'

(0.3-'_)
(4.7)

where _ = t,_ = 0.1414, a = 0.0074999, and b = 0.10055. The approximate

lift matches the exact lift very closely even for this heavily damped

airfoil motion with _ = 0.707. This would indicate that equations (4.5)

and (4.6) may be used to calculate accurate circulatory loads for incon_

pressible flow.

A unique feature of tile incompressible case is that all of tile cir-

culatory loads involve the single nonrational function C(s), greatly

simplifying the approximation problem. Equations (4.6) are in a form

which is compatible with the structural equations, (2.1). "File resulting

model uses the augmented states

und is given by

x
-p
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i

0 .Xp

O

.K !

E 1

I

.Bt

E 2

O]D

F
P

(4.8)

where

M' = M -s _)Mnc

= - _) (Knc + 0.5 RS l)K' K s ........

B' -- Bs-_(--_) (B + 0.5as 2)

D = _(U)R [0. 006825(U) 2,

-0. 3455

El = (_)

E 2 = .

1

For an airfoil with n degrees-of-freedom, _ is n-dimensional, while

x is two dimensional. The submatrice_ in (4.8) are dimensioned
-p

conformably with these vectors and the total dimension of the model is

2n + 2. Since the 'inertia matrix'of the left side of the equation is

nonsingular, multiplication by its inverse gives the standard form used

by control engineers

with

= FX + GlU (4.9)

-68-



I

X F _-

I_ 0 I 0

-(M')"*B'

E 1 E 2 Fp

i( () "_

1%Iv )-]G

0 ..

The elements of F are functions of (U/b) and the eigenvalues of

F are approximate roots of the aeroelastic equations of motion. Figure

IV-3 compares these eigenvalues to the exact roots of the section of

Table III-3. From the close agreement between the exact roots and the

approximate roots, it is concluded that the linear rational model of the

incompressible two-dimensional section, (4.9), is interchangeable with the

exact model, (3.4), for the purposes of engineering design.

It is also possible to compare the frequency responses of the exa¢t

and approximate models. The frequency response of x I due to sinusoidal

oscillation, of u.3 is obtained from (3.4) by tabulating (x_i/uj)(i60)_ _-

N_(i60)/D(i60). Similarly, the frequency response is calculated for the

approximate model of (4.9) by tabulating the transfer function of

(Xi/u j)(s) for s = j60. Figure IV-4 compares (h/_ c)(i60) and (U/_c)(i60)

for the section of Table III-2. The good agreement between the frequency

responses, especially in the range of flutter at 60 _ 70 rad/sec, indi-

cates that the poles and zeroes of the approximate model provide valid

representations of the exact system. The dip ill the amplitude seen oll

all of these frequency response plots in the range 70 < 60 < 80 tad/see

indicates the presence of complex zeroes near the flutter poles. The

location of these zeroes is critical to any active flutter control

scheme and they will be studied in detail in the next chapter.

To apply the above technique to other aerodynamic regimes, indicial

loading functions must be calculated so that the exponential approximations

may be obtained. Although there is a significant literature concerning

such functions [Lomax et. al, |{el. I0; Drischler, Ref. 71], their calcula-

tion is laborious [e.g., Rod¢|en an(| Stahl, Ref. 72], and the technique

has not been used widely.
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B. VEPA' 8 pAI}I_ APPI{OXIMANT METIIOI)

'Phi; i}robh:nls assr}ciat{:d wi_h I;h( • c_alc;ul.llLlOll,._}f [ll(]i{,ial l.oaclillg

Functinns led V{'v'l [,o an alt:t:,Pnative m&'thod []69], [3:3], [':]4] o 'PIIt) []vai]--

t}bili, ty of the aerodynalJlic loatIs l'or sil_lplc' harl]_ollic JJ_otiozls. frola_

IlulllO_l'OUS well-developed tt_{;luliqu{_s ({;.K,, kernel fLlnetiOll el' finite

elemellt nlethotls)_ suggested the al}p:-.'ximation of tile loads by l}ad¢_ al}prox-

i;llalltSo A Pa{l_ appl'oximant (PA) of a fulletion 2ks tl ratio of two poly-

Ilolnials which approximate_ tile fUllCtioll in.some range of its argunlent.

. • sllaker [17:t] gives a thorough stlmnlary of tile pro ,,_,rties of lade appl'oxi-

mants for the case where a Taylor series expansion of the function is

available. The usefulness of PAs is clue to the ease of the analysis of

the resulting" analytic, rational functions as opposed to the original

function. If the original function is known only in tabulated form, as

for the aerodynamic loads, a PA may still be obtained by fitting the

rational fraction N(s)/D(s) to the tabulated values for s :.- ik using.

(for example) a least square technique.

Tile intent of tile application of such approximants to unsteady aero-

dynamic loads is to allow the aeroelastic equations to be solved for

arbitrary motions, i.e°, throughout the s-plane. This assumes the

analyticity of the unsteady loads, a point of some confusion in the past

due to the discussion of the generalized Theodorsen function. Neverthe-

less, such approximations have been utilized, a primary example being

the uesign of the active f]utter control system described by Roger and

ltodges [4].

Vepa suggested that the PA {}f tile generalized force, qij' in the

i th mode due to deflection i_l the jth nlo{ie could best be represented by

NI.I

a s I- alS -I- • • , i aNs -I-
qij(s: M) = o aNtl • (4.10)

Ms N _ b2sN-I + .... _. bN_.l

'I'l_is Ls tel'erred to as an IN,N+[] PA. Tim PA is constPuctc{I t{} yi{;ld

the co,'rc:ct stea(ly-statt) value (ll], and may I}_ modeled by N c{}nstallt

-7H-



cot, l::l'i.cleut, ordinary dif:lk_l'_u_l;lal equaLi,ms. 'Pht, high :fP_qutmey limlL.

a ._/'M IIIlly I)c Clloson to i_ivc tilt? I_:l.._itoll bheol.'y load, whll.e i.ll illCf)lllpl_i,,%--

sibh, flow with M ()p a ° yields tlll_ llOllCll'CllIatol,y, IVIFI;Illl]. illll.;;.; ! load,

Vet)a L3[ll shows LIIIIL tile llUll|(_l'll_o]? ec_t_:['flcl(_lltS, Ill , al't. _ dt_tc)l'lllinod

by the dellOllltllLitol.' coof:t'iciellts hi, alld by COllStl'llilllS._ ((,._. a :J n-i. ].

bn4. t'(l_'_..i ')' 'l'hu._; the determination of the PA for qi.j inw)l.ves I:lle deter-

min:ltion o1' Lhe N constants, b:L , i : 2, ,.., N+I. Ih-mce, i:I_ q j(i.k,M)

is tabtllaCe(( ]:or iil(-)l'e tlltlll N wllucs of k, the b. may be dt_'teFlllined
I

by a linear least squares technique.

Vt,pa comments thag in order to obtain accurate PAs, a large number

of reduced frequency values are required ill the high frequency and tile

low frequency range. Ill his I{o2, 33, tables of [2, 3] PA.4 are given

for plmlg'e, rotatiotl, and flap modes in two-dimensional flow for M :_

0.3, 0.4, 0.5, 0.6, 0.7, 1.5, 1.75, and 2.0. Tile location of the

roots of tile denominator of (4.10) are of concern since tile PAs of un-

steady loads are approximations to stable dynamic systems and should

themselves be stable. Also, ill tile incompressible case, tile loads are

multiple-valued functions with branch cuts and, since the PAs are single-

valued, they cannot yield valid approximations along tile cut. Bake_"

gives examples indicating that tile poles of tile PAs cluster along the

cut and conjectures that as the order of the PA tends to infinity, tile

poles tend to a 'pole-distribution' along tile cut. Since tile incotl_

pressible loads have a branch cut along the negative real axis, the poles

of R.T. Jones' approximation would thus be expected to be found there

and this is indeed the case, the stable poles being located at ._ : -0.0455

and _- : -0.'_.

This approximation technique would be an attractive method for tile

analysis of tile acroelastic system were it not for tile high order of the

resultil,g model. With each g'eneralized load modeled by its own independent

Nn 2 .[IN, N41] PA, tile dimension of the model is 2_ 4 For a three DOI,'

secti.on with 12, 3] PAs, tile ([n(,nsion is 24; (; sLI'uctul'al states and

18 PA stat(_s. On a realistic design in'oblem, the dimension associated

with the apln'oximants may become ten times that of tile oviginal stl'uc-

rural model. The design obtained [ll lh,f. .1 us_,d fl'om ]H I:_) 27 stl'uctul'/|I
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!llO(lOt_wh:ilo the tot_li (lllnon,_:ioil w;|s _ls high a._ 200, [I. WOtliCl ribviou:_].y

be desirable I:o c)l)taiil (;Olnpn_'able licc:tlpa_._y with lower ordpr ai)i_roxim...

t [¢111.%.

C. T IT,', MATRIX Phl)]_! APPROXIMANT

ExL_ll_llllltioll oJ! the t_anslo.nt rosl)OllSOS ¢)bt$1ill_d i)y lnvep,_e ],_ll)].:lco

tr_lliS:_Ol'llliltic)n of tile l)As led Vel)a to atteml)t the. nl)li.-r)ximation of the

Kc_ner;,]ixc¢l load inatrix, Q(._',M), I)y mntrlx PAs [73.]. Tim, lo'id m;Itrix

velntes X(s) to L us

and tlle marl'ix PA is

_J

- o(;,M)2 '
pb u_

(d. L1)

where

oil,M) = -1 (4.12)

N+I N-I

P(;) = E Pi _'i, R(;) : E Risi + I;N• e

i=o i=o

The minimum number of augmented states is given by N :: i,

Q(s,M), = [Po + P1 _ + P2_2][I_' + Re ]-l . (4.13)

The properties of Q(s,M) are dependent upon tile eigenvalues of the

matrix Re, and the philosophy underlying tile use of tile matrix PA is that

the individual loads qij may be approximated by suitable linear combina-

tiolls of 'shared' eigenvalues. As ill the scalar cLlse 9 the numerator

matrices P. are deterlpined by R and independent constraints, while1 o

R is determiue(| by a least squares procedure The llulllel'_itc)r matrices
O

:lL]ow three cotlstraints, one of which is the matchillg of the steady-state

loads, Q(O,M). This determines P tls
O
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P -. o (o,M).[,l (4,1.4)

']'ho l't;lllHlllilll4 tWo coll;;[vH:[l|ts IIHly |)o Hq('t[ Lo O, ll:.ol'ce H IIIHC(:h b(_|;w(,'ell (,]It'

matv.[× I_A '.u_d the Cahul.utc, d ;_tut?l.(_ h.'u:'m(mic hinds _t the .'_lltl{:i. lntLed

l't_lu.(_ul l'_'C,{luency o:f .l'lutt(.'r, und with Q(ikf, M) 7 Q](kf).t iQ2(k f)

%(_b) %
Pl - k + Ol(kr)

(4. ] 5 )

%(kf) Oss(O.M) - o_(k_.)
p - +

2 kf 1,:t2.

I_.. (4.1¢;)
l)

Although tile piston theory l:'mit is not enforced, tlle piston-t.heory loads

QPT are used with (4.16) to obtain a solution for |1o" The simple har-

monic loads are given at m v_lues of l'educed frequu11_y__y_iglding

01( k_)-0 ss( o, M) 02(k_)
2 R - QPT.! .g -- 1 ..... m .

o k£
k£

(-4.17)

2
Equation (4.17) provides nm equations for the n unknown elements of

R and with m > n a least squares solution is possible. Tile matrix PA
0

o£ (4.13) z'equires only one augmented state for each degree-of-freedom of

the structural model, and the resulting model has dimension 3n as
¢)

opposed to 2n + Nn" for the previous PA model.

The £ucorporation of the matrix PA of (4.13) into tile struetu1'at

equations is facilitated by transformation to the state space model---

= l" X _- G x
"1) P'P P-

(,1.18a )

\'.']1 ( ! I'('

/)I}oU
= _Xp 4- Itl ax i- It2_

-7(_-

(,1. 181))



] i-

i" := "k I )
l) O ',. o o o 1

:-: P '" II i
Gp o 1_1 o P21!'o

Itl :: P2

II 2

])

(_)(1> 1 -1'2Re) •

Tile matrix PA ,ilodel is 14"ivell by (2.1) and (d.18)

0 M
s

O O

L_

0 x

i x
-p

0

= -b.'.s+"ri(U_l{l

G
P

w,..

I

I_-i 0

I

U,2 I

b'
I-

I

0 I Fp
l

i -t-

-o

0

u. (4.19)

The accuracy of the matrix PA will be illustrated in the remaindei' of

this section.

C.____l Supersonic Matrix I?ad6 Approximants

Simple harmonic oscillatory supersonic loads (2.67) were cal(:ulated

for a three DOF section with the elastic axis at midchord and n 20 percent

ellord allergen (a = 0.0, and c = 0,6). Tile load matrix, Q(Ek,M) was cal-

culated for k = 0.05, 0.1, 0.2, 0.3, 1.0, 2.0, and 3.0 for the

Mach numbers M = 1.5, 2.0, and 2.5. 'Pile ste_ad_-state loads were cal-

culated from tlle Acke_e-t--formula

a s

[J

/-'b"O

4

_ dz a

If, ,1 -2(1-_)l 2t

¥. -

_:) (t-<_)2 -(I-c) 2
i
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The pl.'-cL_nl Lheory loads _lro del'iw_d from the stnl, t:in_, tn, essul,o

- (,I/._I) (_z /_2)

r_ l(b)
_l>'Zu'2 - "_'-6"

-4.0 O, 0 -0.16

0 -i. 3,33 O. 1386

-0.16 0.] 386 -0.0486

P

h

I,/, on 2/'h I _.

(4.21)

The matrix PAs were calculated for _1 ::: 1.5, 2.0, .and 2.5 for tile assumed

flutter frequency kf = 0.2, alld the resulting approximants are tabulated

in Table IV-I.

For this case, the exact loads may be calculated for general values

of s and compared with the equivalent loads calculated from the PAs in

Table IV-I. Figure IV-5 gives this comparison for the loads C_h , cmU
- ie

and Cn_ at M = 2.0 for _ = re with 60 ° _ 8 _ 150 ° . The two sets

of loads are indistinguishable for IkI = _ < 0.25 and generally agree

to within 5 percent for _ < 0.5.

The PAs of Table IV-I were used to calculate the eigenvalues of

(4.19) for the section of Table III-4. Figure IV-6 compares those eigen-

values to the exact roots of the aeroelastic equations from Fig. III-2.

With b = 1.35m, and a = 333 m/see the reduced frequency is 0. II <
t

k < 0.23. While tile PA was constrained to yield the correct oscillatory

loads at k = 0.2, good agreement between the exact and approximate

roots is seen throughout this range of reduced frequencies.

From the discussion in Ch. Ill, Sect. A-2, it is known that the

supersonic aerodynamics introduce an infinite sequence of poles of in-

creasing modules to the aeroelastlc system. Thus it may be anticipated

that tile eigenvalues of the PA.'_ would provide estimates of these addi-

tional poles. Tile eigenvalues introduced by the PAs are given in Table

IV-2. The first column of the table gives the eigenvalues of I{ (scaled
o

by U/b). These poles are associated witil tile 'open-loop' aerodynamic

medium as modeled by the PA. The second column of the table gives tile

elgenvalues of (4.19) introduced by the PAs, and may be interpreted as

the 'closed-loop' poles resulting from the interaction of the structural
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clyuamics with tile ae.|'od_nnnlic me(llunl.

M

1.5

2.0

'2.5

l'able IV-2

p

I,:IGENVALUES OF SUPERSONIC PADE APPROXIMANTS

Eigc, nvalues of

Ro(U b), r:_d sec

' ' i

-690, -193 ± i147

-1848, -484 ± i331

--2784, -657 t i448

Eigenvalues of Eq.

(4.19) (rad/sec)

I

-844, -243 .+- i181

-1855, -480 -_ i333

-2'/85, -655 +- i407

For this three ])OF system_ the eigenva!ucs of the PAs are characterized

by a complex conjugate pair with slightly greater than critical damping

ancl a real root of larger modulus. All of the eigenvalues are stable

and increase in modulus with increasing Mach number. This correlates

with well-known results of piston theory, in which no augmented states

are required to model unsteady aerodynamics at hypersonic velocities.

The eigenvalues are well above the bandwidth of the bending-torsion

airfoil section (_,) < i00 rad/sec) and the slight difference between

corresponding eigenvalues in the Table indicates that the modes of the

PAs do not couple strongly with the structural modes. It is interesting

to note that the complex pair at M :: 2.0 do not correlate well with

the exact eigenvalue of the aeroelastic system at s =-1315 _ i1501

determined iu Sect. III-A-2.

) •
C-2 Subsonic Matrix Iade Approximants

Vepa has calculated matrix Pad6 approximants (PAs) for a three DOF

section ill subsonic flow and provided them to the author in a private

comlnunicat[on [74!. Tables IV-3 and IV-4 present these PAs for M = 0.3,

0.4, 0.5, (J.6, and 0.7. T_ibulatecl oscillatory aerodynamics at k := O,

().:_ ().4, 0.5, ().6, all(] 5.0 were used to construct the approxinuult._

of "['_lble IV-3 whJ,_h _lssulned kf .- 0.5 while tile approxilnants of Table

IV-4 i. llclud¢' Lilt! r(:duc[}(l ['l'('quellcy k ().0] alld assume kf = 0.,1.
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I

!

Vcpa _ sign conventions differ from those used herein in t|lnt: h, P are

post1:ive upw;u'ds, :rod _,M _ nr(, positive for trnlling-odgc upw_rds t'otat:lon o£ .

the _lileron. The pitching moment is calculuied :ibout _idchord _ind :_ qu_rt_,r-

chord aileron is assumed. The oscillatory aerodyn_imics were c_]ctz]sloe! by

Vepa using a kerncl function program described in Ref. 33,

While no calculations are available to check the validity of these

PAs for arbitrary complex values el s, they may be compared to known

simple harmonic oscillatory loads. FiguJ:e IV-7 compares C_h, ci_ , and

en_ for _ = ik with the Tables [75], [76] based on Timman and Van

deVooren's Mathieu function solution [12]. The PA of Table IV-3 gives

an excellent match except for Re(Cn_) which is I0 percent low at k = 0.3.

The approximants of Table IV-4, with the low frequency point k = 0.01

included, show a deterioration in agreement with the accepted values.

The constraint imposed on the latter PA by requiring agreement at k = 0.4

is clearly seen, however. It is concluded that with appropriate checks,

the matrix PA technique can provide a good augmented state model of

oscillatory subsonic loads which are also valid approximations in the

vicinity of the i_ axis.

The eigenvalues of the R matrices of Tables IV-3 and IV-4 are
o

given in Table IV_$. All of the elgenvalues are distributed along the

negative real axis except for the PA of Table IV-4 at M = 0.3 and 0.4.

Evidently, the inclusion of loads at k = 0.01 causes the approximant

to develop complex conjugate roots with the resulting deterioration in

agreement at higher values of k shown in Fig. IV-7. Henceforth, only

the approximant of Table IV-3 will be used.
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I':IGENVALUES OF ]_
()

Table l_V-'3

Table IV-4

'[':df[¢, iV-,q

]"OR }_UiISONIC MA'I'I_IX ])AI)I,',' APPROXIMANTS

M s s 2I s 3
........ ,,u . . _ t • , •

0.4 -0.02262 -2.533 -+ i 0.6013

0.5 -0.02212 -1.263 -2. q43

O. 6 -0. 02105 -0. 6990 -1. 782

0.7 -0.04512 -0. 3401 -1. 221

D. STATIC DIVERGENCE

If the incremental moment generated by airfoil pitching is greater

than the restoring moment of the torsional spring K , the airfoil is

said to be statically divergent. The divergence velocity is given by

[52, p. 193]

K

UD = _)c_ " (4.22)

2b_(i. _)_--

Static divergence in incompressible, flow may be studied using the single

DOF pitch (.'quation

,)

I s-_(.),.K,4.)
' s, %_

Sub:_tituting (4.22) and assuming _c¢/b(y. : 2TT

(4.2:_)

i
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I 2 2 C_._)U, [b(½_-;_)-i U]_ 21'zl
I s - '%  TUD " " s)

= 0 . (4.24)

2
Since static divergence is a low frequency phenomenon, the s

may be neglected, giving

and s terms

(4.25)

A pole of the aeroelastic system occurs at values of s for which the

coefficient in (4.25) is zero. Since C(_) is purely real only on the

positive real axis, poles can only occur there. _Iso, along the positive

real axis, C(7) decreases mOnotonically from a value of 1.0 at r = 0

to 0.5 at r = =. Hence, a pole cannot occur for U < U D and for U > UD,

only one real pole can occur. This mode produces the motion of the diverg-

ing airfoil and occurs in addition to the 2n structural poles.

The occurrence of this divergence modc may be studied by locating

the poles of the system in the s-plane. The exact system model of (3.4)

or the Pad_ model of (4.9) may be used to locate these poles. The airfoil

de._cribed by Table III-3 was modified to yield a divergence speed close

to the flutter speed by setting b = 5 and a : O. Table IV-6 compares

the pertinent rooi;z of the exact and Pad6 models as a function of airspeed.

The plunge and torsion mode poles are given for both models and the aug-

mented state pole with largest magnitude is given for the Pad6 model. The

divergence speed of this three DOF section at U/b,}fZ = l.l.q is indicated

for the exact model by the emergence of an additional real pole on the

positive real axis. Since the R.T, Jones al)proximation to C(s) is

accurate at low _requencics, the Pad_ model gives a valid approximation to
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l:hl._ mode. St, atlc diw:rgencc o1' a finite wing was studl._,d by Rodd_-,n and

Stahl [72] u._ing ,_tr[ I) theory and augmented ,_tates. They also found tlle

static: divuJ.gullc¢ _.H}odc uo b_: glvt_ll by the augmented state with large._t

magnitude.

Table IV-6

STATIC DIVERGENCE IN INCOMPRESSIBLE FLOW

(poles in rad/sec)

l

U
Exact Model Pad4 Model

I.I0

I.Ii

1.12

1.13

1.14

1.15

7.437 ± i 73.51

-36.10 ± i 48.14

7.825 -+ i 73.18

-37.02 ± i 48.04

8.150 ± i 72.'86

-37.94 ± i 4'7.95

8.470 + i 72.55

-38.87 + i 47.85

+ O. 1885

8.786 ± i 72.23

-39.80 +- i 47.75

+0.4853

9. 098 ± i 71.92

-40.73 ± i 47.60

+0. 8172

6.974 ± i 73.29

-25.61 + i 31.79

-0,625 3

7.314 -+ i 72.96

-25.85 + i 31.80

-0,347

7.650 +- i 72.6"3

-26.09 -+ i 31.81

-0,0652
7.982 + i 72.31

-26.33 -+ i 31.81

+0.2431

8. 309 +- i 71.99

-26.58 + i 31.82

+0.5702

.... , J

8. 632 -+ i 71.68

-26.82 +- i 31.83

+0.9156
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Chapt._t' V

ACTIVF, CONI'ItOL OF AI,;ItOI,',IAS'rI(I SY,STI",MS

"L'h_ adv:_nc{,s made dtLl_itlg the, past deeaclo in the .c,]iabtllgy and

acceptal_i, lity ef active cent.el techniques as applic_d t,o the stability,

control, alld ntIvig'atioll futlctions Of aircraft have [nduce(I similar

advances ill the aeroelastic design of aircraft. (iarrick [77] provides a

synopsis of this activity, while Table V-I lists tll_ categories comnlonly

ascribed to chis control configured vehicle (CCV) technique.

Table V-I

CONTROL COh_'IGURED VEHICLES DESIGN CATEGORIES

augmented stability (AS)

maneuver load control (MIX2)

ride control (I{C)

fatigue reduction (FR)

gust alleviation (GA)

flutter mode control (FMC)

The different categories in tile Table have traditionally been characterized

as affecting either the low-frequency, rigid body response or the high

frequency, elastic mode response. This 'bandwidth separation' in tile CCV

functions has beconle a moot subject as larger and/or more flexible air-

craft are designed and tile analysis of the interaction between tile rigid

body and elastic modes is becoming commonplace.

To control the aeroelastic system, it is necessary to apply a control

force or torque. Although nonaerodynamic controls have been cop.sidered

[78, Bucheki, current designs use aerodynamic surfaces to produce tlle

control laads. The 11-52 Load Alleviation and Mode Stabilization program

(JAMS) [lli uti fixed accelerometer measurements at tile location of the

control surface to l)voduce augmented dallll)illg of subcritical strtlcturai

_'esp(mse modes. In the subsequent B-52 CCV l)roKranl [ i9!, [Z], all of

the items of Table V-1 were incorporated. Rot'el" and I{o(lg'es [4] document

-93-



! , l

tilt? l?lutt;oJ' m_)clo control system flighL tests f_;l' this pl'o_fram, which is the

only fl[l,_ht tested 1,'MC system ill existence, This F._[C cle._;i_n (2] utlllzecl

au_ulollto¢l state ]':_clc_LIppl'oXllllqllts fol' the loads. Ch, osser et al. [q],

outline the C-5A active lift ¢list_ibution control sy.';tem which illcorl)oF_itus

,_ICL, FI{, and GA systems. Wind tunnel stu¢lies of F_C systems are repol'ted

by Sz,ndford et al. [5], ancl llaidl et al. [80]. The forme_' test was cle-

signed usin_ Nissim's aerodynamic energy technique [£_] and encountered

difficulty ill stabilizing a leading edge control surface. The latter

test studied wing-store flutter slid inco_49orated a FMC system designed

using oscillatory loads and a simple damping control law.

It is obvious.that a:: analysis technique capable of t_eating FMC

can also be applied to the less demanding tasks of AS, .RC, FR, and GA.

Also, the FMC problem provides a definite design goal-stability, whereas

tile other CCV categories have more subjective design criteria. Thus the

FMC problem has been the subject of a number of analytical studies.

Turner [38] used a modified p-k method with oscillatory loads to obtain

a model amenable to modern control techniques while Dressler [39]

used a series expansion in s for the loads to obtain nn augmented state

model and applied modern optima TM control methods.

This brief review of the literature of FMC focuses attention on the

key role played by the choice of the aerodynamic model. Most of the

above studies were conducted by obtaining a model described by linear,

constant-coefficient, ordinary differential equations. The complexity

of the various aerodynamic modeling techniques ranges fro,, no augmented

states [38] to well over I00 augmented states [4]. It is significant

that the only flight tested system, tile B-59 CCV FMC system, used the most

complex aerodynamic model. Garrick [77] compares the predicted flutter

characteristics of the analytical model, tile wind-tunnel model, and the

flight test l'esults of this pl_ogram. The genel'al trends of the damping

of the flutter mode were predicted uccllrately, although the p_'edicted

171utter speecl was off by i0 percent. Thus_ there is room for iml)rovement

in the modeling of aeroelustic systems. Desirable characteristics of

impl'oved models include:

- 9,1-



([) improved accuracy in predicting arbitrary transiont respon,_e,

(2) minimizati_n or eliminati_m Of augmented states required t(_

model the load._,

(3) maintaining the simplicity of ordinary differenbial equatimls

for the model,

(4) applicability of modern control techniques to system synthesis,

(5) applicability to flight test results from the vehicle for

which the active control system is to be designed.

The last item is stressed since it implies the possibility of tailoring a

system to a vehicle during a flight test program. I.t. might be hoped that

future F_K] systems will not require the degree of analytical study of tke

vehicle which was available to the B-52 CCV program. The design technique

which will be developed in this chapter addresses itself to the above items.

A. CONTROL OF DISTRIBUTED PARA_LETER SYSTEMS

The structural elements comprising an aircraft are three-dimensional

elements (wings, fuselage, empannage, tail) whose dynamic behavior is des-

cribed by partial differential equations with appropriate boundary condi-

tions. Bisplinghoff and Ashley [52] formulate the aeroelastic equations

in terms of operators as

(_- _e " J)q -- 9D (5.1)

where g, (_e' and J are structural, aerodynamic, and inertial oper[.tors

q ix a generalized displacement, and QD is a known disturbance force.

Depending on the formulation adopted, -q, @ , or J may be algebraic,
e

differential, or integral operators. For instance, the structural operator
2 2 2 2

for the bending displacement of a simple beam is q = _ (EI_ /_y )/[_y .

Neglecting shear deformation and rotary inertia, the uniform slender-beam

differeutial equation is

EI 7"_.1 ' " Fz(y , t) .
oy bl

(5.2)
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For cantilever boundal'y ¢:olldition,_ nnd

can be e×pr,,ssed as [71]

tht> soluti,m of (5,2)

wi th

_k(Y)

o0

v,( y, t) = _ ,k(Y)_l,:(t) ($°3)
1¢=1

= Al(sinh ,_a_k y-si_ y)-'-A2(cosh _ y-co_' y)

Ck(t)

2 EI

m

= B k sin c0kt + C k cos tokt

The natural frequencies w k are given by the solutions of the equation

I + cos_ cosh._£ = 0 .

This o_ample illustrates tile key concepts embodied in the study

of the control of distributed parameter systems. This field embraces

the study of lit:ear operators defined on a Hilbert space and seeks solu-

tions to 'optimal control' problems specified by an appropriate per .....

formance index. The distinguishing feature of such problems is the

infinite dimensionality o. the solutions- (or the elem_nts of the space) .......

This effect is clearly evident in (5.3) where the solution is described

by an infinite sequence of normal modes. Much effort may be expended

in establishing the existence of bounded inverses of the operators since,

in this event, the solution may be uniformly approximated by a finite

sum of 'normal modes'. (A given function is uniformly approximated by

a sequence of functions if tile approximation invariably becomes better

as additional elements of tile sequence are incorporated.) This is the

basis of the well-known method of truncated normal modes in structural

dynamics problems. Hi lice the illl'inite sequence of ortho_,_onal 'in vactlO'

- 9[_-



lllodes of (5°3) .gpan Lilt., solution spac(.'_ tile soluti_m I:o th_ ac'l.u;ll

i)robI(,lll, with (_ :/ (1, may be r)l)ta[ll_d by })t'o,j('cl.i;u, Llw alU)l ir,d
e

dLstrkbuted force l,' (y,t) (lilt() the,so _basis vectors I 'l']le rc, sultint_
z

goneJ'a[izecl I;¢)rc:es (_. apt, Kiven by
I.

Qi = 1
o

Fz(y, t),l_i(Y)dy .

In aeroelastic problems, the applied force is composed of forces due to

motion of the structure and

0 i = E qij_j(t)
j=l

where qij is the generalized force in the ith mode due to deflection

of tile structure in the jth mode.

In the above example, the infinite dimensionality of the solution

is explicitly indicated by the partial differential equation, (5.3),

describing tile structure. .The examples treated in the previous chapters

involve pitch and plunge of two-dimensional typical sections which may

be regarded as representing the first bending and torsion modes of a

three-dimensional flexible wing. The dynamics of such typical sections

are described by ordinary differential equations. However, eveu. these

cases require infinite dimensional solution spaces since the applied

loads are themselves solutions of partial differential equations (e.g.,

F q. 2.6). In the former case (elastic structures) the spectrum of tile

structural operator contains an infinite sequence of discrete eiFcnva]ues ,

"k' while ill the latter case (typical section) the aerodynamic opt_'al:_l"

may have a continuous spectrum, as typ._fied by tile branch cut of C(_),

or it may be discrete, as in the case of two-dimei_sional supersouic

loads. Note that the elastic structu_'e problem [evolves tile ._OlUl;iOll

of two disLl'[butc, d par.tmete[" systtHiis lind the solution sp(.,ctl'llm will be

doubly i_ll'ill[t_'. All.}lough the l_l:ltll('matic01 (l_,,geFiptio_| _1' th(' _LFLlc. LLII'_'

a|ld tllfJ lit' l'odylli/llliC ILK'([ | UlII tNuYl appear to be' Oil till ('(]U;! l foot [n_;, i t i ,_
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Lht _ ,4Lructur( _ which is invariably viewed as lh_' _)b.j(4',t t,o be (;()nt, roll_d.

Wallg and 'rll¿ll4 [42] provided a framework for th_ sLudy of dJsLribul.(.d

parami, L(_r control, azld ouglin()(I.Lh(? catet4"ories of (]) (lisLribut(,d

inl)ut control, (2) boundary input control, and (3) total illput collLro].

They extended tile concc, pLs of controllability alld observabili_ty, whic.h

were developed with regard to finite state space, to the inl'in[te

dimellsional case and examined tile problem of existence of solutLons.

Taking the view that an 'optimal control' should be defined with respect

to the complete solution of the mathematical problem, they were Led to

performance indices defined on direct sums of Hilbert spnces, Problems

posed in this vein have proven unwieldy with the examples considered

usually having only one spatial dimension. References [43] through [46]

illustrate tlle theory applied to the one-dimensional heat equations,

while [47] and [48] study the one-dimensional hyperbolic equation and

wave equation. It is of interest that several recent references [46],

i50], and [49] address the more modest goal of 'stabilization' of dis-

tributed para|neter systems rather than seeking an 'optimal control' in

L 2 '

In assessing the relevance of distributed parameter control theory

to the aeroelastic problem, it must be noted that none of the three

categories of control given in the last paragraph correctly describe

the problem. The control force available in the aeroelastic problem

is the pressure distribution caused by control surface deflection.

It cannot be considered a distributed input since it is a one-dimensional

function of the control deflection. Neither is it a boundary control

for the structural partial differential equation since the boundary

condition associate(l with the surface deflection relates to the aero-

dynamic equation. Hence a broa(ier formulation is to address the prob-

lem propt?rly.

Jian and Ching Yuan _49] have presented such a formulation. They

model a distributed para,|et(,r system with an ordinary feedback controller

as
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re(y) --52_ +--5 Cw + I3w + Axe, = -(;x
3 t 2 5 t

(5.4;_)

= S 2 _)w (5.4b)dx Jx + Slw +
d_

2
where A, B, and C are matrix operators defined on a tiilbert space L ,

and G is a bounded operator mapping the n-dimensional vector space R n

into L 2. G is thus the operator relating control surface deflection,

x, to a pressure distribution over the surface. The ordinary feedback

control is derived from the n-dimensional vector x. S 1 and S 2 are

'observer-operators' mapping L 2 into Rn. In [49], the model of (5.4)

is analyzed from a rigorous Hilbert space standpoint. The stability

of the system with feedback control is studied and several perturbation

theorems regarding the spectrum of eigenvalues are proven. Finally,

tile validity of truncated normal mode approximate solutions is verified.

Unfortunately, no examples are given in [42].

The use of the truncated normal mode method lends insight to the

concepts of controllability and observability of distributed parameter

systems. In the context of aeroelastic wings whose motions are measured

by 'point sensors' (e.g., rate gyroscopes, accelerometers., etc.), an

aeroelastic ,lode will be unobservable to a sensor placed at a node of the

mode (i.e., if the measurement distribution vectcr is orthogonal to the

modal elgenvector). Similarly, an aeroelastic mode is uncontrollable

by an aerodynamic control surface if the generalized aerodynamic force

in the mode due to control deflection is balanced by the remaining

elements of the aeroelastic equation, (5.1). In control theoretic terms

this implies that the control distributor vector is orthogonal to the

reciprocal eigenvcctor of tlle mode. The rigid two-dimensional sections

alIulyzed herein are certainly observable if both displacement and angle

sensors are employed. The controllability of such sections with respect

to leading- and/or trailing-edge controls will be examined in the next

section.
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I_. COI_PROI,I,ABII,ITY AND OBSERVAI_ILITY OF AEIiOEI.ASTIC MODES

ConLrollability of the lilioar t constant coefficient, finite dimcn-

slonal systom

= l,'X + O£u (5.5_,)

y = HX (5.5b)

was examined by Gilbert [82]. The dimensions are

X = N-dimensional state vector

u = m-dimensional input vector

y = p-dimensional output vector

F = NxN matrix

G 1 = N×m matrix

H = pXN matrix,

If F has distinct eigenvalues, the transformation

columns of Z are tile eigenvectors of F, gives

X = Zz where...the .......

= Az + (z'lG1)u

y = (nz)z .

(5.6a)

(5.6b)

The elements of the diagonal A matrix are the system eigenvalues,

i = I, ..., N. Laplace transforming (5.6) gives

\

with

N A

_(_) = (_z) (_ - A)-l(z'% l) -- =

where A. is a pxm matrix given by the vector outer product
1

1 G1Ai = (HZ).i(Z" )i. "

- I_00-.

X i ,

(5.7)

(5.8)

(5.9)
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'['ho motl'._ rt'ln't':-;enLt,(l by _i wil.L bo ullc'onLro.ll:ll) lt, i l Lh_, i l.h re;,, c)['

- 1 (; I7. L,g z(,ro anti i.I. will I)_, unol).gt,l'V;]l)],, lj' lh_, i lh t'oll|lul'i _-_[' ]_. I_

/.t't'(). I'_(lll;ILiOU (.'3.f|) in(Ji.c;LL(_'_ Lh_lt ill _'ith(_l' t)|' l:h_':_' ca,_(,_, A _P,

:,n(l Lilt, :;ys|;t,lll tl'.'tllsft't' I_UIICl. i¢)II_ _(iV(_ll I,y II(,_) will. i1()|, c'.()lll.;|ill lilt,

pole ;it ;'L' 111 other words i.f 7, is eith(.:],' ull(-'t)111;l'oll.;ll)](, tit' till-' i

ob.'-;e.rv;fl._le, Cht,n every Lr_ln.'-;_['e.r funel, i.on in _1(,_) wi Ill h:_vo :t ;.'.crt_ at,

_'i and a I)O],(?--ZO:L't)cancellation will occur. The fact that a i)oJt:-

zez'o cancellation has oCcul?ro(l is 11ol sufficient illfol'ln_ltioll to deter-

mine whether the system i_ unc_ltl'ollahlo of unobservable. This mus£

be determined by examining the rows and columns of the input und output

matrices. These obsez'vations regnrdinK the relationship of pole-ze]'o

catcdellations and controllability and observability are the basis of

the design technique used for tile 13-52 CCV flutter ,,_de control system

[2]. Control surface positions and sensor locations were chosetl to

achieve the largest separation between the flutter mode ;lad the heart;st

zero. In a realistic design situation, exact pole-zero cancellation

may not occur but a near pole-zero cancellation may indicate that the

required control power will be excessive. Also, near cancellation fre-

quently leads to severe sensitivity problems.

i °

i

J

C. CONTROLLABILITY OF A TWO-DI_NSIONAL TYPICAL SECTION

Since the aeroelastic mode shnpes of flexible wing's vary contin-

uously as functions of velocity and dynamic pressure, it may be anti-

eipated thnt observability an(] controllability problems will occur at

discrete values of these parameters, if they occur at all., The typical

sections analyzed ill tile previous chapters are obseFvuble if muusu]'cmonts

of h, U, [., and y are ussume(l. Thus, tile controllability oi' the su(:-

t:tons may be studied by ex[llnitlJ.ll_ tile transfer ftllIctiolls of the Put10

apln'oximant au_inented state models ('Pad6 models') given by (4.9) for

the ineoml)ressible cast.' or by (,1.19) .l'(_r tile comprt_,,,-:sLbl(. ,._;_s_ _.

'Fable V-2 gives tll(_ I)arameters dc, l'illill_[ Ii IlOlllllUil [:t|s(, for' tht_

['()ill" I)OF section o_ Fig. Ii-1 ill inc.omprt_,,-;sil._h, flow.

L',x
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Tal)le V-2

NOMINAL PAI{AMETEILS FOIL A FOUI{-.I)ECd'A",F,-OF-I,'IW, I.',I)¢)M

SECTION IN INCOMPRI,:N,"IIItI,E I"I,OW

c.l = i00 ,'ad/sc_e
O

_'_ll: 50 rad/sec

w_ = 509 tad/see

_J = 500 rt_d/._ec

ij, :- 40

a =-0.4

x
G'

0.6

: 0.2

2
r = 0.25

C_

×_ : x :: 0.0125
P T

2 2
r :: r ,: 0.00625

f_, y,

C_ = Cr : o. i

Tile leading- and trailing-edge control sur£aees span 20 percent of tile

chord and have natural frequencies five times tile torsion mode frequency.

A small viscous damping has been assumed to stabilize the flap modes.

The remaining parameters are identical to those of Table 111-3.

It is well known [18] that tile frequency ratio [01l/(,;U has a strong

influence on flutter characteristics. Therefore calculations made with

the Padd model (4.9) for 0Jh/% O, 0.25, 0.5(), and 0.75 are pre-

sented in Fig. V-I. A subprogram was written which iterated to determine

the value of U/b_ry at which flutter occurred° The transfer functions

o_: O,/_.)(s), (a/_clt_) , O_/rc)(s), end (U/rc)(S) were dot,_rmi,led at

this value of U/b_ and at + 25 percent of this value by tile method

of [83]. Figure V-I indicates tile vat'iation of the poles and zeroes

of these transfer functions us a function of _0./,,_ and U b_0_. As
11 (X

,:h/,.)C_ increases from 0 to O.75, the v/flue of U,"I)_,'O at flutter decreases

from 3.41 to 2.13. 'File variation of the zeroes is of sI)eclal illtcl'e._t

since they detel'mine tile c ontl'ollabi[ity characteristics ,_l tile St'ct[_)ll,

It is evideut that leading eclKe flap control will not experience any

eolltrollability i_roblems, ._i,lce (:h¢_ locu_ of zel'oes of b,)i.h (]l/')_c)(._)

- I o2-
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I
!

and ((L"yc)(:;) I,eud t(_ fall c_utsiclo the range ('_h < ('_ < ('(z' ._i.nce

elas._ic_ll flutter" of a typic:nl section o(;(_urs with ;i mepp:Ing" ()f f_-c,-

quenci(fs within this i._ulffe, a Dole-zez'o cqncellation evidently will not

occul*--foi- .le,qdin_-e(g'¢_ co.ntro] Of a two-dimensiollal sectic)ll.

The situation for tile trailin_,_-edgc control surface is much cliffel,-

eat, with tile locus of zeroes Of (h/I_c)(S) and ((7/_c)(s) tendin_ to be

in the r_ul_c coh < co < (._, In fact, at a)h/(0(7" = 0.5, there is a near

pole-zero cancellation in both degrees-of-freedom at U/bt_ - 2.84.

Hence the flutter mode is nearly uncontrollable at tile flutter speed

for this section. This explains tile choice of tab = 50 rad/sec for tile

nominal case in Table V-I. It represents a "worst-case" design problem

and parameter variation studies about this configuration are of interest.

Tile physical cause of the uncontrollable mode can be explained by noting

that for this specific set of values of the parameters of Table V-I

and U/boac_, the structural and inertial forces and moments on the main

section cancel the incremental lift and pitching moment due to flap

motions when the section is oscillating in this tuncontrollable_

rood e.

Figure V-2 gives the modal composition of the eigenvectors of the

nominal section (Fig. V-ic) at U/bt0og = 2.13, 2.84, and 3.55. The compo-

nents of the eigenvectors are presented in complex phasor form and are

referenced to the plunge mode, h, which is normalized to unity. The

uncoupled flap modes (,, = 500 tad/sac, _ -- 0.I) at s = -50 + i 497

rad/sec have been modified by the coupling, giving a higher frequency

mode at u. -_ 590 rad/sec and a lower frequency mode at w _ 268 rad/sec

The higher frequency mode is predominantly a trailing-edge flap mode

while in the lower frequency mode the leading-edge flap predominates.

Also, a significant reduction in tile leading-edge flap mode damping has

occurred which explains tile necessity of the viscous damping _ . The

I'emainiu_ two modes are tile (highly-coupled) bending-torsion modes,

one of which becomes thu flutter mode. Aclditlonal studies of two I)OF

bending-torsion sections (not shown) indicated a minim_11 influence of

the flap dyu_mic COUl)ling on tile characteristics of the f'],tte3 _ mode.

- 1 05--
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Mode.......aI._ 2.13

/"

Y ,_.JTrailing-
edgeflap a

Leading-
edgeflap

Torsion

Plunge

s = -46+i584

a

Y 13

s = -6.8+i272

Y

/
Cl

s =-3.7±i96

Y

s =-4.7_+i5zl

2.84

q"
/

/

Y,,./
g

s = -60± i592

3.55

/

s = -74.6± i603
J

{
(I a

s =-11.2_i265 s = -i7.8+_ i254

ff

s =-0.4±i76.3
(flutter)

CI

(< h
7

s =-12.4+- i66.4

fl

s = 16.9+-i67.9

(X

Y

s = -36.2+- i61.

HG. V- 2 MODAL COMPOSITION OF THE EIGENVLC.I ORS OF A

FOUR DEGREF,-OF-FI{I_]'H)OM SECTION VERSIIS

U/bo_ IN INCOMI'RESSIICLE FLOW
(/
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This is due I;o tile very low ine]-tius of the flaps rf_lutive t.o Lhc mui.n

section.

Figure V--3 examines the controllability o[' tile lloil|illa]socti_w.

2

with resl)ect to variations of the parameters: _, a, r(/, r(,fry), .

x[_(xT), C(_(Cy), and u}[_((.!y). The mass ratio, D, i._ the only quantity

which is directly related to flight condition. Tile remaining parameters

are related to structural and geometrical prol)erties of the section.

Variation of D and tlle parameters related to tile main section (xc_,
2

rc_, a) have a strong influence on the controllabil£t-y of tile section.

As-might be expected, variation of the parameters related to tile flaps

have a small perturbing effect on tlle controllability. The behavior

of the zeroes associated with the leading-edge flap remains unchanged

for all of the variations of Fig. V-3. Figure V-4 shows the effect on

the critical flutter mode at flutter due to variation of the trailing-

edge flap chord, c. Variations in c 'detune' the uncontrollability

condition.

Thus, from considerations of controllability, the leading-edge

flap has advantages over the trailing-edge flap for active aeroelastic

control purposes. This advantage is offset by (i) the large destabili-

zing hinge moments which the leading-edge flap must carry; (2) the

associated power required to move the flap, and (3) tile violation of

tile aerodynamic shape of the lifting surface in tile critical leading-

edge area. In addition, proper design of a trailing-edge controller

may achieve the objectives without encountering a controllability

problem. The successful flight test of the B-52 CCV FMC system indicates

that this is possible.

It should be noted that the desirability of leading-edge control

is not so obvious on finite wings whic}l have a sequence of structural

modes, u}k. Figures V-I and V-3 shows that the leading-edge control

does no_ encounter controllability problems because the zeroes of the

relevant transfer functions remain otltsi(le tile range h'h "" _'" < _'!(X"

This reasoning fails when applied to finite winks since then the zeroes

may cause controllability problems with other modes.
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FIG. V-4 THE EFFECT OF THE TRAILING-EDGE FLAP CHORD, c,

ON THE FLUTTER MODE AND ASSOCIATED ZEROES
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Controllability of the three DOF section in aomprcsslble flow may

] •
be studied using the lade mode] of (4.19). Figure V-5 indicates that

tile subsonic section of Table V-3 ilas mUCh the same controllability

problem as the incompressible section.

Table V-3

THREE DEGREE-OF-FREEDOM SECTION PARAMETERS FOR SUBSONIC FLOW

wC_ = 50 rad/sec x(_ = 0.2

2 = 0.25
_ = 317 rad/sec r

b = 4 ft x_ = 0.0125

at0 :- i000 ft/sec r_ = 0,00625

= 40 _B = 0.0

c = 0.5

a =-0.4

Figure V-6 shows the locus of zeroes of the (_/_c)(s) transfer

function of the three DOF section of Table 111-4 in supersonic flow.

The lack of sensitivity of these zeroes to Mach number, and the fac.t

that the (h/_c)(S) transfer function has no complex zeroes near the

flutter mode indicate that controll_tbility of two-dimensional sections

in supersonic flows is not a problem.
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I)° AI,:ItOF, I_ASTIC CONTI_OI, I]A,HI';D ON ')'Iil'; CONCI,:I)T OF

AEllOllYNAMI(! ],:Nl,:lt( ;Y

N:i,_,_:i.,i INf. I (h'vcl()l)ed a t(,c. htliqu(_ of at:Live fltli:l:c't' !_tlI)pr(,,,_;,_l()l) whi('h

1.'_ bil,_et[ tit)on (_o)},_i.(I(;l,/.ltion,_; ()J: tile (,)R,l,_),'y ].,(,qut)'_,(] I,(,, ,_ll,ql._lJl) ,_i.)))p]._ )

harlllOllJc ()_('l_ [aLioll.'4 o.f; a two I}OF tyl)icnl ._ection. li' th(' sil_lI ().f" t;hJ:;

ellcrEy is l)o.';itlVO, in(floating (_norgy mu,_t I)(, sul)i)li(.:d t() in(: ,_(JcLioll Lo

maillta:kn tile oscillation, the section is stable. A ncgutive energy would

indicate that the airstl'eam wq,q supplying energy to the sect. ion _)n(l i(. i,_

assumed that the section woul(l flutter if released. For forced simp].c

harmonic oscillations of the section the aerodynamic energy iv; given i)y

P

= _ _b,.._ ( + _ ) + ....1-k (_ +_ .
:'II n " n n

(5. Io)

The complex vectors _R _ i_l are generalized modal coordinates asso-

ciated with the aerodynamic energy, and tlle elements _i of the diagonal

matrix [\),\] are tile real eigenvalues of the llermitian matrix

[-(Q2 + Q + i(Q! " q ] "

The matrices QI and Q2 are the real and imaginary parts of the simple

harmonic aerodynamic loads. P, being a quadratic form, will be positive

definite if X1 > O, i :: i, ..., n and thus tlle section will be .;table.

Nissi|u ;1cLod that this 'stability criterion' was dependent only upon the

aerodynamic lea(Is Q,. 4. iQ 2 alld di(l not involve the structural parameters

of the sec.t.ion (_L, (0(7, xrj, etc.). Al)l)arently the sLability of thc section

coul(I be (Ictermint:d without regard to the structurnl dynamics of 1.he sec-

tioll. Nissi..| argued that this was a (Icsirable l:()rmulatiou bt, catlsc of the

wide v_tt'ial, i()llS ill l'li[_ht ColI(liti()tt,'-4 which all aircraft may exlJc_,'i('.cc.

It! ot'dt:v to achitw_, active CoIILFo_ o_' k! t'lULLuI'JlI_ s(-t:(.i(}ll, Nis,%illl

|)ostulato() (.h(_ (.o))tr'o] law

-1 l(_-
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h h

_ [ C 1 _ .I. i [ (-'23 ,
c

(5.11)

With the flap dcf.l.ections uxln'es,_ed as functions _f h and (Q I,]w loads

due to I:lnp defi.e(_l;lon,q could be c'alcu]at(_d nnd mhh>d t:o Q1 mid (22.

The stability ol; the section could then be determined by c,×nmi,_.:l.ng the

sign of kl and X2. 'l?his stability criterion had to be chccke(l over a

range of reduced frequencies, since the reduced frequency of flutter is

not determiued. Nissim determined-the 'optimized' values of C I and C 2

for a section with leading- and trailing-edge controls as

: I.
0.5 1.0 L-0.5 1.0

Nissim 181] also studied control with only a trailing-edge flap and found

that it was barely possible to ensure the positive definiteness of [\A-,]

over a range of k. Furthermore, the design was sensitive to variations

in the feedback gain values and Nissim concluded that a practical flutter

suppression system would require both leading- and trailing-edge controls.

The incompressible Pad_ model of (4.9) is capable of analyzing

Nissim's design. The control law of (5.11) is implemented by noting that

for an oscillating section ih _ 1"i/_0, giving the control law

(5.12)

The reference frequency _0 is chosen to be in the vicinity of the flutter
r

frequency. For the section of Table V-2, 00 = 76 rud/sec (Fig. V-ic),
r

and Fig. V-,7 shows the locus of roots as a function of U/b_(7 " for the

uncontrolled and the controlled section. (The damping, _[: _'F 0.025 in

tim ftgut'e.) Tim control law stabilizes the bending and toys ion modes

throughout the range of velocities 0 <. U/b(0 U < 3.9 but tim lcndinl:-c, dge

l'lnp too(If • is tlllStllbl(! thl'oUKhout t}l[S I'illlKe . The closed loop bClldi.ll_._ IIIo(h':

-117-
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apl)P_mcht,,_ l:h(, r(,aL axl,_¢ nncl Leads t_ a _tatJc'ul]y div_..,rl._c_nl, mode, "it

IT b.: : 3 9 A soccmcl m_.;-_¢; v,'it;h , 25 rad/.'.-;c_c: v,'as _i;ud]ocl and a _tnx-(Y ' ' {' h

ilar ill.'-:.t_lb,Ll[Ly WilS obSl_l"./_,{I i.D the. fill t) illO(IO, n_"llCO, Ni_sinlmS d¢,sifkn

I]l'oc!c_dLIl'{' i .'-; 5('l'i()tL'-; ].y (h'.l'i(:i.C'lit J 11 Ilep_]ec_'t [lll_ I.hc, fl al_ dc_gvc.¢,s-ol'-l'r_,_-,_l_vn,

F,vnlu:/ting' Lhe ac'roclynanlic ezu?vg'y dc:_._i_,_p, t¢,chzliquo, the, /'r) l lov,'l.n_

t'.t.)nllll(?ll_H ;_ t'(' tlppl'C)pl'l at(_

1, The technique is o,,erly conservative in that it aLLezzlpts to

suppress flutter fen' all possil_le combinations of values of the

structural and geon|etrica] pgral._eters defining the section.

2. The technique, which attempts to define a I.'MC system valid for

all possible combinations of structural parameters, is incapa-

ble of producin_ a good clesign for a single trailing-edge control

since at ieast one combination of parameters can be Sound for

which tile section is uncontrollable (viz., the section of Table

V-l).

3. Toe technique addresses flutter suppression without regard to

tile struc_aral properties of the section. To assess the :flutter

boundary of the final design, a standard U-g analysis nmst be

performed using" the final control law.

4. The aeroclynamic energy cigenvalues would appear to have no di-

rect relationship to the locus of roots in the s-plane. Thus

tile}' offer little guidance in design modifications.

It woulcl appear possible to modify tile aerodynamic energy design technique

to handle tile pPoblem of leading-edg-e flap instability by inelucling tile

.flap modes in the design. The maill problem ill this extension would be

the complexity of optimizing the control laws of a large ol;'cler system

ov(,.r _ .[az'Fe t'utlge of k,

The technique was extended to the design of a fiutte_ suppression

system for' :v delta-winK wind-tunnel _tloclel [5]. Nine flexible mocle._ wore

luclucle(I in th_ (Iosi_ll |)Lit tilt: lea(lil_ V- t111(1 tr;liling'-edge control surface

nm)(It..gw(.'rt,nc)t ineluch,d. It ts stgnificallt that fop this la]'ge order

:4b'st(;ln it: ','.:lb n¢_t pc)ssi.btt, 1.¢_ ;,chj ,vc, n d(_sign h'_vt.nu all ¢)[" the {.,igoz_w_luvs
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of [%A-] positive over tilt, desired range nf k. Although [he nonl)osi[ iv_

d(, ['J lliteuess of [\A\-] would nee,I to imply that f.[ul:tt,l' nUlH)rc,._sion had

not been achitwed, lJ-g unalysis verified ;m ine_'euse ill the, [']tlLl.i_r speed.

The resultill K coil[tel laws wel'e tented on the wind tUIllK_l model at

M : 0.6, 0.7, 0.8, and 0.9. At the first thr('.e Macll numbel"s, the system

could not be evaluated due to a severe leading-edge control surface in-

stability. 'the instability was not encountered at M = 0.9 and the

flutter suppression system demonstrated a significant increase in the

flutter dynamic pressure. It is suspected that the leading-edge surface

instability in of a similar nature t that analyzed in Fig. V-7.

_E. FINITE STATE MODELS OF TIIE RATIONAL PORTION OF

AEROELASTIC" SYSTEMS

The complexity of current design practices and the difficulties

experienced in implementing designs emphasize the need for simpler tech-

niques in active aeroelastic control. The ability to calculate unsteady

aerodynamic loads for arbitrary values of s, coupled with the insight

gained in the study of the Laplace inversion integral for two-dimensional

flow point to a new technique of aeroelastic system modeling. This

technique is (,cveloped in this section and applied to the study of active

flutter control of a two-dimensional section.

The transformed equation describing the aeroelastic system is given

by (3.1)

O(n)X(s) :-- Gll(s ) . (5.13)

I[' rigid two-dimensional sections are being considered, (_(s) is an nxm

ll|att'ix whose elements nlay colltain llollt'atiollal transforlns (e.g'., C(,_') in

incompressible flow), while _l(s) is an m-dimensional input. 1.'or flexible

wings, (5.13) may represent Jill infinite dimensional Ol)el'at¢)l" relation de-

filmd on a lli lbert hi)ace. .More c()mmonly, i;h_ infinite (tincrete spectrum

of such a wing is truncated to the. i'i_'st n modes. '['hus, both cases

,lay be tr(-atcd by the finite dimensional version ['o (5.[3) ..... The two-

d[lll('llSiOtlal ncctioll in [ncolnl)l'essil)lt, l'low will be used to illttstl'iltu the
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i
where N.(s) is the numerator trans£o=m obtained via Cramer's rule for

3

the i th state due to the jth input. The inversion integral may be used to

obtain

xj(t) = k=l i=l R('si"JK e - _ Im (re i_) e-rtdr •

{ °
(5.15)

The summation inside the brackets has been termed the 'rational' portion

of the response and is due to the isolated poles introduced by the struc-

tural degrees-of-freedom while the integral has been termed the 'nonrational'

portion of the response.

The examples of the previous chapters have shown that the oscillatory

transient response typifying flutter phenomena is due entirely to the ra-

tional portion. Tlle response of the nonrational portion is nonoscillatory

and decays monoton_ically to zero. Moreover, £t is a small fraction of the

total response. In addition, much of the analytical difficulty in study-

ing the response of the system is caused by this nonrational l)ortion.

Therefore, a model of the rational portion of tile system would be desir-

able, since it would apparently describe the principal characteristics

of the oscillatory response.

The method to be described below is similar ill SlJiri. t to that out-

lined by Wang [SO], who showed tllat a class of linear distributed systems

with purely discrete spectra and a finite number of unstable modes could

bt, stabilized with a finite-dimensionul linear feedback. However, W:mg

{lid not address tile problem of the c(}nstructiotl of a simpler appPoxiumtc

model {leseribiIB: tile iustability, The realization of the' model of l l_{,

]

-121-



I

rational portion can be stated as a theorem.

TIIEOIIEM: The linear system represented by

where X(s) is n-dilaensional, JJ(s) is m-dimensional, and _(s) and

G(s) ,lay contain nonrational functions of s, may be approximated

by the linear, constant-coefficient system

with

= FX + GlU (5.17)

E N E m .X ¢ an_ The system matrices are given uniquely by

F = TAT -I

h = diag(sl, s 2, ..., s N)

T.i = JAIL]. 1

N

G 1 = _ A i
i=l

where s., i = i, 2, ..., N are the isolated singularities of _(s)
1 i

and the elements of the NXm matrices A i are ajk -- lleS_k (read;

the residue at the ith pole of the .jth state due to the k th input).

Note that the finite-dimensional system of (5.17) represents the

rational portion of tile system of (5.16) which is due to the isolated

poles at si, i - i, 2, ..., N. The following proof assumes that N = 2n

where n equals the number of degrees-of-freedom of the system. It is

possible that tile nonrational functions contained ill _(S) may introduce

singularities into the spectrum of (i over and above the siugularltics

due to the dim_nsion of X(s) (c.f., tile two-dimensional supersonic case

-122-
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of Sect. [II-A-2). In this case, 2n of tile _ystem poles must be sclcct_,d
to construct tile approximate system. A natural choice would be those

poles associated with the n structural qegrees-of-freedom.

The proof of the theorem will be constructive, giving an algorithm

for the construction of F and GI. The result of the following lemma
will be needed.

LEM_A: The matrices of residues, Ai, i =: i, 2, ..., N have rank i.

PROOF: This may be seen by noting that (_5,,15) may be transformed and

reorganized as

N A.

-- S-S.
i=l l

(5.18)

with R representing the nonrational portion. The elements of the residue

J )/D' (s i ).matrices, A i, are given by Nk(S i

Now consider the linear system obtained from (5.16) by evaluating the

nonrational functions contained in _(s) and G(s) at the pole located

at s = s i. Denote the resulting matrices as _(s,s i) and _(s,si). The

solution of

a(s,si)X(s) = o(s, si) (s ) (5.19)

may be written as

1
S : -- + "0°

S-S i
(5.20)

where _i = _J(si)_'(si) are nXm residue matrices. Gilbert [82] ,)roves

that the _i matrices in (5.20) have rank 1 as is also evident from (5.9)

At the pole, s = sl, the systems of (5.16) and (5.19) satisfy the follow-

ing relations
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T,'(_i) ¢ 1_'(si).

'].'he re f ot-e

A. NJ(si) D'(si)

i _,(si) 1_,(si)

showing that A i and At differ only by a complex multiplier.
Therefore

tile NXm matrices A ill (5.18) also have rank i.
i

To construct tile matrices F and G 1 of (5.17) consider the disgonaliz-

ing transformation X = Ty. (The eigenvalues of F are assumed to be

distinct.) Equation (5.17) is transformed to

= Ay + gu . (5.21)

In terms of X

= TAT'Ix + Tgu

-i
showing that F = TAT

unique matrices T and g

forming (5.21) gives

and G 1 = Tg. The proof will be complete if

can be found yielding these relations. Trans-

'l'h _. r o I _ I"__

y(,_) . (.i_/)-i_u

l

s-s I

gu o

L

S'SII!

-124-



x(s) IT ' .l'r
i .21"" I .N

1

S-S
n T

"gl. "'_

g2"

"--.
g

NAiI IIx(s) - E _ ; A. =T "• i .igi • "
i=l

UmJ

(5.22)

This shows that it is possible to construct a unique realization (5.17)

if and only if the matrices of residues A. can be constructed as the
l

outer produce of two vectors. In other words, Rank (A).= i. But the
i

above Lemma proves that this is the case for the system of (5.16). We

a=e free to choose the form of gi. as

[ 4
Then the columns of T

matrices, A., That is
i

are given by (5.22) as the first columns of the

' l IT | where

"I

T = T.I I T. 2 I "'" i .NJ T i- = [Ai]'l '

From the discussion following (5.2].)

G l

N N

'l'g = E T..g. = _ Ai. •i i.
i:=:l i=l

This completes the proof of the theorem.

It is interesting to note that the amount of inforlnation uvailable

ubout the rutional portion of (5.]6) is sufficient to uniquely determine

the N 2 i Nul unknown elements o[ F and G I. There are N v,_iues Of s
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_2 ill_h'pcndonL _'i¢'m_',_ts (_ the matrices o[ residu(,s Ai, nud N(m-l)

i

con_tanty; ;,.j, i 1, 2, ..., N; ,j : I, 2, ..., m.

l{c,clUccd or_lc'l" al)pvoximate models of the system of (5. I(;) ulay I)e coi1-

Stl'UCtUd by deleting selected poles since the theorem is usually true

['oI' tht, case ill which the dimension of X is N < 211. This follows

5illco the I)1'ool " of tile Llleorenl depends only upon the funk of the A
i

matrices bein_ unity. For the case N < 2n, these matrices will be

submatrices of those considered in the theorem and will have rank less

than oi" equal to one.. Disregarding tile very unlikely occurrence of a

1'auk xe_'o submatrix, tile above statement follows.

The models constl'ucted from tile algorithm given by the Theorem will

be termed 'rational 7;_odels'. The matrices F and C 1 describing the

rational model of the l ilree DOF section of "['able [II-3 ill incompressible

flow are given in Table V-,I [or U:b ..... 2.9.

Table V-4

llAi'iONAI, MOl)lqI, FOIl A TItREE-DEGREE-OF-FREEDOM SECTION

(}.I : O, U.'b_e = 2 9 F and G 1 in sec -1)

I

_) O 0 ] _. () 0 0

t) () 0 0 i. 0 0

() 0 0 0 0 i . O

-3395 -1243 -1139 [-lO.Od -0.1475 0.3564

t
:_1.27 -9758 659"1 ] 1B.B3 -29.22 -6.567

1

-2X58 29:'4,1 -113723 [ -27.78 44.98 -5.12()

7.279

:_, :;90

(). 9792

(i
1 -95.52

-,_(i,[ H,
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The matrices of the Pad_ model are giw)r; in Tnble V-5 for the same case.

!

Table V-5

PADE MODEL EOR _ TIIREE DEGREE-OF-FREEDOM SECTION

2.n F and G 1 in sec -I)(M -- (), U/b(0 == ,._ .....

F

0 0 0

0 0 0

0 0 0

-2934 -173.1 -993.2

2514 -11178 6399

-1579 32302-113319

0 0 0

0 290 159.4
.=

1.0 0 0

0 1.0 0

0 0 1.0

0 0

0 0

0 0

-9.267 -i0.47 -0.9598

_2.30 -15.52 -4.820

-25.61 16.50 -8.755

0 0 0

1.0 0.9

-10638 -583.2

14122 774.2

-29396 -1611

0 1.0

0.1487 I -1148 -i00.2
I

m
0

0

0

355.3
G 1 =

-8939

115712

0

-- 0 --

Table V-6 compares the transfer functions derived from the rati.onal

model with those of tlle Dad6 model. Since the F matrix of the rational

model is constructed by performing a similarity transformation (5.21) on

the matrix of the exact eigenvaltles of (5.16), the rational model repro-

duces these exact poles while the Padd model gives a good approximation

to these poles. In addition, the Pad_ |nodel also contains the two aug-

mented state poles., The nat ure..in_which tile resi(lues used to construct
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Table V-6

COMPARISON OF TI_ANSFI,_I[ FUNCTIONS OF RATIONAL AND ]'ADE MODEI,S

--I

(M :: O, U/bu_, :: 2.9, poles and zeroes in sec )

'1) POLES Rational Model Pnd6 Model

a)

bending -3.711 + i68.252 -2,659 _ i69.149

torsion -15.049 + i80.171 -17.485 ± i79.122

flap -3,431 ± i340.38 -3.414 ± i340.26

-12,523

-74. 099

b)

ZEROES

Rational

Model Gain

Xl/ 7.2785

x4/_c -95.518

X2/_C -3.3904

x5/_c -8648.6

(-4.09+-i81.59) (-65.3÷i364.68) (+107.43)

(-3.47±i80.18) (+ii0.91-+ii173. I) (-30.70)

(+2.82+-i71.86) (-72.0±i151.21) (-2457)

(+3.3 ±i71.55) (-56.48±t152.21) (+i0.44)

!
--I

Pad_

Mode I

h ,"[!
C

C

Gain

355.26

-8938.89

(-3.25+_i80.28) (+501.72) (-334.66) (-220.3) (-15.53)

(+3.84_+i72.37) (-59.84+t162.29) (-56.09) (-12.01)

J

F and G 1 were uvalLlated places construknts on tile system realization given

by the rational model which are seen in tile structure of tilt, submatrices

of F in Table V-4. Th(' equation for XI is

"XI :: X4 4 7.279 t_c (5.23)

-12_-
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_ncliaating the expected ve]ation between tl_e states m¢_de!ing h (X I ) and

1_ (Xd). The slu.'/ll t£eed:forwnrcl' term, 7.279[_,c, cau._es the l_o]'_l.i.ml

'X.I. ;A Xd and is due to the unmodeled nonrationnl I)ol'L J oil (5.]5).

ei'l'ect is also evident ill tlle zeroes _)i" Table V-6. The l)adc _ nloclel zev'oes

satisfy tlle relation (l'_/I'_c)(s)-:: s(h/[;c)(S) wllile (Xd/[',c)(s) -_

S(Xl/'_c)(S). The magnitude of tile feedforward terms of the upper sub-

matrix of O 1 of Table V-4 is directly proportional to tile relative

magnitude of the nonrational portion to the rational portion of the re-

sponse. It is interesting to note that tile real zeroes of the rational

model indicate phase changes of approximately 90 ° between X 1 and X4,

and X 2 and X 5 respectively.

The usefulness of the rational model must be evaluated by its ability

to predict, the response o2 the system in the bandwidth of interest; that

is, at frequencies near th_ flutter frequency. Table V-4 shows that the

zeroes near the _ axis in the vicinity of the flutter frequency (w ~

70 rad/sec) agree well between the ratienal model and the Pad6 model.

Frequency responses of tile rational model are compared to the exact model

in Fig. V-8. The rational model agrees very well with the exact model

in the frequency range of flutter, with the agreement deteriorating with

increasing distance from the system poles. From this comparison and that

of Fig. IV-4, it is concluded that the rational model and the Pad_ model

are both capable of predicting system response at frequencies near the

flutter frequency.

In closing this section, it should be noted that the rational model

is not restricted to the two-dimensional incompressible flow case. It is

equally valid for compressible three-dimensional flow when used with

truncated normal mode structural representations and aerodynamic loads

calculated for arbitrary s. The adva.ntage of the rational model i_ that

iL does Zlot require auglfleflted states whereas tile Pad_ model does. Also,

the rational model might be expected to give better performance than the

Pnd6 model for po[nts well removed from the _, axis.
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i", ()Iq_IMAI, CONTI{()]; OJ,' AEI_OF,].&_.TId.._._.._Y:;TE_Lq

l.n thl_ secl;i.oit nct.[v(, f.LLLL1/.c_l' clt,_l_'ll tuctn_iqtl("._ wi]i be _l_tl_llc_¢l

'US [lift t. ht' Pution;l] lll(Mc'l :incl the ] ,ad,f, vm:,del, AI tlmugh l;}lo .'-;ImC J-f ic l_t.obh..m

[|lld_.'P C()II.'-;'L[II_I'_ILi(..,II 'd,'[l[ })_f_ thC e.olitt',_)L oJ.' a flHttel' lil{}(Ic,, the _;lllle tcch-

niquc,s aJ'_, alU)lL('.able t(_ ally o1! the colltl'ol c()n.figu)'ucl vehicle (CCV) con-

(J('IJI, S _ld(ll'eSSJ. lt_' dyll[lllliC SL|'LICtt/I'H1 0I' Llil'Cl'Hft l'espollse,

,_evol'[ll o_[ the IHost })l'oll|illent examl)les of aeroelustic control have

Ioc,en desl,'ne(! using uugmunted state Pad_ models [2], [3], which resulted

in quite large order systems. Attempts to apply modern optimul control

teclnliques to these models have not had great success due t{} the require-

Inent of feedLng bacR all of the states of the model. The matrix Pa¢]_

appt'oxzmant method o£ Vepa promises to alleviate this problem somewhat

by greatly reducing the number of augmented states. The rational model

holds furthel' l.)1"olnise ill that augmente(l states are completely eliminated.

The cost of this advantage is a certain ambiguity in tile relationship

of the states of the model to tt_e |)hysical measurements of the structure,

This ])roblem may be assessed by checking the performance predicted by the

rational model with the corresponding performance obtained with the exact

model usin_ the same control law.

In-the two-dim({_Isional incompressible case, it is possible to compare

the two models sin(,e exact unsteudy airloads are available for arbitrary

s (Sec. If-D) and the Pad6 model of Sect. IV-A involves only two aug-

|neared states. Ii_ both c/lses, the model is given as

= FX _ GIU. (5.24)

An appropriate performance index fm the flutter problem is that of the

o))timnl r(,gulator [37]

o_

1 f [ XTAX'J " _" _ uTBt_ .: cll.

O

¢5,25)

31illLmiz_tion o1? .l s:_ti.,4fyin_, th(, (:onstl'alnl <,f (5.2,1) is :_clltev_,(t via

th_ ,_t(_a(ly-:atat(, s_ltltion o1 the mat|'|: Riccati C(ltlation

- L:_2-
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,,,,,hol.,c._ _(()) (). '['h_ _ I i ll(.,_l.t' I_c:_(,di3ac_k COil(;l'ol ],Li\V i,'q ,u_iV('ll ill I_(*I'IIIH eli

o
t;b._., sLc_tlcly-stllt( _ I{ic'¢'ni;i IIIfll;l'ix, .<; as

-L ] ] ,
u(.,) --: xlt) cx(t.!.

The control weigllting matrix B must bc positive definite, while tile

state weighting matrix A must be positive semidefinitc. Hall nncl Bryson

[84] describe a cligttal computer program wcil suitecl to tile solution of

this problem. This program, OPTSYS, was utilized ill the control law de-

sig_Is of this section.

The problem of choosing tile weighting matrices A and B remains. A

basic result of the theory is that if A = 0 (i.e., zero-state weighting),

the action of tlle resulting control law upon the closed loop eigenvalues

is to leave unchanged all stable eigenvalues, while open loop unstable

eigenvalues located at s = _ + i_ are reflected about the i(_ axis to

s = -_ + iu. For structures with slightly supercritical flutter modes,

this zero-state weighting technique is all attractive design method since

the result is a modestly stable controlled mode. However, for larger

values of the supercritical flutter speed, the technique leads to unrea-

sonably high damping of the flutter mode. Also, the method cannot be used

to improve the damping of subcritical flutter modes.

Anderson ;_nd Moore [85] describe a method which can be used in con-

jection with zero-state weighting to restrict the maximum value of the

real part of all eigenvalues. Equation (5.24) is transformed and tile

change of vnriabl_,s s' = s + V made giving

[s'I - (l,,-vI) Jx(s') -- ciu(s) . (5.28)

"l'hc result of tile transi'ormatLo,1 is to shift al. 1 eigenvalucs of F _. units

All tile dil'ectJoll Of the positive real axis or, oquiwllcntly, to shift the

oriKin V units ill tile direction of thc_ negative real n_is. l,;q_lntion
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(5.28) in¢lit;:_l,e_ I.lmt tills c_i_nv;.ilue _h'l.J't can be .nccomp]ish_,d by addin_

V L¢) tilL' ¢]i:l[_ollal. ¢'](,_IIItHlt._; cK_ F.. llenct_ il" 1" contaill5 an unstable

i, igt'llVll[u(' tie s 1_ _ [hi ;lllfl J I. i_t /](',H j. |'O/] LO C¢)ll.ql;l'_lill HI 1 C'l_;'lqlv:lluo._,_

k, ,qtlch Lhtlt I{c_(),) "< ]/, this wi. ll I)(,' aCeolnplisllod by the? rH)timal r(._g-

UltlEOl.' ;4I)J IlL J Oil Wi. i;11 Zt3l'O--,qt;I tt_ Wt_'i g']lt 1 lit;' .|'eL' Lit(, ,q ys I.elll

:: (F I vI)XGlu (:3.2!t)

wL£h V -_(lt-_). l','ig'envalues, '_i' with R(,().i) _ _, are unafft, cted

by the resultln_ colltrol law.

The optimal regulator solution was obtained for tile section of 'L'able

111-3 at U/b_cz :: 3.25 using the rational model and the Pnde model. (The

flap chord, c = 0.5, for this example.) Figure IV-3 compares tile open

loop roots of the two models, and shows that the section dalllping is

_-0.09. The weighting matrices were A = 0, B :::i. Table V-7 gives

the feedback gains and the open and closed loop ei{$envalue locations.

'ruble V-7

OIYPI_AL REGULATOR GAINS AND EIGENVALUES FOR A THREE DOF SECTION

(M = O, U/b0o(_ = 3.25, A = 0, B = I, poles in rad/sec)

Case I: Rat-ional Model .......

C = [2.901 -2.197 -0.09393 I 0.04124 0.007558 0.0001064]

Mode Open Loop ki Exact Closed Loop ki

bending (flutter)

tors iot_

flap

+6.420 _: i71.03

-28.68 +_ i73.56

-14.59 -+ i339.9

-4.975:k t69.94

-28.68 k i73.55

-14.59 ± i339.9

-0. 10761

0.01168 0.00051831-5o778 0.1436]

Exact Closed Loop ki

bc_ld ing ( f l utt or)

tots ion

flap

Case II: I ade Model

C :-- [2.517 -2.519

I
I 0.0450

Mode Open* l,oop }_i
- _ - , ...

+6. 987 _- i71.O1

-31.27 _ i72.82

-14.53 :_ i 339.6

-13.78 •

- 79.93

-5. 790 z" t7L.48

-32.89 :_: i69.45

-13.85 4 i339.7
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The' rool,_; lc,Pm_,d Iopcm loop w in file T:lblc, arP the, PiKt,nvaltle!; of Lilt,

approp1"i:ite tlllcmltroll_,d F lllatrix (viz., |,_q. 5.]7 [of (;he' l'ational

madel, nnd Eq• 4.9 l'aP tilt; Pad( (mode]). The roots l:el'me¢l 'ex'tct, c]o.qed

loop' wel'_,_ obtained by Jmplementtnt_" l,h_' feedback contz'ol laws in l:hc. ¢.x,wl

system equations and locntinK tile f_xact closed loop roots by ite_'ation

as described in See. III-A. For tile rational model, (5.[3) becomes

l a(s) -  cix(s) = mJ( )
c

where [l(s) = 'lie(s) + CX(s). To implement tile Pad6 model control law,

estimates of tile two augmented states are required. This was a_complished

by adding to (5.i_) tile known structure of the augmented states. In

tile notation of (4.8) this yeilds

[ <sl1 0  Iix<>1 (5.31)

where el, C , and C 3 contain the gains associated with x, _ and x .
_9 _p

If the linear models represented by X = FX + GIU exactly described

tile dynamics of tile section, then tile closed loop roots would be identical

with the open loop roots except for a sign change in the real part of the

unst;,ble roots. Deviations of the roots away from this condition indicate

tile presence of unmodeled (nonrational) effects•

Table V-7 shows that feedback gains from corresponding states of the

two models are comparable and both designs stabilize tile flutter mode.

Except for tile h feedback gain, tile magnitudes of tile gains of tile

rational mode- are less than those of the Pad6 model. The distance from

the exact closed loop pole location to tile predicted pole location is

all indication of the ability of the models to deal with tile unmodeled

portion of the system. These distances for the flutter mode are: rational

model, ,%s = 1 56 tad/see; lade model, As = 1.29 tad/see. The eorres-

l)ondtn_ distances for the other two modes illustrate a b_sic difference

between tile models. The ratio;hal model is all exact model of the rational



I_ortion of tile system at a particular flight condition nnd the regulator

design with z,,r,)-stnte weighting leaves tile c_xnct stable l)O]eS unch'inge({.

The P;id6 model is all at:tenlpt to npproxiulate the system throughout a _iven

bnndwi(Ith (region of tile s-plane). Thus tile closed loop torsion and Ills|)

modes ai'c displaced 3.74 rnd/sec and 0.7] tad/see respectively fJ'oln their'

Drodicte:l locations. This effect of Pad6 models may be of conce,'n in the

design of flutter suppression systems for multi-mode structures An which

there may be several marginally stable modes in addition to a flutter mode.

Tlle cllaracteristic of the rational model of matching the open loop

rational portion of tlle system exactly emphasises the perturbation nature

of control laws based upon this model. This implies that the deviation

between the predicted and actual root locations will increase as the

distance by which tile flutter mode is moved increases. Tile deviation

indicated in Table V-7 would seem to be acceptable. If the deviation were

unacceptable, a second rational model could be constructed for the system

resulting from the use of the first control law and a second regulator

design performed, giving a second control law. If this attempt resulted

in a satisfactory design, the final control law would be formed by the

sum of the two control laws. Thus the rational model can be used in an

iterative fashion, whereas a corresponding capability is not apparent in

I'a(16 models.

Figure V-9 indicates the effect on the open loop eigenvalues of the

Pad6 model of incorporating the Pad6 gains of Table V-6 one at a time. It

shows that the main contributors to the stabilization of the flutter mode

are the h, C_, and 1'i gains. Tile l'land {_ gains destabilize the flap mode,

an effect which is counterbalanced by the C_, _, and _ gains. Inter-

estingly, the augmented state gains have little effect on the flutter mode,

but they do influence the remaining modes.

Figure V-10 shows tile effect ell tile exact closed loop pole locations

for off-design airspeeds from U/b0J(_ :: 0.5 to 3.75. Both closed loop sys-

tems are unstable below tlle open loop flutter speed of U/bt0_ = 3.0, re-

flecting tile near uncontrollability of this section by the trailing-edge

control surface at this uirsl)eed. Above this airspeed, both control

-- 13 6--
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laws provide flutteF mode coati"el until a static divel'_ence occtll-S lit

appl-oximately U/b_ 3 80 The Iado model maintains slightly better

stability than the rational model tllroughout this airspeed l-egion. This

is due to tile ability of tile augmented model to approximate tile nonrational

e£fects ove1_ a wider bandwidth than tile unaugmented model. However, this

capability _'equires tile complexity of augmented states, with tile attendant

problems of state estimation. It should also be noted that although the

rational model control law was designed utilizing a 'nonphysical' model

(viz., Eq. 5.17), the performance indicated by tile 'exact closed loop'

pole locations was obtained using measurements of real physical states

(h, C_, _, h, _, _) and indicates tile performance of the systerl under

actual operating conditions.

The optimal control of the three DOF section was also investigated

in supersonic flow. The section of Table III-4 was studied with the

rational model and the matrix Pad6 model of (4.19). Table V-8 gives the

optimal gains and eigenvalues for the two designs. Tile weighting matrices

were A = O, B = i. Again, the corresponding gains of the two models are

comparable with the rational model gains having smaller magnitude in all

but two cases. For this compressible Pad6 model, three augmented states

are required; one for each degree-of-freedom. The exact closed loop

poles were not calculated for the Pad6 model. Tile agreement between the

open and closed loop poles of the rational model indicates that the ca-

modeled effects are slight at this Mach number. Figure V-If shows the

effect of off-nominal values of M on the closed loop poles when the

,_I = 2 feedback gains of tile rational, model are held constant• The

figure indicates that tile flutter Math number has been increased from

,_I = 1.8 to M = 2.2. Comparison with FLg. IV-6 indicates that the control

law also stabilizes tile flap mode at the lower Mach numbers.

As a final design case, tile four I)OF section of Table V-2 was

analyzed using the rational model• Figure V-ic illustrates the nature

of tile flutter mode which was studied at U/b_ 3.55.. 'rI_e flutter

mode is unstable with a damping of _ : -0.23 and the airspeed is 25 pel'-

cent above the flutter speed. Also, this section is nea_-ly uncontrollable

by th_ trailing-edge coati'el surface at the flutter speed of U/b_,_ 2,84.
CZ

-I 39-



Table V-8

Oi_PIMAI, IIEGULATOR GAINS AND EIGENVALUES FOR A TIIREE-I)I:GREE-OI.'-

FREEDOM SECTION IN SUPERSONIC FLOW

(M = 2.0, A = 0, B : I, polcs in rad/sec)

Case I: Ra_tional Model

C = [0.300 0.132 0.00401 ! -0.00515 0.00932. 0.000349]

Mode

flutter

bending-torsion

flap

Open Loop k_

-4.036 ± i74.67

-15.69 ± i70.67

-4.353 ± i372.6

Case II: Pad6 Model

Exact Closed Loop k.
.

-4.078 ± i74.24

-15.69 ± i70.67

-4.346 ± i372.6

C = [0.46 -0.046 ...... 0.078 1

I
, -0.004 0.010 0.0004 ! 0.034 0.086 -0.032]

Mode Open Loop li Exact Closed Loop ki

flutter

bending-torsion

flap

-4.249 ± i74.67

-15.86 ± i70.60

-4.374 ± i372.8

-482.8 ± i3323

-1855

m--

Table V-8 gives three designs accomplished with zero-state weighting.

For Case I B : diag (I,i), weighting the leading- and trailJllg-edge

control motions equally. Th(, deviation of the closed loop flutter mode

from its anticipated location (,_ : -16.66 + i68.O8 red, sec) is accept-

able but the _ains relating to the lending-edge control are significantly

higher than those associated with tile trailing-edge control. The regulator

soluti_on has dcs ig-ued a COiltl'ol law call in K for ulor[, mot io1_ by the ]e:_d_ng-

- l,II)-
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t'cLg_, ctUlLP()I siLIC( _ tlli.S SUVfa_c_ VV(MUCeS _rentor itmcl_ l.'or :_ _lven deftec-

t:ic_ll tllan t|le tru[ling-()dge control° '['his ts un(lc_,_iral)ie _[llce tllo

Icading-_,dge UOlltl:'ol is a]_o sub.Jeer to much greator hingo moments and

W()Ul(I consulll(' ('oPresl)olt(iingly gl,ea|;_l' i)ower,

Th_s the weighting on the leading-edge control motion was .iilct'ensc, d

and Case £i was designed with B : dkug (I, l(i), This change implies

tllat that leading-edge control motion is 16 times more 'expensive' than

tr.'liling-cdg'e control motion. Table V-9 shows that tile deviation of the

closed iooi) fl,ltter l)ole from its expected value has almost doubled its

value i_l Case [ but is still acceptable. Also, tlle trailing-edge flap

gains are roughly doubled from those of Case I while the leading-edge

flap gains have been reduced by a factor of 5 to i0. The increased

weighting on tlle leading-edge control has produced a design requiring

more activity by the trailing-edge control. The increased deviation of

tlle flutter mode from its expected location is probably due to the prox-

imity of zeroes associated with tile trailing-edge control.

The-final ease of Table V-9 illustrates the Anderson-hloore technique

of axis shift ill tlle s-plane to achieve a specified degree of stability.

The clesired damping sought by tile regulator solution for Cases I and II

is quite high (_ = 0.23) and a significantly smaller damping would be

acceptable for high frequency structural modes. Using tlle Anderson-_1oore

technique with v := -5 rad/sec will result in n control law which attempts

to |)lace the flutter mode at s ::-6.66 _ i68.08 with a damping of _ =

0.IO. Case IiI gives the resulting design for B = diag (I, i). For

this more modest design goal, tile deviation of tile exact closed loop pole

fl'o|n its anticipated location is only i rad,"sec, lea than half of tile

deviation of Case I.

F|gure V-12 shows tile migration of tlle ber_ding and torsion modes

for Cases I| and [if as a function of U/bu)c_. "file feedback gains of

'Ih_ble V-9 wu,'e held constant and the exact closed loop eigenvalues located

bv iteration. The design of Case I| is unstable at low values oi U/ba:r7

alI(I _alll 5chedu|tn[( w()u[(I b(, l'equir('([ to achit,ve acc_:ptable pt?vI'ovmauce.

l,:vidcntly, [,,l'_)llllll cht'ekout _f thi.'4 [luttt,t' supl)rt'ssion system would bt,

- i,12-



Tnbh' V-9

OI_I'I_IAL IH';GU/ATOI{ GAINS AND EIGENVALU]_S FOR A FOUR-DEGRF,];-OF

FiU_EDOM SECTION USING T}_ RATI'ONAL MODE],

(M f), A : O, U/bo_o, :': 3.55, po|es :in rod/Isec}

_. bending (flutter) *X6.66 ± t68.08

2, torsion -33.52 t t63,63

3. L.£. flap -14.7l _ 1254.38

q. T.E, flnp -62.75 _ t605,10

1. bending (flutter)

2. ¢orslon

3. L.E. flap

4. T.E. flap

&'mso 1: 0 = diag (1.1)

0.62 0.173 0.0105 -0.07601C = I

|o.78_ o.5X6 0.0360 -o.13o I
%,.

0.00333 0.00823 0.000511 -0,000987 /I
t |
j o.oooss_ o.o,i_ o.ooo_39 -o.oo_4s j

Exact Clo_ed LooJ_ Xt

-15.29 _: 169.77

-33.52 + t63."/7

-14.71 -+ t254.36

-62.75 _ t605.10

Calle 1I: B = dlag(1. ]6.)

1.479 _.45z o.o292 -o.zs7 {
c = LO.nS o.o7<s o.oos3l -0.02o41

0.0075 0.0198 0.00124 -0.00239 i

0.000121 0.00171 0.000109 -0.00022J

Mod.._..__e Exact Closed Loop _

_. bending (flutter) -12,92 _ 166.68

2. torston -33.52 t L63.63

3. L.E. fl_p, -14.?L _ t254.38

4. T.E. tl_p -62.75 Z 1603.10

case II[: B : dtag(l. 1.), v,,-5 rad/sec

C = I0,439 0.0899 0.00485 -0.0494 t
_0.549 0.311 0.0219 -0.0899

I 0.002?? 0.009?4 0.000354 -0.000617]

I 0.00101 0.007B5" 0.00501 -0.000967J
!

_o4._._z,

t. bendLn$ (¢$_tter)

2. torston

3. L.£. tlap

4. T.I. ll_p

£x_,.'C-C1os_d [.%op )'L

-'i.0?9 Z t68.91

-33._2 _ L63.G3

-14.71 _ 1254.38

-62.75 ± 1605.10

-14:_
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dil'l'icu[t clut, I,) tl1_ Lnc,rti;l CmllaIJ.._ of the m,)d_,,_, l"igu1'_, V-l_a also

shows thu iv11;lU_UK'C _ of Lll(' UlICc)IILI'olL/I])Ic iI|(_(le ill tilt' SCII,_,:[Eiv[Ey ()LJ' Lh{'

Locu._ ll_',iP th(' oJ)c_IL Zoo l) l'l!.ItLer V(']oeity (U/'I)I.;O. 2.N/J). Tim l_erI',,ri,_

;illOU (}iI_ tilt, c¢)nLrol l_aw oJ' Cas(_ iii f.it of['--ll()inillLlZ Vtl]ues ()f U J)¢.l
CX'

(1"[_. V-lib) i.n¢licates a smooth variation of tlw locu._ throughout the

v('l()cJ ty l'iill[_(, studied. '|'his Ls due to the increased authol'ity allowed

the, l¢,adin_-edg'e fla l) by the reducticm of th.e weiKhtin K on -f I.'ou Ca,'e

Ii1,

Both the torsion and tile i)lun_e modes of Cases [l and Ill are stable

for ail'speeds well above U/b(,_ : 4,0. lh)wever, at U/bu_c_, :_ 3.98 the

section becomes statically divez'_cnt due to the emergeuce of a real

positiv(' foot. As tile airspeed increases beyond this divergence speed,

this root becomes more positive. This static cliverg'ence of the actively

controlled section is of tile same nature as tile static divergence of the

uncontrolled section studied.in Sect. IV-D. Whereas diverg'ence of un-

controlled sections usually occurs at iligher airspeeds than flutter, it

is seen that active contl'ol of flutter may reverse this condition. IIelme,

tile behavior of active flutter contl'ol techniques should always be in-

vestigated at tile zero frequency condition where static divergence o,:curs.

The examples g'iven ill this chapter illustrate tile application of

modern optimal control theory to the design of fluttel" suppression system_-.

The matrix Pa(16 model and tile ratiom_l model are both capable of predict-

ing closed loop perfol':_'ance. The disadvantag'e of tile Pad6 model is in

tile estimation of the auKmented states which would be required to imple-

ment tile control law. The use of both leading- and trailing'-edge contI-o]

surfaces will obviously sil,plify tile problem of stabilizin_ file flutter

mode but the additional control surface introduces ethel' pz'oblems of

stability and power requirements. It should be noted that tile nominal

illcompl'es.gkblc' flow s_'cti.oil [llvestiKated ill this chaIlt£,l" rel)reseut._ a

wol'st c[15c (Jcs[Kll s[tuati()ll, ill that [t wtls llearly UllCOlltl'ollable by tilt,

trailinK-('dKe control sur.l'ac_, at tim flutter velocity. In a realistic

desig_l Sit/latioll ill which a flutter sUppl'c'ssioll sysl._!m is to b(' (lesigm,(I

l()l' ii I)aI'I.i('ulIIv l'l i_hl. ('c*l*(liLion i)l' I'[IIIK(' C()ll(Jiti()lhg, it. may w_,l I 1)(,

l_¢_._sit) I[' I_) l,)¢';It_' _l_d ._izc a ._i. IIKI(' 1. railin_-¢'¢lK_' C_)IItI',)I Stll'I'llC(' [.()

;whi_'vt' 1.11_' ¢l_'_iKll _¢ml.

-14(_



1
Chapl.or VI

SUMMARY AND IiF, CO;_IENI)ATIONS
. - 4

()ILIGINAI_ PA GI_ IS

, )l,' PO0g QUALYt_

A. S[glMARY

I. The transfer funcLLoI1 relating alrfoi.1 InlotLons to tho aLrloads

due to c:irculat:ion in two-dLmensional incompressil)le flow Ls dertved and

is identtfiod as the generalized Theodorsen function, valid for arbi. trary

airfoLl motions.

2. Examples of exact airloads due to transient, stable airfoil

motions in two-dimensional incompressible flo_,; are given.

3. It is shown that the solut:Lon of the unsteady aerodynamic par-

tial differential equation for compressible flow contains n portion

which is linear with respect to the transformed airfoil motions and a

portion which is linear with respect to the initial conditions of these

motions. The stability or flutter problem is solely dependent upon tile

first portion which is described by a partial differeutial equation

formally identical to that of simple harmonic motion with the rei)lacement

of i(_ by s. It is conjectured that computer programs which calculate

simple harmonic airloads may be modified, in a fairly straightforward

manner to yield generalized airloads. The conjecture is shown to be

true in two-dimensional supersonic flow and the derivation of genera.lized

airloads fo. _his case-is--given,

4. "ihc generalized airloads are incorporated into the equations

of motion and the exact locus of roots calculated, giving quantitative

results regarding suberitical and supercritical flutter conditions.

5. Examples of exact airfoil responses due to command inputs are

given. "rhe responses are shown to be composed of portions due to rational

and nonrational transforms. It is shown that the oscillatory motions

typifying flutter phenomena are due entirely to tile ratiotml portion of

tim response.
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Ii. The abil|l:y t:o cnlc.'ulnl.(, i_;eneralizod aeJ'odyna,|tc lcmd.'-_ allows

LIw (,wlluntL_m o£ :_l)pro×i.,intc_ tecnnJclUO._; of ealc'ulnt:i.nl,; i.hc,._ ].rinds, 'l'll_ _

I{,T, ,Toil(':-;' apllro.'_illlation for [llcOnlln'e:4_l.bl(.' flow lind Lhe lil,[ltrix 1)_1(]( _.

_I])],I'O.XlIIIIIIII;M ()1_ stipel'SOllic ]"LOW itre ._llown to K1vo acetiPal;(, a irl()ad,_ I'ol'

arbLt _'ary motions well l'eliloved £1'oln the i i,_ I1x:L.M .

7. It is shown that static divergence o:f tyl)ical sections in in-

co)repressible flow occurs due to tile emergence of a l'eal positive pole

of tile system transfer function. Tllis pole occurs in addition to the

orig'inal structural poles and ms also predicted by Pad6 approxiiilant

liicthods if tile low frequency behavior of tile approximants is valid.

8. It is shown that tile aerodynamic energy design technique for

flutter suppression, which attempts to define flutter mode control laws

valid for all possible combinations of structural parameters, has diffi-

culty treating the typical section with a single trailing-edge control

surface due to tile possibility of tile section being uncontrollable for

some selection of parameters. Also, tlle technique must be extended to

include control surface dynamics in order to circumvent a problem of

leading-edge control surface instability.

9. A theorem is given stating the possibility of constructing a

unique finite dimensional, linear model of tile rational portion of tile

system response whicll does not requite augmented states. Tile proof is

constructive, giving an algorithm for the derivation of tile 'rational

model t .

i0. Optimal regulator flutter mode control systems are designed

using tile rational model and the Pacl6 model for incompressible and super-

sonic flow. Although Lhe rational lllocIel represents only a portion of tile

total response, it is shown that i)erturbation feedback control based

upon this model yields acceptable flutter |||ode control systems, it is

also shown that active flutter control techniques may result Ln systems

wi. th cli.vergt, nce speeds below tile actively coutrolled flutter speed. 'l'lle

behavior of ,_uch systems should always be investigated at the zero fre-

qtl(,n(: y tend i t i on where s tat ic d iverK(Hlce oecul's.

--I.48--
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B. REC OMME N])ATI ONS

l, Wind lunll('l studies and flig'ht tests should be I_orformed to

estal>lish tile validity of tile transient responses presented horeill, and

to i.nvestigate the effects of the rational and nonratioaal portions of

tile response.

2. Existing com.puter programs which calculate simple harmonic

airloads could be modified to calculate generalized airloads aud the

results compared with existing solutions, experimental wind tunnel, and

flight data.

3. The possibility of obtaining approximating functions of gener-

alized aerodynamic loads over a region of the s-plane should be studied.

These approximations may be of the form

m

qij (s,M) = E f_(o ,M)g.g(u:,M)
_=i

and would be useful in calculating the locus of roots of the system. The

merits of this exact root locus technique versus traditional U-g flutter

analysis should be studied.

4. The relative merits of rational models and Pad6 models for the

analysis and design of aeroelastic systems require continuing investigation.

5. The Laplace transform techniques used herein may be applied

to the gust problem, leading to a unified theory of the control of aero-

elastic systems excited by turbulence. The ability of the finite state,

linear, 'rational model' o_ such systems to predict the main [eatures of

the total response may serve as a base for future applicati ,ns such as

gust alleviation and vehicle ride control,

6. '['he problem of estinmtion of the states of the rational, model

from measurements ()f tile physical airfoil requires careful study since

the states of tile rational model do not correspond directly to physical

measurements. To obtaill complete corl:e4_9olldellc.e 9 the nonrational portion

-149-
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(or :_n estimate thereof) must be lllcluded, llenco, the op_ration of filte_',g

o2' _>bt_;e._'vot'.'-; :|'o_' sLtlL¢..l'e_:ollsL_'tlcL:i¢:rll I)/.15o¢] tlp¢;.I Lho ] ] _ ] [; J () [I [_ [ _[()([ (_ 1 [[_1 ]i_ L

be careftllJ_y c'va.lL_st, od.

7. 'l."he concept of rati Jtml and nonrationnl portiomm of the airfoil

l'espol_se may lead to improved estimates o£ flutter mode (lampi.ng' fPom

flight tents. T I' the nonrational poi"tion of the z'espoz_se can be estimated,

subtraction of this estimate from the total response measurements would

provide estimates of the ratiollal portion-. Application of parameter

identification techniques to this portion may give [reproved damping

estimates.

i
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Appendix A

EQUATIONS OF MOTION

The equations oi' motion of the section shown in Fig. II-I nre de-

rived from Lagrnnge's equations

d _ (T-V) + _ (T-V) = Qi
dt _4 i

(A.I)

where the kinetic energy is

- -. (_)dx .
2 -I

The airfoil drflection for the Sect. of Fig. II-i is

z = -h-(x-a)C_-(d-x)_ll(d-x) - (x-c)_11(x-c) .
a

(A.2)

The potential energy V, is stored in springs attached :,t the control

surface hinge lines (k_, kT) and ,'t the elastic axis (kh; k ).

= _(kh h2 + k 2 + k_2 + kTT2 ) • (A.3)

Thus

1 2 2 b
= 2 + I + .-_+- I + S

+ [%,b(d-a) - z_,]_ (A.4)

und the equations of motion for the 3ection o£ Fig. II-i ure

_isINAL PAGE IS
-151-



'_:+ ' '" )- 8.yT _ k 11 Pmbi'1 ) S.,: Sl;I:, h
(A.',)

(A.o)

S_.,bi_+t_i,-,.Srb(_:-a)J'_-,.I/;",ki# = MI_ (A.';)

Srbi; ,., _[s?b(d a) IT]_ .I.ITT I-I(TY = M T . (AoS)

In mechanizations of such typical sections in a wind tunnel or on

a wing, the control surfaces are commonly controlled by eleetrohydraulie

serves as described by Edwards [86] and Bergmann [87]. Then klj = k_ = 0

and additional terms giving the hydraulic pressure control torques would

be added to (A.7) and (A.8). Edwards [86] derives the equations of such

a hydraulic control system and gives the transfer function from control

surface position command to control surface position as

1 (A,9)
l_ (s) = s2 2_hS •( -- )13c ('_pS+l) --_ + _'Jh + .1.

- tt} h

The hydraulic mode, described by al h and '_h' is, typically a lightly

damped mode well above the bandwidth of the serve (given by I/'T rad/'sec).
P

To retain the control surface dynamics in the equations of motion

without requiring attention to the serve loop dynamics, the artifice of

control surface spring's will be retained and viscous damping terms will

be added to the control surface equations to provide stability. Also_

to provide a mechanism for ccn trol surface positioning', the control

surface spring constants will be multiplied by the difference between

surface position alld commanded surface position. Thtls the te_'ms k.,lt

2 :,_ " and

;,nd kyT__ ill (A.7)__and (A._)are rcplaced by k,3(/3-/5 c) t _:_
kT(g-T¢) q 2IT..,T_,7_ respectively. The selection of .'

,,.qT--T'g,,"-1_15' and _3' alow the flap dynamics to approximate theT - v'_T/*T '

hydr_mlic position serve 1.oop dynamics of (A._.))
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The ael,odynnmic loads acting on the section of Fig. II-I maybe
derived from those given by Theodorsen [11] and Theodorsen and Garrick

[51] for the section of Fig. A-I. This section has trailing-edge ,qileron

:lad tab control surfaces which are aerodynamically unbnlnnced. Using

a stlperscrJpt bar notation to identify quantities related to the section

of Fig. A-]_ the coordinates of the two sections are related as

!

I

= 81 =

I

C

, I o o b(d-_)
I
0 1 0 -I

I

i 0 0 1 0

I
I 0 0 0 1
%--

[ L

I

I

i

I ' #

, I

w (A.lo)

while the loads acting on the sections are related as

Pb

M_

MT

1 0 0 071 Pb
II

i

0 1 0 O. _c_

o o 1 o{ _'(d-a) -I 0 _I _

vTfi . (A.11)



Z

U

FIG. A-1 DIAGRAM OF A TYPICAL SECTION WITH
AERODYNAMICALLY UNBALANCED
AILERON AND TAB
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Appendix B

UNSTEADY AERODYNAMIC LOADS FOR 23VO-DIMENSIONAL

INCOMPRESS IBLE ],_OW

This appendix summarizes Theodorsen's [Ill deriwltion of I.I](,un-

steady airlo_]ds as presented in Bisplinghoff [7] •

The airfoil lying between x× = -b and :# = b_ as shown in Fig.

B-l, is mapped onto the circle of radius b/2 by the Joukowski trans-

formation_

2

×× + iz_- = (X + iZ) + b . (B.l)

4(x+ iz)

The correspondence between points on the airfoil and points on the

circle is x_ = b cos _, z_ = O. Solution of (2.19) subject to the

boundarycondition,(_.13)(w_iehisLaplace'sequationin theplane)is

achieved by superposition of elementary solutions of Laplaee's equation.

To satisfy the boundary condition_ a distribution of sources is placed

on the upper semicircle and a corresponding distribution of sinks is

placed along the lower semicircle. The source strength distribution

required is

_+(××,t) = 2w_(,,%t) . (_.2)

This noncirculatory source-sink distribution gives the tangential vel-

()city at the circle as

2 _ w_' sin2_d_

-I "_
. cos 0-cos 0
O

(B.3)

The noncirculatory velocity potenti_ll on the upper semicircle :_nd the

pr'ossure di[I'erence on the ;lirfoi] _ire
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-b

Z*

0 b

Z

7_ qr

--×* _ -"X

FIG. B- i CONFORMAL TRANSFORMATION OF THE x*-z* PLANE TO

THE X-Z PLANE

0_' 1:0011,QUAIX'-I_

-15(_



2
b JL .n ,,_,x

::-- f t :' _±n_:bd'l'd"
ff r/ 0 Cto;:_ :I) -- c_t: ')

(1_.4

Pll(_(s'), [

1"8,', U 3,1) "1

The tangential veloci'Ly, (B.3) _ eval.uated at the tr;,iling-¢,dge

(_ : O) is nonzero for general airfoil nlotions dnd Kutta's c.ondilion o I'

smooth flow off of the trailing-edge is violated.

To satisfy the Kutta condition_ Theodorsen employed a bound vortex

distribution over the airfoil chord, and a vortex distribution over the

airfoil, wake. Figure B-2 indicates the vortex flow for nn isolated

vortex pair in the X-Z plane. To maintain the circle as a streamline,

a vortex of strength +P at X = b2/4X is paired with a vortex of
O

strengt!, -* at X = X.
O

Von K_rm_n and Sears [60] show that the corresponding situ'ltion

in the x_+ - z x plane consist:_ of n vortex of strength -I" at

b2,,4X o{ = X + , and a bound vortex sheet distributed over the airfoil

chord of strength T(x×,t).

The circulatory velocity potential on the upper semicircle due to

the vortex pair Fo_ -F is

r [ - '
, (o,t) o . -1 (g*-b)(l+cos 0)= -- _an _ (B.6)

c '_ 1(_+b)(1-cos o)

and the corresponding pressure differenee_ from (B._) is

P=Uro[_*+b cosO]
p (<;,t) = - (B.7

C °

_rb sin 0 d-×2-b 2
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I

-b

Z _;

_'(x*,t)dx*

-1"
0

b _*
X _k

Z

FO .Fo

X

FIG. B-2 BOUND AND WAKE VORTICES IN THE x*-z* PLANE AND

THE X-Z PLANE

}
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t

i.H

'l'ho lanKc't11:l:ll w'l.oc_lly :tl. 111o circl_" li_chlc',"d l)y lhf. ',,_,_,'tr,.-.: i],;l:il,

1,'oj' :lvbLlraz'y mol..ions_ thc'l'e will be n disi:ributed wnke vot"Lc, x

shee'l ¢)1' sl:rength _ (_t) alld the ell'oct of tile shod wake is obl:ained
w

by, rc,plactnK 1'o by -Tw(_l;_d _-. :llld integrating over' lhe wake. For

;,i.v.Foil Iiiol.io)/ ;it unil'OCnl velocity starling :,,1: t = 0 tile tanKential

\elocity :lL I.he trailing'-edge is

bblIt

Clc(b. t)- 1 I _'Yw ( _.-x-, t) d_. E (B.9)
• _b b

and the pressure difference on the airfoil is

P C \ ::1_ t ) --

PU

_bsinO

b+UtF _]

The velocity at the trailing-edge is given by (B.3) and (B,9) and the

Kuttq condition is enforced by requiring that this velocity be zero.

jl

o

,)

w× sin%b d,!,
it

cos 'b - I

b+Ut

+ % _( _-*-,t) d_,*
b

Equation (1_.1.1.) relates lhe known down_vash_ _va_ to tile unknown wake

,'o,'_ex :_lrc, ngth Tw(=_,t ). Tile lit'st integral in (B.11) may bc, ¢'v_,lual,'d

i l _ i_ sp('c'tftr'd. '.l'b(,odors¢,ll dr'l in¢'d 011('-]1;11 l" lhis illl('Kl';ll :I_4
;I

_J_.ll.

_:GLNAI_ pAGE IS
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2
_r w ×- s in _)d_)

1 I _
7r o cos (_ - I

(B.12)

giving

= u&+ hb+ b(½- a

u - b • u d)_÷ d)_+_ + TII_ + bTIO_ _ _ TIO( _ TII(

(B.13)

for the section of Fig, A-I, and

Q = U(Z + hb + b(½-a)&

U b " U

+- TIO_ - + d)-_)_

+ b (Tll(d) . V(l - 2c)_
2F

for the section of Fig. II-I. The T-functions were evaluated by

Theodorsen [II] and Theodorsen and Garrick [51] and are tabulated in

App. C. Thus the Kutta condition_ (B.II), may be written as

(B.l_)

x_

IS°Q = -_-/_
b

_( _*, t) d_* . (B. _)

Integrating the pressure difference (B.IO) over the chordj the circu-

latory lift and pitching moment are

x* _*

I°+P = OU .2 . b 2' L(_.,t)d_. (B.16)
c b

X_ _ "_

MC_ = PUb -(a+½) (_)+,t)d_ -×" . (B.17)
C

b

- i()0-



1
Equat, ion._ (B,15) and (B.17) ._how thaL the circu[aLory Joqd_ :,to ro]at_,d

t,_ Lh(' wal¢¢' v_,rto× sLrongth by the tV¢o int(2gval expr_,s._i.,ms

X x

It .... _v(_->_,t)d_:,× (B.l.)

b

and

X x _ _'

12 : 7w(_-x-,t)d_×- . (B. 19)
b

(The hinge moments M"<f and MT may be expressed in terms of I]. and 12 .

also.) Theodorsen noted that if it were assumed that the airfoil had

undergone simple harmonic oscillations for an indefinitely .long period

then

_,:-Cx* t) = _*(x':
a _ ) ;.1

i_ot
e (B. 20)

and

since tLe wake ts assumed to drift downstream at the freestream velocity

as shown it, Vig. I_3. The reduced frequency, k = (_:b/U introduced in

(B.21) serves to indicate the relative 'unsteadiness' of the flow. The

unknown wake vortex strength _w may now be factored out of the in-

t_?grals and (B.15) to (B.17) become

O /G AL PAG I8
og 1,0oi%QuAhn'Y

-_ . 2TfQ •

_ r_ _ (B.22)ika _ e "ik_ -d_

e., I I_,-I
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1

where _. = ,:_*/bj an4 _ =: Ut/b are nondimensionalized distance and time,

respectively.

The integrals may be identified as modified Bessel functions of

tile third kind, Kv(s) , [Ref. 57, p. 22] from the integral definition

[Ref. 58, Eq. 9.6.23]

v

r(_rs_ ( Re(v) >-½,
K(s) 2. _J -st( .-_- ,

- j e t2-1) _dt; Re(s) > 0, (B.25)
r (v+½) l

where F(s) if the Gamma function [57]. For V = 0

-st

KO(S)-- I _dt (B.26)

I

ulld ,q i no(,
Kl(S) =-K,i)(s)
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K 1 (s

],

• (B.27)

Therefore

Ko(S) + KI(S) = I t__l e-Stdt (B.28)

1

and the ratio of integrals in (B.23) and (B.24), defined as the Theodor-

sen function C(ik), is

C(ik) = Kl(ik)
(B,29)

--Kl(ik ) + Ko(ik) 2)(k) + iH(2)(k)o

Tlle Hankel functions are given by K (ik) = - _/2 iH(2)(k) and
o o

K l(ik) = (-_/2) H_ 2) (k) [Ref. 58, Eq. 9.6.4]. Theodorsen Ill] did not

mention the violation of the condition Re(s) strictly greater than

zero, in the application of (B.26) to (B.23) and (B.24).

The loads acting on the airfoil may be calculated from (B.5),

(B.14), (B.23), (B.24), and (B.29) and from similar equations for the

hinge moments. The integrals required were evaluated by Theodorsen Ill]

and Theodorsen and Garrick [51] and are tabulated ill App. C. For the

wing-aileron-tab section of Fig. A-l, the loads may be written as

= L + pb4M _ + pb3Ufi _ + Vb2U2K
c he- he- no-

(B. :3O)

where the matrices giving tlle 'noncirculatory' loads are
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t "I

IIC

T
I

Tl(d

7ra T.1

-_r'(_ +a2) 2"

i,r
-2T1 3 ?r 3

_2h3(d) ivw" 6

T 1 (el)

-2T 13( d

ky
17" 6

1" ((1)
q_

I 0 -_ -T 40 W(a-%) -T16

nC -- _W

0 -T17 _ i9

1

o -T17(d) - _ YIO

and tile 'circulatory'

whe re

T 4 (d)

-l't6(d )

_- 18

7r 19
(d)

O 0 0 0

0 0 -'F15 -T15(d)

Lr _ ±Y
0 0 - _ 18 77"17

l - IT (d)0 0 ---Y
_- 9 W" 18

loads are given by

= pb2UC(ik)RQ •
C

(B. :_1 )
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-- J_ :r

:,_.(.+!_)

-T12

-'rL2(d)
_B

The factoi' q, (J}.J:]), may bu wriLL(,n

Q = usl__ + bS2x_ (B.32)

W i].(2 Fe

' 'r i Tl0(d)]S I O, 1_ 7. I0'

The loads for the _ecti()n with leading- and tl'ailin_-cM_e control

surfaces (Fig. II-I). may be obtained fro!n (B.30) and (B.:{I) using

(A.17) and A.18). They a_'_:,

L = I, I Pb M x t /)b3UB _ + pb2U2K x
c no- no- no-

(B. q3)

whe re _, : v'r_- v
tic tIC

q' _

B V B V
11(' I1('

v'ri_I< == \r
II(' IIC

zl I1(I

" I_.)vl'l(i ' '_ •I, I)1_"1_'( i Sl\'X b2%. ]
(:

(B. :',t )

ll, .%ll()tll(I I)(' 11(_1_'(I lha_t n()t ;_li lnctL)r._ c(.upl'l'_itW, Iln' ciI'(.:UI_II()I'V

I,);l(l_ ;tr(' llltill, il)l[('(I I)\ _(tl,;). This rl,sults ill t'(,l'l;.lltl t';tllC(,ll.;_l.i()lls ,..,_? "%._'

• ,-,(:> _';_'@5;"xS_;*'
-l _;_;- i, _.L';)\_'



_)f t(?Pll|_ b(_L',v(_(_,ll LII(. _ cil'culaLoyy and IlOllCll?cLllatory ]oad_ ;_nd Lh(_ sub-
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I i f

Aplmndi x C

UNS'I'EAI)Y AEROI)YNA/_IIC LOADS IN TW(_.I)II_IF, N,qIONAI,

I NCOMPl{I']SS IBI,E FLOW

The ;/el'odyllalll[e loac|s acging on the sect/on o[' l,'ig. A-I were cal-

culated by Theodorsen [Ill, and 'rheodorsen and Garrick [51] and tnvolve

the foilowing expresstons.

I (2+c2) _ -i
T 1 :- "_ + c cos c

1 2 1 _ -1T 3 :: - --_(1-c )(5c2+4) + -_(7+2c 2) cos c

'-'_ -1
T 4 = c c - cos c

i _ i 2 -T 7 "_ (7+2c2) (-_+C)cos I

i 2 -_c -1
T 8 :: --_(1+2c ) + c cos c

T
9

T
i (3

IFI 1 c 2" 3/2

" _ + COS C

TII :-. (2-_)fl--_.+ (I-2o)_,,._-i_

I

"r13 - -_(T 7 +(c-a)T 1 )

T
I5 T 4 + T[O

TI6 " T I - T 8 -(c--a)T 4 + IT II

- T'1"17 -2T9 l g (a - )T 4
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T
18

T
19

T - 'l' d'l'5 I 0

1.
T T

2 d 11

Yl(C,d) _- -_/-_c - cos c cos ld + d cos c

Y2(c,d)

Y3(c, d )

Y4(c,d)

Y6(c,d)

Y9(c,d)

Y10(c , d )

Y17(c , d )

Y18(c, d )

Y19(c, d )

N(c ,(l )

+ -_c cos-ld - (d-c)21og ' N(c,d)

=_-__ -_:= cos c - 2(d-c')log N(c,d)

1 _cd_c 2)j1--2_c -Id i 3
- -- "_(d-c) log N(c,d)3 ( 1+ cos +

Y3(d, c )

--_j_--_&_. 0+___=+_,a_oc_)_(_),,o,-_ _o.,-_.
2 6 o ,_

l c (5 c2)+ d(2+c2 c°s-ld + 1---_ log" N(c d)+_ 2

: YI - T4(c)TI0 (d)

: Y3 - Y4 -- "-IT24(c)T ll(d)

= YI - Td(d)TIo (c)

i

' Y4 - Y3 - "2 Td(d)TII (c)

: Y2 2 T l 0

d - c

.c,_P°",,,'5_

I
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Aplmn¢lt_ I)

AI,TERNATIVEDEI_IVATIONSOFTHE(;ENEID\I,IZEI)

'['I[EODORSF, N FUNCTION

L. W.I'. Jones [201, using tim concepts of bound ancl free w)rti.t:ity.

was able to _how that the functions involved in '['heodorsen's problen_

sntisfied the modified Bessel equntion, l{e thus avoided the restriction,

Re(s) > O, involved ill the integral representations of the Bossel func-

tions and derived tile generalized Theodorsen function

c(s)
K (;) + Kl(_)o

. (1). i)

In attempting to compare thin form of C(._) with that given-by Theo-

dorsen, Jones used the ,;elation

Kv(s ) Tr .v,-1 _I)- 2 z _ (is) (,.2)

without regard to the restriction -T[ < arg s _ _. IT. As a result,

(2/
C(s) was evaluated using different branclles of the functions tl (s) and

0

II(2)(._ " ) [11 tile first and second quadrants of tile s-plane and ,Tones con-
o

cluded_ illcorrectly, that C(_') was discontinuous across the i. axis.

2. The convolut,on integral may be used to verify that the gen-

eralized Theodorsen function is i_ideed the correct operator relating

tilt: downwash, w(s), to tile induced nil'loads for stable airfoil nlot[olls,

Tin' lift dut: %o eirculnti.on is _iven by

1¢_I" ._oIIl_' cH)('|'ator, C('_). ]"¢)r thu :lSstlm(;(I foPnl o.f (9 :_:{)

ORIGINAL PaG_ I_
,J/" PO01_ QUAI,I_W
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c(._)
KI(7_)

K (T_)., KI(_)

:uul the pnPt:ieutat' dm.p_d airfoil motion

0
,,O[WoO<

the inverse Lapince transform of P(s) is

1 f0 ]+i 0_

2_PbU - 2Hi J
01- i_

C(s)w(s)e st'ds .

The transform w(s) :is given by the real part of

[<<;.-,-_)+ i_]_(s) = we " 2 ' 2 "

(D. ,I )

(D,5)

(1). _)

Since T > O,

.5 := ik

O] may be set equal to zero and with the substitution

_) 'v° I (ik+_._ + i_)eikt,2'ffPbU - _ C(k) (±k.lJ_)2 $ _2 dk,

-U9

(D. 7)

The _ymbol under the i,_1:egral implies that tile path of integration

IIIU._LI)llSS below the I}rauch poillt at tile origill. (_arrick [7()] showed

that the lift could bc ealeulat,?d for aPl)itrary mot.ions using the eouvo-

ltlt icJn [ nl:eC;Pn 1
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I: v

P__Z_:,pI_u-: w(°)h.(_') + Io k](1])
d 1: t

(11 f .
1

(i). _)

,\lHo, kl(l') lm, I C(k)/k nre related !70] by

I ikl t
i c(J_) ,,

kl( 11 ) = 2_'--_ k

_0

dl T (D.9)

whel'e the fnct that k (t') :-: 0 for t' < 0 has been used.
I

tilt) expressions given by (l.),6) and (D.9) into (I),8) yields

Substituting

P(t '_ w__q_oI f_c° C(k ) ikt'
2 ,_PbU - 2;[i I oo I--_-" e dr'

[

+ (-_+iS) e(-_+i_)t' f t'
o

0). io)

The (,xpression in braekel.s inside the last integral repcesents kl/t '),,

which is zero for t t < 0 and the integrals may be intc, rc, hangod, giving

0= -(-_+i_,- ik)o

/i_ fi' C__ -(-_+i:-ik)t'_,, ld_iuK = . f _ e=0 _o k " __ k (-_+i,'-ik)
d l.;

Th_.n (D,IO) is
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co

2 _[i k

2_ C(k) • 2 '_ -2" dk

__ L( i,,+_)',-_,:]

(D.11)

The cxpression for the lift given by (D.7) nnd (D.ll) qre identic:,l,

verifying the choice of (2.33) L,S the operator relating w(s) to P(s).
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Append i × E

D_,ECUSSION OF TIIE GENERAI,IZED TItEOI)ORSEN FUNCTION AND

UNSTF.AI)Y AEI{ODYNAMICS FOR ARBITRARY MO'PIONS

The study of unsteady airloads clue to transient motions was Dioneere(l

by Wagner [8] who calculated the lift on an airfoil started impulsively

from rest. The resulting lift function kl(t') is known as Wagner's fuuc-

tion and has not been successfully evaluated in terms of elementary func-

tions. Due to the linearity of the governing partial differential equa-

tions, i_ was recognized that superposition of elementary solutions could

be used to calculate unsteady airloads for arbitrary motions. Garrick

[70] used the convolution integral to write the lift due to motion w(t')

as

t' dw(-t i )

2uPb-"-'_P(t') = w(O) kl(t' ) + Io k l(t'-tl') dt{ dr{ . (E.1)

Garrick [70_ also showed that k.l(t'.) and C(ik)/k were a Fourier trans-

form pair,

c( ikJ = ik I k!(t' ) e-ikt' dr' (E.2)
0

k 1 ( t ' I ikt'
-_ k

2T[i
dk . (E, 3)

[1_ (1<.2) the fact thnt kl(t') :: () for t' < 0 has Ix, on us¢,d and th{ path

¢_1" inL(,t_rat, ton Ln (E.:{) iIitlsL t)[/SS I)¢,low tll(? singtllal'it.y of t.h(: int¢,_rand

a t k ().
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The, .al_l)].lcaLlon ()f I,upl;IcO tr_.ln,_forlll tc:c;hniqLlO,_ to tln._t_,_lfly ac_ro-

dyn;.,i_c ,i.nLc_Kral c'clu_ltions ',v_l,_ sul.';gc_stod by _..'1'. ,Tcmc_:_ [29] .rid ._e.r_ [5(_]

tl._(,cl Lhe L(.'chniquc, to obLa n now solutions to W_l_llel't._ prol)lel01 (illClic.i.a]

L ifL ¢luc' Lo iml)ul._iv¢:_ plullgin_), Kussner's problem (Lncl_ci_ll lift-, k2(t'),

due to pculc, LraLion of a sharl)-eclgc_cl gust)., and the (_sc:i llating a_rfoil

probLenl, S('aI'S' prosentatioll is essentially a derivation of l;ho g'enol,;_l-

ized Theoclorsen function although this aspect is not discussed in Ref. 5_;

and was apparently not pursueci.

It is interesting to no_e that the early references in the field do

not mention thc restrictions on the- ex.istence of the integrals upon which

the theory is based. SShngen [88] was apparently the first to recognize

the effect of the branch cut of C(s) upon the loads. He noted that

cliverging airfoil motions led to airloads which behaved asymptotically

as e while converging airfoil motions led to asymptotic loads pro-

portional co 1/t'. 'rhese correspond to the rational and nonrational

portions ident'ified in the text. This difference was bothersome and it

appeared to correlate with the restriction upon the existence of the

integrals ill question (viz., Re(s) > 0), leading to the conclusion that

C(._') could not be extended into the left half-plane.

Tile first attempt to evaluate the Theodorsen function for complex

values of k was by W.P. Jones [20] who concluded, incorrectly, that

C(._') was discontinuous across the imaginary axis. Thus, lie concluded

that C(ik) could be ffeneralized for divergent oscillations (Fig. [I-3a)

but was invalid for convergent oscillations (Fig. II-3b). This reasoning

was reinforced by tile fact that Theodorsen had been forced to-assume an

explicit form for the airfoil motion and wakevortex distribution (B.20,

B.2]) in order to obtain a solution. Thi:_ fact may be tile source of the

confusion wherein the Thuodorsen function is interDreted as a time domain

operator rather than a frequency (lolllailloperator (e.g., l{c,f. 22).

Durin_ this periocl, calculations were made of unst.eady loads using

the convolution integral (E.I) wltll the indieial function approximated

by sums of exponential time lectors ;is shown by L{.T. Jones [29], [9].

Tile C:<l)onential Ul)l)roximatiol_s were capable of being uvaluated for
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uvbitr_u'y mc)ti.on, _u_cl Gol_i_,i :mcl Luk¢_ [',_01 published r_)c)t loci ,,Ii acre)-

elastic modes. The |replace transform of the exponential :Ipprc)ximatlon

to kl(t') can be inteJ'preted as an ad hoe generalized Theoclorsel, function

;And compaPison_q _f numerical calculations [25] using such functions and

, ,_

the exact tabtl_ated kl(t') function led Luke and Denglcr [21] to the

conclusion that C(ik) could be extended to the entire s-plane. However,

their argument _'_based upon ;_nalytic continuation, did not seem convincing

in light of the abOVe discussion and it was rejected ill a series of

articles [22], [2311' [24], [25], and [26]. At the heart of the discussion

was the requirement in Theodorsen's derivation of assuming an explicit

form of airfoil motion and wake vortex dista'ibution (i.e., oscillatory

divergent and infinite extent) in order to evaluate tile r_-sulting, inte-

grals. It seemed contrary to reason to claim that the resulting function

C(ik) was valid for damped motions when the derivation of the function

required _ust the opposite assumption. Of course, the assumption of an

explicit motion is not required and the derivation of the generalized

Theodorsen function using Laplace transform techniques is given in the

text. ...........

It would appear that the difficulties with the generalized Theodorsen

function influenced tile subsequent development of compressible finite-wing

aerodynamic load calculations. These techniques [15], [17], [62] and [89]

invariably begin with the assumption of simple harmonic oscillations,

although the text shows that this assumption is not necessary. It must

be recognized that oscillatory loads are entirely adequate for the estab-

lishment of flutter boundaries and, until the advent of active aeroelastic

control schemes, there was little requirement for loads due to arbitrary

mot ions.

Morino [36] has derived a new formulation of tile unsteady aerodynamic

loading problem based upon the Green function solution sad claims that

this formulation is the only technique capable of analyzing loads du_

to arbitrary motions. Presumably-this claim is based upon the fac_--that

Morino's theory analyzes finite thickness wings and does not encounter

the, singularitles inherent in flat plate theories, floweret, the text

of thks thesis shows that these singularities do rot restrict consideration

to o._cillatory motions and Mol.illO'._{ claim is false.
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Appendix F

SERIES EXPANSIONS OF BESSEL FUNCTIONS

The following series expansions are given i_ Ch. 9 of Abramowitz and

Ste_un [58].

i. Ascending power series

2_k
(- 7 s / (F.1)n co

k=o kt.P(n+k+l)

II2_k

k=o

l/!s/-_ _-1 1 2]k (F.3)
Kn(S) -- _\_ ! E (n-k-l>1" (" _1 s "

k=o k:

+ (-I) n+l £n(Is) In( S)

÷-(-i)_
k--o

/2 2) k

k: (n+'k) :

where
,'(n+l) = n_

_(i) = -_

n-1 k.l_(_) = "% + k_1 ' nm 2

T = 0.5772156649 ....
C

•,:_DING PAGi;.BLANK NOT FILh'd
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2. Asympto[ic oxp:msious:

In(s) '" t - 4n -._.__l+
.... -SS

(4n_-l)(_'2-91(4"t2"_)
3:(_s)

Kn(S) ""_S e'S{ 1

4n2.1

8s

(4n%)(4n2-'I) + (4n2"l)(4n.2.'9)(4n2"25)

2,(ss) 3,(2s)

3 (v._)lo,'g _,I <_ _ •

k
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