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1.0 INTRODUCTION
 

In late 1976, NASA Management decided that the NAVSTAR Global
 

Positioning System (GPS) being developed by the DOD should be investi­

gated as a potential Shuttle navigation system. The GPS navigation
 

system has the potential for increasing the Shuttle navigation accuracy
 

while at the same time consolidating several separate navigation systems
 

functions into one system. This has the potential for a-net decrease
 

in Shuttle avionics weight and power consumption. Furthermore, it is
 

possible that a Shuttle GPS navigation system could result in a large
 

decrease in ground data processing, i.e., a net cost savings.
 

In light of the Shuttle's fast-paced development schedule, Shuttle
 

Management decided that a panel of NASA, DOD, and industry experts
 

should be formed to quickly determine the feasibility of incorporating
 

GPS onboard the Shuttle. This panel was to be charged with the respon­

sibility of answering the key questions of "What system?" "How well will
 

it perform?" "How much will it cost?" and "How soon can it operate on
 

the Shuttle?" Axiomatix was chosen as a panel member because of its
 

deep involvement in Shuttle communications and tracking and its expertise
 

in GPS systems analysis. Thus, the task of Shuttle/GPS systems analysis
 

was assigned to Axiomatix. This task was performed in close conjunction
 

and with the support of the other panel members. These members are NASA
 

JSC and NASA Goddard, the GPS Joint Program Office (SAMSO), Rockwell
 

International, LinCom (under subcontract to Axiomatix), Magnavox, TASC,
 

and Intermetrics.
 

The results of the Axiomatix study effort for the first phase
 

of this investigation are complete and documented herein. This study
 

is to continue in FY'78 and, at the end of this period, a detailed
 

system design and performance analysis will be completed.
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2.0 SUMMARY
 

The system performance analysis for two Shuttle/GPS navigation
 

system configurations has been completed. These configurations are
 

preliminary configurations and will not represent the final operational
 

configuration. The analysis of these.configurations has been an iter­

ative procedure. The close cooperation between Axiomatix and the other
 

panel members has been highly instrumental indeveloping a system con­

figuration having good system performance.
 

The first system considered was designed strictly as an early
 

OFT experimental system. However, this system was rejected in favor
 

of a more sophisticated system having much greater performance capa­

bility. The bulk of the results presented in this report pertain to
 

the latter system, sometimes referred to as the "baseline" system.
 

The most significant result of the performance analysis is that
 

the GPS system can provide on-orbit navigation accuracy an order of
 

magnitude better than the baseline system, with very adequate link
 

margins. The worst-case link margin is 4.3 dB. This link margin
 

accounts for Shuttle RF circuit losses which were carefully minimized
 

by Rockwell under the constraints of program schedule and environmental
 

limitations. Also implicit in the link analyses are the location
 

trade-offs for preamplifiers and antennas.
 

A preliminary analysis of the potential TACAN interference to
 

the Shuttle GPS performance was performed due to the magnitude of the
 

TACAN pulse (60 dBm) and the frequency proximity to the L2 GPS signal.
 

The preliminary analysis indicates that the interference is highly
 

dependent on the TACAN pulse shape and transmitter filtering. For a
 

Gaussian shaped pulse, there is nointerference. For a square pulse,
 

there is a serious problem. Since the TACAN pulse is more of a Gaussian
 

pulse than a square pulse, itwould seem the problem is not as serious
 

as the preliminary analysis for a square pulse indicates. Certain
 

detailed analyses were performed by LinCom under subcontract to Axiomatix
 

and are documented in their reportwhich is included as part of this
 

report.
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3.0 	 SHUTTLE NAVIGATION REQUIREMENTS
 

The baseline Shuttle navigation systems will provide the required
 

navigation accuracy for the Shuttle to leave earth, orbit, and return
 
safely. However, in the'area of mission support, the substantially
 

increased accuracy of a Shuttle/GPS navigation system will provide
 
more flexible mission capability and a great cost savings due to the
 
substantial reduction in ground processing costs for reduction of payload
 
data. Furthermore, the GPS system will allow the Shuttle to meet current
 

DOD requirements for accuracy, security, and autonomy. The Shuttle
 
navigation requirements, as reflected by NASA experiment accuracy
 
requirements, are tabulated inTable 3-1. The Shuttle navigation
 

-requirements as reflected by Air Force requirements are tabulated in
 
Table 3-2. A plot of the position and velocity errors expected from
 
TDRSS, as shown inFigures 3-1 and 3-2, illustrates that these require­
:ments may not be met. Onthe other hand, a plot of the position and
 
velocity errors predicted for Shuttle navigation with Phase I GPS
 
(limited satellite constellation deployment), as shown in Figures 3-3
 
and 3-4, illustrates that the Shuttle/GPS navigation system will quite
 

adequately satisfy the NASA and Air Force requirements.
 

Representative on-orbit maximum signal dynamics for the Shuttle/
 
,GPS link are given inTable 3-3.
 



Table 3-1. NASA Experiment Shuttle Navigation Requirements
 

o Laser Ground Tracking (1983),
 

o 	 IOM required for reasonable amount of ground processing
 

o 	 30M is upper limit to avoid extensive ground processing
 

o ' Current expectations of lOOM result in extensive and
 

very costly ground processing
 

o LANDSAT and Earth Resources
 

o 	3M required for reasonable amount of ground processing
 

o 	 IOM is upper limit to avoid extensive ground processing
 

o 	Current expectation of 150M results inextensive and
 

very costly ground processing
 

o EVAL (Gimbaled from Shuttle)
 

o 	 Requires 10-15M
 

NOTE: 	 Ground processing increases as the square of the
 
navigation error
 



Table 3-2. Air Force Shuttle Mission Navigation Requirements
 

o 	Navigation Accuracies (40 min after insertion)
 

Satellite Deployment (3)
 

Position (nm) Velocity (ft/sec) 

Tang. Nor. Rad. tag Nor. Rad. 

Baseline ±20 ±10 ±2 ±20 ±100 ±90 

Growth ±1 ±1 ±1 ±4 ± 4 ±3 

o 	On-Orbit Navigation (3
 

Growth ±0.3 ±0.3 ±0.3 ±1.0 +1.0 +1.0
 

Table 3-3. Representative Maximum On-Orbit Signal Dynamics
 
for Shuttle/GPS Link
 

2.9x 104 
Range Rate (ft/sec). 

5.Ox 102
Range Acceleration (ft/sec ) 

-6.5x 10 2Range Jerk (ft/sec3 ) 
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4.0 GPS NAVIGATION PRINCIPLES
 

The GPS system is being developed by the DOD to provide a high­

precision position and velocity determination capability to a variety
 

of users located anywhere in the world. Table 4-1 indicates the navi­

gation accuracy that is predicted for the fully operational system in
 

1984 and Figure 4-1 shows the GPS development schedule with the Shuttle
 

program milestones also indicated. A general systems block diagram
 

for the overall GPS system, indicating the interaction between a.ll
 

elements, is shown in Figure 4-2.
 

Table 4-1. GPS System Accuracy
 

Accuracy
 

Usage Horizontal Vertical 

50% of Time 5 m 7 m 

90% of Time 8 m I0 m 

The GPS system is a passive system, meaning that a user only
 

receives the continuously transmitted satellite signals. Since only
 

the satellites transmit signals, an unlimited number of users can use
 

the system at any time. Another advantage of the system is that all
 

users will develop their navigation information in a common GPS coordi­

nate system. The following sections explain the principles of position
 

fixing with the GPS and the principles of operation of the GPS receivers.
 

4.1 Position Fixing Principles
 

The principles by which the GPS system derives navigation fixes
 

are best understood by considering a two-dimensional position-determining
 

scenario, such as depicted in Figure 4-3 and expanding the example to
 

the GPS case. The user, which we shall assume has a means for accurately
 

determining time, measures his range to the two transmitters. These
 

ranges are related to the user's position by
 

R1 = [(Xu-Xl) 2 + (Y u-1Y)2]/2 (4-1) 

R2 = [(Xu - X2
)2 + (Yu- Y2) 2] 11 2 , (4-2) 
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where 

= users X coordinate 
Y = user's Y coordinate 

Yl = transmitter No. 1 X coordinate, precisely known 

X = transmitter No. 2 X coordinate, precisely known 

l = transmitter No. 1 Y coordinate, precisely known 

y = transmitter No. 2 Y coordinate, precisely known 

The range expressions are expanded in a Taylor series expansion to get
 

2 
AR1 = CAT1 - [(Xuest-X1) 2 + (Yuest-Yl)

211l 

- u AX + - AY + u (4-3)
ax aN3' 1
 

-where
 

Xuest = user's estimated X coordinate
 

Yuest = user's estimated Y coordinate.
 

In terms of the angle e of Figure 4-3, this can be written as 

AR1 sin SAX + COS CAY + uI (4-4) 

AR2 = sin eAX + cos BAY + u2 , (4-5) 

where we define
 

Q = u12 + u2 (4-6)
 

and we wish to minimize Q by setting
 

8AX 

MAY = 0 (4-7) 

and solve for AX and AY. Thus, we obtain 

AXs1 (AR - AR2) (4-8)
AYBest 2 sin a 

YBest I (AR1 +AR2) (4-9)22 cos e 1 2 
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The determination of the user's position is obviously an iterative pro­

cedure which starts with an initial estimate and uses the iterative
 

operations
 

Xunew Xuold + XBest (4-10)
 

Yunew = YUold + YBest (4-11) 

to converge on a precise estimate of position. This is illustrated by
 

the example in Figure 4-4. 'The expansion of this simple illustrative
 

example to the GPS three-dimensional case is obtained merely by writing
 

the range equation for the range between the user's unknown Xu, Yu and
 

iZu position and four GPS satellites; thus,
 
- 2 22 

(X1 - Xu)2 (Y1 -YU) + (Z1 -ZU)2 (r- b) (4-12) 

b)2
(X2- Xu)2 + (Y2- YU)2 + (Z2-Zu)2 (r - (4-13)
2
 

u ) 2 b ) 2  (X3 _ Y + (Y3-YU) 2 + (Z3-ZU)2 =(r3- (4-14) 

2
(X- Yu) 2 + (Y-Y)2+ (Z Z) (r4 -b)2 , (4-15)
 

where b is the range error due to the user's time uncertainty. In the
 

,case of the two-dimensional example, we had two unknowns and two equa­

tions. However, with the GPS case, there are four unknowns-Xu , Yu'
 

Zu, and b. Thus, four equations are used, which necessitates the four
 

measurements to four satellites. Itshould be noted that, if the user
 

knows his altitude, say, through use of another sehsor, then only three
 

equations and three satellites are required. The details of the solu­

tion of-the four equations can be done in a number of ways but, in general,.
 

it is an iterative procedure similar to the two-dimensional example.
 

A block diagram of a typical receiver solution process is given in
 

Figure 4-5.
 

4.2 PN Receiver Principles
 

-The GPS signal transmitted from the satellite is a pseudo-noise
 

(PN) modulated carrier at 1227 MHz (L2) and 1575 MHz (LI). The PN
 

modulation consists of a 10.,23 megachips per second code (P code) and
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a 1.023 megachips per second C/A code. Both codes are bi-phase modulated
 

by the 50 bps NRZ satellite data. The modulation index of both codes
 

is chosen so that they share the total signal power with the C/A code
 

signal having three dB more power than the P code signal. An elemen­

tary block diagram of a basic PN transmitter is shown in Figure 4-6
 

and a block diagram of an elementary PN receiver is shown in-Figure 4-7.
 

The spectrum of the transmitted GPS signal is shown in Figure 4-8.
 

The predominant feature of this spectrum is its wide bandwidth, i.e.,
 

the P signal occupies a 20 MHz bandwidth between its first nulls and the
 

C/A signal occupies a 2 MHz bandwidth between its first nulls. When
 

the Fourier transform of the spectrum is taken, the autocorrelation
 

function for the PN code is obtained, as shown in Figure 4-9. The
 

.most significant feature of this autocorrelation function is that,
 

When the reference code is separated by ±1 chips from the received code,
 

i.e., when the code tracking function in Figure 4-7 is not in perfect
 

synchronization, the output of the correlator is reduced by 1/N, where
 

N is the number of bits in the code.. The number of bits in the code
 

is determined by the number of stages in the code generator, as shown
 

in Figure 4-10, the block diagram for a maximal linear PN code generator
 

For an n-stage PN generator, the number of bits is given by N=2n-1.
 

Modulation of data on the GPS signal is accomplished-by bi-phase
 

modulating the PN sequence with the binary data stream. This is accom­

plished by simply exclusive or-ing the binary data with the binary PN
 

sequence, as depicted in Figure.4-11. The output of the exclusive "or"
 

then modulates the carrier by means of a balanced modulator.
 

Several of the functions shown in the elementary PN receiver
 

block diagram of Figure 4-7 merit further elaboration, since they are
 

the key to the PN receiver performance. The first of these is the PN
 

tracking function. The function of the PN tracking loop is to keep
 

the receiver local PN generator in synchronization with the received
 

PN code so that the maximum correlator output is obtained. Furthermore,
 

the primary function of the GPS receiver is to measure range by esti­

mating the phase of the received PN code. This is done by the PN code
 

tracking function so that an improvement in the PN tracking accuracy
 

is a direct improvement in the range measurement performance.
 

A straightforward and prevalent approach to tracking the. phase
 

of the incoming code is the so-called delay lock tracking loop. A
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block diagram of the basic delay lock discriminator isshown in Figure
 

4-12. Note that it is illustrated in a basic form to simplify discus­

sion. An actual loop would most likely operate at an IFfrequency so
 

that the LPFs would become bandpass filters with the IFfrequency
 

either being removed at the output of the BPF or at the input of the
 

loop filter. Note also that, ifdata ispresent, itmay be removed at
 

the input of the loop by a data estimate, or following the LPF ineach
 

channel by a squaring or absolute value device, as illustrated in-


Figure 4-12 by dashed lines.
 

The incoming code ismultipliedby the reference code which is
 

advanced by a chip duration (T)and by the reference code delayed by
 

the same amount, inthe upper and lower multiplier, respectively.
 

Creating the advanced and delayed versions of the reference code is
 

easily accomplished by tapping off of two adjacent storage cells in
 

the PN generator. If the delay is to be different from the chip dura­
tion, a more complicated device would be required to achieve the delay
 

and advance (such as a fraction of T). The result of these multiplica­
tions are two functions of E (the code phase error) at the input of the
 

summer. The function into the plus input of the summer isthe code
 

correlation function advanced by T and the function into the minus
 
input isthe code correlation function delayed by T. The output gives
 

the discriminator functionwhich isthe difference of the two correla­
tion functions and is shown in Figure 4-13. The output of the summer
 

drives a voltage controlled oscillator (VCO) which, in turn, clocks
 

the PN code generator.
 

Also shown in Figure 4-12 are the acquisition control inputs.
 
The input before the VCO is used to sweep the clock to the correct
 

frequency or to delay or advance the phase of the code.
 

As discussed previously, the delay lock tracking loop requires
 

two identical processing channels. These channels must be identical
 

so that the error function will be symmetrical and without bias. If
 
the gains of both channels are not perfectly matched, a distorted dis­

criminator characteristic and, consequently, poor system'performance
 

will result. To circumvent these problems, it is possible to utilize
 
one channel and time-multiplex it between the -Treference and the +T
 
reference. This system iscalled a time-shared loop or, more commonly,
 

it is known as the tau jitter tracking loop. This loop is shown in
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Figure 4-12. Delay Lock Tracking Loop
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Figure 4-14. Time multiplexing of the channels is accomplishedby a
 

square wave which alternately advances and retards the phase of the
 

reference code by T. This jittered reference code is then correlated
 

with the incoming signal. The output of the correlator passes through
 

a lowpass filt&r whose output contains a square wave with the error
 

signal- amplitude modulated onto it. The square wave is removed at the
 

multiplier just before the loop filter. It can be shown that.the
 

mathematical model for this loop is equivalent to the one for -the
 

delay lock loop, except that the discriminator gain for the tau loop
 

is 1/? the gain of the delay lock loop discriminator, resulting in
 

a 3 dB loss in-loop SNR.
 

A detailed analysisof the delay lock code loop and tau dither
 

code loop tracking performance ispresented in Appendix B.
 

Anotherfunction shown in the generalized PN receiver block
 

diagram of Figure 4-7 which isworthy of further explanation is the
 

carrier receiver. Since the PN code bi-phase modulates the carrier
 

with effectively random +1's and -l's, the average carrier component
 

is zero. This is usually referred to as suppressed carrier modulation
 

and it requires a receiver which is designed to recover the suppressed
 

carrier. A squaring loop or Costas tracking loop is used to accomplish
 

this function, with a Costas loop the implementation most generally
 

chosen for GPS receiver design. Figure 4-15 shows a functional block
 

diagram of a Costas loop. The loop filter bandwidth determines the
 

Costas loop performance with a narrow. bandwidth desirable from the
 

desire to minimize noise caused phase error jitter and a wide loop
 

filter desirable to minimize the tracking error due to link dynamics,
 

i.e., range acceleration and jerk. The noise performance for the
 

Costas loop is-discussed in Section 7.1 and the selection of loop
 

bandwidth that minimizes noise jitter and dynamic tracking errors is
 

discussed in Appendix C.
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5.0 GPS USER EQUIPMENT SURVEY
 

5.1 Receivers
 

There are a number of GPS navigation receivers that are presently
 
under development or that have completed development as part of the GPS
 
Phase I effort. These receivers have been examined as possible candidates
 

for the Shuttle GPS'navigation function. The obvious intention is to
 
find an existing receiver that iscapable of operating within the Shuttle
 
environmental constraints while providing the necessary navigation per­
formance. There are two basic constraints that strongly influence the
 
selection of candidate receivers. These.are signal dynamics and environ­
mental factors, such as temperature. Table 5-1 lists those receivers
 
being developed under Phase I which are considered to be the most likely
 
candidates for a Shuttle/GPS receiver.
 

Table 5-2 lists severa-l other receivers which were also evaluated.
 

These receivers are being developed for space and missile applications..
 
Of the receivers evaluated inTable 5-1, the X set most nearly meets the
 
Shuttle requirements. However, its rather large size, 0.156 m3 , makes
 
itdifficult to mount inthe Shuttle avionics bay-and, since it is
 
designed for ambient environment, it cannot be located inthe payload
 
bay. The Z set, on the other hand, is compact (0.013 m3) and isdesigned
 
to physically replace standard TACAN sets. However, since itdoes not
 
operate with a P code, its range measurement accuracy is10 times worse
 
than that of the X set. However, in the FY'78 study, the overall Shuttle
 
navigation accuracy which results from the 15 meter range measurement
 

error will be evaluated. A more serious limitation of the Z set is its
 
limited signal dynamics capability and lack of IMU aiding provisions.
 
During FY'78 fiscal efforts, the implications of adding an IMU aiding
 

interface will- be examined.
 
From Table 5-2, it is seen that the GPSPAC receiver is space-rated
 

(infact, the only GPS receiver currently under development that is
 

space-rated). Its signal dynamics capabilities are satisfactory as far
 
as the velocity capability, since it isdesigned for orbital operation.
 
However, the acceleration and jerk capabilities, although satisfactory
 

for on-orbit operation, will not enable the receiver to track the GPS
 
signal during the entire Shuttle entry and landing phase. This could
 
be changed by-the addition of IMU aiding, or possibly by using two GPSPAC
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Table 5-1. Phase I GPS Receiver Performance Requirements
 

x Y Z 

Operating Frequency LI,L2 LI,L2 L1
 

Signals P,C/A PC/A C/A
 

Provisions for IMU Aiding Yes Yes No
 

TTFF (sec) 80 225 200 

Required Pseudo Range Accuracy, 
]o Error (meters) 

P 1.5 1.5 --

C/A 15 15 . 15 

Range Rate Accuracy, la Error
 
(m/sec)
 

P 0.006 0.006 ---

C/A 0.006 0.006 0.006
 

Maximum User Vehicle Dynamics
 

Velocity (m/s) 2 900 600 600
 
.Accelerat on (m/s 50 20 20
 
Jerk (m/si) 100 100 50
 

Size (m3 ) 0.156 0.156 0.013
 

Weight (kq) 106 106 16
 

Power (w) 940 166
 

Environment Ambient Ambient Ambient
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Table 5-2. GPS Development Receivers for Space and Missile Applications
 

GPSPAC MBRS M 

Operating Frequency L1,L2 

Signals P,C/A P,C/A P 

Provisions for IMU Aiding No No Yes 

Required Pseudo Range 
Accuracy, 1 Error 
(meters) 

P 1.5 1.35 
C/A 15 13.5 

Range Rate Accuracy, 
1 Error (m/sec) 

P 0.006 0.012 
C/A 0.006 0.012 

Maximum User Vehicle 
Dynamics 

Velocity (km/s) 2 9 7.7 

Acceleration (m/s) 16 98 
Jerk (m/s3 ) 0.02 9 

Size (m3) 0.026 0.064 

Weight-(kg) 16.8 35 

Environment -200C to +50°C 60'F to-175°F Ambient 
Space-Rated Ambient 
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receivers and increasing the dwell time for each satellite (the GPSPAC
 

is a sequential track receiver). During the course of the study, the
 

GPSPAC receiver was recommended as the best candidate GPS receiver to
 

implement an 'early OFT test and demonstration capability. The reasons
 

for this recommendation are summarized in Table 5-3.
 

In the context of existing receivers (or receiver developments)
 

to be used as an operational Shuttle GPS receiver, three possibilities
 

exist: a repackaged X set (with IMU aiding), a Z set with IMU aiding
 

added, and a GPSPAC receiver (or receivers) with IMU-aiding added.
 

Repackaging the X set into a smaller volume may well represent a major
 

new development in itself, since packaging represents a significant
 

portion of avionics development cost. However, with microprocessor
 

technology evolving so fast, this route merits investigation. The
 

Z set, adapted for IMU aiding, isan attractive alternate because of
 

its TACAN package configuration. Finally, the GPSPAC receiver, since
 

it is space-rated, is an obvious alternate to study.
 

5.2 Antennas
 

The design and integration studies of GPS antennas suitable for
 

Shuttle Orbiter use were largely the responsibility of RI. However,
 

Axiomatix worked closely with RI in these matters from the aspect that
 

antenna performance strongly affects the GPS/Shuttle link performance.
 

The-RI baseline antenna design is a classical cavity-backed slot or
 

dipole antenna, shown conceptually in Figure 5-1, that would provide
 

approximately -1 dB gain (RHCP) over a solid angle of half cone angle
 

of 50 to 60 degrees. Due to the limited number of GPSsatellites avail­

able during the early Shuttle flights; it was of great interest to inves­

tigate new-technology antenna developments that might provide greater
 

usable viewing angle. The antenna technology investigated by Axiomatix
 

was the microstrip antenna which has been under development by Ball
 

Brothers of Boulder, Colorado. Of special interest was the fact that
 

Ball Brothers has developed and delivered several operational GPS antennas.
 

Figure 5-2 shows a picture of the Ball Brothers GPS antenna-designed for
 

mounting on a high performance aircraft. It can be seen from the figure
 

that the antenna is relatively small, especially the thickness dimension.
 

The performance for this antenna (cross-slot) is indicated in the gain
 

versus elevation plots given in Figures 5-3 and 5-4 for Ll and L2
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Table 5-3. Applicability of Existing or Planned Hardware to an
 
Early OFT GPS Test/Demonstration
 

o Many GPS user sets available or planned for various applications
 

o High Performance Aircraft Set (X-set)
 

o Ambient environment only
 

o Large volume/weight
 

o Tactical Missile Set (M-set)
 

o Ambient environment only
 

o Requires initialization from external GPS receiver
 

o No data demodulation capability
 

o Man Pack Set
 

o Ambient environment only
 

o Not capable-of orbital/signal dynamics
 

o Minuteman Missile Receiver (MBRS)
 

o GPSPAC closest to meeting Shuttle requirements
 

o Space-qualified; operates in payload bay eivironment
 

o Schedule compatible with OFT-l
 

o Compatible with Orbiter signal dynamics on-orbit
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frequencies, respectively. The antenna provides -1 dB (RHCP) of gain
 

at-approximately 75' at Li and at 67' at L2. In order to get a greater
 

gain distribution at the larger angles, an annular slot antenna was
 

also developed. The gain plots for this antenna are shown in Figures
 

5-5 and 5-6. It can be seen that the gain peaks around 600 for this
 

antenna and, allowing for the 3 dB polarization loss (the annular slot
 

is-a linearly polarized antenna), the peak gain is approximately +2 dB
 

(RHCP) at 60' and -3 dB (RHCP) at approximately 800'
 

Although the Ball Brothers microstrip antennas exhibit good per­

formance characteristics, further investigation of the thermal environ­

mental resistance is recommended. This can be understood by considering
 

their typical construction technique as shown in Figure 5-7. The copper
 

strip, which is a result of etching away the copper cladding on the
 

dielectric material, can be sensitive to extreme temperature changes,
 

such as those that could be encountered during Orbiter entry.
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Figure 5-5. Ball Brdthers GPS Antenna Coverage Annular Slot
 
(1575.4 MHz Gain (Linear Polarization) vs. Elevation Angle)
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Figure 5-6. Ball Brothers GPS Antenna Coverage Annular Slot
 
(1227.6 MHz Gain (Linear Polarization) vs. Elevation Angle)
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6.0 SHUTTLE/GPS SYSTEM DESCRIPTION
 

The development of a Shuttle GPS navigation capability was origi­

nally conceived at the start of the study as a phased development. The
 

first phase was to be a test/demonstration system that could be imple­

mented in a minimum time period and would be flown on OFT-In An interim
 

phase would follow that would provide increased mission coverage and.
 

redundancy. This would lead to an operational phase inwhich triple
 

redundancy, full on-boardprocessing and display, redundancy management,
 

and total mission capability would be implemented. The link performance
 

for the first two phases was analyzed in detail during the study and
 

the results are reported in Section 7.0. Since NASA Management has
 

recommended eliminating the first two phases, no further work will be
 

done on them. During the FY'78 study, the third phase-Operational­

will be extensively studied. A description of each configuration follows.
 

6.1 Test/Demonstration System
 

The test/demonstration system was conceived as the quickest,
 

least expensive route to get a GPS navigation capability on-board the
 

Shuttle. As such, the-system had severe performance limitations. A
 

block diagram of this system is shown in Figure 6-1. The dominant
 

feature of this system, as seen from the block diagram, was the single
 

antenna and single receiver. The antenna was to be the GPS antenna
 

being developed by APL for SEASAT and other satellites. This antenna
 

was to be integrally mounted with the SEASAT preamp on a nondeployable
 

boom in the payload bay, as shown in Figure 6-2. A sketch of this
 

antenna and its gain-versus-elevation performance are shown in Figures
 

6-3.and 6-4, respectively. Although the antenna had excellent free­

space gain characteristics, the viewing angle was limited by the Orbiter
 

structure and it would provide GPS coverage for only the upper hemi­

sphere. A more severe limitation was the fact that once the payload
 

bays are closed, the antenna would be nonoperable, thus limiting the
 

mission coverage to strictly on-orbit.
 

The receiver to be used for the test/demonstration system was
 

the GPSPAC receiver, under development by Magnavox for the SEASAT (the
 

SEASAT will not fly with the GPSPAC receiver due to schedule delays in
 

the GPSPAC development). A functional block diagram of this receiver
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Figure '6-3. Payload Bay Antenna for Test/Demonstration System (Phase I)
 



341: 

o V 

SP EC: -1 DBI 
'OVER 200 ° 

20* 

0.,oO0 

3010 

~31%-

289"V>y' 

t ' ~200 

\~-' 

4 'L 

3100 

kO ,~llO 

.. 

-

\2\0\ 

. ; I ' i { ". x t.. -z 1 1 -

'A 

sa 
0 

2U. . .ho 

Figure 6-4. Gain vs. Elevation Angle for Test/Demonstration Antenna 

p 1 



48
 

is shown in Figure 6-5. This receiver was chosen because itwas the only
 

GPS receiver under development designed for space applications. One
 

limitation of the receiver is that it is designed only for on-orbit
 

signal dynamics. The key feature in obtaining the on-orbit tracking
 

capability is that the receiver aids itself. It does this by taking
 

the position estimates at the output of the navigation filter and com­

puting doppler and doppler rate from them. These estimates are then
 

used to aid the tracking loops. The pseudo-range estimate, which is
 

used to pre-position the receiver code generator, is calculated from
 

R = x -x)	 z Z )2 b,
I(S 2 + (SY-Y)2 + (S 

where 	Sx = GPS satellite x coordinate
 

S = GPS satellite y coordinate
Y
 

Sz = GPS satellite z coordinate
 

X,Y,Z = navigation filter estimate of GPSPAC coordinates
 

b = clock bias.
 

The pseudo range rate estimate is calculated from
 

R 	 [S fl= ___j[ b][ 

where the dots indicate the derivatives of the parameters discussed
 

above. The extrapolated pseudo range rate is converted to a frequency
 

offset, in Hz, and used to pre-position the receiver VCO frequency.
 

The preamp to be used for the first phase was the APL preamp
 

developed for SEASAT. This preamp provides a worst-case noise figure
 

of 4 dB and a worst-case gain of 30 dB at both Ll and L2. Examination
 

of the 	preamp block diagram shown in Figure 6-6 shows that the preamp
 

has two separate inputs, one from the Ll antenna element and one from
 

the L2 antenna element. Each of these inputs is filtered and amplified
 

separately in parallel channels and combined by a diplexer to form a
 

single output. This configuration allows the NF and gain to be opti­

mized for both Ll and L2 and represents a good approach for the opera­

tional 'system antenna preamp.
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6.2 Interim (Baseline) System Configuration
 

The interim Shuttle/GPS system was configured to provide GPS
 

coverage which is mostly independent of the Orbiter attitude and to
 

provide a de-orbit navigation capability. Furthermore, the system was
 

configured to provide redundancy for the electronic elements, i.e.,
 

preamps and receivers. A functional block diagram of the system is
 

shown in Figure 6-7. The receivers and ,preamps were to be the same
 

as those discussed in Section 6.1 for the Phase I system. The receivers
 

were also to be mounted in the payload bay. The antennas were to be a
 

conventional cavity backed crossed dipole, flush-mounted in.the upper
 

and lower hemi plates. This antenna has been discussed in Section 5.2.
 

As'part of the Phase 2 system, IMU aiding of the GPSPAC receivers was
 

to be investigated with the intention being to provide a complete
 

descent navigation capability.
 

6.3 Operational System
 

The operational Shuttle/GPS system is to be designed by RI and
 

will be analyzed and designed, with contributions from Axiomatix, in
 

FY'78. Consequently, it is premature for-this report to discuss this
 

system. However, a potential system configuration is shownin the func­

tional block diagram of Figure.6-8.
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7.0 	 PERFORMANCE ANALYSES
 

7.1 	 Code Tracking, Carrier Tracking and Data Detection
 
C/N0 Requirements
 

This section establishes the received signal power over noise
 
density requirements for the three receiver functions that are essential
 

to extracting navigation measurements, i-.e., PN code tracking (range
 

measurement), RF carrier tracking (range rate measurement), and data
 

detection. The values of C/N0 which are calculated here are steady­

state tracking values and are not meant to be considered the require­

ments for acquisition. Acquisition performance and loss of lock perform­

ance are to be dealt with during the FY'78 study effort.
 

The required C/N0 for PN code tracking depends on the required
 
,code tracking accuracy and the receiver implementation. A reasonable
 

code tracking accuracy requirement is a one-sigma error of 5 ft. It
 

should 	be noted that this corresponds very closely to the 1.5 meter
 

requirement forthe X, Y, and Z GPS receivers.
 

The receiver implementation can be either a delay lock tracking
 

loop or a tau dither tracking loop with either coherent or noncoherent
 
demodulation. A simplified functional block diagram of each type of
 

receiver isshown in Figure 7-1 to illustrate the difference of each
 

implementation.
 

The delay lock receiver is, in general, more costly to implement
 
but,, on the other hand, it provides superior performance. Where high'
 

performance is desired and where cost, weight and power consumption are
 

secondary considerations such as inthe X set, a delay lock implemen­
tation 	is typically used. The difference intracking performance can
 

be appreciated by considering the fact that the delay lock receiver
 

develops its error signal by correlating the advanced and retarded
 

reference codes with the same received PN chip, whereas the tau dither
 
receiver correlates against independent received chips. This results ­

in a 3 dB advantage for the delay lock loop due to the-c.ancellation of
 

the noise samples. The delay lock loop rms tracking error for a receiver
 

with perfect coherent demodulation may be written as
 

1 J(O)BL- R(2Td)BL
 

Delay Lock 2R'( d)BL 	 (7-1)
 

J2 OBL 2R'(Td)
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where
 

BL = one-sided loop noise bandwidth
 

R(X)BL = bandlimited (due to filtering) PN autocorrelationfunction evaluated at x
 

R'(x)BL = slope of R(x)BL at x
 

Td = delay lock spacing.
 

The equivalent expression for the tau dither loop is
 

1 JRT BL (7-2)
 

Tdither " R((7L
 

NOBL 

and taking the ratio of the two expressions, we get the delay lock
 

advantage as
 

Delay Lock F2 JR(O)BL- R(2rd)BL 
Advantage Over .(7-3) 
Tau Dither 

-

fflT B 

For Td = 1/2 chip, the mean square delay lock loop error is approximately
 

1/2 the tau dither, i.e., a 3 dB advantage for the delay lock. However,
 

since considerations such as use of an existing receiver development
 

for Shuttle may dictate the use of a tau dither tracking loop receiver,
 

the C/N0 requirements for code -tracking-(range measurement) will be
 

determined by a tau dither loop.
 

Going one step further, it is appropriate at this point in the
 

Shuttle/GPS study to base the requirements on a noncoherent tau-dither
 

tracking loop receiver. The rms tracking error for the noncoherent
 

tau dither loop is given by
 

I1 F 2BIF111/2 
BL [ (C/No)2j (chips), (7-4) 

where
 
BL = one-sided loop noise bandwidth
 

BIF = IF bandwidth.
 

This equation is plotted in Figure 7-2, where C/N0 is shown plotted as 

a function of a for the case of BL = 1.6 Hz and BIF= 200 Hz, the GPSPAC 



32
 

30 

z 28 
N 

LinkI 

-- 26 
Design I 
Point 

24 

0 0.05 0.07 0.10 0.12 

Ranging (ft) 

Figure 7-2. Relationship Between GPS Ranging Error and Link C/N0 for a Noncoherent 
Tau-Dither GPS Receiver 



58
 

receiver parameters. From this curve, C/N0 required for PN tracking
 

(range measurement) is found to be 29.6 dB.
 

The required C/N0 for carrier tracking is determined from
 

several considerations. These considerations are:
 

1. Allowable "noisy reference" degradation to data detection
 

performance.
 

2. 'Required doppler measurement accuracy.
 

3. Link signal dynamics and receiver threshold requirements.
 

It is not the intention of this discussion to analyze each of these
 

factors. However, previous analysis and experience with GPS-type
 

receivers has indicated that a 150 rms (I. a) phase error jitter is
 

a reasonable requirement. This requirement will be examined in detail
 

during the FY'78 study. The 150 jitter requirement can be related to
 

C/N0 from the equation
 

a,2 1 (7-5)
-C/N0 BL SL 


where 

BL =one-sided Costas loop noise bandwidth (35 Hz for the 
GPSPAC receiver) 

SL = squaring loss due to the Cbstas loop third multiplier. 

The squaring loss is determined by several factors and is given by
 

D
 
SL= m (7-6)
 

KDI+KL 2 Rd Dm
 

where
 

-D = modulation distortion factor
m 

Bi/R s = ratio of two-sided filter bandwidth to data rate
 

KL = 0.75 for a typical 2-pole Butterworth filter
 

Rd = data signal-to-noi'se ratio
 

Kd = constant related to data spectrum and filter type.
 

Fortunately, the squaring loss has been evaluated for a Costas loop
 

with an C arm filter and NRZ data, and is shown plotted in Figure 7-3
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as a function of arm filter bandwidth and data signal-to-noise ratio.
 
9
Thus, for Eb/NO = .6 dB (BER= 10-5) BL =35 Hz, and a 15' allowable
 

phase jitter, C/N0 isfound to be 28.0 dB. An implementation loss of
 

1.5 dB 	for PN losses brings the required C/N0 for carrier tracking to
 

29.5 dB.
 

The C/N0 required for data detection isbased on desired bit
 

error rate of 10-5. The bit error rate versusEb/NO , or signaT-to­
noise ratio for PSK data modulation isgiven inFigure 7-4, and the
 

required theoretical Eb/NO isseen to'be 9.6 dB. To this value, the
 
various, receiver implementation losses must be added to arrive at the
 

actual signal-to-noise ratio. For a-PN communication system operating
 

with a C/N0 of approximately 30 dB, the appropriate loss budget is
 

presented inTable 7-1.
 

Table 7-1. Implementation Losses 

Filter Loss 1.0 dB 

PN Jitter Loss 0.5 dB 

Noisy Reference Loss (Costas Jitter) 0.1 dB 
Bit Synchronization Loss 0.2 dB 

Carrier Reference Offset Loss (due 0.2 dB 
to on-orbit static phase error) 

Total 2.0 dB 

Thus, the actual required C/N0 for data detection is­

C/N0 = 9.6 + 2.0 + 10 log (50) = 28.6 dB. 	 (7-7) 

7.2 	 Basic Link Budgets
 

The basic elements of the Shuttle/GPS RF link are depicted in
 

Figure 7-5. This report will treat the GPS satellite primarily from
 
a specified EIRP point of view, although some indication of the varia­

tion inEIRP that might be expected is giyen inAppendix A. Atmospheric
 
loss has not been included as an element in the link for reasons which
 

are explained inSection 7.8. The space loss value of -184.6 dB (LI)
 
that isused in all the link calculations.in this report isfor the
 

case where the line-of-sight path from the Orbiter to 'the GPS satellite
 
is tangent to the orbit, as depicted in Figure 7-6. This isa reasonable
 

http:calculations.in
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baseline and represents the same geometry for which the Shuttle on-orbit
 

baseline telecommunication links have been calculated. The Orbiter
 

antenna gain is given a value of -1 dB RHCP, as this has been found
 

to be an achievable gain value (see Section 5.2). The RF circuit loss
 

from the antenna to the preamp is more difficult to tie down at this
 

point, since it depends strongly on. the specific system design, taking
 

into account antenna location, preamp location, and redundancy config­

uration. The baseline system configuration analyzed for the study-is
 

shown in Figure 7-7. This configuration was deyeloped jointly with RI
 

and represents a perturbation to the configuration which RI identified
 

as Configuratipn II.in "GPS-Orbiter Interface, Interim Operational
 

Proposal," August 1, 1977. The perturbation is the elimination of the
 

MTV/GPS switch, since the MTV function has been eliminated from con­

sideration. RI 'has calculated the circuit loss between the upper antenna
 

and the GPS preamp and between the lower antenna and CPS preamp to be
 

the values shown inTable 7-2. It should be noted that this configura­

tion provides an upper antenna and a lower antenna, but the coverage is
 

less than 21T steradians, as indicated in Figure 7-8.- Furthermore, this
 

configuration is for location of the GPS receivers in the payload bay,
 

a-consideration which will be studied carefully during FY'78.
 

Table 7-2. RF Circuit Loss for Baseline Shuttle/GPS Configuration
 

Loss (dB)
 

Upper Antenna Lower Antenna 

Loss Source Li L2 Ll L2 

Antenna to Preamp (LA) 2.0 1.8 2.48 2.35-

Effective Preamp to 0.14 0.12 0.12 0.10 
Receiver (LC) 

Total 2.14 1.92 2.60 2.45 

Since the GPS preamp typically has a gain of about 30 dB and
 

a noise figure of approximately 4 dB, the circuit loss between the
 

preamp and the receivers does not generally contribute very much to
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the effective signal-to-noise ratio circuit loss. The effect of these
 
losses on the effective signal-to-noise ratio circuit loss is shown
 
plotted in Figure 7-9 for the 30 dB gain and 4 dB noise figure preamp.
 
Using this curve, RI has determined the effective losses to be those
 

values given in Table 7-2.
 

The link elements which have been discussed above have been fac­
tored into the Shuttle/GPS baseline system link budgets, which are given
 
in Tables 7-3 through 7-6 for the P and C/A codes on both L1 and L2.
 

Tables 7-7 through 7-14 are the baseline link budgets for-carrier track­

ing and data detection. It should be noted that the C/N0 requirement
 

for the L2 links is based on a 7-ft 1-a range error (70 ft for C/A).
 

The explanation for this isdiscussed in Section 7.4.
 

7.3 Summary of Link Performance
 

In Section 7.2, the detailed link budgets for the baseline system
 

studied during the contract were presented. These results are summarized
 
in Table 7-15, and the meaning of the results is discussed. In addition,
 
the link budget summary for a system called the test or experimental
 

systemthat was examined prior to definition of the baseline system is
 
presented in Table 7-16. A block diagram and conceptual drawing of the
 
test system are presented in Figures 7-10 and 7-I1, respectively.
 

The following conclusions can be drawn from examining these
 

results:
 

1. For the baseline configuration, the lower antenna provides
 

the limiting performance. This is due to the increased RF
 

cable loss.
 

2. The ranging function is the most critical of the three basic
 

receiver functions.
 

3. The L2 margins are all less than the Ll margins (due to lower
 
satellite EIRP). However, the L2 link margins should not
 

be used as an assessment of link performance, as discussed.
 

in Section 7.4.
 

4. The limi-ting performance is thus for the lower antenna,
 
Ll-P for ranging, and results in a link margin of 4.3 dB.
 

5. On link L2, the P and C/A margins are identical because,
 

on L2 only, P and C/A codes are not transmitted simultane­
ously, ,as they are on L. The L2 ranging and carrier
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Table 7-3. Baseline Link Budget for Range Measurement, LI-P
 

Link Li-P, Range 
Lower Antenna 
Orbital Geometry: Path Tangential to Orbit 

PARAMETER VALUE EXPLANATION 

Satellite EIRP 23.8 dBw EOE, Spec. CID-SV-lIOH 

Space Loss -184.6 dB Path Tangent to Orbit 

Pointing Loss - 0.4 dB 

Polarization Loss - 0.4 dB 

Atmospheric Loss 0 

Shuttl-e Antenna Gain - 1.0 dB 

Circuit Loss - 2.6 dB Table 7-2 

Received Power -165.1 dBw 

System Noise Temperature 27.5 dBK TSys = 563°K; Tant= 1250K 

Boltzmann's Constant -228.6 dB-W/K/Hz 

Noise Spectral Density -201.1 dB-W/Hz 

C/N0 35.9 dB-Hz 

Required C/N0 (Theoretical) 29.6 dB-Hz aRange = 5' Eq. (7-4) 

Implementation Loss 2.0 dB Table 7-] 

Required C/N0 31.6 dB-Hz 

LINK MARGIN 4.3 dB 
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Table 7-4. Baseline Link Budget for Range Measurement, LI-C/A
 

Link LI-C/A, Range 
Lower Antenna 
Orbital Geometry: Path Tangential to Orbit 

PARAMETER VALUE EXPLANATION 

Satellite EIRP 26.8 dBw EOE, Spec. CID-SV-lOH
 

Space.Loss -184.6 dB Path Tangent to Orbit 

Pointing Loss - 0.4 dB 

Polarization Loss - 0.4 dB 

Atmospheric Loss 0 

Shuttle Antenna Gain - 1.0 dB 

Circuit Loss - 2.6 d6 Table 7-2 

Received Power -162.1 dBw 

=
System-Noise Temperature 27.5 dBK Tsys 5630 K; Tant=1250K 

Boltzmann's Constant -228.6 dB-W/K/Hz 

Noise Spectral Density -201.1 dB-W/Hz 

C/N0 38.9 dB-Hz 

Required C/N0 (Theoretical) 29.6 dB-Hz 0Range = 50' Eq. (7-4) 

Implementation Loss 2.0 dB Table 7-I 

Required C/N0 31.6 dB-Hz 

LINK MARGIN 7.3 dB 
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Table 7-5. Baseline Link Budget for Range Measurement, L2-P
 

Link L2-P, Range
 
Lower Antenna
 
Orbital Geometry: Path Tangential to Orbit
 

PARAMETER VALUE EXPLANATION
 

Satellite EIRP .19.1 dBw EOE; Spec.. CID-SV-1OH
 

Space Loss -182.4 dB Path Tangent to Orbit
 

Pointing Loss - 0.4 dB
 

Polarization Loss - 0.4 dB
 

Atmospheric Loss 0
 

Shuttle Antenna Gain: - 1.0 dB
 

Circui.t Loss - 2.5 dB table 7-2 

Received Power -167.6 dBw 

System Noise Temperature 27.5 dBK Tsys = 563°K; Tan t 125°K 

Boltzmann's Constant -228.6 dB-W/K/Hz 

Noise-Spectral Density -201.1 dBZW/Hz 

C/N0 33.4 dB-Hz 

Requ.ired C/N0 (Theoretical) 27.5 dB-Hz . Range = 7' Eq. (7-4) 

Implementation Loss 2'.0 dB Table 7-1
 

Required C/N0 29.5 dB-Hz
 

LINK MARGIN 3.9 dB
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Table 7-6. Baseline Link Budget for Range-Measurement, L2-C/A
 

Link L2-C/A, Range
 
Lower Antenna
 
Orbital Geometry: Path Tangential to Orbit
 

PARAMETER VALUE EXPLANATION
 

Satellite EIRP 19.1 dBw EOE, Spec. CID-SV-lOH
 

Space Loss -182.4 dB Path Tangent to Orbit
 

Pointing Loss - 0.4 dB
 

Polarization Loss - 0.4 dB
 

Atmospheric Loss 0 

Shuttle Antenna Gain - 1.0 dB 

Circuit Loss - 2.5 dB Table 7-2-

Received Power -167.6 dBw 

System Noise Temperature 27.5 dBK TSys = 5630K; Tan t = 1250K 

Boltzmann's Constant -228.6 dB-W/K/Hz 

Noise Spectral Density -201.1 dB-W/Hz 

C/N0 33.4 dB-Hz 

Required C/N0 (Theoretical) 27.5 dB-Hz aRange = 70' Eq. (7-4)' 

Implementation Loss 2.0 dB Table 7-1 

Required C/N0 29.5 dB-Hz
 

LINK MARGIN 3.9 dB
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Table 7-7. Baseline Link Budget for Carrier Tracking, LI-P
 

Link LI-P, Carrier 
Lower Antenna 
Orbital Geometry: Path Tangential to Orbit 

PARAMETER VALUE .EXPLANATION 

Satellite EIRP 23.8 dBw EOE, Spec..CID-SV-10H 

Space Loss -184.6 dB Path Tangent to Orbit 

Pointing Loss - 0.4 dB 

Polarization Loss - 0.4 dB 

Atmospheric Loss 0 

Shuttle Antenna Gain - 1.0 dB 

-Ci-rcuit Loss - 2.6dB Table 7-2 

Received Power -165.1 dBw 

System Noise Temperature 27.5 dBK. T = 563 0 K; T 
Sysan 

= 1250K 

Boltzmann's Constant -228.6 dB-W/K/Hz 

Noise Spectral Density -201.1 dB-W/Hz 

C/No 35.9 dB-Hz 

Required C/N0 (Theoretical) 28.0 dB-Hz 'Jitter = 150 Eq.Fig. (7-5)'7-3 

Implementation Loss 1.5 dB Table 7-I (filtering 
and PN loss) 

'Required C/N0 29.5 dB-Hz 

LINK MARGIN 6.4 dB 
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Figure 7-8. Baseline Link Budget for Carrier Tracking, LI-C/A
 

Link LI-C/A, Carrier
 
Lower Antenna
 
Orbital Geometry: Path Tangential to Orbit
 

PARAMETER VALUE EXPLANATION 

Satellite EIRP 26.8 dBw EDE, Spec.. CID-SV-IOH 

Space Loss -184.6 dB Path Tangent to Orbit 

Pointing Loss - 0.4 dB 

Polarization Loss - 0.4 dB 

Atmospheric Loss 0 

Shuttle Antenna Gain - 1.0 dB 

Circuit Loss - 2.6 dB Table 7-2 

Received Power -162.1 dBw 

System Noise Temperature 27.5 dBK TSy = 563°K; Tan = 125 0Ks
 

-
Boltzmann's Constant -228.6 dB-W/K/Hz


Noise Spectral Density -201.1 dB-W/Hz
 

C/N0 38.9 dB-Hi
 

Required C/N0 (Theoretical) 28.0 dB-Hz aJitter = 15' 	 Eq. (7-5) 
Fig. 7-3 

Implementation Loss 1.5 dB Table 7-1 (filtering
 
and PN loss)
 

Required C/N0 29.5 dB-Hz
 

LINK MARGIN 	 9.4 dB
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Table 7-9. Baseline Link Budget for Carrier Tracking, L2-P
 

Link L2-P, Carrier
 
Lower Antenna
 
Orbital Geometry: Path Tangential to Orbit
 

PARAMETER VALUE EXPLANATION 

Satellite EIRP 19.1 dBw EOE, Spec' CID-SV-lOH 

Space Loss -182.4 dB Path Tangent to Orbit 

Pointing Loss - 0.4 dB 

Polarization Loss - 0.4 dB 

Atmospheric Loss 0 

Shuttle Antenna Gain - 1.0 dB 

Circuit Loss 2.5 dB Table 7-2 

Recei.ved Power -167.6 dBw
 

System Noise Temperature 27.5 dBK T =563°K; T =1250K
SYS ant
 
Boltzmann's Constant -228.6 dB-W/K/Hz
 

Noise Spectral Density -201.1 dB-W/Hz
 

C/N0 33.4 dB-Hz
 

5
Required C/N0 (Theoretical) 28;0 dB-Hz aJitter - 1_ Eq. (7-5) 
Fig. 7-3 

-Implementation Loss 1.5 dB Table 7-1 (fi.ltering
 
and PN loss)
 

Required C/N0 29.5 dB-Hz
 

LINK MARGIN 3.9 dB
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Table 7-10. Baseline Link Budget for Carrier Tracking, L2-C/A
 

Link L2-C/A, Carrier 
Lower Antenna 
Orbital Geometry: Path Tangential to Orbit 

PARAMETER VALUE EXPLANATION 

Satellite EIRP 19.1 dBw EOE, Spec. CID-SV-lOH 

Space Loss -182.4 dB Path Tangent to Orbit 

Pointing Loss - 0.4 dB 

Polarization Loss - 0.4 dB 

Atmospheric Loss 0 

Shuttle Antenna Gain - 1.0 dB 

Circuit Loss - 2.5 dB Table 7-2 

Received Power -167.6 dBw 

=
System Noise Temperature 27.5 dBK TSy s 5630 K; T ant =1250K
 

Boltzmann's Constant -228&6 dB/W/K/Hz
 

Noise Spectral Density -201.1 dB-W/Hz
 

C/N0 33.4 dB-Hz
 

Required C/N0 (Theoretical) 28.0 dB-Hz Jitter = 150 Eq. (7-5)
 
Fig. 7-3
 

Implementation Loss 1.5 dB Table 7-1 (filtering
 
and PN loss)
 

Required C/N0 29.5 dB-Hz
 

LINK MARGIN 319 dB
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Table 7-11. Baseline Link Budget for Data Detection, LI-P
 

Link Li-P, Data Detection
 
Lower Antenna
 
Orbital Geometry: Path Tangential to Orbit
 

PARAMETER VALUE EXPLANATION
 

Satellite EIRP 23.8 dBw EOE, Spec. CID-SV-lOH
 

Space Loss -184.5 dB Path Tangent to Orbit
 

Pointing Loss - 0.4 dB
 

Polarization Loss - 0.4 dB
 

Atmospheric Loss 0
 

Shuttle Antenna Gain - 1.0 dB
 

Circuit Loss - 2.6 dB Table 7-2 

Received Power -165.1 dBw
 

System Noise Temperature 27.5 dBK TSy s 5630 K; Tan t 125 0K
 

Boltzmann's Constant -228.6 dB-W/K/Hz
 

Noise Spectral Density -201.1 dB-/Hz
 

C/No 35.9 dB-Hz
 

RequiredC/N0 (Theoretical) 26.6 dB-Hz BER= O-5  Eq. (7-7)
 
Fig. 7-4
 

Implementation Loss 2.0 dB Table 7-1
 

Required C/N0 28.1 dB
 

LINK MARGIN 7.3 dB
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Table 7-12. Baseline Link Budget for Data Detection, LI'-C/A
 

Link Li-C/A, Data Detection
 
Lower Antenna
 
Orbital Geometry: Path Tangential to Orbit
 

PARAMETER VALUE 


Satellite EIRP 26.8 dBw 


Space Loss -184.6 dB 


Pointing Loss - 0.4 dB 

Polarization Loss - 0.4 dB 

Atmospheric Loss 0 

Shuttle Antenna Gain - 1.0 dB 

Circuit Loss - 2.6 dB 

Received Power -162.1 dBw 

System Noise Temperature 27.5 dBK 

Boltzmann's Constant -228.6 dB-W/K/Hz 

Noise Spectral Density -201.1 dB-W/Hz 

C/N 38.9 dB-Hz
 

Required C/N0 (Theoretical) 26.6 dB-Hz 


Implementation Loss 2.0 dB 


Required C/N0 28.6 dB-Hz
 

LINK MARGIN 10.3 dB
 

EXPLANATION
 

EOE, Spec. CID-SV-IOH
 

Path Tangent to Orbit
 

Table 7-2
 

TSys = 563?K; T an = 1250K
t
 

BER=-10 5 Eq. (7-7)
 
Fig. 7-4
 

Table 7-1
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Table 7-13. Baseline Link Budget for Data Detection, L2-P
 

Link L2-P, Data Detection 
Lower Antenna -

Orbital Geometry: Path Tangential to Orbit 

PARAMETER VALUE 


Satellite EIRP 19.1 dBw 

Space Loss -182.4 dB 

Pointing Loss - 0.4 dB 

Pol.arization Loss - 0.4 dB 

Atmospheric Loss 0 

Shuttle Antenna Gain - .0 dB 

Circuit Loss - 2.5 dB 

Received Power -167.6 dBw 

System Noise Temperature 27.5 dBK 

Boltzmann's Constant -228.6 dB-W/K/Hz 

No-ise Spectral Density -201.1 dB-W/Hz 

C/N0 33.4 dB-Hz 

Required C/N0 (Theoretical) 26.6 dB-Hz 


2.0 dB
Implementation Loss 


Required C/N0 28.6 dB-Hz
 

LINK MARGIN 4.8 dB
 

.EXPLANATION
 

EOE, Spec.. CID-SV-OH
 

Path Tangent to Orbit
 

Table 7-2
 

TSys = 5630 K; Tan = 125 0K 

BER= 10-5 Eq. (7-7)

Fig. 7-4


Table 7-1i
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Table 7-14. Baseline Link Budget for Data Detection, L2-C/A
 

Link L2-C/A, Data Detection
 
Lower Antenna
 
Orbital Geometry: Path Tangential to Orbit
 

PARAMETER VALUE EXPLANATION
 

Satellite EIRP 19.1 dBw EOE,-Spec. CID-SV-lOH
 

Space Loss -182.4 dB Path Tangent to Orbit
 

Pointing Loss - 0.4 dB 

- 0.4 dBPolarization Loss 


Atmospheric Loss 0 

Shuttle Antenna Gain - 1.0 dB 

Circu'it Loss - 2.5 dB Table 7-2 

Received Power -167.6 dBw 

System Noise Temperature 27.5 dBK Tsy s = 563°K; Tan t = 125°K 

Boltzmann's Constant -228.6 dB-W/K/Hz 

Noise Spectral Density -201.1 dB-W/Hz 

C/N0 33.4 dB-Hz 

Required C/N0 .(Theoretical) 26.6 dB-Hz- BER= I0-5  Eq. (7-7)
Fig. 7-4


Table 7-1i
2.0 dB
Imrlementation Loss 


Required C/N0 28.6 dB-Hz
 

LINK MARGIN 4.8 dB
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Table 7-15. Baseline System Configuration, On-Orbit
 
Link Margin Summary
 

Link Margin by Function
 

Ranging Carrier Data
 
Link (dB) (dB) QdB)
 

Lower 	Antenna
 

Li 	 P 4.3 6.4 7.3
 
C/A 7.3 9.4 10.3
 

L2 	 P 3.9 3.9 4.8
 
C/A 3.9 3.9 4.8
 

Upper 	Antenna
 

Li 	 P 4.8 6.9 7.8
 
C/A 7.8 8.9 10.8
 

L2 	 P 4.4 4.4 5.3
 
C/A 4.4 4.4 5.3
 

Table 7-16. Experimental System, Antenna in Payload.Bay,
 
On-Orbit Link Margin Summary
 

Link Margin by Function
 

Ranging Carrier Data
 
Link (dB) (dB) (dB)
 

Payload Bay Antenna
 

P 6.9 9.0 9.9
 
C/A 9.9 12.0 12.9
 

Window Antenna
 

P 4.9 7.0 7.9
 
C/A 7.9 10.0 10.9
 



UPDATA 

r4. 
ANTENNA (CO-LOCATED 

/ WITH PRE AMP)IiXx--7 TLMOUTPUT--
TLM RNAY SIGNALS MDM PCWU 

+ DATA PR PSA OR 
OP AS 

MONIOR!ATELITESPROCESSOR 
PRM GPOMA RECEIVE 

NETWORK SIGNAL S-BAND PM OR
KU-BANDS-BAD 

J L 

CONTROLE 

P EO HRINPUT _ ElI ROESRF-" SUBSYSTEMS
TOIS---SBANDFMO X-BN 

SUBSYSTEM
 

GPS GND SEGMENT GPS SAT SEGMENT ORBITER
 

Figure 7-10. Functional Block Diagram of OFT Test/Demonstration System (Phase I)
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tracking margins are the same only as a result of some
 

numerical coincidences.
 

It is important to note that these margins are for on-orbit links, for
 

steady-state operation, i.e., they do not represent acquisition or
 
loss of lock (threshold) margihs. These conditions will be studied
 

in detail for both on-orbit and ascent and entry operations. -

The link margin summary for the test system studied,for possible
 
early OFT operation is given in-Table 7-16. This table includes margins
 

for both the payload bay-mounted antenna and the window-mounted antenna.
 

The basic reason for the superior link performance for the payload bay
 
antenna is the elimination of the feedline loss between the antenna and
 

preamp due to the mounting of the antenna 'integrallywith the preamp.
 

7.4 Ll Versus L2 Measurement Accuracy Requirements
 

The GPS navigation signal design consists of a 1575.4-MHz, PN
 
modulated, carrier designated as Ll and a 1227.7 MHz, PN modulated,
 

carrier designated as L2. The satellite transmitter is designed so
 

that the Ll EIRP is 4.7 dB greater than the L2 EIRP. When the differ­
ence in path loss, due to the difference in frequency, is accounted for,
 

Ll has a net advantage of 2.5 dB over L2. This, of course, results in
 

poorer range, doppler, and data performance for the L2 link. The
 
reason the system is designed this way can be appreciated from con­

sideration of Figure 7-12: As can be seen the receiver processing
 

util zes the L2 measurement to'calculate an Ll-L2 factor that is used
 

for ionospheric delay correction of the basic Ll measurement. Further­

more, the Ll-L2 factor is averaged in a first-order filter for approxi­

mately-10 measurements, thus improving the effective L2 one-a measure­
ment error by 'A0. Of basic importance is the fact that L2 exists only 

as an ionospheric delay correction factor and that,-if the link did not 

propagate through the ionosphere, there would 'be no need for L2.­

7.5 Analysis of Downlink Data Rate Requirements
 

The baseline system that was studied utilizedthe GPSPAC GPS
 
receiver. The output of this receiver is stored in 12 files-which are
 

individually addressable for downlink telemetry. These files are listed
 

in Table 7-17. Since the GPSPAC was designed to be flown on an unmanned
 
satellite, having a mission design life of several years, the organization
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Table 7-17. Baseline System Receiver Output Data File Organization
 

File Size 
Number File Name (bits) 

0* Command Echo Buffer 944t 

I** Memory Load Bit Map 672 

2* R/PA Memory Contents 944 

3 Current Operating Ephemeris 2832 

4 System Status 688 

5 NOS Almanacs 4720 

6 Time Marks 912 

7 Navigation Best Estimate 560 

8 Kalman Input, Single Channel 432 

9 Kalman Input, Dual Channel 816 

10 Measurement Data 320 

11 Compressed Measurement Data 896 

Output only when R/PA i*s in Command mode 

Output only when R/PA is in BootLoader mode 



87
 

of these data files and even some of the file contents are not efficient
 

or, in some cases, at all useful to an on-orbit Shuttle mission. Further­
more, the baseline design depended on downlisting the navigation data
 

for processing on the ground. Thus; itwas necessary to study the file
 

organization and eliminate all unnecessary data transmission to minimize
 

the data rate. Of the files listed inTable 7-17; file numbers 5, 6, 8,
 

10, and 11 are not needed at all for the Shuttle/GPS mission. 'File num­

bers 0, 1, and 2 are outputted only when the receiver is loaded via
 

uplink command to verify the correct loading of the receiver memory.
 

This function would normally be performed prior to launch and would
 

thus not impact the downlist data rate. File number 3, Current Oper­
ating Ephemeris, changes whenever the receiver acquires a new satellite.
 

Itwas judged that the average frequency of update for this file would
 

be approximately once every 10 minutes. Files number 4, 7 and 9 each
 
containdata which changes every time a measurement-cycle iscompleted,
 

or once every 6 seconds. Ifall navigation filter processing isto be
 
done on the ground, then file 7 could be eliminated. On the other hand,
 

if all navigation filter processing is to be done on-board (not the
 

baseline,design), then file number 9 could be eliminated. The average
 
data rate iscalculated to be 698 bits per second, and the peakdata
 

rate is (4896/6) x 2 or 816 bits per second. The tabulation of these
 

data rates is shown inTable 7-18.
 

1st is important to realize that this discussion applies only
 

to the-baseline system configuration. The FY'78 study will determine
 

what data should be processed in the GPS receiver, what data should
 
be transferred to the Orbiter GPC for processing, and what data (if
 

any) should be downlisted for ground processing.
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Table 7-18. Baseline System Downlist Data Rate
 
Requirements (Two Receivers)
 

File 
I.D. File Name 

Size 
(Bits) 

Update 
Period 
(sec) 

Average 
Data Rate 

(bps) 

3 Current Operating Ephemeris 5664 600 9.44 

4 GPSPAC System Status 1376 6 229.33 

7 Navigation Best Estimate 1120 6 186.66 

9 Kalman Input, Dual Channel 

Total 
Bits 

1632 

9792 

6 

Average 

Data Rate 

272.00 

697.44 
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7.6 	 Shuttle Orbiter TACAN Transmitter Interference
 
to Orbiter GPS Receiver
 

The TACAN transmitter on-board the Shuttle transmits RF pulses
 

having a peak EIRP of approximately +60 dBm and a maximum possible
 

carrier frequency of 1150 MHz. Since the GPS L2 carrier frequency is
 

1227.6 MHz, or less than 79 MHz away from the upper TACAN frequency,
 

there is a potential for severe interference to the GPS receiver.
 

Furthermore, unless suitable design precautions are observed, the TACAN
 

signal has'the potential for damaging the front end of the receiver
 

preamplifier. Thus, it is necessary to analyze the interference situ­

ation and also examine possible operational or physical constraints
 

(such as GPS antenna location relative to TACAN antenna location).
 

The analysis of the effects of pulses which saturate a receiver
 

i's complex, and depends to a great extent on the specific receiver and
 

transmitter designs. However, it is possible to postulate generalized
 

models and to determine some of the design considerations and tradeoffs
 

Which may ameliorate the severity of the problem. A more specific
 

analysis is then more easily undertaken for specific receivers as their
 

detailed characteristics are learned. Also, design specifications for
 

new Ireceiver developments or modifications of existing designs can be
 

generated with the intent of minimizing the problem.
 

7.'6.1 	 Receiver Saturation Model
 

A large amplitude pulsed carrier such as TACAN which is close in
 

frequency to the receiver frequency will saturate the receiver preampli­

fier and possibly saturate following stages as well. The parameters
 

which determine the degree of saturation include carrier-frequency and
 

amplitude, transmitted ,pulse shape, receiver filter characteristics,
 

preamplifier linearity characteristics (i.e., 1 dB compression level),
 

and gain. Once the TACAN energy has decayed to a level where it is- in
 

the receiver's linear operating range, the receiver processing gain
 

inherent in the PN spread spectrum demodulation and tracking process
 

determines the degradation of range measurement, range rate measurement,
 

and data detection performance. The starting point for an analysis of
 

this problem is the definition of a receiver model.
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A generalized GPS receiver model for TACAN interference analysis
 
is shown in Figure 7-13. The first point in the receiver that'is affected
 

by the TACAN pulse is the preamplifier. The preamplifier ismodeled
 
as a bandpass filter followed by a soft limiter. The soft limiter
 

represents the transistor amplifier. The bandpass filter will affect
 
the interference according to the relationship between the TACAN pulse
 
spectrum (including center frequency) and the filter frequency response
 
(including center frequency). Obviously, if the TACAN pulse is suffi­

ciently outside the passband of the filter, the filter will attenuate
 
the TACAN energy such that itwill not saturate the receiver. On the
 

other hand, if the TACAN pulse falls within at least a certain portion
 
of the filter passband, the pulse energy may adversely affect the
 
receiver. At this point, we will consider the more serious case,
 

that is,when the TACAN center frequency is within the filter passbahd,
 

as shown in Figure 7-14.
 

7.6.2 Pulse Spectrum Wider Than Filter Frequency Response
 

For purposes of understanding the problem, the problem can be
 
considered in two phases. First, when the pulse spectrum width is
 

approximately equal to or greater than the filter frequency response
 
(I.e., a relatively narrow pulse), the filter "rings" or effectively
 

spreads the TACAN pulse energy out in time. This is illustrated in
 

Figure 7-15 for lowpass (equivalent) Butterworth filters. It can be seen
 
that, as the filter order n is increased, corresponding to a filter
 

with steeper skirts, the pulse energy is spread oUt longer in time.
 
The implication here is that the filter design can significantly affect
 
the recovery time, or the time it takes the receiver to function normally
 

after a TACAN pulse. The recovery time period begins-when the TACAN
 

pulse voltage at the output of the filter exceeds the saturation level
 

of the first transistor amplifier (modeled as a soft-limiter) and ends
 

when the pulse voltage drops below this level, as illustrated in
 
Figure 7-16. Of course, the longer the recovery time, the more serious
 

will be the degradation to the GPS signal processing. The level at
 
which the preamplifier saturates, or begins to generate signifiant
 

intermodulation products, is determined largely by the preamplifier
 
design. The parameter which relates this level to the input is the
 
preamplifier 1 dB compression point., This point iswhere the preamp
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Figure 7-14. Spectral Ref'ationships for TACAN Interference Analysis
 
(Preliminaty)
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output falls 1 dB below the output point if the preamp continued to
 

operate linearly. It is traditionally used to define the point of the
 

start of saturation for the preamp. Table 7-19 is a list of several typical
 

low noise L-band preamplifiers and the input levels at which saturation
 

occurs. From this table, it appears that a typical maximum input level
 

for linear operations is approximately -17 dBm. Thus, as a first cut,
 

the recovery time of the GPS receiver may be-evaluated by computing the
 

.time required for the TACAN pulse energy at the preamplifier filter
 

output to decay below -17 dBm. Considering the peak TACAN EIRP to be
 

+60 dBm, and a real'izable antenna isolation'of 30 dB (first cut), the
 

TACAN pulse energy must decay by 47 dB for the receiver to be operating
 

in the linear region. We have discussed utilizing filter transient
 

impulse response characteristics to determine the necessary decay time
 

requirements for a relatively narrow pulse. Another similar approach
 

which is less restrictive as to pulse width is to consider the filter
 

step response as shown in Figure 7-17 for the Butterworth filter.
 

Using this approach, the recovery time is the time required to
 
decay to within 1/224 (-47 dB) of the final value (unity). Thus, from
 

Figure 7-17, approximately t= 24/w is required for a fi-lter of order 5
 

or more. For a 20 MHz-wide filter, the recovery time is on the order
 

of 0.2 microseconds after the TACAN pulse is transmitted.- In terms of
 

blanking out the GPS signal, the filter ringing is thus seen to be insig­

nificant. Consequently, of greater interest at this point is the case
 

where the TACAN pulse is relatively long, or the pulse spectrum is narrow
 

relative to the filter frequency response. During the FY'78 study, we
 

will consider the filter ringing by a narrow pulse for a narrowband IF
 

filter.
 

7.6.3 Pulse Spectrum Narrower Than Filter Frequency Response -

We will now treat the case where thepulse spectrum is much
 

narrower than the filter frequency response. In this case, the TACAN
 

pulse appears at the filter output with little distortion, so that the
 

filter does not prolong the receiver.recovery time. Mathematically, this
 

means that F(w)<< H(), where F(w) is the spectrum of the TACAN pulse,
 

and H(w) is the spectral response of the input filter. Consequently,
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Table 7-19. Typical L-Band, Low-Noise Preamplifier Characteristics
 

Power Output Maximum Power
 
Noise for 1 dB Input for
 

Avantek Gain Figure Gain Compression Linear Operation
 
Model No. (dB) (dB) (dBm) (dBm)
 

AMT-2014 25 4.0 +10 -15
 

AMG-2020 27 3.0 +10 -17
 

ABG-2012 27 5.0 +20 -17
 

ABG-2003 36 3.5 +20 -16
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Figure 7-17. Transient Response of.Butterworth Filter for ,Step Input
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g(t) f(r) h(t-r) dr 

f(t), (7-8)
 

where f(t) E time response of TACAN pulse 

h(t) impulse response of the filter as illustrated -in 
Figures 7-15 and 7-16 

g(t) = output of filter. 

Provided that the GPS receiver bandwidths (RF and IF)are not chosen too
 
narrow (to be dealt with more quantitatively during the FY'78 study), the
 
above model is appropriate for the TACAN interference ifwe consider the
 
TACAN pulse to be either a raised cosine pulse or a Gaussian pulse, as
 
illustrated in Figure 7-18. 
The raised cosine pulse has a time response
 

gA-yen by
 

t (l+ cos ) It 

f(t) =(7-9) 

t0; elsewhere
 

and.a spectrum given by
 

.F(w) = VT sin wT 2 (7-10) 
STd[l - ( I/) 7 

and the Gaussian pulse has a time response given by
 

-t2/2 2
f(t) = Ve (7-11) 

with a spectrum given by
 

-
F(w) = /2TV e T 2 2/2 (7-12) 

Preliminary information received from Rockwell International (RI) 
indicates that a good model for the TACAN pulse is a Gaussian pulse with 
a rise time of 2.5 ± 0.5 psec between the 10% and 90% amplitude points. 

Thus, solving for r, 

t' 2/2T2
 = Ve0.10 V 
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_t 2/2,r2 
0.90 V = Ve 2 

In 0.10 = -t1/2 2 

-t /2 2In 0.90 = 
2
 

and, since 

ItI- t21 = 2.5-x 10-6 , 

ItlIt 21 (-ino.1)2T2 7 (-In 0.9) 2zr2 (7-13) 

-6
 
2.5x 10
 

r2 I/(-In 0.T- /(-In 0.9)I 

1.48x 10-6 (7-14)
 

so that, for the Rockwell TACAN pulse model,
 

-12 (7-5)

f(t) = Ve- t2/4 38 xlO

The receiver recovery time, or the time during which the TACAN pulse sat­

urates the front end, is found by solving the above equation for the
 

value of t for which f(t) corresponds to -17 dBm. Since, as in the
 

case of the narrow pulse previously considered, -17 dBm corresponds to
 

a 47 dB decay (again assuming 30 dB antenna isolation), t is found by
 

solving
 

"38xlO 12  
20 log e-t2 .4 -47 dB,
 

or t 4.87x10-6.seconds, (7-16)
 

and, since the receiver is saturated for the first half of the pulse,
 

i.e., the rising part of the pulse, as well as the falling part of the
 

pulse, the total time the receiver is saturated by the Gaussian TACAN
 

pulse is 9.7 microseconds. An appreciation for the effect of this
 

saturation-period is obtained by considering the duty cycle of the
 

saturation period. The highest TACAN PRF is 150 pulse pairs per second,
 

so the receiver saturation duty cycle is
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2 x 	9.7xi0 - 6  0.29i%
 
1/150
 

Which corresponds to a signal loss of approximately 0.01 dB. Thus, it
 

can be concluded that, based on the assumptions made in the foregoing_
 

analysis, the time during which the GPS receiver is saturated is
 
inconsequential.
 

The effects of the TACAN energy once the receiver is out of
 

saturation will be to increase the receiver effective noise fi'gure.
 

This and other sources of receiver degradation due to the TACAN
 

signal will be discussed next.
 

7.6:4 Receiver Degradation in the Nonsaturated Mode
 

The discussion above illustrated that the GPS receiver will
 

saturate for only a relatively short period of time. However, during
 

the remaining time when the receiver is operating in the linear mode,
 

'theTACAN pulse energy will appear as noise in the preamplifier input
 

f-ilter, as illustrated in Figure 7-19. This extra noise effectively
 

'ncreases the noise temperature of the preamplifier. Thus, it is
 

necessary to calculate the integrated TACAN power that appears in
 

the preamplifier filter. Preliminary results indicate that a Gaussian
 

shaped pulse will cause no interference, while a rectangular shaped
 

pulse without TACAN transmitter filtering will swamp out the GPS L2
 

signal, as shown in Figure 7-19. A detailed investigation of the TACAN
 

pulse shape and transmitter filter will be undertaken during the FY'78
 

study.
 

Another aspect of the TACAN interference is that, due to the
 

pul-se nature, the interference spectrum consists of lihes'separated
 

by the pulse repetition frequency. Thus, a single interfering spectral
 

line will appear within the Costas tracking bandwidth (approximately 30
 

to 50 Hz). This line acts as a CW jammer and can cause the Costas loop
 

to lock to it, rather than to the GPS carrier. This problem will be
 

analyzed during the FY'78 study.
 

7.6.5 Summary
 

The effects of receiver saturation by a TACAN pulse.have been
 

considered for a worst-case situation, that is., the TACAN pulse falling
 

within the receiver preamplifier bandwidth. It was shown.that, for a
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nominal 30 dB antenna coupling value and typical L-band preamplifiers,
 

the receiver saturation time is on the order of 10 microseconds. This
 

was for a Gaussian shaped pulse having nominal 2.5 microsecond rise
 

and fall times. The receiver saturation for a-sharp pulse (wide spec­

trum) was found to be on the order of the pulse width increased by-a
 

mere 0.2 microseconds (assuming a 20 MHz receiver filter). Thus, it
 

has been concluded that
 

1. Saturation due to preamplifier saturation lasts a
 

negligible time period.
 

2. Saturation effects for subsequent receiver stages
 

wherein narrower bandwidths will be encountered
 

must be analyzed.
 

3. The increase in effective receiver noise temperature
 

due to TACAN energy spi.ll-over for that time period
 

-when the receiver is not saturated must be evaluated.
 

4. The generation of intermods when the receiver is not
 

saturated and their effects must be evaluated.
 

These additional analyses will be covered during the FY'78 study.
 

7.7 	 Atmospheric Attenuation of Shuttle/GPS Link Signals
 

Radio propagation through the atmosphere suffers attenuation at
 

the GPS frequencies of 1575 MHz and 1227 MHz. The amount of attenuation
 

depends on the local elevation angle of the line-of-sight path between
 

the user antenna ahd the GPS satellite. The Applied Physics Laboratory
 

(APL) of John Hopkins University has estimated the maximum attenuation
 

to be 2 dB for the path labeled Rmax for the geometry shown in Figure
 

7-20. This corresponds to a local elevation angle of 0' and, as such,
 

represents an unrealistically severe case. In referring to Figure 7-20,
 

the angle 6 is seen to be, the angle fot which the line-of-sight path
 

just clears the atmosphere, i.e., no atmospheric attenuation. This
 

angle is calculated from the equation
 

sin -I  
6 = 	 R (7A7) 

in-
RGPS cos PS]
 

where
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Figure 7-20. Orbiter Orbit Segment Eliminated by "No Viewing" Thriugh Atmosphere
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H A = assumed atmospheric height
 

RGpS = Semi major axis of GPS satellite orbit (26,650 km)
 

RE = earth radius (6378 km)
 

For an atmosphere height that contributes to L-band attenuation
 

assumed to be 200,000 feet, 0=0.14 degrees. This corresponds to'an
 

angular arc a for an Orbiter at 200 miles of 1.8 degrees, or approxi­

mately 30 seconds of time for the Orbiter to clear the atmosphere
 

entirely. Another way to consider the on-orbit atmospheric-viewing
 

problem is to consider what GPS orbital arc is eliminated if there is­

to be no propagation through the atmosphere. This geometry is illu­

strated in Figure 7-21, and the calculation for the angle which is
 

eliminated (€)istabulated inthe figure. Thus, for the 200,000 foot
 

atmosphere case, approximately 1.7 degrees of viewing angle at the
 

Orbiter-is eliminated by the atmosphere. However, it is important to
 

consider that this angle is eliminated for less than 30 seconds. Thus,
 

the conclusion has been reached to not include atmospheric loss in the
 

on-orbit link budget calculations.
 

The question as to what the atmospheric attenuation of the GPS
 

signals is for the case when the Shuttle is within the atmosphere must
 

be answered. The atmospheric attenuation of communication satellite
 

signals has been carefully measured and documented and is shown plotted
 

in Figure 7-22 as a function of local elevation angle at the earth's
 

surface. This plot is for a frequency of 4 GHz and 6 GHz, typical com­

munication satellite frequencies. The data may be scaled to the GPS
 

frequencies by utilizing the atmospheric adsorption coefficient, plotted
 

as a function of frequency in Figure 7-23. In doing this, the atmo­

spheric attenuation for a 10 degree elevatiqn angl-e at 1:6 GHz is found
 

to be 0.16 dB. The right-hand ordinate of Figure 7-22 has been scaled
 

from this calculation for attenuation at 1.6 GHz. From Figure 7-23,
 

it can be seen that the atmospheric attenuation at 1.3 GHz will be
 

slightly less than at 1.6 GHz. As a check on these calculations,
 

reference to Figure 7-24, the atmospheric attenuation determined by
 

JPL for the DSN at S-band, shows that at 10 degrees the attenuation
 

is approximately 0.165 dB.
 



,.BT~- G"-PS.
 
-. ; /HA 

' 

I N 

ATMOSPHERIC HEIGHT, HA ANGLE ELIMINATED, 0
 
(FT). (DEGREES)
 

100,000 0.85
 
200,000 1.70
 
300,000 2.56
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7.8 Shuttle/GPS Anti-Jam Performance
 

The GPS signal design employs PN spread spectrum to achieve very
 

precise range resolution while at the same time providing resistance
 

to jamming. In an actual hostile jamming environment, additional code*
 

security equipment is designed to be added to. the military GPS receivers
 

to allow them to continue to use the P code which would be specially
 

coded to deny use by unauthorized users during the time of crises. The
 

C/A code would, however, remain accessible to the normal GPS receiver
 

not equipped with the code security device. The necessity of providing
 

the code security device to the Shuttle GPS receiver must be studied
 

and, to a large extent, will depend on the adequacy of the navigation
 

accuracy that can be derived from the C/A code. It is important to
 

analyze what anti-jam protection the basic P code signal structure will
 

.provide the Shuttle GPS receiver. One can postulate a scenario in
 

which the Shuttle GPS receiver is being intentionally jammed by an
 

enemy intent on thwarting a Shuttle mission, and during which time no
 

other overt hostilities have been demonstrated.­

7.8.1 Types of Jamming Signals
 

The type of jamming signals that can be conceived are summarized
 

inTable 7-20.
 

Table 7-20. Summary of Jamming Signals
 

Signal Category 	 Example or Description of Signal
 

Random Noise 	 Full Band - Continuous or Pulsed
 
Partial Band - Continuous or Pulsed
 
Narrowband - Continuous or Pulsed
 

Sinusoidal- Single CW Tone - Continuous or Pulsed - Coherent­
or -Random.Phase
 

Multiple CW Tone - Continuous or Pulsed - Coherent
 
or Random Phase
 

Modulated Carrier 	 AM; FM, PM, Radar, Carrier Sweep 
Pulse Modulation, On-Off Keying 
PSK, FSK, and ASK -

Pseudonoise 	 Biphase, M-phase
 

Repeated Signal 	 Delayed and retransmitted
 
Delayed, modulated, and retransmitted
 



The modulated carrier jam signals are often used to jam like­

modulated signals, such as AM against AM, FM against FM, etc. If noise
 

modulation is used, the resultant sideband bandwidth wil- occupy .part
 

or all of the spread bandwidth, depending on the modulation spectrum.
 

Thus, neglecting whatever "wasted" power Is in the carrier and the non­

uniformity of the spectrum, modulated carrier, pseudonoise, and hence
 

delayed repeated signals are regrouped into the random noise category.
 

Partial-band noisesignal consists of Gaussian noise with a
 

bandwidth less than the spread bandwidth, W, but greater than the
 

baseband modulation bandwidth. Partial-band noise may be in single
 

or multiple preselected channels or "bands" within the spread spectrum
 

bandwidth. Partial-band noise jamming can possibly be more effective
 

than.fu11-band noise only against spread spectrum-systems that do not
 

continuously occupy the full spread band, such as frequency hopping
 

systems. The same may be said of multiple CW tone signals. The-jam­

ming signals tabulated in Table 7-20 may thus be regrouped into eight
 

basic jam-types:
 

- Continuous Full-Band Noise. The broadband continuous noise jam­

-ming signal is one which occupies the full bandwidth of the spread
 

-spectrum signal. Generally, it is assumed that such noise is Gaussian
 

and -white. Thus, the performance of spread spectrum systems in their
 

stressed environment is essentially identical to that in thermal-noise,
 
=
with Eb/N 0 replaced by Eb/Nj SW/JR.
 

Pulsed Full-Band Noise. The-broadband burst noise jamming signal
 

trades fractional-time operation for high peak power in an attempt to
 

overcome a portion of the spread spectrum processing gain. The noise
 

remains white and Gaussian but has noise power density J/BW, where
 

B= pulse duty cycle.
 

Continuous Sinusoidal. -The continuous CW tone signal places an
 

unmodulated sinusoid having power J at the waveform carrier frequency.
 

If the carrier phase ismatched as well, a special case results called
 

coherent tone jamming.
 

Continuous Partial'-Band Noise. The continuous partial-band noise
 

signal concentrates the total jam power J within a contiguous ,optimum
 

bandwidth greater than that of narrowband noise, but less than W.
 

Pulsed Partial-Band Noise. The pulsed partial-band noise signal
 

optimizes the effect of the jam power J in both time, frequency, duty
 

cycle, and fractional band parameters.
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Pulsed Sinusoidal. The pulsed tone signal bursts sinusoids having
 

powerJ/a at the waveform carrier frequency. As in all cases of pulsed
 

signals, the jammer randomizes the transmission epochs to prevent "gating
 

out" of this jam signal.
 

Continuous Multichannel Narrowband Noise. The continuous narrow­

band noise signal concentrates the total jam power J within the baseband
 

spectrum in the form of very narrowband'Gaussian noise channels.
 

Pulsed Multichannel Narrowband Noise. The narrowband burst noise
 

signal increases peak power by means of pulsed-duty-cycle operation.
 

The signal concentrates peak jam power J/a within the baseband spectrum
 

in the form of narrowband Gaussian noise channels.
 

7.8.2 Analysis of Baseline Shuttle/GPS Receiver Jam Protection
 

The parameter of primary interest isthe anti-jam margin, AJ.
 

This margin is given by
 

AJ (dB) = PG (dB) - S/NRequired (dB), (7-18)
 

where 

PG = receiver processing gain 

S/N signal-to-noise ratio required for receiver function. 

The processing gain is best understood from consideration of the signal
 

modulation and demodulation. In the GPS signal structure, the message
 

modulation'm(t) is multiplied by the wideband PN signal PN(t). The
 

signal isreceived with additive, uncorrelated interference n(t) of
 

power N. At the receiver, correlation is performed by multiplying the
 

received signal with a local version of the PN code to achieve
 

R(t) = [N PN(t) m(ty + n(t)] PN(t) , (7-19) 

where S is the average power of the received signal. R(t) is averaged
 

over a time period appropriate to the receiver function being performed.
 

In the case of data detection, this is equivalent to passing R(t)
 

through a filter B wide (where B is the data bandwidth) and, in the
 

case of carrier tracking, the filter is merely BLcarrier' whereBLcarrier
 

is the Costas loop bandwidth. For ranging (;PN code'tracking), the filter
 

is the delay lock (or tau dither) loop bandwidth BLcode Thus, the
. 


filter output is given by
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R(t) filter PN(t)2 Ym(t) + nOt), (7-20)-

where
 
PN(t)2 = PN autocorrelation function
 

n0(t)= output noise.
 

The output noise power for tone jammer at the carrier frequency is
 

no(t)2 = NoBfilter = J(BRfit , (7-21) 

where
 

No = white noise at the receiver input
 

J = tone jammer power
 

and Bfilter = Bdata for data detection
 

= BLcarrier for carrier tracking
 

= BLcode for code tracking.
 

Thus., we see that the tone jamming power is reduced by the ratio of the
 

processing bandwidth to the spreading bandwidth, BRF' so that the pro­

cessing gain for the jammer is merely
 

PG = RF (7-22)
Bfilter
 

When the processed jammer power is much larger than the white noise com­

ponent, then the AJ margin can be calculated directly from (7-18).
 

Otherwise, the required (C/No) is
 

GU C = 1 (7-23)
\No req NO+J/BRF N0/S+ (J/CBRF)
 

or AJ J/C BRF (C/ )
= = 1 (7-24) 

where (C/No) is the available C/N0 from the link budgets and (C/No)req
 
is the C/N0 required to meet the receiver performance criteria.
 

In applying these relationships to the baseline Shuttle/GPS
 

system discussed in this report, we find the following:
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Adranging 10 log (107) + 10 359_log [03.16 
rangng 103 11 03 

= 36.4 dB (7-25) 

Acarrier track 10 log (i07) + 10 log [2 1 1 

= 39.4 dB (7-26) 

IO log (107) + 10 log I81 103 59]
Addata " 


= 41.1 dB. (7-27) 

The interpretation of these numbers is that a jammer must provide 35.4 dB
 

more jamming power than the GPS signal at-the Shuttle GPS antenna for
 
the jamming to affect the range measurement accuracy of the GPS receiver.
 

Likewise, the jammer must provide 39.4 dB and 41.1 dB more power at
 

the Shuttle receiver to adversely affect the GPS carrier tracking and
 

data detection, respectively. These results are tabulated inTable 7-21.
 

Table 7-21. Baseline AJ Margins
 

Receiver P Signal AJ Margin
 
Function (dB)
 

Ranging 36.4
 

Carrier Tracking 39.4
 

Data .Tracking- 41.1
 

A very difficult type of jamming to protect against is the repeat
 

jammer. This type of jamming is illustrated inFigure 7-25. The oper­

ation of this jammer depends on the jammer "fooling" the GPS receiver
 

into thinking it is a GPS satellite. The jammer receives a normal GPS
 

satellite transmission, demodulates the data, and remodulates it on
 

another PN modulated carrier, the jammer initially adjusts the phase
 

of its PN code so that the Shuttle GPS receiver acquires it, thinking
 

it to be a legitimate satellite. The jammer then starts to "pull" the
 

phase of the PN code, -thus causingan erroneous range to be measured.
 

This type of jamming must be discriminated against by the- navigation
 
filter itself. This will be studied during the FY'78 study phase.
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Figure 7-25. GPS Repeat Jammer Scenario
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APPENDIX A
 

VARIATIONS IN GPS SATELLITE EIRP
 

The EIRP for the GPS satellites that has been used for the link
 

analysis is the value specified in the Prime Item Development Specifi­

cation for the Space Vehicleof the Space Vehicle Segment of the NAVSTAR
 

Global Positioning System, CID-SV-lOlA, Volume 9. However, it is
 

important to note that the spec value of 23.8 dBw (Li, P) is for the
 

satellite end-of-life and includes eclipse operations. Furthermore,
 

it is also for operation of the satellite at hot temperature extremes
 

which does not necessarily represent typical operating conditions.
 

Typically, at this temperature extreme, the solid state power ampli­

fiers will have degraded performance relative to ambient operating
 

condition. Also, these worst case conditions include operation of the
 

power amplifier-at minimum DC bus voltage conditions. This also con­

tributes to lower power amplifier output power. These variations are
 

shown in fable A-I, which is taken from functional test data for GPS
 

satellite FSV #2. Thus, we see that there is a 1.3 dB variation between
 

the nominal satellite condition and the worst case satellite condition.
 

Table A-1. Variation of Power Amplifier Output Power With
 
Temperature and Voltage (LI, P Output, Watts)
 

Output Power (Watts) 

DC Bus Voltage 
(Volts) OC 

Base Plate Temperatures 

230C 560C 

25.5 12.1 11.9 11.0 

26.9 12.6 12.3 11.3 

27.5 12.8 12.4 11.4 

F] H indicates nominal satellite condition 
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The variation in satellite antenna gain is indicated in Figure
 

A-1, which is an elevation gain pattern for a functiona1 test of the
 

satellite antenna. The 12.8 dB gain value is just outside the edge
 

of earth coverage and, as such, represents the gain value for a nominal
 

Shuttle orbit. The 11.8 dB gain value represents the boresight gain.
 



12.8 
11.8 

360 00 360 720 

Angle 

Figire A-i. Typical Measured GPS Satellite Gain at L1 
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APPENDIX 


PN CLOCK TRACKING LOOP ANALYSIS
 

1.0 ANALYSIS OF THE DELAY LOCK LOOP
 

A block diagram of the.delay lock tracking loop is shown in
 

Figure B-I. Coherent demodulation to baseband wi.ll be assumed as it
 

ismore convenient to analyze a basebandloopand the results apply
 

directly to an IF loop. The receiver filter will be assumed to be an
 

ideal bandpass filter which represents the bandlimiting accomplished
 

by the IF filtering. The loop can be modeled mathematically as shown
 

in Figure B-2 if the tracking error is small. In the analysis which
 

follows, the variance of the tracking error AT and thus the rms track­

ing error will be found.
 

From Figure B-2, it can be seen that, by superimposition,
 

= [A2 + [KF(p)j (B-1)EKF(p) I-jAT n(t), 

where p is the operator notation for d/dt. Furthermore, in response
 

to noise alone,
 

At = - 2, :(B-2) 

so that, by combining (B-1) and (B-2), we obtain
 

KF(p) 
-A-- -= ^n(t). (B-3)
 

p
 

Since it-is more convenient to work with power spectral densities,
 

(B-3) is written as
 

SAT u) = KF(jm)/jc 2S (B-4) 
AT 1i+ AKF(j)/jw Sn 

where Sn(o) is the power spectral density of the noise and SAT(W) is
 

the power spectral density of the loop tracking error.
 

The noise density can be found from consideration of the process
 

taking place in the loop "discriminator" shown in Figure B-3. From
 

examination of the figure, it is seen that the equivalent.noise, n(t),
 
.for the mathematical model is related to the actual input noise by
 

n(t) = ni(t) [a(t-Td) - a(t+Td).], (B-5) 
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Figure B-i. Block Diagram of Delay Lock Tracking Loop 
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Figure B-2. Mathematical Model of Delay Lock Tracking Loop 
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Figure B-3. Delay Lock Loop Error Discriminator 
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where
 

ni(t) : actual input noise N(t) filtered by the. receiver

filter
 

a(t- Td) = reference PN code advanced by rd bits
 

a(t+Td) = reference PN code delayed by td bits.
 

Since multiplication in the time domain is equivalent to convolution
 

in the frequency domain, the power spectral density of the noise n(t)
 

is given by
 

Sn(W) =Sn(w) () A(w), (B-6)
 

where A() = power spectral density of a(t- d) a(t+ Td) and 0 
indicates convolution. 

The power spectrum of A(m) is given by 

A(w) a(w)a(w)* (B-7) 

where a(m) = voltage spectrum for a(t- d)- a(t+Td), 

a(w) = a0(m) [EiTd- e+Jd] (B-8)
 

so that
 

A() = A0 (W)[2- e-j2 Td - ej2w-Td] (B-9) 

-where A0(w)is the power spectrum of'reference PN code with zero delay
 

and the exponential terms account for the advance of the reference code
 

by Td. The received noise spectral density Sni() will be assumed to
 

be white of value N watts/Hz and limited to fR' the bandwidth of the
 

receiver filter.* Thus, from (B-9) and (B-6), the power spectral den­

sity of the equivalent noise is given by
 

fR = lowpass equivalent bandwidth. 
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N (out) =S (0) --S Gn)® A(w)
 
nn
 

- 0 J7f A MW[2 ej ;e- -wd jTdmw 

N 2rf 2 f O J2L7TfR d-0 ACw) dw - RACw) ett d A0Cw) e T 

= No [2 R(O)BL- R(2Td)BL- R(-27d)BL
 

= 2N0 [(O)BL - R(2zd)BL] (B-la) 

where R(x)BL = the bandlimited autocorrelation function for the PN code
 

evaluated at x. The equivalent noise spectral density given by (B-10)
 

may now be substituted into (B-4) to obtain the tracking error power
 

spectral density, SAT(w). Thus,
 

$ATM = 1 +'A-K F(jW)/jW' [()L T)L 
= KF(j)/j 22 N R(2d)B (B-i) 

Before proceeding further, itwill be helpful to consider the
 

term in the absolute value signs in hopes of simplifying (B-II). First,
 

examining the mathematical model block diagram of Figure B-2, it is
 

seen that the voltage transfer function may be written as
 

T2 AKF(s);
 

1 (B-12)
-
1 1 + AKF(s)
 

and the power transfer function is given by
 

2 = AKF(jw) j-w 2 
(B-


H(jw)I (B-13)
1
1 + AKF(jw) 
-

Since the error signal gain A is independent of w, (B-13) may be
 

written as
 

KF(j) 2

1H(jo) I2 A K FB 

12 
14 

A2 1 + ABJK F(jJ) (8-14) 
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The quantity in the absolute value sign on the right side of ('B,-14)
 

is recognized as being the same quantity in the absolute value signs
 

in (B-Il). Thus, substituting (B-14) into (B-Il), we obtain
 

IH(jw)1 2N F()- R(2d)]. (B-15)
SAT2 -	 0 BL dBLj 

Each term in (B-15) has been well defined with the exception of A. So
 

far, A has been called the error signal gain. Referring again to the
 

mathematical model of Figure B-2 and the loop "discriminator" of Figure
 

B-3, it is seen that A:
 

1. Must convert to a time displacement, AT, between the
 
incoming code and the reference code to an error voltage.
 

2. Is solely a function of signal and not noise, i.e., is,
 
really the loop "discriminator" function for signal.
 

3. 	Has an output which is also proportional to the signal
 
level VS.
 

4. 	Being a discriminator, has a transfer function given by
 
the slope of the discriminator characteristic.
 

Thus, based on the above considerations,
 

A = vd-<a(t+T) a(t - T 2 -Td) - a(t+T, ) a(t+ 2 +Td)>AO (B-16) 

where
 

<X> 	= time average value of X
 

X = signal power.
 

By 	making a simple change of variables, (B-16) may be written as
 

A = VS -<a(t) a(t+AT-Td) - a(t) a(t+AT+Td)>A0 (B-17) 

= 	S-A- LR(AT- TdBL R(T + Td) B (B-l8) 

where the quantity R(At- Td) - R(AT+ Td) is the discriminator character­

istic for the delay lock tracking loop. Thus, 

A V [R'CA-Td)BL - R'(AT+Td)BLAT= 0 

= v2R1 (Td)BL 	 (B-i) 



124
 

where the bandlimited autocorrelation function is used since the signal
 

is first filtered by the receiver filter. By substituting (B-l9) into
 

(B-15), we obtain
 

SAT(W) IH(ju)I 2 2No[R(O)BL - R(2dBL] (B-20)S [2R' (Td)BL]2 

From noise theory, 

2 S W dw (B-21) 

n J n 2w 

so that, by substituting (B-20) into (B-21), we obtain 

2 = {IH(jw)I2 2 No[R(O)BL-R(2d)BL dc 
ATO0 S [2R'(Td)BL ]2 21r 

2 0 R(O)BL-R(2d)BL 5H(jIw) 2 	dt (B-22)
 

2
S [2R'(Td)BL] 2 JO * 

The noise bandwidth of a transfer function is defined as 

BL {iH(jw)I12 dw- (-23) 

so that (B-22) reduces to 

2 2No BL R(O)BL - R(2Td)BL
AT S [2R,(Td)BL ] .	 (B24) 

Thus, the delay lock loop rms tracking error may be written as
 

1AT R(O)BL - R(2Td)BL (B-25)
 
rms 2 R'(d)BL
 

where
 

BL = one-sided loop noise bandwidth
 

N0 = one-sided noise power density
 

S average signal power.
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2.0 DELAY LOCK LOOP TRACKING PERFORMANCE
 

It is desirable to plot the rms tracking error, ATrms , as a
 

function of S/NoBL' the loop signal-to-noise ratio, and several values
 

,of bandlimiting and displacement Td. The bandlimited autocorrelation
 

functions used in (B-25) can be shown to be given-by
 

R(X) cos [Bx2(cos [BI- i) - 2X si [BX]
 

+ (l+X) si [B(I+X)] + (l-X) si [B(l-X)]J4, (B-26)
 

where
 

B = 27fR Tc
 

fR = one-sided bandwidth of receiver filter
 

Tc = PN code bit width
 

X = time displacement in bits
 

and
 

= si--dy.si EX] y (B-27)
0 Y
 

The rms tracking error (B-25) is plotted in Figure B-4 as a function of
 

S/NoBL and several values of B and Td. It is obvious that the larger B
 

is,the smaller ATrms , and the smaller Td' the smaller ATrms. However,
 

because of data transmission requirements and limited available spectrum,
 

B is typically limited to.l.5ir in a spread spectrum system. Thus, a
 

plot of Atrm s versus Td for B=l.57r, 37, and -, as shown in Figure B-5
 

shows that forno bandlimiting the tracking error may be made infini­

tesimally small-by making Td infinitesimally small. However, for
 

practical values of bandlimiting, i.e., B= 1.5l,Atrms changes very
 

little as a function of Td.
 

The theoretical conclusion that an improvement is achieved by
 

letting Td 0 ignores the threshold behavior of the tracking loop, and
 

actually an optimum Td exists for delay lock. To see this, assume a
 

finite spacing for the delay lock tracking with an unfiltered signal
 

having the- ideal triangular autocorrelation function. Figure B-6 shows
 

the error characteristics for a typical spacing.2 d,.where the ,signal
 

power is S and the PN clock interval is Tc. The output noise density
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Figure B-4. Delay-Lock Loop rms Tracking Error vs. Loop Signal­
to-Noise Ratio; td= 0.1
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for the delay lock tracker is given by (B-lu) and, for the case of no
 

filtering, reduces to
 

N (out) = 4N O d/Tc  , (B-28) 

where N is the received noise density (one-sided). Since the slope
 
of the error characteristic in the vicinity of zero error is
 

S 2 d/Tc 2v 
Error slope T T (B-29)

Td c 

the mean square tracking error is
 

N (out) BL NO BL 
AT 0 0 NOL TT(-0
AT [Slope]2 S d c
 

where BL is the noise bandwidth of the linearized tracking loop.
 

The problem is now evident that a threshold exists. Note from
 
Figure B-6 that Td is the limit of linearity, while (B-30) shows the
 

rms time error due to noise is proportional to IT- other parameters
, 


being fixed. Thus, although (B-30) predicts a constantly decreasing
 

error as Td is decreased, the region of linearity will be exceeded at
 
some value of Td" Hence, an optimum choice for Td may be expected.
 

As an approximate first analysis, consider the quasi-linearization
 

approach* which has been applied to demonstrate threshold in a phase
 

lock loop. This approach replaces the nonlinear error characteristic ­

by an equivalent gain (i.e., slope) for a linearized model., given by
 

Equivalent slope = h'(-r) p() dz , (B-31) 

where
 

h(T) = error characteristic
 

p(T) = probability density of the time error, assumed to
 
be Gaussian distributed.
 

With this equivalent slope, the closed loop bandwidth,B L can still be
 

defined-meaningfully. For the case of zero mean error and a variance
 

J. A. Develet, Jr. "A Threshold Criterion for Phase-Lock
 
Demodulation," Proc. of IRE, Vol. 51, February 1963, pp. 349-356.
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OT' (B-31) is evaluated for the characteristic of Figure B-4 to be
 

d1 2/Tc T/2 
Equivalent Gain ITd 2/TC) ATaA e 2 d 

Td/ aA ) 
_ l - 0(- Td/aA)] (B-32) 
T 

considering, for simplicity, only the central portion of the error
 

characteristics as significant. For aAT* 0, the expression reduces
 

to the slope at T= 0. For larger aT' the equivalent slope is reduced,
 

which increases the error using (B-30) with the equivalent slope sub­

stituted. This becomes
 

AT (N/BT [ d/AT) D(-d/aAT)]2 B
 

Minimization of (B-33) by varying Td is now to be carried out.
 

In normalized form, this is equivalent to maximizing the function
 

f(x) =[(x) - 2(-x)]2/x (B-34) 

which occurs at x= 1.4. Thus, the optimum Td satisfies
 

Td 1.4, (B-34)
 

OAT
 

which-relates the optimum spacing to the tracking error, and the minimum
 

rms error is computed to be
 
NOBL
 

S2 
 0 L 
 (B-36)
 
-c min S
 

for the optimum Td given in (B-35). Equation (B-36) reflects the
 

decrease in optimum Trd as.S/NoBL increases.
 
=
As an illustration, if S/NoBL 20 dB, the theoretical minimum
 

tracking error is 0.02 of the PN bit interval, and the optimum separa­

tion is Td= 0.024 of the PN bit interval.
 

In the bandlimited case, the performance varied much less (essen­

tially not'at all-for B=I.5 ) with the separation Td. Thus, considering
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practical filtering requirements, the choice of delay lock separation
 

is not critical. With saturation brought in again, the design tendency
 

should be towards large -rd.
 

3.0 ANALYSIS OF THE TAU JITTER LOOP
 

A block diagram of a tau jitter tracking loop is shown in
 

Figure B-7. For analysis purposes, the equivalent math model for the
 

tau jitter tracking loop is the same as that for the delay lock loop,
 

with the exception of the error discriminator.- Essentially, the error
 

voltage is generated by correlating the received code with a reference
 

code which is alternately advanced and delayed (jittered) by Td bits,
 

and phase detecting the resultant signal with the square wave voltage
 

which jittered the reference code. This error discriminator ismodeled
 

as shown-in Figure B-8. -By calculating the error signal gain, A, and
 

the output noise power for this discriminator, some of the results of
 

the.delay lock loop analysis based on Figure B-2 may be used.
 

For the purpose of analysis, the jittering of the reference code
 

- is accomplished by means of a switching function U(t), which has the
 

folldwing properties:
 

I 
1. U(t) = 0 0 Tj 2Tj 3Tj -­

2. U(t) 11 - U(t)
 

'3. <U(t)> = > 0.5 

N 
 UN

4. U(t U(t), U(t) = U(t); N 0,1,2,... 

5. U(t) Ut = 0. 

The jittered reference PN code is denoted by
 

a ( t+ TV0(t ) = a(t+T 2 - Td) U ( t) - 2 +Td) U(t) 

so that the correlator output isgiven by
 

) + n ( t ) ] [ a ( t + TVl ( t ) =[/ 2 - d ) U( t ) - Aa(t +l a ( t + T2 + Td ) Ut01 
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The reference for the phase detector is the jittering signal and is
 

denoted by
 

V2(t) = Ut) - U(t) 

The output of the phase detector is given by
 

V3t) = Vl(t)V2(t)
 

= [S a(t+4lc )+n(t)][a(t+T2- Td )U(t) - a(t + r2 +Td) Ut)][U(t) - Ut) 

= a(tTl)a(t+- 2 -rd)UMt _ a(t+z 2 +Td) U(t) I 
+ n(t) [a(t+T 2 -Td) U(t)2 - a(t+T2"+d)"Ut)2 (B-37) 

The average value of the phase detector output, V3 (t), is the discrimi­

nator error voltage,
 

2
Vt) = <Na-t+El)[act+m 2-zd)U(t) - a(t+r 2+rd) U(t) I> 

q2 LAT- &- RCAT+ Td) (B-38) 

The quantity inside the square brackets is recognized as being the same
 

discriminator characteristic as the delay lock loop. Thus, as before,
 

the error signal gain, A, for the math equivalent model is given by
 

A = d ECA- -Td)BL - R(A±Td)Bj 
dT 2AL ALI -r 0 

= v/S R'(Td)BL (B-39) 

Since the discriminator shown in Figure B-8 is a linear system, it is
 

possible to find the relationship between the noise density at its input
 

and at its output by finding the relationship between the input and
 

output noise power. The noise power in the output isfound by squaring
 

V3(t)and averaging. Thus,
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<V3(t)> (subscript n indicates noise componentof V3(t))
 

= l(t) ( t+T - Td) 2 U ( t ) 2 + a(t+T2 +Td)2 U(t) 

+ 2a(t +T2 -Td) a(t±T2 + Td) U(t)Ut> 

2,Td)2 U(tat)2E(t+T U(t) + a(t+ 2+T) - \>B-

Since the noise isbandlimited by the receiver filter,
 

4(t+ T d)> = <(t+ 2 +Td > = R(0)BL 

and (B-40)'reduces to
 

PNout =<(t)2>R(O)BL. (B241)
 

since 
P~in = (t)2>. 

We find that the noise power out of the tau jitter discriminator is 

related to the noise power in by 

PNout = PNin R(O)BL 

so that by considering the noise inthe same bandwidth
 

N = No R(O)BL (B-42)
 

where N0 is the input noise power spectral density. Thus, from (B-4),
 

the spectral density for the tracking error for the tau jitter tracking
 

loop isgiven by
 

SAm) = KF( )/jw NR(O) (B-43) 

Upon substituting (B-14) into (B-43), the tracking error spectral
 

density isfound to be
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2(w) - H(jj NA2
AT NoR(O)BL (B-44)
 

and since A for the tau jitter loop is given by (B-39), (B-44) reduces
 

to
 

N0 R(O)BL
S[Ad)L 2 IH(j) I 

2 

Thus, the variance of the tracking-error is found to be
 

0 ­2 d 2 


N0 J iHJ~2 dw 8-6 

S[R:( d)BLJ 0
 

NO BL R(O)BL ­

SER'(Td)BL] 2 

so that the rms tracking error for the tau jitter loop is given by
 

1 R(O)BL
Arrms S/NoBL R BL 
 (B-47)
 

4.0 ' TAU JITTER TRACKING LOOP PERFORMANCE AND COMPARISON
 
WITH DELAY LOCK LOOP PERFORMANCE
 

The rms tracking error for the tau jitter tracking loop (B-47)
 
is shown plotted in Figure B-9. A bandlimiting factor of B= 1.5 was
 
used since that value is typically used in PN systems. As can be seen,
 
the error increases as Td' the jitter displacement, decreases. The
 
dependence of ATrms on Td is better'illustrated by the.plot of ATrms 
versus Td shown in Figure B-10. This inverse relationship between Td
 
'and Atrms is the opposite of the relationship for the delay lock loop,
 
where ATrms decreases for decreasing Trd" This performance difference
 
is obvious from comparing (B-25) and (B-47). However, a better under­
standing of the performance difference between the two loops is
 
obtained from comparing what happens to the input noise in each of
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the "discriminators." In the delay lock loop, as Trd becomes smaller,
 

the noise at the output of each correlator becomes more correlated with
 

the other channel's noise. Thus, as Td - 0, the noise in each channel
 

becomes the same, so that the subtractor is subtracting the noise from
 

itself and the noise output becomes zero. If the noise approaches zero,
 

it is obvious that the tracking error also approaches zero. (However,
 

due to bandlimiting and practical considerations, this does not actually
 

happen in hardware loops.) The tau jitter loop, on the other-hand, does
 

not subtract noise from itself since it time-shares (time multiplexes)
 

a common channel between the advanced and delayed signals. Furthermore,
 

as Td becomes smaller, the slope of the bandlimited autocorrelation
 

curve decreases and since the error signal gain is given by this slope,
 

the performance of the loop decreases. The error signal gain for the
 

delay lock loop also decreases as Td gets smaller; however, this is
 

offset by the decrease in effective loop noise.
 

The degradation of tracking performance for a tau jitter loop
 

relative to a delay lock loop and a conventional phase locked loop is
 

shown plotted in Figure B-ll. The plot is a function of rd, with B=].5 .
 

Since it is sometimes the practice to make Td small (around 0.1 bit)
 

so that the correlator output may also be used for data demodulation,
 

it is obvious that much better tracking performance may be obtained
 

from the delay lock loop.
 

5.0 EFFECTS OF CHANNEL UNBALANCE ON DELAY LOCK LOOP PERFORMANCE
 

In view of the superior tracking performance of the delay lock
 

loop, it is worthwhile considering the effects of channel gains and
 

time delay differentials on tracking error. Figure B-12 shows a delay
 

lpck discriminator model having a differential time delay of T in one
 

channel and a differential amplitude gain of K in the other channel.
 

This is merely the general case of the delay lock loop analysis
 
=
given in Section B-l, where T 0 and K 1. Thus, it is easy to show
 

that the rms tracking error for the loop having the discriminator shown
 

in Figure B-12 is given by
 

1 (I+K2) R(O)BL-2KR(2T+A)BL
ATrms -S/NoBL KR(T)BL- R(-T+A)BL (-48)
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By comparing the performance specified in (B-25) with that specified by
 

(B-48), the effects of A and K may be evaluated. These effects are
 

shown tabulated inTable B-1.. It seems reasonable that, through good
 

engineering design, the gain differential should be no greater than
 

1 dB and the time delay differential should be no greater than 10% of­

the time displacement of the reference code, Td . From Table B-T, it
 

can be seen that this results in 10% increase in the rms tracking error
 

or approximately 1 dB performance degradation.
 

Table B-1. Effect of Gain and Delay Differentials
 
on Delay Lock Loop Tracking Error
 

Percent Change
 
T/ Td (%  K (dBj -r (bits) Of Atrms 

0.1 0.01 10 12 

0.1 0.05 50 65
 

1.0 0.01 10 15 

1.0 0.05 50 71
 

6.0 'CONCLUSIONS
 

The.analysis of clock tracking error in a pseudonoise spread
 

spectrum system shows that a delay lock loop is preferred over a tau­

j-itter loop because the achieved error is smaller. An optimum corre­

lator separation exists for the delay lock configuration, essentially
 

-'equal to the magnitude of the noise-induced error for the wideband
 

case. With a filtered signal, the choice of correlator separation is
 

not critical, and a wider separation eases implementation problems
 

associated with balance of the two correlator channels.
 

The tau jitter loop with large jitter is not practical because
 

of the degradation of the carrier tracking loop, which was not included
 

in this general analysis. With small jitter, the degradation compared
 

with delay lock is substantial.
 

The clock trackin? loop can be treated as a second order loop
 

of specified bandwidth within the linear tracking range (or quasi­

linear tracking range).
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APPENDIX C
 

LOSS OF LOCK AND REACQUISITION PERFORMANCE
 
OF CARRIER TRACKING LOOPS
 

1.0 	 INTRODUCTION
 

In GPS navigation systems, the user must, in addition to measur­

ing range, measure range rate and receive satellite ephemeris data.
 

A carrier tracking loop enables range rate to be determined precisely
 

by recovering carrier doppler. It also may be used to demodulate a
 

phase shift keyed (PSK) data waveform. To successfully perform these
 

functions, the carrier loop must retain lock with high probability and
 

reacquire in a short time period with high probability.
 

The conditions under which the carrier tracking loop must reliably
 

track include low signal-to-noise ratio and high user dynamics, i.e.,
 

high acceleration and acceleration rate (jerk). A typical acceleration
 

profile is a ramp in acceleration, starting at zero acceleration at tO
 

and leveling off at a constant value A at time tI, i.e., a pulse in
 

jerk t0 - t1 wide andof amplitude A/t0 - t1 . Such dynamics require
 

large loop bandwidths to retain loop lock, whereas the low signal
 

energy-to-noise density ratio (E/No) requires narrow loop bandwidths
 

to retain loop lock.
 

2.0 	 LINEAR MODEL
 

A linear theory model of a generalized phase lock carrier loop
 

is first developed to determine an optimum bandwidth to minimize total
 

loop tracking error, i.e., noise jitter error plus dynamic error. This
 

bandwidth is a basis for the selection of bandwidths used in a digital
 

computer Monte-Carlo simulation of the carrier tracking loop.
 

It is desirable to minimize the total loop error, defined here
 

as
 

E = 	 KoN + Ge(t) (C-l) 

where K equals statistical confidence factor, by proper selection of w
 

The standard deviation of the noise error, aN' is given by the familiar
 

expression
 



141
 

-N (C-2)
.C/N0 BL 

where
 

C = received carrier power'(watts)
 

No = noise power density (watts/Hz)
 

BL = one-sided loop noise bandwidth (Hz):
 

= 0.53 w. (second order)
 

= 0.843 wn (third order).
 

The loop dynamic error, 6 (t), isdefined by the expressions 
e 

ee(S)= 
 $2 (second order)
TSTS 2 + n + 2 (C-3) 

6ee S3
(S) 
 d r . ( -,
 
S3 + 2 w S2 3 (third order). (C-)
=.(S


1+ S n S w2 S + nn 

By differentiating E with respect to wn and setting the result
 

equal to zero, the optimum bandwidth nop't for a given set of.condi­

tions may be found. By substituting wnopt back into (C-I), the minimum
 

loop error is found. If this isdone for a pulse in jerk (A) input,
 
=
it is appropriate to set t = for the second order loop and to set t
 

equal to the value which maximizes ee (t)for the third order loop.
 

When this isdone, plots of E versus K for the second and third order
 

loops are obtained, as shown in Figure C-1. These plots are for the
 
=
specific case of C/N0 25 dB, jerk= 10 G/s for 0.6 second and carrier
 

frequency= 1.6 GHz. Since these plots are obtained from a linear model
 

of an essentially nonlinear system, the statistical confidence factor K
 

ischosen fairly large, i.e., K=3. Then wnopt =31 for the third
 

order loop and wnopt= 90 for the second order loop. Thus, a starting
 

point for the selection of bandwidths for a Monte Carlo simulation of
 

the carrier-tracking loop has been established.
 

3.0 MONTE CARLO SIMULATION
 

The carrier tracking loop is a nonlinear system during loss of
 

lock and reacquisition. Therefore, the determination of its perform­

ance isnot amenable to the usual analytic techniques. For this reason,
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a Monte Carlo digital computer simulation of a Costas carrier tracking
 

loop and a phase lock carrier tracking loop was performed. The Costas
 

.carrier tracking loop was considered first, since it offers the advan­

tage of enabling a completely suppressed carrier waveform, such as
 

bi-phase PSK, to be transmitted, thus wasting no power in the trans­

mission of a phase reference. However, a Costas loop is essentially
 
a squaring loop and thus isexpected to give degraded performance at
 

low signal-to-noise ratios. For this reason, a phase lock carrier
 

tracking loop is also considered. Use of the phase lock loop, however,
 

necessitates the transmission of an unmodulated carrier reference to
 

enable data demodulation. A block diagram of the Costas loop as it was
 

simulated is shown in Figure C-2.
 

The simulation was implemented on the computer by means of
 

linear difference equations for I/S and F(S) and the appropriate non­
linear phase detector characteristics. Since the Costas and phase
 

lock carrier tracking loops have identical linearized model transfer
 

functions, the difference equations developed apply to either loop.
 

To simulate the phase lock carrier loop, the inphase channel input to
 

the third multiplier shown in Figure C-2 ismerely set equal to 1.
 

If the carrier loop loses lock due to a loss of signal strength,
 

it isdesirable that it reacquire while in the track mode. It is
 

necessary to know the maximum frequency (velocity) offset that can
 

occur and still have the loop reacquire quickly. The Monte Carlo
 

simulation discussed above was utilized to determinethis. For this
 

simulation, the loop was started with a random phase angle-and the
 

frequency offset in question. As before; the lock detector consists
 

of making a threshold decision on the cos (e-§) term.
 

4.0 SIMULATION RESULTS
 

The loss of lock cumulative probability distribution curves for
 

the third order Costas and phase lock loops which were obtained from
 

the simulations are shown in Figure C-3. The input dynamics are also
 

shown; C/N0 is a Parameter. It can be seen that the phase lock loop
 

has approximately 6 dB better performance than the Costas loop. The
 

loss of lock distribution curves for the second order loop are also
 

shown in Figure C-3. It can be seen that the third order phase lock
 

loop has approximately 4 dB better performance than the second order
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loop for the dynamics considered. It is interesting to note that the
 

optimum bandwidth found from the simple linear model agrees closely
 

with the optimum bandwidth found by varying the simulation loop band­

width, thus demonstrating the usefulness of the linear model bandwidth
 

selection method.
 

The reacquisition time cumulative probability distribution curves
 

for the third order phase lock loop are shpwn in Figure C-4. It can
 

be seen that, as the input frequency offset becomes much larger than
 

the loop bandwidth, the acquisition time in the track mode increases
 

to an impractical value for a GPS navigation-satellite user.
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Figure C-1. Optimum Loop Bandwidth and Minimum Loop Error
 



144 

MSAMPLSYNC 

2
Figure C-2. Digital Costas Loop o
 
.? IS 0t 

DYNIAICS 

I -42
.0 (0-6))
3r

R to 

/__- o.24'60 - -ICO°"TA 
i .4 Hz' o .60SEC 

303 

(COSr -TAS -- I -13ZlO - n ,  

2
--fPIIASE• {K
 

40
 

a P b D
F -o 


200 dd)31
4 0 SO
 

IA K(SHSEC 

2os isrbuin
uuaiePoaiid
Figure ofLc do3 




145 

5.fpsO "V 

: 

0. . 7 

Ps 
0,25B 

4 . 
TISECS)


Time Cumulative 
Probability
 

Acquisition
Figure C-4. 
 Curves, 3rd Order Loop
 
Distribution25 rad/se)
= (Li n 



-SHUTTLE GPS RECEIVER DEFINITION AND PERFORMANCE STUDY
 

%Prepared by
 

LINCOM CORPORATION
 
P. 0. BOX 2793D
 

Pasadena, CA 91105
 

for
 

AXIOMATIX
 
13900 Panay Way
 

Marina del Rey, CA 90291
 

.Under
 

Subcontract No. AX770801GH
 

,October 10, 1977
 

TR-1078-0178
 

c1).r
 



in 	 0Mt 

CONTENTS
 

Page
 

1.0 	 INTRODUCTION 1
 

5
2.0 	 THE SHUTTLE GPS NAVIGATION CONCEPT 


3.0 	 THE SHUTTLE GPS RECEIVER 8
 

10
3.1 GPS 	Signal Characteristics 


11
3.2 Shuttle GPS Receiver Functions 


3.3 Shuttle GPS Receiver Operating Requirements 	 13
 

3.3.1 	 A~quisition Requirements 14
 

3.3.2 	Data Acquisition Requirements 14
 

3.3.3 	Shuttle Signal Dynamics 15
 
3.3.4 	Shuttle GPS Carrier Loop Static
 

Phase Error Build Up In Second 15
 
and Third Order Loops 15
 

Costas 	Loop Phase Jitter 15
3.3.5 

3.3.6 	 Costas Loop Loss of Lock Characteristics 21
 
3.3.7 	Shuttle GPS Code Loop Performance 21
 

for Second and Third Order Loops o21
 

3.3.8 	Aiding In the Shuttle GPS R/PA 27
 

4.0 	 SHUTTLE GPS' RECEIVER OSCILLATOR SELECTION -30
 

31
4.1 Instantaneous Frequency Model 


4.1.1 	 Environmental Degradations of Frequency

Stability 32
 

4.1.2 	Phase-Noise Effects Due to Vibration 36
 

4.2 	Effect of Oscillator Instabilitfes on Range 36
 
Measurement and Carrier Phase Referencing
 

5.0 	 SHUTTLE GPS R/PA OSCILLATOR SURVEY 38
 

REFERENCES 	 45
 



1.0 INTRODUCTION
 

Preliminary studies concerning the application of the
 

NAVSTAR Global Positioning System (GPS) to Shuttle navigation
 

have determined that this system could significantly improve
 

Shuttle navigation performance particularly during critical
 

mission phases. This report addresses certain aspects of the
 

probl'em of defining a Shuttle navigation receiver based
 

upon the approach of taking advantage of current GPS Receiver
 

Processor Assemblies (R/PA) presently under development.
 

Figure 1-1 provides a summary of current GPS user equipment
 

developments.
 

Inorder to baseline the Shuttle GPS navigation system
 

characteristics several performance requirements must be
 

defined. These include: (1)Shuttle Dynamics, (24 TTFF
 

(Time-to-First-Fix), (3)Reacquisition Time, (4)Range and
 

Range Rate Measurement Accuracy, (5)J/S Requirements,
 

(6)Navigation Accuracy Requirements, and (7)Equipment
 

Stabilization Time. Inaddition, the R/PA configuration,
 

including size, weight and power requirements, must be
 

defined. At present, there exists several receiver
 

configuration options which must be considered in defining
 

the baseline Shuttle GPS R/PA. These are summarized in
 

Table 1-1. It is alsd noted that the key issues associated
 

with the R/PA development are:
 

(1) Shuttle R/PA to be Developed from Existing GPS
 

Equipments.
 

(2) Minimize R/PA Complexity to Fit Shuttle
 

Configuration. Jh. _
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GPS USER EQUIPMENT DEVELOPMENTS
Figure 1-1. 
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Table 1-1. SHUTTLE GPS RECEIVER CONFIGURATION OPTIONS
 

MAJOR FUNCTIONAL OPTIONS 

SATELLITE CHANNELS 

TRACKED SIMULTANEOUSLY 

(1 or 4) 

L1 FREQ. ONLY 

L, IL2 DUAL FREQ. 

USE OF C/A or P SIGNAL 

IMU/BARO AIDED 


NO IMU AIDING 


NAV FUNCTION IN RECEIVER 


NAV FUNCTION IN CENTRAL 

COMPUTER 


COMPUTER
 

PARAMETERS AFFECTED
 

RECEIVER CHANNELS
 

TTFF AND AJ
 

ACCURACY FOR
 

IONOSPHERE
 

ACCURACY, AJ, AND
 

ACQUISITION TIME
 

INTERFACES AND
 

JAMMING MARGIN
 

RECEIVER-COMPLEXITY
 

INTERFACES AND
 

CABLING ,MEMORY
 



(3) Optimize Performance
 

(a) TTFF 

(b) Reacquisition Time
 

(c) Accuracy
 

(d) J/S Capability
 

(4) Design R/PA to Fit Weight, Volume and Power Constraints
 

of Shuttle.
 

(5) Receiver Configuration Options
 

(a) Single/Multiple Channel
 

(b) Hardware/Software Receiver
 

(6) Cost
 

In this report preliminary results are presented which
 

pertain to the performance analysis and requirements of the
 

R/PA's carrier and code tracking loops designed to track
 

the GPS signal characteristics received at the Shuttle
 

using current best estimates of the Shuttle signal dynamics.
 

Both aided and unaided loops are analyzed and their dynamic
 

tracking performance is compared with that of second and third
 

order loops. Design point loop parameters assumed in the
 

analysis are typical ofthose found in the Magnavox GPSPAC
 

and X set. The problem of Shuttle GPS R/PA oscillator
 

selection is considered and an oscillator mathematical model
 

is presented add parameterized in terms'of vendor specifications.
 

In addition, a survey of current oscillator technology, applicable
 

to the Shuttle GPS application, is presented. Finally, the on­

orbit multipath problem is'determined to be of no major concern.
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Itappears that further work must be performed before the
 

Shuttle navigation requirements are complete. Once these
 

are complete a baseline Shuttle navigation system can be
 

defined that includes a R/PA selected from current available
 

technology for use or modification.
 

2.0 	THE SHUTTLE GPS NAVIGATION CONCEPT
 

The GPS concept requires accurate knowledge of the position
 

of a satellite versus time and the transmit times of signals
 

from these positions. Each satellite carries an atomic clock
 

with stabilities oft the order of 1 part in1013 per day. This
 

clock isused to generate timing for the dual frequency
 

pseudorandom noise (PRN) spread spectrum UHF navigation signals
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which the satellites radiate continually. These navigation
 

signals, see Table 2-l,contain information regarding the
 

satellite ephemerides and clock behavior. Geographically
 

dispersed monitor sets permit precise tracking of the satellites,
 

and a master control'station (MCS) predicts their future
 

positions as well as the future behavior of the clock carried
 

by each satellite. The MCS insures that the satellite clocks
 

are synchronized within a few nanoseconds. The control segment
 

periodically uploads this information into each satellite's
 

memory. Each satellite can then continuously transmit its
 

position and system time. Assuming the Shuttle had an
 

accurate clock, synchronized to system time, it could
 

measure the precise time a signal from a satellite was
 

received and thus determine the time difference between
 

transmission and reception. By multiplying this time difference
 

by the speed of light, the Shuttle could determine the distance
 

or range from the satellite. By listening in this manner to
 

three satellites, the Shuttle position would be defined by the
 

intersection of three spheres of the determined radii.
 

centered at each satellite.
 

Unfortunately, equipping the Shuttle with a sufficiently
 

accurate clock and synchronizing itto the satellite's time
 

would be prohibitively expensive and cumbersome. To
 

circumvent this difficulty, itcan be equipped with a
 

fairly inexpensive crystal clock. The satellite messages
 

continuously update information relating to the performance
 

of the clock. The Shuttle then listens to four satellites
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Table 2-1. NAVSTAR GPS Satellite Signal Transmission.
 

RF Signal Levels*
 

Transmission Bands Modulation Rates Phase I - Min Received
 

Frequency MHz P-Code C/A Code Data P-Signal C/A Signal
 

L 1575.42 10.23 Mbs 1.023 Mbs 50 bps -163 dBW -160 dBW
 

L2 1227.6 10.23 Mbs N/A 50 bps -166 dBW N/A
 

*Referenced to an 0 dBiC antenna
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(selected from those in view to optimize satelite-to-user geo­

metry) and essentially solves four equations in four Unknowns
 

(three time-difference-of-arrivals for range and one time
 

correction factor) to compute this three-dimensional position
 

and system time.
 

To utilize the satellite clocks properly in determining
 

range to the Shuttle, and thereby its position, the refraction
 

effects on path length of the radio transmission must also
 

be known. Hence, two radio frequencies with different
 

propagation properties measure the ionospheric delay and
 

other medium effects. In addition, Shuttle velocity inform­

ation is extracted from the system by noting the doppler
 

frequency shift of the signals from each of the "tuned-in"
 

satellites.
 

The expected performance of a well designed system slated
 

for 1984 could be:
 

Position (M) Velocity Time 

Horizontal JVertical M/S nsec 

50% of Time 5 7 0.10 11 

90% of Time 9 10 0.22 27
 

Position and velocity "fixes" in three dimensions plus time 

can be derived by the Shuttle equipments. 

3.0 	 SHUTTLE GPS RECEIVER
 

The Shuttle'GPS receiver is responsible for extracting the
 

pseudo range and range rate data from the GPS satellite trans­

mitted signals. The receiver concept.used for this study has
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been to consider the ultimate performance achievable with two
 

types of GPS receivers. These include the sequential and non­

sequential receivers.
 

A sequential receiver extracts ranging data from each.of
 

four selected satellites ina sequential manner. The receiver
 

actually breaks P-code lock from Satellite No. 1 and reacquires
 

Satellite No. 2, then No. 3, and so on. Using a P-code fast
 

time share or sequencing rate, the P-code generator can be
 

positioned very close to the upcoming-transmitted P-code
 

position by taking advantage of "fly wheeling" action. If
 

acquisition cannot be routinely performed, a P-code search is
 

initiated and the signal found. The sequence of events required
 

to acquire and track four satellites falls into five categories:
 

(1) Shuttle oscillator warm up.
 

(2) Estimate of time and position is fed into computer.
 

(3) Shuttle computer selects four satellites to
 

navigate.
 

(4) Shuttle/GPS receiver searches, acquires and tracks
 

the signals from the four satel-lites.
 

(5) Pseudo-range and range rate ismeasured by acquiring
 

a full frame of valid data from each.
 

The time required to perform the above operations is called
 

the "Time-to-First Fix" and is a performance measure of great
 

concern.
 

It is important to keep inmind that the sequential
 

concept is feasible and has been demonstrated to perform inrecent
 

hardware tests. The particular design features which will be
 

of concern in'the Shuttle/GPS application are those of:
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(1) Incorporating the GPS signal design.
 

(2) Provide operational flexibility.
 

(3) Packaging.
 

The idea of employing a sequential tracking receiver isthat
 

performance can be for equipment costs, weight, volume, and
 

power consumption; however, in this study cost constraints
 

have not been a prime consideration. On the other hand, other
 

requirements which must be accounted for in the design of the
 

Shuttle/GPS receiver have been of great concern. In fact, key
 

requirements which impact the design of the ShuttleYGPS
 

receiver (and must be defined) are:
 

(1) TTFF's (Time to first fix).
 

(2) Accuracy.
 

(3) Operational Control of the Receiver.
 

(4) Power Consumption.
 

(5) Commonality of the Shuttle/GPS Receiver Design.
 

(6) Size and Weight.
 

(7) Modularity for Maintenance.
 

3.1 GPS Signal Charact6ristics
 

The GPS signal design is described in: "System Specification
 

For the Navstar Global Positioning System" Phase I, April, 1974t
 

All GPS satellites will transmit two L-Band carriers L1 andL 2.
 

Each satellite transmits on the L carrier a short clear acquisi­

tion PN code (C/A code) and L2 a long length protected acquisition
 

PN code (P-code). Each satellite transmits a unique C/A code
 

from amongst a family of 511 bit Gold codes. A single P-code is
 

transmitted from each satellite on bot4iL l and L2 carriers.
 

*Also see Table 2-1 of this report.
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ismddulo-2 added to the C/A code at S0 bits per second.
 

3.2 Shuttle GPS Receiver Functions
 

The Shuttle GPS receiver is required to receive and process
 

the signals received from the satellite. Itmust perform the
 

following functions during signal acquisition:
 

(1) Receive and Amplify both the L and L2 carriers.
 

(2) Acquire, demodulate and track the C/A code from
 

a desired satellite selected by the computer.
 

(3) Maintain code track.
 

(4) Acquire and track the carrier after code
 

demodulation.
 

(5) Obtain symbol sync.
 

(6) Detect data on the C-code and send data to computer.
 

(7) transfer code demodulation from the satellite C/A
 

code to the P-code using a priori information from the
 

computer.
 

(8) Extract pseudo-range data from either the demodulated
 

P-code or C/A code.
 

Implementation of the reciever to perform these functions depends
 

greatly on the GPS signal design.
 

The requirement for receiving two L-band carriers dictates
 

that the Shuttle GPS receiver must provide an RF processor
 

capable of handling both carriers, The carrier is selected
 

by the computer.
 



The C/A and P-codes are phase modulated onto two orthogonal
 

carriers which fully suppress the L1 carrier. The P-code is bi­

phase modulated on the L2 carrier. To reconstruct the carrier
 

for tracking,the C/A or P-code must be demodulated by cross
 

correlating the received signal with the locally generated reference
 

code. A code tracking loop is required to acquire and track the
 

code phase for range measurements.
 

Acquisition of the code is accomplished by searching for
 

possible code correlation between the received and locally
 

generated codes. A lock indicator will be needed to indicate
 

when the two codes are synchronized. The code tracking loop
 

will acquire and track the received code.
 

After the C/A and P-codes have been removed from the
 

carriers, the carriers can then be acquired by some form of
 

suppressed carrier tracking loop. Data will still remain on the
 

C/A channel; therefore, the carrier is still suppressed. A
 

suppressed carrier loop of the Costas type will be required for
 

carrier recovery and data demodulation.
 

Once the carrier and code have been acquired and the
 
/ 

carrier and code loops begin tracking, the encoded data may
 

be detected. A symbol synchronizer is needed to establish and
 

maintain bit sync and a integrate and dump circuit required to
 

detect the data bits.
 

Since the data is differentially encbded at the satellite
 

to overcome sign ambiguity in the receiver, the bit transitions
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are provided to the computer; the computer will use this
 

transition information to reconstruct the transmitted bits.
 

Since the P-code is encrypted by the satellite by a transec
 

device to provide an additional measure of security against
 

unauthorized users, the Shuttle GPS receiver must be able to
 

accept a device which will encript the reference code prior to
 

P-code demodulation. The receiver must then maintain the
 

security of the information which is obtained after decoding
 

the encryption.
 

The Shuttle, GPS receiver will be required to simultaneously
 

or sequentially track at least four of the satellites. If the
 

receiver is designed to operate in a sequential mode, it must
 

provide storage for the state of the P-code for each of the
 

four sateliites being timeshared. This allows for rapid re­

acquisition of a timeshared satellite.
 

The PN code clock rates establish the bandwidth of the
 

Shuttle GPS receivers IF bandwidth; in particular, the P-code.
 

Currently, the P-code clock rate is .10 MHz and is phase coherent
 

with the transmitter frequency for both the L and L2 carriers.
 

The receivers RF front end processor must have a sufficiently
 

wide bandwidth to pass the 10 MHz P-code spectrum. The C/A
 

code clock rate is approximately 1 MHz.
 

3.3 Shuttle GPS Receiver Operating Requirements
 

The received signal strength as well as the received
 

signal-to-noise ratio, C/N0 dB-Hz, is critical to the design
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optimization of the Shuttle/GPS receiver. The receivers
 

operational modes affected by the received signal strength
 

include:
 

.(I) Acquisition Node
 

(2) Tracking Modes
 

(3) Data Acquisition Modes.
 

3.3.1 Acquisition Requirements.
 

The initial operations the receiver must carry out
 

include:
 

(1) Power up oscillator.
 

(2) Input time and position estimate incomputer.
 

(3) Computer must select appropriate satellites.
 

(4.) Search and acquire codes and carriers.
 

(5) Detect a frame of data from each satellite.
 

(6) Track the codes and carrier and measure pseudo­

range and range rate.
 

The time duration of this process isof primary interest and
 

the C/N0 acquisition threshold isof interest.
 

3.3.2 Data Acquisition Requirement.,
 

The design point bit error probability is taken to be
 

l0-5 or less. The energy per bit to noise ratio for coherent
 

•BPSK signal detection is approximately 9.6 dB. The data
 

rate is 50 bits per second or 17 dB-Hz so theminimum C/N0
 

required is26.6 dB-Hz, without allowing for CNR degradations
 

due to despreading, carrier noisy reference losses, hardware
 

losses, etc. The margin estimated for the effects appears to
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be on the order of 5.4 dB which leads to the C/N0 requirement 

for data acquisition of C/N0 = 32 dB-Hz. 

3.3.3 	Shuttle Signal Dynamics.
 

Preliminary estimates for the Shuttle signal dynamics have
 

been obtained via the telephone. These are summarized in Fig.
 

3.3.3-1. Figure 3-3.3-2 surmarizes the dynamics interms of
 

frequency offsets. Most recently LinCom personnel held discussions
 

with Jim Kirkpatrick of JSC and new data will be made available
 

-concerning worst case flight dynamics for OFT 1 during ascent,
 

on-orbit and during descent.
 

3.3.4 	Shuttle. GPS Carrier Loop Static Phase Error
 
Build Up in Second and Third Order Loops
 

During flight operation, the static phase error in the
 

receiver due to the orbit characteristics given in Fig. 3.3.3-1
 

and 3.3.3-2, is of great concern. The reason is that static phase
 

offsets reduce the receivers threshold characteristics and increase
 

the probability of losing phase lock. Figures 3.3.4-1 and 3.3.4-2
 

summarize results associated with the static phase error build up
 

during ascent and descent and on orbit. Both second and third
 

order loops have been considered. From these results we note
 

that a third-order loop without aiding is essentially as
 

effective as a second-order loop with aiding. Clearly an unaided
 

second-order loop will not provide adequate tracking performance.
 

3.3.5 	Costas Loop Phase Jitter.
 

There are several factors which cause jitter in the carrier
 

recovery loops. Figure 3.3.5-1 summarizes the jitter arising in a
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Figure 3.3.4-1. STATIC PHASE ERROR BUILD UP DURING ASCENT AND DESCENT 
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Figure 3.3.4-2. .STATIC PHASE ERROR BUILD UP ON ORBIT
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Figure S.3.5-1..PHASE JITTER 
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35 Hz Costas loop when automatic frequency control (AFC).is
 

provided and illuminated. It appears that the AFC degrades
 

loop threshold by approximately one dB. Ina loop with AFC, a
 

C/N0 of 29.6 dB-Hz gives 15 degrees of jitter. This value of
 

C/N0 islower than the minimum required to give a 10-5 BER.
 

The margin appears to be on the order of 2 to 3 dB.
 

3.3.6 Costas Loop Loss of LWekCharacteristics.
 

Figure 2-3.6-1 summarizes the loss of lock characteristics
 

of the-Costas loop. Notice that for a mean slip time of 10 seconds
 

the value of C/N0 required is 29 dB-Hz when the static pha~e­

error iszero. For 20 degrees of static phase error approximately
 

31.2 dB-Hz isrequired in order to provide a mean slip time of
 

10 seconds.
 

3.3.7 Shuttle GPS Code Loop Performahcefor2nd and3rdorder-Loops.
 

Inthis section a summary of the PN code loop tracking
 

performance is given. Figures a3.7-1 and 3.3.7-2 summatize'the
 

code loop static chip error versus time.' Both second and third­

order code tracking loops have been investigated., Notice that a
 

second-order loop with aiding or a third-order loop will be
 

required inorder to minimize the effects of code loop static
 

chip offset.
 

Figure 3.3.7-3 summarizes the mean time to first loss of
 

code lock versus C/N0 for two different code loop tracking
 

bandwidths. From this figure one concludes that the loop
 

bandwidth selected will be determined by code loop jitteras
 

proposed to its loss-of-lock properties.
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Figure 3.3.7-1. CODE.LOOP STATIC CHIP ERROR VS TIME
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Figure 3.3.7-4. 
 Range Error vs C/N0.
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Figure 3.3.7-4 demonstrates code loop range error achieve­

ment with loop bandwidths of 1.6 and 20 Hz respectively. Notice
 

for a Toop bandwidth of 20 Hz the range error is approximately
 

15 at C/N0 = 30 dB-Hz. The GPSPAC receivers code tracking
 

loop bandwidth is 1.6 Hz and gives rise to a range error of
 

approximately 4 feet when C/N = 30 dB-Hz.
0 


3.3.8 Aiding inthe Shuttle GPS R/PA
 

Integration of other navigation sensors into the Shuttle
 

GPS Receiver Processor Assembly (R/PA) can provide fruitful
 

benefits relevant to receiver threshold reduction, signal
 

acquisition and reacquisition performance limitations and
 

antijam margins. The concepts used incurrent technology
 

are to employ aiding to provide a priori knowledge of vehicle
 

dynamiGs such that receiver tracking bandwidths can be reduced.
 

The immediate benefit isto provide increased jamming immunity.
 

Aiding provides augmented navigation capability which gives
 

continuity during GPS outages and optimal performance with
 

GPS. Italso establishes a priori search domains inspace
 

and frequency to reduce acquisition time and for reacquisition.
 

In summary, aiding auxiliary sensors provides the capability
 

of narrowing all tracking and acquisition loop bandwidths
 

providing improved jamming immunity and recovery. The
 

significant Shuttle equipment parameters which are affected 

by aiding from an auxiliary sensor as summarized by Martin D ] 

is provided inTables 3.3.8-1 , 3.3.8-2 and 3.3.8-3 along
 

with functional dependency which governs the performance
 

parameter and a description of what utility aiding would
 



Table 3.3.8- 1. Primary Aiding Parameters
 

Parameter 	 Basic Functional 


Jamming immunity Receiver noise bandwidth 


Range and range Receiver noise bandwidth 

rate tracking
 
accuracy
 

Allowable vehicle 	Receiver noise bandwidth 

dynamics 	 and both tracking 


accuracy and jamming 

immunity as a function of 

receiver tracking
 
threshold
 

Table 3.3.8-2. Secondary Aiding Parameters.
 

Parameter 	 Basic Functional 


Normal mode Range and velocity domain 

acquisition uncertainty 


Direct mode Time domain uncertainty 

acquisition 


Range and velocity 

uncertainty same as
 
for normal mode
 

Time-to-First Acquisition time as 

Fix defined by above
 

parameters
 

Dominating term is
 
data word demodula­
tion interval
 

Reacquisition 	 Time, range, and 

velocity uncertainty 


Utility for Aiding
 
By Sensor
 

Narrow noise bandwidth
 
to increase the signal­
to-noise ratio by de­
creasing dynamics of
 
signal
 

Same as above
 

Extension of maximum
 
dynamics of Vehicle
 
without-breaking receiver
 
tracking
 

Utility for Aiding
 
By Sensor
 

A priori navigation and
 
search window
 

A priori navigation and
 
time, range, velocity
 
search window indication
 

Same as above
 

A priori navigation
 
and time for range 	and
 
velocity search window
 
indication
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Table 3.3.8-3. 


Parameters 


Weight, size, 

power (including 

interfaces 


Cost 


Reliability, 

redundancy 


Restrictive Aiding Parameters.
 

Basic Functional 


Mechanical, electrical 

form and fit factors 


!-


Increasing dollars with 

increasing sensor 

complexity 


Decreased receiver ­

hardware offers re-

duction in failures 


Secondary degraded 

navigational accuracy
 

Utility for Aiding

By Sensor
 

Generally a penalty
 
unless sensor is already
 
available or predicated,­
for other uese
 

No penalty if already
 
predicated. Cost
 
penalty if sensor must
 
be added.
 

Dead reckoning provided
 
as degraded mode oper­
ation and reduction
 
in basic receiver
 
acquisition cost
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provide relative to the particular parameter.
 

4.0 SHUTTLE GPS RECEIVER OSCILLATOR SELECTION
 

The selection of an oscillator for the Shuttle GPS
 

receiver is constrained by many factors. Oscillator require-­

ments are greatly affected by the operational scenarios of the
 

Shuttld. The multitude of factors affecting the oscillator
 

requirements include:
 

(1) Oscillator warm-up characteristics as they affect
 

frequency accuracy required to meet initial signal
 

acquisition.
 

(2) Specification of the required short-term stability
 

and aging rate necessary to meet direct C/A or P
 

subsequent fix performande accuracy and PN code
 

tracking loop performance.
 

(3) Frequency stability degradation due to environmental
 

factors and how this affects signal acquisition.
 

(4) Mechanical vibration induced frequency modulation
 

of the crystal oscillator and the resultant
 

system performance degradation.
 

(5) Oscillator phase noise as it effects carrier and
 

code tracking loop rms phase errors.
 

(6) Oscillator phase noise as it effects cycle slips.
 

Inwhat follows we examine oscillator technology available
 

for Shuttle navigation system procurement; in particular,
 

the many parameters such as warm-up time, fractional
 

frequency stability, power, size and weight are summarized.
 

Quantification of the effects due to oscillator phase noise
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components is also presented.
 

1J Instantaneous Frequency Model
 

The deterministic component of instantaneous frequency
 

f(t) at any time t can be modeled as
 

f(t) = f0 + aft () 

where f0 is the nominal initial frequency, fr is the reference
 

frequency, a is the aging rate (rate of frequency shift). In
 

the above equation, "a"describes the average rate of change
 

of the oscillators output frequency, assuming that environ­

mental parameters are constant. Since f(t) differs from
 

fr the clock based on the oscillator model will gain or lose
 

time because each cycle of the oscillation is shorter or
 

longer with respect to the previous one. For the case
 

when a is positive, f(t) is increasing with respect to fr
 

and each cycle of the oscillator is short by
 

A = (2) 

For a short time period of At seconds there accumulates
 

f(t)At cycles of difference. The incremented time error
 

can therefore be expressed as
 

As = -1 f t)Pft)At (3) 

and in the limit
 

de = f(t) I) dt (4)
( ,r
 

so that the total accumulated error is found to be
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•i~if0-fr a2 	 5
 
C + 0 r--t +at 	 C 

where
 

so = initial 	time error
 

Af = fo-fr = initial frequency error
 

a = oscillator aging rate
 

t = total elapsed time
 

Equation (5)can be expressed in terms of a fractional frequency
 

stability Af/f0 via
 

Atf t + at22/2 	 (6)+ f
 

and when the random phase fluctuations Vi(t) of the oscillator
 

are added in we have the following model for the Shuttle
 

oscillator phase accumulation, i.e.,
 

(t) 	 = 27[ 0 +'4ft + at2/2] +(t) (7) 

0 f 

Therefore to evaluate performance one only needs to specify 

so0 , (Af/f), a, and the power spectral density of the 

stationary process t(t). Such data is usually provided in 

the oscillator specification provided by the vendor. 

4.1.1 Environmental Degradations of Frequency'Stability.
 

Environmental effects on the Shuttle navigation system
 

oscillator such as temperature variations, vibration, g­

force loading, shock, -oad changes and voltage changes can
 

all contribute to the fluctuations in the crystal oscillators
 

output frequency. Usually these perturbations are modeled
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as independent, normally distributed random variables.
 

Therefore the combined rms perturbation is the square root
 

of the sum of the variances of the individual perturbation.
 

The effects of the environmental factors tend to degrade
 

the fractional frequency stability according to the root
 

sum square law
 

M 

22---1 

Af Z Af) (9) 
n=l
 

aif 
m th 

change due to the m degrading factor. For a particular 

vendor oscillator, af can.be evaluated using data provided 

in the specification. A typical set of oscillator environmental 

effects are summarized in Table 4'.1.1-1. The resultant uAf deviation for 

the parameters provided inTable4t1.ll- is easily found to be 

Af = 24 Hz (10) 

at the L-Band frequency of 1.575 GHz. The three sigma value 

is 72 Hz. This says that the environment will cause the 

crystal oscillators output frequency to randomly change in 

accordance with a Gaussian probability density of 3d value 

of 72 Hz worst case. The mean squared'value of the phase jitter can 

be evaluated when the power spectral density of the oscillator 

instabilities is found. For both the carrier and code loops 

the mean squared value of the phase noise jitter is easily 

found from 

Here 0 represents the standard deviation of the induced
 

2 I j S()2l-H(im) 2d(I) 
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Table 4.1.1-1. 


Parameter 


Temperature 


Fluctuations
 

Vibration 


Shock 


G-Force 

Loading
 

Voltage 


Change
 

Load Change 


Environmental Effects Which Degrade
 
Oscillator Performance.
 

i Af at-Induced 

Stability Change j L-Band (Hz)
 

x 10-9  
1 -20°C to 550C 1.6
 

2 x 10-9/G 2.5 5.0
 

2 x 10-9/G 11 g 22.
 

1 x 10- 9/G 2.5 g 2.5
 

1 x 10-9 5% 1.6
 

1 x 10-9 10% 1.6
 



where H(io) is the closed loop and S( w) is the power spectral
 

density of the oscillator phase fluctuations. For a second
 

order loop this transfer function is given by.
 

4 
l-H(io)I 2 

w44 (12) 

n 

where wn represents the loop natural frequency. A typical
 

GPS oscillator can be modeled by a power spectral density that
 

decreases from 10-10 to 10-14 rad 2/Hz the frequency range of
 

2 Hz to 2 kHz. Fot frequencies Ireater than 2 kHz the power
 

spectral density is flat at 10-14 rad 2/Hz. Substitution of
 

this power spectral density into (11) and performing the
 

integration leads to
 

2 	 4.65 x 10-5 f W2/3 dw (13)
 
1/3
1 	

0 l+ 
44
 

n 


which reduces to
 

- rad 2a 4.2 x 10	 (14) 

when use is made of the integral
 

xn-I­
fm
f x- dx = 	 (15) 

n
l~ m sin(nir/m) 	 (5
 

Assuming further an equivalent C/N0 of 26 dB-Hz and a BL 20 Hz
 

then-the mean squared phase jitter due to noise is 22 .052
 n
 

rad
22. The total phase jitter in the carrier tracking loop
 

therefore becomes
 



inX6711i1 

2 2 2
 a = .053 rad2 

4.1.2 Phase Noise Effects Due to Vibration
 

Mechanical vibration induces frequency modulation on
 

the receivers reference oscillator cry~tal is of concern
 

because of the error component induced into the Costas loop.
 

The magnitude of the error signal which is induced by incidental
 

frequency modulation can be related to an equivalent signal­

to-noise degradation and loss-of-lock degradation.
 

Acceleration of a crystal oscilldtor in the Shuttle GPS
 

receiver would cause its output frequency to change, for
 

example, by K(a/g) Hz. Here a/g is the acceleration relative
 

to 32 ft/sec2, K is the constant of proportionality. Typical
 

values of K on any 3 axis X, Y and Z for a good crystal
 

x 10-9 
oscillator range from 10-9 per g to 3 per g. If 	one
 

= 
uses the maximum value of K and the GPS L1 frequency f0 1.66
 

Hz, we have Af b 5 Hz/g. Vibration tests as applied to a
 

receiver usually call for the test signal to be sinusoidal,
 

random or shock and these have to be defined based upon
 

Shuttle operating conditions. Generally speaking, a
 

sinusoidal vibration environment causes a severe problem
 

when the frequency lies in the vicinity of the loop natural
 

frequency. The precise effects can be quantified once
 

system performance requirements and specifications are made.
 

4.2 	Effect of Oscillator Instabilities on Range Measurement
 
and Carrier Phase Referencing
 

The GPS/Shuttle experiment is designed to perform a
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one-way pseudo-range measurement from the GPS satellite to
 

the Shuttle. This is accomplished using the measurement
 

data provided, in part, by the range tracking delay-locked
 

loop. This measurement is degraded by transmitting and
 

receiving oscillator instabilities. The uncertainty
 

introduced in the range estimate due to oscillator instabi.lities
 

alone is related to the variance of the code tracking loop
 

error. To determine the limitation on range accuracy due to
 

oscillator instabilities one needs the GPS code-loop
 

oscillator instability data. The Allan variance versus
 

measurement time is usually provided; however, a spectral
 

plot of the oscillator instabilities is required in order to
 

determine the range accuracy. In addition, the GPS receiver
 

instabilities must also be established in order to provide
 

a complete account of the range accuracy. The phase noise
 

on the carrier recovery loop degrades the range rate
 

measurement and the bit error probability performance and
 

this degradation can be accessed once a particular oscillator
 

is chosen. We will now discuss candidate oscillators for
 

the Shuttle GPS R/PA.
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5.0 SHUTTLE GPS R/PA OSCILLATOR SURVEY
 

In selecting an oscillator to be used for the Shuttle
 

GPS R/PA oscillator several requirements must be considered.
 

These include:
 

(1) Fast warm up or oscillator stabilization time.
 

(2) Minimum power consumption.
 

(3) Low spectral sidelobe phase noise properties.
 

(4) Small size.
 

(5) Required short and long term stability necessary
 

to meet system performance requirements.
 

(6) Minimum cost.
 

During the course of this contract, five potential manufacturers
 

have been identified and information pertaining to oscillator
 

specifications has been summarized. These include:
 

(1) Collins Radio/ Development for ECOM of the high
 

stability temperature.
 

(2) Frequency Electronics Corporation Model FE-22-D0313
 

modified.
 

(3) Austron Model 1120.
 

(4) Hewlett-Packard Corporation.
 

(5) Bendix Corporation's development for ECOM;
 

fast warm-up tactical miniature crystal
 

oscillator.
 

Specifications from the manufacturers for the oscillators
 

listed are summarized in Table 5 l and Figs. 5-1 and 8-2.
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OF POOR QUALITY
 

Table 5-1. Potential Oscillators for Use inShuttle
 

GPS R/PA.
 

Manufacturer
 

Hewlett- I Frequency 
Description Bendix Packard Electronics 

Frequency 	 5 or 5.115MHz 5.0 MHz 5.0 or 5.115 MHz
 

Stabilization Time +3.3x0 8 of +2xl0 of abs +2xl0 8 of abs
 
(at 25°C) abs frequency frequency after frequency after
 

after 1 min. 30 minutes 6 minutes
 

Short Term 	 +IxlO_-I  for +IxlO_-I for +IxlO -I0 for
 
Stability 	 averaging time averaging .times averaging times of
 

of] sec to l'sec to 100 sec 1 sec
 
20 min.
 

Aging Rate 	 +2xlo-10 /week +5xlO-lO day +5xlO10/day
 
after 30 day +l.5xlO-/year after one hour
 
stabilization
 

Warm-Up Power 	 .10 watt max for 8 watts max at 5 watts peak at
 

0.1 min over 250C 	 2500 (2min)
,-40'C to 75°C
 

Continuous Operat- 1250 mw over 3.5 watts at 0.4 watts at 250C
 
ing Power -400C to 750C 250C
 

-
Temperature Stability ±1xlO-8 over +5xlo-.over +lxlO 9 over 
-40°C to 7500 550C to 710C - 7200C to 400C 

Load Stability 	 +1xl0 -9 for 5% +2x]0 -10 for +2xl0 -10 for 5% 
Toad change at T0% load change load change at 
50 ohms at 50 ohms 50 ohms 

-
Voltage Stability 	 I+lxlO -9 for 5% +Ixl0 10 for +2xl0 10 for 10%
 
'oltage change T0% voltage Voltage change
 
-at 12 VDC change at 20 VDC at 12 VDC
 

Acceleration ,_5x0 /g along +xlO/g along +lxlO- 9/g along 
Sensitivity any axis any axis any axis 

Vibration Sensitivity+5xlO-9/g +lxlO +'-xlO 
vibration with- vibra'tion without vibration without 
out vibration vibration isola- vibration isolators 
isolators tors 

estiiy+xO99during -irto/g during -9/g during
 

-
Frequency Shock +5xlO 9/g after +lxlO after +JxlO after 
Stability 5Og, 11 msec 50g, 11 msec 90g, II msec 

Spurious Output 	 Down 90 dB from Down 100 dB Down 80 dB from
 
rated output from rated output rated output
 

6t Z oin-.IQ-Ca 



Table 5.1 


Description 


Harmonic Output 


Phase Noise 

(measured in a 1Hz 

Bandwidth at an 

offset from 5 MHz) 


Volume (in ) 

Weight (oz) 


(Continued)
 

Manufacturer
 

Hewlett-

Bendix. Packard 


Down 30 dB from Down 30 dB from 

rated output rated output 


10 Hz,-llOdB 10 Hz,-120dB 

100 Hz,-l3OdB 100 Hz,-135dB 

10 kHz,-]4OdB I kHz,-145dB
 

10 kHz,-145dB
 

1.0 30 


8 20 


Frequency
 
Electronics
 

Down 40 dB from
 
rated output
 

2 Hz,-lO8dB
 
20 kHz,-l6OdB
 

6.5
 

5
 

A n 



- -

____________________________________________________________ ________ ___________________________________ 

Table 5-1. Potential Oscillators for Use in Shuttle GPS R/PA.
 

Description 


Frequency 


Stabilization Time 

(at 25°C) 


Short Term Stability 


Aging Rate 


Warm-Up Power 


Continuous Operating 

Power 


Temperature Stability 


Load Stability 


Voltage Stability 


Acceleration 

Sensitivity 


Vibration Sensitivity 


Frequency Shock 

Stability 


Spurious Output 


Harmonic Output 


Manufacturer
 

Austron Collins Radio
 

5.115 MHz 5.0 MHz
 

-
+2xlO -8 of abs +IxlO 8 of abs frequency
 
frequency after after 1 minute
 
5 min~tes
 

-
-
+3xlO I for +IxlO I I for averaging
 
averaging time times of 1 sec
 
of 1 sec
 

+lxlO-9/day +2xlO10/day after
 
after 72 hours 30 days stabilization
 
stabilization
 

5 watts peak at 10 watts max for 0.5
 
250C min over -400C to 800C
 

3 watts at 25°C 150 mw over -40'C to
 
" 80 0 C
-
-8 8
+2xlO over +5xlO over -40'C to
 

-200C to -550C 800 C 

+5xl0 9 for 5% +5xlO 9 for 5%
 
Toad change at Toad change at
 
50 ohms 50 ohms
 

-9 ­+5x10 for 10% +5x10 9 for 10% voltage 
voltage change change at 12 VDC 
at 28 VDC
 

+5xlO-9/g along +5xlO0 9/g along any
 
any axis axis
 

+xlO 9/g during +5xlO- 9/g during 
vibration without vibration without 
vibration holato vibration isolators -

+Ixl10 9 after +5xl0 9/g after 
SOg, 11 msec 50g, 11 msec 

Down 80 dB from Down 100 dB from
 
rated output' rated output
 

Down 30 dB from Down 30 dB from
 
rated output rated output
 



-knCom
 

Table 5.1 (Continued)
 

Manufacturer
 

Description Austron Collins Radio 

Phase Noise 10 Hz,-l10 dB 10 Hz, -110 dB 
(measured in 20 kHz,-145 dB 20 kHz,-140 dB 
1 Hz Bandwidth 
at an offset 
from 5 MHz) 

Volume (in3) 19.5 2 

Weight (oz) 9 10 
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Figure5'-1. OSCLAT 

E-a XSET 

TYPE CRYSTAL CRYSTAL 

FREQUENCY 5.115,10923 HHz 5,115 MHz 

WARN UP TIME 30 MIN TO ±1x1O 8 30 MIN TO +2XLO 9 

(SEA LEVEL) (SEA LEVEL) 

FREQUEN1CY STABILITY 3xl -12 FOR I SEC 2x1O-12/SEC 
100 SEC ±1x10-19/24 HRS, 

WEIGHT 26 oz 20 oz 

TEMPERATURE RANGE -20O' TO 500C -20o To 650C 

SIZE 30 IN3 32 IN3 

PEAK POWER 3 MIN @ 10'WATTS 3 MIN @ 35 WATTS 

AVERAGE POWER 1 WATT 3.5 WATT 

PRESSURE 0 TO 30,000 FT, 0 TO 30,COO FT. t 

tCL.-.'~i 



Figure 5-2. OSCILLATOR CHARACTERISTICS
 

OSCILLATOR (FEI DEVELOPMENT MID 78)
 

TYPE CRYSTAL (DOUBLE ORIENTED SC CUT)
 

FREQUENCY 5,115 OR 10,23 MHz
 

TEiPERATURE RANGE -20°C To 500C
 
-9)
WARMUP TIME 5 MIN (LoCK RANGE +3x1O

FREQUENCY STABILITY- 1.2x1O-12 FROM i4TO 1000 SEC 

WEIGHT 8 oz, 
3
SIZE 9 IN


PEAK POWER 10 WATTS FOR 3 MIN
 

AVERAGE POWER 200 mw @ 500C
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