General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-150444) TRIPROPELLANT ENGINE STUDY (Ocketdyne) 34 p HC A03/MF A01 CSCL 21H

N78-10206

Unclas G3/20 52073

-

. .

-

Rockwell International Rocketdyne Division

ASR:7-213

TRIPROPELLANT ENGINE STUDY BIMONTHLY TECHNICAL PROGRESS REPORT

-

NO. 1

NAS8-32613

PREPARED FOR

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

9 OCTOBER 1977

PREPARED BY

D.B. Uheeler

D. B. Wheeler Project Engineer

APPROVED BY

F. M. Ker

F. M. Kirby Program Manager

ROCKETDYNE DIVISION OF ROCKWELL INTERNATIONAL CORPORATION 6633 Canoga Avenue, Canoga Park, CA 91304

- --

INTRODUCTION

The advanced vehicle studies that have been conducted for the NASA indicate the advantages of a high-pressure oxygen/hydrocarbon engine. Single-stageto-orbit vehicle studies also show the potential for engines that operate in dual mode with sequential burn of oxygen/hydrocarbon and oxygen/hydrogen. Feasibility of an engine to operate in dual mode must be determined before committing to a dual-mode vehicle concept.

The Space Shuttle Main Engine (SSME) is a high-pressure oxygen/hydrogen engine that potentially could be modified for a dual-mode operation. Such a modification would minimize development cost of a dual-mode engine by maximizing utilization of existing hardware.

The objectives of this study program are: (1) to investigate the feasibility of a tripropellant engine operating at high chamber pressure; (2) to identify the potential applicability of SSME components in the dual fuel mode engine; (3) to define engine performance and weight of engine concepts for both gas generator and staged combustion power cycles; and (4) to provide plans for experimental demonstration of the performance, cooling, and preburner or gas generator operation.

The study program is for nine months of technical effort followed by a period of a final report (Fig. 1) The study is subdivided into seven tasks including a reporting task.

This study is to investigate various high P_c engine configurations derived from the SSME that will allow sequential burning of LOX/hydrocarbon and LOX/ hydrogen. Both staged combustion and gas generator pump power cycles are to be considered. Engine cycle concepts are formulated for LOX/RP-1, LOX/CH₄ and LOX/C₃H₈ propellants. Each system must also be capable of operating

D NOr MAY END OF TECHNICAL EFFORT MAR APR D 978 FEB D NAU DEC 1111111 \triangleright *unununu* 1111111 111111 D NON 1977 001 \triangleright 111 SEP 4 WEEK BEG. CHAMBER COOLING STUDIES CONTROL REQUIREMENTS DEFINITION COMPONENT TEST PLANS CYCLE POWER BALANCE REPORTING & REVIEWS PRESENT COMPONENT ADAPTIBILITY PROGRAM PLAN FINAL DRAFT MONTHLY REVIEWS 864

TRIPROPELLANT ENGINE STUDY SCHEDULE

0

ORIGINAL PAGE IS OF POOR QUALITY ASR77-213

Rocketdyne Division

Rockwell International

sequentially with LOX/H_2 . Flowrates and operating conditions will be established for this initial set of engine systems and the adaptability of the major components of the SSME will be investigated. The end result will be the identification of high P_c engine system concepts that make maximum use of the SSME hardware and best satisfy the dual mode booster engine system application.

Based on the results of the engine system concept stodies, recommendations will be made for additional testing to compliment the already planned experimental program using the existing test facility and 40K test hardware available at MSFC. A test plan will be prepared to establish the objectives of each additional experimental test phase.

SUMMARY

This first bimonthly progress report covers the work conducted from program. start (22 August 1977) to 30 September 1977. All of the work conducted has been devoted to the first three tasks. Thermochemical equilibrium performance data were assembled to establish the expected performance calculations of the mode 1 engine propellant combinations and thermodynamic and transport data for the products of combustion. Turbine drive gas characteristics were also established. Thrust chamber and nozzle cooling studies have been devoted to the evaluation of H2, C3H8, CH4, and RP-1 as coolants in the existing SSME cooling circuit geometry. All of these candidate coolants are feasible without limiting the desired operating conditions with the exception of RP-1, which would limit the maximum P to 2000 psia. However RP-1 could be used to cool the nozzle only without imposing the chamber pressure limit. Fifteen candidate engine system cycles have been selected and a preliminary engine system balance has been conducted for 12 of these systems to establish component operating flowrates, pressures and temperatures. In general it was found that the staged combustion cycles employing fuel rich LOX/hydrocarbon turbine drive gases are power limited. It is necessary for these systems to operate at turbine inlet temperatures above 2000R or at reduced chamber pressure to achieve a power cycle balance.

TASK I - PERFORMANCE DETERMINATION

In this task propellant performance data, combustion gas thermodynamic properties and turbine drive gas parameters are generated as required to support the other tasks. Main chamber performance predictions for the various mode 1 propellant combinations were predicted based on the JANNAF ODE program which yields theoretical I_s and c*. A table of the predicted theoretical performance for sea level and vacuum operation is presented in Table 1 for the four propellant combinations of interest. The mixture ratio was selected based on peak I_s. Fuel densities are also presented as an

Table 1 .	Fuel De	and	Theoretical
	Performan		

	MAIN CHAMBER MIXTURE RATIO	FUEL P LB/FT ³	I _s S.L.	I _s VAC
0 ₂ /H ₂	6.0	4.4	410	450.4
02/RP-1	2.8	50.0	328	358
02/CH4	3.5	26.4	335.3	368
02/C3H8	3.0	36.6	331.	363

 $P_{c} = 3000$

6 = 35:1

ORIGINAL PAGE IS OF POOR QUALITY

-82

indicator of relative system volumes. Delivered performance is calculated based on assumed efficiencies of $\eta_{c\star} = .98$ and $\eta_{CF} = .9859$ applied to the theoretical performance for the LOX/hydrocarbon combinations and $\eta_{c\star} = .9975$ and $\eta_{CP} = .9859$ for LOX/H₂. In those cases where some hydrogen is injected into the main chamber along with the LOX/hydrocarbon, a mass averaged performance calculation was assumed. A limited number of theoretical tripropellant performance runs have been made which verify the validity of this assumption. Furthe cripropellant performance predictions will be made for additional cases where necessary. In the gas generator turbine power cycles, the turbine exhaust gases were assumed to be directed into the main nozzle at an area ratio compatible with the turbine exhaust pressure and expanded to the nozzle area ratio. The resulting I_s values for the secondary flow are presented in Table 2.

> Table 2. Gas Generator Cycle Secondary Flow Specific Impulse

PROPELLANTS	Is _{SL}	^I svac
0 ₂ /H ₂	248.2	282.7
02/C3H8	122.2	142.7
02/CH4	121.5	141.6

Turbine drive gas characteristics for oxidizer rich and fuel rich conditions are presented in Table 3. The function of γ and pressure ratio is specifically $1 - (\frac{1}{PR})^{\gamma-1/\gamma} \gamma$ and is a measure of the energy available as the gas expands in the turbine. High values of C_p and $f(\gamma, PR)$ tend to minimize turbine flow for a given horsepower requirement.

TASK II - CHAMBER COOLING STUDIES

This task effort will be concerned with providing the heat transfer and cooling analysis support for the selected engine systems to be studied.

()

Table 3	Turbine	Drive	Gas	Characteristics
	т =	2000R		
	PR =	1.6		

Г		LOX	RICH		FUEL RICH			
	MR	Ŷ	с _р	f(Y,PR)	MR	Ŷ	с _р	f(Y,PR)
02/H2	86	1.293	. 296	.1	1.14	1.345	1.78	.113
02/RP-1	33	1.31	.294	.105	.41	1.135	.66	.054
02/CH4	37.5	1.289	.284	.1	.43	1.16	.875	.0627
02/C3H8	34	1.288	.283	.099	.44	1.147	.691	.0584

 \bigcirc

The initial effort was devoted to establishing the feasibility of cooling the SSME chamber and nozzle with the candidate hydrocarbon fuels or hydrogen. Further studies will evaluate LOX cooling, H₂ cooling of an extendible nozzle and any cooling system variations that might offer some improvement to the engine systems being studied.

H2 Coolant with LOX/Hydrocarbon Combustion

The current SSME chamber and 35:1 development nozzle design were analyzed to determine the coolant bulk temperature rise, ΔP , and wall temperatures as a function of H₂ coolant flowrate for LOX/RP-1 combustion.

Two coolant circuits were analyzed. Both use hydrogen as the coolant. The first is an up-pass circuit where the nozzle and chamber are cooled in parallel. The hydrogen is then injected into the chamber and burned with the 0₂ and RP-1. The second circuit is a downpass series circuit with the hydrogen dumped at the nozzle exit. Changes in the chamber coolant channel and nozzle tube geometry have not been considered.

The following conditions have been used for the 02/RP-1 propellants

$$P_o = 3237 \text{ psia}$$

 $T_o = 6512 \text{ F}$
 $\dot{\omega}_g = 1455 \text{ lb}_m/\text{sec}$
 $MR = 2.8$
 $MW = 24.484 \text{ lb}_m/\text{lb}_m-\text{mole}$

The heat transfer coefficient profile for the $0_2/RP-1$ propellant combination is obtained by correcting the SSME $0_2/H_2$ heat transfer coefficient profile uniformly by the flowrate and property ratios as given in the equation following

()

$$h_{g} = h_{g} = h_{g} \frac{k_{2}}{k_{1}} \left[\frac{\omega_{g}}{\omega_{g}} \right]_{1}^{2} - \frac{\mu_{1}}{\mu_{2}} \int_{0.8}^{0.8} \left[\frac{Pr_{2}}{Pr_{1}} \right]^{0.4}$$

where

subscript $1 = 0_2/H_2$ parameters subscript $2 = 0_2/RP-1$ parameters

This is the normally accepted ratioing technique based on Nusselt number correlations. Using this ratio, the 0,/RP-1 heat transfer coefficient is 58 percent of the $0_2/H_2$ heat transfer coefficient. The major factor in the reduction in the heat transfer rate is the lower thermal conductivity (k) of the $O_2/RP-1$ propellant combination. The O_2/H_2 and $O_2/RP-1$ heat transfer coefficient profiles for cle main chamber are shown in Fig. 2. The analogous profiles for the 35:1 nozzle are shown in Fig. 3. The effect of burning the hydrogen coolant with the 0, and RP-1, in the chamber has not been considered in determining these profiles.

The possibility of a carbon layer build up on the chamber and nozzle wall could significantly reduce the heat flux to the coolant. But because of the uncertainty of its sustained existence, the conservative approach is taken and the carbon layer will not be assumed for the engine balance analysis. The effect on the coolant requirement is shown here to show the magnitude of its effect.

For cases where a carbon layer is assumed, the following equation (Ref. 1) is used to calculate the carbon layer resistance.

x/k = e $in^2 - sec - F/Btu$

Coolant bulk temperature rise and pressure drop are calculated using "REGEN" computer program models that have previously been set up for SSME analyses. The pressure drops computed using these models are increased by 10 percent to account for parasitic losses (inlet manifold, exit manifold, etc.). Using the data generated by these models, two-dimensional wall temperatures for the chamber and nozzle are calculated using models that are set up on ORIGINAL PAGE IS the timesharing computer system. OF POOR QUALITY

For the up-pass circuit with the chamber and nozzle cooled in parallel the hot gas wall temperature as a function of flowrate is shown in Fig. 4a. Assuming no carbon coating, the nozzle would require a coolant flowrate of 18.5 lb_m/sec to maintain the same maximum temperature as for the O_2/H_2 SSME flight nozzle. When assuming a carbon coating, the required nozzle flowrate is only 1.5 lb_m/sec.

When assuming no carbon coating, the temperature limiting location for the $0_2/RP-1$ chamber occurs in the combustion zone. To cool this region to the same temperature as in the combustion zone of the $0_2/H_2$ SSME requires a coolant flowrate of 15.3 lb_m/sec. When assuming a carbon coating, the temperature limiting location is in the throat (-1") and requires a coolant flowrate of 10.7 lb_m/sec to cool the chamber to the same temperature as the $0_2/H_2$ SSME.

The coolant bulk temperature rise for the chamber and nozzle is given in Fig. 4b. The coolant pressure drop is given in Fig. 4c. The pressure drop is shown for inlet pressures of 5000,6000, and 7000 psia for both the nozzle and chamber. When assuming a carbon coating, the nozzle pressure drop is extremely low (~2 psi) because of the low required coolant flowrate.

For the downpass circuit with the chamber and nozzle cooled in series, the hot gas wall temperature as a function of coolant flowrate is shown in Fig. 5a. Since it is a series circuit, the minimum required flowrate is controlled by the wall temperature in the throat region of the chamber. Assuming no carbon coating, a coolant flowrate of 19 lb_m/sec is required to maintain the same

Figure 4. Hot Gas Wall Temperature, Coolant Temperature Rise, and Coolant Pressure Drop as Functions of Coolant Flowrate for Up-pass Parallel Coolant Circuits for the SSME Main Combustion Chamber and 35:1 Nozzle

ORIGINAL PAGE IS OF POOR QUALITY

H2COOLANT FLOWRATE (LBM/SEC)

(C)

GRIGINAL PAGE IS OF POOR QUALITY

Hot Gas Temperature, Coolant Temperature Rise, and Coolant Pressure Drop as Functions of Coolant Flowrate for Downpass Series Coolant Circuits for the SSME Main Combustion Chamber and 35:1 Nozzle

temperature in this region as for the $0_2/H_2$ SSME. The cooling in the throat region is hampered by the fact that the benefits of curvature enhancement to the coolant coefficient are not realized in the downpass circuit. The maximum nozzle temperature occurs near the maximum expansion ratio (94") instead of near the nozzle-to-chamber attach point because of the large bulk temperature rise. When assuming a carbon coating, the required coolant flowrate for the downpass circuit is 14.6 lb_/sec.

The coolant bulk temperature rise is shown in Fig. 5b. The coolant pressure drop (chamber plus nozzle) is shown in Fig. 5c, for three inlet pressures. When assuming no carbon coating, the inlet pressure should be maintained to at least near 4000 psia to avoid choking in the coolant channels of the chamber. Additionally, it is desirable to keep the coolant pressure greater than the hot gas pressure in case of a leak through the hot gas wall of a coolant channel.

		Nozzle ŵc	Chamber ŵ _c	Total	Fraction of 02/H2 SSME wc
Up-Pass	No Coating	18.5	15.3	33.8	0.44
Parallel	Coating	1.5	10.7	12.2	
Downpass	No Coating	19.0	19.0	19.0	0.25
Series	Coating	14.6	14.6	14.6	

The coolant flowrate requirements are summarized below.

ORIGINAL PAGE IS OF POOR QUALITY

The up-pass parallel coolf. circuit was selected for the candidate engine system and these results were assumed to be valid for $0_2/C_3H_8$ and $0_2/CH_4$ combustion cases with H_2 coolant. The small differences in the hot gas properties for the three hydrocarbon fuels would have an insignificant impact on the coolant parameters. Additional analysis was conducted for a 4000 psia chamber pressure case to be used with the gas generator cycle engine candidates.

Hydrocarbon Fuel Cooling with LOX/Hydrocarbon

Previous studies (Ref. 2 and 3) have shown that the use of RP-1 as a coolant is limited to approximately 2000 psia chamber pressure because of bulk temperature rise limitations and the resultant coking of the fuel which occurs at 600F. Based on these results it was decided that only CH_4 and C_3H_8 would be considered as a coolant. Studies identical to that previously described for the H₂ coolant were then conducted for these two systems. The results are presented in Fig. 6 through 9, for the 3230 psia chamber pressure conditions. This analysis has also been conducted for a 4000 psia chamber pressure. These results are currently being evaluated and incorporated into the candidate engine system balances.

TASK III CYCLE AND POWER BALANCE

The objectives of this task are to define the cycles and perform cycle power balances to determine the required component flow rates, turbine inlet temperatures and pump discharge pressures based on the pressure losses of the various components. Power cycles to be examined include staged combustion and gas generator.

ORIGINAL PAGE IS OF POOR QUALITY

-

ASR77-213

()

Figure 8. Wall Temperature, Coolant Temperature Rise, and Coolant Pressure Drop for a $P_c=3230$ PSIA 0_2 /CH₄ CH₄ Cooled Up-pass Chamber

> ORIGINAL PAGE IS OF POOR QUALITY

ASR77-213

Previous tripropellant engine application studies have shown that there is an interest in operating these engines in either a series burn or parallel burn configuration as illustrated in Fig. 10. The series burn engine requires the sequential burning of a hydrocarbon fuel (model) followed by H₂ in mode 2 and this is the engine classification of primary interest to this study. The tripropellant engine used in the parallel burn configuration does not require the sequential burning of two fuels but may use the second fuel as a coolant to avoid a possible inadequate cooling capability of the primary fuel. This later type of engine is actually a simplified version of the dual mode engine and these single mode engines can be derived from the dual mode engines formulated in this study.

The approach taken in this study was to establish some ground rules for the single mode and dual mode engines. Based on these ground rules (Fig. 11 and 12) a set of candidate engine cycle and propellant/coolant combinations were established for preliminary analysis. This initial set of fifteen candidate engine systems is presented in Fig. 13. Actually a large number of system combinations could be considered but this would result in a list of candidate cycles far too large to be studied within the limits of the funds. The selected fifteen systems were considered to be representative of the power cycles, propellant combinations and cooling techniques of interest. It was also anticipated that if through the study of these systems certain features were found to be particularly advantageous, this may suggest an additional system concept to be considered. One other general ground rule that was used in establishing this list of candidate systems, was to minimize the use of H₂ in the mode 1 operation.

Engine balances were conducted for 12 of the 15. The engine power balance for engine system concepts No. 10, 11 and 14 were delayed awaiting heat transfer information. The major component flowrates, turbine inlet temperature and pump discharge pressure requirements that were established in this analysis are presented in Table 4. In general, it was found that turbine inlet

TRIPROPELLANT ENGINE OPERATING MODES

ï

ORIGINAL PAGE IS OF POOR QUALITY

ASR77-213

Figure 10

Rocketdyne Division

CANDIDATE SINGLE MODE CYCLE SELECTION **GROUND RULES FOR**

i

4 ...

STAGED COMBUSTION GAS GENERATOR

PROPELLANTS

LOX/RP-1, LOX/CH4, LOX/C3H8

• P_c = 3000 TO 4000 PSIA

23

- € = 35.1
- · COOLANTS

CH4, C3H8, H2

- TURBINE INLET TEMP TO 2200°R
- ALL PREBURNERS EITHER FUEL OR LOX RICH

Rockwell International Rocketdine Division

905-482

CANDIDATE DUAL MODE CYCLE SELECTION **GROUND RULES FOR**

i

 POWER CYCLE TYPES: STAGED COMBUSTION GAS GENERATOR

ORIGINAL PAGE IS OF POOR QUALITY

- PROPELLANTS MODE 1 LOX/RP-1, LOX/CH4, LOX/C3H8 MODE 2 LOX/H2
- ALL ENGINES CAPABLE OF OPERATING IN A SERIES BURN
- Pc = 3000 TO 4000 PSIA

24

- € = 35:1 MODE 1
- = 150:1 MODE 2
- COOLANTS: LH2, CH4, C3H8, LO2
- •TURBINE INLET TEMP TO 2200°R
- ALL PREBURNERS EITHER LOX OR FUEL RICH

vigure 12

ASR77-213

CANDIDATE ENGINE CONCEPTS

2 o

0

,0

CONCEPT NO.	PROPELLANTS	CYCLE TYPE	COOLANT	
-	LOX/RP-1/H2	sc	H2	ALL PREBURNERS FUEL RICH LOX/RP-1
2	LOX/RP-1/H2	S.C.	H ₂	ALL PREBURNERS OX RICH LOX/RP-1
ю	LOX/CH4/H2	SC	H2	ALL PREBURNERS FUEL RICH LOX/CH4
4	LOX/CH4/H2	SC	H ₂	ALL PREBURNERS OX RICH LOX/CH4
ß	LOX/C3H8/H2	SC	H2 -	ALL PREBURNERS FUEL RICH LOX/C3H8
9	L0X/C ₃ H ₈ /H ₂	s.c.	H ₂	ALL PREBURNERS OX RICH LOX/C3H8
7	LOX/RP-1/H2	G. G.	H ₂	FUEL RICH G.G. LOX/H2
80	LOXH4/H2	G.G.	H ₂	FUEL RICH G.G. 1.0X/H2
5	LOX/C3H8/H2	GG	H ₂	FUEL RICH G.G. LOX/H2
10	LOX/RP-1/H2	s.c.	02	ALL PREBURNERS FUEL RICH LOX/RP-1
11	LOX/RP-1/H2	SC	02	ALL PREBURNERS OX RICH LOX/RP-1
12	LOX/CH4/H2	sc	CH4/H2	ALL PREBURNER FUEL RICH LOX/CH4
13	L0X/C.3H8/H2	SC	C3H8/H2	ALL PREBURNER FUEL RICH LOX/C3H8
14	LOX/CH4/H2	G.G	сн ₄ /H ₂	FUEL RICH G.G. LOX/CH4
15	LOX/C ₃ H ₈ /H ₂	G.G.	C ₃ H ₈ /H ₂	FUEL RICH G.G. LOX/C ₃ H ₈
Rockwell International			Figure 13	S.G Staged Combustion G.G Gas Generator

Rockeldyne Division International

605-482

õ

ASR77-213

PC 3230 3235 508.6K 508.7K 508.7K	65K 65K 508.6K 2,/CH4 2,/CH4	3230 464.4K 507.6K 0.2 ^{C3H} 8		7000						!
S.L. THRUST S.L. THRUST VAC THRUST VAC THRUST PROFELLANTS COOLANT PROFELLANTS COOLANT TURAISE DRIVE FLUID N.R. COOLANT TURAISE DRIVE FLUID N.R. COOLANT TURAISE DRIVE FLUID N.R. 1. URAISE DRIVE FLUID N.R. COOLANT TURAISE TRIVE N.R. TURAISE TRIVE TURAISE LASSE N.R. TURAISE TRIVE TURAISE LASSE TURAISE LASSE TURAISE TRIVE N.R. TURAISE LASSE TURAISE LASSE TURAISE LASSE TURAISE LASSE TURAISE LASSE TURAISE LASSE TURAISE LASSE TURAISE LASSE TURAISE LASSE N.R. TURAISE LASSE TURAISE LASS	65K 68.6K 22/CH4 32/CH4	464.4K 507.6K 02 ^{C3H} 8	200	nont	0007		32.30	3230	4000	3230
WAE THRUST 500K 508.4K 508 PREFELLANTS 02/RF-1 02/GH, 02/GH, 02/GH, COOLLANT 15 13.3 13.9.2 3.35 3.35 TURBISE DRIVE FLUID 02/RF-1 02/GH, 02/GH, 02/GH, 02/GH, N.K. 55.1 58C 333.8 339.2 339.2 339.3 331 371 371 N.K. 1TURBISE DRIVE FLUID 02/GH,	08.6K 2/СН ₄ 12 2/СН ₄	507.6K 02 ^{C3H} 8	470K	470K	470K		470K	470K	470K	470K
PROFELIANTS 02/NP-1 02/CM4 0	22/CH4 12 22/CH4	02 ^{C3^H8}	502K	504K	\$03.5K		516.2K		Sout	515K
COOLAST H2	12 2/CH4		02/RP-1/H2	02/CEL, 2	02/C3H8H2		0,/CH		2/C388	02/C3E8
TUTASISE DRIVE FLUID 0,2,PR-1 0,2,CH, 0,2 N.E. 15 5.1 SEC 339.2 339.2 339.3 I, S.L., SEC 333.8 339.2 339.2 339.2 339.3 I, S.L., SEC 333.8 339.2 339.2 339.2 339.2 339.2 I, S.L., SEC 333.8 339.2 339.2 339.2 339.2 339.2 FREEGREES/GG, LB/SEC 0,2 2006 2250 200 200 PREEGREES/GG, LB/SEC 0,2 7331.2 148.7 945 0,2 1313.2 148.7 945 225 25 PUEL 22.2 235.2 235 235 235 0,2 1171.3 187.3 158.9 334 34 0,2 1711.3 197.3 158.9 334 34 0,2 1171.3 187.3 158.9 34 34 0,2 1171.3 197.3 158.9 34 34 0,2 1171.3 187.3 158.9 34 34 <	2/CH4	H2	H ₂	E,	H2		G		 C ₃ H ₈	C3E8
W.R. 2.8 3.5 3.5 3.5 Isserting sets 313.6 319.2 319.2 319.2 Isserting sets 362.5 371 371 371 Trunds set 362.5 371 371 371 Freed sets 362.5 371 371 371 Preed sets 2250 2000 2200 2000 Preed sets 223.0 2000 2252 25 Nucl. 131.2 148.7 945 02 FUEL 223.2 252 25 42 223.6 1060 161.2 459 178.5 956.8 161.2 459 178.5 171.3 83.0 186.9 34 42 171.3 167.3 158.9 34 42 171.3 197.3 158.9 34 42 171.3 197.3 158.9 34 43 171.3 187.3 158.9 34 43 171.3 187.3 158.9 34 42 171.3 197.3 158.9 34 43 171.3 197.3 158.9 34 42 14 34		0,/C,Ha	0,/H,	0,/H.	0,/87		"Ro, J		6,/C,8,	0,/C,B,
Is s.t., sEC 313.6 319.2 339.1 Is vac, sEC 562.5 371 371 THEBURNERS/GG, LB/SEC 562.5 371 371 PREJURNERS/GG, LB/SEC 733.2 148.7 945 02 2000 2252 252 255 02 202 2011 313.2 348.7 02 22.2 252 255 255 03 22.2 252 255 255 03 117.3 83.0 186.9 1171.3 197.3 158.9 334 12 396.8 161.2 459 13 197.3 197.3 186.9 14 171.3 83.0 186 02 171.1 197.3 197.3 137 148.7 34 34 14 30.0.3 252 252 18 171.3 83.0 186 18 197.3 197.3 197.3 18 197.3 197.3 34 18 34 34 34 19 1045 1045 1085 19 1045 1045 1085 10 1045	1.0	3.0	2.8	3.5	3.0		3.5		3.5	3.0
1 v.k., SEr 30.2550 371 371 1 THEBURENS/GG, LB/SEC ~22550 2000 2250 2000 PREEURARENS/GG, LB/SEC 7331.2 148.7 945 0 2 22.2 252 25 * 22.2 252 25 25 * 22.2 252 25 25 * 2 22.2 252 25 * 0 22.2 252 25 * 0 22.2 252 25 * 0 22.2 252 25 * 0 197.3 186.9 34 * 0 171.3 83.0 186 * 0 171.3 83.0 186 * 0 197.3 197.3 198 * 0 1171.3 83.0 186 * 0 1171.3 83.0 186 * 0 1171.3 83.0 186 * 0 1171.3 83.0 186 * 0 165 1065 106 * 0 164 1045 108 *	339.2	335.7	329.7	336.9	334		324		313.8	320
1 1 148.7 2000 2250 2000 PRAEMENS/GG, LB/SEC 02 7311.2 148.7 945 02 FUEL 22.2 252 25 131.2 148.7 945 121.2 22.2 252 25 122.2 252 25 25 123.2 252 25 25 123.2 161.2 459 124 34 34 125 171.3 83.0 126 171.3 83.0 186 127 187.3 158.9 334 127 187.3 158.9 334 126 171.3 83.0 186 127 187.3 158.9 334 127 187.3 1371 137 126 171.3 83.0 186 127 137 137 34 128 36 1045 1085 108 127 1379 1371 137 127 14 34 34 127 34 34 34 127 137 137 137 127 134 34	111	366.7	352.3	361.3	358		355	-	336.6	351
PALEUTANERS/GG, LB/SEC 02 133.1 148.7 945 FUEL 22.2 252 252 255 E 22.2 252 255 255 E 22.2 252 255 255 Matter 131.2 148.7 945 E 22.2 252 255 255 Matter 1371.3 158.9 334 Matter 1371.3 83.0 186 Matter 1371.3 83.0 186 Matter 1371.3 83.0 186 Matter 1045 1045 108 Matter 1045 1045 108 Matter 1045 1085 108 Matter 1045 1045 108 Matter 1045 1045 108 Matter 1045 1045 108 Matter 1045 1045 108 Matter 1045 1085 108 Matter 1045 1085 108 Matter 1045 1075 137 Matter 1045 134 34 Matter 1379 137 134 Matt	2400	2000	2000	2000	2000		2000	2375	2000	2000
02 FUEL 133.1 148.7 945 FUEL 22.2 252 25 62 22.2 252 25 62 22.2 252 25 62 186.8 161.2 459 713.1 187.3 158.9 334 7 171.3 83.0 186 7 171.3 83.0 186 62 187.3 158.9 334 82 171.3 83.0 186 82 187.3 158.9 34 82 187.3 187.3 186.9 34 82 171.3 83.0 186 34 82 1045 1045 1085 108 90 14 34 34 34 90 1045 1045 108 108 90 1045 1045 108 108 90 1045 1045 108 108										
FUEL 22.2 252 25 25 ^B 2 -	945.9	887.8	13.9	15.8	14.7		650.2		33.6	376
^B 2 -	25.2	26.1					17.6		76 4	22.8
⁴ тика. ик. La/sac 396.8 161.2 459 02 187.3 187.3 158.9 334 12 1371.3 83.0 186. 34 ¹² 171.3 83.0 186. 34 ¹² 171.3 83.0 186. 34 ¹² 171.3 83.0 186. 34 ¹² 171.1.3 83.0 186. 34 ¹² 171.1.3 83.0 186. 34 ¹² 171.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		,	17.4	19.7	18.3				,	
02 FUEL 396.8 161.2 459 334, 187,3 161.2 459 334, 187,3 459, 187,3 459, 334, 34 459, 34 450, 34 34, 34 34,										
FUEL 187.3 158.9 334. ^H 2 171.3 83.0 186. ^H 2 171.1.3 83.0 186. ^H 2 1065 1085 108 ^H 12 (TOTAL), LB/SEC 34 34 34 ^H 2 100.13 252 252 252 ^H 2 (TOTAL), LB/SEC 36 34 34 34 ^H 2 TOTAL, LB/SEC 36 34 34 34 ^H 2 TOLAL, LB/SEC 34 34 34 34 ^H 2 T.C., LB/SEC 34 34 34 34 ^H 2 T.C., LB/SEC 34 34 34 34 ^H 2 DISCHARGE PRESSURE 7331 7331 7331 7331 7331	6.65	459.4	18.5	18.9	18.5		378.6		62.2	337.6
^{H2} <th< td=""><td>334.8</td><td>267.2</td><td>5.4</td><td>8.5</td><td>6.9</td><td></td><td>295</td><td></td><td>47.9</td><td>461.2</td></th<>	334.8	267.2	5.4	8.5	6.9		295		47.9	461.2
w coolANT, LB/SEC 34	186.3	187.2	7.5	7.5	7.5				,	,
monometry Log (1.77AL), LB/SEC 1045 1085 1085 monometry LB/SEC 300.3 252 252 main (TOTAL), LB/SEC 300.3 252 252 main (TOTAL), LB/SEC 34 34 34 main T.C., LB/SEC 34 34 34	34	34	34	34	34		97.5		140000	1400048
	1085	1063.5	1056	1084	1058		1128		1074.5	1011
-H2 (TOTAL), LB/SEC 34 34 34 34 -H2 TOTAL, LB/SEC 1379 1371 137 TOTAL, LB/SEC 34 34 34 34 -H2 T.C., LB/SEC 34 34 34 34 -H2 T.C., LB/SEC 34 34 34 34 PLMP DISCHARGE PRESSURE 7331 7331 7331 7331 7331	252	286.5	335.7	277	314		322		423.3	367
2 1379 1371 137 1011. LB/SEC 34 34 34 111. LB/SEC 34 34 34 112. LC LB/SEC 34 34 34	34	34	34	34	34					
Luz T.C., LB/SEC 34 34 34 34 34 14 14 14 14 14 14 14 14 14 14 14 14 14	1371	1384	1425	1395	1407		1450		1497	1468
PUMP DISCHARGE PRESSURE 7331 7331 7331 733	34	34	17	14.3	15.7				,	,
LOX P.B. 7331 7331 733							-		1	
216 276 316 316 ATC	1331	7331	5106 6-	5106	, 9015		1123		5106	1123
FUEL P.S. 7331 7331 733 CHANGER 4123 4123 412	1331	7331	5106	9015	5106		6064		5107	5064
M2 4000 4000 400	000,	0007	6084 /	084 v	1 - 7809					

Table \vec{X} . Gandidate Engine Concepts

ORIGINAL PAGE IS OF POOR QUALITY

pressures exceeding 2200R were required to achieve a power balance on the fuel rich precombustor systems (no. 1, 3, 5, and 12 and 13). This is a result of the lower energy available per pound turbine drive gas when comparing LOX/hydrocarbons with LOX/H₂. It is felt that these turbine inlet temperatures exceed the capability of the currently available hardware. Even ignoring the high turbine temperatures, the system is undesirable as no margin exists (all of the available fuel is used in the preburner) to compensate for the possibility of reduced turbopump performance. As a result only LOX-rich precombustors will be considered for those systems. The information shown for concept 12 and 13B reflect that change. Engine schematic improvements are being studied along with the Present Component Adaptability studies that have been initiated. These schematics will be finalized during the next report period.

TASK IV CONTROL REQUIREMENTS DEFINITION

During this task, control methods, their requirements, and the location of control valves in the flow schematic will be studied for the candidate engine system concepts. No work was scheduled or conducted on this task during this report period.

TASK V SSME COMPONENT ADAPTABILITY

This task is organized to interact with the efforts of Tasks 1 through 4 to evaluate the possibility of adapting the already designed and proven SSME components to the candidate systems. This effort has just been initiated in the areas of combustion chambers and pumps. There are no results to report this period.

27

TASK VI COMPONENT TEST PLANS

The results of Tasks I through V will be utilized to identify critical areas for experimental component evaluation. Based on this information test plans will be generated for additional testing to compliment the current NASA test plans for 40K hardware with LOX/RP-1. This effort is planned to start in mid-January 1978.

CURRENT PROBLEMS

0)

There were no technical problems during this report period.

WORK PLANNED

Study effort in Tasks I, II and III should be nearing completion by the end of the next report period. A review for NASA on the completed analysis is planned shortly after. The Task I effort will continue on a low level to provide main chamber performance data and turbine drive gas characteristics as needed to support the cycle analysis. Cooling studies will be continuing in the areas of 0_2 cooling of the nozzle and chamber and H_2 cooling of an extendible nozzle for mode 2 operation. In Task III, the preliminary power balances will be completed and the flow schematics will be finalized. Any cycle improvements that are apparent will be incorporated. SSME component adaptability studies will be conducted for combustion devices, turbines and pumps.

TRIPS AND MEETINGS

A study kick-off meeting was held at the Marshall Space Flight Center on September 20, 1977 with Dale Blount, the contract monitor and other concerned NASA personnel. Rocketdyne presented their intended approach to

i

the study and obtained general agreement. There was a NASA request that we concentrate on the series burn, dual mode tripropellant engine concepts and provide information on the single mode engines only as its available from the main effort of the study.

1

.

PROGRAM PERFORMANCE AND EXPENDITURES

Program performance and expenditures as of 30 September 1977 are as shown in Table .

Table 5 . Program Expenditures, Tripropellant Engine Study

> Month Ending September 1977 NAS8-32613 (GO 9886)

Total Cumulative			
Cost to Date	ETC	EAC	Percent Complete
8.8K	33.1K	41.9K	21

0)

.

1

()

i

SYMBOL NOMENCLATURE

Po	Combustion Pressure
r _o	Combustion Gas Temperature
Ŵ	Combustion Gas Flowrate
MK	Combustion Gas Mixture Ratio Oxidizer-to-Fuel
MW	Molecular Weight of Combustion Gases
hg	Hot Gas Heat Transfer Coefficient
ĸ	Gas Thermal Conductivity
μ	Gas Viscosity
Pr	Prandtl Number
х	Distance
G	Mass Velocity

REFERENCES

- R-3909 NAS8-4011, Investigation of Cooling Problems at High Chamber Pressures, May 1963
- Wagner, W. R. and J. M. Shoji, Advanded Regenerative Cooling Techniques for Future Space Transportation Systems, AIAA Paper No. 75-1247
- Luscher, W. P. and J. A. Mellish, Advanced High-Pressure Engine Study for Mixed Mode Application, Final Report NASA CR-135141, January 1977.

0