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PREFATORY NOTE
 

This report describes research on the Stanford Gyro
I
 
Relativity program from 1963 until January 1977 when NASA
 

Grant 05-020-019 was terminated and replaced by Contract
 

NASB-32355.
 

The history of the Gyro Relativity program has been
 

unusual in a number of ways both as a physics experiment
 

and as a NASA program. From the beginning we have had to
 

meet the challenges and pitfalls that await everyone who
 

enters the difficult but exciting field of experimental
 

gravitation. James Clerk Maxwell in one conversation
 

recorded by Joseph Larmor said that part of his purpose
 

in writing his Treatise on Electricity of Magnetism after
 

fifteen years' research in that field was to "educate
 

himself by presenting a view of the stage he had reached."
 
In so far as we may compare the activities of a research
 

team with that of an individual of genius we may say that
 

our purpose also in writing this long report has been in
 

part self-education, and for this reason we have not hesitated
 

to set down candidly our failures and mistakes as well as
 

our successes. We hope it may be as useful to others as it
 

has been to us.
 

Typing of the manuscript is due to Deborah A. Legge.
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A. INTRODUCTION
 

The idea that a gyroscope in orbit around a massive body
 

would undergo a relativistic precession due to its orbital
 

motion was first discussed by A. D. Fokker in 1921(1) following
 

earlier calculations by W. de Sitter and J. A. Schouten. Fokker
 

showed that the Earth's axis has a precession, additional to
 

that deducible from Newton's theory, amounting to 0.019 arc­

sec/year, due to the curvature of space produced by the sun's
 

gravitational field. The motion of a spinning particle in
 

General Relativity was afterwards investigated more completely
 

by A. Papapetrou and others, and in 1960 L. I. Schiff (2) showed
 

that a gyroscope in orbit around the Earth would undergo a
 

precession
 

0 3GM (R A v) + GI [3R  R)

2c2R' - -- c2R3 R2 1
 

where R and v are the coordinate and velocity of the gyroscope
 

and M, I and w are the mass, moment of inertia and angular
 

velocity of the central body. The first term represents the
 

spin-orbit coupling between the gyro and the Earth, commonly
 

known as the geodetic precession. In a 400 nautical mile orbit
 

it amounts to a drift-rate of the gyroscope of 6.9 arc-sec/year,
 

measured with respect to the framework of the fixed stars. The
 

second term represents the spin-spin coupling between the gyro­

scope and the Earth's rotation. It has sometimes incorrectly
 

been called the Lense-Thirring effect. A better term would be
 

the "Schiff motional effect."* In a satellite following an
 

ideal 400 nautical mile polar orbit the motional effect on an
 

appropriately oriented gyroscope is +0.05 arc-sec/year. In
 

an equatorial orbit the effect is -0.1 arc-sic/year. The +
 

and - signs denote whether the rotation is in the same or
 

opposite sense as the Earth's rotation. Calculations similar
 

to Schiff's but less complete were made at about the same
 

time by G. E. Pugh.
(3 )
 

*S. Weinberg, Gravitation and Cosmology (New York 1972), p. 237,
 
calls it the hyperfine term.
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In 1961 Professors L. I. Schiff and W. M. Fairbank
 

of Stanford Physics Department submitted to NASA a short
 

non-funding proposal for an experiment to measure the
(4)
 
relativistic precession of an orbiting gyroscope. The
 

proposal followed discussion with Professor R. H. Cannon
 

of the Stanford Department of Aeronautics and Astronautics.
 

A NASA-sponsored conference on tests of General Relativity
 

was held at Stanford in August 1961. In 1961 Mr. (later
 

Professor) B. 0. Lange of the Aero-Astro Department proposed
 

a technique for compensating external non-gravitational
 

disturbances on a spacecraft by means of thrusters controlled
 

by signals derived from measurements of the location of an
 

internal shielded proofmass. The "drag-free satellite"
 

concept was.put forward by others also, including G. E. Pugh
 

at the meeting just referred to, but the first systematic
 

analysis of drag-free satellite design was given in Professor
 

Lange's 1964 Stanford University Ph.D. thesis.
 

From the beginning Professor Fairbank had emphasized the
 

advantages of applying cryogenic techniques to the Gyro Rela­

tivity experiment. The first idea was a gyroscope based on a
 

magnetically supported superconducting sphere, similar to the
 

superconducting gyroscope then under development at G. E.
 

Schenectady by G. Buchholz and at JPL by J. Harding, but
 

employing a novel kind of readout based on the M6ssbauer
 

effect. Some work on the M6ssbauer readout was undertaken in
 

1962 by M. Bol, who also performed an experiment on the
 

"London moment" in a spinning superconductor as an outgrowth
 

of interest in magnetic torques on the superconducting gyro­

scope. The London moment, predicted in 1953 by F. London
 

following an earlier calculation by Becker, Sauter and Heller
 

in 1935, is a magnetic moment in a rotating superconductor
 

corresponding to a field magnitude
 

H 2m-c S = 10-7 s gauss
 
L e 

where e and m are the charge and mass of the electron and ws 

the angular spin rate. Independent observations of the London 
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moment were reported by A. F. Hildebrandt in 1964 and by Bol
 

and Fairbank and by King, Hendricks and Rohrschach in 1965.(5)
 

Bol's experiments were the most complete since they included
 

observation not only of the magnetic moment generated when a
 

superconductor is spun up.below its transition temperature,
 

but also the spontaneous appearance of the same moment in a
 

solid type I superconductor cooled through its transition
 

temperature while spinning.
 

In October 1962 C. W. F. Everitt joined the Stanford
 

Physics Department as a full-time Research Associate on the
 

Gyro Relativity experiment under Air Force support. Shortly
 

after arriving at Stanford he pointed out that the London
 

moment itself might provide a basis for a gyro readout if a
 

sufficiently sensitive magnetometer were available to measure
 

the direction of the magnetic moment. He tentatively suggested
 

using the Blackett astatic magnetometer. A more convenient
 

approach was suggested by Professor Fairbank who proposed
 

applying the vibrating plane magnetometer just then being
 

conceived by Bol, Deaver and Fairbank.(6) Everitt and Fairbank
 

then recognized that a gyroscope with a magnetic readout would
 

be better served with an electric suspension of the type
 

invented by A. Nordsieck in 1953 and marketed by Honeywell
 

Incorporated rather than the superconducting magnetic support.
 

With this the Gyro Relativity experiment took on essentially
 

the conceptual shape it has today. One very critical develop­

ment was to find an appropriate method of spinning up the gyro
 

rotor. Eventually after many possibilities had been conceived
 

and rejected, the gas spin up system now in use was worked out
 
(7)

by T. D. Bracken and C. W. F. Everitt in 1967. Further
 

developments of the gyroscope are described in Sections C and D.
 

In March 1964 the National Aeronautics and Space Adminis­

tration awarded Stanford University Grant NSG-582 in the amount
 

of $180,000 retroactive from November 1, 1963 through October 31,
 

1964: "To Develop a Zero-G Drag Free Satellite and Perform a
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Gyro Test of General Relativity in a Satellite." The research
 

was to be performed jointly by the Department of Aeronautics
 

and Astronautics and the Department of Physics. The Principal
 

Investigators were Professors R. H. Cannon, Jr. (Aero-Astro)
 

and W. M. Fairbank (Physics). Professor L. I. Schiff served
 

as Project Advisor. The original research team included Dr.
 

Everitt and Professor Lange; in September 1964, following the
 

award of the NASA Grant the team was strengthened by the
 

addition of Dr. D. B. DeBra and Messrs. J. C. Mathiesen and
 

R. A. Van Patten to the staff of the Department of Aeronautics
 

and Astronautics.
 

Concurrently with Grant NSG-582 the U. S. Air Force
 

awarded $90K in support of the program. In the first year
 

the Air Force funding was given to NASA for transmittal to
 

Stanford as a supplement to NSG-582. Subsequently it was made
 

part of Air Force Contract F33615-67-C-1245 in support of a broad
 

based program in guidance and control at Stanford. The Air
 

Force support continued at the $90K level for a number of
 

years but was then reduced progressively over three years to
 

$20K until it terminated in 1968.
 

The NASA identification NSG-582 was changed in 1968 to
 

NGR-050-020-019. Initially, as the proposal title indicated,
 

the program covered two distinct (though related) areas of
 

research: development of a drag-free satellite and development
 

of the Gyro Relativity experiment, the intention then and now
 

being to perform the Gyro Relativity experiment in a drag-free
 

satellite. The principal research on drag-free satellites
 

per se performed under the combined NASA and Air Force funding
 

comprised analytical studies, the design and construction of
 

the GEM (Ground Effect Machine) two-axis air-bearing simulator
 

of a drag free satellite, and the preparation of a proposal for
 

a zero-g aeronomy satellite to be developed jointly between
 

Stanford and UCLA. From 1967 the Electronics Research Labora­

tories Cambridge provided a contract to study geodesy research
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with drag-free satellites. Support of this work was afterwards
 

taken up by NASA Goddard Space Flight Center, In December 1969
 

Stanford submitted a proposal to Johns Hopkins Applied Physics
 

Laboratory for a subcontract to "Develop and Build a Disturbance
 

Compensation System (DISCOS) for the TRIAD II and III Satellites"
 

(Principal Investigator: D. B. DeBra). The U. S. Navy's TRIAD II
 

transit navigation satellite with DISCOS was launched in July 1972
 

and operated for nearly three years, attaining drag-free perform­
-
ance at the 5 x 10 12 g level. The TRIAD II is the only drag-free
 

satellite operated to date.
 

With the transfer .of support for drag-free satellite
 

research to other programs the title of NCR-05-020-019 was
 

changed in 1968 to a program "To Peform a Gyro Test of General
 

Relativity in a Satellite and Develop Associated Control
 

Technology."
 

The Gyro Relativity program has been supported.throughout
 

by SRT Funding from-NASA-OSS, Astronomy Division under Dr.
 

Nancy Roman. From 1964 through January 1970 Mr. E. J. Ott was
 

Program Monitor. He was succeeded-by Mr. C. Dixon Ashworth who
 

remained associated with the program until his retirement from NASA
 

in December 1973. In August 1970 NASA issued Contract No. NASW-2284
 

to Ball Brothers Research Corporation to perform a "Mission
 

Definition Study of the Stanford Relativity Satellite." The
 

study was completed in January 1971 (BBRC Report F71-07). Two
 

further studies were performed by Ball Brothers in 1973 and 1975.
 

In 1967 Mr. Ott initiated a cooperation between Stanford
 

and NASA George C. Marshall Space Flight Center, Huntsville,
 

Alabama. The Marshall Center lead was provided by Dr. Rudolf
 

Decher, then of the MSFC Astrionics Laboratory, later of the
 

MSFC Space Sciences Laboratory. Practical cooperation began
 

with the fabrication of gyro rotors at Marshall Center in the
 

Manufacturing Engineering Laboratory (now the Engineering Physics
 

Laboratory) under Mr. Wilhelm Angele. In 1969 NASA Marshall
 

Center issued Contract No. NAS8-26312 "To Design Fabricate,
 

Perform Tests, and Deliver Ceramic Envelopes in Support of
 



6 

Electrostatic Gyro Development" to Honeywell Incorporated to
 

fabricate a ceramic gyro housing, following the earlier Stanford
 

subcontracts discussed in Section D (1) (a). In 1970 NASA
 

Marshall Center issued Contract No. NASS-25705 to Stanford to
 
"Build and Test a Precision Star Tracking Telescope," with
 

fabrication subcontracted to Davidson Optronics Corporation.
 

In 1970 NASA Marshall Center issued Contract No. NAS8-27333 to
 

Stanford for "Fabrication of an Electronic Suspension Subsystem
 

(ESS) for a Cryogenic Electrostatically Suspended Gyroscope for
 

the Relativity Experiment." In 1971 administration of NGR 05­

020-019 was transferred from NASA Headquarters to NASA Marshall
 

Center with Mr. R. A. Potter as Program Monitor.
 

Research on the Gyro Relativity program falls roughly into
 

three periods. The principles of the experiment were worked
 

out conceptually between 1963 and 1967, during which period
 

a preliminary error analysis was completed showing the experiment
 

was capable of reaching 0.001 arc-sec/year accuracy. The years
 

1968 through 1974 were spent fabricating prototype hardware:
 

gyroscopes, gyro readout magnetometer, gyro suspension systems,
 

the star-tracking telescope and North Star simulator, ultra-low
 

magnetic field technology, a long hold time non-magnetic helium
 

dewar embodying many of the design features of the flight dewar,
 

a porous plug device for controlling the flow of liquid helium
 

in space, proportional helium thrusters for attitude control
 

and translational control, a fixed base simulator, and other
 

items. Demonstration of the London moment in a live gyroscope
 

supported on Earth in the ceramic housing was achieved in March
 

1975. From April 1975 through the termination of Grant NGR 05­

020-019 in January 1977 we have concentrated on developing an
 

ultra-low magnetic field facility for precision gyro readout
 

work, along with laboratory demonstration of integrating a
 

readout signal to the equivalent of 0.0024 arc-sec angular
 

resolution in 140 hours of observation time. Improved quartz
 

gyro housings have also been designed and are being fabricated
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by the Speedring Corporation under contract from NASA Marshall
 

Center. In cooperation with NASA Marshall Center and Rank Taylor
 

Hobson of Leicester, England we have mounted a concerted attack
 

on the problem of measuring and fabricating gyro rotors and
 

housings to improved limits on sphericity and concentricity.
 

The following are the contributors to the Gyro Relativity
 

program since 1964, excluding Principal Investigators:
 

Research Staff
 

J. T. Anderson
 
(Hansen Laboratories 1970-present: magnetometry)
 

B. Cabrera ,
 
(Hansen Laboratories 1975-present: ultra-low field technology)
 

R. R. Clappier*
 
(Aero-Astro 1968-present: electronics)
 

R. Hacker*
 
(Aero-Astro 1970-1976: mechanical design)
 

J. A. Lipa
 
(Hansen Laboratories 	1969-present: gyro operations, cryogenic
 
technology, experiment planning)
 

J. Mathiesent*
 
(Aero-Astro 1964-1969: mechanical design)
 

J. R. Nikirkt
 
(Aero-Astro 1970-1975: electronics, gyro operations)
 

J. E. Opfer§
 
(Physics 1965-1969: magnetometry)
 

F. Rehsteiner
 
(Aero-Astro 1967-1970: attitude control thrusters)
 

D. Rose*
 
(Physics 1971: sputtering research)
 

F. J. van Kann
 
(Hansen Laboratories 1973-1976: precision gyro experiment)
 

R. A. Van Patten*
 
(Aero-Astro 1964-present: electronics and control design)
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Visiting Research Staff and Faculty
 

D. P. Chandler*
 
(Aero-Astro 1967: control theory)
 

Joseph Eccher**
 
(Electrical Suspension System)
 

W. L- Pondrom, Sr.*
 
(Aero-Astro 1968-1970: control theory, telescope design)
 

J. M. ReynoldsIl*
 
(Physics 1968: cryogenics)
 

G. J. Siddall
 
(Hansen Laboratories 1976-present: roundness measurement,
 
telescope testing)
 

Graduate Students
 

J. N. Aubrun
 
helium thrusters)
(Aero-Astro 1969: 


M. Bol
 
(Physics 1960-1966: London moment measurements, M6ssbauer
 
readout)
 

R. Bourke
 
(Aero-Astro 1961-1964: magnetic support of spinning
 
superconductor)
 

T. D. Bracken
 
(Physics 1965-1968: gas spin up system)
 

J. S. Bull
 
(Aero-Astro 1968-1973: attitude control and thruster design)
 

B. Cabrera§
 
(Physics 1968-1975: ultra-low field technology)
 

D. DiPietro
 
(Aero-Astro 1969: magnetometer amplifiers)
 

Z. Hadass§
 
(Aero-Astro 1974: parameter sensitivity of control)
 

A. F. Hebard
 
(Physics.1964-1966: low magnetic field research)
 

D. Klinger
 
(Aero-Astro 1970-1973: fixed base simulation)
 

B. Nesbit
 
(Aero-Astro 1975-1976: sputtering)
 

B. Neuhauser
 
(Physics 1969-1970: magnetometry)
 

P. M. Selzer
 
(Physics 1967-1970: superfluid plug for space)
 

D. C. Wilkins§
 
(Physics 1968-1972: relativistic effects 

in perturbed orbits)
 

E. Wilson
 
(Physics 1966-1968: superconducting shielding)
 



9 
J. Witsmeer
 
(Aero-Astro 1966-1967: attitude control)
 

P. W. Worden, Jr.
 
(Physics 1969-1970: inside-out dewar for magnetometer
 
amplifiers)
 

Undergraduate Students
 

J. Boca (Aero-Astro 1972)
 
D. Brown (Physics 1974-1975)
 
T. Edeli (Physics 1966-1967)
 
A. Katz (Physics 1976)
 
J. Napoleon (Physics 1965)
 
S. Ride (Physics 1972)
 

Technicians
 

H. Frosch*
 
(Aero-Astro 1972-1976: mechanical)
 

J. 	J. Gilderoy, Jr.
 
(Hansen Laboratories 1970-present: mechanical cryogenics)
 

F. 	Hill*
 
(Physics 1965-1971: electronics)
 

W. 	Holding, Jr.*
 
(Physics: 1970-present: electronics)
 

G. 	Jones*
 
(Aero-Astro 1967-present: electronics)
 

G. Sander*
 
(Physics 1968-1969: mechanical)
 

C. 	Smith
 
(Physics 1970-1974: sputtering)
 

J. Wassermann
 
(Physics 1968-1970: sputtering)
 

H. Wisniewski
 

(Aero-Astro 1970-1972: electronics)
 

Secretary/Administrative Assistant (half-time)
 

G. Clark (1968-1973)
 
I. C. Pereira '(1973-1976)
 
D. A. Legge (1976-present)
 

* part-time 

t deceased
 

§ working on the Gyro Relativity program but supported from
 
non-NASA sources
 

II on sabbatical leave from Louisiana State University 

tindemann Fellow 
** on loan from Ball Brothers Research Corporation 
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B. DESCRIPTION OF THE EXPERIMENT
 

According to an error analysis by C. W. F. Everitt
 

present day technology offers the capability of making a
 

gyroscope with a residual drift-rate under suitable orbital
 
- 4
conditions of 10-is rad/sec (6 x 10 arc-sec/year). Such
 

performance, if achieved and if matched bythe accuracies in
 

other parts of the ekperiment, would lead to a measurement of
 

the geodetic precession 0G to I part in 10,000 and of the
 

Schiff motional precession aM in polar orbit to 1 part in 70.
 

The gyroscope precessions are measured in the framework
 

of the fixed stars. An experiment to measure them requires
 

one or more gyros and a reference telescope pointed at an
 

appropriate star. In addition to the principal terms there
 

are three smaller relativistic effects measurable by a gyro
 
- 4
with 6 x 10 arc-sec/year drift rate: (1) the geodetic preces­

sion due to the Earth's motion about the Sun (0.021 arc-sec/year),
 

(2) the higher order geodetic term calculated by Barker and
 

O'Connell (9 ) and by Wilkins (10 ) from the Earth's quadrupole
 

mass-moment -(0.010 arc-sec/year in a 400 nautical mile polar
 

orbit), (3) deflection by the Sun of the starlight signal for
 

the reference telescope. During the time of year when the line
 

of sight approaches the Sun the starlight deflection superimposes
 

on the gyro drifts an apparent motion away from the sun which
 

reaches a maximum at closest approach. It can be extracted
 

from the data by in effect turning the experiment around and
 

using the gyros as reference for the telescope., For Rigel,
 

which is 300 from the ecliptic plane, the maximum deflection
 

is 0.016 arc-sec.
 

The data from the experiment also contain large 

periodic signals due to the annual and orbital aberrations 

of starlight. The annual aberration is + 20.116 arc-sec in 

the plane of the ecliptic; the orbital aberration is approxi­

mately + 5 arc-sec in the plane of the satellite orbit. These 
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signals which seem at first a nuisance turn out to be extremely
 

useful in providing a built in reference signal of known ampli­

tude for scaling the relativity signals. A further point of
 

interest is that the experiment should yield a singularly
 

precise measurement of the parallax of the reference star. It
 

therefore has the potential of considerably improving our
 

knowledge of the distance scale in the nearer region of the
 

universe.
 

Various possibilities exist for the choice of orbit and
 

the configurations of the gyroscopes. The simplest is an ideal
 

polar orbit with two gyro pairs, one parallel aid antiparallel
 

to the Earth's axis and sensitive only to G, the other parallel
 

and antiparallel to the orbit-normal and sensitive only to M
 

The telescope is then pointed at a bright star on the celestial
 

equator orthogonal'to both gyro axes. In reality no star is
 

in the right place and no orbit is exactly polar. The Newtonian
 

regression of the orbit-plane from the Earth's quadrupole mass­

moment causes a mixing of terms, as a result of which some
 

people have argued that the experiment cannot distinguish 0G
 

and 0M unless the orbit is within a few arc-minutes of the
 

poles. This opinion is mistaken; the nodal regression actually
 

makes inclined orbits richer in relativity information than
 

polar orbits. The information that can be extracted from
 

different orbits depends on practical considerations briefly
 
summarized below.
 

A better configuration is a spacecraft that rolls slowly
 

around the line of sight to the star, containing two gyroscopes
 

with axes parallel to the boresight of the telescope and two
 

at right angles to the telescope and approximately parallel
 

and perpendicular to the Earth's axis. As before one of
 
M
 

the perpendicular gyros primarily sees 0G and 
the other 


both serve also as accurate roll references. With a star
 

lying on the celestial equator and an ideal polar orbit the
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two gyros parallel to the boresight see a signal periodic in 

the rollrate of amplitude t vG 2 + 4M2 and phase tan A 1 G 

The method of carrying thrdugh the separation of terms in 

inclined orbits with real stars is discussed beiowz 

The advantage of the configuration is that torque oh the 

gyros and drift in the gyro and telescope read6its are strongly
 

averaged by roll. The roll period ma:y be about 10 minutes.
 

Figure 1 is a general view of the experiment. The
 

experimental package comprises a telescope, four gyroscopes
 

and a proof mass for a drag-free control system. For mechanical
 

stability all these parts are made from fused quartz, optically
 

contacted together and maintained at liquid helidm temperatures
 

to eliminate thermal distortion. The apparatus is mounted in
 

an evacuated chamber inside a superinsulated dewar Vessel,
 

containing about 800 liters of liquid helium, designed to
 

maintain cryogenic temperatures for about two years. Boil
 

off of liquid helium is edntrolled by a porous plug device
 

invented by Selzer, Fairbank and Everitt. (11) The gyroscopes
 

are quartz spheresi coated with superconductor and suspended
 

electrically in a quartz housing attached to the telescope.
 

Each gyro is surrounded by a spherical superconducting magnetic
 

shield. The telescope is a folded Schmidt-Cassegrainian
 

system of 5.5 inch aperture and 150 inch focal length,
 

also made entirely of fused quartz.
 

Pointing control of the spacecraft is based on signals
 

from the telescope, switched automatically to the gyroscopes
 

during the portion of each orbit when the star is occulted.
 

Thrust is obtained from the helium boil-off from the dewar,
 

which is copious enough to mechanize in a very smooth propor­

tional control system. Drag-free control is mechanized through
 

the same thrusters referenced to the internal ptodfmass.'
 

Making the satellite drag-free helps ih two ways: it improves
 

averaging of residual accelerations on the gyroscopes and it
 

reduces errors in the orbit determinations needed in analysing
 

relativity data.
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Figure 2 illustrates the solar panels and electronics
 

boxes mounted on a girth-ring around the outside of the dewar,
 

together with the sunshield to prevent stray light entering
 

the telescope when the line of sight passes near the sun. The
 

sunshield is designed for operation with Rigel as the guide
 

star. The configuration of the solar array, due to R. E. Woolley
 

of Ball Brothers Research Corporation, was chosen to yield maxi­

mum average power through the year, again with Rigel as guide
 

star. A fixed array is greatly to be preferred to a steerable
 

one, despite the reduction in power for a given area, in view
 

of the critical importance of avoiding disturbance to the space­

craft. The paddles are arranged in two oppositely canted pairs
 

to prevent the spacecraft from turning into a radiation pressure
 

mill. For details on spacecraft design see the Ball Brothers
 

Research Corporation 1971 Mission Definition Study. (12)
 

The spacecraft is launched into the chosen orbit by a
 

Delta or Shuttle vehicle. After launch the reference star is
 

located and acquired by ohe of two standard procedures discussed
 

in the Study; the gyros are then suspended and spun up. Spin-up
 

takes about half an hour. During this time the satellite is
 

rolled about the line of.sight to the star at a fairly rapid
 

rate (roll period 30 to 60 sec) to help align the spin axes with
 

the line of sight to the star. Spin-up is done with gas pres­

sures between 10 and 20 torr after which the gas is pumped out
 

and the gyro is allowed to coast freely in a 10- 9 torr vacuum.
 

The roll is then stabilized at its normal period which is probably
 

about ten minutes. Procedures exist for refining the gyro pointing
 

if the high speed roll has not achieved the few arc-second align­

ment required for the experiment.
 

The heart of the experiment is the gyro-telescope package.
 

Gyro development is reviewed in Sections C, D and E; telescope
 

development in Section G. Given gyro and telescope designs of
 

adequate drift performance and readout sensitivity to reach the
 

goal of I milliarc-sec/year, much remains to be done before
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obtaining satisfactory relativity data. The chief problems are:
 

(i) devising a data instrumentation system to ensure
 

proper scaling and subtraction of the gyroscope and telescope
 

signals
 

(ii) establishing criteria for drag-free control and attitude
 

control, designing control systems which meet the criteria and
 

incorporate safeguards to preserve gyro suspension and prevent
 

accumulation of false data if the spacecraft is struck by micro­

meteorites or the telescope chases off after a flare caused by
 

sunlight falling on a speck of dust in the line of sight
 

(iii) establishing tracking requirements and an algorithm
 

for calculating the expected relativity signals in the actual
 

satellite orbit.
 

The requirements on pointing control and instrumentation
 

are determined by the form of the gyro and telescope readouts. 

The gyro readout, being based on measuring the current generated 

in a superconducting loop by a change of orientation of the r 
London moment can be made extremely linear so long as the spin
 

axis lies near the plane of the loop. The limit is ultimately
 

the limit on linearity of the electronics systems, which in
 

practice may be 16 or 17 bit. With 17 bit accuracy a readout 

capable of resolving 0.5 x 10 arc-sec has an effective linear 

range of + 32 arc-sec. The possibility does exist, and is dis­

cussed in Section C (3) (M) of applying flux counting techniques 

in SQUID magnetometers to improve the resolution to 24 or 25 

bits, (13) but this is not required, and is probably best avoided, 

in the present experiment. 

The telescope, unlike the gyroscopes,has very limited
 

linear range. The particular design chosen depends on locating
 

the centers of two focused diffraction limited star images,
 

which for the 5.5 inch aperture used have an effective angular
 
3


diameter of 0.9 arc-sec and give signals linear to 0.5 x 10
­
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arc-sec over the central 0.05 arc-sec range. Although the 

linear range may in principle be increased either by defocusing 

the image or by having encoded tipping plates in the converging 

beam, in practice neither idea is a good one: it is best to 

accept the limitation on the telescope and work around it. The 

plan is therefore to point the telescope always within + 0.05 

arc-sec of the apparent position of the star, and take up all 

the remaining displacements between the gyro and star, including 

the aberration of starlight, in the gyro readout. With a + 32 

arc-sec linear range for the gyro, this procedure is just feasible 

provided the null planes of the gyro and telescope readouts are 

aligned to within a few arc-seconds. 

A preliminary analysis of -the spacecraft attitude control
 

system by D. B. DeBra in 1966 indicated that with the compliances
 

in the spacecraft structure then expected the control system
 

would be hard put to maintain pointing to better than 1 arc-sec,
 

a factor of 20 less precise than is needed. Consideration of
 

this problem led C. W. F. Everitt to suggest in 1967 the addition
 

of an inner fine pointing servo loop acting directly on the
 

gyro-telescope package, using cryogenic magnetic forcers as
 

illustrated in Figure 1. A possible mechanization for such
 

a two loop system was suggested and analysed by R. A. Van Patten
 

and reviewed by D. P. Chandler, (14 ) after which a detailed analysis
 

and laboratory simulation of the loop system was performed using
 
-(15wh
 

modern control theory by J. S. Bull and D. B. DeBra, who
 

established pointing accuracies well within the required + 0.05
 

arc-sec range in the presence of telescope noise and normal
 

satellite disturbances. Sensitivity to parameter changes was
 

investigated and model helium thrusters were built and tested
 

on line with an analogue simulation of the control system and
 

plant.
 

In 1967 satellite pointing to better than 1 arc-sec
 

seemed unbelievable. The two loop system, by transferring the
 

burden from the satellite attitude control system to-the inner
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fine pointing servo, had the dual merit of being technically
 

sound and also having a certain sales appeal to persons familiar
 

With attitude control systems. As time has gone on, attitude
 

control systems have tended to improve, making the sales pitch
 

easier, while the design for the relativity satellite has also
 

advanced, allowing us to take less conservative numbers for
 

the compliance between the helium well and the outer shell of
 

the dewar vessel. Eventually one asks whether + 0.05 arc-sec
 

pointing might not become feasible without the inner servo,
 

simplifying the design of the pointing controllers and saving
 

development costs for cryogenic actuators. Reviews performed
 

in parallel at Stanford and Ball Brothers Research Corporation
 

between 1970 and 1972 suggested that we might indeed be able
 

to get away-without the inner loop. A final decision has to
 

be based on analysis of the final satellite layout.
 

Given pointing within the linear range of the telescope
 

the next problem is the data instrumentation system to subtract
 

the gyro and telescope signals. Figure 3 illustrates the prin­

ciples ot the system conceived by R. A. Van Patten. (1 6) The
 

heavy lines represent an integrating data loop which supplies
 

continually updated relativity information in digital form,
 

after subtracting ahd summing the gyro and telescope signals
 

with the final signal in the precision summing amplifier ZI
 

The output of Z consists of an amplitude-modulated suppressed­

carrier alternating current signal. This signal is processed
 

in a sampling demodulator and filter to obtain a direct current
 

output with extremely low zero offset, and then integrated by
 

means of a 17 bit up-down binary counter, which contains the
 

readout signal for storage and telemetry. The integrating loop
 

is closed via a 17 -bit digital to analog converter summed into
 

E1. Its operation may be understood as follows. Call the gyro
 

output G, the telescope output T and the signal in the up-down
 

counter R. The summing amplifier provides the function (T-G+R)
 

which is maintained at null, making the final signal R equal to
 

(G - T), the quantity of interest in the experiment.
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To avoid error, the scale factors of the gyro and telescope
 

readouts have to be carefully matched; for differences in scale
 

factor will lead in the presence of a pointing error A' to a
 

null shift identical in form with the relativity signal. If
 

the nominal scale factor of each readout is k, but there is a
 

difference Ak between them, the upper limit on Ak/k is 0/A'
 

where 0 is the maximum allowed angular error.. tHence if the
 
0 

pointing servo has an offset of 0.03 arc-sec the maximum
 
-
scaling difference to keep the error below 5 x 10 4 arc-sec
 

is 1.5%.
 

Various techniques have been studied for forcing the scale
 

factors of the gyro and telescope readouts to a common value.(17)
 

The cleanest method, suggested by R. A. Van Patten, depends on
 

introducing a low frequency dithering motion into the pointing
 

servo (see Figure 3) to make the entire gyro-telescope packing 

swing back and forth across the line of sight to the star with 

an amplitude of about 0.03 arc-sec at 0.1 Hz. If the scale 

factors of the two readouts are not equal an 0.1 Hz signal 

appears at the output of the summing amplifier ZI where itlis 

synchronously detected, and integrated by means of a voltage 

to frequency converter and up-down counter to provide a 

digital signal driving a multiplying digital to analog converter 

which scales the telescope readout in the manner shown in Figure 

3. An analysis due to the late J. R. Nikirk (18) shows that
 

the system may be designed to maintain 1% scaling accuracy
 

with reasonable settling time in the presence of gyro noise.
 

Signals are taken from the telescope output for use in
 

attitude conttol electronics. Since the telescope bore sight
 

lies in the orbit plane the star is occulted during half of
 

each orbit. During this and other interruptions such as the
 

occasional visual flare or meteorite impact, control logic is
 

activated to inhibit the telescope output T and refer the
 

controller to the equivalent function (G - R) which is available
 

from the instrumentation system. Thus the telescope remains
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pointing in the correct line of sight by reference to the
 

gyroscope. Reacquisition and resumption of measurement
 

occurs automatically when the telescope is turned on again.
 

The only loss is the immediate loss of data for the final
 

statistical analysis.
 

In the actual rolling satellite,encoders and resolvers
 

are added to the data instrumentation system to unroll and
 

process the signals for both parallel and perpendicular
 

gyroscopes. Figure 4 shows the instrumentation system as
 

mechanized for two gyroscopes with spin axes parallel to the
 

telescope axis. It provides four 17 bit digital readouts,
 

two for each gyro. By combining the data with 19 bit roll
 

angle information obtained from the two perpendicular gyro­

scopes, measurements of both geodetic and motional relativity
 

effects are obtained from each gyro. Drift errors in either
 

the gyro or telescope readout are rejected in ground proces­

sing by identification with the satellite roll period. Figure
 

5 shows the instrumentation system for the perpendicular gyro­

scopes. It provides two 17 bit readouts one for each gyro,
 

of which one yields geodetic data and the other motional
 

data. The gyro readout signals in the two channels stay
 

essentially fixed in inertial space but the telescope signals,
 

being referred to the body coordinates of the rolling spacecraft,
 

must be resolved into inertial coordinates before processing.
 

Conversely the control signals for calibrating the telescope
 

scale factor against the gyro have to be converted back to
 

body-fixed coordinates before closing the gain control loop.
 

For the perpendicular gyroscopes drifts in the gyro readout
 

cannot be simply distinguished from relativity data but drift
 

of the telescope readout can be identified with the roll
 

period and rejected in data processing.
 

All portions of the data instrumentation system may be
 

made with solid state integrated circuiting for maximum
 

reliability. The choice of time constant for the integrating
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loop depends on several factors. The optimum appears to be
 

abot 20 seconds. This is long enough to give substantial
 

noise filtering while allowing recovery from interruptions
 

within one or two minutes. The output is sampled every few
 

seconds and stored in a core memory containing 104 words of
 

17 bits, from which it is transmitted once per orbit for
 

further processing on the ground.
 

With a time constant of 20 seconds the output of the
 

data loops consists of
 

(1) the geodetic and motional relativity signals
 

higher order terms
 

(2) annual aberration of 20.116 arc-sec amplitude in
 

ecliptic plane
 

(3) 99.98% of the orbit aberration in the orbit plane 
1 

(4) residual gyro and telescope readout noise. 

A beautiful feature of the experiment is that the aberration
 

signals, being known with great precision, calibrate the data.
 

Thus the telescope scale factor (which may be expected to
 

change through effects such as aging of the photomultiplier
 

and tarnishing of the mirrors) is driven automatically to the
 

same value as the gyroscope by the dithering technique,
 

while the gyroscope scale factor (which should remain constant)
 

is automatically checked and calibrated in space by the aberra­

tion signals. The importance of exploiting the aberration data
 

becomes clear if one reflects on the difficulties of calibrating
 

any angular measurement system in the laboratory to 0.001 arc­

sec absolute accuracy.
 

The algorithm for calculating the relativity signals in
 

the actual satellite orbit is described in a Stanford University
 

memorandum by D. C. Wilkins. (19) Related calc&lations have been
 

published by B. M. Barker and R. F. O'Connell.(20) Applying
 

Geyling's method Wilkins has shown that the relativity equations
 

can be legitimately integrated over a single orbit, but that the
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approximations break down after a few orbits, so that it is
 

necessary to proceed by piecewise fitting of data from each
 

orbit applying tracking information obtained every few passes.
 

The tracking requirements for an 0.001 arc-sec/year experiment
 

are as follows: (1) maximum allowed error in measure of orbit
 

radius rc % 1/2 mile, (2) in track velocity error % 1/2 mile/
 

hour, (3) error in right ascension of ascending node % 30 arc­

sec, all of-which are comfortably within the performance of
 

existing tracking networks.
 

In off-polar orbits, the motional and geodetic terms become
 

mixed through the Newtonian regression of the orbit plane due
 

to the Earth's oblateness. Separation of 2M and 0G is further
 

complicated by the action of the Earth's gravitational gradient
 

on the quadrupole mass moment of the gyro rotor, which causes
 

a torque in the plane formed by the gyro spin axis and the orbit
 

normal with a resultant secular drift rate in a circular orbit
 

of radius R
 
=3 GM 

g= 3 j2 G sin 2$ (2) 
s 

where J2 is the quadrupole coefficient of the gyro rotor and S
 

the angle between the spin axis and orbit normal. Equation (2)
 

is identical with Laplace's formula for the precession of the
 

equinoxes. For the quartz gyro rotor used in the experiment
 

J2 has components of order 10- 7 from the inhomogeneities and
 

polishing errors of the ball, which are not well known, and a
 
-
component magnitude about 3 x 10 6 due to centrifugal distortion
 

of the ball at its 200 Hz spin speed. The magnitude of the
 

centrifugal J2 is known to about 1%. In a polar orbit with the
 

gyro spin axis lying in the orbit plane 9g vanishes, but in a
 

450 orbit the centrifugal J2 causes a drift rate corresponding
 

in the worst case to about 30 x 10 - 3 arc-sec/year.
 

The presence of 2g and the mixing of QG and QM through
 
nodal regression have persuaded some people that the experiment
 

can only be done in a polar orbit and quite severe constraints
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on inclination angle have been written down in various papers.
 

Several of the published statements are fallacious. A fairly
 

complete discussion of the problem has been given by Everitt
 

in an unpublished document, (21) to which reference should be
 

made for further information. The separation of terms has to
 

be handled differently in near-polar and steeply inclined
 

orbits, depending whether the regression period is longer or
 

shorter than a year. Both cases will be summarized. To
 

sharpen the discussion we consider the effects in near polar,
 

37 and 28.5 minimum energy orbits from Wallops Island and
 

Cape Canaveral, giving numerical values for each.
 

The launch accuracy obtainable with a Thor-Delta vehicle
 

yields (according to 1971 figures quoted in Table 7.5 of
 

Reference (12) ) an inclination error of 0.040 and an error of
 

right ascension of the ascending node of 0.50; both with 3a
 

accuracy. These figures were predictions before the DIGS
 

guidance system was put into use in mid 1972. Recent informa­

tion from the NASA Delta Office at Goddard Space Flight Center
 

confirms the figure 0.040 for the inclination error, but puts
 

the error in ascending node (which is determined by the launch
 

window and the burn characteristics of the rocket) as somewhat
 

less than the quoted figure, perhaps 0.20. Since the predictions
 

are to 3a accuracy the probability of doing better is high:
 

about 300 to 1. From the standard equation for nodal regression
 

about the oblate Earth, a 400 nautical mile orbit inclined 0.040
 

from the pole regresses or advances 1.70 in a year. The total
 

deviation between gyro spin axis and orbit plane for a polar
 

orbiting experiment may, in unfavorable circumstances, amount
 

to 1.90 at the end of a year. The gravity gradient drift Qg
 

from the elliptical distortion of the ball is then 2.5 x 10 -16
 

rad/sec or 1.5 milliarc-sec/year and should be corrected for.
 

G NWe now identify the contributions of Q , M and Qg to the 

precessions of parallel and perpendicular gyroscopes in a near­

polar orbit. 
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Define a reference plane POS, through the pole P and
 

center 0 of the Earth, and the true position S of the star,
 

along with a second plane NOS, also intersecting the line OS
 

but orthogonal to POS., Complete the system of coordinates
 

by a line OP' lying in POS and orthogonal to NOS. The angle
 
POP' is the elevation of thszceference star above the
 

celestial equator.
 

The telescope points nearly along OS, but not quite because
 

of attitude control errors (+ 0.05 arc-sec), the relativistic
 

correction for bending of starlight by the Sun (a maximum of
 

0.016 arc-sec for Rigel), orbital aberration (± 5 arc-sec)
 

and annual aberration (+ 20 arc-sec). The gyroscopes remain
 

nearly parallel or perpendicular to the mean direction of
 

the telescope at gyro spin-up, but not quite because of initial
 

misalignment (about 1 arc-sec) and relativistic drift (about
 

6.9 arc-sec). Depending then on initial conditions chiefly
 

on the magnitude of the component of annual aberration
 

existing at spin-up, the different gyro axes are inclined
 

at angles y, y'f y'' to the lines ON, OP', OS, having maximum
 

values somewhere between 10 arc-sec (0.00280) and 30 arc-sec
 

(0.00830). These deviations of the gyro axes from the coordinate
 

axes should be noted, though they will prove negligible in the
 

remaining calculations on the effects in near polar orbit.
 

The orbit-plane is initially misaligned with the plane POS 

in both right ascension 0 and inclination i. It is convenient 

to use the co-inclination il = f - i since it is a small angle 

for a near polar orbit. During the year i1 remains constant 

with respect to the Earth's polar axis OP, but the nodal line 

advances or regresses through an angle = wnt , where wn is 

given by the nodal regression formula. Consider any orbit 

near enough to polar for the sines of V and ( o + wnt) to 

be approximated by the angles. Observe that for Rigel sin4 

is 0.142 and cosC is 0.99. Observe also that * after one 
year amounts to 40 i in a 400 mile orbit and that the probable 

value of 4o is about five times the probable value of i. We 
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have then the following:
 

(i) For the parallel gyros (the ones nearly aligned with OS)
 

the angle B between the gyro axes and the orbit-plane is
 

2
( 0 + Wnt) cos 2C + i' 2 sin27 , which reduces to (4o + wnt) to
 

within 1%, the error from neglecting the deviation y between
 

OS and the gyro axes being between 0.2% and 0.5% if (4o + wnt)
 

is 1.90.
 

(ii) For the perpendicular gyro aligned with ON the angle 

- B) is also very nearly (@0 + wnt). 

(iii) 	For the perpendicular gyro aligned nearly With OP' the
 

2 i' 2
angle a is V(o + wnt)2 sin + cos 2C , where the two terms
 

within the square root are now comparable but the total value
 

of B is much less than for the other two gyros: about 0.060
 

rather than 1.90.
 

(iv) The gravity gradient precessions Qg' in the different
 

gyroscopes are found by substituting the B's into Equation (2).
 

The admixture of G to the precessions of the gyroscopes in the
 

plane NOS is found by resolving the orbit-vector into components
 

along ON, OP', OS. Since the Earth's rotation axis lies in the
 

plane POS, there is no admixture of 2M to the components of
 

precession in that plane: there are in principle corrections
 

due to the gyro misalignments y, y', y" and the telescope
 

motions, but they are utterly negligible.
 

Collecting results we find the precession angles for
 

parallel and perpendicular gyroscopes in near polar orbit
 

are to a sufficient approximation given by the four terms in
 

Table 1. The results are all referred to the system of planes
 

PSNO defined by the Earth's polar axis OP, the line of sight
 

OS to the star and the normal ON to the plane POS.
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Table 1: 	 Precession Angles of Gyroscopes in Near Polar
 
Orbit Around Oblate Earth
 

Parallel Gyros
 

Motion in plane POS 
through Earth's axis S + + A%_t 2 

and line of sight to POS n 
star (nearly coincident 
with orbit plane) 

Motion in plane NOS 
through line of sight S = ( M cos + QG i')t 
to star and orthogonal NOS 
to POS 

Perpendicular Gyros 

Gyro neatly aligned 
with Earth's axis. 
Drift in plane POS 
(the "near-orbit" 
plane 

6P' 
P0O 

Q +rnt) 
n 

9 Z+IL 

Gyro nearly aligned N M G 
with orbit normal. 0N (Q cosc + 2 i )t 
Drift in plane NOS. 

0 G, 0M geodetic and motional drift rates
 

Ag 	 R3
- gravity gradient coefficient 3/2 J2 GM/_ (i.e. twice 
the term multiplying sin 2 in Equation T2). The + sign 
indicates that the term is in opposite senses in gyros 
with opposite angular momenta 

4 - initial error in ascending node, i - initial error in 
coinclination, ? - elevation of star above celestial 
equator 

W - nodal regression rate 

In 0 the term in Agog amounts to 2 x 10-4 arc-sec/year if Po'
 
is 0.20; in 8po S the complicated term in Ag has a maximum of
 

°
 8.x 10- arc-sec/year if V is 0.04 , 40 0.20 and wnt 1.70.
 

Both terms therefore are negligible in a 1 milliarc-sec/year
 

experiment. The contributions of Ag to OS and O are too
 
NOS NOS
 

minute to 	be worth writing out formally: their magnitudes
 

are about 8 x 10- 7 arc-sec/year. Thus the only significant
 

gravity gradient effect in a polar-orbiting experiment is the
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term involving Ag n in S Unlike the two relativistic
npOS * 
terms it is quadratic rather than linear with time. 

It may seem odd that the term inON involving A is negli­
sngi
NOS ivligA 


gible since the gyro axis is noticeabley misaligned with the
 

orbit plane. For this gyroscope the gravity gradient drift lies
 

predominantly in the plane NOP' not NOS; it affects the roll­

reference of the satellite (negligibly) but has no influence
 

on the relativistic measurement. In fact for the Gyro Relativity
 

experiment in its original forms with perpendicular gyros only,
 

the gravity gradient drifts would not interfere with the rela­

tivity measurement in either gyro.
 

To summarize, the only possibly significant gravity-gradient
 

term is the one quadratic in time which appears in the plane
 

POS for the parallel gyros. Assuming that an exact polar orbit
 

is attempted the probability of an orbit error enough to make
 

the effect perceptible is 0.3%. If such an error occurs it
 

will be known from tracking observations, and -- "thrice to
 

slay the slain" -- the effect can be eliminated in three ways:
 

(i) by direct calculation to 2%-accuracy from the known
 

magnitude of the centrifugal J2
 

(ii) by observation of its occurrence in opposite senses
 

in the two gytos, the magnitudes of the two terms being equal
 

to about 2%
 

(iii) by data processing to identify and remove any term in
 

the gyro readout that is quadratic with time.
 

Substitution of numerical values in Table 1 shows that
 

the geodetic contribution 0Gi' to the gyro precessions in the
 

plane NOS is about 10% of the motional term M cosC if i' is
 

0.04. From the measurement in the plane POS SG is known to
 
1 part in 7000. The standard NASA minitrack system determines
 

right ascension and inclination to 10 arc-sec per orbit. The
 

co-inclination V is therefore known easily to 7%, and the
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error in 0M due to the admixture of G is less than 0.7%,
 

which is small compared with the design goal of 2% accuracy
 

for the measurement. Observations over many orbits with a
 

drag-free satellite should pull down the error much further.
 

A near-polar orbit has obvious merits for the Gyro
 

Relativity experiment, because of the neat separation of
 

terms. In the space business, however, one cannot always
 

get what one wants when one wants it, so it is useful, as well
 

as intellectually stimulating, to examine other orbits, in
 

particular the 370 and 28.50 minimum energy orbits from
 

Wallops Island and Cape Canaveral.
 

Before examining the real problems of an experiment in an
 

inclined orbit it is as well to dispose of some of the more
 

superficial objections. It has been argued that the straight­

forward separation of the terms 9G and QM is lost in a non­

polar orbit. True, but that does not imply that experiments
 

in other orbits give no information about 0 and 0M. Consider
 

the simplest aiternative to the polar-orbiting experiment: a
 

spacecraft moving in a pure equatorial orbit with the gyro
 

spin axes lying in the orbit-plane. The gyroscopes would
 

measure the sum or difference (Q2M + 92G) of the two terms,
 

depending on the sense of the orbit, and the agreement or
 

otherwise of the result with Einstein's theory would be a
 

significant event. Agreement would confirm the theory nearly
 

as convincingly as the polar-orbiting experiment. Disagreement
 

would surely lead to another flight, presumably in a polar
 

orbit, and then the existence of data from different orbits
 

would be an advantage not a disadvantage. Indeed a merit of
 

the equatorial orbit is that the motional effect there is
 

roughly twice what it is in a polar orbit. From that one
 

might argue that if NASA were committed in advance to
 

flying two experiments, the best choice, or if not the best
 

at any rate a very good choice, would be to fly them in
 

opposite equatorial orbits, and compute Q2G and Q2M from the
 

sum and difference of the two results.
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In an inclined orbit QG and 9M are even more mixed up,
 

and the situation is complicated by the regression of the
 

orbit-plane. There is however a chance of twisting around the
 

apparent disadvantages into an advantage by exploiting the
 

nodal regression to separate the terms. (8) Practical barriers
 

have to be surmounted to achieve this happy end; they will be
 

discussed below; for the moment they can be ignored to concen­

trate on principles.
 

Consider a typical inclined orbit, say a 400 nautical mile
 
370 orbit. The nodal regression period 2/wn, calculated
 

from the standard formula, is 62 days. The outputs of G and
 

9M become a mixture of linear and sinusoidal terms whose
 

forms are explained below. The period Qf the sinusoidal
 

terms is 62 days; the predicted amplitude of the largest, a
 

component of the geodetic precession in the vertical plane,
 

is 0.224 arc-sec. Small though this is it can in principle
 

be measured accurately enough to use in combination with
 
N
the linear terms to separate GandG dM
 

Define a system of unit vectors ne' no ns parallel to
 

the Earth's axis, the orbit normal and the gyro spin axis.
 

The gyrb drift rate A from the geodetic, motional and gravity-

M
gradient effects RGIQ and Qg is found by integrating each
 

term around the orbit and forming the product Q A ns for each.
 

In an inclined orbit around the oblate Earth n-e and n
-s
 
remain nearly fixed in space but n cones about the Earth's
-o 
axis. Neglecting the correction to the relativistic terms
 

from the Earth's oblateness, the gyro drift-rates in circular
 

orbit around the Earth assume the vector form given in Table
 

2. For elliptic orbits with corrections for oblateness the
 

integrations are effected by Wilkins' method already referred
 

to. (19)
 



33
 

Table 2: Gyro Drift Terms Averaged Over a Single Orbit
 

geodetic 
.G 
n 

G 
= A (no Ans) 

motional nM 
s 

A [n e An -s 3(nAAn)-o *n)(n-e -o -s 

gravity 
gradient 

ng 
-s 

+ 3Ag 
-

(n
( 

- ns) (n A n 
-sn) ( A 

2CR
GM 	 -e - unit vector parallel no Earth's axis
where AG 3f 'o n 

1 GI
AM- fEG 	 -- unit vector parallel to orbit normal
neon 


Ag = 1 	GM AI 1 n - unit vector parallel to gyro spin
RT I -s 

s axis
 

W 0- mean motion, we - Earth's rotation rate, ws - gyro spin rate
 

Then forming a second system of unit vectors 1N, ap,,,nS parallel 

to the three directions ON, OP', OS; defining time zero as the 

time when the three vectors n, n , n are all in the same 

quadrant of the plane P0S, we can express e, no, n in terms 

of hN'-P''sn and i the orbit inclination, the elevation 

of the star above the celestial equator and wn the nodal 

regression rate. The expressions for drift rate of the 

parallel gyros in planes POS and NOS then assume the form 

given in Table 3. Numerical values of the predicted gyro 

motions the two planes for 370 and 28.50 inclined orbits 

when the reference star is elevated at 8015t above the 

celestial equator (corresponding to Rigel) are given in Table 4. 

The following points are worth noting about the results of
 

Tables 3 and 4.
 

(i) The gravity gradient torques are the only ones producing
 

gyro drift components periodic in 2 w In principle therefore
 

it is possible to identify them unambiguously from data analysis;
 

however in practice these components are too small to be useful:
 

in a 370 orbit the largest one has a peak-to-peak amplitude of
 

only 0.27 milliarc-seconds perpendicular to the readout plane NOS.
 



Table 3: 	 :Components of Drift in the Two Readout Planes for Gyroscopes with Spin Axes
 
Parallel or Anti-parallel to the Line of Sight to Star at Elevation C above
 
the Celestial Equator
 

ANGULAR RATE PERPENDICULAR
 
ANGULAR RATE PERPENDICULAR TO TO READOUT PLANE NOS THROUGH
 
READOUT PLANE POS THROUGH EARTH'S LINE OF SIGHT TO STAR AND
 
AXIS AND LINE OF SIGHT TO STAR PERPENDICULAR TO POS
 

Geodetic AG [cosC cos i - sinC sin icos W t] 	 AG sin i sin wnt 

1 	 3 
AM [cosC
Atina (1 + 3 cos 2i - 3 siig sin 2i cos w t ]  A sin 2i Sin 

n -2'
 

3[i a 	 3 sin 2i sin w t
 
Gravity + A [sin 2C (1 + 3 cos 2i ) + 4 cos 2C sin 2i 	 + A. [s si n n 
Gradient COS to t - 2 sin 2C sin2 i cos 2 nt] 	 + coso sin2 i Sin 

2 wnt ] 



Table 4: 


Geodetic 


4j . nG 

o Motional 

a
 
On M 

Gravity
 
Gradient 

g 

Geodetic 


• 
4 

n 
e 

G 
0 

O Motional 


* 

Gravity 

Gradient
 

An
M
 

Numerical Values of Predicted Gyro Motions in the Two Readout Planes for 370
 

and 28 .5' Inclined Orbits
 

linear drift cos W t cos 2w t Cos W t cos 2w t
 
n n n n 

(milliarc-sec/year) (milliarc-sec (milliarc-sec (milliarc-sec (milliarc-sec
 
peak to peak) peak to peak) peak to peak) peak to peak)
 

4.74 x 103 33.1 -- 224 

32.8 0.54 3.65
 

+3.7 +1.41 +.040 +0.22 +0.27
 

3
 
5.23 x 10 24.0 -- 160 

52.0 0.43 -- 2.9 

U 

+5.0 +1.14 +.022 +0.17 +0.16
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(ii) If the reference star lies exactly on the celestial
 

equator the terms in sinc and sin 2C disappear and the results
 

undergo considerable simplification. The linear qomponent of
 

9g disappears from the motions perpendicular to the readout
 
M
plane POS, and so do the sinusoidal components of 0G and 


in the same plane. The separation of terms then becomes much
 

simpler. Extending the argument, one may, if one wishes, set
 

an upper limit on C to keep the linear component of g below
 

0.001 arc-sec/year, the design goal of the experiment. For
 

a 370 orbit the star must lie within + 2.20, and for a 28.50
 

orbit within + 1.60 of the celestial equator.
 

(iii) When the inclination is 540 16', the quantity
 

(1 + 3 cos 2i) is zero and the linear component of Qg vanishes
 

for all values of the elevation of the reference star.
 

However this result is more curious than useful, because at
 

that inclination the linear component of the relativistic
 

term 0M also vanishes.
 

(iv) Although the terms 2G, 0M and £g are intermingled,
 

the ratios of their different components can be adequately
 

measured, therefore, a separation can be effected by forming
 

products and ratios of the various components. In addition,
 

the gravity-gradient terms can be calculated out with high
 

confidence and the result can be checked from the differences
 

between the terms in the parallel and anti-parallel gyros.
 

We now comment briefly on the practical question of
 

separating the different linear and sinusoidal terms presented
 

in Tables 3 and 4. First a general observation. Although
 

the amplitudes of the sinusoidal terms are much less than
 

the values of the linearly measuring signals at the end of
 

a year, that in itself does not mean that measurements of
 

them are inherently less accurate. The peak rates of the
 

gyro motion are comparable for the two sets of terms, so
 

with phase information the limits in resolving signals from
 

noise in the two cases are nearly identical. The question
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whether the separation can be made depends on (i) drifts
 

of the gyro spin axes due to extraneous torques and four prop­

erties of the gyro readout, to wit: (ii) noise performance,
 

(iii) null stability, (iv) accuracy and stability of the scale
 

factor and (v) fineness of resolution.
 

Answers to these points depend on technical details covered
 

in later sections of this report. The issues are revidwed in
 

Section 3.6 of Reference (21) where it is shown that the
 

decisive limitation on separating sinusoidal and linear gyro
 

drift terms are the scale factor calibration (iv) and fineness
 

of resolution (v). Inclined orbits present special problems,
 

but the general conclusion seems to be that useful relativity
 

data can be obtained in them. In one sense the inclined orbit
 

offers an advantage: the modulation of terms through the
 

regression of the orbit plane makes the data richer. Thus the
 

term 3AM (n "n e)(no A n s ) vanishes in a polar orbit, but
 
)
in an inclined orbit this term and the term Am (ne A ns


each differently affect the components of motional precession
 

in the two readout planes, and both are measurable. If the
 

accuracies could be met, the test of Einstein's theory would
 

be more complete.
 

There is some interest also in off-polar orbits in the
 

regime where (1 + 3 cos 2i) becomes negative, that is for
 

inclinations between 540 and 900. The sense of the motional
 

effect then reverses, coinciding with that of the Earth's
 

rotation. An advantage is that the regression period of
 

the orbit becomes larger in this regime, so that the sinusoidal
 

components of £G, L2M and 0g have larger amplitude. Thus the
 

regression period in an orbit 15° away from the pole is about
 

220 days and the sinusoidal component of M perpendicular
 

to the readout plane NOS has an amplitude of about 7 milliarc­

seconds.
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C. THE GYROSCOPE
 

(1) General Principles
 

A gyroscope may be a spinning body, a nucleus, a supercon­

ducting current or a circulating light beam. Present laser
 

gyros are orders of magnitude from the performance needed.
 

Nuclei and currents have the shortcoming of being highly
 
susceptible to magnetic torques; their gyromagnetic ratios are
 
up to 1 0 1k times those of ordinary bodies; a free precession 

He3 gyroscope would have to be in a field below 10-20 gauss
 

to do the experiment. (22) The only horse in the race is a
 

supported spinning body, and no elaborate thought is needed
 
to see that the most torque-free body is a very round, very
 

homogeneous sphere. The problems come down to four: the size
 

of the sphere, and how it is to be supported, spun up and read
 

out.
 

Size turns out not to be critical, The drift-rate nr of
 

the gyro spin vector n due to some extraneous non-relativistic
 

torque Fr is rrA ns/Iws where I is the moment of inertia and
 

Ws the spin angular velocity. Substituting (8r/15) prs for I
 

and replacing ws by vs/r, where vs is the peripheral velocity,
 

we have
 

r
r A n
 

-s 
 -rI pr4 
Vs)
 

with a limit on vs from elastic distortion under centrifugal
 

forces given by
 

rIA F/E) 1/2

(v) 1.88 (L- ( - 11l 28 (4)max 
 r max
 

where E is the Young's modulus and a the Poisson's ratio for
 

the ball, and (Ar/r)max the maximum allowed difference between
 

the polar and equatorial radii.
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With a few exceptions, the torques may be divided
 

into two categories: those related to the surface area of the
 

ball and those related to its volume. Each surface dependent
 

torque F is proportional to (area) x (radius) x ((r), where
 

0(r) is a function which in some instances is constant and in
 

others depends on deviations of the ball from perfect sphericity,
 

Each volume dependent torque is proportional to (density) x
 

(volume) x (radius) x (r), where 0(r) is a function measuring
 

deviations from perfect homogeneity. Over a fair range of
 

radii 0(r) may be taken proportional to r
s and 0(r) proportional
 

to rv where s and v each lie between 0 and 1. Thus FP varies
 

as r (3 + s) and Po as r (4 + v) and from (4) the drift rates
A r Cs - 1) 
sfrom all torques in these categories vary as 
n and 


-s -s
 
and r v Thus some errors increase and some decrease with
 

increasing rotor size; in neither case is there much advantage
 

to a change of diameter.
 

The actual rotor is a ball 4 cm in diameter made from
 

optically selected fused quartz homogeneous in density to
 

1 part in 10 and spherical to a few parts in 107. Figure 6
 

is a general view of the gyroscope. The ball is electrically
 

suspended within a spherical quartz housing by voltages applied
 

to mutually perpendicular sets of condenser plates. It is spun
 

up initially to a speed of about 200 Hz by a gas jet system
 

desined
y Brcken(6)
designed by Bracken and Everitt, after which the gas is
 

pumped out and the ball is allowed to run freely in the vacuum.
 

The entire device is surrounded by a spherical superconducting
 

shield in which the trapped field level is maintained below 10 - 7
 

gauss. Readout is by SQUID magnetometers attached to super­

conducting rings surrounding the rotor. Details of the spin up
 

and readout systems are given in Sections C (2) and C (3). The
 

electrodes are 2 cm diameter circular pads 4 x 10- 3 cm from the
 

ball. The suspension system used in most of the work was designed
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by the late J. R. Nikirk. It holds the ball against accelerations
 

up to 5 g by 20 kHz signals of amplitude between 2 and 3 kV rms.
 

The ball position is sensed by a 1 MHz 2 V signal. The suspen
 

sien servo has a bandwidth of 600 Hz and long term centering
 

stability good to 10- 5 cm. In space the support voltage is
 

about 0.5 V. For further details of the suspension system
 

see Section D (2) and Reference (23). An earlier suspension
 

system with different characteristics was purchased from
 

Honeywell in 1967.
 

The choice of magnetic readout, electrical suspension and
 

gas spin up neatly separates problems in the three areas. The
 

separation is less complete on Earth than in space because the
 

large 20 kHz suspension signals generate pickup in the readout,
 

In fact suspension interference was an awkward problem in the
 

first stages of the laboratory experiment, as described in
 

Section D (4) (d).
 

Assuming a London moment readout one might ask if other
 

alternatives are worth considering for suspension and spin up.
 

The best claim another suspension might have would be that it
 
exerts a smaller torque on the ball, particularly if the
 

torque were low enough to do a relativity experiment on Earth,
 
originally as suggested by W. M. Fairbank (note (7) to Reference
 

(2), second paper). Various support schemes have been proposed for
 

spherical gyro rotors -- gas bearings, superconducting magnets, flo­

tation in superfluid helium, and so on -- and amazing claims are
 

sometimes heard about torque levels. No universal judgement
 

can be offered; the following argument shows where the heart
 

of the problem lies.
 

Any scheme for supporting a massive body against gravity
 

depends on creating pressure differences across the surface.
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If the body is nearly but not quite spherical a change in
 

orientation results in work being done against these pres­

sures; conversely the pressures exert a torque that drives
 

the body towards an energy minimum. The torque evidently
 

vanishes for a true sphere; it depends on the size and shape
 

of deviations from perfect sphericity. Discounting extraneous
 

effects, such as the interaction of a magnetic suspension with
 

the London moment or turbine torques in a gas bearing, we may
 

expect different suspensions to exert similar torques on bodies
 

of the same form, for the pressure that has to be applied over
 

a given area to balance a given acceleration is always the same.
 

More accurately we may think of two extreme suspension mechani­

zations between which all others fall. One which may be called
 

the plain man's suspension generates pressure simply to counter­

act gravity. To fix ideas think of a light sphere floating on
 

mercury. If the total deviation from sphericity is Ar the
 

difference between maximum and minimum energies is MfAr where
 

f is the residual acceleration. Upper bounds on the torques
 

are found by expanding the shape of the spinning body in
 

Legendre polynomials and identifying Ar with each polynomial
 

in turn. The drift-rates are
 

nm = X fA n (5)

r 2v - -s
 

where m is the order of the polynomial and X is a quantity
 

between 0 and 1 depending on m and the size of the support
 

pads. If the diameter of the pad is d then mX 0 as m >> ir/d,
 

and satisfactory limits are got by considering the first few
 

even and odd harmonics. Taking Ar/r as 3 x l0- 7 and f in space
 

as 10- 9 g the expected drift rate with a plain man's suspension
 

and f perpendicular to ns is around 10- ' rad/sec, a factor of
 

ten higher than the design goal for the experiment. Further
 

improvements depend on the extent to which f averages through
 

the orbit or the plain man's suspension can be improved on.
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To do better the energy put in at one point must be taken
 

out elsewhere. The simple picture is not a sphere on mercury
 

but a neutral density body immersed in an incompressible fluid.
 

The pressure extends over the whole surface and the torque
 

vanishes. Remembering Archimedes we may call this the eureka
 

suspension. An electrical suspension can be arranged to mimic a
 

eureka suspension by applying voltages to all six electrodes at 

once. It is then said to be preloaded. In the most common mechaniza­

tion the voltages V 2 , V
k 
on opposite electrodes are adjusted 

to keep (V + V ) constant and the preload acceleration h is the2 I 

acceleration along a support axis required to send the voltage
 

on one plate to zero. The most critical shape is the oblate
 

spheroid, since it determines the gyro drift due to centrifugal
 

distortion of the ball, and for a ball spinning at 200 Hz the
 

centrifugal Ar'/r is 3 x 10- 6 , a factor of ten larger than the
 

polishing errors. Defining a preload compensation factor
 

= (hx - h v)/h z etc., the torque on an oblate spheroid inclined
 

to the electrode axes turns out to be proportional not to f as
 

in the plain man's suspension but to f + h f. There is
 

therefore an optimum preload h = f/i'?; and if the preloads are
 

matched to 1%, as is reasonable, this torque is an,order of
 

magnitude less than with the plain man's suspension (actually
 

nearer a factor of 40 less since the numerical coefficient is
 

smaller).
 

Two other, more elaborate, mechanizations deserve mention.
 

One known as "sum of the energies" control has voltages continu­

ally adjusted to hold EC.V constant where C. and V. are the
 
Ith 2 1
 

capacitance and voltage of the i- electrode. The energy is
 

independent of orientation; this is a true eureka suspension.
 
The second is "sum of the squares" control, for which the
 

voltages on the three axes fulfil the condition V 2 + V2 =
 
24
 

V 2 + V 2 = V 2 + V 5 This leaves the higher order terms
 

but makes the torque on an ellipsoid vanish. Defining a sum
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of squares control factor analogous to the preload compensa­

tion factor, the ellipsoid torque is proportional to p! + CE fc, 

still further down from the plain man's suspension. 

Other suspension techniques such as a superconducting
 

bearing might also outperform the plain man's suspension. The
 

trouble always is that eventually the analytic arguments break
 

down through secondary effects like polishing errors in the
 

housing. The eureka suspension is a will o' the wisp. In fact
 

in Honeywell's studies of electrical suspensions sum-of-the-squares
 

control really helps, sum-of-the-energies does not. One may con­

jecture that with comparable work all suspension techniques will
 

beat the plain man's suspension in about the same degree.
 

Consider now an attempt to do a Gyro Relativity experiment
 

on Earth, say in an observatory near the equator. The combined
 

relativistic precession (n *G ++ n) is 0.4 arc-sec/year. Suspen­
sion errors may be reduced either by approximating a eureka
 

suspension or by averaging. If the spin axis n lies in the
-S 
equatorial plane the quantity f A n in Equation (5) averages
 

to gX, where X is the average uncertainty in f A ns from fluctu­
-
ations in the local vertical, say i0 5 rad. Then with Ar/r for
 

a spinning ball equal to 3 x 10- 6, the uncertainty in gyro drift
 

with a plain man's suspension is about 100 arc-sec/year. Better
 

things might be hoped from a preloaded suspension. Alas not!
 

The residual torques, instead of being parallel to the local
 

vertical are in an unknown direction in the housing: experience
 

at Honeywell with live gyros suggests a limiting drift-rate
 

nearer 1000 arc-sec/year -- worse than straight averaging with
 

the plain man's suspension.
 

Consider another torque: mass-unbalance from inhomogene­

ities in the rotor. If u is the distance from center of mass
 

to center of geometry the torque is Mfu and the drift rate
 

.u 5 (Hf A n s (6)
-s 
 2\r/ 
 v
s
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which with (u/r) % 10- 6 and f A ns ru 10-sg averages to 60
 

arc-sec/year, comparable to the suspension torques. In space
 

with f%10 9 g, the drift-rate is below 0.001 arc-sec/year. The
 

mass-balance might be improved by evaporating material on the
 

surface of the ball and checking its pendulum period before spin 

up. If Q0 is the design goal and w. the gyro spin-rate the 

pendulum period T must exceed 2a .sinA 20 s , and with 

A ~ 10- 5 the period for an 0.1 arc-sec experiment is four 

hours -- perhaps a factor of 20 beyond the limits of feasibility. 

An Earth based experiment is hopeless.
 

An analysis of the torques on the orbiting gyroscope has
 

been presented in papers by C. W. F. Everitt, (8) (24 ) to which
 

reference should be made. The torques may be divided into two
 

classes: those like the suspension and mass unbalance terms
 

which scale with the residual acceleration on the spacecraft,
 

and those like the effects of residual magnetic fields, residual
 

gas in the cavity, residual electric charge on the rotor, and
 

the gravity gradient form discussed above, which are essentially
 

the same on Earth and in space. The result of the analysis is a
 

set of design restrictions, on the rotor, housing suspension
 

system, spin up system, and environment, needed to attain gyro
 

drift performance of 1016 radians/sec (0.6 x 10- arc-sec/year).
 

Table 1 summarizes the results both for a rolling and non rolling
 

satellite, assuming a 500 mile near polar orbit, with a 4 cm
 

diameter gyro rotor spinning at 200 Hz. Some of the numbers quoted
 

are restrictions, others, such as the Earth's gradient acceleration
 

are know fixed values. The various restrictions are not indepen­

dent: an improvement in performance in one area would allow
 

relaxation of restrictions elsewhere. The immense challenge that
 
exists in achieving all the requirements at once needs no
 

emphasis; each does seem within the bounds of possibility.
 

The three areas where most work remains to be done are:
 

(1) mechanizing the suspension electronics for space, (2)
 

reaching satisfactory operating pressures, (3) maintaining
 

lbw residual charge on the ball.
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Table 5 represents the state of understanding of experi­

mental limitations reached in 1973. Some of the estimates
 

used in evaluating the support-dependent drifts were unneces­

sarily conservative because they failed to take into account 

in a proper mathematical way the averaging of quantities 

f A n -- -S and higher order drift terms in a rolling drag-free 

satellite. A satisfactory procedure for handling these terms
 

was formulated by C. W. F. Everitt in 1975(25) and utilized by
 

T. M. Spencer of Ball Brothers Research Corporation in the analy­

sis of a non drag-free spacecraft presented in BBRC report:
 
Mission Definition for a Relativity Explorer for the Stanford
 

Relativity Experiment. Mr. Spencer showed that an averaging
 

of as much as a factor of 40 better than earlier estimates was
 

to be expected in a non drag-free spacecraft in near-circular
 

inclined orbit. The gain in a rolling drag-free spacecraft is
 

less; it has yet to be properly worked out, but may be between
 

a factor of 5 and 10 better than the figures used in deriving
 

Table 5. There is therefore good reason to expect support­

dependent drifts to go below 10- 4 arc-sec/year in the final
 

experiment.
 

Table 6 provides a comparison of the magnitude of the
 

leading support dependent gyro drift terms in the laboratory
 

and space (the final flight mission), together with the
 

formulae on which they were based. Most of the suspension
 

torque equations from which the formulae are derived were
 

obtained by Mr. G. Matchett, formerly of Honeywell Incorporated,
 

in an important U.S. Navy Report to which reference should be
 

made. (26) The analysis, being based on electrostatics, should
 

be considered rather trustworthy in principle, and the results
 
have been verified in practice in the laboratory at Honeywell
 

Incorporated. Terms up to the seventh harmonic in rotor shape
 

have been satisfactorily identified in observations on drift
 

performance of live gyros. Very considerable confidence can
 

therefore be attached to the analysis of support dependent
 

torques.
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Table 6: Principal Support-Dependent Gyro Drift Terms on Earth and In Space
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In operating precision gyroscopes on Earth it is customary
 
to observe gyro drifts under test and apply the observations to
 
model future gyro performance. The gyro can then be used in
 
navigation to higher accuracy than its observed residual drift
 
rate. The Honeywell electrically suspended gyroscopes, for
 
example, have typical uncorrected drift rates of the order of
 

3 x 10 arc-sec/year, but their performance can be modelled to
 
reduce the navigational uncertainty after a year to about 3000
 
arc-sec. The residual uncertainty is due to random walk dis­
turbances; the navigational uncertainty after one day is of
 

order 3000//365 or 150 arc-sec.
 

One may ask whether torque modelling can be attempted in
 
the Gyro Relativity experiment. Our original answer was No,
 
because the procedure used for navigational gyros of following
 
the drift performance and calculating out linear terms is
 
clearly inapplicable since there is no simple way to distinguish
 

these terms from the linear relativistic drifts. Moreover some
 
of the numerical coefficients that enter into any torque calcu­
lation cannot be determined in advance. Take, for example, the
 
"mass unbalance" drift rate given by Equation (6), 
 p. 44. The
 
radius r and peripheral velocity vs of the ball are known, as
 
is the direction n of its spin axis, and the residual accel­-S 
eration f on the gyro can be measured, but the magnitude of u,
 
the distance between the center of geometry and the average
 
position of the mass center along the spin axis depends on two
 

quantities that are very difficult to determine: the distance
 
d between the mass center and the center of geometry and the
 
mean angle y between d and the spin vector n . The value of y


-- -S 
depends on initial spin conditions. If d were aligned at right
 
angles to n there would be no axial mass unbalance. Thus it


-Sis relatively easy to estimate an upper limit on n , from the
 

known upper limit on d, but difficult to determine its actual
 

value.
 

Difficult does not necessarily mean impossible, however.
 
We have one other parameter to play with: the residual accel­
eration f on the spacecraft. Suppose that at the beginning or
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end of the experiment, or at other suitable times, one Were to
 

briefly apply accelerations 102, 103, 104 etc. larger than the
 

normal 10- 9 g, then the support-dependent drifts would dramati­

cally increase and one might be in a position to determine u and
 

other parameters for gyro modelling. Our present view is that
 

tests of this kind are a good idea in checking magnitudes of the
 

support dependent torques, but since these torques are unlikely
 

to be the dominant limitation, extensive modelling is probably
 

not needed. It is nice however to have this card up our sleeves.
 

The one gyro drift term that can be modelled exactly is
 

the gravity gradient torque on the quadrupole mass moment of
 

the gyroscope. See Section B (Tables 1 to 4).
 

The gyro spin speed of 200 Hz is chosen to optimize
 

effects of torques from different sources. See Reference (24).
 

(2) Gyro Spin Up
 

The development of a suitable gyro spin system proved an
 

exceptional challenge, in meeting which much credit must go to
 

the acumen and determination of T. D. Bracken, then (between 1966
 

and 1968) a beginning Physics graduate student at Stanford.
 

Important help was given in the conceptual stages by D. Baganoff
 

of Stanford Aeronautics Department. Dr. Bracken's work is des­

cribed in two papers completed in 1968, (7) one published and one
 

unpublished. In 1971 J. A. Lipa made simulation fixtures to
 

check pressure tatio's in the system and discovered a factor of
 

three correction to one calculation, which led to a slight
 

redesign of the differential pumping ports. A further small
 

correction has been pointed out (27) by G. Karr of the University
 

of Alabama, Huntsville, who has also analysed the design from
 

a new point of view. The first gyro spin up at room temperature
 

was done by J. A. Lipa and J. R. Nikirk in January 1973; the
 

first low temperature spin up was in June 1973. See Section
 

0 (4) (c). 

Figure 7 is a cross-section of the gyro housing showing
 

details of the spin system. It consists of two 2 cm x 0.5 cm
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equatorial channels through which turbulent helium gas is
 

passed under choked flow conditions at a mean pressure of
 

about 16 tprr. Since on Earth the suspension electrodes
 

would undergo electrical breakdown at about 0.02 torr, the gas
 

pressure in the electrode area must be kept below that value.
 

This is achieved by a differential pumping system. The spin
 

up channel is surrounded by raised lands with a clearance of
 
-
about 5 x 10 4 cm from the rotor. About 96% of the gas entering
 

the channel leaves through the outlet port at the end; the
 

remaining 4% seeps over the raised lands and is exhausted at
 

low pressure through a guard ring of pumping slots surrounding
 

the channel. Details of the design optimization are given in
 

the .papers of Bracken and Everitt already cited; at maximum
 

operating pressure the constraint on pressure from electrical
 

breakdown is met with a safety factor of two. On Earth dif­

ferential pumping is provided by a high speed diffusion pump;
 

in orbit the system is exhausted to the vacuum of space. The
 

maximum spin speed is determined by the competition of the
 

spin up gas torque with the viscous drag torque between the
 

rotor and the raised lands plus the drag from the low pressure
 

gas in the main portion of the housing. The maximum rotor
 

speed attainable at 2K with our geometry is close to the optimum
 

200 Hz, with a characteristic spin up time constant of 15 min.
 

One might imagine that in space, where the support voltages
 

are low, electrical breakdown would cease to be a problem and
 

the elaborate differential pumping system of Figure 7 could be
 

avoided. J. A. Lipa has pointed out that this is not so.
 

Although a spin system can be devised which works at higher
 

pressures and avoids differential pumping, the pressure required
 

to generate enough torque to overcome the additional drag in
 

the cavity is about 0.6 atmosphere. Now the area of each channel
 
2
is about 1 cm2 . Applying 0.6 atmosphere pressure over 1 cm


causes an acceleration of 10 g on the ball, and although this
 

is balanced by the corresponding force from the other channel,
 

the difference will be enough to cause appreciable accelerations
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of the ball. The natural procedure for overcoming such accel­

erations would be to raise the suspension voltage. Calculations
 

based on the well-known pressure/breakdown curve for helium gas,
 

confirmed experimentally by T. Edeli at Stanford, show that the
 

minimum breakdown for the present electrodes at a temperature
 

of 4K occurs at a pressure of about 5 x 10- 2 torr. The breakdown
 

voltage is 230 V (peak value). With a 230 V suspension the maxi­

mum support acceleration is about 3 x 10 - 3 g. Thus without
 

differential pumping the gas pressures in the two spin up channels
 

would have to be balanced to something like 1 part in 104 to
 

avoid the ball hitting the wall.
 

After spin up the gas is pumped out and the ball allowed
 

to-coast in the vacuum. Residual gas in the cavity gradually
 

slows the ball. Assuming diffuse reflection the exponential
 

spin down time is given by
 

1 27k prT1 / 2 (7)
5 - m p
 

where m is the mass of the helium atom, k Boltzmann's constant,
 

p and r the density and radius of the ball, T the absolute temp­

erature and p the pressure in the cavity. For helium at 2K and
 
9
10- torr the time T is about 300 years. Gas damping is by far
 

the most dominant process in- slowing the ball. Intuitively
 

therefore one might expect serious gyro drifts due to departures
 

from sphericity or centering of the rotor in the gyro housing.
 

Actually such terms vanish so long as the pressure is uniform.
 

This rather surprising result comes about because the momentum
 

transfer between two moving surfaces is proportional to
 

(number of molecules) x (frequency of collision per molecule).
 

The first factor is proportional to the spacing d between the
 

ball and the housing; the second factor is proportional to i/d.
 

Thus T is independent of d as Equation (7) shows. However
 

pressure gradients in the cavity may cause gyro drifts, as
 

investigated in Section 3.7 of Reference (8). In a rolling
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satellite with an operating pressure below10' 9 torr they
 
- 4
should be of order 10 arc-sec/year or less.
 

The difficulty with gas torques might lead one to suppose
 

that another method of spin up would have smaller residual
 

torques. On the contrary, some quite general considerations
 

-show that the difficulties of gas spin up, bad as they are,
 

are less forbidding than those of any other system that can
 

be devised.
 

To spin a gyro rotor suitably at rest, a torque rs of
 
s
some kind must be applied for a time ts, after which r' must
 

be reduced to a level where the residual component
 

perpendicular to the spin axis does not cause significant
 

drift errors. Neglecting drag torques Fs = IWs .
s/t Now
 
rr is Qr = rrn/i. Replacing 9r
the drift rate Qr due to 


by the gyro drift rate chosen as the design goal for the
 
Fr we have
experiment and expressing the result as a limit on 


r
 
-p < 20t (8)
 

rs
 

Since it is operationally convenient to spin up in times less
 

than the half-period of the satellite orbit, t has to be less

1
s
 

-
than 2000 seconds and with Qo % 10 8 radians/sec, the ratio
 

r / s has to be less than 2 x 10- 1 3  Gas forces are among the
 

very few for which such a torque switching is possible. Almost
 

the only conceivable alternative is a mechanical clutch and
 

drive motor.
 

But there is another consideration of great cogency. To
 

obtain the full London moment the gyro has to be spun up below
 

its superconducting transition temperature. Now any spin system
 

will dissipate some heat. At cryogenic temperatures the only
 

way of getting rid of the heat is by having gas in the cavity.
 

Let Y be'the mechanical efficiency, so that (1 - f) represents
 

the proportion of energy dissipated in heat; and let T bp the
 
c
 

temperature of the cavity, -T the maximum temperature rise
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allowed, and a the reduced mutual accommodation coefficient
 

for the true surface. Then the minimum acceptable operating
 

pressure during spin up by gas with specific heat ratio y is
 

m- y -	 T 
p > 	 2 2m kc Tr tl-s (9) 

15 (y-) (l_ a__ V T 

-
For helium gas the numerical factor reduces to 1 x 10 5 egs
 

units. Taking a as 0.5, Tc as 2K, Tr as 6K; the minimum
 

value for p is 2 x 1 0
- 4 (1 - Tj) torr. To allow the gyro to
 

be spun up at the final operating pressure of 10- 9 torr the
 

efficiency would need to be 99.9995%. Actually that figure
 

can be relaxed slightly by taking advantage of the specific
 

heat of the fused quartz, allowing the ball to warm up and then
 

gpol down slowly afterwards; but the efficiency still has to
 

exceed 99.993%. There seems no escape, whatever the spin
 

system, from having some gas present at higher than normal
 

pressure during spin up. Since the difficulty in reaching
 

low pressure is nearly all in covering the last orders of
 
-
magnitude from 10 7 to 10- 9 torr, no alternative method is
 

likely to be easier than gas spin up.
 

The problem of obtaining 10- 9 torr pressures in the gyro
 

housing has been investigated by J. A. Lipa. Since spin up
 

must be done below the superconducting transition temperature,
 

conventional cryopumping techniques, which depend on cooling
 

from high temperatures, are of little direct use. The initial
 

venting to space at an altitude of about 400 nautical miles,
 

coupled if necessary with a second stage of internal cryosorption
 
7
pumping, should readily give pressures below 10- torr. The
 

remaining pressure reduction can probably be achieved by "baking"
 

the gyro housing and its surroundings at a temperature four or
 

five times their normal 1.6K operating temperature. The pro­

cedure has a rough similarity to the removal of water from a
 

room temperature ultra-high vacuum system by bake out at 7000C
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(a bake out temperature much higher than is conventional);
 

the bake out does not appreciably heat up the ball, and
 

therefore does not appreciably alter the vapor pressure Of
 

the adsorbed helium on it. As this gas is gradually desorbed
 

it impinges on surfaces that are relatiVely helium frees
 

Since the vapor pressure of adsorbed helium is a strong
 

function of surface coverage, gas atoms impinging Oh the
 

housing will not return to the ball at a significant rate
 

even when 60% of the gas has been transferred. The one way
 

gas transfer does not exert any drift torque on the ball and
 

the effective pressure in the housing ultimately becomes that
 

due to the gas from the ball readsorbed on the housing wall,
 

which leads at the end of a year to a maximum vapor pressure
 
9
of 1 or 2 x 10- torr.
 

t3) Gyro Readout
 

(a) Background
 

Conventional optical readouts for electrically suspended
 

gyroscopes depend on having a gyro rotor with unequal moments 

of inertia so that it spins about a preferred axis. Patterns 

are applied to the surface of the ball from which light is 

reflected to photodetectors to determine the position of the 

spin axis. The Honeywell gyro has a hollow beryllium rotor, 

welded from two half shells with a heavy internal belt around 

the equator. Two detectors are used to find the polar coordinates 

O and 4)of the spin axis with respect to the housing, by obser­

vations of a D shaped pattern at the pole to determine e and a 
sawtooth pattern at the equator to determine 4. The principle 

of the D pattern readout is identical with that of the color­

mixing readout applied by Maxwell between 1857 and 1861 to 

his "Dynamical Top" and magnetic momentum experiment. (28)
 

The Honeywell readout has limited angular range. To
 

obtain wide-angle information and minimize gyro torques
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the gyro is operated in a gimballed mode: the housing tracks
 

the ball and signals are taken from the gimbal output. An
 

electrically suspended gyroscope with direct wide angle readout
 

has been developed by Rockwell International (Autonetics Division).
 

The rotor is given radial mass unbalance and read out electrically
 

from the periodic signal in the centering servo.
 

No existing readout comes near the performance needed in
 

the Gyro Relativity experiment. Honeywell's optical pickoff
 

has four shortcomings in our application:
 

(i) the light flux causes an excessive heat input into the
 

cryogenic rotor which could only be removed by raising the oper­

ating pressure to an unacceptable level. Since cryogenic opera­
tion is called for other reasons besides readout, this objection
 

alone is decisive.
 

(ii) the inequality in principal moments of the ball,
 

required to make the readout work, gives the ball a quadrupole
 

mass moment of about 3 x I0-2 , which causes a drift rate 2g in
 

the Earth's gravity gradient of 150 sin 2 arc-sec/year: too
 

large to be conveniently separated from the relativity terms
 

G and Q M by the methods described in Section B.
 

(iii) readout noise is excessive. Latest performance
 

figures reported by Honeywell give a resolution of 15 arc-sec
 

in 100 radian bandwidth. The time required to obtain a single
 

1 milliarc-sec data point would be six months under the most
 

favorable assumption. Not only is this far too long in any
 

case, but, even worse, centering errors prevent meaningful
 

integration of data over such long periods.
 

(iv) centering errors. The optical pickoff locates the
 

poles of the spinning rotor with respect to a point on the
 

surface of the housing. A displacement t of the center of
 

the ball with respect to the center of the housing causes
 

an error in readout angle of order t/r. The long term centering
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stability of the electrical suspension system is 5 to 10
 

microinches, so t/r for a 1.5 inch diameter ball is about i0-5
 

radians or 2 arc-sec. Drifts in gyro readout of this order
 

may occur in days or weeks.
 

The relatively poor angular resolution of the Honeywell
 

pickoff may seem surprising in view of the extraordinary
 

resolutions attained with classical optical levers. The Jones­
5
Richards optical lever, for example, (29 ) resolves 10- arc-sec
 

in a 10 Hz bandwidth. The difficulty with the gyro is diffraction
 

and scattering of light reflected from the D pattern: the
 

effective aperture is no more than thousandths of an inch,
 

making the angular diameter of the diffraction image several
 

hundred arc-seconds. A method of overcoming the difficulty
 

in principle was conceived under the present Grant 6y C. W. F.
 

Everitt. A rotor is made of two glass hemispheres, fused
 

together with a mirror sputtered on the interface, and given
 

a preferred axis so that it spins about the normal to the
 

mirror. The rotor is coated with a few hundred angstr~ms
 

of normal or superconducting metal, thick enough to conduct
 

electricity and allow the suspension system to operate, but
 

thin enough to transmit light. The curved surface of the ball
 

serves as a lens element in a precision optical lever. A readout
 

of this kind should give excellent angular resolution and be
 

independent of centering errors of the ball. An easy way of
 

mechanizing two axis information would be to have optical
 

levers for the X And Y axes looking in from opposite ends of
 

the axis at the front and back surfaces of the mirror. The
 

extremely thin coating on the ball would preclude use of
 

such a readout in a ground-based gyroscope because of the
 

electrical arcing problems described in section D, unless
 

the thin coating were restricted to very small areas near the
 

poles which were never allowed into the region of high electric
 

field. In space, however, it might be feasible.
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The Autonetics electrical suspension readout in its most
 

sensitive mode has comparable limitations in angular resolution
 

to the Honeywell optical pickoff.
 

(b) Principle of the London Moment Readout
 

According to the London equations of superconductivity
 

there is in a rotating superconductor a magnetic moment aligned
 

with the instantaneous spin axis which reduces in spherical
 

geometry to a dipole of magnitude
 
3
M mc r3Ws = 5 x 18 w gauss (10) 

L 2e s s
 

Figure 8 illustrates the principle of the London moment readout
 

of the gyroscope. The ball is surrounded by a superconducting
 

loop connected to a sensitive SQUID (Superconducting QUantum
 

Interference Device) magnetometer. A change-in orientation-of
 

ML changes the flux through the loop and can therefore be
 

measured by the magnetometer. Three mutually perpendicular
 

loops give a three axis readout.
 

Work at Stanford since 1971 on applying the SQUID magnetometer
 

to the London moment readout has been principally the responsibility
 

of J. T. Anderson and R. R. Clappier. Earlier research on the
 

vibrating plane magnetometer conceived by Bol, Deaver and
 

Fairbank was carried on principally by W. 0. Hamilton, J. E.
 

Opfer and J. M. Pierce. (30)
 

SQUID magnetometers provide a very sensitive measure of d.c.
 

magnetic fields by determining quantum interference in a super­

conducting circuit containing a weak link. In such a circuit
 

there is a critical current Io (the Josephson current) above
 

which the weak link reverts from the superconducting to the
 

normal state. If the current is below Io it automatically
 

adjusts to cancel any changes in the applied field and conserves
 

the magnetic flux in the ring, but if it ever exceeds the
 

critical value a flux quantum will pass into or out of the ring
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Figure 8: Principle of London Moment Readout
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to drop the current below Io . During such a transition the
 

ring is a magnetic dipole radiator. A SQUID detector works
 

by superimposing an rf field greater than the critical value
 

on the d.c. field H to be measured. In our existing systems
s 

20 MHz or 30 MHz drive frequencies are used. Pulses of radiation
 

are generated each time the weak link goes normal; the resultant
 

power coupled to an adjacent tuned circuit turns out to be
 

periodic in Hs . With appropriate audio modulation and phase
 

sensitive detection techniques, a servo system may be designed
 

which locks the maqnetometer to a given maximum in the curve
 

of rf tank voltage versus magnetic field by feeding back a mag­

netic field to the weak link circuit. The feedback current is
 

directly proportional to the field being measured.
 

The difficulty in applying SQUID magnetometry to gyro
 

readout lies in handling extraneous a.c. magnetic fields from
 

the gyro suspension system and from residual trapped magnetic
 

flux in the rotor. These signals average to zero, but if the
 

rate of change of field is too rapid the feedback system
 

cannot keep the magnetometer locked on the quantized flux step,
 

and if the amplitude is too great there will be rectification
 

errors due to nonlinearities in the system. Investigations
 

described elsewhere (31 ) show that the trapped field levels are
 

best kept below 10- ' gauss. Pickup from the electrical suspen­

sion system consists of 20 kHz signals from the suspension
 

voltages (2kV on Earth; 0.3V in space). Two different approaches
 

have been followed in reducing suspension pickup. One is
 

"bucking": that is injecting drive signals of appropriate
 

frequency, amplitude and phase into the magnetometer to reduce
 

the disturbance to an acceptable level. The other is filtering
 

either by means of a resistor across the SQUID input or a
 

"damping cylinder" between the two coils of the transformer
 

coupling the readout coil to the SQUID. The damping cylinder
 

The use of a resistive
also serves as an electrostatic shield. 


filter increases the readout noise, so the method should not be
 

pushed too far.
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Figure.9 shows the general layout for a single axis of the
 

readout system now in use. It comprises a SQUID coupled to the
 

gyro through a transformer with a damping cylinder of 300 Hz
 

bandwidth, and connected on the output side to an rf tank
 

circuit, oscillator, detector, 100 kHz demodulator, integrator
 

and feedback loop. The damping cylinder kills off the 1 MHz
 

signal and most of the 20 kHz signal; some 20 kHz bucking is
 

available to help reduce pickup at that frequency. The noise
 

introduced by a 300 Hz damping cylinder is about a factor of 5
 

higher than the readout noise from the SQUID. The noise at
 

10kHz bandwidth would be negligible. Since 20 kHz interference
 

is three orders of magnitude lower in space than on Earth, the
 

filter bandwidth can be opened up in space to a value for which
 

the noise should become negligible. The best configuration is
 

still under study.
 

Particular advantages and problems of the London moment
 

readout are discussed in the next eight subsections. The com­

parison of angular resolution with the resolution of conventional
 

gyro readouts is given in Section C(3)(e).
 

(c) Mechanical and Electrical Stability of the Readout Ring
 

-
An angle of 1 milliarc-sec is 5 x 10 9 radians. Subtended over 

a readout ring 4 cm in diameter, this corresponds to a require­

ment of mechanical stability to within 2 R during the lifetime 
of the experiment. The distribution of current in the ring
 

corresponding to a particular orientation of the gyro spin axis
 

should also remain constant to the same level. The requirements
 

can be eased somewhat by taking into account the averaging effect
 

from rolling the spacecraft, but the need for extremes of mechanical
 

and electrical stability in the readout ring is clear. Mechanical
 

stability is achieved by having the ring sputtered on the housing.
 

Electrical stability depends on the geometry of the ring as dis­

cussed in the next subsection.
 



LOW HEAT-LEAD F 

TRANSMISSION LINE 

O T -CRYOGENIC 
G >ENVIRONMENT 

DAMPING T AO--


CYLINDER AT 200Hz 

Figure 9 : London Moment,Readout System
 



64
 

(d) 	Otimization of Readout Loop Performance: Saturn's
 
Ring versus Wedding-Band Readouts
 

One configuration for the primary readout loop is a ring
 

sputtered on to the parting plane between the two halves of
 

the gyro housing (see Figure 11, p. 82). A typical geometry
 

would be a loop a few mils wide and 1000 R thick located
 

about 30 mils from the surface of the ball, with lines running
 

to a convenient place at the edge of the housing to attach the
 

leads of the matching transformer. A second loop can be sputtered
 

on to an auxiliary ring sliding over the outside of the housing
 

(Figure 11). This particular arrangement may be called the
 

Saturn's ring readout. The current nearly all flows in the two
 

edges of the sputtered loop; one has in effect two ,wires 1000
 

in diameter separated by a few mils. The inductance is about
 

0.3PH.
 

The sensitivity of the London moment readout increases with
 

decreasing readout loop inductance, Lr, as will be discussed
 

below. A method of reducing Lr is to exploit the superconductivity
 

of the gyro rotor by having a readout ring in the form of a broad
 

flat band inside the gyro housing close to the surface of the
 

ball. The inductance of a superconducting strip of width w and
 
length £ situated at a distance d from a superconducting plane is
 
proportional to £d/w. With an extended strip 20 mils wide at a dis­

tance of 0.2 mils from the surface of the ball the inductance can
 

be made a factor of 200 less than that of the Saturn's ring, i.e.
 

about 1.5 nH. This second configuration may be called the
 

wedding-band readout. The current is spread more or less uniformly
 

over the band.
 
At this point we must examine more closely the problem of
 

optimizing readout loop performance and the significance of flux
 

transferred to the SQUID. Because the SQUID output is periodic
 

in the flux quantum 4o, the tendency is to discuss the SQUID
 

sensitivity, and hence gyro readout sensitivity, in terms of
 

the magnetic flux. It is correct and often convenient to do so,
 

but it is often more illuminating to work with energies rather
 

than flux.
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The best approach to understanding the relationship between
 

SQUID sensitivity, readout circuit characteristics, and readout
 

sensitivity is from an analogy with the usual signal transfer
 

theory in electrical engineering. In a.c. circuitry theory an
 

ordinary signal source can be characterized by its impedance
 

and signal power, and the receiver by its input impedance and,
 

internal noise power per unit bandwidth; signal and noise
 

voltages and currents are used where appropriate. In d.c.
 

superconducting circuits, by contrast, there is no voltage,
 

no steady-state power flow, and no resistance. Thus whereas
 

in a non-superconducting circuit a voltage drives a current
 

through an impedance, in a superconducting circuit a flux drives
 

a current through an inductance, and power flow into an impedance
 

is replaced by energy stored in an inductance. The analogous
 

quantities are given in Table 7.
 

Table 7: 	 Analogous Quantities in Normal and
 
Superconducting Circuits
 

Normal Superconducting
 

power P energy W
 
voltages V flux 4
 
impedance Z inductance L
 
current I current I
 

In ordinary circuits, the maximum available signal power
 

is transferred to the receiver when the source and receiver
 

impedances are equal. Considering the readout ring of the
 

gyroscope as the signal source and the SQUID as the receiver,
 

the analogous objective is to transfer the maximum energy from
 

the readout ring to the SQUID, and this will occur when the
 

readout rin and SQUID have equal inductances.
 

If the source and receiver have different impedances, then
 

the maximum available signal power can still be transferred from
 

the source to the. receiver if a transformer is inserted in the
 

circuit between them. The transformer makes an arbitrary impedance
 

change between its input and output;.it can be designed to "match"
 

http:output;.it
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a source to a receiver having a different impedance. Whbn ah
 

impedance matching transformer is used in an ordinary a.c:
 

circuit, the voltage at the receiver ban be hundreds bf times
 

larger or smaller than the voltage at the source; to obtain
 

maximum power flow, depending on their relative impeddn6es.
 

In superconducting circuits; the transformer plays an eqUivatent
 

role, but it matches inductances rather than impedacessv and
 

allows the flux at the receiver to be significantly different
 

from that at the source.
 

Typical SQUIDs have intrinsic inductances between d.lhH
 

and 1 nH. Higher inductances are unsatisfactory fbr two
 

reasons.- First, if the kT noise in the SQUID exceeds p2/2t s ,
 

the SQUID will cease to operate properly; at a temperature of
 

4K, this sets an upper limit on Ls of about 10 hH. Second, the
 

si~hal power P out of the SQUID becomes difficult to observe
s 
iE it is less than the amplifier noise in the rf box, and P
s 
is proportional to i/L . However, the upper limit on Ls set 

by this constraint is several orders of magnitude larger than 

that set by kT noise. 

With a Saturn's ring readout, then, having an inductance
 

of 0.3H, a transfbrmer is required for inductance matching.
 

In the work done so far on the Gyro Relativity experiment; the
 

matching has been provided by means of both a transformer built
 

into the SQUID and the damping cylinder transformer referred tb
 

in Section C (3) (b). The fraction of available energy trans­

ferred from the readout ring to the SQUID is in the range 2% to
 

20% depending on the design and efficiency of the transformet,
 

and the effects of stray inductances. The corresponding amouhts
 

of gyroscope flux appearing at the SQUID range from 0.2% to 0.7%.
 

Pr'actical implications of these results for precision gyrb readbt
 

are discussed in Section E (4).
 

Return to the ordinary electrical engineering situation.
 

biven two signal sources having the same voltage outpdt vs8
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the source having the lower output impedance will be able to
 

deliver more power, since the maximum power obtainable from
 

the source is v2/4Rs. The corresponding expression for the
 
maximum energy transferred from a superconducting circuit is
 

2/SL (the factor of 8 rather than 4 in the denominator
 

arises because it is convenient in this case to use peak rather
 
than rms signals). Translated to the gyro readout we then
 
have that the maximum energy transferrable to the SQUID for a
 

given angular change a is a2 {/8Lr, where L is the London moment
 

flux and L the inductance of the readout ring. Since the
r 
wedding band readbut has an inductance 200 times less than
 

that of the Saturn's ring readout, it provides a signal energy
 

200 times greater. The practical advantage of the wedding
 

band readout is that its high sensitivity, relative to the
 

Saturn's ring readout, reduces the signal integration time
 

to resolve 1 milliarc-sec from tens of hours to tens of minutes.
 

The reduced inductance of the wedding-band configuration
 

allows another possible modification to the London moment readout,
 

pointed out by Dr. J. B. Hendricks of the University of Alabama,
 

Huntsville, namely to incorporate the weak link directly into
 

the readout loop. (32 ) This arrangement leads, in principle,to a
 

further improvement in sensitivity-by eliminating coupling
 
losses inherent in the circuity and transformer that would
 

otherwise be necessary to connect the readout loop to the
 

SQUID. However the direct coupled SQUID is harder to shield
 
against pickup.
 

With either form of wedding band readout there are
 

practical difficulties in fitting the ring on center in the
 
housing. For reasons explained below an off-center ring
 

will contribute readout null drifts due to drifts in centering
 
of the gyro rotor. The centering criterion is described in
 

Section C (3) (2).
 

A readout stability of 1 milliarc-sec means, as stated
 
in the previous subsection, that the readout ring and the current
 



68
 

flowing in it have to be stable to 2 R across the diameter of
 

the ring. The stability of the current distribution in the
 

Saturn's ring configuration will evidently be much better than
 

the 1000 R thickness of the loop, but a change in temperature
 

of the loop might cause a redistribution of current that would
 

alter the null plane by a few W.
With a wedding band 20 mils.
 

(5 x 10- 2 cm) wide, the null plane of the current has to remain
 

constant to 4 parts in 107 if errors in excess of 1 milliarc­

sec are to be avoided. Small changes in temperature might well
 

cause changes of this magnitude. Other potential sources of
 

trouble are the changes in inductance from polhoding of the
 

out of round ball, and long term drifts in the center of support.
 

With a gap of 200 micro-inches and a ball out of round by 0.5
 

microinches the periodic inductance change is 0.25%. The drifts
 

in center of support are about 5 microinches. Both affect the
 

current distribution in the wedding band and may therefore change
 

the null plane of the readout. With the Saturn's ring readout
 

loop the inductance is nearly independent of the presence of
 

the ball so that the effects of an out of round ball and centering
 

drifts are negligible.
 

In summary thete are three possible readout configurations;
 

(i) transformer coupled Saturn's ring, (ii) transformer coupled
 

wedding band, (iii) direct coupled wedding band. The choice
 

depends on sensitivity oh the one hand and ease of manufacture
 

and stability of the readout null on the other. The answers may
 

differ depending on the use to which the gyro is put.
 

(e) Readout Resolution
 

With realistic coupling of a Saturn's ring readout loop to
 

commercially available shake-tested SQUIDs, the resolution in a
 

i00 radian bandwidth is 1 arc-sec, or 0.001 arc-sec after three
 

hours integration, provided integration can be carried out for
 

that length of time at the level of noise under discussion.
 

The resolution of 1 arc-sec in 100 radian bandwidth must be
 

compared with the 15 arc-sec in 100 radian bandwidth discussed
 

above for the Honeywell optical pickoff. Details of a laboratory
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demonstration of the equivalent of 2 milliarc-sec resolution
 

with a 20 MHz SQUID magnetometer are given in Section F.
 

Further improvements are to be expected with more advanced
 

magnetometers already in existence.
 

Thus the Saturn's ring readout has the sensitivity to do
 

the job.
 

(f) Application to Homogeneous Gyro Rotors
 

In contrast to the Honeywell and Autonetics readouts, and
 

to most other gyro readouts so far proposed, the London moment
 

readout depends on observing a quantity aligned with the
 

instantaneous spin axis of the ball,'rather than its body axes,
 

and does not require a rotor with unequal moments of inertia.
 

Of course any actual rotor, however homogeneous, does have some
 

residual differences in inertia A 112 , AI13 about different axes.
 

For small AI the spin axis cones about the angular momentum axis
 

at a rate wp (Wp = Ws + Ws AI/I) and with an amplitude e movings 


slowly between limits of order e AI,3/I and eBAI1 2/I where eA and
 
eB are maximum and minimum angles of the body cone, and the AIs
 
are the intrinsic differences of inertia, not the extrinsic dif­

ference induced by centrifugal distortion of the ball. Exact repre­

sentations of the motion are given by the standard constructions
 

of Poinsot and MacCullagh; further details on application of the
 

classical dynamic formulae to the Gyro Relativity experiment are
 

given in Reference (21). With AI/I of order 3 x 10 - 7 the coning
 

of the spin axis never exceeds 0.1 arc-sec and averages to much
 

less in each second of time: the London moment readout gives
 

a true measure of the angular momentum axis regardless of polhoding.
 

An intuitive understanding of the alignment of the London
 

moment with the spin axis may be reached in the following way.
 

Consider the superconductor as a lattice of positively charged
 

ions containing a resistanceless negatively charged fluid.
 

When the lattice is rotated the motion of the positive charges'
 

generates a magnetic field aligned with the spin axis. The
 

charged fluid is subject to electromagnetic forces which make it
 

too rotate about the spin axis at a rate somewhat less than the
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lattice rotation. The London moment is the residue left
 

over from the differential rotation of the two systems of charge.
 

(g) Possible Alternative Gyro Readouts for Use With a
 

Homogeneous Rotor
 

Two other gyro readouts have been investigated which track
 

the spin axis of the ball. One studied at Honeywell in the late
 

1950's was based on observing light scattered from random
 

scratches on the surface of the ball. The other studied between
 

1968 and 1970 by Massey (3 3) and Siegman of Stanford Electrical
 

Engineering Department applied a laser to measure the Fresnel
 

drag in a rotating transparent ball. In neither case was the
 

resolution as good as that of the conventional gyro readouts
 

described above, let alone good enough for the Gyro Relativity
 

experiment.
 

A variant on the London moment readout that would measure
 

the instantaneous spin axis and give better resolution than the
 

London moment would be to observe the Barnett effect in a rotating
 

ferromagnetic or superparamagnetic ball. The Barnett effect is
 

a magnetic moment aligned with the spin axis, with a magnitude ME
 

in a spinning sphere
 

mc
MB =P mes (1)
 

where p is the permeability of the medium. It is therefore just
 

p times the London moment. With a Mu-metal ball the permeability
 

may be of order 100; the readout sensitivity would accordingly
 

be a factor of 100 higher than with the London moment. Just as
 

the London moment readout has to cope with the problem of residual
 

trapped flux in the superconducting rotor, so a Barnett moment
 

readout would have to, cope with residual permanent magnetism,
 

affecting both the linearity of the readout and the reactiQn
 

torques discussed in the next subsection. Although the Barnett
 

moment occurs at room temperature, an application to the Gyro
 

Relativity experiment would almost certainly require cryogenic
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techniques, for even though room temperature magnetometers like
 

Blackett's may have adequate sensitivity, the stability of the
 

readout calls for thekind of stable background fields available
 

only with superconducting shields. Since the troubles with
 

residual permanent magnetism in the ball get worse at low temper­
atures a Barnett moment readout is unlikely to supplant one
 

based on the London moment. See Sections C (3) (h) and C (3) (j).
 

(h) Readout Reaction Torques
 

The first magnetic reaction torque to be considered is the
 

action on the London moment (or Barnett moment) of any residual
 

trapped magnetic flux in the superconducting shield surrounding
 

the gyroscope. The resulting drift rate of the London moment
 

gyro is
 

H
 
-
iQm = 2 x 10 8 s (12)
 

where p is the density and r the radius of the ball,and H is
 s 

the component of trapped flux perpendicular to the spin axis. It
 
is independent of spin speed. If the gyro shield is held in a
 

fixed orientation Equation (12) sets a limit on H for the London
s 
- 7
moment of 10 gauss. For a Barnett moment with a p of 100 the
 

limit on Hs is 10- 9 gauss. In a rolling spacecraft with the gyros
 

aligned nearly parallel to the roll axis the effect averages ex­

cept for the residual misalignment (up to 30 arc-sec) which sets
 

a limit of 6 x 10- 4 gauss for the London moment and 6 x 10- 6 gauss
 

for the Barnett moment. The latter figure is one reason, but by
 

no means the only one, why a Barnett moment readout would need a
 

superconducting shield.
 

Another effect is the reaction of the gyro readout current
 

on the magnetic moment in the ball. For the London moment the
 

resultant drift-rate with the Saturn's ring configuration is
 
-1 s
2Qm = 2 x 10 sin 2B (13) 

2kpr­

where K is the gain of the feedback servo to the readout circuit
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and S is the readout angle. For the Barnett moment the expres­

sion on the right hand side of (13) must be multiplied by ,v2 .
 

'For the London moment the error is completely negligible even
 

for larger readout angles. For the Barnett moment it can be
 

made negligible provided the feedback gain satisfies the condi­

tion K > 212 sin-28.
 

More important than either of the foregoing terms is the
 

effect of rotating trapped flux in the ball. If the readout
 

circuit has any dissipation, the component of spin in the plane
 

of the loop will be slowed down, but the transverse component
 

remains unaffected. This is an example of an important class
 

of gyro drift terms which may be called differential damping
 

torques. It has the form
 

15 RL Hb
 
3 -2 1 b sin 28 (14) 

mn 8 prLLP5 

where Hb is the field trapped in the superconducting ball (or 

for the Barnett moment readout, the component of permanent magne­

tism in the ball), L is the inductance of the readout circuit 

and R the resistive term describing the losses in the readout. . L 
With the SQUID readout the dissipation is principally from losses 

in the damping cylinder or other resistive filter. With a 2 kHz 

damping cylinder and a Saturn's ring readout, the typical upper 

limit on Hb for a gyro with readout range + 30 arc-sec is 10-6 

gauss, which is fairly straightforward in a superconducting ball 

but exceedingly difficult in a ferromagnetic one. Thus differential 

damping would be an awkward problem for the Barnett moment readout. 

The differential damping from trapped flux, being inversely
 

proportional to the inductance of the loop, is substantially
 

greater in the wedding band readout. Taking the inductance of
 
-
the wedding band as i0 9 henry, the upper limit on Hb assuming
 

the same losses as before is 6 x 10- gauss, which is just about
 

the limit of what is feasible with the existing ultra-low magnetic
 

field shields.
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(j) 	Linearity, Stability of the Field and Limits on Trapped
 
Flux from the Readout
 

The need to limit trapped flux in the gyro rotor in order to
 

prevent the SQUID from losing lock has been discussed in Subsection
 

C (3) (b). Also mentioned there was the danger that the trapped
 

flux signals might drive the readout into the non-linear regime.
 

The latter problem falls into two parts: nonlinearity in the
 

SQUID magnetometer per se and nonlinearities in the feedback
 

and data instrumentation loops. Laboratory experience at
 

Stanford and elsewhere has established that the SQUID itself has
 

analog linearity to 1 part in 10' or better in the region of
 

interest. The digitized feedback and instrumentation loops, on
 

the other hand, cover only 17 bit ranges, or about 1 part in 65,000.
 

Now the London moment in a gyro spinning at 200 Hz corresponds to
 
-
a field of 1.2 x 10 4 gauss; 1 milliarc-sec resolution implies
 

resolving 6 x 10- 13 gauss. Suppose there is a trapped field of
 

gauss in the gyro rotor. This will appear in the readout
 

as an a.c. field five orders of magnitude bigger than the required
 

signal resolution; no trouble to the magnetometer, but significant
 

trouble if it is allowed to reach the feedback or instrumentation
 

systems. A filter must therefore be designed to attenuate the
 

trapped flux signal immediately after the SQUID, and this filter
 

must itself be highly linear.
 

The foregoing suggests that the trapped field should not
 

appreciably exceed 10 - 7 gauss with a London moment readout. The
 

corresponding limit on permanent magnetism with the Barnett moment
 
-
is 10 5 gauss.
 

Questions of mechanical and electrical drifts of the readout
 

have been discussed in Subsections C(3) (c) and C(3) (d). Null drifts
 

may 	also occur through changes in the external magnetic field
 

threading the readout loop. The presence in the loop of the
 

superconducting ball reduces such effects by reducing the
 

effective cross-section from 7r2 to 2rrd where d is the distance
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between ball and loop. Discounting any averaging from rolling
 

the spacecraft the requirement on field stability is
 

AH < 2HLeo d/r (15)
 

where e0 is the minimum angle to be resolved (say 1 milliarc-sec).
 

Inserting numerical values one finds that the maximum allowed
 

change in ambient field for a gyro with a Saturn's ring readout
 

30 mils from the ball is 10 1' gauss. This stability is achievable
 
with a superconducting shield provided care is taken in guarding
 

penetrations into the shield.
 

The stability requirement with a wedding band readout 0.2
 
9
mil from the ball is 10- gauss. The requirement for the Saturn's
 

ring readout might also be relaxed if desired by exploiting the
 

principle of the counterwound coil. The loop is connected in
 

series with an external coil, not linking the London moment,
 

wound in the opposite sense, and having an area equal to the
 

annular area between it and the ball. Figure 10 illustrates
 

a configuration that is insensitive both to the changes in
 

uniform and first order gradient fields. Probably the cancel­

lation can be made good to a factor of 100, reducing the stability
 

requirements for the Saturn's ring readout also to 10- 9 gauss.
 

With the Barnett moment there is no such exclusion of the
 

field; instead the high permeability of the ball concentrates
 

the field in the readout loop. The stability requirement is
 

therefore not 10- 11 gauss but (assuming a V of 100) nearer 10 - 1 3
 

gauss. Such an extreme of isolation should be reachable with a
 

superconducting shield, but certainly not with any system of
 
conventional mu-metal shields. We are thus forced to the
 

important conclusion that a Barnett moment gyroscope must have
 

superconducting shielding, and must therefore be operated at
 

cryogenic temperatures.
 



(c) (d)
 

Figure 10: Counterwound Readout Ring
 

(a) Simple pickup loop (b) Auxiliary coil
 
added with phase reversed (c) Wrap-around
 
auxiliary coil (d) Final coil with connections
 
arranged for winding convenience
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(k) Centering Stability
 

A source of readout error of a different kind, important
 

to design of the gyroscope, is the displacement of the ball from
 
the center of the readout loop. Define axes with x parallel to
 

the spin axis of the ball and z normal to the plane of the loop.
 

An analysis similar to one applied by Maxwell (34 ) in 1863 during
 

his interesting investigation of the errors in the British
 

Association experiment to determine the ohm in absolute units,
 

yields an error angle Od
 

d _ xz I yz
d 2 r 6r (16) 

Thus in contrast to the error of the Honeywell optical pickoff,
 

discussed in C (3) (a), which are first order in the displacement
 
of the ball from the center of the housing, the centering errors
 

with the London moment readout are second order in the displacement:
 

a most important advantage.
 

In earlier publications on the subject (7) (24) Equation (16)
 

was rightly given (although incompletely sosince the second term
 
on the tight hand side was left out) but wrongly interpreted. A
 

correct interpretation means evaluating the change 68d due to
 
long term drift of the ball with respect to the loop, recognizing
 

that manufacturing errors in the housing will put the ball off
 

center to begin with. Differentiating (16) we have
 

,6rP [2x + y) 6z + z (26x + 6y)]
d - 7- (17)
 

where x, y, z now represent the initial position of the ball
 

determined by manufacturing errors and initial suspension
 

conditions, and 6x, Sy, 6z are displacements of the ball due to
 
drifts in the suspension electronics. The suspension performance
 

is such that 6x, 6y, 6z are of order 10l - cm. Setting a limit
 
on Sed of 3 x 10 9 radian (0.6 milliarc-sec), we find limits on
 
x, y, z of order 10- 3 cm or 0.4 mils. Thus a manufacturing
 
tolerance on the gyro housing is to center the readout loop in
 
all three axes to 0.4 mils: a difficult but feasible task.
 



77
 

The foregoing requirement poses some difficulty with the
 

wedding band readout, since in a housing parted down the middle
 

the easy thing would be to put the wedding band off-center.
 

(P) Mechanization as an All Angle Readout
 

The London moment readout, as so far described, is restricted
 

to operation over a linear range of + 32 arc-sec. The restriction
 

can be avoided by the use of flux-counting techniques. A SQUID
 

magnetometer has a sawtooth response quantized in fixed steps of
 

hc/2e, each of which can be resolved with great precision. If
 

instead of a conventional digital feedback one combines the feed­

back loop with a flux-counting system, an all angle readout may
 

be developed having an angular resolution up to 24 bits per
 

quadrant, corresponding to somewhere between 0.1 and 0.01 arc­
sec resolution throughout the range. Details are given elsewhere.(35)
 

The best conventional angle encoders have resolutions of 17 bits
 

per quadrant. The all angle readout is not needed in the Gyro
 

Relativity experiment, but would be in applying the gyroscope in
 

inertial references for an astronomical telescope.
 

D. GYROSCOPE AND GYRO READOUT DEVELOPMENT
 

(1) Rotors and Gyro Housings
 

(a) Background
 

In February 1964 Stanford began discussions with Minneapolis:
 

Honeywell (later Honeywell Incorporated) to design and build piece
 

parts for gyro housings and rotors and an electrical suspension
 

system for a laboratory version of the relativity gyroscope. In
 

July 1964 discussions were also started with D. E. Davidson of
 

Davidson Optronics Incorporated on the design of a star-tracking
 

telescope and mounting ring for attachment to the gyro housing.
 

After negotiations with the two companies we concluded that the
 

best interface between the gyro and telescope package would be
 

for Davidson Optronics to build the quartz mounting ring and gyro
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shield assembly (Figure 6, p. 40), with Honeywell building the
 

quartz housing and rotor. Subcontract PR0392: "To Design and
 

Build a Solid Quartz Gyro Rotor, Quartz Gyro Housing and ESG
 

Suspension Electronics," was issued from Stanford to Honeywell
 

in January 1965 to furnish one quartz gyro housing, one or if
 

possible two niobium-coated quartz rotors, one electrical sus­

pension system, dummy loads for the suspension system, and
 

sundry test pieces for electrical breakdown tests, feedthrough
 

tests, etc. Subcontract PR0692: "To Develop and Build a Gyro
 

Shield Assembly and Star-Tracking Telescope," was issued from
 

Stanford to Davidson Optronics Incorporated in September 1965.
 

Honeywell work on gyro piece parts is described in Sections
 

D (1) (b) and D (1) (f); the work on the electrical suspension
 

system is described in D (2). Davidson Optronics work on the
 

Gyro Shield Assembly is described in D (1) (c); the telescope
 

development is described in Section G. Other work on gyro
 

parts at Stanford, NASA Marshall Center and elsewhere is des­

cribed in Sections D (1) (d), D (1) (e) and D (1) (f). For
 

reasons that will become-clear as we proceed there will be some
 

overlap between the account of gyro manufacture and the account
 

of gyro testing in Section D (4). In the interests of clarity
 

it seems best to accept some repetition.
 

(b) Fabrication of Gyro Piece Parts at Honeywell 1965 - 1971
 

The first tasks undertaken at Honeywell were the fabrication
 

of gyro rotors and fabrication of the electrical suspension system
 

(see D (2) ). Fabrication of the gyro rotors went fairly smoothly.
 

The first niobium coated quartz rotor was delivered to Stanford in
 

August 1967 and tested for superconductivity by partial levitation
 

in a magnetic field. The first rotor had a measured sphericity
 

of about 4 microinches. An attempt to improve on this figure by
 

long-term lapping experiments at Honeywell failed; in fact the
 

experiments were terminated in 1968 when the rotor sphericity
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began getting worse with time. Thereafter work on gyro rotors
 

was transferred from Honeywell to NASA Marshall Center. See
 

Sections D (1) (d) and D (1) (g).
 

Development of the gyro housings was to prove a major
 

problem. Two difficult requirements were that the housings be
 

made of fused quartz to match the expansion coefficients of the
 

telescope structure and gyro rotors, and that they have non
 

magnetic electrodes and feedthroughs. All Honeywell's previous
 

experiences with electrically suspended gyroscopes had been with
 

ceramic housings which had (magnetic) electroless nickel electrodes.
 

Honeywell had begun to gain experience in quartz work, however,
 

through research on the laser gyro. The first two years of
 

housing development involved working out details of the interface
 

with the Davidson gyroshield assembly, making test pieces to
 

evaluate breakdown characteristics of sputtered titanium electrodes,
 

and most important T. Dan Bracken's investigation at Stanford of
 

the spin up problem. Design of the gas spin up system was com­

pleted in August 1967. One critical problem was how to make the
 

raised lands around the gas channel (Figure 7), whose clearance
 

from the rotor has to be 0.2 to 0.3 mil, whereas the rotor­

electrode gap is 1.5 mil. The first idea was to electroplate
 

copper in the appropriate area of the housing, but experiments
 

at Honeywell in 1968 demonstrated that copper goes down in a
 

stressed condition and at a thickness greater than 0.5 mil it
 

tears away the quartz. Honeywell devised a plating procedure
 

to control the stress, but differential contraction on cooling
 

to cryogenic temperatures proved (contrary to the evidence of
 

earlier experiments with sputtered aluminum) stressful enough to
 

tear the bond. After abortive experiments with sputtered quartz
 

we decided to follow a new approach suggested by Honeywell: epoxy­

ing into the housing inserts containing separately fabricated
 

spin channels.
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We will refrain from telling the whole melancholy history
 

of the Honeywell quartz housings, which is detailed in the
 

Honeywell Customer Engineering Letters of 1968 and i969 and in
 

the Stanford Annual Reports and Status Letters for 1971i through
 

1975. Suffice it that one quartz housing with inserts was com­

pleted and delivered to Stanford in December 1969. This had a
 

chip on one of the lands and was sent back for rework. In the
 

first rework at Minneapolis it was damaged through a mistake in
 

set-up; later after the Honeywell team had been transferred to
 

St. Petersburg, Florida, it was accidentally destroyed. The
 

difficulties of insert fabrication led us to try a compromise
 

housing design in which the rotor-electrode gap was made
 

nominally the same as the gap from rotor t6 spin up lands.
 

This, though less desirable from the torque standpoint, was a
 

lot easier to make. In April 1970 Stanford issued a new sub­

contract to Honeywell, PR0927: "To Build a Quartz Envelope
 

Assembly and Deliver As-Fired Ceramic Parts." In July 1972
 

after some vicissitudes Quartz Gyro Housing No. 2 (as it became
 

known) with the reduced rotor-electrode spacing was delivered
 

to Stanford. Its later history is described in D (1) (e)
 

below.
 

By 1969 everyone connected with the Gyro Relativity program
 

could see that housings were a critical problem. Discussions
 

between Stanford and NASA Marshall Center led to two developments:
 

the starting up at MSFC of some in-house work on quartz housings
 

and quartz fabricating techniques, and a decision to obtain from
 

Honeywell a back up housing of ceramic material. Ceramic with
 

2 mil copper plating was known to withstand temperature cycling;
 

we could revert to the plating technique to make the raised spin
 

up lands. A ceramic housing could only be a stopgap, of course,
 

in view of its residual ferromagnetism and difference in expansion
 

coefficieht from the quartz rotor and quartz shield assembly,
 

but the situation was critical. The purchase of three sets of
 

as-fixed ceramic parts inder Stanford Subcontract 0927 prepared
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the way, and in July 1970 NASA Marshall Center issued to Honey­
well a Contract NA8-26312: "To Design, Fabricate, Perform Tests
 

and Deliver Ceramic Envelopes in Support of Electrostatic
 

Gyro Development." The completed parts were shipped to NASA
 

Marshall Center in January 1971; after measurements there they
 

were carried to Stanford on March 12. On March 23 they were
 

assembled at Honeywell, Minneapolis plant, by L. C. Mellum of
 

Honeywell and J. A. Lipa and handcarried by Dr. Lipa to Stanford.
 

As it turned out all the gyro operations at Stanford from 1971
 

to 1975 were done with the ceramic housing as described in
 

Section D (4). Figure 11 shows the completed piece parts of the
 

ceramic housing.
 

Since the foregoing is inevitably in some degree critical
 

of Honeywell's contribution to gyro development, we think it
 

fair to pay special tribute to Mr. D. F. Elwell, who led the
 

Honeywell group, for his strong effort to push the Stanford
 

program forward under personally difficult circumstances. Other
 

Honeywell personnel who contributed to the work were R. E. Johnson,
 

L. C. Mellum, T. Ritter and J. Seemans. For further reflections
 

on the difficulties of gyro development see Section D (1) (h).
 

(c) The Davidson Gyro Shield Assembly
 

Design of the gyro shield assembly was worked out by D. E.
 

Davidson and C. W. F. Everitt in 1967. Besides the interface
 

with the gyro housing, the shield assembly had to be mated to
 

the telescope mounting ring and incorporate a plenum chamber
 

and pumping outlets of appropriate dimensions for exhausting the
 

differential pumping ports of the gyro gas spin up system. After
 

several design iterations which were checked out on an aluminum
 

model of the Davidson and Honeywell parts the plans were frozen
 

in May 1968 and the quartz parts were fabricated and delivered
 

to Stanford in February 1970. Figure 12 illustrates the gyro
 
shield assembly.
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Figure 11: Ceramic Gyro Housing
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Figure 12: Gyro Shield Assembly
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(d) 	Development of Quartz Gyro Fabrication Techniques at
 
NASA Marshall Center 1969 - 1976
 

Work at NASA Marshall Center on gyro housings and gyro
 

rotors was directed by Mr. Wilhelm Angele of the Manufacturing
 

Engineering Laboratory (later the Engineering Physics Laboratory)
 

between 1969 and 1974. Associated with the work were J. Rasquin,
 

J. Hill and J. Reid of MSFC and T. Barber and V. Clune, external
 

contractors, from Hayes International. An important advance was
 

the fabrication of quartz rotors with sphericity approaching
 

1 microinch as compared with the 4 microinch sphericity reached
 

by Honeywell. The 1 microinch sphericity represented the limit
 

of the measuring equipment. Credit for the careful handwork
 

needed goes to J. Hill.
 

In 1969 Mr. Angele conceived a new design for a quartz gyro
 

housing, different in configuration to the Stanford-Honeywell
 

design. Gyro housings were built and tried at Marshall Center
 

from 1970 to 1973 but proved very difficult to assemble and
 

align. The difficulties proved such that in 1973 Mr. Angele
 

abandoned his idea and proposed yet another approach to gyro
 

fabrication, namely to recess the electrodes below the primary
 

reference surface rather than build up raised lands around the
 

spin channels. Recessing had been tried earlier at Honeywell
 

but the jig borer available in the Honeywell plant could not
 

meet the tolerances. Mr. Angele devised a new machine (a
 

variant in effect of the Draper optical lapping machine) which
 

promised well. After reviewing the procedure at NASA Marshall
 

Center in December 1973 we requested NASA to apply the recessing
 

technique to Honeywell Quartz Gyro Housing No. 2. The electrodes
 

had already been applied at Stanford and the parts were undergoing
 

measurement at Marshall Center. The coating having been not
 

entirely successful there seemed a good opportunity to do the
 

\recessing before their return to Stanford.
 
Pressure and delay at MSFC made the recessing take much
 

longer than hoped. The parts were finally completed and shipped
 

11:J1ii 



85
 

back to Stanford in October 1975. Work at Stanford to complete
 

the housing is described in D (1) (e). Meanwhile work at
 
Marshall Center on the second MSFC designed housing continued.
 

A shortcoming pointed out by C. W. F. Everitt and J. A. Lipa
 
in December 1973 at the same meeting in which we decided to
 

apply the measuring technique to the Stanford-Honeywell
 

housing, was the absence of proper differential pumping slots.
 

It was clear to us that this severely limited spin speed at
 

cryogenic temperatures, but later calculations by G. Karr of
 

the University of Alabama, Huntsville indicated a limiting speed
 

much higher than we expected, in the range 40 to 80 Hz. For
 

reasons of expediency the Marshall Center group decided to pro­

ceed with the design as it stood. The MSFC housing thus became
 

to some extent a test jig for the electrode recessing technique
 

rather than a practical configuration for the final housing.
 

The recessing technique worked fairly well, though not as
 

well as had been hoped. Alignment accuracies of the electrodes
 

proved to be 50 to 100 microinches rather than the 20 microinch
 

tolerance called out in Table 5. A possible alternative reces­

sing procedure, based' on quartz etching techniques, has recently
 

been suggested by Mr. Angele and tried out with some success on
 

test samples of flat geometry. Meanwhile the second Marshall­

designed gyro was spun up in 1976 at room temperature and cryogenic
 

temperatures in an apparatus designed by Dr. J. B. Hendricks of
 

the University of Alabama, Huntsville. The spin speed at low
 

temperatures was found indeed to be restricted to about 4 Hz.
 

(e) Completion of Quartz Gyro Housing No. 2 .(1975 - 1976)
 

This section, though placed here for logical convenience
 

depends on ideas gained during the ceramic gyro operations des­

cribed in Section D (4) (c) to which reference should be made.
 

After the completion of the electrode recessing procedure
 

at NASA Marshall Center in October 1975 we turned our attention
 

to the remaining tasks required in completing the gyro housing
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and rotor. These were:
 

(i) 	deposition of monometallic superconducting electrodes
 
capable of withstanding electrical breakdown
 

(ii) 	fabrication of superconducting feedthrough pins for
 
the electrodes
 

(iii) 	development of quartz inlet/outlet plumbing for the
 
spin up channels
 

(iv) 	coating of the gyro rotor with a monometallic super­
conducting film capable of withstanding breakdown.
 

The main innovation in these tasks was to develop procedures for
 

applying films of superconducting niobium 100 microinches or more
 

thick to the quartz parts. These were required for two reasons.
 

In the work with the ceramic housing described in D (4) the
 

ball-coating was 10 microinches of niobium overcoated with about
 

400 microinches of copper for protection against electrical break­

down, and the electrodes were coated with 5 microinches of titanium
 

for bonding plus about 400 microinches of copper. Since the
 

electrodes and the outer coating of the ball were not supercon­

ducting the large suspension currents needed to suspend the ball
 

on Earth dissipated considerable heat, which could only be removed
 

at low temperatures by operating at a relatively high gas pressure
 

(10 or 10 torr rather than the 10 torr called out in Table 5).
 

The presence of gas made the exponential spin down time of the
 

ball less than a day instead of the 300 years required for the
 

final experiment, making long term gyro operations in the laboratory
 

difficult or impossible. Furthermore other investigations des­

cribed in D -(4) (e) had shown that the process of reducing trapped
 

magnetic flux in the gyro rotor is severely hampered by thermo­

electric currents, either from bimetallic coatings such as those
 

on the existing rotors and electrodes or from temperature gradients
 

across a strained normal metal. We decided on a program to increase
 

the maximum thickness of the niobium films to the point where
 

they could withstand suspension arcs.
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The first step was to determine the thickness of niobium
 

needed to withstand breakdown without degradation of the film.
 

Using a flat quartz electrode test piece and a specially designed
 

breakdown test rig we found that 100 microinches of niobium Were
 

able to withstand "burn in." The electric field at its surfacO
 

could be increased until arcing began, after which it could be
 

slowly increased initially with heavy arcing, but ultimately
 

stabilizing at a higher level. Less than 10% of the arcing
 

pits penetrated the film, and very few of those that did showed
 

signs of multiple arcing.
 

Armed with this information we modified the sputtering
 

fixtures to allQw deposition of niobium electrodes in the gyro
 

housings and did trial runs on a dummy quartz hemisphere. To
 

test for superconductivity we built a non contacting inductive
 

device which measures the -change in coupling between two cir­

cuits in the presence of a superconducting ground plane.
 

After establishing the procedure for making the films we
 

turned our attention to fabricating superconducting feedthroughs
 

to connect the suspension cables to the electrodes. A spring­

loaded niobium pin system was developed, mechanically similar
 

to a feedthrough arrangement developed in-house at NASA Marshall
 

Center for the MSFC gyro housings. In the ceramic housing the
 

feedthroughs had been platinum wires fired into the ceramic
 

before lapping. Even with very light spring loading we found
 

the new feedthroughs giving adequate contact and there was no
 

damage to the film.
 

During June and July 1976 we fabricated the pins for the
 

housing, sputtered the electrodes and assembled the gyro for
 

levitation tests. The first tests were with a lightweight
 

beryllium rotor, levitation of which proved extremely difficult,
 

probably because of the exceptionally large rotor-electrode gap.
 

The arcing did not cause appreciable damage to the electrodes.
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Rather than continue with the lightweight ball we set up
 

to run deposition tests for the quartz rotor. In October 1976
 

we completed the fabrication of a ball rolling jig which allows
 

rotation about two orthogonal axes. An old rotor was stripped
 

and coated. To begin with it was difficult to obtain adhesion
 

with the required thickness of niobium but after adjusting the
 

deposition parameters good films were formed. The rotor was
 

then checked for superconductivity using the non-contacting
 

inductive device mentioned above. The new rotor was delivered
 

to Stanford from Marshall Center in November 1976. We coated it
 

with the four position tetrahedral angle sequence that we had
 

so far found most useful.
 

Levitation and spin up tests of the new rotor in Quartz
 

Gyro Housing No. 2 were performed in November and December 1976
 

and January 1977. Levitationsin the room temperature test chamber
 

during November were very satisfactory. The first spin tests
 

in the new gyro test facility (see E (3) ) failed because of a bad
 

joint in one suspension cable, but spin tests in the room tem­

perature test chamber, which had been modified to include spin
 

up plumbing went very well. In January we did a low temperature
 

run, with successful spin up at nitrogen temperatures but some
 

difficulties at helium temperatures which seem to have come.from
 

peeling of the niobium on the ball. No appreciable damage had
 

occurred on the electrodes. The ball is being recoated.
 

During the levitation tests we discovered that the gyro
 

rotor had been made about 0.6 mil undersize as the result of a
 

longstanding incongruity between the records at Stanford and
 

Marshall Center. The error was corrected and a new ball ordered,
 

to be coated in house at NASA Marshall Center by Dr. Palmer Peters
 

of the Space Sciences Laboratory. Delivery is expected in March
 

1977. The smaller ball does not cause any difficulty in the
 

present phase of operations.
 

Figure 13 illustrates Quartz Gyro Housing No. 2 assembled.
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Figure 13: Quartz Gyro Housing No. 2
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(f) 	Termination of Work at Honeywell and Design of a
 
Simplified Quartz Gyro Housing
 

After 1972 further development of the Stanford-Honeywell
 

housing design turned on a negotiation in which Honeywell
 

agreed to replace the shattered Quartz Gyro Housing No. 1 at
 

company expense. The first work on the new housing was completed
 

by Honeywell in 1973 but unavoidable delays at Stanford pre­

vented further work for about two years, by which time Honeywell
 

had lost two men and the company found itself unable to finish
 

the task. A settlement was reached in November 1976 in which
 

Honeywell wrote off two bills to Stanford in the amount of $13,473
 

and paid Stanford the sum of $4,158 in lieu of completing the
 

housing.
 

Meanwhile, following the successful operations with the
 

ceramic housing, described in D (4), and the recessing of the
 

electrodes in Quartz Gyro Housing No. 2 by NASA Marshall Center,
 

we felt able once more to bring our minds to bear on the funda­

mental problems of housing manufacture. In June 1976 J. A. Lipa
 

conceived a simplified gyro housing in which the spin channel
 

assembly would be fabricated as a single unit to be inserted
 

into the housing from outside. A similar suggestion had been
 

aired by D. F. Elwell of Honeywell in 1969 but we had never
 

followed it up. Details of the new design were worked out by
 

J. A. Lipa and D. E. Davidson in July and August 1976 and reviewed
 

with NASA Marshall Center personnel in August and November 1976.
 

An important new aspect of the gyroscope scene has been the
 

close working relationship developed over the past two years
 

between NASA Marshall Center and the Speedring Corporation,
 

Culman Division, Culman, Alabama. Speedring had done preliminary
 

fabrication of quartz parts for the MSFC housings. The opportunity
 

therefore existed to identify a new vendor, with experience
 

in quartz housing work, whose operations could be super­

vised by Marshall Center personnel. During the design stages
 

Mr. Davidson visited the Speedring plant for consultations which
 

enabled him to work out a manufacturing process compatible with
 

the Speedring equipment.
 

AIii
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Before working on the details of the new gyro design we
 

reviewed the hard-won experiences of the past nine years, both
 

at Honeywell and NASA Marshall Center, and brought the following
 

points into focus:
 

(i) 	the sphericity of the electrode surfaces is more
 
critical, to gyro performance than the sphericity
 
of the surface of the raised spin up lands, and
 
since the tolerances given in Table 5 challenge
 
the state of the art it is essential to put our
 
best manufacturing effort here.
 

(ii) 	 the electrodes must be located as far from the rotor
 
as possible to reduce effects of manufacturing imper­
fections on gyro performance. On the other hand limi­
tations of the suspension system prevent the use of a
 
gap greater than about 3 mils.
 

(iii) 	the raised ridge spin channel geometry is the only
 
configuration that can allow spin up to the required
 
200 Hz. The clearance between the ridges and rotor
 
must not exceed 0.3 mil. In addition high flow rate
 
auxiliary pumping channels are essential to reaching
 
full speed.
 

At this stage of the program no gyro design can be con­

sidered unless it fully addresses these three points. Take
 

point (i). By far the best technique for making a spherical
 

surface within a housing formed from two hemispherical shells
 

is the "tumble-lapping"procedure developed by Honeywell for
 

their gyros. For this the two roughed out hemispheres are
 

pinned together in their final configuration with a weighted
 

lap and grinding compound in the cavity, and then shaken about
 

two or more axes on a special table. Sphericities of 5 micro­

inches are attained--well within the 20 microinch tolerance
 

called out in Table 5.
 

Points (ii) and (iii), taken together with (i), force us
 

in the direction of making the raised ridges after tumble lapping
 

the electrode surfaces. Only two appFoaches seem possible: (a)
 

sputter deposition of metal or quartz on the ridges, (b) inserts.
 

Sputtered metal ridges are pretty well ruled out by the experience
 

at Honeywell in 1968 and 1969. Sputtered quartz at that time
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also gave poor results, and although progress has been made
 

since, experiments on quartz sputtering made at Stanford in
 

late 1975 showed that considerable development was still needed
 

before the method could be usefully applied to gyro housings.
 

Our thoughts turned once more to inserts.
 

In the original insert design four small pieces had to be
 

fitted and glued into each hemisphere and the final elevation
 

depended on a correct determination of the depths of the recess,
 

the height of the insert and the thickness of the glue. Fabri­

cation and positioning were exceedingly difficult. In the new
 

design the whole spin-up channel is made on a single insert
 

figured independently of the rest of the housing and glued
 

laterally to the walls of a slot cut through the housing, its
 

location being set by a special tooling ball. Figure 14 shows
 

the housing and inserts.
 

The most critical problem is gluing the pieces together in
 

such a way that they are aligned to the right tolerances and
 

will withstand temperature cycling to 4K. Two test pieces were
 

built to investigate this. The first comprised two parts from
 

an optical flat. We found it a simple matter to perform the
 

alignment and gluing to an accuracy of 3 microinches along the
 

length of the insert, a factor of ten or more better than is
 

required. The part was temperature cycled to liquid nitrogen
 

and liquid helium temperatures with no noticeable change in align­

ment as determined by interferometry. The parallelism was con­

firmed by measurements on the Talyrond 73 instrument described
 

in Section D (1) (g). In the actual housing the shape of the
 

parts precludes the use of interferometry for alignment; we shall
 

be depending on sputtered electrical contact pads. The second
 

test piece simulates in flat geometry the slot, insert and
 

gluing wedges for the housing; it will allow simultaneous
 

electrical and interferometric measurements to determine the
 
accuracy with which the alignment can be done electrically.
 

The breakdown voltage for a 5 microinch air gap is about 1 mV.
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One 	important observation already made on the second test piece
 

is that any dimensional changes through stress relief after
 

cutting the slot are minimal--a few microinches at most. This
 

lays to rest one of the fears about the new gyro design that
 

has been voiced by some people.
 

With the success of the first test piece we commissioned D. E.
 

Davidson to review the design, establish details of the fabrica­

tion procedure, to complete a set of process drawings for the
 

housing 	and inserts, and supply additional test pieces. The
 

major 	steps in fabrication are as follows:
 

(i) 	Make cylindrical quartz blanks, lap one end flat
 
and grind outer diameter to size
 

(ii) 	 Bore three axial clamping holes, curve generate the
 
inner and outer hemispherical surfaces and make
 
alignment pins
 

(iii) 	Assemble the housing, bore the alignment holes and
 
lap the pins to fit
 

(iv) 	Tumble lap the cavity and check sphericity
 

(v) 	Determine the cavity size and make a tooling ball
 
with the curvature required toy lap the inserts to
 
correct dimensions
 

(vi) 	Cut the inserts from curve generated lens blanks which
 
have been fitted to the ball
 

(vii) 	Make gluing wedges
 

(viii) 	Do all the interior boring and grinding for the cavity
 
and the cuts for the outer readout rings
 

(ix) 	Assemble the housing with the insert ball centered on
 
the electrodes by spacers and glue in the inserts and
 
support posts
 

(x) 	Finish the tapered ground glass joints for the spin
 
up plumbing
 

(xi) 	Sputter the electrodes and readout loops
 

(xii) 	Fabricate and sputter the rotor.
 

The plans for the housing were completed in October 1976
 

and quotations were obtained from Speedring. Following the
 

visit.of D. E. Davidson, C. W. F. Everitt and J. A. Lipa to
 

http:visit.of
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NASA Marshall Center on November 22 and 23, 1976, at which time
 

the final design details were reviewed with MSFC personnel,
 

NASA issued Contract NAS8-32306 in the amount of $12,400 to
 

Speedring to fabricate tooling features and three sets of
 

quartz parts two of which would be brought to completion for
 

delivery to Stanford in May 1977. Negotiations were also begun
 

with Mr. Davidson for design, fabrication and delivery of a
 

tumble lap machine for use in finishing the gyro cavity. The
 

fixed price quotation for the tumble-lapper was $5,500. A
 

contract from Marshall Center to Optical Instrument Design
 

Company to fabricate and test it is in preparation.
 

Work at Speedring on the new gyro housings began in
 

January 1977. Experiments at Stanford on the second test jig
 

were also begun in January.
 

(g) Precision Measurements on Gyro Rotors and Housings
 

The limits on the gyro rotor called out in Table 5 are a 

density homogeneity of 3 parts in 107 and a sphericity of + 0.2 

microinches. The superconducting coating on the rotor has to be 

uniform to about 0.1 microinch. Special instrumentation is 

needed to meet these extreme tolerances. The limits on the 

gyro housing are less severe (20 microinch sphericity) but the 

complicated shape means that it too presents a difficult metrology 

problem. 

The question of rotor homogeneity was addressed by D. E.
 

Davidson in 1965. Quartz of Schlieren quality was purchased
 

from two manufacturers (Corning and Amersil) and cut and
 

polished into 2 inch cubes with faces parallel to 0.5 arc-sec.
 

The parts were set up in a Twyman-Green interferometer to
 

measure the variations in refractive index of the material,
 

and interference photographs were taken through each of the
 

three axes for both sets of cubes. The Amersil quartz had
 

good uniformity in all three axes. With the Corning material
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the interference photograph through the axis commonly chosen as
 

the normal to a Schlieren window showed excellent uniformity,
 

but perpendicular to that axis the material was striated.
 

Figure 15 reproduces interference photographs (a) from an
 

Amersil cube and (b) from one of the bad axes in a Corning
 

cube. The Amersil material was uniform to about a fringe
 

except for a slight shading at the corners attributable to
 

rounding off of the material during polishing. Uniformity of
 

the Corning material was fair across most of the face, but
 

within half an inch of one edge there was a change of several
 

fringesindicating a change in refractive index of about 5 x 10-5.
 

The different characters of the two materials were accounted for
 

by different manufacturing processes. The Amersil quartz came
 
from boules drawn from a melt; the Corning quartz was vapor
 

deposited downwards in a vacuum furnace and tended to come down
 

in layers as the deposition rate varied.
 

Refractive index is related to density through the Lorentz-

Lorenz formula. Rather than trust formulae which may be hard
 

to apply Mr. Davidson plotted refractive index versus density
 

for a large number of glasses and found the curve reproduced in
 

Figure 16. The conclusion is that a sphere cut from the center
 

of the best Amersil cube examined in 1965 would be homogeneous
 

to 1 part in 106 with the density variations fairly symmetrically
 

disposed.
 

Considerable scepticism has been expressed by some metrolo­

gists about our ability to make gyro rotors of the desired
 

sphericity since the target accuracy is at least five times
 

better than the measurement limits of the best available roundness
 

measuring instruments. The doubts are laid to rest by the results
 

of new computer-aided measuring techniques developed by Rank
 

Taylor Hobson of Leicester, England, which have reduced the
 

errors of the roundness measurement to one-tenth of that of the
 

already precise Talyrond instrument at NASA Marshall Center.
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We are fortunate to have had one of the key members of the
 

Rank Taylor Hobson research team, Dr. Graham Siddall, join the
 

Stanford group in August 1976 under support from a Lindemann
 

Trust Fellowship.
 

With modern roundness measuring instruments the principal
 

limitation on accuracy is the instrument spindle which provides
 

a reference axis from which the deviations in roundness are
 

measured, usually with a stylus transducer in contact with the
 

workpiece. To reduce spindle errors below 1 microinch would be
 

a prohibitively difficult and expensive task, comparable in
 

difficulty to the task of producing an 0.2 microinch gyro rotor.
 

However if the systematic errors of the spindle can be determined
 

the need for very low absolute errors can be replaced by the
 

much simpler (though still challenging) requirement of very
 

low errors in repeatability. Techniques for identifying and
 

removing spindle errors have been implemented with great success
 

using digital computers applied to Talyrond roundness measuring
 

instruments.
 

An off-line error separation system has been in use at the
 

British Calibration Laboratory of Rank Taylor Hobson for several
 
(36) 
years. It is based on the "multistep" technique which
 

entails taking a series of roundness profiles in each of which
 

the component is stepped through equal angles relative to the
 

spindle. Component errors rotate with the component; spindle
 

errors remain stationary; analysis of the traces by digital
 

computer using the Fourier coefficients of the profiles effectively
 

separates the errors. The BCS multistep system has been used for
 

checking the accuracy of Talyrond spindles. Figure 17 illustrates
 

the stability of the instrument error (that is the combined error
 

of the spindle, hydrodynamic bearing and stylus transducer as
 

measured at the workpiece) observed over an eight-month period.
 

The repeatability is impressive. The maximum radial spread
 

over the total eight months is 0.2 microinches. Variations over
 

the few minutes required for measuring a single workpiece were
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substantially less than this. Such repeatibility of the instru­

ment error is an essential condition for successful application
 

of error separation techniques.
 

Although the BCS system had been shown to give excellent
 

repeatability, its absolute accuracy had never been independently
 

checked. In December 1975, in response to a request from R.
 

Decher of NASA Marshall Center, G. J. Siddall and D. G. Chetwynd
 

of Rank Taylor Hobson carried out further research into error
 

separation techniques, involving comparisons between the BCS
 

multistep method and an on-line system based on a different
 

error separation method first suggested by R. R. Donaldson and
 

L. Bowen (38 ) of U. C. Berkeley. This method, termed the "reversal
 

technique" requires two traces to be taken, in the second of which
 

the orientation of both the component and transducer is reversed
 

with respect to the spindle. The relative position of stylus
 

and component is unchanged in the two traces, while the effect
 

of the spindle error on the stylus in any position is equal and
 

opposite. The component error is simply the mean of the two
 

traces; the difference gives the spindle error.
 

Figure 18 gives a comparison of the results obtained using
 

the reversal and multistep techniques to measure the same component:
 

(a) compares the computer plotted polar graph of the component
 

from the reversal technique with data from the computer printout
 

of the multistep technique at a radial magnifcation of 106; (b)
 

shows the deviations of fifty equiangularly spaced points on
 

each profile from the mean values obtained by the two techniques.
 

A standard deviation of 0.04 microinches (10 R) is indicated for
 
each profile. The agreement is the more impressive in that the
 

instruments, operators and environments were all different in
 

the two measurements.
 

To date, in the absence of computer-aided measurement
 

systems at either NASA Marshall Center or Stanford, manufacture
 

of quartz rotors has been limited by the resolution of the
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Talyrond 50 instrument at Marshall Center. In December 1976
 

we submittbd a proposal to the National Science Foundation for
 

an equipment grant to purchase a Surface Metrology Research
 

System for use by the Hansen Laboratories and the Department of
 

Mechanical Engineering and Aeronautics and Astronautics at
 

Stanford. Figure 19 is a schematic diagram of the proposed
 

system, comprising a Talyrond 73, a Talysurf 4 surface texture
 

instrument and an on-line Talynova computer. If funded by the
 

NSF this system would serve the needs of the Gyro Relativity
 

experiment and also provide a basis for long-term progress of
 

research in tribology and adaptive control work at Stanford.
 

As a stopgap a Talyrond 73 complete with analog reference
 

computer was obtained on loan for nine months from Rank Precision
 

Industries, Chicago. This instrument is a later version of the
 

Talyrond 50 available at NASA Marshall Center, with much improved
 

electronics,. We have used the Talyrond 73 for a series of
 

measurements on gyro housings, gyro rotors and the levitation
 

cradles of the equivalence principle accelerometer. One of the
 

quartz rotors supplied by NASA Marshall Center (rotor No. 8), was
 

found to have negligible errors on the top magnification (x 20,000)
 

of the Talyrond 73. In December 1976 the rotor was handearried
 

to Rank Taylor Hobson by C. W. F. Everitt, who was in Britain
 

for another purpose, and measured on the BCS Talyrond system.
 

Figure 20 reproduces results of measurement in three orthogonal
 

planes. The maximum deviation of the ball from a perfect sphere
 

is about 1 part in 106, not far from the design goal of the
 

experiment. It is encouraging that NASA Marshall Center can
 

do so well without the benefit of adequate measuring equipment,
 

but the computer-aided measuring equipment will be essefitial
 

to making the refinements in ball lapping technique needed to
 

reach the 0.2 microinch design goal for rotor sphericity.
 

We have performed measurements on gyro housings also with
 

the Talyrond 73, and have shown that it can be used to determine
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bearing clearances and the position of the parting plane of
 

the gyro housing to an accuracy of tens of microinches, well
 

within the requirements defined in Section C (3) (k).
 

Given the right equipment the metrology of gyro components,
 

though far from simple, no longer poses any insuperible diffi­

culties. Figure 21 illustrates the gyro rotor set up for
 

measurement on the Talyrond BCS system.
 

(h) Some Reflections
 

The story of gyro development, needing ten years after the
 

completion of the spin up calculations to arrive at a satisfactory
 

design for the quartz gyro housing, is not a happy one, and we as
 

Principal Investigators accept full responsibility for the mis­

takes that were made. Since the technically ambitious goals
 

of the Gyro Relativity program have inevitably given the program
 

an unusual history, we think it may be useful to set down
 

what we have learned and offer hints for the future.
 

Broadly speaking gyro development went quite well in the
 

first three years of the cooperation between Stanford, Honeywell
 

and Davidson from 1965 to 1968, quite badly for the next four
 

years and has recovered steadily since 1972. Partial exceptions
 

to the statement that everything went badly between 1968 and
 

1972 are the rescue operation with the ceramic -housing (1970),
 

the quartz rotor work at NASA Marshall Center (started 1969)
 

and the separate work on the quartz telescope by D. E. Davidson,
 

discussed in Section G. If we are right in claiming that
 

things are going well now, why were we unable to make them go
 

in the right direction during the period 1968 to 1972?
 

A large company like Honeywell can do useful work at a
 

small funding level if the task concerned is identical or
 

almost identical with one it has already performed, The
 

Honeywell electrical suspension system and Honeywell ceramic
 

gyro housing were cases in point. The suspension system cost
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$47,000 (somewhat more than was necessary) and the ceramic
 

housing $33,507; they were delivered expeditiously and ful­

filled important needs in our program. On an entirely novel
 

task the large company can also do well if funded on a massive
 

scale. Honeywell's laser gyro begun about the same time as
 

our cryogenic gyro, has been a success. Where things go wrong
 

is when one attempts, as we did, piecemeal funding of a task
 

whose novelty is greater than appears at first sight. We thought
 

the quartz gyro housing was only a small advance on Honeywell's
 

existing capability; actually it was a big change and that
 

for two reasons. The technicians in the Honeywell model shop
 

had to learn how to work quartz, which is a craft all of its
 

own, and the design engineers had to take into consideration
 

problems arising from cryogenic operations and the need to
 

eliminate magnetic material, concerning neither of which did
 

they have any intuitive understanding. The issues are simple
 

enough in themselves, but when, as was the case here, a man is
 

working on a special task intermittently between heavy bouts of
 

activity on routine programs he forgets what he has been told.
 

An instance where unfamiliarity with the background led one
 

Honeywell engineer to a bad decision occurred in 1968.
 

We had requested some experimental work on forming the raised
 

ridges around the spin up channel by means of a thin layer of
 

filled epoxy applied to the surface of the quartz. The engineer
 

tried this, found it promising but not wholly satisfactory, and
 

then suddenly had the bright idea of cutting a recess in the
 

housing and machining the entire spin channel assembly from a
 

massive block of casting epoxy formed in the recess. This might
 

have worked for a room temperature gyro. For a cryogenic one it
 

was a disaster, because with the thick block of epoxy (in contrast
 

to a thin flexible surface layer) differential contraction between
 

the quartz and epoxy on cooling is enough to destroy the housing.
 

The engineer exceeded his authority, but far more unfortunate
 

than the failure in protocol was the failure in understanding which
 

led to such a mistake.
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These remarks will have value only if they are seen in the
 

general context of large company operation, rather than as a
 

specific criticism of Honeywell. The piecemeal funding which
 

was all we could provide was simply not suited to the large
 

company's way of doing business. A manager from another company
 

whose judgement we respect told us after we had recounted some
 

of Honeywell's difficulties that he felt sorry for those guys.
 

Another experienced physicist-engineer from a competitor of
 

Honeywell's told us that his company wouldn't have touched the
 

job with a ten-foot pole.
 

Why did we go to Honeywell? Why not go to Davidson
 

Optronics, who had experience with quartz work? In the end,
 
in 1976 we did get Mr. Davidson to assist in the design of the
 

simplified quartz housing. The earlier decision had not been
 

taken without forethought; we did, as explained in Section
 

D (1) (a), carefully think about the interface between the
 

Honeywell and Davidson parts of the experimental package and
 

get the Davidson Optronics Company to manufacture the gyro shield
 

assembly: a task we had originally assigned to Honeywell.
 

Our reasoning was based on two considerations. First, Honeywell
 

could claim some knowledge of quartz fabrication: they were
 

doing quartz work on the laser gyro and they informed us that
 

they were beginning to study quartz as a material for electrically
 

suspended gyros. The second consideration was that manufacture of
 

a complete gyro housing involved many processes--sputtering or
 

plating of electrodes, precise roundness measurements, application
 

of readout rings, etc.--for which Honeywell was set up and Davidson
 

Optronics was not.* As things turned out, of course, we have had
 

to do many of these processes ourselves. In 1965 we had no sput­

tering facility in the Stanford low temperature group and no one
 

to do the sputtering if the facility were there. Honeywell seemed
 

the obvious answer.
 

Good program management reduces in the end to the problem
 

of the particular versus the general. Success in a program like
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the Gyro Relativity experiment requires a firmly articulated
 

overall plan for the experiment and correct insight as to which
 

particular areas are the ones where progress must be made now.
 

To rush in with clever solutions to details without the general
 

understanding may yield little more than a sensational fireworks
 

display; on the other hand without detailed solutions to some
 

problems one will get nowhere. Looking back we think we did a
 

reasonably good job in establishing the overall and intermediate
 

parts of the experiment plan, but were less successful in identi­

fying short term particularities. Thus three issues we addressed
 

early in the gyro design were (i) ensuring mechanical stability
 

by arranging for the quartz parts to be optically contacted to
 

the telescope, (ii) provision of a mechanically stable super­

conducting magnetic shield for the gyro, (iii) ensuring that the
 

electrodes and electrical feedthroughs of the gyro had low enough
 

resistance for the heat dissipation in the dewar from suspension
 

currents to be negligible. These are all important points
 

ultimately; none was imminently so in the first gyro operations.
 

They were the wrong particularities; and indeed we were forced
 

to accept compromises on all of them to get the gyro working.
 

On the other hand no compromise was possible on spin channel
 

design. It was here that the early gyro housing work at NASA
 

Marshall Center proved less than satisfactory through poor under­

standing of the extent to which the theoretical analysis locked
 

in the design parameters, and a certain reluctance to consult
 

Stanford about the design, to which we should have responded
 

more forcefully than we did.
 

Wisdom would have seen as soon as the spin up design was
 

completed in late 1967 that manufacture of these parts in quartz
 

might be too hard for Honeywell and that a back up ceramic
 

housing should be started immediately. We did not want to spend
 

an "unnecessary" extra $30K; Honeywell had already finished the
 

outer envelope assembly for Quartz Gyro Housing No. 1; the
 

Honeywell engineers told us what they no doubt believed and we
 

wanted to hear that the job could be done. One other factor
 



that helped lead us astray was an experiment we had done at
 

Davidson Optronics in 1967, where -a 1 mil thick layer of alum­

*inumwas evaporated on a flat quartz test piece and cycled to
 

nitrogen temperatures several times. (39) Since this withstood
 

the differential contraction, we thought all would be well with
 

metal coating on a quartz housing. Putting a uniform coating
 

in spherical geometry is unfortunately a very different story.
 

To get uniformity one has either to plate uniformly or apply a
 

thicker coating which can then be lapped to size. Neither proved
 
to be feasible with the copper-plating techniques which were all
 
that was conveniently available at Honeywell.
 

Good judgement on the issues to address and good judgement
 

whether people can do what they say: from these fundamental
 

needs of program management there can be no escape. Equally
 

essential is the need to make sure that everyone in the program
 

has enough grasp of the generalities not to stubbornly work solu­

tions to their immediate problem which cause immediate difficulties
 

elsewhere. Here one is in tricky territory because if the diffi­

culties are not immediate the quick intermediate solution is often
 

by far the best one to have since it allows the experiment to
 

proceed.
 

Finally we have to admit belated rediscovery of one
 

management principle so well known that weare ashamed to
 

mention it: the importance of the written word. Physicists
 

working in their laboratory get so accustomed to living with
 

their apparatus and fixing it as they go along that they fail
 

to appreciate that memory and word of mouth cannot be relied on
 

after a few weeks when collaborating with someone 2000 miles
 

away. We have had to learn some of these lessons the hard
 

way. We hope that others will benefit from our findings and not
 

find, with Oscar Wilde, that "One learns nothing from experience.
 

Experience is simply the name we give to our mistakes."
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(2) Gyro Suspension Systems
 

As stated in D (1) (a) above the original subcontract from
 

Stanford to Honeywell in January 1965 (Stanford PR 0392) included
 

the design, fabrication and checkout of an electrical suspension
 

system for the laboratory version of the London moment gyroscope.
 

The system closely resembled one supplied by Honeywell to the
 

U.S. Air Force under another program. Gyro suspension was by
 

means of 20kHz, 3kV signals applied to the three mutually perpen­

dicular sets of electrodes; the suspension voltages were controlled
 

by position sensing servos based on measuring the capacitances in
 

the three axes by 30V signals at frequencies of 1.1 MHz, 1.28 MHz
 

and 1.43 MHz. To begin with Honeywell offered Stanford (and JPL)
 

a previously untried support scheme for which the frequencies of
 

the sensing and support voltages were identical; this did not
 

work out so at some expense we reverted to the earlier design.
 

The novel configuration of electrodes in the Stanford gyroscope
 

called for modifications in the output transformers and some
 

other parts of the electronics. The suspension was designed to
 

have two operating levels with Preload capabilities for a solid
 

quartz rotor of 1.1 g and 2.3 g. The preload is defined as the
 

acceleration applied along a single axis that drives the voltage
 

or plate to null. With the Honeywell system the maximum accelera­

tions on the gyro under which the electronics could maintain
 

suspension were about 50% higher than the preloads.
 

The Honeywell suspension system was delivered to Stanford
 

in August 1967. Systematic testing and preparation for operation
 

with the cryogenic gyroscope was begun by J. R. Nikirk in
 

February 1970 upon his appointment as a Research Associate in
 

the Stanford Department of Aeronautics and Astronautics. The
 

work was done partly using "dummy loads," that is the special
 

set of variable high voltage capacitors obtained from Honeywell,
 

referred to above, and partly using a gyro housing manufactured
 

by Honeywell under the GEANS program and made available to
 

Stanford through courtesy of the U.S. Air Force. The MEG housing
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(as it is called) was set up in a small test facility at
 

Stanford with a .1.5 inch diameter nickel-coated aluminum rotor
 

purchased specially from Honeywell under the present Grant.
 

Aluminum is about 10% denser than fused quartz. To match the
 

weight of the final quartz rotor a cylindrical hole was drilled
 

and plugged in the alilminum rotor, leaving a small'cylindrical
 

cavity at the center of the sphere. With the MEG set up J. R. Nikirk
 

measured suspension characteristics of the Honeywell system such
 

as transient power supply voltage and electronics drift, reporting
 

warm up times ranging from 30 minutes to two hours during which
 

the center of suspension shifted by distances ranging from 6 to
 

10 microinches, or 8 to 13 microinches when scaled to the 65pF
 

capacitances of the Stanford housing. Movements over further
 

periods of eight or more hours varied a few microinches around
 

the mean point. These figures were to be compared with the
 

clearances of 200 to 300 microinches between the rotor and gas
 

spin up channels in the Stanford housing.
 

In 1970 R. Decher of NASA Marshall Center asked Stanford
 

for help in preparing specifications for a new gyro suspension
 

system to be purchased for use at MSFC. The original intention
 

was to purchase the system from industry. Drawing on the exper­

ience with the Honeywell suspension system we took the opportunity
 

to specify design improvements that would give better sensing
 

bridges, better centering capability and a control servo with
 

sufficiently quick response to support the gyro through a
 

fairly severe earthquake if the suspension system were used at
 

Stanford. The preliminary design work done while drawing up the
 

specifications led us to propose to NASA to fabricate the sus­

pension system at Stanford. In May 1971, after considering
 

other bidders, NASA awarded Stanford Contract NAS8-27333 for
 

$35K (afterwards extended to $47.3K) to perform this task.
 

The design was accomplished in the last five months of 1971
 

by J. R. Nikirk with support from R. A. Van Patten, R. R. Clappier
 

and a temporary engineer, J. Eccher, hired from Ball Brothers
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Research Corporation. Assembly of the first unit was completed
 

at the end of January 1972, at which time systems tests and
 

evaluation began. Regenerative signals were observed, induced
 

first by high preload voltages and then later by the transients
 

that occur during gyro levitation. These difficulties, which
 

caused J. R. Nikirk and R. A. Van Patten much concern, were even­

tually solved by adding further harmonic suppression filters and
 

increasing the excitation voltage of the position sensing
 

bridge. The package was designed to have about 40% less volume
 

than the Honeywell suspension system so that it could be mounted
 

easily on top of the tiltable laboratory dewar described in
 

Section J (4).
 

Figure 22 illustrates the suspension system. As compared
 

with the Honeywell system it had greatly improved centering
 

stability and better adjustment capability. Table 8 summarizes
 

performance characteristics.
 

Table 8: Peformance Characteristics
 
of Stanford Gyro Suspension System
 

Centering static sag 3.9 microinches 
Warm-up drift 
Drift under + 20 

° <1.0 microinch 

temperature change <+3.6 microinches 
Centering adjustment better than 1.0 microinch 

Overall bandwidth 640 Hz 
Damp out time for small 

signal step 2.5 mS 

The bandwidth was such that the suspension system could support
 

a solid quartz gyro rotor through a Richter 6.5 earthquake five
 

miles away. Any larger earthquake would knock the building down.
 

The dynamic centering capability had been specified as .needing
 

to be better than 50 microinches throughout the response range.
 

At frequencies above 30 Hz the performance was right on the
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Figure 22: The Stanford Gyro Suspension System
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specification; at lower frequencies it was better than specified,
 

making the dynamic centering in that frequency range closer
 

than 50 microinches.
 

Another important improvement in the new suspension system
 

as compared with the Honeywell design was that the electric
 

signals used in sensing the rotor position were all at a single
 

frequency of 1 MHz instead of three different frequencies, and
 

the sensing voltage was 20:1 lower. Interference between the
 

gyro suspension and readout was correspondingly reduced: a
 

fact of critical significance in the ensuing readout work
 

(Section D (4) (d). The 1.5 volt operating voltage of the
 

sensing bridges is not far from the level required for the flight
 

electronics system (about 0.3 volts).
 

The new suspension system was handcarried to NASA Marshall
 

Center by J. R. Nikirk in November 1972. In December 1972 we
 

began building a second box of identical design under Grant
 

05-020-019 for use at Stanford. This was completed in February
 

1973, used for the first time in April and May of that year, and
 

used regularly in the gyro runs from then on. A Final Report
 

"On the Fabrication of an Electronics Suspension Subsystem for
 

an Electrostatically Suspended Gyroscope for the Relativity
 
" (2 3) 
Experiment, was completed under Contract NAS8-27333 in
 

April 1973, reference to which should be made for further details.
 

As time went on we made several improvements to the new
 

suspension system following experience of working with a live
 

gyro. One was to increase the range of centering adjustment
 

to allow the gyro to be centered with respect to the spin up
 

lands rather than the electrodes. Another improvement was to
 

make the preload adjustment variable all the way from zero to
 

its maximum value to help in evaluating the 20 kHz pickup between
 

the suspension and readout. In August 1973 J. R. Nikirk discovered
 

a curious problem, which took some time to fix, a small but
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annoying 5 kHz oscillation at certain combinations of servo
 

gains and preload setting. These and other changes were made
 

during the difficult period of gyro development described in
 

Section D (4); much care was needed in separating problems
 

inherent to the suspension system from other troubles with the
 

gyroscope.
 

Documentation of the various changes was forwarded to NASA
 

Marshall Center for incorporation in the MSFC system.
 

Operations with the Honeywell suspension system continued
 

until May 1973. Several failures occurred, of which the most
 

notable one followed an arc in the gyro during an attempted
 

cryogenic run in April 1973. The incident happened just as we
 

were about to build an automatic shut down system to protect
 

against arcing damage. In fact the parts had already been
 

ordered and had arrived the day before the damage took place.
 

The automatic shut down circuit senses current drawn by the
 

suspension system from its power supply and shuts off the power
 

at a critical threshold. It proved an important addition to
 

the system, minimizing damage whenever abnormal conditions
 

occur.
 

In October 1972 NASA Marshall Center agreed to fabricate
 

in-house twelve thick film wide band differential amplifiers
 

for use as spares for the MSFC suspension system and for the
 

new Stanford system. Schematics and layouts and details of
 

resistor tolerances were supplied by Stanford to NASA Marshall
 

Center on the basis of earlier experience with a similar ampli­

fier fabricated by the Johns Hopkins Applied Physics Laboratory
 

for the DISCOS drag-free controller. The amplifiers were duly
 

completed in December 1973 and used with excellent results.
 

Other work related to the suspension systems included com­

pleting a new set of capacitative dummy loads for high voltage
 

testing and a modification to the Honeywell suspension system
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to increase the range of centering adjustment. Shortly before
 

his death in March 1975, J. R. Nikirk had completed the design
 

analysis for an improved laboratory suspension system, having
 

a factor of ten higher resolution in the capacitance sensing
 

bridge, simplified design layout, and adjustable capacitances
 

to aid in tuning the suspension cables. Plans for building
 

this system had to be dropped after Nikirk's death. The most
 

recent addition to the suspension system has been a remote
 

control panel designed by R. A. Van Patten for the new precision
 

gyro readout experiment described in Section E.
 

(3) Magnetometer Development
 

The plan for mechanizing the gyro readout using a SQUID
 

magnetometer has been described in Section C (3) and illustrated
 

in Figure 9 (p. 63) to which reference should be made. The
 

present section covers development work on the magnetometers
 

due principally to J. T. Anderson and R. R. Clappier. The
 

interfacing of the magnetometers with the large laboratory
 

dewar and elimination of interference between the suspension
 

system and readout is described in Section D (4) (d). The
 

process of reducing trapped flux in the gyro rotor and observing
 

the London moment are described in D (4) (e) and D (4) (f).
 

For earlier research on vibrating plane magnetometers, reference
 

should be made to the paper by J. E. Opfer(30) and the 1971
 

Annual Report on Grant 05-020-019.
 

In 1971 when the present work began, there were no suitable
 

commercially available SQUID magnetometers; we had to build our
 

own. As time has gone by, several cryogenic companies have
 

marketed SQUIDs and we have gradually been able to take advantage
 

of the progress by purchasing some or all of the components from
 

commercial units. In some areas we are disposed to feel, looking
 

back, that we were a little slow in adapting our thinking to
 

industrial progress.
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Our first operating SQUID was a two hole structure due in
 

design to J. E. Zimmerman. Later we adopted a toroidal con­

figuration having better sensitivity and shielding, with a weak
 
link formed from a pointed niobium screw touching the niobium
 

base of the cavity, adjusted at low temperatures by a long
 

screwdriver. The adjustable toroidal point contact SQUID is
 

shown in Figure 22, along with a non-adjustable toroidal SQUID
 

manufactured by the SHE Corporation, with which we began to
 

experiment in 1974. The SHE unit has excellent mechanical
 

stability: in collaboration with Ball Brothers Research
 
Corporation we demonstrated in 1974 that it passes'flight
 
qualification shake tests applicable to either the four stage
 

Scout or two stage Delta vehicles. Details of the shake test
 
are given in the 1974 Annual Report. The original SHE units
 
had cupronickel case and black Stycast epoxy filling, both of
 

which might be expected to have too much residual ferromagnetism
 

to be used near a gyro rotor in which the trapped field has to
 
-
be kept below 10 7 gauss. We had two SHE units made specially
 

with copper casing; these were used along with one of the old
 
adjustable point contact SQUIDS in the London moment observations
 

described below. Recent SHE units have a beryllium-copper
 
casing. The new apparatus to be described in Section E
 
should allow them to be used without generating appreciable
 

trapped fields.
 

The characteristics of other weak link junction structures
 
were investigated both experimentally and through literature
 

surveys as described in the 1972 and 1973 Annual Reports.
 
Research at NASA Marshall Center to develop better junction.
 

structures has been carried on in parallel with the Stanford
 
program by P. Peters, L. B. Holdeman and J. B. Hendricks!

40 )
 

We have also carefully followed progress on other types of
 

SQUID developed elsewhere, in particular the thin film double
 
junction d.c. SQUID recently perfected by J. Clarke of the
 
University of California, Berkeley, the properties of which are
 

reviewed in the 1975 Annual Report. The thrust always has to
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Figure 23: 	 Adjustable and Fixed Toroidal Point Contract
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be towards reduction in noise and improvements in null stability.
 
These are achieved either through the development of new SQUID
 

concepts, operation in a different frequency regime (as in
 

recent developments of microwave SQUIDs), or evolutionary
 
changes in electronics design.
 

Electronics for the SQUIDs used in the Gyro Relativity
 

program have been developed continuously since 1971. The rf
 

box was first operated in 1972. It comprised a 30 MHz rf
 

oscillator to pump flux periodically through the SQUID and
 

an rf amplifier-detector to amplify the tank voltage to a
 

useful level and rectify it. Significant features of the rf
 

signal source were: a crystal controlled oscillator for
 

frequency stability and low fm noise, a high frequency chopper
 

for use as a demodulator, two dual-gate MOSFETs for external
 

electronic control of the rf level, and a tuned filter to
 

remove higher harmonics from the 30 MHz drive signal and reduce
 

noise in the SQUID. Significant features of the rf amplifier
 

were: a low noise cascode input stage with noise figure less
 

than 1.5 db, a dual gate MOSFET second stage with remote
 

gain control, an integrated circuit amplifier for additional
 
gain, a diode detector biased to provide linear detection for
 

signals as low as 50 mV, and a line amplifier to prevent cable
 

capacitance from unduly lengthening the response time of the
 

output circuit. The oscillator and amplifier/detector circuits
 

were combined with an rf voltage modulator, the rf attenuator
 

and filter circuit in a single package. Progressive improvements
 

to the rf circuitry were made after June 1973 with a new 200 MHz
 

oscilloscope, supplied by NASA Marshall Center, which provided
 

an analytical capability not previously available, with the aid
 

of which we gradually discovered and corrected hitherto unnoticed
 

faults in the system.
 

To begin with we used magnetometer feedback boards pur­

chased from Develco Incorporated, although their response times
 

were known to be slower than was desirable. In 1973 we designed
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and built a prototype magnetometer feedback board of our own
 

with superior high frequency performance. Using a 100 kHz square
 

wave magnetic field modulation and full wave demodulation of
 

the rf box detector output, the magnetometer could be operated
 

with unity gain at frequencies as high as 30 kHz, with the very
 

important consequence that its output responded (at low levels)
 

to the 20 kHz magnetic field from the suspension system. We
 

were therefore able to lock the magnetometer with some 20 kHz
 

signal present and hence obtain a fine trim on the 20 kHz
 

bucking signals.
 

As we worked with the prototype feedback card we observed
 

many areas for improvement. One was that the critical current
 

of the adjustable toroidal SQUID then in use tended continually
 

to drift away from the set point making the magnetometer lose
 

lock unless the rf drive level was adjusted. We developed a
 

control loop that automatically adjusted the rf level for best
 

magnetometer operation. Drawing on the experience with the
 

prototype card we then built an entire new magnetometer unit,
 

incorporating improvements in every circuit together with a
 

new magnetometer control panel and a card rack for the new
 

circuits. The card rack housed: 2 cards for the magnetometer
 

feedback circuit, 1 card for the new rf level control loop, 2
 

cards for the trapped flux bucking circuit described in D (4)
 

(e), 1 card to control the rf box and 1 power conditioning
 

card. New features on the panel and simplified control
 

made the magnetometer much easier to use than earlier versions.
 

The magnetometer was completed and checked out by mid-March 1974
 

and used in all the gyro readout work up to the detection of
 

the London moment in March 1975. Figure 24 illustrates the
 

completed system.
 

The rf level loop was particularly useful in the early
 

stages of the work because it increased the range of tempera­

tures over which the SQUIDs would operate without adjustment
 



Figure 24: Second Generation SQUID Magnetometer
 
Electronics (1974)
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from 0.3K to 1.5K. The temperature cycling required in the
 

field cancellation work described in Section D (4) (e) made
 

vitally important.
 

In 1975 and 1976 we completed fabrication of a third gen­

eration magnetometer for gyro readout. The basic design of
 

the existing magnetometer was preserved, but many small circuit
 

changes were made to improve the drift performance and temper­

ature stability. Changes included a new panel, new control
 

circuits, a new demodulator and new feedback card. The cards
 

were reproduced in printed circuit form; seven units altogether
 

were built for this and other experiments including the
 

Equivalence Principle Accelerometer. The new magne
 

tometer has roughly a 2:1 improvement in bandwith as
 

compared with the earlier unit: 3dB at 40 to 50 kHz. Drifts
 

in the demodulator due to changes in temperature of the
 

electronics are reduced a factor of 20 from 2 x 10-500 to
 

10-60o per 0 C. Drifts due to thermoelectric effects in the
 

feedback line have been reduced a factor of 1000 by replacing
 

the voltage source with a current source. With the old unit
 

transient temperature changes, during helium transfer say,
 

could cause offsets as great as 10-20o and there were some
 

drifts even under nominally stable temperature conditions;
 

now all of these effects are negligible. The resolution of
 

the magnetometer is not appreciably altered since it depends
 

on properties of the rf circuitry and SQUID which have not
 

been changed.
 

To speed up circuit development on the third generation
 

magnetometer we modified a 25 liter storage dewar vessel so
 

that it could accept a probe containing an SHE SQUID. This
 

quickly operated low heat leak installation is a great help
 

when trying to concentrate on electronics development; it
 

allows us to run a SQUID for several weeks without much
 

attention.
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Some of the technical problems encountered in developing
 
the third generation magnetometer required fairly sophisticated
 

treatment. The use of current source for feedback, for example,
 

is complicated by cable capacitance which makes current feedback
 
work poorly at higher frequencies. Since stability and drift
 

are low frequency effects, the solution is to use current
 

feedback at low frequencies and voltage feedback at high
 

frequencies. (Actually even the high frequency voltage is
 
converted to a current in the rf box before reaching the SQUID).
 

The use of two different output schemes simultaneously poses
 
interesting control problems, but we were able to develop a
 

satisfactory prototype feedback module, followed by eight
 
printed circuit copies. The basic design gives a full scale
 
output of 10 volts for a 200 o input. We modified one module
 

to give 10 volts for 1 0 full scale and three others with
 

20 *0 full scale.
 

Figure 25 illustrates the third generation magnetometer
 

with the rf box.
 

In late 1976 we purchased a magnetometer unit from the
 

SHE Corporation, which was used in the noise test measurements
 
described in Section F. The resolution of this unit is probably
 

about a factor of five better than earlier magnetometers as a
 
result of improvements in noise matching of the rf head to the
 

SQUID.
 

One of the key circuits used in the Gyro Relativity Program
 
is a high speed demodulator. The magnetometers use a printed
 

circuit version of this circuit, while the gyro suspension
 

system currently uses a hard-wired version. Both work well
 
in the laboratory, but for flight a smaller more rugged
 

hybrid circuit version would be helpful, especially since a
 
fair number of these circuits are used. Each suspension
 

system and each magnetometer uses one demodulator per axis
 
for each gyro. The Hybrid Circuit group at NASA Marshall
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Figure 25: Third Generation SQUID Magnetometer Electronics
 
with RF Box (1976)
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Center has been workihg for over a year on a hybrid version
 
of the driver section of the Stanford designed demodulator.
 

The driver provides high speed gate signals for the field
 

effect transistor (FET) demodulator and utilizes a regenerative
 

feedback technique to achieve fast switching without consuming
 

a lot of power. This requires careful circuit layout. The
 

MSFC group has combined a good layout with a component matching
 

scheme which has produced circuits that perform very well.
 

Three of these circuits have undergone preliminary tests at
 

Stanford.
 

(4) Gyro Operations 1971 - 1975 

(a) General
 

This section covers work on the gyro-and gyro readout up
 
to the completion of the first London moment observations with
 

a live gyro in March 1975. That experiment marked the completion
 

of a distinct phase in evolution of the Gyro Relativity experi­

ment, following which we began the new precision readout experi­

ments described in Section E. The work reported in the present
 

section was nearly all done in the large tiltable non-magnetic
 

dewar designed by C. W. F. Everitt and R. D. Hall between 1965
 

and 1968, fabricated by AGS Incorporated of Waltham, Massachusetts
 

and delivered to Stanford in April 1969. This dewar was designed
 

to fulfil two purposes: (i) to serve as a laboratory test stand
 

for the gyroscope, (ii) to evaluate our ideas about the flight
 

dewar by incorporating as many features of the final design as
 

possible into the laboratory model. Details are given in Section
 
J (4). In many ways the dewar was a pioneering effort which
 

has influenced designs of subsequent flight dewars including
 

those of IRAS and other long-term helium experiments in space.
 

In retrospect we see that it was in some degree a mistake to
 

combine the two functions in one apparatus, in that the dewar
 

did not in fact solve one major problem that it set out to
 

solve; providing an adequate low magnetic field environment
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for the gyroscope, and,being cumbersome to use,it had by 1974
 

turned out to be not well suited to the gyro tests then in
 

progress. On the other hand if the two functions had not been
 

combined we would probably never have gained the experience with
 

dewar operations that is essential to the experiment,and NASA,
 

as well as ourselves, would have been the losers.
 

Before the gyro tests could be run, the dewar had to be
 

made to work, and this was done during 1969 and 1970 by J. A.
 

Lipa and J. J. Gilderoy.
 

(b) Gyro Suspension
 

The period from March 12, 1971 when the ceramic gyro
 

housing was delivered to Stanford until June 19, 1973 when the
 

first time a niobium-coated solid quartz gyro rotor was spun
 

up at a temperature of 70 K, was a gruelling time in the develop­

ment of the Gyro Relativity experiment. J. A. Lipa and J. R.
 

Nikirk together fought many severe problems on the gyroscope.
 

To begin with two months were lost because the gyro rotor was
 

jammed in the housing. This trouble had been suspected at
 

assembly. Lipa and Nikirk demonstrated it from capacitance
 

measurements and traced what was wrong to errors in location
 

of the alignment pins for the two halves of the housing,as well
 

as to pimples and machining burrs on the raised copper spin lands.
 

Honeywell worked out a new alignment procedure using a reference
 

ball matched in diamdter to the cavity, and verified clearances
 

by means of a special indicator probe that could be inserted
 

through the spin ports after assembly. The parts were returned
 

to Stanford on May 19, 1971. After checking clearances and
 

breakdown voltages Lipa and Nikirk tried to levitate the gyro
 

in a room temperature test chamber assembled earlier in the
 

year. Then began a series of electrical breakdown problems.
 

Levitation first of all failed because of arcing between the
 

electrodes. After this had been repaired intermittent levita­

tion was achieved for periods of up to five minutes, but a 70 kQ
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short developed between one electrode and the ball. The short
 

was traced to poor adhesion of the gold coating that Honeywell
 

had applied over the sputtered titanium electrodes to reduce
 

their resistance: during levitation the electrostatic stress
 

pulled up slivers of gold from the surface like the leaf in a
 

gold-leaf electroscope. An attempt to clear the short by
 

applying higher currents from a d.c. power supply burned out
 

the connection between the feedthrough and the electrodes.
 

Before going further we decided to investigate the elec­

trical breakdown problem by experiments on a flat test piece
 

purchased from Honeywell, which had three different kinds of
 

electrode. The breakdown characteristics were substantially
 

improved by having electrodes of titanium only, with no gold
 

coating and with "radiused edges" -- i.e. made with a rounded
 

annular moat about their peripheries to place the sharp edges
 

of the sputtered film further from the surface of the ball. We
 

instructed Honeywell to cut moats and sputter on fresh and
 

thicker titanium electrodes. The work was done in October 1971,
 

yielding some improvement but still far from satisfactory
 

results. Breakdown characteristics in the housing were nothing
 

like as good as they had been in the test pieces. An attempt
 

to understand why, described in the 1972 Annual Report, revealed
 

a correlation between breakdown voltage and the resistance per
 

square centimeter of the electrodes, suggesting that we should
 

go to much thicker electrodes. The pieces were shipped back to
 

Honeywell for yet another recoating. At the same time we had
 

the electrodes recessed at the center where the plate makes
 

contact with the feedthrough pins, since we observed that
 

breakdown was now concentrated in this region, and we ordered
 

a new lightweight hollow beryllium rotor, matched in diameter
 

to the cavity which would let us get on with some gyro work
 

at lower support voltages.
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In January 1972 the gyro was reassembled with the hollow
 

rotor and immediately levitated. However after 2.5 hours
 

of successful operation the gyro failed. Disassembly revealed
 

deterioration in the connection between one electrode and its
 

feedthrough wire. After further experiments with temporary
 

repairs we took the bull by the horns and sputtered thick
 

copper electrodes onto the ceramic housing ourselves. Thus
 

finally in March 1972, one year after delivery of the parts,
 

we achieved gyro levitation for extended periods with a hollow
 

beryllium rotor.
 

All of the foregoing work was done in the room temperature
 

test chamber. Meanwhile J. A. Lipa had been getting the large
 

laboratory dewar to work and J. R. Nikirk had been developing
 

high voltage low heat-leak cabling and high vacuum high voltage
 

non-magnetic feedthroughs to operate the gyro in the dewar.
 

Work on these tasks is described in the 1971 and 1972 Annual
 

Reports. The first gyro levitation in the big dewar was per­

formed in October 1972. For some months we continued to work
 

with the light beryllium rotor tp have margin on the suspension,
 

but as time went on we gained confidence and after the beryllium
 

ball had been damaged during the spin tests to be described in
 

D (3) (c) we reassembled the gyro housing with a full-weight
 

nickel coated aluminum rotor obtained earlier from Honeywell.
 

Following some initial problems, due probably to debris in the
 

housing, we succeeded in December 1972 in levitating the aluminum
 

rotor for extended periods without'incident. In April 1973 we
 

levitated a copper-niobium coated quartz rotor.
 

With this,the problem of gyro levitation could be said in
 

some degree to be solved. It is not entirely solved because one
 

of the mysteries of the Gyro Relativity program has been that
 

whereas Honeywell have established a reliability in gyro levita­

tion characterized by a five year mean time between failure, we
 

at Stanford have suffered continued minor and occasional major
 

suspension problems. Thus in December 1972 we observed that
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whereas levitation of the beryllium rotor had always appeared
 

stable, the heavier aluminum rotor sometimes displayed anomalous
 

motions. Long periods of stable operation would be disturbed
 

by spells of wild behavior, during which large position errors
 

would occur followed by pulsing and arcing and-a need to shut
 

down the system. The phenomena seemed to happen mainly when the
 

ball was not altogether free in the housing. We had reason to
 

think that in the ceramic housing the copper coating on the
 

raised spin up lands was imperfect and that small spring-like
 

flaps stood up from the lands and sometimes touched the ball.
 

Also the ball seemed occasionally to gain a large static electric
 

charge; the pulsing phenoihoh could sometimes be made to go
 

away by allowing the potential of the spin up lands to float free
 

of ground. J. R. Nikirk developed a precise method of centering
 

the ball by injecting triangle waves into each suspension channel
 

in turn and looking at the resultant motions in all three channels.
 

Other difficulties were observed from dirt introduced with the
 

spin up gas (despite careful filtering) and cryodeposits formed
 

in the experimental chamber during cooldown. We have gradually
 

gained enough ad hoc knowledge to fight our way out of the worst
 

difficulties and achieve periods of a few days trouble free
 

gyro operation.
 

Levitation of a niobium coated quartz rotor in Quartz Gyro
 

Housing No. 2 was achieved in December 1976 and January 1977.
 

(c) Gyro Spin Up: Comparison of Experiment and Theory
 

The design calculations on the gyro spin system received
 

some verification in experiments performed 
by T. D. Bracken

(7 )
 

in 1967 when an aluminum rotor was spun to 125 Hz at 4K in a
 

gas bearing. The test gave no information on the effectiveness
 

of the differential pumping system, and the operating parameters
 

differed appreciably from the final expected values; nevertheless
 

the results were in good agreement with the predicted maximum
 

spin speed under those conditions of 150 Hz and the predicted
 

spin up time constant of 45 minutes.
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In order to check the efficiency of the spin up ridges a
 

flat test piece simulating the housing geometry was made up in
 

1971. Room temperature tests suggested that the original c&l­

culations were a factor of 3 to 6 too optimistic, and on reexam­

ining the calculations we discovered an omission that accounted
 
for the discrepancy. Since the ceramic housing had already been
 

fabricated, we left it as it was, but in Quartz Gyro Housing No. 2
 

and in later housings we enlarged the pump out ports to provide
 

greater pumping speed and alleviate the problem. The calculated
 

limiting spin speed with the ceramic housing, allowing for the
 

omissioniwas 150 Hz.
 
The experience in 1967 with the gas bearing spin assembly
 

disclosed the need for great care to prevent introducing dirt
 

with the spin up gas. A series of experiments in 1971 showed
 

that a filter made With Millipore Duralon papers with 0.5 x 10
 

inch pores would work satisfactorily provided care was taken to
 

avoid excessive quantities of contaminant which might cause
 

clogging. A filter holder was made which was non magnetic and
 

easily cleaned. The whole experimental chamber of the
 

large dewar was designed to be assembled and sealed in a clean
 

room before installation in the dewar. The apparatus was
 

designed to take spin gas from a pipe running to the vapor
 

above the main helium well of the dewar.
 

Figure 26 illustrates the assembled large dewar ready for
 

spin up. The apparatus stood about eight feet high. The main
 

spin channels were exhausted by a 120 cfm rotary pump connected
 

by a three inch flexible line to a valve on top of the dewar
 

and thence to a two inch fiber-glass pipe running down inside:­

the neck to the spin up channel outlet lines. The differential
 

pumping channels were exhausted by a ten inch high speed dif­

fusion pumping station, visible in the photograph, connected
 

via a stainless steel line to the dewar neck-tube and experimental
 

chamber. A cross-section of the dewar is reproduced below in Figure
 

68, p. 288. To begin with the differential exhaust pressure (and
 

therefore spin speed) was limited by the forepump to the high
 



ORIGINAL PAGE 1i 
OF POOR QUALTY 

¢0 

Figure 26: Main Laboratory Dewar and Pumping Station
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speed diffusion pumping station, so we modified the foreline
 

and added a second larger pump in parallel.
 

The first attempted low temperature spin test with a beryl­

lium rotor was in October 1972. At that time we had no sure
 

way of telling whether the ball was spinning at room temperature;
 

the plan was to go straight to liquid helium temperatures and
 

look at the trapped flux in the spinning ball either with SQUID
 

magnetometers or a backup fluxgate magnetometer. Difficulties
 

with the magnetometers made the results inconclusive; our impres­

sion was that the ball was jammed in the housing. On warming up
 

we ran a spin test at room temperature, hoping to see the spin
 

from the suspension error signals, since we had learnt from
 

Honeywell that it is possible to do so at speeds over about
 

50 Hz. At that time we had no working experience of the char­

acteristics nf the gas spin up system. A-prolonged application
 

of gas seemed to generate no spin; the only output from the
 

suspension was an 800 Hz signal which we attributed to a
 

mechanical resonance in the dewar structure. Evidently the
 

ball was still jammed. Disappointed we switched off the sus­

pension system only to hear a horrid clonk; the hollow ball had
 

been spinning at high speed, possibly 800 Hz, and it had cracked.
 

Fortunately no great damage was done to the housing. The maxi­

mum gyro spin speed theoretically possible in this test was
 

estimated to be as high as 1600 Hz.
 

Our next step was to insert the full-weight nickel-coated
 

aluminum rotor. On January 4, 5, 1973 J. A. Lipa and J. R.
 

Nikirk performed the first controlled spin tests just below
 

room temperature. Readout was by magnetizing the nickel
 

coating on the aluminum ball and observing the rotating
 
magnetic moment with the fluxgate magnetometers. Shortly
 

after this run Nikirk made a very important discovery.
 

He found, contrary to the experience of Honeywell, that
 

in a quiet environment the spin of the ball could be read
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out from the suspension error signals even at low speeds,
 

indeed even when the ball was slowly tumbling at about 0.1
 

Hz. The observations were made first with the Honeywell
 

suspension system and later much more readily with the new
 

Stanford suspension system. This discovery was crucial to
 

future gyro operations. It supplied a means of checking
 

ball behavior all the way from room temperature to liquid
 

helium temperatures. We were no longer shooting in the dark.
 

As time went on Nikirk refined the technique until it applied
 

even to much better balanced balls than we originally had.
 

The first low temperature spin tests were made in June 1973
 

using fluxgate readout of the trapped magnetic fields in a
 

copper-niobium coated quartz rotor. A spin speed of 16 Hz
 

was reached. Figure 27 reproduces the start of one spin up
 

taken then, showing both the trapped flux signals in the flux­

gate magnetometer and the suspension error signals in all three
 
axes from the out-of-roundness of the ball. In later runs the
 

spin speed at low temperatures was raised to a maximum of about
 

40 Hz.
 

Figure 28 shows spin up data taken with the ceramic housing at
 

a temperature of about 6K. The upper diagram gives mass flow-rate
 

through the differential pumping system versus the inlet pressure
 

of the gas into the spin channel, the mass flow rate being deter­

mined from measurements of the inlet pressure of the high speed
 

diffusion pump. The flow rate over the raised ridges turns out
 

to be close to the predicted value. The lower diagram gives
 

initial spin torque versus inlet pressure. The spin torque may
 

be somewhat higher than predicted, but this depends heavily on
 

the accuracy of the data points at the high pressure end of the
 

scale; more data is needed before a firm conclusion can be
 

drawn. Little data is available at present on the dependence
 

of the drag torque in the housing on spin speed, which is the
 

remaining significant parameter. Our experience at spin speeds
 

up to 30 to 40 Hz is that drag is certainly not a limiting factor
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to that level. Recent calculations on spin up parameters'by
 

G. Karr (27 ) of the University of Alabama, Huntsville, imply
 

that more spin torque may be available than expected from the
 

Bracken-Everitt theory.
 

Recently we have beguri collecting spin up information
 

with Quartz Gyro Housing No. 2. The main differences in spin
 

up design between this housing and the ceramic housing are its
 

larger differential pumping ports and larger rotor-housing
 

clearance. The difference in clearance is only temporary: a
 

better-fitting ball is available and will be used once the
 

initial operating period in the hew test facility is over.
 

For the quartz housing the initial torques are 30 to 40%
 

higher than the data from the ceramic housing, a result which
 

may imply that there is a sflffificant pressure drop in the
 

ceramic housing downstream from the pressure gauge. The mass
 

flow rate through the auxiliary channels is at present a factor
 

of five higher in the quartz housing because of the larger
 

rotor-housing gap.
 

Analysis of the spin d&ta is continuing. The results so
 

far appear to be in substantial agreement with Bracken's pre­

dictions. To date we have limited ourselves to speeds below
 

40 Hz, but this has been dictated more by caution on our part
 

than by any limitation of the spin up system. As more gyro
 

housings become available we plan to increase the operating
 

speed to 100 Hz and above. High speed spin tests are also
 

planned at NASA Marshall Center.
 

(d) Free Running Gyro Performance
 

After spin up the gyro housing is pumped down to a low
 

pressure to allow the rotor to spin freely for extended periods.
 

Since June 1973 we have operated the gyro for nearly 1000 hours
 

at low temperatures at spin speeds up to nearly 40 Hz. During
 

low temperature operations We have had periods when levitation
 

and spin up were virtually impossible; on the other hand we have
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had faultless runs of over 24 hours continuous spinning, during
 

which we were able to make observations of rotor dynamics and
 

gyro spin down time.
 

The gyro precession rate and polhoding period can only
 

be accurately observed using the low temperature magnetometer
 

readout system described in the next subsection. So far it
 

has been most convenient to extract the information from the
 

time dependence of the trapped flux signal. For a gyro without
 

a preferred spin axis both the precession torque and polhode
 

frequency are variables depending on the orientation of the body
 

axes relative to the initial spin axis, so they vary from spin
 

up to spin up.
 

Our most extensive data was obtained with the ceramic gyro
 

during the London moment observations described in Section D (4)
 

(g). At that time the rotor was deliberately unbalanced to 

obtain a high precession rate and simplify detection of the 

London moment. For this rotor the precession rate normalized 

to 50 Hz spin speed was as high as 5 arc-min/sec, corresponding 

to an unbalanced torque of 46 dyne-cm. The polhode period 

corresponded to a moment of inertia ratio AI/I of about 1.4 x 10 

For the rotor currently in use in the quartz housing the maximum 

precession rate observed so far is 1.0 arc-min/sec and the 

inertia ratio appears to be about 1.3 x 10- 3 . The latter result 

is tentative because only partial observations have been made to 

date. The high inertia ratio is surprising in view of the rotor­

coating method which utilizes a tetrahedral angle deposition 

sequence.
 

The observed precession rates are three orders of magnitude
 

higher than is acceptable for a flight mission aimed at doing
 

a 1 milliarc-sec experiment in a 10- 9 g average environment.
 

The chief requirement is to improve the uniformity and reduce
 

the thickness of the ball coatings. A factor of ten improvement
 

in uniformity seems reasonably straightforward. The present
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thickness of about 140 pin is set by the need to withstand
 

electrical breakdown. In space the breakdown problem is much
 

less because arcing is much easier to avoid at the lower sus­

pension voltages. The most dangerous time would be during spin
 

up when the electrodes operate at a few hundred volts, but these
 

voltages are still low enough to be able to run with a thin
 

film without problems. To test a gyro with a thin film coating
 

in the laboratory before launch, a supplementary gas or magnetic
 

bearing can be incorporated in the housing if desired. Another
 

approach is to coat the rotor with a second thick breakdown
 

resistant film having a density close to that of quartz.
 

Probably such a film should be made electrically conducting
 

to avoid static charge build up.
 

During the free running phase the gyro rotor gradually slows
 

down through gas drag in the cavity. Its speed may also be
 

altered by gas leakage in the spin up plumbing, stray material
 

in the housing, and torques from the suspension system, which,
 

while negligible in space, can be appreciable with an out of
 

round ball and the high support voltages required on Earth.
 

Apart from occasional dramatic disturbances when the rotor hits
 

the wall, the speed perturbations are generally small low­

frequency effects. Gas drag has been the dominant factor.
 

From Equation (7), p. 53 we can compute gas pressure in the
 

housing from the observed spin down time. The highest time
 

constant so far observed has been 175 hours at room temperature.
 

This gives a housing pressure of 7 x 10- 5 tort. The observed
 

chamber pressure was 1.5 x 10-6 torr. In the low temperature
 

runs made to date we have usually introduced helium exchange
 

gas into the chamber to carry away the heat from the suspension
 

currents. The smaller time constants observed have agreed well
 

with the values calculated from the chamber pressure.
 

Figure 29 illustrates trapped flux signals showing gyro
 

precession and polhoding in a typical low temperature run.
 



(a) Spin Speed 15 Hz, 1 min = 2.5 small divisions 

(b) Spin Speed 0.39 Hz, 1 min = 10 small divisions 

Figure 29: Trapped Flux Signals Observed in Three Axis
 
Readout System, Showing Poihoding (Left Hand 
Traces) and Precession (1800 between Nulls of 
Center and Right Hand Traces) at Spin Speeds 
of 15 Hz and 0.39 Hz 

Operating temperature % 61K 
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(e) 	Interfacing of Readout Magnetometer with the
 
Dewar and Gyro
 

The first run with a magnetometer in the large laboratory
 

dewar was performed in June 1973, concurrently with the first
 

low 	temperature spin test. We successfully operated the magne­

tometer with the gyro switched off, but observed large amounts
 

of pickup as soon as the suspension system was turned on. This
 

interference was clearly different from the expected magnetic
 

pickup in the readout lQop. It was present whether the SQUID
 

Was 	acting as a magnetometer at liquid helium temperatures or
 

as a passive rf load at room temperature. It was evidently
 

due 	to imperfect electrostatic shielding between the suspension
 

cables (and other sourcds) and the SQUID tank circuit. The
 

SQUID tank and these amplifiers are tuned to 30 MHz; the
 

interference resulted from 30 MHz harmonics of the 1 MHz and
 

20 kHz signals from the suspension system.
 

We did extensive tests to see how much interference the
 

magnetometer could tolerate and to find out how to reduce the
 

pickup to acceptable levels. Measurements on the normally
 

operating magnetometer in a small test dewar established that
 
'
 the 	shielding must be improved by at least a factor of 1000
 

for proper operation. We then set up a room temperature sim­

ulation of the dewar cabling on a ground plane, to investigate
 

which combinations of shielding and ground techniques were most
 

effective. We tried over a hundred such combinations, some
 

using a rod antenna as the source of interference and some
 

using the suspension system with dummy loads. Later we per­

formed interference tests in the dewar itself. Following these
 

tests we put the SQUID and damping cylinder in a totally
 

enclosed copper shield, provided triaxial shielded cables with
 

shielded ends for the rf line from the SQUID up to the con­

nector at the top of the dewar, and carefully dressed this
 

cable and all other cables in the neck tube close to the ground
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plane provided by the neck tube wall and away from the suspension
 

cables. Thereafter there was no measurable electrostatic
 

interference.
 

The next problem was magnetic pickup between the suspension
 

and readout. To get rid of pickup from the 1 MHz position
 

sensing signals, and reduce the 20 kHz pickup, we introduced a
 

low pass filter between the gyro readout ring and the SQUID,
 

based on the damping cylinder referred to in Section C (3) (b).
 

A typical SQUID-damping cylinder assembly is illustrated in
 

Figure 30. The readout ring is connected to a coil around the
 

outside of the cylinder; inside the cylinder another coil is
 

connected to the SQUID. The damping cylinder is made of a con­

ducting (not superconducting) material and is typically 0.5 cm
 

in diameter, 4 to 5 cm long and 0.025 cm in wall thickness. At
 

high frequencies reaction currents are damped by the resistance
 

of the cylinder, allowing low frequency signals to pass. The
 

damping cylinder has the second benefit of substantially
 

reducing capacitative coupling between the two coils. We exper­

imented with bandwidths from 5 kHz, which passed too much 20 kHz
 

pickup, to 5 Hz, which was far lower than necessary. The bandwidth
 

depended on resistivity and wall thickness, which were varied
 

both by machining and electroplating the cylinder. Metals
 

used were brass, or copper for plating. The cylinders eventually
 

used in most of the work were made entirely of copper to reduce
 

thermoelectric voltages, which are a source of spurious signals,
 

and had bandwidths of 250 to 300 Hz.
 

The first successful operation of a magnetometer with the
 

live gyro was during the third cryogenic run of the large laboratory
 

dewar in November 1973, using a damping cylinder of 35 Hz bandwidth
 

For the same run we had built up a 3 axis 20 kHz bucking system,
 

and with the combination of bucking and filtering systems we
 

succeeded in locking the magnetometer with gyro suspended for
 

periods of several hours.
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We continued for about a year with the single axis readout 

while working to reduce trapped fields in the gyro rotor by the 

methods described in D (3) (f). For the reasons explained in 

D (3) (g) observation of the London moment required a properly 

calibrated three-axis gyro readout; this we began building in 

November 1974. In principle the three axis readout was a 

logical extension of the single axis readout, but several prob­

lems had to be solved before it worked well. One was temperature
 

stability of the SQUID magnetometer. The original SQUID had
 

been attached to the gyro base plate and not well anchored
 

The rf level loop corrected the
thermally to the helium bath. 


problem to the extent of maintaining the right SQUID bias, but
 

temperature gradients generated thermoelectric currents in the
 

damping cylinder, giving rise to readout errors from the charging
 

magnetic fields. The new SQUIDs were SHE units. We improved
 

the heat sinking by attaching their housings directly to the
 

bolt circle of the inner well of the dewar, which was in much
 

closer thermal contact to the bath, and also sought to reduce
 

thermal gradients by applying the dewar-within-a-dewar concept
 

to the SQUID assembly. The damping cylinder was heat sunk at
 

one end and surrounded with a simple dewar that isolated the
 

assembly from external sources of heat. Since there were no
 

significant heat sources inside the shield dewar, thermal
 

gradients, and hence thermoelectrically generated fields,
 

were minimized. Thermal stability of the SQUIDs was substan­

tially improved by these procedures.
 

By the end of 1974 we had built three magnetometer
 

electronics packages with all the necessary circuits for control
 

of the rf box and with current feedback circuits to read out
 

the magnetic field. Early in 1975 we installed the two additional
 

SQUIDs and damping cylinders in the dewar along with all the
 

At first the three rf boxes interfered
necessary cables. 


electrically with each other but this problem was easily solved
 

by grounding them together. The SQUIDs all worked during the
 

first cooldown of the three axis system in January 1975.
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Figure 31 illustrates the gyro assembly in the laboratory
 

dewar in its final form, with ceramic gyro housing, spin up
 

plumbing and filter, high voltage suspension cables, and three
 

magnetometer and damping cylinder assemblies connected to coils
 

wound on the outside of the gyro housing. The single large
 

magnetometer/damping cylinder assembly is the one with the original
 

adjustable point contact toroidal SQUIDs. The other two are
 

the improved housing with the SHE SQUID units. The original
 

SQUID was attached to the readout loop wound on the centering
 

ring at right angles to the parting plane between the two halves
 

of the gyro housing, identified as channel II of the gyro readout.
 

For this we applied a counterwound coil of the type illustrated
 

in Figure 10, p. 76 which cancelled changes in the ambient field
 

by a factor of 10 to 25 and helped considerably in rejecting
 

20 kHz pickup. Shortage of time and practical considerations
 

dissuaded us from applying counterwound coils in the other two
 

readout channels. When the suspension system was turned on the
 

performance of magnetometers I and III (the new magnetometers),
 
sharply deteriorated, because they were using most of their
 

capability to follow a 20kHz signal from the suspension,
 

which greatly reduced their margin for other signals. Tests
 

showed that all three damping cylinders were working; however
 

the damping cylinders for channels I and III, being made at a
 

different time from channel II had slightly higher bandwidth.
 

We eliminated the trouble by applying 20 kHz bucking in channels
 

I and III and the three axis readout operated excellently with
 

the gyro suspended.
 

(f) Reduction of Trapped Flux in the Gyro Rotor
 

The process of reducing the ambient magnetic field in the
 

large laboratory dewar depended on a combination of Mu-metal
 

shielding and field cancelling coils around the gyro. In many,
 

but not all of the experiments, a superconducting lead shield
 

was wrapped on the outer surface of the experimental chamber
 

in the helium well of the dewar in order to stabilize the field
 



Figure 31: Gyro Assembly in Main Laboratory Dewar
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from the Mu-metal shields. The cancelling Coils were a set
 

of three orthogonal coils surrounding the gyro, through which
 

measured currents were passed to balance out the residual fields.
 

For the low temperature run of November 1973 during which
 

a magnetometer was operated for the first time with a suspended
 

gyro, only the inner Mu-metal shield was available. The field
 

level observed was 3 x 10- 2 gauss, which was large enough to
 

make the magnetometer lose lock as soon as the gyro was spun
 

owing to the high slew-rate of the rotating trapped field. In
 

progressive stages we completed and annealed the outer Mu-metal
 

shield, removed magnetic materials from the helium well and
 

experimental chamber, and added degaussing coils and trim coils
 

to the Mu-metal shields. To measure the field in the experimental
 

chamber we put in a three-axis flip coil magnetometer with a
 

fluxgate probe. An important step was to make vacuum sealed
 

push-rods to manipulate the flip coil, allowing us to make
 

field measurements with the gyro suspended. By means of the
 

shields and flip coil we easily reached fields of 5 x 10- 4 gauss
 

or less at the gyro. A limitation of the arrangement was that
 

the flip coil was 4 inches above the gyroscope, and there were
 

appreciable field gradients in the inner well. Thus in one
 
-
run (October 1974) the field after one test was 4 x 10 4 gauss
 

at the flip coil and fortuitously lower at the gyroscope,
 
-
being only 2 x 10 4 gauss, as measured from the trapped flux
 

signal.
 

To go lower we developed a field cancelling procedure which
 

consisted in applying small known currents to each in turn of
 

the three field cancelling coils around the gyro and observing
 

the resultant trapped flux after heating and cooling the gyro
 

each time. By slow iterations the field was brought down to
 

about 2 x 10- 5 gauss. It is hard to conceive of anything more
 

tedious. The method did work but between 2 x 10- ' and 5 x 10- 5
 

gauss the results began to be non-repeatable, with considerable
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variations in the amount of flux trapped in the rotor in suc­

cessive identical cooldowns. This effect was eventually
 

attributed mainly to thermoelectric generation of slowly
 

varying fields in the neighborhood of the gyro through
 

temperature gradients in the various metal components of the
 

gyro support assembly. Experiments by P. M. Selzer (41 ) at
 

Stanford in 1972 had shown that the Thomson effect can generate
 

large circulating currents in strained metals at low temperatures.
 

The currents from a one degree temperature difference across
 

a copper block at 4K were enough in one instance to produce a
 

magnetic field of 1 gauss at the surface. The consequence of
 

the Thomson effect in strained materials was quite unfamiliar
 

to us, though subsequently we have learned that the equivalent
 

effect at room temperature was a commonplace of laboratory hand­

books of the 1900s! In order to reach fields near 10 - 7
 

gauss, such as are ultimately needed, all metal parts must be
 

removed from the neighborhood of the gyro. This we have done
 

in the new ultra-low field apparatus started in May 1975
 

(Section E below). Meanwhile we struggled on with the field
 

cancellation procedure in the old dewar but were never able
 

to go below 10-5 gauss. The London moment in a ball spinning
 

at 30 Hz corresponds to 2 x 10l 5 gauss. Special procedures
 

were necessary to separate it from the trapped flux signals.
 

(g) Observations of the London Moment
 

During 1974 we identified three methods for detecting the
 

London moment in a gyro limited by short running time and
 

appreciable quantities of trapped flux in the rotor. Briefly
 

these were:
 

(i) unbalancing the rotor to make it precess rapidly­
about the vertical axis, while at the same time
 
having trapped flux signals sufficiently constant
 
to allow simple subtraction of their d.c. component
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(ii) 	adding gas to make the rotor spin down rapidly, in
 
which case, if there is little precessionj the
 
variation of London moment with spin speed may be
 
observable
 

(iii) 	computation and correctioh for trapped flux
 
utilizing data from a three axis magnetometer
 
system.
 

In March 1975 we obtained the first London moment data by a
 

combination of methods (i) and (ii) using data collected from
 

the three axis readout to prove the stability of the trapped
 

flux signals. Figure 32 illustrates the fundamental task of
 

.gyro readout of the London moment and trapped flux signals.
 

The Cartesian reference frame i, j, k is centered on the ball
 

with axes parallel to the readout loop normals. The vector 0
 

represents an arbitrary spin axis along which lies the London
 

moment vector ML; the trapped flux vector M is inclined at an 

arbitrary anglee0. The trapped flux signal has a d.c. component 

MDC = M cose and an instantaneous a~c. component MAC = M sine 

which links each loop in an amount depending on tee-direction 

cosines w., wi'j k of the spin axis Q. Thus from the ratio of 

the a.c. signals only we can find the direction of 2 up to
 

an arbitrary sign in the components. Then given the value of
 

M determined by some other means we find e and hence the d.c.
 
components of the trapped flux MDC = Dc MDC , MDC). This
 

information is all that is needed to determine the components
 

of ML up to an arbitrary constant. Since the quantities
 
1 -jI k vary in exactly the same fashion as wi, wj Wk we can


ML , ML• L
 
make an unambiguous identification of ML if the ball precesses.
 

Such a 	determination is independent of polhoding action. Depend­

ing on the accuracy with which M can be determined we can in
 

principle compensate for a large trapped flux signal, provided
 

we have a three axis readout. Figure 33 illustrates signals
 

observed with the three axis readout and a relatively high
 

level of trapped flux in a slowly tumbling gyro rotor.
 



GYRO READOUT VECTORS
 

"" 	 - (ci 3J°k 	 k-1) 

ML
 

MAC
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FIGURE I 

Figure 32: 	 London Moment and Trapped Flux Vectors in Gyro
 
Readout
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Even if the trapped field is slowly varying the London
 

moment can be detected in the presence of a trapped field
 

equal to or larger than itself, provided it has simple dipole
 

form. The problem is when the trapped field is non-uniform.
 

When the field in the large dewar was nulled to levels at or
 

below the London moment at 30 Hz, it has gradients which
 

yielded significant components of trapped flux in the ball
 

right up to the sixth harmonic. Not only had we no method of
 

processing such a complex signal, we found also that the strong
 

harmonic content seriously threw off the first order calculation.
 

Another difficulty was that as the field level was reduced
 

we ran into problems with field changes originating in electrical
 

discharges from the suspension. Often activity that was not
 

enough to make the rotor strike the walls would noticeably
 

alter the trapped flux. The underlying cause of the discharging
 

appeared to be the imperfect quality of the electrodes in
 

the ceramic housing, which had suffered heavy punishment and
 

had many repairs during its four years of use. In the absence
 

of a better housing we could do little but wait for quiet periods
 

or shut down for further electrode repairs.
 

In these circumstances our technique for observing the
 

London moment was to measure the spin speed dependence of the
 

total magnetic moment parallel to the spin axis (which is in
 

general the sum of the London moment and axial components of
 

trapped flux) and to use transverse flux data to check the
 

constancy of the axial trapped flux.
 

To facilitate readout we added a three channel signal
 

conditioner for the magnetometer outputs. These preprocessing
 

circuits, which were among the last of J. R. Nikirk's contri­

butions to the program, separated the readout signal from each
 

magnetometer into d.c. and a.c. components and so produced sig­
nals that would with appropriate processing isolate the London
 

moment.
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*Figure 34 shows the London moment data obtained during an
 

18 hour run on March 11, 1975. The measurements of parallel
 

flux agree with the theoretically predicted spin speed dependence
 

of the London moment to within the 10% accuracy of the sensitivity
 

calibration of the pick up loopz The data cannqt be explained
 

away by attributing the variation with spin speed to a variation
 

of the parallel component of trapped flux. No more than 2 or 3%
 

of the observed signal at most could be so accounted for, Each
 

data point corresponds to a measurement made when the gyro spin
 

axis 	was normal to the channel II pick-up loop with low d.c.
 

drift characteristic. There was nQ detectable change in the
 

trapped flux during the data collection period, either from
 

suspension system activity or any other cause. The trapped
 

flux 	signal did exhibit a high harmonic cqntent, as has been
 

mentioned: efforts to calculate and subtract out the parallel
 

trapped flux component were not very successful. Hence we had
 

to rely on the constancy of the trapped flux to a greater extent
 

than 	will ultimately be necessary.
 

The detection of the London moment in a live gyrp repre­

sented the end of a distinct phase of the Gyro Relativity program.
 

The clear need now was to devise a means of operating the
 

gyroscope in ultra-low magnetic fields, to which problem our
 

attention next turned. Results of the London moment Qbserva­

tions were presented in a paper by J. A. Lipa, J. R, Nikirk
 
3. T. Anderson and R. R. Clappier at the 10th International
 

Conference on Low Temperature Physics held during August 1975
 
(42 )
 

at Helsinki, Finland.


E. THE PRECISION GYRO READOUT EXPERIMENT
 

(1) 	Planning
 

In reviewing the experimental situation at Stanfqrd dp-g
 

April 1975 after observing the London moment, we concluded the
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time ha6'ecme to define a new 4 iil fot laborat6ry research: an 

all out effort to obtain an angulaf resolution approaching i 

arc-second in'Londo' mdment tedd6ut on a live gyroscope. Doing 

this required an entirely new t6gt fadiiity with the gyro mounted 

inside an ultra-low magnetib field shield, ali metal patts'and 

ferromagnetic materials being removed from its vicinity, together 

with the use of quartz rather than ceramic gyro housings, readout 

magnetometers of improved sensitivity and stability, and data 

processing with an on-line mini-c6mputer. We hd already started 
,
on a quick turn around facility, b'ased on a standard 12 inch
 

dear, which would provide for gyro developmefit without the long
 

delays encountered iii the large laboratory dewar; Our plan was
 
to combine precisiof readout with the quick tirn ardund facility,
 

using sbme of the components we had aiready bought-or built. The
 

choice of 1 arc-second resoluti6n as the design goal was dome­

iwhat arbitrary: it seemed, however, about the best we would be
 

likely to achieve with a live gyro allowing fot gyr6 drift and
 

limit&tions on the system due to-ground vibrations. A subsidiary
 

goal was to demonstrate readout magnetometer pettormance in a
 

separate facility to 0.6i arc-sec or better.
 

The new plan was reviewed at ieetin4s at NASA Marshall
 

Center and NASA Headquarters, May 6, 7, 8, 1975 and summarized
 

in a letter from C. W. F. Everitt to A. L. Schardt dated May 16,
 

1975. The schedule and management plan was given in a subse­

quent letter to Dr.>Schardt dated June 26, 1975 and in the 1975
 

Request for Continuation of Support on NASA Grant b5-020-019.
 

During the 18 month period from July 1975 through the termination
 

of Grant 05-020-019 we have wbrked with unexampled vigor and
 

how have an operating fadilityr in which we have tested both
 

ceramic did quartz housings at 16w teiperitures. An 8.inch
 
-
diameter ultra-low field shield with field lev&ls of 2 x 10 7
 

gauss is available for ihstallation in the facility. We have
 



157
 

also completed the independent readout demonstration to an
 

accuracy corresponding to 0.001 arc-second: a factor of ten
 

better than the goal established in 1975.
 

Development of the precision readout experiment has
 

required close coordination of the work of all members of the
 

group. Design of the new facility was chiefly the responsibility
 

of F. J. van Kann and B. Cabrera with support from R. Hacker;
 

the ultra-low field shield was made by B. Cabrera; broader
 

aspects of planning and quartz gyro development were due to
 

J. A. Lipa, magnetometry to J. T. Anderson and R. R. Clappier,
 

support electronics to R. A. Van Patten, development of the
 

minicomputer to R. R. Clappier. Fabrication of many of the
 

parts of the new facility has been due to J. J. Gilderoy, Jr.
 

and members of the Physics machine shop.
 

(2) Ultra-Low Magnetic Field Technology
 

(a) Shield Cooling Techniques
 

One of the special properties of a superconductor is that
 

in most circumstances the magnetic flux through a closed super­

conducting surface is conserved. During the period 1969 to 1975
 

under separate funding we developed techniques to exploit this
 

property and create permanent regions of extremely low magnetic
 

field by heat-flushing and expanding a series of superconducting
 

lead shields. We are now routinely able to make shields 4 inches
 

and 8 inches in diameter in which the fields over a length of
 
7
about 30 inches are below 10- gauss.
 

Our first idea for obtaining ultra-low magnetic fields
 

was to cool a tightly compressed sock-like superconducting
 

shield in a low field and then expand it. Since flux is equal
 

to field times area, the increase in area will cause a corres­

ponding decrease in field. Figure 35 illustrates the process
 

schematically. The sock, constructed of pure lead foil is
 

pleated longitudinally and folded flat as in. the left hand
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Figure 35: 	 Schematic Representation of Magnetic Field
 
Before and After the Expansion of a Lead Shie'Id
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and middle diagrams, and then cooled through its superconducting
 

transition. Assuming strong flux pinning the field in the
 

direction shown is reduced after expansion in the manner indi­

cated in the right hand diagram. In principle an even greater
 

field reduction than that attributable to the area change might
 

be expected with a tightly folded lead shield as a result of
 

the flux-expulsion property of a superconductor (the Meissner
 

effect). A solid Type I superconductor excludes up to 99% of
 

the magnetic field through the transition temperature, and
 

the tightly folded lead shield might be considered as equivalent
 

to a closed solid. In practice the Meissner effect contributes
 

little to field reduction in such circumstances--probably no more
 

than a 30% improvement over the simple expansion process.
 

A second method of field reduction is heat flushing. If
 
a temperature gradient is applied along the superconducting
 

sock as it is cooled one end will be superconducting and the
 

other normal, with a transition region in between. Further
 

cooling will make the superconducting boundary move steadily
 

forward, and in suitable circumstances the magnetic field is
 

progressively pushed out of the enclosed volume. Two opposing
 

mechanisms determine the effectiveness of heat flushing:
 

(i) as the temperature gradient is increased the area
 
of the shield going superconducting at any one time
 
will become smaller, and with constant ambient field
 
the flux through this transition zone will also
 
decrease. Ultimately with a low enough initial
 
field and high enough,-temperature gradient, the
 
transition zone flux will stay always under half
 
a flux quantum: then no field will be trapped
 
anywhere in the shield as the superconducting
 
boundary moves from one end to the other: one
 
will have a region of zero magnetic field.
 

(ii) 	 on the other hand the thermoelectric currents des­
cribed in Section D (3) (e), due to the Thomson
 
effect in a strained metal, generate magnetic
 
fields proportional to the temperature gradient
 
across the cooling shield. Since the current
 
depends on thermopower divided by the resistance
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of the material, the magnetic fields created during
 
heat flushing can be reduced by working with thinner
 
shields. Requirements of mechanical strength and(43)
 
other practical considerations reviewed elsewhere
 
make the thinnest useful shield material at present
 
a 2.5 mil lead foil.
 

The procedure we have developed for making 10 - 7 gauss
 

shields combines the expansion and flushing techniques. To
 

avoid trouble with thermoelectrically generated fields, the
 

ambient field is lowered in steps by cooling a series of
 

three or more shields successively one inside the other,
 

reducing the temperature gradient used in heat flushing
 

at each step. The applied gradient should not be smaller
 

than the characteristic temperature fluctuations in the
 

material, however, since the fluctuations would then produce
 

local superconducting paths enclosing normal regions and
 

trapping magnetic flux.
 

Figure 36 illustrates the cyclic procedure in which a
 

lead shield of given diameter is cooled and expanded inside
 

another shield of the same, or in some instances smaller
 

diameter. Stage (a) shows an open sock-like shield in a
 

dewar vessel, the shield having already been cooled and
 

expanded in a low magnetic field (the first sock is cooled in
 

a field of about 10 - 4 gauss provided by conventional Mu-metal
 

shields). A typical sock is 4 inches in diameter and 36 inches
 

long, welded from 2.5 mil lead foil and suspended from the
 

top plate of the dewar by a cloth cylinder glued to the upper
 

end of the foil. Stage (b) shows the second sock, pleated as
 

on the left hand diagram of Figure 35 into a strip 36 inches
 

long and 1.5 inches wide, inserted into the first shield
 

and maintained above its superconducting transition tempera­

ture by being enclosed in a double-walled glass tube (a dewar)
 

like a diving bell, to which an overpressure of helium gas
 

has been applied to drive the helium liquid level to a point
 

below the bottom of the sock. Stage (c) shows the sock after
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Figure 36: 	 Shield Cooling Cycle for Generating Ultra-Low
 
Magnetic Fields
 

(a) Expanded lead bag (b) Second lead bag
 
inserted, folded and warm (c) Second bag cooled
 
(d) Hole torn in bottom of first bag (e) First
 
bag removed (f) Second bag ready for expansion
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cooling below its superconducting transition temperature, with
 

the helium level in the double-walled glass tube now back up
 

'to the same level as in the rest of the dewar. Details of the
 
heat flushing procedure are described below. The next two
 

stages (d) and (e) consist in tearing out the bottom of the
 

outer lead shield by means of a special tool and removing it
 

from the dewar. Stage (f) is to lift away the double-walled
 

tube from around the inner lead shield, which is now ready for
 

expansion to stage (a), after which the cycle may be repeated
 

by Introducing and cooling another folded shield.
 

For the present work all the shields used in field
 

reduction are of 4 inch diameter, except the last which is
 

of 8 inch diameter but capable of being folded small enough
 

to fit inside the 4 inch shield and double-walled glass tube.
 

Our original heat flushing procedure was a quasi-static
 

one. The helium level was allowed to rise very slowly around
 

the folded shield over a 12 hour period, the motion being
 

-controlled by cutting back the gas flow and venting through
 

the upper end of the double-walled glass tube. More recently
 
we have avoided this time consuming procedure by introducing
 

a calibrated helium gas leak into the vacuum space of the
 

tube so as to provide transverse heat flow along the entire
 

length of the shield. The new method has three advantages
 

(1) the heat flux across the whole length Of the tube reduces
 

the temperature gradient in the shield and hence also reduces
 

the gradient induced magnetic fields (ii) the small temperature
 

gradient ensures that the liquid level will not oscillate,
 

allowing faster cooldown (iii) the apparatus no longer has
 

to be constantly monitored to reduce the gas flow while
 

preventin@ oscillations.
 

(b) Magnetic Fields in an Empty Superconducting Shield
 

Before a superconducting shield is cooled the ambient
 

field must be reduced to a level below that at which any point
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on the surface sees the critical field Hc; otherwise flux may
 

penetrate the shield. In bulk superconducting lead at 4.2K,
 

H is about 550 gauss, but the maximum external field allowable
 

with a thin-walled hollow shield is much less than 550 gauss
 

for two reasons. The first concerns the thermodynamic state
 

of the shield. The question is whether the Gibbs free energy
 

is less in the intermediate state where the flux penetrates the
 

shield or thd Meissner state where it is excluded. Expressions
 

for the Gibbs free energy of cylindrical and spherical shields
 

have been derived by B. Cabrera, (44) who finds that with an 8
 

inch diameter lead cylinder of 2.5 mil wall thickness at 4.2K,
 

the "effective critical field" (Hc)eff above which the field
 

penetrates is about 14, gauss rather than 550 gauss.
 

The second important limitation on the external field which
 

a hollow superconductor can withstand is from the effects of
 

self-demagnetizing fields near the sharp edges of a folded or
 

crinkled balloon. Provided the condition from Gibbs free energy
 

is satisfied the shield will normally exclude most of the flux
 

even if nucleation sites do exist where (Hc)eff is less than
 

the ambient field, but even local penetrations of the field at
 

nucleation sites are often irreversible and thus undesirable.
 

Limits on the field from the standard self-demagnetizing factor
 

for an ellipsoid have been calculated by Cabrera, who finds
 

both empirically and theoretically that a single Mu-metal shield
 

giving an ambient field of a milligauss is sufficient to guard
 

against unstable local penetrations as well as the free energy
 

effect. In one instance an irreversible field penetration
 

occurred in the lower part of a lead shield transported through
 

the Earth's field (0.5 gauss). This can be attributed to
 

unstable changes initiated by the self-demagnetizing fields at
 

the sharp edges of several small holes along a seam towards the
 

bottom of the shield.
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Once a shield is in the Meissner state there are three
 

major sources and several possible minor sources of remanent
 

field in it,as follows:
 

(i) trapped flux in the shield wall is the dominant
 
contribution to the field until enough shields
 
have been cooled to eliminate flux from the last
 
shield. In the best shields produced so far­
there is less than ode unpaiztd quantum of flux
 
for every 20 cm2 of surface area, which corres­

-
ponds to a residual field of 4 x 10 a gaussat
 
the center of the shield.
 

(ii) 	with a cylindrical shield having an open top the
 
external'field comes in through the-opening. For
 
uniform fields applied in the axial and transverse
 
directions the residual fields at a distanqe z
 

3"8
below th top are proportional to e- 3 z/a and
 
e-1-84 z/a respectively, where a is the radius of
 
the cylinder. In general the attenuation for any
 
localized magnetic field either inside- or outside
 

-' 8 4 
a cylindrical shield must be at least e z1a.
 
We have verified this result to 1% for a half inch
 
diameter shieldS4 5 )1
 

(iii) 	 the fall-off of an external axial field through a
 
small hole in the wall of a cylindrical shield has
 
also been studied. The attenuation at the center
 
is approximately proportional to (r/a)3 where r is
 
the radius of the hole and a again the radius of
 

This result has also been verified.(46)
the cylinder. 


Other sources of field in an empty superconducting shield
 

too small to detect at present are the London moment from the
 

Earth's rotation, which produces a uniform field of 8.3 x 10-12
 

gauss, 	and at effect predicted by V. L. Ginzberg and others in
 

which magnetic fields are generated by temperature gradients
 

across anisotropic superconducting material. During prolonged
 

use of a superconducting shield substantial amounts of frozen
 

air are condensed as a result of repeated insertions and removals
 

of apparatus from the cold dewar. To check whether solid air
 

had remanent magnetization we brought 10cc of it within 3cm
 

of the flip coil of a magnetometer capable of measuring 1Q 
8
 

gauss. There was no measurable change in field. Thus although
 

solid oxygen is paramagnetic it exhibits no appreciable ferro­

magnetism at 4.2K.
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(c) Fields Associated with Apparatus Inside the Shield
 

Given an ultra-low magnetic field region the next problem
 

is to avoid generating fields in the apparatus that goes into
 

it. There are three contributions, two of which have already
 

been discussed: the remanent magnetization of materials, their
 

susceptibility and thermoelectric effects.
 

Table 9 summarizes measurements made by B. Cabrera in 1974
 

and early 1977 on the remanent magnetizations of commonly used
 

construction materials at 4.2 K. The apparatus comprised a
 

shielded pickup loop surrounded by an 0.5 inch diameter, 4 inch
 

long superconducting shield. The change in flux when a sample
 

passed through the coil was recorded; there was also a calibra­

tion solenoid on the apparatus. The shield provided a stable
 

ambient field of about 10- 6 gauss and rapidly attenuated the
 

fields from the samples as they were moved away from the detection
 

coil. All but a few measurements were based on standard samples
 

3/16 inch diameter by 1 inch long. Figure 37 presents the same
 

data in graphical form. For each individual sample the error
 

was less than the diameter of the point on the diagram. The
 

scatter from sample to sample of different batches of material
 

was less than an order of magnitude. Typical cases are measure­

ments for G-10 and manganin wire.
 

Susceptibilities become significant where stable uniform
 

fields are needed inside the shield. There are two clearly
 

separable cases. In normal materials, with paramagnetic
 

and diamagnetic susceptibilities below 10- 5, the effects are
 

only important when applied fields are more than 105 times
 

instrument sensitivity. In superconductors, with a perfect
 

diamagnetic susceptibility of -1/4q, they can produce signifi­

cant distortions in any field.
 

Thermoelectric effects in the large laboratory dewars
 

were described in Section D (3) (f). Normal metals can gen­

erate.larg fields as they are cooled and hence cause large
 



Table 9: 	 Magnetic Remanent Magnetization of Constructioi Materials
 
at a Temperature of 4.2K
 

45M vol. 

I. 	 Cezs and Class: 
-

Slice alumina (aat trace) uoner n. st. petersbls, nr 1.5 c 10 4 0.0386 
ftsed qartz ENglebard. hillside, N.J. <5.9 . i0-8 0.201 

*mcor (Madenable glass c-resic) Cr g1.1Gn x 10- 7 0.113 
Pyrex Cornnr GlasS 1.6 10_5 0.201
Sinite alenln AI300: #1 (1968) Ist~enn Gold & plat 4.3 X 10_6 0.075 

#2 (1968) Belmont, CA 5.8 x 10.8 0.0914 
.3 (1973) <7.9 x 10- 0.100 

IX. E es and ~Ress: 
- 5

Epond 100A Furane, L.A , CA 2.6 x l0 0.97 
pOcast 121 Forane, L.A., CA 6.9 x 10- 0.114 

E0oC 907 Niaer-stgphnson Chaical, L.A., CA 9.0 x 10_5 0.113 
G-1 rd sock ThdoU 4.1 x 10 5 0.201 

tube ?I ythane.Taylor, laVerne, CA 4.2 x 10 0.0415 
bte 42 Synthane-Trylr,, AVe., CA 2.2 x4 10 0.0391 

Thy'ol XA-570 Dexter Corp., Olgan, N.Y. 3.4 x 10 6 0.113 
Phenolio (cloth filled) 1 0.1131.nm i10. 

*Plybhnd f4-2 C Electronics 9.6 S 106 0.0063 
PTV310 De l.63x103s 	 10!737 
Stycst 2850-F llnsrsan & Cres 1.1 x 105 0.121 
*Styost 1266 Elirosn & Casings 6.0 c 10- 5 0.030 
Tort Seal Variac Associates 2.8 x 10 0.113 

III. 	 Netals: 
-7

Alu inna 6061-r6- rd stock Alcoa 4.7 x 0 0.201 
andzed sheet' Alo 2.1 x 10-7 0.037 

*Berylizen opier sheet . 1.6 x 104 0.055 
rod #1 r rass &Copper. Oakland, CA 9.7 x 10-4 0.113

2
od #2 2 	 &Copper, O Cklan, 7.5 , 10- 0.0238Aerican Brass CA

4-40 s t. Slos &Scittai, S F., M 1 0 x 10_ 0.039 
Copper: rodI Aeracan B1C CA . I1Bi-as &Copper, Oakland, 6.3 0.201 

99.999% rod' Atonergic Chametala, LI..* N.Y. 1.5 Y 10
- 6 

0.201 
*Cp ckel bng (70% C/30%NI) Unfocn tubes 3.3 x 10- 0.0151 
Phopor bronze R. J. L-ahy CO., S.F., CA 1 4 x 10_3 0.0238 
Steel: 304 sa ess tube Superior Tube Co. 4.4 , 10_ 1 0.0227 

soft steel rU 1.9 x 10 5 0.00036 
Tatacius: rod U wn 6-5 10 0.0238 

4-40 s.re, Surplus fre ce 1.5 x 10 0 039 

v. plastics: 
* string, M'[tr 30 lb. test Cortlan Line CO , Cortlan, N.Y. 4.4 x 1 76 0.021 

Dern Dont 2.7 x 10 6 0.201
 
MW polIethylene ["pont 0.201
D 	 3.3 .1 10-
K ton sheet Dpont 	 <4.5x 10 0.0174 
ylar D'nt <6 4 x 107 0.0124 

Nylon: natural Depont 1.6 y 10 0.201 
black' Smith, Inc., Brooclyn. N.Y. 3.7 x 10-5 

4 0.046*Shrink t Sbing Ic0 nally, CA 3.7 x 10_6 0.03311 palo Alt, 
Teflon: rod stock Dpot 3:6 x 10 0.201 

120 s e tu I0/Rlly, Fal; Alto, CA 12.1 x 10 0.039 
V. 	 Solder: 

-
Indium' . Indium Corp.; Utica, N.Y. 2.4 x 10 6 0 0322 
Silver sode anedy& sNan 1.8 10

- 3  
0.0503 

157-B entec rod' Euteotic Corp., Flushig, N.Y. <1.6 x 10
- 7  

0:0503 

W. Wires: 
t

* -~ l-p 0 $z Cohn, Ihot Vernon, N Y. >6.3 _- 0.00097 
Ca cable 293-3908-0000 ICO/rally 3.4 x 105 0.090 
Coper #33 for.vr ins.' ° Beden, C.7cago, IL 3.3 x i0 0.00525 

* o nstantan JX-T-30 Ceega, Stamford, CT 1.6 x 104- 0.024 
*COe Nickel Alloy 3-011° D iver-arns, Narison, N.J 6.3 x 10 5 0 0083 
Svnm 828 silk ins. river CO. Naark, N.J. 5.2 x 104 0.0083 

-Gold - 0,07% Fe" 
7 
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VII. Nistellanea~s 

*'apacit=rs (ceric chp): -6 
yey 100B-100-O-C,68pf iseracan Tedhical Ceramics, 8.9 x i0 0.0170 

Huntington Station, N.Y. 
[beat NPO,470pf Un Carbide 4.3 x 10

- 5  
0.0141 

- 4
FC pan 1g-604/' NIPhenol 	 1.3 . 10 0.028 
Pn #450-3750-01-03 Cation, Cartridge, MA 2.5 y 10 

-2 
0.014 

nS2401toa FL 0.5 . 103- 0.028 
Pe003l lead.4H lch-i-ner 4H 1.8 x 104 0.0196 
Resstors: 1/21 Spear 1.9 x 10 _ 0.051 

1/4W Allen-Bradley 3.1 x 10_3 0 0176 
1/10 Unnon 1.9 x 103 0.0079 
asseiy for heat ich 4.1 x 10_4 0.0503 

*1/4W 1ER 5% #1 Omta 	 4.3 10-4 0.028 
*2 te 	 1.6 A 10_4 0.028*1/4W 1011 1%'60D Corning Glass 	 5.1 x 10_7 0.059 

S.Ica, St.rease cornig 	 <7.0 x 10- 5 0.113 
Mape: BlUe s (Black) 	 , N Lechelle, N.Y. x 10_6 0.125Mfg. 1.9 

sk Scotch 4.9 . 10 0.113 

'easured April 1977, all others reJasure Septeter, 1974. 
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amounts of trapped flux in the superconducting parts of the
 

apparatus. A study of one test sample by B. Cabrera yielded
 

fairly good agreement between theory and experiment. The
 

only way is to cool carefully and have as little normal metal
 

as possible near the gyroscope during cool down.
 

All of these effects have had to be taken into account in
 

designing the probe for the 1 arc-second gyro readout experiment
 

and the magnetometer for ultra-low field research.
 

(d) Magnetometer for Ultra-Low Field Research
 

Measurements of the magnitude and direction of the field,
 

inside an ultra-low field shield require a sensitive SQUID
 

magnetometer connected to a flip coil capable of being turned
 

to known angles about a horizontal axis on a probe that can be
 

turned to any position about the vertical axis. The probe and
 

flip coil assembly should be non magnetic. The magnetometer
 

used for most of the development in ultra-low field technology
 

was far from satisfactory. The SQUID was a home built Beasley
 

type double point contact unit, while the flip coil and probe
 

were of aluminum and subject to magnetic contamination and the
 

thermoelectric effects just discussed. The absolute field
 

sensitivity was limited to about 10-8 gauss.
 

During 1976 we replaced the original magnetometer with a
 

greatly improved version which gave a factor of 100 improvement
 

in absolute field measurement capability. The aluminum flip
 

coil assembly was replaced by one of simplified design made of
 

pure quartz tubing. The double point contact SQUID was replaced
 

by an SHE toroidal unit with the Stanford third generation
 

electronics system. Figure 38 illustrates the flip coil assembly.
 

The only metal parts are the niobium wires for the flip coil
 

and Helmholtz coils used in field calibration, these wires being
 

threaded through the fine quartz tubes from which the structure
 

is made. The new magnetometry reduced by a factor of 1000 the
 

sensitivity of the SQUID itself to changes in the external
 

field and increased by a factor of three the relative sensi­

tivity. Once initial difficulties had been overcome the new
 

magnetometer was decidely more reliable than the earlier
 



Figure 38: Magnetometer for Ultra-Law Field Research
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one. These improvements have given a background field below
 
8 	 1o
10-	 gauss and an instrument sensitivity of 10- gauss.
 

- 7
(e) 	Production of a 2 x 10 Gauss Magnetic Shield for
 
the New Apparatus
 

Before starting the precision gyro readout experiment we
 

had purchased a 12 inch superinsulated dewar vessel for the
 

quick turn around gyro test facility. Our first thought was
 

to use this dewar with a 12 inch ultra-low field shield for
 

the new apparatus. However, although some of the upper parts
 

of the new dewar probe do have to be 11 inches in diameter,
 

the diameter of the 38 inch long cylindrical vacuum chamber
 

at the lower end, in which the gyro is mounted, needs only to
 

be 7.5 inches. We decided therefore to restrict ourselves
 

to an 8 inch ultra-low field shield, reducing in that way the
 

length of shield needed to attenuate the leakage field through
 

the top of the superconducting shield.
 

For reasons discussed in E (3) (a) we purchased a second
 
12 inch dewar for ultra-low field operations. The dewar
 

assembly comprises a slightly modified cryogenic Associates
 

model SD-10 dewar of 12 inch diameter, surrounded by a 17.5
 

inch diameter, 78 inch long Mu-metal shield, which provides a
 

10 - 3 gauss region in which to make the ultra-low field shield.
 

Mounted in the bottom of the dewar is an 8 inch diameter 40
 

inch long aluminum well (identical in fact with the inner well
 

of an 8 inch dewar) within which the ultra-low field shield
 

is made. For practical reasons the ultra-low field shield is
 

made in one laboratory and transported with the dewar and 17.5
 

inch Mu-metal shield to the main facility, where the whole
 

assembly is inserted into a second Mu-metal shield, 23.5
 

inches in diameter and 88 inches long, permanently mounted
 

there. The combination of the two Mu-metal shields reduces
 
-
the ambient field from 10 to 10 - 4 gauss, ensuring that the
 

leakage field through the open top of the ultra-low field shield
 

is alternated below 10- 7 gauss at the level where the gyro sits.
 

Production of the ultra-low field shield was begun in
 

June 1976 and completed in October 1976. Most of the
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paraphernalia used was already available from an earlier
 
experiment. New items included an adapter top plate going
 

from the 12 inch opening of the dewar to an existing 8 inch
 
top plate, a new baseplate to anchor down the dewar, and a
 

large transport cart to allow the dewar full of helium and
 

containing the ultra-low field shield to be tilted at 450
 

and wheeled through doorways to the main facility. The new
 

quartz flip coil magnetometer described in E (2) (d) was
 

used throughout the work.
 

To provide a controlled heat leak through the double­

walled glass tube surrounding each folded lead sock during
 

cooldown a new helium gas leak was designed and constructed.
 

The helium diffusion path was a teflon diaphragm 3/4 inch in
 

diameter and 5 mil thick. This was attached to an atmospheric
 

pressuire- chamber and the desired leak rate into the vacuum
 

space of-the double walled tube was established by mixing
 

the right proportions of helium and air in the pressure
 

chamber. The best cooling rates for the shield were obtained
 
7
by combining a set helium leak rate of 4 x 10- atom cc/sec
 

into the vacuum space with a vent rate of 30 cc/min at STP
 

out of the inner helium chamber containing the shield.
 

Expansions of the shields were performed by inserting
 

a spherical plunger, made from a cut down aluminum kitchen
 

colander, into each bag after cooldown and removal of the
 

outer bag and double-walled glass tube.
 

The final 8 inch ultra-low field shield was cooled
 

overnight on October 6, 1976 after three successive expansions
 

of 4 inch bags on September 16, September 22 and September 28.
 
An earlier successful expansion of a 4 inch bag in June 1976
 

had been followed by setbacks through magnetometer troubles
 

and the loss of a second lead bag early in September. Figure
 

39 illustrates five stages of field reduction. Curve 1 shows
 
the initial field in the 17.5 inch diameter Mu-metal shield
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Figure 39: 	 Five Stages of Magnetic Field Reduction in
 
Preparing 8 inch Ultra-Low Field Shield
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with a peak value of about 10 - 3 gauss 30 inches above the
 

bottom of the shield. Cooldown of the first 4 inch lead
 

shield was impaired when the glass cooling tube was accidentally
 

cracked, but the field level as shown in curve 2 was-below 10- '
 

gauss. The cooldown rate of the next shield was close to but
 

slightly faster than optimal, yielding a maximum field of
 

0.8 x 10- G gauss as shown in curve 3: an improvejent factor of
 

about eight. Curve 4 shows the field of the third 4 inch shield.
 

The large peak at the 22 inch position is due to a tear in the
 

lead bag which we discovered when the shield was removed from
 

the dewar after cooling the final 8 inch shield. Although the
 

leakage field through this hole was five times larger than our
 

goal of 5 x 10 - 7 gauss for the shield, we decided to go ahead
 

and cool the 8 inch shield next. The field level in the third 4
 

inch bag was still adequate to reach a final field of a few times
 

10 - 7 gauss, and it seemed best to have this rather than
 

consume time making another 4 inch shield which would allow
 

a reduction in the final field to 5 x 10- 8 gauss.
 

To minimize the possibility of tearing the seams in the
 

8 inch shield we made a new tool to partially open the shield
 

before inserting the standard spherical shield-expansion plunger.
 

Final expansion was done satisfactorily on October 8, 1976.
 

The cloth top of the shield was next successfully
 

removed using strings which had been preattached to each tab
 

glued around the top of the shield. A four-inch long expansion
 

clamp was then inserted at the top of the shield to prevent
 

damage during insertion of the probe. We encountered some
 

difficulty in sizing the clamp, having to remove it from the
 

dewar twice and trim the material before achieving a satisfactory
 

fit.
 

Curve 5 of Figure 39 illustrates one field profile for the
 

8 inch bag taken soon after its completion. Figure 40 is a
 

more complete plot of orthogonal field components along the
 

axis of the shield. Figure 41 illustrates the absolute
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magnitudes ofthe field at the gyro position obtained by
 

rotating the flip coil with-its axis in two orthogonal
 
- 7
 

The absolute field magnitude is 2.3 x 10
directions. 


gauss. We are of the opinion that our improvement of
 

one order of magnitude in field reduction can be obtained
 

fairly straightforwardly in a future cooling cycle by
 

carefully annealing the shields and avoiding seam tears.
 

An automatic telephone dialler system coupled to the
 

low limit relay of the helium level sensor was connected to
 

the ultra-low field dewar shortly after completion of the 8
 

inch shield. If the helium level should drop to where the top
 

of the shield were in danger of going normal the system will
 

-automatically telephone a warning message to group members either
 

at home or in their offices at any hour of the day or night.
 

Figure 42 is a view into an 8 inch ultra-low magnetic
 

field shield after completion.
 

(3) Design of the Gyro Test Facility
 

The new facility has to allow reasonably high spin speed
 

of the gyro (at least 100 Hz) in an ultra-low magnetic field.
 

The turn round time between runs has to be short and the
 

apparatus should be constructed as far as possible using known
 

technology and existing or commercially available components.
 

The design has to be worked out in such a way that the probe
 

containing the gyro can be inserted into and removed from the
 

dewar containing the ultra-low field shield without sudden
 

changes in helium level that would cause any part of the shield
 

to go normal.
 

We gave considerable thought to the layout of the laboratory.
 

The requirements to assemble the apparatus at a clean bench and
 

test it first at room temperature, then liquid nitrogen tempera­

ture and finally at liquid helium temperature poses interesting
 

,problems of logistics and room layout. As Figure 43 shows, the
 

assembled apparatus is mounted above floor level and is surrounded
 

by electronics and other support equipment, including the clean
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bench, protected from dirt in a nearby alcove. Traditional
 

cryogenic practice is that in a small apparatus the probe is
 

held fixed and the dewar is raised and lowered around it,
 

while in larger apparatus the dewar is fixed. After much
 

discussion we concluded it was best to make the dewar movable
 

and the probe fixed in a rigid frame but detachable and trans­

portable to the clean bench.
 

Figure 44 illustrates the planned apparatus with the
 

assembled probe and dewar. The probe assembly is about 6
 

feet long and is bolted with its top plate 6.5 feet above
 

floor level to a rigid aluminum tripod with slightly splayed
 

legs formed from tubular columns over 8 inches diameter,
 

anchored to a 10 foot diameter 5 foot thick concrete pad
 

located with its top surface one foot below floor level and
 

physically isolated from the building structure. Two inter­

changeable dewar assemblies are used: (i) the 12 inch inner
 

diameter dewar described in Section E (2) (e) which contains
 

the ultra-low field shield and is enclosed in the tight fitting
 

17.5 inch diameter Mu-metal shield, (ii) the nearly identical
 

12 inch dewar originally purchased for the quick turn around
 

gyro test facility, used without extra superconducting or
 

Mu-metal shields. The dewar assemblies fit inside an 18 inch
 

diameter precision bore foam insulated airlock which is open
 

at the bottom. They are raised and lowered by a hydraulic
 

lift, and accommodated in the lowered position in a hole 3.5
 

feet in diameter and 9 feet deep, bored through the concrete
 

pad. The hydraulic cylinder goes in a further hole 9 inches
 

in diameter and 9 feet deep under the center of the main hole.
 

Either dewar assembly may be attached to the hydraulic piston
 

by means of a bayonet mount mechanism similar to a camera lens.
 
Six Teflon rollers, which slide on three vertical guide rails
 

on the probe frame, are attached to the outer shell. When the
 

cold dewar is raised or lowered around the probe air is prevented
 
from entering the dewar well by an 18 inch diameter piston seal,
 

located at the dewar mouth, which slides inside the airlock cylinder.
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The use of two interchangeable dewars has several advantages.
 

The two crucial and sophisticated tasks of preparing the ultra­

low magnetic field shield and testing the dewar probe proceed
 

independently in different laboratories, minimizing schedule
 

conflicts. Further when the ultra-low field dewar is not
 

being used with the test facility it is available for other
 

work, including measurements of remanent magnetizations of
 

probe components. It was used for example in the readout
 

noise measurements described in Section F. The presence of the
 

outer Mu-metal shield means that the gyro is in a moderately
 

low magnetic field--about 10- 3 gauss--even when it is cooled
 

down in the non-shielded dewar.
 
Figure 45 shows the completed facility.
 

The probe vacuum shell consists of three sections, a 3
 

foot long necktube section, a double-walled precooling chamber
 

and a main vacuum chamber. The neck tube is constructed from
 

G-10 low thermal conductivity plastic, and consists of a 6 inch
 

diameter high vacuum pumping line surrounded by several 2 inch
 

diameter tubes which contain all the electrical and other feed­

throughs. These tubes are self-contained and readily detachable
 

to facilitate their assembly independently of the probe itself.
 

The outer diameter of the neck assembly is 11 inches. The
 

precooling chamber at the bottom of the neck has two main
 

functions: (i) the probe can be precooled by circulating
 

liquid nitrogen through the space between the double walls,
 

(ii) it also allows the use of a 7.5 inch diameter vacuum
 

chamber to contain the gyro, and hence, as explained in
 

Section E (2) (e), the use of a smaller 8 inch diameter ultra­

low field shield.
 

Interconnections between the feedthrough tubes, the gyro
 
and the magnetometer are made inside the precooling chamber.
 

The magnetometers are in separate housings bolted to the
 

bottom around the vacuum can. Two vacuum cans, about 30
 

inches long are used interchangeably with the probe. One


>is made of pyrex and is used to get the lowest magnetic field
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environment. The other is of aluminum and being more robust
 
is used whenever the field requirements are not critical.
 

The gyro is mounted with its center about 4 inches from
 

the bottom of the vacuum chamber. It is held in a teflon
 

fixture which is attached to a rigid G-10 tube hanging from
 

the bottom of the precooling chamber. Two interchangeable
 

mounting fixtures are available. One holds the gyroscope in
 

an orientation such that its initial spin axis is parallel to
 

the Earth's axis and the rotor supported entirely by two
 

electrodes, which happens to be the best that can be arranged
 

at the latitude of Stanford. The other fixture holds the gyro­

scope with its weight equally supported by all three electrodes
 

and its spin axis horizontal. The latter is the fixture
 

presently installed and used for all the tests made to date.
 

The spin up plumbing and other parts used in the low field
 

region were made of carefully selected contaminant free non­

metals. Figure 46 illustrates the completed probe.
 

Time was saved in making the new apparatus by adapting
 

the 10 inch high speed diffusion pump used in the earlier
 

apparatus to evacuate the probe. We were able also to incor­

porate the low heat leak high voltage glass tube suspension
 

cables from the old apparatus in the new probe. They are
 

connected to the gyroscope by commercially available teflon
 

dielectric co-axial cables.
 

Great pains were taken in designing the probe to minimize
 

the heat leaks. This led among other tasks to a detailed
 

study of the thermal design of rf transmission lines for the
 

SQUID readout magnetometers. The primary electrical consid­

eration is that the lines have low attenuation to maximize
 

the signal to noise ratio. To minimize the magnetometer
 

null drift that accompanies a drift in rf bias level, the
 

attenuation should be independent of temperature. Low
 

attenuation and low heat leak are contradictory properties
 

because the current carrying electrons in the metal line also
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large laboratory dewar, but during 1976 we put together a few
 

useful additional items.
 

One was a filter panel for use with the 8 channel recorder.
 

The panel design allows selection of 1 Hz, 10 Hz filters or
 

flat response for any of the eight channels. The unity gain
 

low pass active filters are of a three pole Butterworth type
 

implemented with high-grade monolithic operational amplifiers.
 

Common mode rejection is provided for all bandwidths, with the
 

option of a floating or grounded output shield termination.
 

Any of the filters can be bypassed by plugging in a special
 

hardwire card, if required, to take advantage of the high
 

performance recorder plug-in units. The filter panel will
 

be used with magnetometer, suspension and other analog data
 

channels.
 

Another important development was an automatic gyro spin
 

speed monitor based on trapped flux signals. Our previous
 

apparatus had a semi-automatic spin speed monitor, which
 

locked on to the output of a single readout channel, but it
 

would lose lock and have to be reset manually whenever the
 

signal from the polhoding ball passed through a null. The
 

new monitor locks intq the fundamental component of the three
 

trapped flux signals separately and compares them. Most of
 

the time all three channels will have good signals. When one
 

channel does go through null, the anomalous signal is detected
 

by a voting technique by reference to the other channels.
 

The geometry of the problem is such that only one channel goes
 

through null at a time,' except on very rare occasions when
 

all three may go together (in which case the speed monitor
 

has to be reset by hand). A manual select mode allows the
 

operator to switch to any channel at will. The automatic
 

select mode switches the spin speed counter to a good phase
 

lock loop whenever the signal from the current primary loop is
 

more than a fixed amount in error. The completed instrument
 

allowed us to lock on and track signals with lOmV amplitudes
 



188
 

from 1 Hz to 90 Hz. It was designed so that as magnetic field
 

reduction techniques are improved, the sensitivity can easily
 

be increased to operate with smaller trapped flux signals.
 

When the gyro spin speed is raised above 90 Hz, the upper
 

frequency limit of the monitor can also easily be raised.
 

A remote contrbl panel was built for the existing gyro
 

suspension system. Its purpose is to allow many of the suspei­

sion functions to be controlled from a convenient location
 

while the suspension system itself sits on top of the tripod
 

mount for the new probe. A few simple modifications to the
 

suspension system were also made. The remote control panel
 

has proved a great aid to the experiments.
 

The last major new item, other than the computer develop­

ment described in Section E (6) below, was electronics for
 

precision biaxial tiltmeters. The sensing elements of the
 

tiltmeters were obtained from the Autonetics Division of
 

Rockwell International. The completed units will be Used for
 

recording motions of the ground and dewar stand during gyro
 

tests and also for certain experiments with the Star/collimator
 

unit (Section G).
 

(5) Requirements for Precision Gyro Readout
 

The goal of a one arc-second readout puts much more
 

stringent requirements on magnetometer performance than does
 

just seeing the London moment. The magnitude of the London
 

moment as observed in March 1975 corresponded to measuring a
 

few flux quanta at the SQUID magnetometer. A one arc-second
 

readout at 50 Hz spin speed corresponds to 10-2 0 at the ball,
 

and far less, probably only a few times 10-5 0 at the SQUID.
 

The exact quantity of flux at the SQUID corresponding to 1
 

arc-second gyro displacement depends, as explained in Section
 

C (3) (d), on the inductance ratios in the readout circuit
 

and the coupling efficiency between the gyro and the SQUID.
 

In the London moment observations there were losses because
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down when the flow becomes critical velocity limited. In an
 

ideal plug that occurs at about 2.1K in the region just below
 

the X-point where the critical velocity is a rapidly decreasing
 

function of temperature. The theoretical performance curve
 

should therefore approximate to the dotted line in Figure 67,
 

p.
 

If Q max is the maximum expected heat input into the dewar
 

and pcrit is the operating pressure at the temperature where m
 

begins to decrease, then Equation (36) may be transposed into
 

an inequality governing the design parameters for a plug intended
 

to operate below the A-point:
 

(37)
kA' PS~max 

t (Pcrit - Po)
 

Numerical substitution into Equation (37) establishes the
 

need for a plug of high thermal conductivity. Applying this
 

It was made
result we designed the plug shown in Figure 65. 


about
from a commercially wound roll of 0.5 mil aluminum foil, 


200 turns on a 1-3/8 inch mandrel, tightly held by another
 

The parts were assembled in a cylindrical bakelite
aluminum ring. 


fixture, after simultaneously heating the outer ring to 6000C
 

and cooling the aluminum roll to liquid nitrogen temperatures.
 

The mean spacing between layers of the finished plug, calculated
 

from measurements of the gas flow rate through it at room tem­

perature was about 10,000 R. We used the plug illustrated in
 

Figure 65 in all the research at Stanford; afterwards it was
 

transferred to NASA Marshall Center for further experimental
 

work there by E. Urban. Subsequently Dr. Urban showed that
 

plugs of sintered metal or ceramic would work equally well
 

provided the pore sizes are correctly chosen. This important
 

result, discussed below, was confirmed by W. B. Davis of Ball
 

Brothers Research Corporation and by members of the JPL group.
 

some irony in that our first experiments had been
There is 

a failure
4with a sintered silver plug, which failed to work: 


which we were able to "explain" convincingly by Equation (37);
 

and that was why we adopted the wrapped foil design. 
Sometimes
 

one can know too much.
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When the porous plug is used for normal liquids the flow­

rate is controlled by viscosity. In these circumstances both
 

liquid and gas pass through the pores. For operation to be
 

effective the pores must be large enough to allow sufficient
 

quantities of liquid to pass at reasonable working pressures,
 

yet small enough to prevent significant quantities of liquid
 

being blown away from the outer surface of the plug by the
 

expanding gas before evaporation can occur. For the wrapped
 

foil plug the inequality governing the minimum width between
 

layers is found from the viscosity equation, and for laminar
 

flow conditions is
 

.
w > 128 Tt m (38)
min 7TPz (Pmax Po)
 

where n is the viscosity of the liquid and £ the total circum­
ferential length of the layers. For a typical large dewar 

operating at about 4K, Wmin has to exceed 6000 R. 

The condition for preventing liquid expulsion from the
 

plug operating in the normal regime is less easy to decide. A
 

sufficient condition is that the operating pressure should not
 

exceed the surface tension force at a boundary between a gas
 

bubble and the escaping liquid. However, the resultant
 

inequality wmax < T/pmax, though possibly applicable for some
 

liquids, leads for helium to a limit where the motion of the
 

gas itself would be restricted by viscosity rather than surface
 

tension. The correct limit has to be determined by comparing
 

the liquid evaporation rate at the surface with the gas velocity,
 

and this is difficult to model.
 

To test the plug on Earth we built a small invertible dewar
 

illustrated in Figure 66, holding about one liter of liquid
 

helium. The dewar was superinsulated, with two gas-cooled
 

shields, and had two cryogenic valves operated externally,
 

which were opened during the fill period for transfer of the
 

liquid and venting. After filling the valves were closed and
 

the helium vented solely through the plug. The wrapped-foil
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Figure 66: Invertible Helium Dewar for Testing Porous Plug
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plug described above was sealed into the helium well with
 

compressed indium O-rings. For operation on Earth a wick was
 

placed in the helium to help carry liquid to the plug when the
 

dewar was upright;in space where the helium film is thicker the
 

wick is probably unnecessary.
 

Stable operation was achieved with the dewar in both upright
 

and inverted positions, without appreciable variation in boil­

off rate. Figure 67 shows the complete operating curve in the
 

upright position, the temperature being varied by an auxiliary
 

heater. Also shown is the theoretical curve based on Equation
 

(35), using the calculated pore dimension from the gas flow
 

measurements. Over most of the temperature range the agreement
 

between theory and experiment is good. The unstable regime set
 

in at 1.8K rather than around 21K. The explanation of the
 

discrepancy remains uncertain; it did not occur in Dr. Urban's
 

research on sintered metal plugs.
 

The success of the device under negative-g conditions,
 

confirmed in many later experiments at NASA Marshall Center,
 

Ball Brothers Research Corporation and JPL gave good confidence
 

that the plug would work in zero-g also. This was confirmed
 

in the JPL zero-g airplane and rocket flights. An important
 

difference for space operation'that at first gave us concern
 

was that the equilibrium thickness of the creeping helium film
 

is likely to be several orders of magnitude greater in space
 

than on Earth. Large heat losses might occur if such a film
 

formed in the vent-tube of the dewar, and it is essential to
 

make sure that the helium really does evaporate at or near the
 

plug. The following calculation made in 197Of 53 ) helped calm
 

earlier fears. The evaporation rate from a liquid surface of
 

area A exposed to vacuum is pvAv where v is the mean molecular
 

velocity at the surface temperature. Assuming that the helium
 

emerging from the plug spreads over a uniformly heated surface
 

at temperature T, there is a minimum area for evaporation given
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by
 AmI U 4 x 210- mIT 
(39)


Pv (T)
 

where pv is the saturated vapor pressure at T. With reasonable
 
2 .
guesses for m and pv for a large dewar Amin is-about 1 cm


Thus evaporation should be immediate as the helium leaves the
 

plug.
 

A few remarks are appropriate on the research which shows
 

that a plug of high intrinsic thermal conductivity is not
 

needed. Besides the work of Urban, (54) Davis, (55) and Mason,
 

Petrac and Wang, (56) there are a number of extremely useful
 

papers by A. Elsner (57 ) of the Max Planck Institute, Munich,
 
West Germany on a rather different application of flow through
 

thick porous plugs. Our original view was that the pores would
 

have to be so fine that the normal fluid would remain locked
 

to the walls, and that meant that since superfluid carries no
 

entropy there would be no heat conduction through the liquid,;
 

Actually the porous plug works even when the pores are coarse
 

enough to allow some circulation of normal fluid; consequently
 

one can take advantage of the enormous apparent thermal conduc­

tivity of the superfluid film. Experiments by E. Urban demarked
 

the region of pore size over which a plug of low intrinsic con­

ductivity would work.
 

The next question is how a low thermal conductivity plug
 

can work in the normal regime. The experiments showed that
 

while there were some circumstances in which a plug seemed not to
 

work above the superfluid transition temperature, in others the
 

operation was perfectly successful. Some questions still remain,
 

but in general terms the answer seems to be given by Elsner's
 

investigations. He found that on pumping across a porous plug
 

from a bath above the X-temperature, the helium at the outer
 

surface would cool and in fact there was a normal/superfluid
 

transition taking place inside the plug. The boundary moved
 

to a position where stable flow conditions could be set up.
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If the foregoing interpretation is correct A plug of high­

intrinsic thermal conductivity is unnecessary for controlling
 

either normal or superfluid helium, but is still needed in
 

applying the method to controlling other liquids in space.
 

(3) Thermal Desigh of Superinsulated Dewars
 

(a) General
 

The approach to dewar design followed by several aerospace
 

companies has been to choose more or leas arbitrarily a partic­

ular configuration of the dewar, develop an elaborate computer
 

program that will model every aspect of the thermal design,.
 

and-then attempt to improve performance by a succession of
 

design changes, rewriting the computer program with each change:
 

a scenario that usually has the unfortunate computer expert
 

working-with increasing frenzy as the due date of the final
 

report-draws near. This approach can produce a successful dewar
 

if the design engineer has insight and the approximations -in,,the
 

computer model are realistic. Unfortunately no complete set of
 

design guidelines for dewars is available yet to the engineer,.
 

and programmers seem often more concerned with computing ingenu­

ities than dewar design.
 

Our own approach has been to establish the physical princi­

ples basic to a class of dewars and then optimize the dewar
 

parameters. The design can be refined if desired by developing
 

a complicated computer model, but the resultant modifications
 

must not violate the principles. The dewar we have built (see
 

Section J (4) ) is still a long way from its design performance.
 

,.Nevertheless it has brought home the need to understand principles
 

-and exposed some shortcomings of other designs. We summarize
 

here considerations we have found useful in analysing thermal
 

design,of flight dewars, many of which are not widely known.
 

- (b) Effects of.Size of Dewar 

Consider the simplest idealized case of a spherical super­

insulated dewar, which has no, penetrations, no mechanical supports, 
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no sources of internal heat dissipation and no provisions to
 

recover the sensible heat from the helium boil-off gas. Let
 

the radius of the helium well be r and that of the outer shell
0 
rs, and let their temperatures be T and T .Assume that the
 

behavior of the superinsulation can be represented by a
 

temperature dependent thermal conductivity K(T). For such a
 
2
system the maximum hold-time tmax occurs when r. and
rs 


is given by the equation
 
4 pLr 2
 

(0
ttmax 814 T psr (40)
 
fTSK(T)dT
 

0
 

where p is the density of the helium and L its latent heat per
 

gram. For a dewar utilizing the sensible heat of the boil-off
 

gas the hold-time tmax is given by the same equation multiplied
 

by a "gain factor" G, which may be as high as 20 to 25, as
 

discussed in Section J (3) (d).
 

Equation (40) shows that the hold-times of similar ideal
 

dewars scale as the square of their diameters. Size is there­

fore a powerful aid in attaining long hold-time. At first the
 

dependence on r 2 may seem surprising since one tends to think

0
 

of the problem as determined by the ratio (volume/area):
 

actually it is just what one should expect since the heat
 

conduction equation is dimensional with respect to (area/length),
V
 
so the hold-time should depend on (A/i) In fact if the
 
hold-time of any dewar, however complex, does not scale as the
 

square of its linear dimensions, one must suspect that something
 

has gone wrong. At least one should critically examine the
 

practical considerations that prevent it from fulfilling the
 

natural scaling law.
 

If there is heat dissipation internal to the helium vessel,
 

the optimization with respect to the diameter of the inner well
 

changes. We have derived the appropriate formula. It shows
 

what common sense would lead one to expect, that when there
 
is internal dissipation r°0 should be greater than -frs.
i 2
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Obviously when the internal dissipation is overwhelmingly large
 

the best that can be done is to make r0 very nearly equal to rs.
 

(c) 	Thermal Considerations in the Mechanical Support
 
of the Inner Well
 

The helium well of the dewar has to be supported. Ground­

based dewars are usually supported from a cylindrical neck-tube;
 

designs for flight dewars usually show fiberglass rods or straps
 

in tension or compression. Sometimes retractable members are
 

planned into the design for extra support during launch.
 

Important quantities in the design are the resonant
 
frequencies, which are fixed by the masses and moments of
 

inertia of the inner and outer wells and the elastic properties
 

of the supports. For the Gyro Relativity experiment -- and any
 
experiment requiring accurate pointing of an inner package -­

the resonant frequencies determine the design and performance
 

of the spacecraft attitude control system. They should in
 

general be made as high as possible: the supports should be
 

stiff: and since stiff supports mean large -heat leaks the
 
requirements of attitude control manifestly compete with the
 

requirements for a long hold-time dewar.
 

It is tempting to think that the heat leaks can be reduced
 
by increasing the length of the support straps, or by tricks
 

such as making the neck-tube structure of the dewar re-entrant.
 

Particular design problems may be solved by tricks, but in
 

general the advantage of longer support members is illusory.
 

The heat leak and the elastic restoring force both scale as
 

(area/length); the ratio of resonant frequency to hold-time
 

of the dewar is unaffected by a change in dimensions of the
 

support. More generally, for any dewar in which the dominant
 
heat leak is through the supports, the resonant frequency m
 

associated with a particular vibrational mode m of the dewar
 

is related to the hold-time t by the expression

max
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ELG t
 
2= C max 
 (41)
m m T 

fT s K(T) dT 
0
 

where E is the elastic modulus of the support, L the latent heat
 

of helium, G the "gain factor" from Section J (3) (d), and K(T)
 

the temperature dependent thermal conductivity of the support
 

material. In every mode the coefficient Cm is independent of
 

the lengths of the support members for a dewar of given size
 

and independent of size for a dewar of given geometry. Thus
 

the only latitude one has is to choose a material with the most
 

favorable ratio of elasticity to integrated thermal conductivity
 

EG[K(T)]/.TsK(T)dT. (The gain factor may in principle affect
 
T

0
 

the choice of material since it is a function of the temperature
 

dependence of the thermal conductivity).
 

There are exceptions to the foregoing general statement.
 

If tensile strength in the supports is important (as it may be
 

to withstand launch stresses) the ratio (tensile strength/heat
 

leak) can be improved by using longer straps of large cross-section.
 

Again by making the support a hollow helical coil spring the
 

ratio(heat leak/spring constant) can be made to depend on dimensions,
 

since heat leak is proportional to rt/ and spring constant to
 

r 3t/R 3 , where r is radius of the tube, t its wall thickness, Z
 

it length and R the radius of the turns. For a superinsulated
 

dewar, however, the awkwardness-of wrapping the insulation makes
 

the idea curious rather than useful.
 

(d) Optimization of Heat Exchanger Locations
 

The sensible heat of helium vapor warmed from 4K to 300K
 

is, as stated above, about seventy times the latent heat of the
 

liquid. This refrigeration can be applied to intercept heat
 

entering the dewar from outside by cooling a series of heat
 

shields located in the superinsulation or attached to the dewar
 

neck-tube or other supports. If all the cooling power were
 

used ideally the hold-time tmax of the dewar would increase
 

correspondingly: the gain factor G[K(T)] would approach 70.
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In practice even if the refrigeiation is transferred with per­

fect efficiency to each heat shield there is no way of making
 

use of all the cooling power. Take the case of a single heat
 

shield. One can easily show there is an optimum working tem­

perature for the shield, which is typically around 70K.
 

Evidently the refrigeration available on warming from 70K to
 

300K will be lost; furthermore, since the shield is not at the
 

surface of the inner well but about 35% of the way out, the
 

heat load on it is greater than on the inner well of an unshielded
 

dewar and the gain factor is still further reduced. In fact
 

for one typical superinsulation material the gain factor with
 

a single optimally located shield is 11.1. Though much less
 

than 70 this is an impressive gain. The corresponding gains
 

for two and three ideal optimally spaced shields are 19.9 and
 

25.5. Beyond three shields one reaches a stage of diminishing
 

returns.
 

The present section reviews the optimization procedure;
 

the prioblem of getting all the refrigeration out of the gas
 

and into the shield is discussed in Section J (3) (e).
 

We have considered dewars incorporating up to three heat
 

exchanges in linear, cylindrical and spherical geometries. In
 

practice most dewars are cylindrical; the linear geometry
 

applies in heat sinking the support and other penetrations.
 

For .a material with given K(T) the optimum temperatures are
 

independent of the geometry; simple scaling laws relate the
 

optimum positions in the different geometries. As an example
 

we give below the theory for two heat exchangers in linear and
 

cylindrical geometries:
 

Helium gas flows from the inner chamber (position x0 , tem­

perature T0 ) and is in thermal contact with two heat exchangers
 

(xI, T) , (x2, T2 ) and escapes at position x3 at temperature T3.
 

For linear geometry, x is the distance measured parallel to the
 

axis and for cylindrical geometry x is the radius. Heat is
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transmitted along the insulating material which has thermal 

conductivity K(T). Let 60 be the heat flow between stages 0 

and 1, G1 between 1 and 2, 2 between 2 and 3. 

Then from the definition of latent heat: 

0/L 

where m is the boil-off rate and L is the latent heat. 

(42) 

From the definition of specific heat and heat balance at 

the heat exchangers: 

1 = 0 + Cm (T1 - T0 ) 

2 = 0 + cn (T2 - 1 ) 

where C is the average specific heat of the helium gas. 

From the definition of thermal conductivity we also have: 

T 2
f 1 x dt/ f s dx/A(x) 

(43) 

(44) 

(4 

1 Tx
 
3
 

Also we have the boundary conditiont
 

x jx xf dx/A(x) + dx/A(x) + J dx/A(x) = dx/ACx) (48) 
0 x2 x0x 


The right hand side of (48) is independent of the positions of
 

the heat exchangers.
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Equations (45)i (46), (47) and (48) are rewritten to give:
 

Q0 = 01/A61 (45') 

Q1 = (46')KI12/Ai 2 


K2 3/A' (47')
Q2 = 2 3  


A01 + A12 A23 = A03 (48')
 

Equations (42), (43), (44), (45i), (46'), (47'), (48') are 

easily solved to give: 

{+ KI2 K +23 K (49 
' 
06 A0' 3 K01 (1 + C (TIT0)/L) K011 + C(T2-T'0 )/L) 9 

-1 
A = A'I K K0(I + C(T - T) L)I (50)12 0112101 1 -0
 

-1
 
A' =A', K23IZ01(1 + C(T-2- T0) L)l (51)
 

12 K23
 

-03 K01 + C(T1 - T0)/L + 1 + C(T22 (52)
 

It can be seen from (52) that thi values of T and T2 which minimize
 

m are independent of the positions of the heat exchangers.
 

For linear geometry:
 

X. 
J-3 dx/A = (x. - xi)/A (53) 

ihere A is the cross-sectional Area.
 

For cylindrical geometry, the ctoss-sectional area at radius
 

x is given by (21Tx2 + 2irx) where k is the length of the cylinder.
 

By treating the ends as an extension of the cyiindrical wall we
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make an approximation which is good in the limit of large x0
 
and relatively thin total insulation thickness. In this approx­

imation the cross-sectional area at radius x is given by
 

2irx (k + x), where x = (x0 + x4)/2
 

x.and f x dx/A =j Zn x-3 n x. (54) 

1 27(P + 3) 

Using (49), (50), (51) and (53) or (54), x1 and x2 can be expressed
 

as functions of T1 and T2 and the optimum positions may then be
 

calculated from the optimum temperatures.
 

Computer programs based on the foregoing procedure
 

were developed by B. J. Lipa. An inverse procedure was
 

used earlier by C. W. F. Everitt, based on optimizing the
 

locations of the heat-exchangers in terms of the "reduced
 

lengths" fdx/A(x) and determining from them the optimum
 

temperatures. The results.of the two methods are, of course,
 

identical. Everitt's method consisted in first guessing the
 

position of one heat exchanger, then applying the equations to
 

determine the optimum location of the other exchanger, using
 

the result as the basis for optimizing the first heat exchanger,
 

and proceeding iteratively until the results converged to the
 

desired accuracy. With three.heat exchangers the locations of
 

the middle one was guessed first, the others were then optimized,
 

next their locations were used to determine an improved location
 

for the middle one, and so on.
 

Table 14 summarizes optimized performances for systems of
 

one, two and three heat exchangers in a particular superinsulation,
 

assuming the internal heat load is negligible. The skin temper­

ature of the dewar was taken as 300K.
 

http:results.of
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Table 14: 	Optimization of Heat Exchangers for a Typical
 
Superinsulation
 

Number of Gain 
Shields Factor Temperatures in OK 

n G T1 T2 T3 

One 11.1 62.5
 

Two 19.9 41 128
 

Three 25.5 25.5 87.5 185
 

For two shields the optimized locations corresponding to TI, T2
 

are 0.15t and 0.45k where k is the total thickness of superinsu­

lation.
 

Table 14 was obtained for a superinsulation in which K(T)
 

was equal to AT2 at low temperatures smoothly fitted to B(T-TC )
 
at temperatures above 40K. The more rapid the variation of K
 

with temperature the greater the gain factor for a given dewar
 

skin temperature; collaterally the higher the skin temperature
 

the greater the gain factor, since more sensible heat is available.
 

The relation of dewar performance to skin temperature is discussed
 

in Section J (3) (f).
 

The performance is surprisingly insensitive to the locations
 

of the shields. Optimally located shields usually give only 10
 

to 20% better performance than equidistant shields. For a
 

material with K independent of temperature equal spacing is
 

optimal; for all real materials the thermal conductivity decreases
 

at low temperatures and the optimum locations are always nearer
 

the cold wall than the equidistant locations.
 

So long as there are no internal sources of heat the optimi­

zation discussed in Section J (3) (b) of dewar performante with
 
,respect to the size of the inner well can be partitioned off
 

from the optimization with respect to the locations of the heat
 

exchangers. For a spherical dewar the first optimization requires
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the diameter of the inner well to be two-thirds of that of the
 

outer shell; the second requires maximization of the gain factor
 

G by one of the two methods just described. If Ithere are heat
 

sources in the helium well the optimizations of r0 and G are
 

no longer separable. We conjecture that the separation which
 

occurs when there are no heat sources may be utilized in iterative
 

solutions of cases where dissipation is present, but since the
 

optimization with respect to G is so insensitive one does not
 

in practice need to be too concerned-with such niceties.
 

(e) 	Transfer of Heat from the Shield to the Gas and Heat
 

Leaks down the Vent-Lines
 

The calculations of the previous section are for ideal heat
 

exchangers of negligible thickness, at uniform temperature,
 

which utilize all the refrigeration available in warming the
 

gas to that temperature. In reality the gas has to be brought
 

up a vent-line which has some heat leak down it, and then passed
 

through a pipe wound in some suitable manner over the heat shield,
 

long enough to ensure that the shield is properly cooled.
 

Common sense dictates that the heat leak down the vent~line
 

joining two heat shields, as calculated from thermal conductivity
 

and dimensions before taking gas cooling into consideration,
 

should be made small compared with the heat leak through the
 

superinsulation. If not one will throw away most of the advan­

tage of gas cooling. Obviously if the uncompensated heat leak
 

down the vent-line were ten or twenty times the heat leak through
 

the superinsulation, one would spend all the refrigeration over­

coming it and gain nothing for one's trouble. However it is
 

not difficult to make the uncompensated heat leak of the vent­

line negligible by making the tube of thin-walled titanium or
 

some 	similar material. It follows that the gas will not warm
 

up much on passing through the vent-line; its temperature on
 

entering the pipe attached to the upper shield will be more or
 

less the exit temperature for the lower shield.
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The non-critical character of the heat-shield optimization
 

means that temperature differences of a few degrees between dif­

ferent parts of the heat exchanger itself do not much matter.
 

Given a shield with a reasonable thickness of copper or aluminum
 

(30 to 50 mils, say) one can rely on conductivity through the
 

material to keep the temperature more or less uniform. On the
 

other hand proper transfer of heat between the cooling coil
 

and heat shield or other source of heat input is important.
 

In the experimental laboratory dewar, for example, we had trouble
 

With heat conduction between the cooling coils and heck-tube.
 

See'Section J (4).
 

Consider now a pipe at temperature Tp, into which a slug 

of gas enters at uniform temperature T . Assume the mass flow­o 

rate in is low enough for flow to be laminar rather than turbu­

lent and the velocity to be well below the velocity of sound,
 

both of which conditions are fulfilled in all practical cases.
 

After travelling a certain length 9c (the cooling length) the
 

gas will have warmed to a temperature Ti within one exponential
 

factor of the temperature difference (Tp - To). The requirement
 

for adequate transfer to the heat shield is that the pipe be
 

a few times k. long and that it be in adequate thermal contact
c 
with the shield.
 

Standard engineering formulae exist for heat exchange with
 

a pipe. The rigorous expressions are complicated by corrections
 

for the temperature dependences of the viscosity and thermal
 

conductivity of the gas, and should take into account the con­

ductivities of the heat shield and vent-tube. In the limiting
 

case when T - T << T the cooling length in first approximation
p o p
 
is given by
 

.=i -Cp (55)
 

where C is the specific heat per gram of the gas at constant
p
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pressure, K its thermal conductivity and A the mass flow-rate.
 

Note that the cooling length is independent of the diameter
 

of the pipe. This result follows from a cancellation of two
 

factors: (i) the smaller the diameter of the pipe the higher
 

the velocity of the gas, (ii) the smaller the diameter the
 

shorter the conduction path from the wall to the center of
 

the gas.
 

Numerical substitution gives a cooling length of 5 cm for
 

a keat shield at 40K and a dewar operating with 80 mW heat input
 

(corresponding to an 800 liter dewar lasting one year). Since
 
74
 .
the thermal conductivity of helium gas is proportional to T0
 

where T is the absolute temperature, Zc is less at higher 

temperatures.
 

The relatively short cooling length is consistent with
 

experience of other workers. For small storage dewars a model
 

assuming perfect contact between the gas and the vent-tube has
 

been found to work well. For another program we investigated
 

the vent-tube problem for larger dewars and found that the
 

resultant heat leaks were within about 20% of those based on
 

the simpler model of perfect contact. Significant departures
 

only occurred with very short, large diameter tubes.
 

We also applied the perfect coupling model to explore the
 

situation where the heat leak down the vent-tube is comparable
 

with the radiation heat leak. This can happen between the inner
 

shield and the helium both if the dewar design is severely
 

weight or size limited. The location of the coupling point
 

of thetube to the shield can then be optimized in a similar
 

fashion to the optimization of the heat shields described
 

in Section J (3) (d). In this case the tie point of the tube
 

is best located closer to the warm end of the tube.
 

Assuming a heat shield of high thermal conductivity with
 

which cooling coils are in good thermal contact, all the refrig­

eration will be extracted from the gas in a few cooling lengths
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(say three) which means that for an 800 liter one year lifetime
 

dewar 20 cm of cooling coil is ample. Various arrangements of
 

manifolding or distribution of thermal contact are possible to
 

increase this length if thought necessary.
 

The HEAO dewar designed by Ball Brothers Research Corporation
 

some years ago had 46 m. of cooling coil. It is not quite clear
 

why. Perhaps the designer thought that piping the gas around
 

the shield to intercept heat would result in a less massive
 

shield.
 

(f) Effects of Dewar Skin Temperature
 

The hold-time T of the dewar is a function of the temperature
 

dependent thermal conductivity K(T), the gain factor G[K(T)] and
 

the difference (Ts - T ) between the skin temperature and the
 

temperature of the inner well. No general solution of the
 

variation of hold time with skin temperature can be given but
 

a useful insight is gained by treating K(T) as a simple power
 
n


function of T: K = A T . Even with this simplification the 

general expression for G is too complicated to be worth writing
 

out; but by throwing away terms which contribute corrections
 

less than about 20% one can obtain an instructive first approxi­

mation to the functional dependence of hold-time on skin tempera­

ture for a dewar vessel having one or more heat exchangers in
 

the insulation space. It is
 

-
T (n+l) 2/(n+ 2 ) (56)
s 

For n = 0 (that is, conductivity independent of temperature),
 
-
T is proportional to TS 

-I/ 2 (rather than TS 
which is what it 

would be if there were no heat exchangers). For n = 1 (which
 
33
 is a fair fit for many materials) T is proportional to Ts1 .
 

2 25  
For n = 2 T is proportional to T- . For n = 3 (which cor­

responds to free-floating radiation shields) T is proportional
 
2
to T-3 . The last expression, for free-floating shields with
 s 

heat exchangers, should be compared to the case without heat
 

exchangers, which of course obeys the Stefan-Boltzmann formula
 

and thus makes T - T 4
 

s 
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Thus although dewars having an insulation whose thermal
 

conductivity is a strong function of temperature gain more from
 

recovery of sensible heat, their hold-times are highly sensitive
 

to skin temperature,and this sensitivity is only slightly reduced
 

by the presence of the heat exchangers.
 

(g) Transient Response of Dewars
 

It has been known for many years that thermo-acoustic
 

oscillations sometimes occur in long thin pipes with closed
 

upper ends, extending down into the helium wells of dewars.
 

These often cause a dramatic increase in heat input into the
 

helium. It is best to remove the pipe; if that is impossible
 

schemes exist for damping the oscillations.
 

Rumors have been going around the cryogenic engineering
 

community for the past year or so of another strange instability
 

occasionally seen in dewars containing gas cooled shields. The
 

temperatures of the shields are said to swing up and down over
 

ranges of many degrees with a period of several days. No ex­

planations of the oscillation have been offered; the tendency
 

has been to keep quiet about them. We have recently discovered
 

a potential cause of such instabilities, attributable to the
 

combined effect of the temperature dependence of the viscosityt
 

of the gas and the reaction of heat shield temperature on the
 

boil-off rate of the dewar. The instability has not to our
 

knowledge been discussed before; it is analogous, however, to
 

an instability seen in the cooling of charging leads for super­

conducting magnets.
 

We analysed a model in which the impedance of the gas
 

vent-tube was concentrated in a single cooling coil and the
 

heat input into the dewar was from radiation from the heat
 

shield. The gas is driven through the heat-exchanger cooling
 

coil by the difference in pressure between the helium tank
 

and the outside. Starting from arbitrary heat shield temper­

atures and tank pressures we traced the time variation of dewar
 

parameters and their ability to settle to a steady state.
 

Settling is quite rapid for most coils owing to the relatively
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high thermal capacity of the heat exchanger and the low flow
 

rate and low viscosity of the gas. With small pipes, however,
 
(typically pipes below 70 mil inner diameter and lengths of a
 

few meters) bad instabilities can occur in dewars of 100 liter
 

to 3000 liter capacity. Boil-off rates may fluctuate by up to
 

two orders of magnitude, with oscillation periods typically about
 

50 hours. The characteristic form of the gas flow is a sharp
 

peak of high flow rate with long intervals of very low flow rate
 

between the peaks.
 

We do not have enough information to know whether the
 

effect we have investigated is indeed the cause of the rumored
 

oscillations in experimental flight dewars. The pipe diameter
 

needed would seem too small. However our results suggest the
 

need for caution. Where weight is a constraint dewar designers
 

may be tempted to cut pipe diameters. The 3000 liter HEAO dewar
 

proposed some time ago may also face similar constrictions since
 

most of the cross-section of the vent-tube is taken up by
 

electrical leads. The proposed vent-tube was an 0.062 inch
 

annulus, of 0.31 inch outer diameter and length 20 meters.
 

For dewars with more than one heat exchanger the oscillation
 

just described is damped and should be no problem. However if
 

the inner shield were used as a "boiler" as proposed in some
 

dewar schemes (5 8 ) the impedance of the first heat shield would
 

be negligible and the system might in fact operate like a single
 

shielded dewar. With the boiler system there is another kind
 

of instability that might cause trouble: the "Ledinegg insta­

bility." (5 9 ) This instability is an oscillation in the location
 

of the liquid-vapor interface in a heated pipe in which boiling
 

occurs.
 

Returning to the long-period oscillations in the temperature
 

of heat shields we conclude that if such oscillations were to
 

prove a problem in a particular space dewar, the problem could
 

be fixed during ground testing by inserting a relatively large
 

impedance at either end of the vent-pipe at a point where it
 

may be anchored to a constant temperature surface.
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(4) 	Experimental Laboratory Dewar
 

The large experimental dewar was designed to fulfil two
 

functions:
 

(i) 	to provide a cold chamber for the complete laboratory
 
model of the Gyro Relativity apparatus, incorporating
 
one or more gyroscopes, the cryogenic telescope, super­
conducting actuators for the fine-pointing servos if
 
required, and other special features of the experiment.
 
For this purpose the dewar had to be capable of working
 
in any position between horizontal and vertical, and
 
in particular had to be made capable of operating for
 
extended periods when tilted at 370 above the horizontal,
 
parallel to the Earth's axis at the latitude of Stanford.
 
A long hold-time was considered essential to conduct
 
uninterrupted gyro tests over periods of several weeks.
 

(ii) 	 to give practical information for use in designing a
 
flyable dewar for the Gyro Relativity experiment with
 
lifetime approaching one year.
 

These aims demanded a high performance dewar, designed with
 

careful attention to the problems of assembly and disassembly
 

of the apparatus, and the requirements of low magnetic fields
 

at the gyro. The restrictions placed in 19Q6 on the choice of
 

materials for magnetic materials seemed at the time severe.
 

Brass and "non-magnetic" stainless steel were excluded; we
 

limited ourselves to aluminum, titanium, copper and certain
 
plastics. For the reasons already explained in Sections D (4) (f)
 

and E (2) (c) even these were far from the final requirements,
 

but in 1966 we had no experience of thermoelectric phenomena at
 

low temperatures and only glimmerings of ideas about how to
 

create regions of ultra-low magnetic field. With two Mu-metal
 

shields the dewar did just give the field isolation needed to
 

complete the initial London moment observations.
 

The aim of making the dewar a preliminary to a flight dewar
 

led to a design with heat-exchangers rather than a nitrogen
 

shield, built with a provision to incorporate a porous plug,
 

and extensively instrumented to check the validity of the thermal
 

design. Two compromises caused by the need for an apparatus that
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would hold the laboratory experiment were (i) stiffening members
 

were added to prevent the helium well from sagging unduly in the
 

tilted position, (ii) the outer diameter was made less than 30
 

inches to be compatible with the option we then had of reaching
 

ultra-low magnetic field by lowering the dewar into a huge low
 

field annular dewar.
 

Figure 68 is a cross-section of the completed dewar. It
 

comprises three separate vacuum chambers containing the apparatus,
 

the cryogen and the insulation. The experimental chamber is a
 

narrow cylinder of maximum diameter 15 inches and length 64 inches,
 

one end being at room temperature and the other at liquid helium
 

temperature. The cold end is an aluminum chamber housing the
 

gyro-telescope package. It is connected to the warm end by an
 

18 inch long, 9 inch diameter, 0.2 inch wall thickness fiberglass/
 

epoxy tube, which, besides being the low heat leak connection to
 

the outer world, serves the dual function of providing the line
 

of sight for the telescope and the exhaust line for the low pres­
-
sure (10 3 torr) gas drawn through the differential pumping ports
 

of the gyro during spin up. The high pressure (5 to 10 torr)
 

gas is taken up a separate 1.25 inch diameter line inside the
 

neck-tube and out through a valve on the side of an extension
 

tube on top of the dewar. The low pressure gas is exhausted
 

through a removable 10 inch diameter stainless steel elbow
 

attached to the warm end of the experimental chamber. A
 

specially designed valve, operated through the elbow, may be
 

used to close off the experimental chamber after spin up. The
 

valve is designed to incorporate a quartz window: when it is
 

closed the elbow may be removed leaving a clear line of sight
 

through the window for the telescope. Low pressure is then
 

maintained by a separate small high vacuum pump, which may, for
 

example, be an ion pump mounted on the side of the exterior
 

pieces at the warm end of the experimental chamber.
 

Three optimally spaced cooling coils are attached to the
 
outside of the fiberglass/epoxy neck-tube. Each is made of
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three turns of copper and joined tq the next by a thin-walled
 

low heat leak titanium alloy tube. A proportion of the helium
 

boil-off gas from the dewar is passed through the coil. To
 

reduce the radiative heat load into the experimental chamber,
 

two quartz windows, heat sunk to the copper cooling cpils, are
 

mounted inside the fiberglass/epoxy tube. Their undersurfaces
 

are coated with a layer of gold about 500 R thick. Spectrophoto­

metric data reproduced in Figure 69 shows that a gold film of
 

proper thickness has about 50% transmission in the visible range
 

9f the spectrum while maintaining an emissivity of about 0.05
 

in the infra-red. Thus the radiative heat load is reduced to
 

a negligible value without much loss in telescope performance.
 

Figure 70 illustrates the cold end of the experimental
 

chamber and the lower section of the fiberglass/epoxy tube.
 

The various low temperature vacuum seals through the apparatus
 

are fQrmed with indium wire in tongue and groove joints of
 

special design.
 

Surrounding the lower portion of the experimental chamber
 

is the 100 liter helium tank shown in Figure 71. It has titanium
 

fill and vent lines, which are closed at the lower end by two
 

cryogenic valves when the dewar is operated in the tilted position.
 

During this phase of operation the helium is vented through the
 

porous plug described earlier. The plug has not yet been used
 

in the large dewar. Provision has been made to locate it on a
 

separate vent-line Which directs the boil-off gas through the
 

cooling coils on the neck and the heat exchangers described below.
 

Between the helium tank and the outer vacuum shell is the
 

insulation space, which contains multi-layer insulation and two
 

copper heat exchangers cooled by the boil-off gas. The heat
 

exchangers are suspended from the outer shell of the dewar; they
 
are shown in Figure 72. The positions of the heat exchangers,
 

like those of the cooling coils on the neck, are optimized for
 

maximum cooling efficiency by the method of Section J (3) (d).
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Figure 71: Dewar Helium Well, Neck Tube and Top Plate
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An important feature of the design is that the two gas cooling
 

systems are run in parallel, the proportions of gas for the two
 

paths being adjustable at will by two throttle valves at the
 

room temperature ends of the vent-lines. The variability gives
 

freedom to optimize the dewar performance under actual working
 

conditions and equally important provides a diagnostic tool
 

when things go wrong. One varies the flow rates and watches
 

the changes in temperature at different points on the neck and
 

heat shields.
 

The space between the helium tank and the first heat exchanger
 

contains no insulation. The remaining two spaces each contain
 

about 20 wraps of multilayer insulation. To date NRC-2 insulation
 

has been used, other types could be tried in the future. All
 

penetrations through the chamber are thermally anchored to each
 

heat exchanger.
 

In designing the apparatus we had in mind doing some experi­

ments with the dewar rolling slowly about its axis in the tilted
 

position. This mode of operation poses severe problems for
 

alignment of the telescope to the reference star. To help counter­

act the sagging of the helium tank, there are six titanium alloy
 

tie-rods which penetrate the insulation chamber from the outer
 

vacuum shell. They were placed deliberately some distance below
 

the center of gravity of the well, to give a bending moment which
 

approximately balanced the bending moment from the neck-tube.
 

This configuration was chosen to constrain displacements as far
 

as possible, to the lateral plane, the telescope being unaffected
 

by lateral motions. The tie-rods are one of the major sources
 

of heat leak. Their location is seen in Figure 73 which shows
 

the assembled dewar.
 

Table 15 gives the original calculated breakdown of heat
 

inputs into the dewar. The heat load of 71 mW corresponds to
 

a boil-off rate of 2 liters/day at 2K, that is a hold-time of
 

50 days. Much the largest expected contribution was from the
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Table i5: Calculated Heat Leak Budget for Large
 
Laboratory Dewar
 

Estimated Heat Leak
 

Heat Leak Source (Milliwatts)
 

Superinsulation 5
 

Neck-Tube Conduction 9
 

Neck-Tube Radiation 8
 

Titanium Support Rods 34
 

Fill/Vent Penetrations 14
 

Miscellaneous 1
 

Total 71
 

titanium tie rods; the option exists for replacing them with
 

fiberglass straps, and reduce their heat load to about 10 mW.
 

With further minor improvements, notably in the design of the
 

fill/vent penetrations, the heat load may in principle be reduced
 

to 30 mW, making a hold-time of about 120 days.
 

The boil-off rate is still a long way from the design goal.
 

The best hold-times achieved so far correspond to about 10 to
 

15 days, and even that figure has to be qualified. What happens
 

is that the boil-off is rapid when the dewar is full and then
 

drops as the helium level drops, especially after the level has
 

fallen below the bottom surface of the experiment chamber.
 

To begin with dewar operations were hampered-by a failure
 

at low temperatures of one of the vacuum seals on the fiberglass/
 

epoxy neck-tube, as the result of a design error. We replaced
 

the plastic tube temporarily by a stainless steel tube, that
 

was known to have considerably higher thermal conductivity, and
 

found as expected that performance was limited by extremely
 

high losses -- about 380 mW -- down the neck. After modifying
 

and reinstalling the plastic neck-tube, we observed an improve­

ment, but still nothing like as good as it should have been.
 

We were still dissatisfied with the neck-tube design, especially
 

with the heat-sinking of the cooling coils, which were simply
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epoxied to the outside of the plastic and were therefore in
 

poor thermal contact with the radiation shield inside the neck.
 

We built a new neck-tube with better geometry, having the coils
 

attached to aluminum rings sealed into the plastic to provide'
 

a conduction path to the inside. Shortage of manpower has
 

prevented us from trying the new neck-tube, but we hope during
 

1977 to get the time to run long hold-time tests on the dewar.
 

We are puzzled by the odd behavior that makes the heat
 

leak such a strong function of the depth of helium in the
 

inner well. This should not be. To some extent the improve­

ment that occurs when the liquid level falls below the bottom
 

of the experiment chamber can be explained away as a reduction
 

in radiative heat input into the helium, but the relative con­

ductivities of aluminum and plastic, combined with the presence
 

in the helium well of helium gas, which serves as an excellent
 

exchange gas, make us suspect that something else is going on.
 

Further investigations are planned.
 

The experiments done so far confirm the theoretical analysis
 

of the heat-exchanger performance in the superinsulation space.
 

The shields operated near the predicted temperatures and the
 

changes seen on varying the proportions of gas flowing through
 

the neck-tube coils and the heat exchangers were reasonable.
 

The hard knocks of experience encountered in running
 

the laboratory dewar have been trying. Besides learning the
 

problems of ultra-low magnetic field operation, we have been
 

forced to grapple with the difficult problems of neck-tube
 

design: problems that are crucial in the Gyro Relativity
 

experiment and in several other experiments requiring a
 

liquid helium dewar in space. -The neck-tube issue has not
 

to our knowledge been properly addressed by anyone. Besjides
 

unexpected difficulties we have also had the not uncommon
 
experience of finding other problems by which people are scared
 

to be illusory. One instance concerns low temperature vacuum
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seals. Doubts are often expressed about the feasibility of
 

making large low temperature seals. The tongue and groove
 

indium seal that we designed has proved simple and reliable.
 

In every case a seal that was leak tight at room temperature
 

has remained so under repeated temperature cycling. It must
 

be remembered however, that these seals can be mis-designed,
 

as both ourselves and many others have found, on other apparatus.
 

Also, differential thermal contraction between the dissimilar
 

materials, aluminum, copper, titanium, need not cause difficulty
 

with joints of 2 inch diameter or less. For the larger seals
 

it is essential to include jacking bolts to get the seals apart.
 

Finally in another design area where doubts are often expressed,
 

the cryogenic high vacuum valves used in the laboratory dewar
 

have been operated successfully on many occasions.
 

(5) Design of Flight Dewars
 

The investigations described in the preceding section
 

indicate that a dewar appropriate to the Gyro Relativity
 

experiment can be built to hold helium for a year. The
 

general layout has been shown in Figure 1, p. 13.
 

The dewar would be constructed of aluminum with fiberglass
 

supports and a neck-tube of appropriate design, and would
 

contain about 800 liters of superfluid helium. Dimensions
 

would be about 60 in. diameter by 50 in. length. The superin-­

sulation space would contain three gas-cooled radiation shields.
 

Control of the helium would be by a superfluid plug; the gas
 

would be vented to space through the proportional thrusters
 

described in Section K (2) (d). The operating temperature
 

would be about 1.8 K. Critical issues would be the "dewar­

within-a-dewar" concept, the design of the neck-tube, and the
 

control of helium sloshing. An important question for NASA
 

would be whether the dewar should be made reusable for later
 

applications in other Shuttle-borne cryogenic gravitational
 

experiments, for example, the free fall Equivalence Principle
 

experiment proposed by Everitt and Worden. Comments on a few
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general points are grouped here as background to design of the
 

flight dewar:
 

(i) Advantages of superfluidity: The use of superfluid
 

rather than normal helium has several advantages. In the first
 

place the creeping film guarantees thermal equilibrium. Although
 

such extreme equilibrium is not required for the Gyro experiment,
 

since even normal helium can maintain sufficient uniformity to
 

ensure the mechanical stability of the gyro-telescope package
 

it nevertheless has other merits. Superfluidity probably elim­

inates the problem of stratification of gas and liquid in zero-g
 

and also disturbances due to bump-boiling. The superfluid offers
 

an advantage of about 25% in refrigerative capacity per unit
 

volume. Finally its very high specific heat near the A-point
 

means that the dewar may be sealed off for appreciable periods
 

without significant temperature rise, during launch for instance.
 

(ii) Helium sloshing: An important question discussed in
 

Section K (2) (b) is the disturbances to attitude control gen­

erated by tidal motions of the liquid in the Earth's gravitational
 

field. Should sloshing prove a serious issue a straightforward
 

solution to it, suggested by R. D. Woolley of Ball Brothers
 

Research Corporation is to exploit surface tension effects in
 

a series of graduated compartments inside the helium well.
 

Another possibility to which we have given consideration is
 

to utilize the fountain pressure of the superfluid helium
 

between compartments separated by porous plugs. The analysis
 

of Section K makes sloshing unlikely to be a problem in the
 

Gyro Relativity experiment; however it is in the Equivalence
 

Principle experiment.
 

(iii) The BBRC test dewar: Between 1972 and 1976,
 

following the first Mission Definition Study (12) of the Gyro
 
Relativity program, Ball Brothers Research Corporation built and
 

tested a 650 liter liquid helium vessel embodying many features
 

of the flight dewar.for the experiment. The outer diameter was
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54 in. and the length 56 in.; the helium well had dimensions
 

40 in. diameter by 50 in. long and contained an experiment
 

chamber of 18 in. diameter and 40 in. long. The inner
 

vessel was supported by six fiberglass tension members formed
 

in continuous flat loops; there were also six retractable
 

titanium supports attached to the outer shell. The insulation
 
system comprised four multilayer blankets of aluminized nylon
 

and dacron net, spaced by three vapor cooled shields supported
 

from the fiberglass straps. There was no neck-tube. In addition
 

to the thermal model, Ball Brothers built a second model without
 

insulation for shake-testing.
 

Construction of the Ball Brothers dewar is described in
 

the October 1975 "Dewar Technology Study" (BBRC Report F75-20).
 

The hold-time achieved so far is about six months; the vibration
 

model has undergone flight qualification test for Thor-Delta
 

launch. In summary the BBRC dewar satisfies requirements
 

for the Gyro Relativity experiment in
 

eshake tests
 

Ohold-time
 

ecompatibility with attitude control system
 

but fails to address two problems:
 

eneck-tube design
 

Orequirements for ultra-low magnetic field technology
 

Section 3 of the BBRC Report just cited (F75-20) contains
 

preliminary thermal and mechanical analyses of neck-tube designs.,
 

which are of some value in supplementing the work on our exper­

iment laboratory dewar described in Section J (4).
 

(iv) Dewar-within-a-dewar: We conceived the "dewar-within­
a-dewar" principle in 1971 to provide a clear interface between
 

the flight dewar and the experiment package, and to reduce the
 

difficulties of establishing ultra-low magnetic fields at the
 

gyros. Our original plan was to mount the gyro-telescope
 

package in an 18 inch diameter vessel, which could be lowered
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into a separate low field facility made as an annular helium
 

dewar containing superconducting ultra-low field shields. The
 

diameter of the central warm hole of the annular dewar would
 

be about 20 inches. The inner dewar would be lowered into it,
 

cooled to liquid helium temperatures, trapping a field of 10
- 7
 

gauss or less in the spherical superconducting shields around
 

the gyros, and then be removed from the facility and inserted­

-into them&ift satellite dewar. - Initially the main dewar would 

be warm; thermal contact between it and the inner dewar would
 

be established by indium seals made up as the parts were
 

assembled or by pressure joints formed by shrinkage of the
 

main dewar on cooling. After cooldown of the main dewars
 

exchange gas would be let into the insulation space of the
 

inner dewar. Other intermediate dewars could be developed if
 

necessary to hold the inner dewar during ground testing.
 

Since 1971 our ideas on the "dewar-within-a-dewar" have
 

advanced in several ways. First, an inner dewar diameter
 

considerably less than 18 inches is acceptable: probably 12 inches
 

would be enough. This simplifies the ultra-low field facility
 

-becauseour existing equipment is adequate to make 12 -inch
 

diameter lead bags. Second the ultra-low field facility can
 

be simplified by using a conventional dewar in air lock, as in
 

the laboratory facility described in Section E (3) in place of
 

the annular dewar. Third, our experience with gyro operations
 

(Section D (4) (f)) suggests making the inner dewar principally
 

of glass or other non-magnetic material.
 

A more radical question is whether the "dewar-within-a­

dewar" principle can be dropped altogether by having a single
 

flight dewar with a lead bag, similar to the present ultra-low
 

field gyro facilty. One early objection to that was from the
 

magnetic torques that would be created on the satellite through
 

the interaction of such a large diamagnet with the Earth's field.
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Obstacles of this kind could be circumvented without undue
 

difficulty. Advantages of the approach might be a simpli­

fication of neck-tube design and dewar insertion. Disadvantages
 

would be great complexity of the satellite dewar and a more
 

cumbersome airlock.
 

(v) Inexpensive flight dewars: Our experience in designing
 

the ultra-low field test facility led us in 1976 to suggest an
 

approach to designing inexpensive cryogenic systems that might
 

be used in testing the gyro-telescope package or other experi­

ments requiring hold-times of a few weeks. The principle is
 

to use a standard laboratory dewar of conventional design,
 

possibly strengthened slightly, with a dewar probe having the
 

helium well and porous plug attached to it rather than to the
 

dewar. Cooling coils are attached to the probe and heat sunk
 

to the neck-tube during assembly. One may thus envision an
 

experiment operating for reasonable periods in zero-g with a
 

standard dewar costing little more than $10,000 to $20,000.
 

This suggestion, due to C. W. F. Everitt, was incorporated
 

in the joint University of Washington/Haverford/Stanford/Rome
 

proposal to NASA for an experiment on Spacelab 2 to measure the
 

anisotropy of cosmic background radiation.
 

K. DRAG-FREE CONTROL AND ATTITUDE CONTROL TECHNOLOGY
 

(1) Preliminary
 

The Gyro Relativity experiment requires pointing control
 

of the telescope with a precision of +0.05 arc-seconds and
 

translational control to reduce the average drag on the space­

craft (and hence the average accelerations on the gyroscope to
 

10-g). Thrust for spacecraft pointing and drag-free control
 

is supplied by boil-off gas from the helium dewar, passed through
 

proportional thrusters of novel design. Research on the control
 

systems has been the responsibility of the Guidance and Control
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Laboratory of the Stanford Department of Aeronautics and Astro­

nautics directed first by R. H. Cannon and then by D. B. DeBra.
 

Under the original proposal for Grant NSG-582 (later NGR 05-020-019)
 

the research on drag-free control was initiated first and was
 

carried on semi-independently for several years, before giving
 

birth to a number of fully independent programs such as DISCOS.
 

In addition to the work under the present Grant, this section
 

briefly describes drag-free research supported through -ther­

pr6grims..
 

For convenience of exposition we depart from chronological
 

order and describe first (Section K (2) ) research on the attitude
 

control and telescope pointing system of the Stanford Gyro Rela­

tivity experiment. -Drag-free control technology is described in
 

Section K (3).
 

(2) Attitude Control and Telescope Pointing System
 

(a) Background
 

Attitude control studies were begun by D. B. DeBra and
 

C. W. F. Everitt in 1965. The first investigations assumed a
 

satellite of mass 300 kg and length 1.5m, with moment of inertia
 

80 kgm2 , containing 230 liters of liquid helium (30 kg at 4.2k).
 

The heat load into the cryogenic.region was assumed to be 20 mW,
 

10 mW from internal dissipation in the vibrating plane magne­

tometers then being considered for gyro readout and 10 mW from
 

external sources, giving a dewar life-time of one year. In
 

later studies the satellite mass was increased to 600 kg, the
 

length to 1.65m, the diameter to 1.23m, making a total moment
 

of inertia of 330 kgm 2 . The volume of liquid helium was increased
 

to 900 liters (135 kg at 1.6K) and the allowed heat input into
 

the dewar was assumed to be about 70 mW.
 

The preliminary analysis of DeBra and Everitt was reported
 

in May 1966 in the Fifth Semi-Annual Progress Report on the
 

Physics portion of the program. Several notable conclusions were
 

then reached. In the first place the dominant external torques
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on the 1.5m long satellite in a 500 nautical mile orbit were
 

from gravity gradients (125 dyne-cm peak value assuming a
 

AI/I of 10%) and the action of the Earth's magnetic field on
 

the residual moment of the spacecraft (250 dyne-cm assuming a
 

moment of 500 gauss-cm 3). Both of these terms are doubly
 

periodic with the orbit. The next largest term, from aerodynamic
 

drag, was 15 dyne-cm (assuming the center of pressure and
 

center of mass to be separated by less than 5% of the diameter
 

of the spacecraft). By contrast with these relatively modest
 

external torques the torque produced in getting rid of the
 

helium boil-off gas from the dewar was enormous. The mean
 

value (not the peak) calculated for a single jet at 30 cm
 

moment arm and a helium exit temperature of 200K was 600 dyne-cm:
 

twenty to forty times the peak value from the gravity gradient
 

or magnetic terms.
 

Investigations of gas jet performance quickly showed that
 

conventional on-off valves for attitude control, whether operated
 

in bang-bang or pulse-width pulse-frequency modes, would not be
 

a good idea in the Gyro Relativity experiment. To point the
 

satellite to within +5 arc-seconds (the design goal we had set
 

ourselves at that stage) would require some 107 firings of the
 

valves in one year: one firing every three seconds. Reliability
 

problems were alarming, and would have become more so, had we
 

persisted on these lines, as constraints on pointing were
 

tightened. It then dawned on us that the control problem for
 

a spacecraft carrying liquid helium is different from that for
 

any ordinary satellite. Normally the control engineer's task
 

is to put on board a controller with minimum weight, which means
 

for a gas system, one with minimum-sized gas tanks. Here we
 

have a virtually unlimited supply of gas; the problem is how to
 

get rid of it. The obvious answer, once the question has been
 

articulated, is to use proportional thrusters to divide the gas
 

into the opposing streams of variable flow-rate. The result is
 

an extraordinarily smooth controller, far less liable to failure
 

than an on-off system, and capable of much closer pointing.
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0.001 arc-sec-sec white noise in the hardware electronics of
 

the signal integrator.
 

Structural noise includes disturbances from sources such as
 

(i) thermal expansion and contraction of the outer satellite
 

(ii) 	structural stress relief
 

(iii) "crinkling" of superinsulation
 

(iv) 	random "twitching" of fiberglass supports and dewar
 
plumbing
 

NY vibration from the telescope chopperi wheels. 

There was great uncertainty in estimating any of these disturbances.
 

In order to be able to make some investigation of their effect,
 

Bull modelled the total of all internal structural disturbances
 

as white process noise t6rques with a covariance of (100)2 (dyne-cm)2
 

sec between the satellite structure and the inner well of the
 
2
dewar and (6)2 (dyne-cm) sec between the helium well and the
 

gyro-telescope package. These were considered conservative
 

engineering guesses.
 

The control noise depends on fluctuations in thruster pres­

sure and inner actuator force. For the enlarged dewar, chosen
 

in 1971 at the time of the first Ball Brothers Mission Definition
 

Study, the heat input was 70 mW and the mean thrust capability
 

of the boil-off gas issuing from a 230 K nozzle at 60 cm moment
 

arm, assuming a one year dewar lifetime was 42,000 dyne-cm, or
 

7000 dyne-cm per thruster. Assuming a 1 dyne rms fluctuation
 

in thrust at 1 rad/sec bandwidth, the torque fluctuations are
 

60 dyne-cm* at 1 rad/sec. The inner actuator torque depends on
 

the natural frequency of the gyro-telescope gimbals, which was
 

taken by Bull as 25 rad/sec. With this figure assuming an rms
 

noise level equal to 1% of the rms control torque Bull arrived
 

at a value for the torque fluctuations on the inner actuator of
 

8 dyne-cm in 1 rad/sec bandwidth.
 

Table 16 summarizes the external torques acting on the space­
craft, with the principal parameters used in making the calculations,
 

*J. S. Bull used the figure 200 dyne-cm rms torque at 1 rad/sec
 
bandwidth.
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again assuming the enlarged dewar of 1971 rather than the one
 

originally studied by DeBra, Everitt and Witsmeer. More details.
 

of the calculations are given in Bull"s doctoral dissertation; (63)
 

the figures used by Bull have been revised in light of subsequent
 

information.
 

Table 16: Satellite Torque Environment
 

Peak torque
 
Torque Source Body (dyne-cm)
 

spacecraft/dewar shell 250
 
Gravity gradient helium well 10
 

gyro-telescope package 20
 

spacecraft/dewar shell 220
 
Magnetic helium well <2
 

gyro-telescope package <2
 

Solar radiation pressure spacecraft/dewar shell 250
 

Atmospheric drag spacecraft/dewar shell 800
 

Total probable spacecraft/dewar shell 500
 

worst case torques helium well 60
 
gyro-telescope package 15
 

Moments of inertia -- gyro-telescope package Ii - 4 kg-m 2 

2
 
helium well 1 2 % 75 kg-m 2, spacecraft/dewar shell Is % 250 kg-m

Mass -- 600 kg 
Magnetic moment of spacecraft/dewar shell N 500 gauss-cm 
Maximum projected surface area ' 12 m2 

Distance - center of mass to center of pressure - 20 cm 
Orbit altitude % 730 km (400 naut. miles) 

The disturbances from micrometeorite impact were also studied.
 

For a satellite of 12 m2 projected area there is about a 4% chance
 

of encountering a micrometeoroid of mass 3 x 10 - 4 gm during one
 

year in orbit. 'The resultant probable torque impulse is 900 dyne­

cm sec, impacting an instantaneous change in angular velocity
 

to the satellite outer structure of 8 arc-sec/sec.
 

A further source of disturbance treated separately was
 

the tidal sloshing motion of the liquid helium.
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The mean torque capability of the boil-off gas was, as
 

just stated, 7000 dyne-cm per thruster.
 

(c) Mechanization of the Two-Loop Attitude Control System
 

Three alternative mechanizations of the two-loop attitude
 

control system were studied: (i) the classical approach sug­

gested by R_ A. Van Patten, which depends on spectral separation
 

of the inner and outer loops,- (ii)- a system based on arbitrary
 

dynamcs with coupled inner and outer loops, (iii) quadratic
 

synthesis of an optimal controller.
 

The classical approach utilizes the spectral separation of
 

the inner and outer loop to partition the design into two models
 

for which separate classical compensation networks can be built.
 

The slow outer loop is closed about the fast inner loop by
 

making the thrust a function of the rate and position of the
 

cryogenic actuator, taking into account the resulting 900 phase
 

lag.-


A control system is said to have arbitrary dynamics if the
 

designer can choose parameters which enable him to give the
 

system an arbitrary set of eigenvalues (roots of the character­

istic equation). These parameters may be physical parameters
 

of the system (moments of inertia, spring constants, damping
 

cbefficients, etc.) or gains in a control law. There must be
 

as many parameters available as there are roots to be assigned
 

and each must affect all the roots: then an arbitrarily chosen
 

set of roots determines the parameters and gains. When extra
 

parameters are available the solution is not unique. Thus for
 

a single control in which only feedback gains are available
 

all states must be fed back to obtain arbitrary dynamics, but
 

if two controls are available (as in the case under consideration)
 

only half the states may be needed or the roots do not uniquely
 

determine the gains. Since the control system for the Gyro
 

Relativity satellite has two controllers, and at the same time
 

the natural frequency wY between the gyro-telescope package
 

and experimental chamber can be chosen by the designer, it is
 

possible to use arbitrary dynamics while feeding back only the
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telescope angle 0 and its derivative 0 and integral z =fedt.
1 


The result, as discussed below, is a system with a seventh order
 

characteristic equation but eight quantities available for
 
adjustment, giving the designer some latitude for optimizing
 

the control and state amplitudes.
 

Additional information on the system states can be obtained
 

by having extra sensors besides the telescope: for example a
 

device to measure the angle a between the experiment chamber
 

and dewar shell, together with the corresponding rates, etc.
 

Alternatively an "estimator" may be introduced into the control
 

system to model the plant and estimate the unmeasured states.
 

In the limit when all states are fed back to two controls
 

there are twice as many gains as needed to determine an arbi­

trary set of roots. Advantage can be taken of the additional
 

information by applying the method of quadratic synthesis,
 

in which the control law is chosen to minimize the integral of
 

a positive definite quadratic performance index, sometimes
 
called the "cost function." The weighting factors of the per­

formance index may be thought of as expressing the designed
 

ratio between state amplitude and control effort. The result
 

is an "optimal controller."
 

An optimal controller is optimal in the practical sense
 
that it minimizes the state and control amplitudes for any
 
particular desired ratio of state amplitude to control effort:
 

it will, for example, specify the design to give simultaneously
 
sufficient pointing accuracy and minimum consumption of helium
 
gas. Quadratic synthesis of an optimal controller with constant
 

gains requires steady state solution of the control Riccati
 
matrix differential equation, which for a system as complex
 

as the Gyro Relativity satellite demands a digital computer
 

program. However the reduction in sensitivity to variations
 

in system parameters and more efficient use of control effort
 
may justify the extra complexity. we were urged in this direc­

tion by the surprising sensitivity to parameter variations
 

exhibited in the classical and arbitrary dynamics approaches.
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The classical controller requires (as Van Patten had pointed
 

out) a high level of natural damping in the dewar structure to
 

prevent the system from becoming unstable. Dashpots probably
 

have to be added to the fiberglass supports.. Bull concluded
 

that integral control terms should probably be added to both
 

inner and outer loops to obtain high gain at the low frequencies
 

corresponding to orbital disturbances without unduly degrading
 

the short period response. Bull retained douhle integral control "
 

throu~h his tater studies of the optimal controller/estimator.
 

The arbitrary dynamics approach couples the inner and outer
 

loops without requiring the spectral separation of the classical
 

controller, and also allows some of the damping for the outer
 

loop to be provided from the integral of the telescope signal.
 

This unusual by-product of integral control is possible because
 

of the dynamic coupling of the inner actuator control torque
 

through the middle body into the flexible outer mode of the
 

dewar. The characteristic equation is seventh order having a
 
state vector with components zi, 6, e,y, y, a, &, where zi is
 
the integral of the telescope measurement, 6 the telescope
 

readout angle, y the angle between the gyro-telescope package
 

and the experimental chamber and a the angle between the experiment
 

chamber and the dewar shell. On the other hand, eight quantities
 

-- six control gains, when zi, 6 and 6 are fed back to both
 
actuators and the two natural frequencies w and m of the
ya
 
inner and outer structures -- are available for adjustment.
 

Relying on a general knowledge of bandwidth requirements in
 

various modes of the system, Bull was able to choose pole loca­

tions for the characteristic equations and still keep one parameter
 

free for optimizing the state and control amplitudes. With the
 

resultant suboptimal system small changes in wa called for
 

very large changes in w to maintain the same pole locations.
 

The best natural frequency for the outer loop when closed around
 

a 25 rad/sec inner loop was 5.02 rad/sec. Under these conditions
 

an rms telescope pointing accuracy of 0.12 arc-sec could be
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achieved with 4000 dyne-cm rms thrust level and 66,000 dyne-cm
 

rms torque on the inner actuator. The range of motion of the
 

outer satellite was 0.68 arc-sec.
 

The parameter sensitivity of the suboptimal system led us
 

to give serious consideration to modern control methods. The
 

matrix equations describing the three body system with an estimator
 

are
 

x = Fx + Gu + w
 

z = Hx + V
 
= F + G + K[z - 2]
 

= 1- T T T ­
=C^, C B [N + G S], K = [PH + T]R 

(57)-(62)
 
SF - A + CBCT
 -
= -FTS 


=FP + PFT + Q KRKT
 

where w and v have zero mean and spectral densities QT and TTR
 

*E1w(t) wT(T) = Q T 6(t - -)
 

E Iv(t) vT1) = TT R 6(t - T)
 

and the following are vector quantities
 

- state space control vector (dimension m = 2) incorpor­u 

ating the control torques for the cryogenic actuator 

and
 

helium thrusters
 

v - state space measurement noise vector (dimension p = 2)
 

w - state space process noise vector (dimension p = 2)
 

x - state space state vector (dimension n = 7), incorporating
 
the orientations of the three bodies (e, y, a) and their
 
rates (0, y, &) and the integral zi of the telescope
 
measurement
 

z - state space measurement vector (dimension p = 2) incor­
porating the telescope angle measurement and the output
 
of the amplifier integrating the measurement
 

The vectors -, X and z are the estimated values of u, x, z included
 

in the estimator.
 



314 

The following quantities in Equations (57) to (62) are matrices
 

A - state penalty matrix (dimension n x n)
 

B - control penalty matrix (dimension m x m)
 

C'- control gain matrix (dimension m x n)
 

F - natural dynamics matrix (dimension n x n), incorporating 
combinations of spting constants And-moments'of inertia 

G --. conttd distribution matrix (dimension n x m) 

H - measurement distribution matrix (dimension p x n) 

K - estimator gain matrix (dimension n x p) 

P - estimated state error covariance matrix (dimension n x n) 

Q - process noise covariance matrix (dimension n x n), 
which combines the terms Q and Q: 

Q - QW + GQuGT , where 

Qu includes the inner actuator and thruster white
noise torques
 

Q includes the model of random structural noise

discussed on p. 308 above
 

R - measurement noise covariance matrix (dimension p x p)
 
incorporating photon noise in telescope readout and
 
white noise in the integrator hardware (see p. 308 above)
 

S - Riccati control matrix (dimension n x n)
 

- cross-correlation noise matrix (dimension n x p)
 
(actually there is in the Gyro Relativity system perfect
 
correlation between the noise in the telescope angle
 
measurement and the process noise during the integral
 
of the measurement)
 

where again m = 2, n = 7 and p = 2.
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With the above equations synthesis of the controller proceeds
 

iteratively in the following general sequence:
 

(i) a digital computer program is applied to select
 

natural dynamic parameters that will yield a reasonable error
 

amplitude in the estimator and keep down the sensitivity of
 

the system to white sensor, process and control noise.
 

(ii) The estimator design is iterated; using digital computer
 

programs, on the basis of sensor, process and control noise.
 

(iii) The design of the controller is iterated, also on the
 

basis of sensor, process and control noise, and through digital
 

computer programs.
 

(iv) Digital and analog computers are applied to iterate
 

the integral control gains to obtain satisfactory response to
 

low frequency torques.
 

(v) The performance of the controller/estimator is simulated
 

on an analog computer to investigate transient response and the
 

sensitivity of the system to gain changes.
 

Hardware fabrication can then begin.
 

Details of the iteration procedure are given in J. S. Bull's
 

doctoral dissertation. Initial choices for the desired rms
 

values of the components of the state vector were: telescope
 

pointing angle e - 0.03 arc-sec, null offset y between gyro­

telescope package and experimental chamber - 1 arc-sec, null
 

offset a between inner and outer shells of dewar - 0.1 arc-sec,
 

with the values for yd'
+d and 'd being made extremely large in
 

order to produce very small penalties on these state elements.
 

The rms thruster torque was chosen at 1000 dyne-cm (6% of satura­

tion for two thrusters on opposite sides of the spacecraft*).
 

The time constant for the integrator was chosen at 50 seconds,
 

which is short compared with the period of torques at twice
 

orbital frequency and gives a reasonable settling time for the
 

system on reacquiring the star. Following the iterations the
 

*In Bull's analysis this was equivalent to 10% of saturation.
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rms pointing accuracy was improved to 0.017 arc-sec; the thruster
 

torque levels became 1070 dyne-cm. Results are summarized in
 

Tables 8.8 through 8.12 of Bull's thesis. Table 17 here, cor­

responding to 8.13 in Bull's thesis, compares performances of
 

classical, suboptimal and optimal controllers based on the
 

parameters used by Bull. We must emphasize that these figures
 

are based on the very conservative assumption that the resonant
 

Table 17: RMS Performance of Controller/Filter Combinations
 

Pointing Torque Level Torque Level 
Accuracy on Cryogenic on Helium 

Controller e Actuator Thrustors 
Filter (arc-sec) (dyne-cm) (dyne-cm) 

Classical 0.120 66,000 4,000
 

Suboptimal

based on
aia o 
 0.080 45,000
arbitrary 1,800
 

dynamics
 

Optimal
 
Estimator 0.017 9,070 1,070
 

frequency of the inner well with fiberglass supports is about
 

5 rad/sec. In reality we may expect a resonant frequency of
 

50 to 100 rad/sec, a charge which should considerably ease the
 

requirements on the final design.
 

Engineering comments on the selection of estimator penalty 

matrices (Q, R, T) and controller penalty matrices (A, B, N) are 

given on pages 107 - 112 of Bull's thesis together with comments 

on four different mechanizations of integral control. The 

answers are not clear cut. In general the type of control most 

likely to do the best job of driving the state to zero at low 

frequency is "output integral control fed back into the estimator 

plant model." 

The first optimal controller design was quite sensitive to
 

variations in system parameters. With an outer mode resonant
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frequency w a fixed at its nominal 5 rad/sec, the range of fre­

quencies in the inner mode.- ' allowing stable operation was 23.0
 

to 32.0 rad/sec, while with wo fixed at 25.0 rad/sec, the range
 

on wa was 3.0 to 7.0 rad/sec. Although considerably wider than
 

the nominal changes in frequency to be expected from the change
 

in mass of the middle body with helium boil-off, these limits
 

were too close for comfort. Under separate support, Z. Hadass
 

developed a method for sensitivity reduction based on an exten­

sion of optimal design procedures. (64) The aim was to reduce
 

the sensitivity to changes in natural frequencies and thruster
 

torque by adjusting other parameters within the command of the
 

designer, for example the estimator and feedback gains in the
 

controller. The result was a slight loss in pointing precision
 

and a slight increase in gas expenditure, but that was acceptable
 

in view of the performance margins.
 

to incorporate variable parameters
The analytical approach was 


in the dynamic matrices describing the system, treated as gaussian
 

random variables and represented as a variable parameter vector,
 

with mean at the nominal values of the parameters and with known
 

covariance.
 

. Use is then made of a modified cost function I which repre­

sents effects of both random processes acting on the state of
 

the system and the random parameters. If the. state is represented
 

+ 6x, the
 as the sum of nominal and perturbed states x = xn 


performance index may be written as
 

(63)

I = trace (A + CT B C) (X + 66X) 


where X is the covariance matrix of the nominal system, 6X is
 

the addition to the covariance due to the variable parameters
 

a sensitivity weighting coefficient, selected by the
and e is 


designer, which determines the extent of the sensitivity 
reduction
 

in a given design.
 

The method was implemented as a computer program and then
 

applied to the controller for the Gyro Relativity experiment. A
 

series of designs were investigated with different degrees of
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desensitization. The table compares one such design with the
 

original optimal design. A 3 to 1 increase in the range of
 

stability is gained at the expense of an acceptable loss in
 

pointing accuracy (2.4 to 1) and a negligible increase in gas
 

expenditure.
 

A comparison of results from the optimal and desensitized
 

designs is presented in Table 18.
 

Table 18: Pointing Control System Parameter Sensitivity
 

Optimal design Densensitized design
 

4 o Stiff spring 23.0 - 32.0 17.7 - 102.5 
0 -H Q)

H O (inner) 
a) -H N, 

- 4 Stiff spring 3.4- 6.6 3.1 - 11.0
4 v) (outer) 

Pointing precision 0.017 0.041
 
(arc-sec)
 

Control effort on
 
inner servo (current 9070 13,000
 
to cryogenic actuator)
 

(dyne-cm)
 

Control effort on
 
outer servo (gas 1070 1091
 
expenditure)
 

(dyne-cm)
 

The degree of desensitization may be adjusted to intermediate
 

values if desired.
 

(d) Development of Proportional Helium Thrusters
 

Upon recogniiing the merit of proportional control for the
 

Gyro Relativity program we examined a number of approaches to
 

designing the thruster. J. Mathiesen conceived two mechanical
 

devices -- one with a translating pintle and the other with an
 

eccentric rotary valve -- each of which provided differential
 



319
 

flow out of two opposed nozzles. We also examined techniques
 

for modulating the flow without moving mechanical parts.
 

The research on thrusters having no moving parts was
 

initiated by F. Rehsteiner, who had earlier been responsible
 

for the analysis to be be described in Section K (3) (b) on the
 

gas-bearing for the drag-free simulator. The first idea, due
 

partly to R. A. Van Patten, was for a directional thruster based
 

on the Coanda effect, that is the phenomenon whereby a jet of
 

fluid tends to remain attached to a curved wall over which it
 

is flowing. The breaking angle depends on the curvature and
 

surface temperature of the wall, so by heating the curved surface
 

the direction of the jet stream, and hence the direction of
 

thrust, can be varied. A straightforward application of the
 

Coanda effect turns out to be complicated by shock wave
 

phenomena in the gas issuing into the vacuum of space and the
 

range of directional variation is too small for efficient use
 

of helium as a propellant. An aiternative is to apply the
 

effect in directing a jet towards a dividing vane between a
 

pair of recovery chambers going to opposed nozzles. The flow
 

rate from the two thrusters is then varied by deflecting the
 

jet. This scheme appeared to work in principle but was affected
 

by changes in environmental temperature as well as the control
 

temperature. Rehsteiner next developed a more sophisticated
 

design, based on a differential Coanda effect in which two
 

gas streams impinged on each other. Any change in the common
 

temperature of the system would change the distance to the
 

meeting point but not the net direction of the combined stream
 

produced by confluence of the two jets.
 

At this point Jean Noel Aubrun joined the team and suggested
 

a method of making the flow phenomena visible by striking an
 

electric discharge in the helium gas. Working together
 

Rdhst6iher and Aubrun built an apparatus in which they could
 

verify experimentally the mathematical model they had developed
 

for the flow. The conclusion of the research was that a Coanda
 



320 

effect valve of this type would work well at Reynolds numbers
 

above 1000, but became marginal at a Reynolds number of 100.
 

Since the Reynolds numbers corresponding to the average boil­

off rate of the dewar were in the range 20 to 50, we were forced
 

reluctantly to drop this promising scheme.
 

The idea of a valve with flow rate modulated by temperature
 

remained attractive. Rehsteiner's next approach was to exploit
 

the temperature dependence of the viscosity coefficient. The
 

gas was passed to the opposed thrusters through two long capillary
 

tubes, and by heating these differentially the flow rates could
 

be varied. This design had two shortcomings. The range of
 

temperature variations was limited so that the range of modu­

lation of thrust was less than was desirable. Second, in order
 

to get rapid response to heating and cooling the capillary tubing
 

had to have extremely thin walls. Some prototypes were made by
 

depositing electroless nickel on a wax mandrel. Rapid heating
 

was effected by passing an electric current through the wall and
 

the gas would quickly cool it down when the current was stopped.
 

While the idea seemed promising the process was delicate and the
 

apparatus was hard to assemble even after tubes had been success­

-fullymanufactured.
 

After considerable thought about other techniques for dif­

ferentially controlling the gas flow we reverted to the mechanical
 

design. The design was worked out by J. S. Bull and J. Mathiesen.
 

A pintle was supported on a translational spring and driven by
 

coils acting on a ferromagnetic section in the center of the
 

pintle. Figure 74 is an "exploded" view of the disassembled
 

thruster. Its size was chosen as a compromise between low
 

power (power consumption gets less as the volume of copper used
 

in the coil is increased) and a reasonable size for putting on
 

the satellite.
 

With a thruster developed Bull undertook a careful evaluation
 

of its performance. The chief questions concerned the performance
 

at very low Reynolds numbers and boundary layer effects. Since
 

thrust levels of the order of 1 to 10 dynes were expected, Bull
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Figure 74: Proportional Thruster: Exploded View
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built up the thrust stand illustrated in Figure 75 using a Cahn
 

microbalance to measure the reaction. Initially steady state
 

measurements were made to calibrate the nozzles at various
 

helium flow rates. Figure 76 shows that in spite of the
 

extremely low Reynolds numbers in the throat (Re on the order
 

of 10) the loss in specific impulse is only about 15 to 20%.
 

Furthermore concern over boundary layer build up at low pres­

sures of a few times 10-4 torr proved unfounded. The data show
 

high resolution and excellent repeatability for measurements
 

of thrust at such low levels.
 

The continuous calibration of the thrusters was the first
 

step. In a control system the thrust has to be changed abruptly.
 

While theoretical calculations were encouraging they were per­

formed at Reynolds numbers for which little data exists. The
 

mass of the thruster was so great that its reaction to any
 

change in thrust level would be slow and far too demanding
 

in resolution for the response to be evaluated by conventional
 

sensors. Bull therefore developed a novel reaction thrust
 

measurement system, consisting of an extremely light system
 

of baffles on which the thrust from the two opposed nozzles
 

would impinge. The material was balsa wood, which meant one
 

day to outgas the vacuum chamber, but which taken together with
 

a modification to the microbalance electronics, yielded a
 

device having a measurement bandwidth of 20 rad/sec, a figure
 

acceptable for studying the satellite dynamics.
 

The test stand was then ready to incorporate in a fixed
 

base simulation of the control system.
 

(e) Simulation of the Attitude Control System
 

Simulation of the Gyro Relativity attitude control system
 

proceeded in two phases. Phase 1 was a closed loop analog sim­

ulation with the controller/estimator hardware electronics in
 

the loop. Phase 2 was a fixed base simulation with the vacuum
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chamber, thrust measurement instrumentation, thruster and
 

electronics interfaces added in the path from the controller/
 

estimator to the satellite dynamics so that the natural dynamics
 

of the satellite, as modelled on an analog computer, were driven
 

by the measured rather than the desired thrust signals. Figure
 

71 illustrates the fixed base simulation. The satellite's
 

natural dynamics were represented on the analog computer in a
 

model that took into account disturbance sources as well as the
 

mechanical parts of the satellite. The controller was bread­

boarded using the mechanization proposed for flight including
 

an analog estimator representing all the states of the system,
 

from which the control laws generated the desired control
 

signals for the helium thruster and cryogenic actuator. The
 

inner actuator command was sent to the analog computer where
 

that control was simulated while the helium thrust command was
 

sent to the helium thruster. Thus all of the control hardware
 

and the prototype thruster were evaluated together.
 

Phase 1 comprised a series of tests to investigate the
 

following performance characteristics of the attitude control
 

system:
 

* Transient response while acquiring the star
 

0Transient response to micrometeoroid impact
 

OResponse to a step input torque on the outer body of
 
the satellite
 

OResponse to the dither signal used in matching gyro
 
and telescope gains
 

*Response to process noise
 

*Parameter sensitivity.
 

Figure 78 illustrates a typical result from Phase 1: the transient
 

response of the system while acquiring the star when the initial
 

pointing error is great enough to saturate the helium thrusters.
 

The initial offset angle a between the middle and outer bodies
 

was taken as 1.0 arc-sec (twice the nominal value). The transient
 

responses of all three bodies show good stability and satisfactory
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settling times. The telescope angle decays to less than 0.05
 

arc-sec in 3.5 seconds, after which almost all telescope
 

motion vanishes. The middle body makes an excursion out to
 

1.5 arc-sec at 6.0 seconds and then overshoots on its return
 

to 0.6 arc-sec at 16.0 seconds, after which it decays to less
 

than 0.1 arc-sec by 25.0 seconds. The inner actuator peaks.
 

instantly at 230,000 dyne-cm and then again at 180,000 dyne-cm
 

after 0.8 seconds. The thrusters saturate at 8000 dyne-cm for
 

the first second of acquisition and then saturate again at -8000
 

dyne-cm for the following 2.0 seconds. There is one more reversal
 

of saturate to 8000 dyne-cm for 0.4 seconds, giving a total satur­

ation time of 3.4 seconds after initial acquisition. Thruster
 

torque then decays rapidly to less than 1000 dyne-cm after 8.0
 

seconds.
 

Curves similar to Figure 78 were generated to represent
 

the time history of response to micrometeoroid impact and to the
 

input of a step torque on the outer b6dy. Other curves were
 

generated to represent response to the dither signal, measure­

merit noise and pr6cess noise.
 

The primary aim of the fixed base simulation (Phase 2) was
 

to investigate effects of non-linearities and other performance
 

characteristics of the thrusters departing from the nominal,
 

for example:
 

*unusual helium flow characteristics at low Reynolds
 
numbers
 

Onull-offset of pintle in open loop operation
 

Onon-linearities in the springs supporting the pintle
 

Oshortcomings in the electronics interfacing the
 
thrust test stand to the controller/estimator
 

*abnormal mass flow rates
 

Figure 79 illustrates a typical result from the fixed base sim­

ulation: the response of the system to measurement noise and
 

the calibrating dither signal- The rms amplitude of the
 

measurement noise is 0.03 arc-sec. The telescope motion stays
 

tightly locked on the dither signal (dither frequency 0.1 rad/sec)
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and shows an attenuation of measurement noise by the full
 

state estimator down to about 0.075 arc-sec rms. There is a
 

low frequency random motion of the center of mass of the system
 

with exclusions as large as 0.06 arc-sec. Comparison with other
 

data suggests that this motion is attributable to large tran­

sients in the helium thrusters, caused by pressure fluctuations
 

in the test chamber due to intermittent operation of the
 

diffusion pump.
 

The most significant feature of Figure 79 is the effective­

ness of the inner loop in isolating the telescope from high
 

frequency disturbances and the effects of thruster non­

linearities. Pointing accuracy principally depends on how
 

much filtering of measurement noise is possible in the
 

estimator before disturbances and non-linearities start
 

degrading the control performance.
 

One important source of disturbance which we have modelled
 

mathematically and which continues to be an area of concern is
 

tidal sloshing of the liquid helium. A merit of the dual mode
 

control is that the cryogenic actuator can master slosh dis­

turbances owing to its high bandwidth. Since slosh is due to
 

internal momentum exchange the gas jet system does not have to
 

respond to it. On the other hand mismodelling of slosh behavior
 

and the change in mass from boil-off helium through the year
 

might limit stability and make it desirable to control the
 

position of the liquid helium by one of the methods described
 

in Section J (4). We do not think the issue is urgent from the
 

control point of view; it is one that should continue to receive
 

attention.
 

(f) Effects of Noise in the Pointing Controller on Gyroscope
 
Performance
 

An important question studied by J. S. Bull was the magni­

tude of the accelerations acting on the gyroscope from noise in
 

the pointing controller. Since some terms in the suspension
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torque equations are quadratic in the acceleration, there is a
 

possibility of rectification and consequent gyro drift. The
 

rms acceleration from this source, calculated in Bull's assump­

tions, is in fact quite large: 3 x 10-6 g. However, since the
 

amplitude of motion is small -- only 0.4 pin or 0.25% of the
 

rotor-electrode gap -- any effect can be made negligible either
 

by appropriate modifications of the servo response of the gyro
 

suspension system or by damping in the pointing controller.
 

The source of the acceleration is the rms noise in the cryogenic
 

actuator; this can almost certainly be made far less than Bull
 

thought.
 

.(3) Drag-Free Control Technology
 

(a) Background
 

The concept of the drag-free satellite occurred independently
 
to a number of people about 1961, including B. 0. Lange, then
 

a graduate student in the Department of Aeronautics and Astro­

nautics, whose interest was sparked at the NASA Conference on
 

Reiativity in Space held at Stanford in July 1961. The pos­

sibility of applying drag-free cohtrol to the gyroscope experi­

ment was discussed prior to that conference by G. E. Pugh.(64)
 

The principle has already been described. A proof mass
 

inside the satellite is shielded from external forces, so that
 

it follows a nearly ideal gravitational orbit, and a control
 

system activates gas jets (or other translational forces) to
 

make the satellite follow the mass. The problems are mechanizing
 

the control laws and minimizing extraneous effects, such as the
 

self-gravitational pull of the satellites. The extraneous forces
 

can be averaged in one plane by having a spinning vehicle.
 

The first thorough investigation of drag-free control
 

systems was given in Lange's 1963 Stanford University doctoral
 

dissertation. (66) Lange estimated the disturbances from self­

gravitation, the Earth's magnetic field, electric charge on the
 



3.32 

pr66fmass, gas in the cavity, and similar phenomena. He developed
 

control equations for spinning and non-spinning vehicles and
 

suggested the concept of the unsupported gyroscope as discussed
 

in K (3) (c).
 

Besides the application to the Gyro Relativity program,
 

applications of drag-free control were conceived for aeronomy
 

and geodesy. Aeronomy requires a more or less spherical satellite
 

to make the drag coefficient independent of orientation. A
 

design was studied by G. Chippendale as part of his Stanford
 

doctoral program, and jointly proposed for flight by R. H.
 

Cannon and B. 0. Lange of Stanford, and Gordon MacDonald of the
 

University of California, Los Angeles.6 1) Studies of the
 

satellite drag coefficient in free molecular flow were made by
 

K. Moe, F. Sherman and F. Hurlburt!67 ) A related study by W. R.
 

Davis under B. 0. Lange's supervision was for a single-axis
 

controller to extend the lifetime of low altitude satellites. (68)
 

A system was developed by Lockheed Missiles and Space Company but
 

failed before it could be evaluated. The laboratory research for
 

these programs was mainly supported under the Air Force supple­

ment to NASA Grant NSG-582.
 

Following the studies the DISCOS disturbance compensation
 

system was developed by the Guidance and Control Laboratory for
 

the Navy's Transit Navigation Satellite, launched in 1972.
 

(b) Analysis and Laboratory Simulation
 

The analytic basis for drag-free control systems was started
 

by B. 0. Lange. In addition to work on non-rotating satellites
 

Lange determined the proper compensation for a rotating satellite
 

with linear error signal and bang-bang control system. He, and
 

subsequently W. I Davis, compared different thruster mechanizations,
 

providing a variety of options for analytical study and simulation.
 

The choice of mechanization is often determined by the
 

requirement to save fuel. For the Gyro Relativity experiment,
 

as already explained in Section K (2) (a), fuel consumption is
 

http:Angeles.61
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not a principal limitation either in attitude control or trans­

lational control, and one can therefore use proportional thrusters,
 

except possibly in an experiment at very low altitude. That is an
 

unusual luxury, however; in general one must work hard to save
 

fuel.
 

The principle of bang-bang control is to measure the
 

position of the proofmass in its cavity, open a valve to
 

fire gas in the proper direction and use the position signal to
 

determine when to close the valve. There is a central dead
 

band, which may be up to 40% of the gap, over which the proof­

mass is free to move without the control system responding.
 

The difficulty of bang-bang control is its need for a very
 

quiet sensor: one is using a position measurement to control
 

an acceleration. In unfavorable circumstances the sensor may
 

be unable to resolve the signal and close the valve before the
 

satellite has reached such a large velocity that it will reach
 

the far side of the dead band, at which point the reverse valve
 

fires. The mean thrust level will remain equal to the drag,
 

but one will have the unhappy situation of the satellite bouncing
 

from side to side, firing valves alternately in opposite direc­

tions and wasting large quantities of fuel.
 

Two mechanizations, both developments of research started
 

elsewhere, were applied to overcome the limitations of bang-bang
 

One was a "derived rate" method, studied initially by
control. 


W. R. Davis and applied by D. B. DeBra to DISCOS; the other was
 

"pulse-width pulse-frequency" control. With a pulse-width pulse­

frequency mechanization, rather than close the valve in response
 

to a position signal, one fires it in normal operatiod for a
 

known length of time and uses the position measurement to vary
 

the number of firings (the pulse frequency). In high drag con­

dition the firing time (the pulse width) is sometimes also
 

increased. Most of the laboratory simulator work described
 

below utilized a pulse-width pulse-frequency controller.
 

In a spinning vehicle the center of rotation will not
 

normally coincide with the center of the control deadband.
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Another potential source of gas wastage, discovered by J. David
 
Powell during work on the laboratory-simulator is "trapping."
 

If the deadband is square, the proofmass may in effect become
 

caught in the corner of the deadband, and the spacecraft will
 

then rotate about the wrong location, spewing out gas at high
 

rate to create the necessary centripetal acceleration. By
 
combining a round deadband mechanization, due to R. A. Van
 
Patten, with a center of mass estimator which adjusted the
 

center of control to coincide with the center of mass, Powell
 
eliminated trapping and unnecessary gas expenditure.
 

A limitation of different type on drag-free control is
 
from effects of gradients in the force field acting on the proof­
mass. Self-gravitation, residual magnetic fields, electric charge
 

on the proofmass, all have body-fixed gradient terms such that
 
if the mass is displaced in the cavity the acceleration acting
 

on it will change. Since with an ordinary control system the
 

mean position of the proofmass depends on the external acceler­
ation the performance may depend quite strongly on the accelera­

tion environment of the spacecraft. The solution is integral
 

control. P. Jhin (69 ) and subsequently M. Tashker(70) undertook
 
research that solved the problem of introducing integral controi
 

into a rotating spacecraft.
 

Mathematical simulation of a non-linear system is an approxi­
mation at best; from the beginning we recognized the need for a
 
laboratory simulation of the drag-free controller. The instru­

ment used ih a variety of investigations over the past ten years
 
has been the two axis simulator illustrated in Figure 80, known
 

as the Ground Effect Machine, or GEM. An air cushion vehicle
 

floats on a granite surface plate; gas jets are fixed in the
 

horizontal plane to keep the vehicle centered about a spherical
 

probfmass suspended from a granite frame over the table. The
 
design was started by R. Bourke, who built also the first capaci­

tative pickoff, illustrated in Figure 81, with electronics
 
assistance from Doyle Wilcox of Autonetics. Initial difficulties
 

with the gas bearing support were resovled by F. Rehsteiner,
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who explored requirements for bearing stability and determined
 

the geometry providing greatest stiffness against tipping when
 

the center of mass of the vehicle is offset. Rehsteiner also
 

discovered a translational force on the bearing due to slight
 

tilts originating in asymmetrical viscous gas flow.
 

The simulator is subject to wind currents and other
 

obvious disturbances. Table tilt is particularly important.
 

To simulate 10- 6g, which corresponds to a few percent of the
 

typical drag at 270 km altitude the table must be level to a
 

microradian or 0.2 arc-sec. Typical foundation tilts in the
 

laboratory are a few arc-seconds; so an automatic table levelling
 

system was built up, using Brunson automatic bubble levels and
 

an electromagnetic solenoid actuator designed by J. Mathiesen.
 

The table-leveller fulfilled the operating requirements and
 

has worked without failure for twelve years. (71)
 

The air cushion vehicle designed by Bourke was modified to
 

include Rehsteiner's findings on the bearing; improvements in
 

the electronics were progressively made by R. A. Van Patten and
 

R. R. Clappier. After the original bang-bang control of the
 

gas valves had been replaced by a pulse-width pulse-frequency
 

modulator, an extensive study of the performance was undertaken
 

by Ury Passy,72 ) who calibrated the pickoff and evaluated the
 

operation of the thruster system. Passy was able to get excellent
 

correlation between theoretical table tilt and observed gas expend­

iture at levels down to 0.1 arc-sec. The data, which approximated
 

with reduced accuracy the performance at 400 km, covered nearly the
 

entire range of altitudes from 125 km to 470 km proposed for the
 

aeronomy experiment. Passy also optimized the design of the
 

pulse-width pulse-frequency modulator.
 

G. Chippendale pursued the development of thrusters which
 

could be used to measure very accurately the applied control,
 

following several ideas contributed by D. Wilcox. The thrust
 

stand developed for Chippendale's research was designed by J.R.
 

Mathiesen, with feedback control developed by Chippendale and
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Van Patten. The bandwidth of the thrust stand was 1500 Hz;
 

measurement was accurate to a few micropounds,with resolution
 

of a fraction of a percent during the build up and decay of the
 

thrust. Quite good correlation was obtained between the
 

measured thrust and high bandwidth measurement of the pressure
 

just upstream of the throat. Hugo Schuck, formerly of
 

Honeywell, Incorporated, made important contributions along
 

with Chippendale to modelling these rapidly developing flows.
 

The correlation of pressure and thrust was limited by inertia
 

forces of the valve poppets.
 

All the studies so far described were with a capacitive
 

pickoff and a spherical metal proofmass of 2 inch diameter. A
 

limitation to capacitive pickoff is the relatively small gap
 

between proofmass and cavity needed to have reasonable capacitive
 

values. There is a tradeoff between capacitive requirements
 

and the mass attraction between the proofmass and its surroundings.
 

Mass attraction can be reduced by using a much larger cavity and
 

some type of optical pickoff. Various optical schemes have been
 

suggested. In 1975, under separate support, R. De Hoff built
 

a fluorescent' position detector for a 3 inch sphere inside an
 

8 inch diameter cylindrical cavity. A stroboscopic flash
 

emits ultra-violet radiation, which is absorbed by the proofmass
 

and re-emitted as infra-red to be measured on four horizontal
 

Schottley barrier detectors in the cavity. The optical pickoff
 

was coupled through a computer to a controller on the spinning
 

simulator having a single gas jet only rather than the two pairs
 

of opposed jets used with the capacitive pickoff.
 

(c) The Unsupported Gyroscope
 

A concept studied by B. 0. Lange between 1963 and 1966 was
 

the "unsupported gyroscope," where the drag-free proofmass it­

self would be spun to make the gyroscope for a relativity mission.
 

A gyro of this kind would be free of suspension and mass unbalance
 

torques, to the level at least of the pickoff reaction force.
 
Since there is only one drag-free mass only one gyro can be
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operated unsupported, and it cannot be tested on Earth;
 
nevertheless there is, as Lange emphasized, attraction in the
 

simplicity of the concept. For a number of reasons Lange wanted
 

to put the unsupported gyroscope in a rapidly spinning spacecraft.
 

Lange's proposal was for a room temperature gyroscope.
 

Without superconducting shields the gyro would be exposed to
 

the Earth's magnetic field or at least a field of 10- ' or 10- 5
 

gauss obtained with conventional Mu-metal shields. If the
 

spinning body were of metal it would be subject to the eddy
 

current torques on a spinning conducting sphere first investi­

gated by Maxwell (7 3 ) in 1855, and these would cause drifts much
 

larger than the relativistic effect. If, on the other hand, the
 

body were an insulator it would pick up stray electric charge
 

and be subject to large electrostatic torques. Lange proposed
 

the compromise of a semi-conductor. He calculated that eddy
 

current torques on a silicon sphere might be reduced to an
 

acceptable level in a Mu-metal shielded spacecraft.
 

With the room temperature unsupported gyroscope, as with
 

the London moment gyroscope, the crucial problems are spin up
 

and readout. For spin up Lange suggested an eddy current method
 

similar to the one used by Honeywell in their room temperature
 

electrically suspended gyros. This, of course, would be subject
 

to problems like those discussed in Section C (2), of eddy
 

current heating and the need to switch down the spin torque by
 

some thirteen orders of magnitude. Room temperature operation
 

makes the task of getting rid of heat easier than with the
 

cryogenic gyroscope. Torque switching remains a severe problem,
 

which was never explicitly faced by Lange; possibly the rolling
 

of the spacecraft might help average the residual torque.
 

For readout Lange made the ingenious observation that since
 

the support and mass unbalance torques on an unsupported gyroscope
 

are negligible, the rotor does not have to be spherical. He
 

therefore proposed putting a flat on the pole of one of the
 

principal axes, from which the orientation could be read out by
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means of an autocollimator attached to the reference telescope.
 

An optical pick off of this kind could work to the resolution
 

limit of the autocollimator, which might be in the range 0.1
 

to 0.01 arc-sec for conventional autocollimators, or much less
 

for a Jones optical lever! 291) If the flat on the ball were con­

sidered objectionable one might try Everitt's suggestion
 

(Section C (3) (a) ) of a split quartz ball with a mirror at
 

the equatorial plane and a semi-transparent metal surface coating,
 

since this, like the semi-conductor, would be adequately free
 

of eddy current torques.
 

The unsupported gyroscope, though free from mass unbalance
 

torques, is subject to gravity gradient torques, and must have
 

extremely small inertial differences if it is to be applied to
 

a Gyro Relativity mission. A readout of the kind proposed by
 

Lange must therefore overcome similar difficulties to those
 

affecting conventional gyro readout, as discussed in Section
 

C (3) (a). The flat has to be located at the pole of one of the
 

principal axes of the ball, and the ball must be spun up about
 

that axis. Two schemes were developed to achieve these require­

ments; they were tried out in the laboratory by Lange and his
 

students on a spinning sphere mounted in an air bearing.
 

(i Active damping: To make the ball spin about the 

right axis, B. Parkinson developed a method of applying eddy 

current torques during spin up in a way that would force the 

principal axis into the spin axis(74)in a time short compared with 

the gyro's natural damping 
time.
 

(ii) Laser mass rebalancing: To align the flat with the
 

principal axis H.McKinely developed a mass rebalancer which
 

fired a laser at the spinning ball to change the orientation
 

of the inertial ellipsoid by removing small quantities of matter
(75) 
from the ball's surface. The firings were timed by reference
 

to the wobble in the mirror readout.
 

The combination of active damping and laser mass rebalance
 

proved remarkably effective. However the resolution never
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reached the level needed for a relativity experiment, and the
 

directions of the principal axes tended to change with time and
 

also to depend in a surprising degree on the temperature of the
 

ball. This effect was investigated by W. Blanchard. (76) A
 
change of a degree or so was enough to throw off the alignment
 

of the flat.
 

Application of the room temperature unsupported gyroscope
 

to the relativity experiment would mean solving the problems
 

of instrumentation and telescope design reviewed in earlier
 
sections of this report. Some but not all of the issues were
 

discussed by Lange. He proposed a telescope with a wide angle
 
readout based on a pyramidal image divider standing on a square
 
quartz column. Mechanical actuators would keep the pyramid
 

centered on the star image; an optical interferometer would be
 
applied to measure lateral displacement of the column. Null
 

shifts in the gyro and telescope readouts were to be averaged
 

by rapid rotation of the spacecraft. The problems of matching
 
and calibrating the readout gains and separating geodetic and
 
motional relativity effects were not addressed by Lange.
 

The technical shortcomings of the room temperature
 
unsupported gyroscope made us drop the idea, though particular
 

difficulties might have been solved. However the notion of
 
using a drag-free proofmass as a gyroscope, or conversely
 
using one of the London moment gyroscopes for drag-free reference,
 

remains intriguing and should be borne in mind in planning the
 
final Gyro Relativity mission.
 

(d) The DIsturbance COmpensation System (DISCOS) Program
 

Development of the DISCOS controller for the Navy's
 
Transit Navigation Satellite TRIAD I was begun in 1968 under
 
subcontract from Johns Hopkins Applied Physics Laboratory.
 
The program was directed by D. B. DeBra. Simulation and
 

studies of mass 'attractiondisturbance on the proofmass
 
were done mostly by A. Fleming and M. Tashker. Electronics
 
design was by R. A. Van Patten and R. R. Clappier with support
 
from M. Abelow on loan from Lockheed Missiles and Space Corporation.
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Mechanical design was initiated by the late J. Mathiesen and
 

carried on after his death by R. Hacker, also from Lockheed.
 

The design was for a satellite free from extraneous dis­

turbances down to the level of 10- 11g. This goal was reached:
 

in fact the measured in flight performance after correcting
 

for initial errors was 5 x 10- 12g.
 

At 10-'g mass attraction effects on the proofmass are
 

of dominant importance. To separate the proofmass as far
 

as possible from most of the satellite mass, the satellite was
 

formed in three bodies (a TRIAD) joined by extendable booms,
 

with the DISCOS a separate central package as illustrated in
 

Figure 82. The top body contained the power supply; the bottom
 

one the transmitter, receiver, telemetry and antenna. The
 

satellite weighed 86.6 kg. It was launched in a collapsed
 

form; roughly a cylinder 1.6 m high, 0.75 m diameter. In
 

orbit both booms were extended 2.7 m. Besides minimizing the
 

problems of controlling mass attraction asymmetries on the proof
 

mass the TRIAD configuration provided simple passive gravity
 

gradient stabilization. A small spinning wheel was included
 

in the spacecraft to enforce 3-axis stabilization relative to
 

a locally level system of coordinates.
 

The proofmass was 22 mm in diameter, placed in a 40 mm
 

diameter cavity. It was made of a 70/30 gold-platinum alloy
 

and weighed l]0gm, or 0.0013 of the satellite mass. The alloy
 

was chosen for its high density and nearly zero magnetic sus­

ceptibility. The cavity contained three mutually perpendicular
 

pairs of electrodes to sense the position of the proofmass
 

by three capacitance bridges: the three signals were used in
 

a control loop to fire three corresponding pairs of gas jets.
 

In orbit the proofmass floated in the cavity with a 9 mm
 

clearance. It was permitted to move over a deadband of +0.9
 

mm before the valves were fired, which meant establishing a
 
-
specification of 10 11 g/mm for the gradient of the disturbing
 

forces. A caging mechanism was provided to force the proof
 

mass against one end of the housing during launch.
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Figure 83 (a) illustrates the DISCOS control system
 

designed by Stanford including the pickoff, a complete propul­

sion system, and the electronics to control it and interface
 

with the rest of the satellite. The functional diagram is
 

shown in Figure 83 (b). All parts of the satellite not
 

essential to the control system were located in the two bodies
 

at the ends of the booms. In the final configuration the con­

tribution to mass-attraction uncertainty from the two end
 

bodies was restricted to a few percent without unusual fabrication
 

tolerance or accuracy in determining mass properties.
 

Not surprisingly the mass distribution in parts closest
 

to the proofmass required most attention. The beryllium oxide
 

housing for the proofmass had to be allotted a share of the
 

error budget five times larger than any other single component.
 

Initially the housing represented 40% of the mass attraction
 

error budget, but we were unable to obtain material of adequate
 

density homogeneity to meet even this figure, and were forced
 

to redistribute the error budget after the initial specifications
 

had been written out.
 

Mass attractions of DISCOS components were calculated with
 

great precision. With the regulator, for example, terms up to
 

the third moment of mass were included in an expansion about the
 

regulator mass center. The first and second moment terms were
 

found experimentally by measuring the mass and the six elements
 

of the moment of inertia. The third moment had to be calculated
 

from drawings of the component parts and weights determined
 

during assembly. The location of the regulator involved an
 

accumulation of tolerances from the pickoff housing through the
 

upper support tube, the top lid, and the propulsion subsystem.
 
Fabrication tolerances in the structure as tight as 0.5 mil were
 

required to model the mass attraction adequately. Similarly fab­

rication tolerances of measurements of 0.1 mil were required in
 

the pickoff housing and thickness measurement of the propellant
 

tanks. Finally a compensation mass was added immediately
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above the pickoff housing. The residual attraction before
 

compensation was calculated as 83.6 x 10-'g in the vertIcal
 

direction and only 0.8 x 1011g in the more sensitive "along
 

track" direction. With the compensating mass the maximum dis­

turbances were calculated to be 2 x l0-'g normal to the orbit
 

plane and 0.7 x 10- 11g along track.
 

The propulsion subsystem was a conventional "cold-gas"
 

propulsion system. However to satisfy the mass-attraction
 

requirement it was necessary to have two toroidal propellant
 

tanks, placed equidistant on opposite sides of the proofmass
 

in a configuration making the gravitational analog of a pair of
 

Helmholtz coils. Without some such arrangement there would
 

have been changes in the mass center, center of attraction or
 

mass attraction gradient of the propellant as the propellant
 

mass decreased with time. Also the temperature differences
 

across the propellant tanks had to be held below 2 0 C to prevent
 

gas redistribution from compromising the mass attraction speci­

fication.
 

Electric and magnetic forces were kept to much lower values
 

than the mass attraction forces. Radiation pressure due to
 

temperature differences in the pickoff housing was kept small
 
by the choice of beryllium oxide as the insulator. Beryllium
 

oxide is unique among insulators in having excellent thermal
 

conductivity.
 

The entire DISCOS including its electronics, some telemetry
 

and common electronics also housed in the DISCOS package weighed
 

10.6 kg .and consumed less than 3W power. It was expected to
 

operate for over a year before the propellant was depleted, and
 

that expectation was realized.
 

The satellite was launched on September 2, 1972. It was
 

intended to be placed in a near circular orbit (e = 0.006) at
 

an average altitude of 874 km. Because of a malfunction of the
 

launch vehicle guidance the actual orbit had an average altitude
 

of 788 km but the correct eccentricity. The difference had no
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significant effect on the DISCOS experiment. A failure in the
 

satellite telemetry system two months after launch drastically
 

reduced the aeronomy data because the signals giving the proof­

mass position were lost; however telemetered DISCOS data
 

included for each of the six thrusters the accumulated
 

on-time in every four minute interval and from this in combin­
ation with tracking data much useful information was still to
 

be had.
 

Figure 84 illustrates a sample of vector ball position data
 
before the telemetry failure. The discontinuities in the
 

parabolas correspond to thruster firings. From the velocity
 

discontinuities, the thrusters could be calibrated in orbit.
 

The thruster on-time data included one day when the sun was
 

nearly normal to the orbit plane. In these conditions the
 

radiation pressure and drag forces were nearly orthogonal.
 

The data revealed three interesting features:
 

(i) 	the drag force was on the average only 20% as large
 
as the radiation pressure
 

(ii) the drag force, consistent with the Jacchia model
(77 )
 

and the polar orbit, had a strong orbital frequency
 
component
 

(iii) surprisingly there was a large radial bias.
 

The last observation triggered an intensive search for the source
 

of bias, the most likely cause being a displacement of the center
 

of mass of the satellite from the center of the proofmass
 

cavity. A 1 cm maladjustment in one of the boom lengths would
 

have been enough to account for the bias. Had the telemetry
 

not failed it would have been removed by adjusting the boom
 

lengths in orbit.
 

TRIAD tracking experiments were carried out for both short
 
arc predictions with time spans of two to three weeks and long
 

arc predictions with time spans up to several months. The main
 

effect of an unmodelled along track bias is a quadratic growth
 

of the navigation error, amounting to about 110 meters in 10
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days for a self-bias force of 10-11g. Four different problems
 

had to be solved to improve the results and reliably estimate
 

the DISCOS self-bias force:
 

(i) correct errors in the Earth-gravity zonal h&rmonics 

(ii) correct certain ;resonant non-zonal harmonics 

(iii) correct for differences in rate between the two 
universal times UTi and UTC. 

(iv) correct errors in the numerical integration process 
used to generate the ephemeris
 

Data and details are given in Reference (78). The final
 

results showed no evidence of an along track bias force greater
 

than about 5 x 10- 1 2g.
 

L. CONCLUSION AND MISSION DEFINITION STUDIES
 

The work described in this Final Report on NASA Grant
 

05-020-019 completes the conception and underlying technological
 

development of the Gyro Relativity experiment. Important tasks
 
remain to be done, but we can now say as we could not have done
 

earlier that clear paths can be seen ahead in all of them.
 

The first Mission Definition Study was undertaken by Ball
 

Brothers Research Corporation in cooperation with Stanford in
 

the period August through December 1971. At that time the program
 

was far less developed than it now is: the gyro had not even
 

been levitated and spun, let alone read out, and there were many
 

uncertainties about liquid helium in space. Accordingly BBRC
 
recommended a three-phase program in which the final 1 milliarc­

sec Relativity mission would be preceded by two test flights,
 

the first to demonstrate dewar technology and the second to
 

demonstrate and evaluate gyro performance in space. The overall
 

cost of the three flight program including prototype hardware,
 

launch costs and a complete backup experiment was estimated at
 

60 million 1971 dollars. The flight would last one year.
 

The second Study "Mission Feasibility for Stanford Experi­
"
 ment on Scout, (61 ) completed in June 1973, was aimed at
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developing a mission inexpensive enough to be considered for
 

flight under the Explorer program. Building on experience
 

and fresh thought since 1971 we suggested replacing the test
 

flights of the first study by a Relativity mission of lower
 

accuracy than finally desired, probably given about 0.1 arc-sec/
 

year, that is,a 1% measurement of the geodetic term. A mission
 

of this kind could be performed in an experiment lasting about
 

four months, launched on Scout in the 370 minimum energy orbit
 

from Wallops Island. The altitude would be 300 nautical miles.
 

The satellite would not have a drag-free controller, but advan­

tage would be taken of averaging effects in the aerodynamic
 

drag, which were by that time better understood. (25 ) The Study
 

confirmed the feasibility of a Scout Mission, although the
 

weight margin of 3% on a 170 kg spacecraft was thin. The cost
 

was estimated by Ball Brothers Research as $10.4 million 1973
 

dollars. The Scout Mission was to be followed at a later period
 

by a full-accuracy 1 milliarc-sec mission lasting one year.
 

Some dissatisfaction was felt with the concept of designing
 

large parts of the Gyro Relativity experiment twice over, once
 

for Scout and once for the final all-up mission. This, together
 

with the slender weight margin on Scout as well as doubts that
 

existed in some minds (not ours) concerning the realism of BBRC
 

price estimates led to the third study "Mission Definition for
 

a Relativity Explorer for the Stanford Relativity Experiment," 
(7 9 )
 

completed in November 1975. This compared a number of approaches
 

with either Shuttle and Delta launch to a two flight mission
 

in which the first flight would obtain relativity data of the
 
20 milliarc-sec/year level and the second at or below 1
 

milliarc-sec/year, with and without recovery of the first
 

spacecraft. The price estimate for the first flight was
 

estimated at $24.06 million 1975 dollars, with the relatively
 

small addition of about $8 million for a re-flight.
 

In November 1975 in response to NASA AO-6 we submitted a
 

proposal for a Phase B study of a first flight at the 20
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milliarc-sec level assuming Shuttle or Delta launch and a price
 

of $25.5 million. The proposal was given a Category 3 rating
 

as being of high scientific importance but not yet ready for
 

a New Start.
 

We are continuing to study flight plans for the experiment
 

in cooperation with NASA Marshall Center and industry.
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APPENDIX I: 	Wilkins' Method for Evaluating the Precession of a Gyroscope
 
in Orbit Around the Oblate Earth
 

(1) INTRODUCTORY
 

In 1969 R. F. O'Connell (1) and D. C. Wilkins (2) independently found
 

that the Earth's quadrupole mass moment the "equatorial bulge" would modify
 

the geodetic precession of the gyroscope predicted by Schiff by an amount
 

- 2
of about 10 arc-sec/year -- a factor of ten higher than the expected
 

measurement limit of the Gyro Relativity experiment. The initial inves­

tigations gave the magnitude of the quadrupole precession angular velocity
 

at any point in space. For comparison with experiment, however, what is
 

needed is not just the angular velocity but its time integral. The angular
 

velocity depends on the field and the velocity as
 

vxg
 

where v is the velocity with respect to the Earth's center of mass. Because
 

of the bulge the gyro does not follow an-exact Keplerian ellipse, so we are
 

faced with the task of integrating a complicated vector function over time.
 

Wilkins' procedure applies a first order perturbation method due to
 

Geyling. This approach has substantial advantages over one using
 

Lagrange's planetary equations: a) it avoids the complication of converting
 

the orbital elements to rectangular coordinates, and b) it works for orbits
 

of small eccentricity -- the kind we are interested in. To lowest order
 

the effects of eccentricity and Earth oblateness separatL. An eccentricity
 

- 2
of 10 is several times more important than the bulge. The solution
 

developed below shows that even with the most accurate currently available
 

Earth-nodel, 	the approximations prevent us from calculating the orbit to
 

sufficient accuracy for more than a few days at best.. Thus tracking
 

information on the position and velocity of the satellite is required in
 

evaluating the effects.
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(2) WHAT EFFECTS ARE IMPORTANT?
 

(4)

The contribution of the Earth to the rate of precession of a gyroscope


is represented by the angular velodity
 

a=a +a
 
G -M
 

i
 = 3 (vx g) + 13 3(L -r) r 


r2
2c2 _L 


where L is times the Earth's spin angular momentum, and r is the
 

satellite position relative to the Earth's center of mass. For a satellite
 

in orbit for one year, the first term, "omega-geodetic," causes a drift
 

of 7 are see, while the second, "omega mass-current," causes only 0.05
 

arc sec drift.
 

To ascertain the size of effects from higher multipole moments, we
 

expand the potential in zonal harmonics (5)
 

V = G l-1 J (R/r)n p (cose)I 

where GM = 3.98601 X 10 cm3 sec - 1
 

8R = radius 6.37816 x 10 cm., 
-6
 

J2 = 1082.6 X l0

-
and the higher harmonies are at most of order 10 6 .
 

It is reasonable to suppose that'if an acceleration of magnitude g
 

produces some deviations in position in a given time, than a smaller force
 

will produce a smaller deviation in proportion to its magnitude. This
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being so we expect that the nth harmonic will produce an effect smaller
 

than the zeroth (of magnitude 7 arc-sec/year) by roughly
 

J (R/r)n
 

Thus, over a single orbit, only the quadrupole moment should make a 

measurable contribution, of magnitude - 0.01 arc-sec. If we considered 

the mass-current term alone, then even the quadrupole moment becomes 

unimportant. If the eccentricity is a few percent or less, we can "smooth 
0 

out" the time orbit to a Keplerian ellipse. Suppose the resulting ellipse 

has semi-major axis a, normal w , and an arbitrary inclination to the 

equator. To first order in the eccentricity, the angle of drift after 

one complete orbit can be found by a straightforward integration: 

2 dt V 1 [L- 3 (L " W)]
 
-N (GM a
 

After a number of orbits the higher moments make their presence felt
 

through secular deviations in the orbit. We will discuss this problem
 

in the last section.
 

Non-gravitational perturbations such as radiation pressure or atmospheric
 

friction do not effectthis"drag-free"satellite. The satellite senses
 

the position of the gyro ball and avoids bumping into it by means of gas
 

jets; thus permitting the ball to follow a true geodesic. Unfortunately,
 

the gyroscope responds also to the gravitational attractions of the satellite
 

itself. In the experiment planned this "self-gravitational" acceleration
 

will not pose a problem since it will amount to no more than 10'g.
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(3) 	 SOLUTION OF PROBLEM 

Euler's theorem (6) tells us that a sequence of rotations is equivalent 

to a single rotation. Let us represent the exact angular drift of the 

gyroscope axis by ' . The direction of 9 is the axis of rotation and 

its magnitude gives the angle of rotation under the right-hand rule. 

In spite of the rotation, q is not a true vector (in contrast to the
 

axial vector Q ) since it doesn't obey vector addition. We can write
 

(t) = ft 9 (t)dt + e (t) 	 (1) 
0
 

where E gives the error. An argument developed elsewhere 

[~ sin at2] ft jillt 	 (22 

where a denotes the largest angle (i.e. closest to 900) that the 

direction of !a (t) shifts through. For example, when a (t)does not 

change direction, X = 0 , and (2) says there is no error, which we know 

to be correct. For the gyroscope in orbit one year, 

f 1 	 . 12(t)I = 3× 1o-5 
0 

so that the fractional error is still less than the experimental uncertainty
 

-4
of 10 .
 

We wish to evaluate 9 for a single orbit. The method, due to Geyling,
 

is as follows: set up an imaginary circular orbit ("nominal orbit")
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which well approximates the actual trajectory. The position of
 

the satellite is then given by its rectangular coordinates (uv,w) relative
 

to the position, Ot(t), which the satellite would have had on the circular
 

orbit had no perturbation been acting. By the term "perturbation," we also
 

include initial conditions of position or velocity which would have led to
 

deviations from the nominal orbit.
 

The nominal orbit has radius r , is inclined to the equator at an 

angle i , and 0 is the angle from the node to 01 u points radially 

outward, w is normal to the plane of the orbit, and v , which points in 

the direction of the unperturbed motion, complete the triad. 

We are interested in determining
 

f A (v X g) dt, 

where, with subscript "o" denoting unperturbed motion,
 

A (v X g) = (v X g) - (v X g ) 

both terms on the right being evaluated at the same time. 

To first order, 

A(v x g) = AvX g + v0Xg 

= zv X g + V )< '--

Define the quantity I :
 

f X g +V d (AV dt
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We proceed to determine a general expression for I in terms of the 

deviation, (u v, w). First we put 

v = V0 0 

go - go = -Vo 6u (3) 

(The V is~to be distinguished from v to be introduced later.)
0 o 

Set 

A r = -u + v .v + , .w 

in order to find Av and Ag , we may not simply differentiate u, v, v. 

The (u, %,.w) system is rotating relative to an inertial framat with 

angular velocity, 

= e w ('Thus u = -wv etc. 
dt
 

Thus, the time derivative of Ar as seen from an inertial frame is
 

A V d (Ar), + w X Arat _ 

where , w-,are treated as time-independent in the first term 

Ag is then obtained from iAv by the same process. In this way, one finds 

&V ( v ) f + +Ue) ) + w+ 

Ag = (,a- 2a J2&u)L (4) 

+ (v+ 2 g g 2 V) + W+ 
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In the expression for Ag one recognizes the Coriolis, and centrifugal
 

accelerations. A more laborious way of obtaining these same results
 

is to differentiate the expressions given by Geyling for (6x, Ay, Az)
 

and then convert to the (u, v-, w-)basis.
 

It is convenient to define two mutually perpendicular unit vectors
 

a. b in the plane of the nominal orbit. b points toward the 

ascending node, N . a is at an angle of 900 to t , going in the 

direction of the motion. If the x-axis is taken coincident with the 

line of the nodes, 

a cos i•3 + sin i • k (5) 

We note moreover that
 

u = cose8i + sine cosi•j + sin 6 sink 

v =-sine I + cose cosi• j + cos e sin i - k 

w= -sini j +cos i *k (6)
 

From Eqs. (3) - (6), 

Av x g + v0 -g = V0o ^U 

+ (2u62-u + 3 e)w 1 

Vi2u 1 0e u + 3v6e w 

(;sine ) - 2w 0 cos e 



366 

+ [a d( cbs e) + 2 6e sin e 

With de = 6 dt; the time integral of this is immediat'e: 

±I ('t) = jot A( vx_g) at 

e 
--0o ud e . U/
.. 0 

0
 

+3 4 + [j sin O)/O iJ 0 

0 0 

Co
,e 


- 2fv cs Od] ; 

0 

e
 

+ [ Cos 6)2 e+ 2 w sin 0 d j 
e f 

o 0 

"
e = .0(t) -isthe angular position of 0 at time t - 'e has the 

constant value
 

1/2
 

Define the angle f by
 

f= e- e
 
0 
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Then the general homogeneous solutions (O) of the coupled second-order
 

linear differential equations for u, v and w is
 

U = Vo+ 4tu) + 31C) 

+ - sin f 
0
 

v =(v 7. 3 0 + 2 u f 

2
 
+ 2( + 3 u)sin f + 0 cos f 

1. sin f + w cos f (8)
 
0 0 

These formulae describe ordinary Keplerian ellipses. The six 

initial conditions of position ahd velocity are specified through choice 

of the six parameters 0 )(U. w.....y It would be desirable
 

to express the parameters of the osculating ellipse in terms of these
 

others, since the former are more familiar.
 

We suppose that the satellite'starts out at 0' or
 

U =V =W = 00 0 0 

Further without loss of generality, we may choose the nominal orbit so
 

that
 

w = 0 
0 
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We seek the following parameters of the ellipse as a function of
 
0
 

and eccentricity (e), semitmajor axis (a), 6 of the perigee (ep).
0 


And conversely, we express Uo and v as functions of the ellipse

0 0' 

parameters. 

Treat U , v and e as small quantities of the first order 
0 0 

and throw out higherorder terms. Using Eq. (8),
 

2v
 
0
 

r = r +u = (r + 2 /ec) - Cos f 

+ sin f 	 (9) 

Let p = semi-latus rectum of the ellipse and e' = exact 6 of the
 

satellite (which differs from 6 by a term of the first order.) In terms
 

of p , the equation for the ellipse is (11)
 

r = 	1+ P f- e cos (e ­
1 + e cos(' - 6)
 

= p- [e p cos ( 0o- %)p Cos f 

+ fe p sin (or. P sin f 	 (10) 

Identifying coefficients in (9) and (10), and noting thatp = a to 

.first order in e , we find 

1'2 2
 

e u + 4
 
0
 r-
c 
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a = r + 2
 
c 
 0 

o 

sin (e-o) 0) 2 

402
/60 + 

2 v
 

cos ( - e) = 2;
 

Inverting these equations,
 

u = -ea sin (e- e6) 

(OP)
 

v = ea cos (e- eo ) 

If a perturbing force is acting, we require in addition the particular 

solutions for u, v and w . Geyling give's the particular solution for 

arbitrary perturbing potential. The correct orbit having desired initial
 

conditions, is then the sum of the particular solution and the appropriate
 

homogeneous solution.
 

The particular solution for the Earth's quadrupole potential (2)
 

is
 

u = A- 1 + sin2 i ( + cos 2 e
 

v = A [(2 - 3 sin2 ) + 1 si2 i sin 2 (13)
 

w = A sin 2i cos 0--- sin
 
2 4­
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where
 

2 2
 
c
 

For the sake of simplicity we decompose an arbitrary orbit into
 

three parts: P, H 1 and H 2 . P is the particular solution (14).
 

H 1 is that homogeneous solution which added to P yields zeroinitial
 

conditions, i.e.
 

U/ = v/o = . . . . . . = = 0 

H 2 is Another homogeneous solution for which u0 = v0 = w0 = w = 0,
 

while u and v may not vanish. H 2 has the effect that the initial
 

osculating ellipse lies in the pzhc. of the nominal orbit and 'an have
 

a finite eccentricity. If we represent the total orbit by T , then 

we can write symbolically 

T = P + H 1 + H 2.
 

Since, by (7), I is linear in the deviation, it follows that
 

IT = I + I +
 

T -p - Hl -IH2
 

Over how long a time interval should we evaluate I ? One of the two
 

secular perturbations of a satellite orbit by the quadrupole moment is the
 

regression of the nodes: "The orbital plane rotates about the Earth's
 

axis. in the direction opposite to the satellite motion'. (5) The angle
 

of regression for small eccentricities is about
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10-2 ( f )35 cos i radians per orbit,
r 

where i is the inclination. In deriving his linear equation for
 

the deviation, Geyling threw out second order terms such as 0(v2).
 

In one orbit, the regression of the nodes may make v as large as 10 2r.
 
2
 

The fractional error made in neglecting v then amounts to perhaps
 

-4
10 . This means that we may integrate for a thme up to one orbital
 

period before increasing deviations force us to choose a new, closer
 

fitting nominal orbit.
 

We expect to obtain a particularly simple result if we choose one 

period, TO , of the nominal orbit, corresponding to the angular range 

e0 to e = 0
0 
+ 2TT . With this choice a good deal of cancellation o 

will occur since most of the terms of the homogene6us and particular 

solutions are periodic with period 2v or v . For 

t = T , eq. (7) yields 

p (T = go 7TA [8-12sin2 i] q 

sin2i [-+t ]}. 

And, for an arbitrary homogeneous orbit,
 

I (-) giV i 10- 2 20Ouw
20
 

0- cos O + 2w sine a 
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2-Lb sn - 2 w Cos eo}0 0 

Using this we obtain
 

I (T) = ggrA 5 sin 2 i cos 2 
i
 

+ 	 sin 2 i cos 2 eo sin 2 i sin 2 e

2 0 20
 

=golr j5 ea cos (O eo)> 

If we sum the three I's and include
 

2g r c w 

for 	the nominal orbit, we find, after multiplication by 3/2c2
 

(Tw e co(s. 0) W 
rC 

2
+ 321 [ 8-sin i (12- 5cos2e01 T 

-sin 2i[ :1.-CS a + 7 ~2ej} 	 j 
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where
 

3V 4.17992 cm
(C 


-J2 = 8.12 x 10 

It should be kept in mind that r e, e, , i, a , w, all 
cp 0 

refer to the instant when the satellite starts the orbit. We have chosen
 

r as the initial radial distance.
 

Several checks on (14) are possible. First one verifies that for
 

either a polar (i = w/2) or equatorial (i = o) orbit, 0 is strictly normal
 

to the orbital plane, as is demanded by the symmetry of the situatibn.
 

When the quadrupole moment'i ishes, an elementary calculation shows
 

that for one complete elliptical orbit
 

2 0 ___v xg dtc 37T(22) W 

2
 
202 x a (1 - e2)
 

By Kepcr's third law, however, the time of one complete ellipse, Te
 

Ta 3/2 3 na 
T 0 (Ti1+ 

where 6sa = a - r Thus, to first order 

c3c
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3 GM
 

r \ 2 rJ
 

in agreement with the second term of equ. (14) by virtue of eqsi (11) 

and (12). 

As a check on the quadrupole term, consider a circular equatorial 

orbit of radius r . The quadrupole potential of 
c 

Ir AGMn2
) r3 (1/3 -Z /r) 

r
 

implies a force on the satellite of
 

F GMm/ (1
. 2 --r­
r
 
c
 

It follows that the tangential velocity exceeds that in the unperturbed
 

orbit by
 

v - g-g -- A;
 

A simple integration shows
 

T
 

fo vXg dt - A g W 

This is seen to agree with eq. (14) if one sets i = 0 and' replaces 

e cos (e - eo) by 2 Vo (rc)­
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(4) LIMITATIONS OF THE ANALYSIS
 

As mentioned earlier, the approximations we have made render
 

our results increasingly inaccurate as we extend them to longer times.
 

in this section, we seek to examine the question of errors further.
 

First, let us determine the size of errors in position and velocity
 

which can be tolerated in using eq. (14). The required theoretical
 

accuracy is at least one part in 7000. Consider a polar orbit. We break
 

up into an unperturbed part, a part due to eccentricity and another
 

part due to the quadrupole moment:
 

We take as independent variables the radial distance (r) , speed (v) 

and, orientation of the orbital planes (w). Apart from a uniform 

factor of 37F (GM/c ) , we then have 

-
0 

= r­
r c

O 

(15) 
- v 

-- (f )l/2 

3J(~
=~~~ 
c
 

In the last expression, we have omitted a cos 2 e0 since this term
 

averages to zero over many orbits.
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Define
 

ft4. Oe 0c 

ITO To + e T 

here A x denotes the signed error in the quantity x . Using (15) 

our accuracy requirement reduces to 

2 'Inrc5 nvo 
t 2 + + (An)2 < (i.4 *lo- 4 (16)' 

0
 

We have replaced L w by the equivalent A a , the error in the right, 

ascension of the node.(8) For a near orbit with 

r 4 x l03 mi
 

V b 1. 8 x 104 mi/hr; 

(16) implies the following limits on the permissible errors
 

t6rl < 1/2 mi. 

IAV I 1/2 mi./hr. (V= spedd) 

I I 30 are/sec. 
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It is understood that in accordance with (16) all three uncertainties
 

cannot approach their maximal values at the same time. If one is large
 

the other two must be small. Although we have been treating a polar orbit,
 

the limits in uncertainties of position and velocity should be typical of
 

all orbits.
 

In the preceeding we have assumed that our formula for a single orbit
 

is correct. We ask now under what circumstances formula (14) ceases to be
 

accurate enough.
 

Let us list the two types of mathematical approximations implicit
 

in the Geyling method:.
 
M.I)neglct o O~u2V 

M.l) neglect of O( 2V ) terms. (V is the perturbing potential.) 

M.2) neglect of O(u ) terms. 

a)' e2 

b) e J2 

2 

The first approximation occurs when Geyling evaluates the perturbing
 

potential at the unperturbed position 0' rather than the exact position.
 

For this reason the equations do not constitute a true first-order theory.
 

Under M.2) the quantities e2 etc. give the expected fractional
 

errors in position (and 0 after a single orbit. The three terms represent
 

the different types of second-order corrections.
 

-2
We see that an e > cannot be tolerated since it leads to the 

- 4
maximum allowable error 10 . If larger eccentricities are contemplated, we
 

(8)  
must either carry the theory to higher powers of e or drop the attempt
 

at analysis and use a computer.
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The method also involves certain physical approximations in that we
 

have neglected other perturbing forces. If gm refers to the field
 

of the nth multipole, then the accelerations neglected are
 

-
(each ; 10 g )
 

10-9  
P.7) self-gravity, g5 ( 1- g )
59
 

We mentioned earlier our assumption that if two perturbing forces
 

f, ' f2 are small compared to go then the ratio of the respective
 

deviations they produce is f :f From the orbit formulae we
 
-- 1 2 

can show that in one orbit -the quadrupole moment yields 

'; r VP (R/r)2 
AV = V(T) 

go
 

Accordingly for n orbits a perturbing acceleration f should yield
 

r ( rn) •
 
-- go
 

This is in the nature,of an upper limit since if f oscillates sufficiently
 

the resulting deviation may be much smaller.
 

We are now in a position to answer the question "to how many orbits­

-2
may we extend the analysis?" For e as large as 10 , the neglected 

e terms are dominant and, as remarked earlier, we can perhaps follow the 

satellite through one or two orbits. At that point, we must obtain precise 

2 -6
initial data from tracking. As e falls to 10 , the neglected forces 

of the higher multipole now begin to dominate The critical number of orbits for 

2 



379 

= r/7OO is then 

1 -6 20 (e2 : 10-6) 

6 x lo 7000 

An alternative procedure to our analytic approach is numerical inte­

gration on a computer . Or one may supplement the analysis with 

accurate computer determined satellite positions. Since current knowledge 

(16) of the gravitational field is accurate to one part in 108 , the 

number of orbits to which we can track by computer may be 100 times as 

large as the above or 2000. This estimate however, is overly generous 

since it does not include the uncertaintly of the velocity. If we make 

the plausible assumption that our kncz;ege of velocity deteriorates at 

the same rate as that of position, and if we neglect AL , then (16) 

says that the critical number of orbits is reduced by a factor of 6 to 

n 300.
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