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At a recent conference of the American Geophysical Union it was

INTRODUCTION

concluded that existing data are inadequate to provide def.nitive models
of the earth's magnetic field (Cain, 1975). One of the main reasons is
that complete spatial coverage of only the field magnitude at any instant
of time is insufficient to uniquely define a vector field. This problem
was first recognized by G. Backus and as discussed by Stern 1975, leads
to large errors in certain terms of the spherical harmonic expansion of

the earth's field.

As a consequence of the forgoing problem many investigators have sug-
gested that arsate]lite survey of the vector magnetic field is required. The
program proposed by MASA to accomplish this survey has been called MAGSAT.

At the present time, several study contracts have been let by MASA to
examine the feasibility of the proposed survey. These studies include
three different topics; A stable boom design study, An attitude transfer
design study, and A vector magnetometer design study.

This report is devoted to one aspect of the vector magnetometer
design study, a procedure for calibration of the vector magnatoweter. This

report is number 3 in a series of three reports under preparation by the

University of California in Lés Angeles on contract #NAS 5-23660. The preceding
reports McLecd, 1976, 1977, described a triaxial fluxgate magnetometer
suitable for the proposed mission.

The body of this report is divided into three main sections. The first
describes necessary preparations of the test facility. The second describas
the calibration procedure for individual sensors. The third dascribes

procedures for calibrating the sensor assembly.



SPECIFICATIONS OF THE VECTOR MAGNETOMETER

The specifications for the vector magnetometer described in RFP-566233/326
are included here as Appendix Al. These specifications may be summarized
as follows. The design goal for the magnetometer is to measure three
components of the magnetic field in sensor coordinates with a resolution of
one gamma and an absolute accuracy better than five gamma in a + 64,000
field. This is to be accomplished for at least one year over a broad range
of sensor and electronics temperatures. The magnetometer must be
constructed so that its accuracy is not impaired by extreme thermal shock
and exposure to acceleration. The sensor offsets must be less than 0.4Y and
cannot drift more than this amount in one year. HNoise in the sensor
outputs must be less than 0.1y zero to peak in the bandwidth 0.1 to 25 Hertz.
Magnetic axes of each sensor must be qrthogonal within 0.1 degree, known

to one arc second and stable to five arc seconds.

COMMENTS ON SPECIFICATIONS

As pointed out by the author in his proposal for this design study,
these specifications far exceed those of any magnetometer previously
carried by satellite and in fact exceed those of most ground magnetic
observatories. The only detailed report of an observatory which meets

these specifications is by Yanagihara, et al., 1973, deascribing the Kakioka

observatory in Japan. It should be noted that this observatory has a staff
of nearly 50; its instruments are on fixed granite pillars in temperature
controlled rooms; calibrations of all instruments are carried out on an
almost daily basis.

The author believes that most of the magnetometer specifications can

be met by careful electronic and mechanical design. The most serious problem



however, is angular calibration and stability of the sensors. For example,

according to Yanagihara et al., 1973, ordinary magnetic theodolites can

determine the direction of an unknown field to no better than 6 arc seconds.
A specially built theodolite in use at Kakioka (A-56, universal standard
magnetometer) could only obtain 3 arc seccnd accuracy. A more recent
version of this instrument, the DI-72 has obtained an accuracy of one arc
second. '

It goes without saying that the accuracy of a calibration can be ng
better than that of the test facility. Thus, from the preceding discussions
it would appear that the calibration of the orientation of the test coil
will be limited to about 6" unless special equipment is available. This
in turn would impose a similar error on the magnetometer calibration.

In this report we develop an alternative procedure for angular calibration
that does not require a magnetic theodolite. Instead, we use measurements
made by the sensor under calibration to simultaneously determine the
orier*ation of both the test coil and sensor. As we will show, this
procedure is limited by the accuracy with which the magnitude of the
calibration field can be measured and by the accuracy of the sensor's

sensitivity and offset.

DESCRIPTION OF TEST FACILITY

To meet the specifications of AppendixAl it will be necessary to
carry out the magnetomzter calibration in a well calibrated magnetic
test facility. At the present time there are only two such facilities
in the U.S., one at Goddard Space Flight Center and one at the Ames

Research Laboratory. The Ames facility has a rather small set of calibration



coils and no provisions for thermal-vacuum calibration, consequently,
we will assume that the test will be carried out at GSFC.

A brief summary of some of the facilities available at GSFC for
magnetometer testing is given in a report by C.A. Harris, 1971. The
magnetic field component test facility consists of a 22 foot diameter
three component coil system with remotely isolated magnetometer and
control instrumentation buildings. The orthogonal field cancelling coils
are sufficiently large that nearly any magnetic field may be produced in
a sphere of diameter 3 feet. The main winding of each coil is connected
to one axis of a 3 axis resonance magnetometer which senses the variations
in the earth's field and feeds back a current which cancels this field.
The main winding is also connacted to a D.C. field generator which can
produce fields of up to 60,000¥ in 0.1¥ steps. A second winding on each
coil is used to cancel the temperature dependence of the main winding.

A third winding is used to mimimize {ield gradients over the test
volume.

The orthogonal coils are oriented with X horizontal towards magnetic
north, Y horizontal to the east, and Z vertically downward. The field
generators can produce 60,000Y in Z, 25,000% in X and 6,000 in the east-
west direction. Accuracy of field nulling is of order 0.2). The gradients
across the 3 foot test volume are such that the field does not depart

from the center value by more than 0.6%.

DESCRIPTION OF TEST EQUIPMENT

Several pieces of test equipment of high precision and accuracy are

required to carry out the calibrations of the test facility and magnstoneter.



In this report we assume the following items are available.

1) 6 digit - digital voltmeter

2) 3 précision resistors

3) Proton precession magnetometer

4) 2- 3 component station macnetometers

5) 2 - Optical theodolites (autocollimaters)

6) 2 - Precision levels

7) Optical octagon

8) Brass fixture for rotating sensor assembly

9) Programmable digital data logging system with analog and
digital inputs as well as keyboard entry

Calibration of Test Facility
To accomplish the absolute accuracy required by the mission requirements
it is necessary to calibrate the test facility first. Steps in this

procedure are described in the following subsections.

Measure Calibration Coil Constants

Place a precision resistor in the current loop from the DC field
generator to the main winding of each coil. Monitor the voltage dron
across the resistor with the digital voltmeter. Fix the proton precession
magnetometer at the center of the test volume. Increment the field
generator in 5000 steps across the full range of the proton precession
magnetometer (< 20,000-60,0003). For each step record the field measured
by the proton magnetometer 10 times and average. Also record the reading
of the digital voltmeter and convert to current using the known resistance.

Repeat for the same range of negative field values.



Fit a straight line to the field versus current data determining
the coil constant (slope) and coil offset (intercept). B = kI + Bo.
Also detérmine the probable errors in these constants using the known
accuracy of the precision resistor and digital voltmeter as well as the
standard deviation of the proton magnetcmeter measurements. Assign a
probable error to any test field calculated on a basis of this formula.

If the coil offset is not zero or there are systematic departures of
the field from the linear relationship then a more elaborate calibration
will be required. This possibility exists since the calibration field
generator output is mixed with the output of the resonance magnatometer

which nulls the earth's field.

Minimize Calibration-Coil Gradients

Set the maximum'poésiblgvfield in a coil. Use the proton precession
magnetometer to measure the field along the coil axis at 6 inch intervals.
Fix the magnetometer at the point of maximum deviation from the center
value. Alter the current in the gradient adjustment coils to reduce this
deviation as much as possible. Repeat the survey along the coil axis.
Again, fix the magnetometer at point of maximum deviation and again adjust.

Iterate this procedure until the field is as uniforu as possible.

Test Earth Field Nulling System

The earth's field nulling system is a servo Toop with the sensors
physically separated from the region in which the field is being nulled.
Inevitably there are small differences in field between these two locations

whicn the sensors cannot measure. Because of this there will be a small,



residual field at the center of the coil system. This field will have both
constant and time varying components. The magnitude of these components
limits the accuracy of any magnetometer calibrations. The residual field
can be measured in the following manner.

Place a calibrated three component fluxgate magnetometer at the center
of the coil system. Align the sensors roughly along the coil axis.

Record the output of this magnetometer with the digital data acquisition
system.

Perform three series of measurements. First, record about 1 minute
of data at a sample rate exceeding 120 samples per second. HNext record one
hour of data at a sample rate of 2 samples per second. Finally record 8
hours of data at a sample rate of one sample per 5 seconds. Repeat this
series of measurements for the {ollowing conditions: Midweek workday,
midweek night shift, weekend midday, weekend night shift.

The data gathered in the foregoing experiments should then be subjected
to power spectral analysis. For each set of conditions separate auto
spectra are calculated for data at each sample rate. These auto spectra
can then be plotted as log power versus log frequency on the same
graph. The data define the magnetic noise in the test facility from
about 0.3 millihertz to 100 Hertz. A separate graph for each set of
conditions show how this noise is a function of time during the work week.

To define the expected error in any particular magnetic field measure-
ment we integrate under the appropriate noise spectrum. For a lower frequency
limit use the reciprocal of the duration of the measurement (the time during
vhich we must assume the field is constant). For an upper limit use the
Nyquist frequency of the magnetometer making the field measurement. The
rms field error is the square root of the area under the noise power curve

between the specified limits.



Definition of Geographic Coordinates

Test procedures described below require the definition of an accurate
geographic coordinate system. This can be done as described below.

A test table is installed in the center of the zoil system with itsr-
surfacé about six inches below the center line of the horizontal coils.

The table should be made of either granite, marble or glass. It must be
nonmagnetic and rigidly attached to pylons sunk to bndrock. It should
have provision for adjusting the surface using precision levels to be
exactly level. The table should also provide a means for rigidly
attaching a straight edge to the surface of the table. (This is used
where repetitive measurements with 180° rotation are required.)

Once the test table is installed and leveled the geographic coordinate
system is established with the use of two theodolites as.shown in figure 1.
The first theodolite is placed north of the test table on a strut or pylon
sunk to bedrock. This should not be one of the fixtures holding the
calibration coils. Later it will be important to determine the orientation
of the coil axis in geographic coordinates. This can not be done if the
theodolites are attached to the coil supports.

The theodolite is leveled by placing a mirror on thz test table at
the exact center of the test coils. The mirror is gradually rotated (with
tangent screws) until the reflected beam is observed in the theodolite.

The theodolite is translated vertically and horizontally until it is
level with the telescope in the same plane as the mirror.

A second theodolite is placed at the same distance as the first but to
the east of the coil center. The mirror is replaced by a right angle
reflector. The second theodolite is translated until a beam from the first

enters the second theodolite when it is exactly level.
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The geographic coordinate system defined in this manner has the X
and Y axes in the horizontal plane. :The X axis is roughly aligned with
the north coil axis and the Y axis with the east coil axis. The Z axis
is vertiéaliy downward and can be defined by levels when necessary.

The magnetic field in geographic coordinates can be written as a
vector sum

A A A
B(GEO) = By ny + By ny + B, my (1)

In this formula Bi is the magnetic field produced by the ith test coil

and given by the relation

where Ii is the current and ki the coil constant for the ith coil. Also,
th

Ri is a unit vector parallel to the magnetic axis of the i~ coil. In
geographic coordinates we may write ﬁi as a column vector

A A ~ A

ny = (HXi X+ nys ¥ +n,. 1) (2)

~ A

A
where X, Y, Z are the arthogonal unit vectors of geographic coordinates
defined by the theodolites and the vertical direction. Substituting for

ﬁi in equation (1) we find

N

B(GEO) = (nyy By + nyy By + ny; By) X

N

+ {nyy By * nyy By ¥ nyg By) Y

P

+ gy By *nyy By *ny B0 2

This may be written as

B(GEO) = (n) B(COIL) (3)
Here §(COIL) is a vector with components made up of the fields generated
by each coil. The matrix (n) has columns made up of the unit vectors Rx,

A A
n\{) nzn
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Definition of Sensor Coordinates

A second coordinate system fixed with respect to the magnetometer
sensors must also be defined. In our procedures this system is defined
by an opiica] polygon rigidly attached to the orthogonal array of sensors.
For reasons discussed later this should be an octagon with all sides and
top face silvered. The octagon is glued to the sensor assembly with ore
face as tearly perpendicular to the X sensor axis as possible. Also the
top of the polygon is aligned with its face as nearly normal to the axis
of the Z sensor as possible.

For purposes of discussions we assume the sensor assembly consists
of a cube approximately 3 inches on a side (typical ring core fluxgate
array). In this case, the polygon might be mounted oii top cf the assembly
and appear as shown schematicolly in Figure 2.

With Sensor Coordinates defined as above the X sensor is approximately
aligned with the X axis of sensor coordinates and similarly the Y and
Z sensors are nearly aligned with Y and Z coordinate axes.

In sensor coordinates we can write the magnetic field measured by the

ith sensor as
Mj = §.mj J = ‘a 2, 3 (4)
where B = B{SEN is the actual magnetic field and éj is unit vector along the

jth sensor axis, both in Cartesian sensor coordinates. If we write mj as a

column vector we have

Mo =m.y+m.y+m, 2

i 7 ™3 vi ¥ T Mz (5)
where mis = xi'&j is the direction cosine of the unit vector ms with respect
to the ith axis of sensor coordinates. Similarly, we write

§ =B, x+ By y+8, 2



12

Substituting in equations (4) we obtain

= + +
ux N nxx Bx uyx By mzx BZ

Hy=nxy8x+nw8y+nzy8._

= 4 +
"z n., Bx "yz By o, Bz

This may be written in matrix form as

M= (u) B(sEN) (6)

The matrix (u) is a matric whose columns are the unit vectors along the
magnetic axes of the three sensors. The vector M is a vector with components

civen by the actual measurements made by the three sensors. The inverse of

eq. (6) allows one to obtain a Cartesian vector frcm the acturl measurements, i.e.
_ 1. T\-1
B(SEN) = (') " M {(6R)
It should b2 noted that the vector M is not the representation of

the actual magnetic field in a non-Cartesian coordinate system aligned with

the sensor axes. If we want this representation we must write

f L) -~
Bz nx'rBy my+Bzaz

. -~
8x [mxx x + Pyx yrm, z]

L]

+ -'}
Tyy ¥ 7 P2y

)

By [mxy

y+ta, 2z}

+

)

]
B2. ltmxz I“yz
Rearranging terms this becomes

E(SEN) = u §(MEA)
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where B(MEA) = (BX‘, Qy', Bz') is the representation of 6 in the non-
Cartesian coordinate system aligned with the magnetic axes of the sensors.
Using the result, eq. (6) we find

M= (u'x) BOTA)
or finally

BUEA) = (u"u) ! M

Preparation of Magnetometer Test Fixture

The test procedures discussed below require that the sensor assembly
be oriented in a variety, of precisely known orientations relative to
geographic coordinates. This is accomplished by rigidly attaching an
optical polygon to the sensor assembly. Reflections from the faces of
these polygons are monitored by the two theodolites and used to calculate
the precise orientation of the polygon. The difficulty witt this procedure
1s the limited field of view of the theodolites. It is not possible to
perform arbitfary reorientations of the sensor assembly and have a face
of the polygon nearly normal (within about a half degree) of the theodolite
optical axis.

To solve the foregoing onroblem we utilize a magnetometer test fixture
which makes possible reasonably accurate rotations about two orthogonal
axes. An example of such a fixture is shown in Figure 3. The device
shown is an earth inductor or magnetic theodolite. Its purpcse is the
accurate détermination of the direction of an unknown magnetic field.

It utilizes a spinning search coil to indicate when the search coil
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rotation axis is aligred with the ambient field. The azimuth and elevation
of the rotation axis are r<ad from horizontal and vertical circles.

We propose to modify such a device as shown schematically in figure 4
The search coil drive assembly is replaced by hollow tubes concentric
with the elevation axel (horizontal axis). This allows unobstructed
observation of one face of the optical octagon when mounted within the
fixture. The searck coil is replaced by a mounting plate with attachment
clamps. The platform and clamps are provided with adjustments which enable
the experimentor to align the optical axes of the polygon with the rotation
axes of the fixture.

The procedure for setting up such a fixture would be as described
below. Place the magnetometer sensor assembly on the mounting plate of
the fixture. The plate should be designed such that the center of the
optical polygon is close to the intersection of the vertical and horizontal
axes of the fixture. Place the fixture on the test table with the
norizontal axis pointing north and the center of one face of the octagan
in line with the north theodolite. Move the fixture along the north-
south line until the center of an orthogonal face is roughly aligred with
the east theodolite. Level the fixture using the three leveling screws
and levels attached to the base of the fixture. Rotate the fixture in
azimuth with a tangent screw until the normal to the northward face lies
in a vertical plane passing through the north theodolite. Next, use the
adjustment screws on the mounting plate to bring the normal to the east
face into a vertical plane passing through the east theodolite. Repeat
these steps until both fazes of the polygon are nearly orthogonal to the
two theodolites. tHhen thi: is achieved the top surface of the polygon should

be almost level.
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Now continue with fine adjustmgnt of fixture level to bring the
azimuth axel (vertical axis) vertical. Do this by rotating in azimuth
by 45° increments. [If the successive faces do not produce centered images
in the theodolites the azimuth rotation axis is not truly vertical. Haké
it so by fine adjustments of fivture level.

When the foregoing procedure is completed it should be possible to
perform rotations through angles of integral nultfples of 45° and maintain
reflected images of crosshairs within the [ield of view of the theodolites.
Because of the inaccuracies associated with the bearings of the test
fixture it is not expected that the rotation axis will be stable to swch
better than some fraction of a minute of arc. Also errors associated with
the verniers on the azimuth and elevation circles will limit the accuracy
of rotation angles to some fraction of a minute.

This problem is not important. Actual alignment of the sensor coordi-
nates in geographic coordinates is determined by the theodolite reflections
from the precisely constructed faces of the optical octagon. The primary
purpose of the fixture is to provide sufficiently accurate rotations that

the reflected images remain within the field of view of the theodolites.

Relation between Sensor and Geographic Coordinates

In the previous section we described a procedure for setting up a
test fixture which holds the array of sensors to be calibrated. The
sensor assembly has attached to it an optical octagon with its top and
side faces silvered. The faces of this octagon must be constructed so
that they meet at 45° angle and are flat to better than one arc second.

The top must be at 90° to all faces within the same accuracy. The fixture
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is sufficiently precise that it can rotate the sensor assembly through
angles in increments of 45° so that images reflected to the theodolites
viewing the orthogonal faces of the octagon remain in the field of view.
It is not expected that these images will be exactly centered. The exact
orientation is thus determined by using the theodolites as autocollimators
reading the precise orientation to a fraction of an arc second.

As an example, considar the case shown in the top of Figure 5 for which
the X and Y axes of sensor and gaographic coordinates are approximately
aligned. In actual fact, the X axes are not exactly coincident as shown
in the lower left. The azimuthal angle éx between the X axes in the
horizontal plane is measured by the horizontal displacement of the image
in the north theodolite. Similarly the polar angle Ex is given by the
vertical displacement of the image in this theodolite. Using these angles
w2 can express the direction cosines of the ;'axis of senscr coordinates
in geographic coordinates as

X = in® inG S
X (GEO) [cos?xSIn.x, Sin¢ Sind,, Cosé,] (7)

A
Similar measurements made with the east theodolite give tha Y axis as
Y5(GEO) = [Cos(9,+90) Sinay,Sin@§+90)5iney,Cosey) (8)

A
Finally the direction cosines of the Z axis are found by the requirement

A ~
that Z. is orthogonal to ;S and YS.

S

~ ~ ~
Z4(6E0) = Xg x Yg (9)

N

Where XS

The transformation from geographic to sensor coordinates is found by

~
and YS are given as above.

using the rule that the rows of the transformation matrix are the unit

vectors of the new coordinate system expressed in the old system. Thus
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§(SEN) = (R) E(GEO) (10)
where
xx XY XZ
(R) = Yx YY YZ (11)
Zx ZY Zz

Successive rows of (R) are given by the elements of the vectors appearing
in equations 7, 8, and 9 respectively.

Hith the results presented above and in previous sections w2 can
easily relate the measured magnetic field to the field produced by the test

substituting equation (3) into (10) we have

B(SEN) = (R)(n)(BCOIL)
then, substituting this result in equation (6) we find

M = () (R)(n)B(cOTL) (12)

Equation (12) graphically illustrates the fact thit any measursment
made in the calibration facility couples the urknown direction ccsines
of both the coil and the magnetometer axes. Also it is apparent that this
equation is nonlinear in the unknowns. If we perform a number of experiments
creating a set of such equations we must solve a set of simultan2ous, non-
Vinear equations. This problem is further complicated by the fact that
each column of (u) and (n) is a unit vector, i.e. there are only 2 unknowns
rather than three per column. Thus, 2ltogether there are 12 unknowns to

be determined experimentally. A procedure for accomplishing this is

described in a subsequent section.
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CALIBRATION OF INDIVIDUAL SENSORS

The second major step of the vector magnetometer calibration procedure
is thie calibration of indivicual sensors. This calibration includes the
determination of sensor sensitivity offset, noise and drift. 1In addition,
it involves the measureﬁent of the effects of temperature and magnetic
fields orthogonal to the sensor. In following subsections we discuss each

of these procedures in detail.

Maasurement of Sensor Sensitivity and Nonlinearity

The component of magnetic field parallel to the axis of a linear

fluxgate sensor may be written

B, = kiVi + 0, (13)

In this equation Vi is the sensor sensitivity in gamma/volt, and 0i
is the sensor offset in gamma. To deiermine these constants we must
apply known magnetic fields B and measure the sensor output voltage, Yi(Bv).
Plotting the applied field as a function of output voltage, the slope of
a best fit straight line determines the sensitivity and the intercept
determines the offset, Oi. Systematic deviations of the measurements from
the best fit line indicate that the seasor is not truly linear.

Normally, the sensitivity of a magnetometer is determined from
only two sets of measurements, one at zero field and one near full range.
In the following paragraphs we show this procedure is not sufficiently
accurate to meet the requirement of 1 gamma absolute accuracy over the
full dynemic range of the sensor. Consequently, it is necessary to make
a large number of measurements across the full dynamic range of the sensor.

These measurements are then fit by a least square straight line. This
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procedure improves the accuracy of the sensitivity determination and has
the additional advantage that a plot may be made of the deviation of the
observations from the best fit.

To estimate the accuracy of a particular magnetic field measurement

based on equation (13) we note

dB = §(k V) +s(0)
but

5B = W [+ ‘—3—] + 8(0) (16)

A crude estimate of the values of k and 0 and their errors can be made by
using oniy two sets of measurements. Suppose B0 and VO correspond to zero
field and B] and Vl correspond to 50,0003 and 10 volts. Then, from

equation (13)
B

- B V.B, - V.B
k=p—y and 0 = 1O 0T (17)
1 0 1 0
We can show
Sk _25B , 28V
*T OB OV, (18)
and
80 ~ §B , 8V sV

Since B, >7 0 we have finally

wfeo
nm

288 3§V, (5B, &V
g s vt N (20)

For a voltags V close to V], kv = B] so that

-'. -
By i

oo
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For most test facilities it is difficult if not impossible, to genarate a
calibration field accurate to better than 1¥ in 50,00C). Also available

digital voltmeters can measure to an absolute accuracy of about 504V in

10 vo]ts: Thus we take

6

§8/B = 17/50,000¥ = 20 x 10~

SV/V =50 x 108710 = 5 x 1078

It is evident that * accuracy of the calibration field is most important
in determining the finat accuracy of the calibrated sensor. Substituting

in equation (21) we find for full range

- -6 n
(SB/B)max =80 x 10 or SBmax" +4Y

The minimum error occurs for zero field and depends on the error in the

offset

6B

$0 = EfB/B] + SV/V]] B,

Numerically

['d : : -
(°B)min 1.2%%

These errors are unacceptably large and demonstrate the need for a
more accurate calibration procedure. In the following subsection we
describe an independent procedure for determining offset to an accuracy
of =0.1¥. Next, however, we consider the improvement in accuracy obtained
by the least square procedure mentioned above.

In fitting a straight Tine to the calibration date we write
B =A +'VV v=0, ], 2,---N

Here v is in index referencing one of the pairs of N+1 calibration measurements.
In this procedure we choose V, as the dependent variable, because it can

be measured more accurately than Bv. In the usual least square error
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analysis it is assumed that the dependent variable is error free. Using

results derived in Hildebrand,"1956, vie can show the coafficients Ak

satisfy -the set of normal equations

{c)A-Y (23)
where
_ (A
A= (o)
5
B,
i=0 !
X1 »
i£=0 Y%
N
NH1) £ V.
c i=0 !
N N,
V. v,
=0 ' i=0

The error in each coefficient SAk is given by

2
_ =1 N+1, .2
A = (e )y (57 s (24)
where
N
2 1 X o
tous = T = (85 - 8;)
i=0
2

Note sRMS is the mean square deviation of the observations from the predic-
tions; i.e.-&8 in our previous discussion.

The normal matrix c is easily inverted so that

2
cys - ty.
S —ll‘— i
C
<
ivi (N+1)
and
N 2 N2
[c] = (v1) £ V.5 - (£ V)
i=0 i=0

To estimate the errors we must assume some mcdel of the calibration procedure,
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Therefore, assume 10 volts corresponds to 50,000 and that we step through
the dynamic ranga 0 - 50,000) in 500} steps, i.e. 100 sters of 0.1 volt.
Then (N+1) = 101

N 100 ]

£V, =.1 £ (@) = .1[7(100)(101)] = 505
1=0 i=0

N, 2100

:4.0 v," = (.1) 'Zo (i)° = .01[338,350] = 3333.50
1= 1=

Thus  Jc| = (101)(3383.50) - (505)% = 85,708.5

s.v.2

Hence, (c")O0 = llc; = .03902

N+1
|c

-1 _NH
(€ )y - .0011648

l

For N = 100 ve have

2 e
SA. = ve )y Epys

Thus

SAO ~ .2 fRMS
(25)

SA, Z 034 €

1 RMS

This result should be compared to our previous error estimates based

on two pairs of measurements. Using equations (18) and (19) and ignoring

§V we found
SAO =50 ~&B=1.0 GRMS
2B
- ‘zlk =____]§_B=_2__ =
éA]-gk B]‘ §£8 V] : V]SB 'ZERMS

The use of 100 pairs of measurements should imfrove the calibration by about

a factor of 5.
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The error in a field measurement was according to equation (16),

5B kV[é'g+:‘-%]+so

since SAO S0 and Sk = SA] vie have

$8 . =5x 10° [6.8 x 107%¢

)
ma +5x10 7] +.2¢

RMS RMS

If oy = v,

§B ~ -6+ .2= .87

While the foregoing error is quite acceptable it depends on the
linearity of the magnetom2ter. If the observations systematically depart
from a straight line EﬁMS will be larger than 1Y, and §B oy Will be
proportionally larger. In this caze, it might be necessary to use higher
order functions to fit the cbservations.

On a basis of the preceding analysis ve recommend the procedure
shown schematically in figure 6, to determine sensitivity and offset of
each sensor. Attach the sensor to a test fixture which has provisions for
slight rotations of the sensor about two axes. Place the fixture on the
test tabie with one edge against a north-south straight edga attached to
the table. Apply maximum field (%50,000)) in the north direction.

Rotate the sensor around a2 vertical axis to obtain maximum output voltage.
Next, rotate the sensor about a horizontal axis again maximizing the
output voltage. Repeat these steps several times until the best possible
alignment of sensor magnetic axis and calibration field is obtained.

Once alignment is achieved perform a sequence of measurements
decermining sensor output voltage as a function of calibration magnetic
field. To determine the precise input field use a digital voltmeter to
monitor thé voltage drop across a precision resistor placed in the field

generation drive circuit. Using the calibration coil constant determined
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by the method described above and the measured coil current
(ICOIL = V/R) calculate the applied field. Also use the digital voitmeter
to measdre the sensor cutput voltage corresponding to the input field.

To obtain sufficient accuracy perform 101 pairs of measurements with
the input field incremented in 1000 steps over the range ~50,007 to
+50,000f. Enter ihe table of measurements, Bi versus Vi into a computer
program which fits a least square line to the data determining k, 0 and
their associated errors. The program sho. 1 also calculate and plot tha
deviation of the predicted field from the observed field. If the resulting
time series is Gaussian with zero mean the sensor is linear.

This procedure is repeated twice more for the remaining two sensors.
Together these three experiments define the sensitivities and offsets

required to measure the three components of the magnetic field provided

the orientation of each sensor is known in inertial space.
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Mzaasurement of Sensor QOffset in Low Field

An ind>pendent, and nore sensitive determination of sensor offset
can be ﬁade by tests performed in a low field environment. This procedure
is somewhat easier than the one described in the preceding subsection
and because it does not require a large test facility, we recommend
that it be used for long term monitorirqg of tempofa? drifts in offset.

The sensor offset is defined by equation (13)

B=kv+0

Solving for the magnetometler output voltage we find

. B-0
V==

Suppose we piace the sensor in alignment with a weak field Bo, the sensor

output will be

B,-0.
- _0
\ﬁ * %

Now reverse the direction of the field eithar by a 180 rotation of the
sensor or by changing the sense of the current producing the field. The
- output voltage is

-B,-0

2 k

Adding the two measurements and solving for 0 we have

V,+V.
0= (5 (26)

Note the sensitivity must be independently determined to calculate offset.

The error in 0 is roughly

. 25V, sk
SO"[ V+ k]o
from equation (25) Sk/k > 7 «x ]0'6. However SV/V is of order 1. The
difference is that §V should not be the precision of the measurement device,

but the fluctuation induced by variations in the ambient field and by



26

jnstrumant noise. In an unshieldad, industrial eanvironrment fluctuations in
voltage IV correspond to field fluctuating of order 1). Since ring core
offsets are of the same magnitude we expect SV ~ V. Clearly accuracy can
be obtai;ed only by repeated measurements in a shielded environment.

To carry out a determination of offset we recommend the following.
Place the sensor on a fixture which alloss an approximate 180° rotation.
(An accuracy of a few degrees in this rotation is sufficient.) Place the
sensor and fixture inside a set of concentric mu metal cans. Cover
each can with its mu metal cap :xcluding the earth's field from the
interior of the innermost can. A remanant magnetic field of a few gamma
magnitude and unknown direction will remain in the can. Since the direction
of this field cannot be changed the orientations of the sensor must be
reversed. Parform a series of me-surerents of the magnatometer outpui
voltag2, rotating the sensor 180° before each measurement. Proceediny
through th2 table of measurements, average pairs of readings and calculate
offset. Average the offisets so determined to obtain a final, wmore accurate

value.

Measurement of Sensor Hoise in Low Field

In preceding sections we have discussed offset as if it were a constant
property of the sensor. In fact, offset usually changes with time in a
random manner. For fluxgate sensors, a frequency spectrum of these changes
is typicaily inversely proportional to frequency. Thus, on a short time
scale, variations in offset are quite smell. In general, these variaticns
are divided into two catagories depending on their time scale. Variations
which take longer than some reference time are called offset while thosa
that take less time are called noise. A typical re nce time is

between a day and a week.

SHI T

il

s
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Senser noise is best charactzrized by a power spectrum of the sensor
output when located in a zero field environment. In such a situation it can
be assumed that all variations in output are a result of the instrumant
rather than the ambient field.

We suppose that the sensor has been placed inside a set of conceatric
L] metal cans as described in the previous subsection. The sensor
output is recordaed by a digital data acquisition system. Usually, it is
necessary to amplify the magnetometer output voltage prior to digitization
or quantization noise created by digitization will domirate the spectrum
at higher frequencies. Also it is icportant to low pass filter the sensor
output voltage with a time constant twice the sampling interval. This
eliminates the problem of aliasing noise power from high to low frequencies

in the digitization procedure.

Batween 1000 and 5000 samples of the sensor output shiuld be taken
and then read into a computer program for spectral analysis. This program
estimates the noise power in a frequency band corresponuaing to about 10/T
to 1/2.t where T is the duration of the series of measurements and At the
sampling interval. For 5000 samples we have a ratio of upper to lower
frequency limits of 250 or 2.4 dacades of frequency.

To cover a wider band of frequencies in an efficient manner, we must
repeat the above experiment with progressively higher sampling rates. A
convenient set of experiments is summarized schematically in Figure 7.

The frequency band from 10-4 Hertz (1 day) to 50 Hertz (100 samples per
second) can be covered in three experiments. These are one day of recording
with one minute samples, one hour of recording with one second samples and
one minute of recording with 100 samples per second.

In order to consider the effects of quantization noise in this

measurement we must assume some typical noise spectrum. For reference in
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Figure 7 we have plotted a spectrum obtained at UCLA of a ring core
fluxgate sensor scaled to = 8000Y. Measuremants made with ring core sensors
scaled to = 64,000 are rot significantly larger. For the curve shown the
ris noise power over any three decades of frequency is 26 x 10’3y, .

Quantization noise has a flat (white) spactrum with magnituda

2
ey - (5B)
Plf) =1z ¢
where §B is the quantization level of tha input data and fB in the bandwidth
of the measurements. Using the Nyguist fraquency as the bandwidth we obtain
2
pq(f) = EQE%__EE (27)
According to this formula §B must satisTy
6P
=J—10
88 =3t

If we wish the quantization noise to be bzlow the expected instrument noise
in each experiment (see dashed lines in Figure 7) thaen we must have
&§8 .. .. ). For an instrument scaled to 50,000 this corresponds to

$8/8 = 2 x 1077

or 1 part in 5 million. Equivalently this is about 1/222.
I+ w» suppose instead the quantization ~orresponds to 1 gamma, then

P, = At/6. This is plotted as a dashed line for the experiment 4t = .01 sec.

Q
Quantization noise is then several orders of magnituda greater than expacted
sensor noise.

From the foregoing discussion it is apparent that the magnetometer

22 if w2 are to observe

signal must be quantized to about 1 part in 2
instrument noise when the dynamic range is + 64,000). If the sensur has

only a digital output quantized to 1) in + 64,000), sensor noise cannot

be measured. If the sensor has an analog output, its wutput signal rust

be amplified so that the least significant bit of the data acquisition system

correspond to about .02).
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For example, suppose, 50,000f corresponds to 10 volts. Then
.023 = 4 4 volts. If the data acquisition system provides a 16 bit converter
over a range 0-10 volts, the least significant bit is = 1504 volts. An
aazplific-ation of about 40 is required to measure the sensor noise.

Our recomrended procedure for reasuring the noise of the sensors
is summarized as follows. Place the sensor in a shieldad container. Low
pass filter and sample the output signal. Record.the samples on digital
tape and subject the data to spectral analysis. Plot the results as log
power versus log frequancy. Three separate exparizents should be performed.
These correspond to one day of €0 second sarples, one hour of one second
samples and 1 minute of .01 sampies. To Le meaningful the effective

quantization of the data should be about .02Y in 50,000Y or 1 part in 222.

Measurerent of Temnoral Drift in Sensor (ffset

In the preceding section we pointed cut that seasor offset is tize
varying. By definition, changes in offset on a3 time scale longer than a
day are called temporal drift. " Thedrift can only be measured by repeated
measurements at widely separated times. Since it would be difficult to
routinely carry out such geasurements in a large test facility we recommend
use of the low field offset determination procedure.

To determine the nature and magnitude of temporal drift procead as
follows. OCnce a week place a continuously operating three component magneto-
meter in the test fixture inside a shielded can. Carry out a series of 180°
rotations and calculate offset. Repeat for the remaining two axes. Return
the magnetcometer to an isolated jocation where it continues to monitor the
earth's field. Plot the three sensor offsets as a function of time for about
one year. At the end of the year determine the mean offset and rms deviation

about the mean.
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Measurement of Terperature Dapendence of Sensitivity and Offset

It is well established that the sensitivity as well as offset of flux-
gate magnatometers is a function of temperature. Since the sensor electronics
is separated from the sensor assembly, both the electronics temperature
(TE) and the sensor tecperature (TS) are significant variables. Taking

this dependence into account we rewrite equation (13) as
B; = ki(TE’TS) Vi + 0, (TE’TS) (28)

Considering the two parameters k and 0 as functions of TE and TS we
make the crude assumption

- L A
P(Te T) = P(TEO’TSO) + alTg + bAT¢ (29)

In this expression P is either of the two parameters k or 0. The subscript
"o" designates the nominal operating temperature (assume rcom temperature)
of the sensor and electronics. AT is then tha deviation of eitier tempera-
ture from the nominal value. Finally, @ and b are temparature coefficients
for the parameter.

It should not be expected that equation (29) applies over the full
range of operating temperatures for th2 magnetcometer. Experience at UCLA
has shown that sensitivity is often a quadratic function of  both temperatures.
However, because of the rathar large temperature dependance of typical
fluxgate sensors the MAGSAT magnetometer will certainly have thermal
enclosures about both the sensor assembly and sensur electronics. Within
this enclosure temperature variations should be so small that equation (29)
will be an adequate approximation.

To determine the temperature dependence of k and 0 we proceed
as follows. Place the sensor assembly at the center of a three axis
calibration coil facility. Align the threz axes of the sensors as closely

as possible with the three coil axes. Place thermal enclosures about both
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the electronics and the sensor assembly. Using hot and cold gases bring
both enclosures to nominal operating temparatures. Allow sufficient

time for both units to come to the temperature of their respective enclo-
sures (abproximate]y one half hour). Determina the sensor offsets and
sensitivities for each axis by applying a sequence of calibration fie]dsvin
the appropriate calibration coil. Use least square procedures to calculate
ki and Di' Keeping electronics temperature constént increase sensor
temperature by 5°. Allow the sensor to come to thermal equilibrium. Again
carry out a series of measurements determining ki and Oi. Rext, increment
sensor temperature by 10°, establish thermal equilibrium, and determine ki
and Oi. Finally, increment another 15° and destermine ki and Oi. (Note
this sequence defines the parameters for ATS = 0°, 5°, 15 30°.) HNow
return to nominal sensor temperature decremanting terperature by the same
amounts as it was previcusly incremented. Continue to negative

temperature deviations using the same schere (AT = -5°, -10°, -15°).
Finally, return to nominal sensor temperature.

Plot the parameters ki and 0i as functions of TS. Fit straight
lines to the three points at ATS = -5°, 0°, #5°. The slope of these lines
are the ccafficients b in equation (29). The zero intercepts are the values
P(TEO.TSO)'

The foragoing procedure is now repeated hoiding sensor temmerature
constant and varying electronics temperature. Again a plot is used to
determine the coefficient a in equation (29).

There is a remote possibility that all three sensors might have
extrema for ki and Oi at nearly the sare temperature. If this were the
case it would be desirable to choose these common temperatures as the nominal
operating temperatures and repeat the rmeasuremant of a and b about these

new temperatures. It should be sufficient to use only three temperatures,
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i.e., AT = -5°, 0° and +5°. For these points the coefficients a and b will
be smaller and the  magnetometer sensitivity to temperature will be

reduced.

Measurement of Orthogonal Field Effects on Sensitivity and Offset

In the idealized theory of the fluxgate magnetometer the
sensor response is unaffected by fields orthogonal to the sensor axis.
Some sensors, however, have experimentally shown changas in properties
when the orthogonal field is very large (lcleod, personal communication,
1976). Proper calibration of the MAGSAT magnetometer should include a
demonstration that sensor properties do not change as a function of ortho-
gonal fields.

To determine the effect of a strong aorthogonal field we rep=at
the determination of sensitivity and offset described earlier. In this case
however, the measurements are taken with a constant 60,000% field in two
directions normal to the axis under calibration. Both sensitivity (k)
and offset (0) are determined as before. If the values for k and 0 differ
by more than the experimental 2rror a more elaborate calibration is required.
If this is the case, we reccomend that k and G be repeatedly determined
for different values of orthogonal! field. A possible series of measurements
would start at -60,000Y and proceed to +60,000y in 20,000y steps. A plot
of k and 0 as a function of orthogonal field should be made. HNote this
must be done for both possible orientations of orthogonal field.

If the suggasted effect exists it will hopefully be small.

In such an event, it may be possible to make a linear approximation of
the dependence of k and 0 on orthogonal field magnitude. Data would be
corrected by using the zero field constants to calculate the fields

orthogonal to the sensor. These fields would then be used to determine
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correct values of k and 0 and then a second calculation of the anmbient

field would be made.
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CALIBRATION OF SENSOR ASSEMBLY

In this section we consider the most complex aspect of calibrating
a vector magnetometer; determining the direction cosines of the magnetié
axis of each sensor in a gezometric coordinate system fixed in the sensor

array. In section we showed

B(GEO) = (n) B(COIL) (3)
M= (.') B (SEN) (6)
B(SEN) = (R) B(GEO) (10)

where "(GEQ)" indicates a vector in Cartesian geographic coordinates (fixed
in earth); “(SEN)" indicates a vector in Cartesian sensor coordinates (fixed
in sensor assembly); "(COIL}" indicates a vector constructed from the magni-
tudas of the three fields generated by threze, nearly orthogonal calibration
coils, and M s a vector constructed from the magnitudas of the three
fields measured by three, nearly orthcgonal sensors. The matrices (n), (u),
and (R) are transformation matrices constructed from unit vectors. Columns of
(n) are unit vectors of the calibration coil in geographic coordinates; col-
umns of (u) are unit vectors of the magnetic axis in sensor coordinates;
columns of (R) are the unit vectors of the geographic coordinate system in
sensor coordinates. Only tihe matrix (R) is orthogonal (i.e. RY = R'])
since the sets of unit vectors Mi and n are not orthogonal, i.e.

myem; # 0 ﬁi.ﬁj 70
In the<e expressions we assume that accurate determinations of the coil
constants and sensor sensitivity and offset have been already performed
as described in earlier sections.

The basic problem is to detérmine the direction cosines of the

A " A

magnetic axes m Wy’ m, in sensor coordinates. This must be done by

generating known fields B(COIL) and measuring the output M. From
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(3), (6) and (10) we have

M = () (R) (n) B(COIL) (12)

The transformation (R) from geographic to sensor coordinates can
be experimentally measured as described inpreviously. Also H and-
B(COIL) are known experimentally. Clearly, ve cannot find the elements
of (u) unless we already kncw the elements of (n) or unless we determina
them simultaneously. We discuss these two cases separately in following

sectiocns.

Determination of Magnetic Axas Orientation Given Direction Cosines of Coil

System.
If (n) is known in eq. (12) as well as B(COIL) and M we

have three equations and nine unknowns. If we perform two additional
experinments using different calibration fields we will have nine equations
and nine unknowns which enables us to solve for the elements of the
matrix (u).
The simplist sequence of calibration fields to use in this procedure
is one in which successive calibration fields are parallel to the
coil axes. He thus have the three vector equations

M, = LG (R)(n)] By(comL) i =1,2,3

“3
8§,

where B;(cort) = [ "} B, (corL) 650 it
8,
21 =1 =)
83i

We assume for convenience that the geographic and sensor coordinate
systems have been constructed such that their axes are nr2arly aligned
with those of the calibration coils and magnetic sensors respectively. Then

both {#) and (1) are close to being identity matrices. If in addition we
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align the sensor and geographic coordinate systems as closely as possible,
the matrix (R) is also nearly the identity matrix. Thus the expression
[(ujr (R)(n)] is also close to (I) and we expect the measured field ?i(MEA)
to have a large component in the axis nearly aligned with the calibration
coil and small components orthogonal to this direction.

We can combine the results of the three successive measurements

into a single matrix equation

(8) = [u' Ral (8) (30)

where the three vectors ﬁi form the columns of (BH) and gi(COIL) the
columns of (Bc). The matrix (Bc) is diagonal by our choice of calibration

procedure

@)= [0

ONO

0
0
83/

The matrix (B_) is approximately diagonal
m B B,, B
11 12 13

(Bp) = [ By By By
By; B3 By
according to eq. (6a)
B(SEN) = (+1) ' M (31)

so solving eq. (30) for 94T)-] we obtain

“h-1=r (887

The matrix (B)c is diagonal hence its inverse has elements which
are the reciprocals of the elements of (Bc). Furthermore, post multiplication
of a matrix (Bm) by a diagonal matrix is equivalent to multiplying each

colunn of (Bm) by the corresponding diagonal element. Thus
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Bi1/By  Byp/By  By3/By
- -1 _
(b) = BB, " ={ By/By  Bpa/By  Byy/By (32)
B3)/B)  B3p/By  By3/By

The matrix (b) is constructed by ~ormalizing the three sensor
measurerments in each experiment by the corresponding esalibration field.
Thus,

()= Ro b7 (33)

Errors in Magnetic Axis Orientation Given Direction Cosines of the

Calibration Coils

The preceding result suggests that the direction cosines of the
coils are quite easily measured if the direction cosines of the calibration
coils are known. The magnetometer array is aligned with the calibration
coils, three calibration fields are appliad in three successive axes,
and the resulting magnetometer measurements are used to calculate the matrix
(1) according to eq. (32). A consideration of errors in this procedure,
however, indizates that this simple procedure must be modified somewhat.

To examine the errors in(33) we write each of the measured matricas

as the sum of the true matrix and xn error matrix.

R) = (R°) + (M)
(n) (n°) + (en)
7Ny = (b7 + (D)

1}

thus
W = R+ Ry (ne 4™ ((77)e + D)

or
R

(y.a.r)-.l R°n°(b-1)° + [R°en(b—])° + € n°(b-])° + R°p° sb]

where we neglect terms of second and third order in the error matrices.
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LN O LR AR AR (34)
The errors in any element of (u) is approximately the sum of the errors
in the elements of the measured matrices. Consider first the effect of
magnetic field measurement errors (eB). Tha magnetoirater output in
a noisey test site will fluctuate by about + ly. If our calibration
field magnitude is 50,000y, the error matrix (eB) will have elements
of order + 1/50,000 = + .00002. Let us suppose this error occurs in
an element that should be exactly 0.0, i.e. the magnetic axis is exactly
orthogonal to one of the geometric axes of tha sensor assembly. Then

the angular error in the orientation of the magnetometer axis is
s6 = 3 [Arc Cos (-.00002) - Arc Cos (+.00002)]

or

so = .00114° = &

The calibration error in (1) due to this source alone exceeds
the design goal of one arc second. We note that if thesite and
instrument are both quiet, quantization error will probably be of this
order. MNote that 1y resolution in + 65 Ky requires a 17 bit converter
on the magnetometer output.

Errors due to the transformation from geographic to sensor
coordinates are expected to be small. Large dynamic range autocollinators
have accuracies of order one arc second (Schneider and Kolany, 1967).

The largest error is likaly to be due to measurement of the
direction cosines of the calibration coils. For example, a magnetic
theodolite such as that shown in Figure 3 has an accuracy of about 6 arc
seconds. More elaborate versions of this instrument described by

Yanagihara, 1973, have accuracies of 3" and 1".



39

If we suppose we use the bast magnetic theodolite to determine
(n), @ wide dynamic range autocollimator to determine (R} and improve
our magnztic field measurement to correspond to one arc second, our
errors in {u) are still or order 3". In a 50,000y field this corresponds
to about 0.7y.

To achieve the equivalent of one arc second accuracy in the
magnetic field measurements of this calibration procedure we require
§B = 0.2y. But 0.2/2(50,000) = 2 x 10'6 or 1 part in 500,000. This
is about one bit in 2]9. The bast available digital voltmeters have an
absolite accuracy of about 50uV in 10 voits or 1 part in 200,000. Thus,
neither a digital magnetometer using a 16 bit converter nor an analog
magnetometer using the best available digital voltmeter will provida
sufficient measurement accuracy to give the eyuivalent of one arc second
accuracy in the determination of (1n).

From the preceding argument it appears necessary to make
repeated measurements of the field to obtain the necessary accuracy
through averaging. However, because of the quantization problen discussed
above, this may not work. Since instrument noise, and possibly test site
noise, may both be smaller than the quantization level, the actual
magnetomater output may rot be uniformly distributed within the quantiza-
tion interval. In such situations repeated measurements do not increase
accuracy.

To eliminate the foregoing problem, ard also to iaprove the
signal to site noise ratio, we propose the following. A1l three
calibration coils are simultaneously driven in phase by a sinusoidal
current of precisely known frequency (=0.1 Hz). A large amplitude signal

(50,0C0v) is used in one axis as Sefore, and small amplitudes are used
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in the remaining two axes (10y). The drive currents and magnatometer
outputs are conitored by a digital data acquisition system for 100
cycles (20 minutes). The amplitude and phase (should be zero) of all
signals %s determined by least square fitting of a sine wave of the
known drive frequency to the measured data.

The small fields used in the two coils orthogonal to the cain
drive coil will force the magnetometer signals in the corresponding
axes to cross several quantization levels. In this manner, the small
fields produced in these axes by the main calibraticn field can be
accurately measured because of a uniform distritution of the sensor outputs
across a quantization level.

It should be noted that using this procedura the calibration
matrix (Bc) constructed from the measured amplitudes is no longer
diagonal. As a consequence, we cust use matrix mathods to deterniine the
matrix,

b= (88"

With this modification the procedurs outlined at the begirning of the

section should b2 adequate.
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Dotermination of Magnetic Axes and Coil Axes Simultaneously

If we assume that the direction cosines of the calibration coils are
unknown we can still use eq. (12) to determine the orientation of the magﬁetic
axes as well as those of the coils. In this case eq. (12) constitutes three
equations for 18 unknowns. If as before we apply three calibration fields
in three orthogonal directions we have (eq) 30 which is a set of 9 equations
for 18 unknowns. If we include the unit vector constraint on each column of
) and (1) we still have 12 unkriowns. Ciearly there is insufficient
information to solve for the unknowns.

Additional information can be obtainad by reorienting the sensor assembly
with respect to the calibration coils. This changes the elewents of (R)
relating the unknowns to the measurerents. Using the suparscript « to
designate the particular crientation of sensor and geographic coordinates,

eq. (30) can be written
[/"qr Ryl-= (B::) (Bg )4 «=1,2, ... (35)

For exarple, using two orientations we should have a set ¢f 18 non-linzar
equations for 18 unknowns.
It should be noted that successive orientations should be as different

! and R2 are very close to each other, very

as possible. For example if R
little new information would be provided by a second set of measurements.
In the presence of errors 1t would then be impossible to solve the equaticns
for () and ().

If we expand the ijth element of equation (35) we obtain

3 3 o 3 o ar =1

AZ? u; Raw i Mg ° AZ] (B dix (Behyy (36)

where a - 1,2, ...Nandiand j=1, 2, 3.
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In a subsequent section we show how this set of equations may be solvad by
an iterative procedure using a Taylor series expansion which linearizes

equation (36).

A procedure for determining th2 direction cosines of a single
calibration coil and ona sensor

The solution of the set of equations defined by equation (38) is a
complex procedure. Furthermore it requires that the ortncgonal sensor array
be rotated relative to the calibration coils. In som2 cases this may rot be
possible to do. However, if we can determine the direction cosines of the
calibration coils in separate expariments w2 can use the procedure described
above to obtain the magnetic axes of the sensor. In this sectica we
will show how a single sensor may b2 used (0 determine tha directicn ccsines

of one calibration coil. In subsequent sections we g2neralize this method to

the case of three sensors and three coils.

Let ﬂi be tne unit vector defining the magnetic axis of the sensor in
sensor coardinates, asthe unit vector defining the calibration coil axis n
gecgrephic coordinates and B. the magnitude of the calibration field. Thre

J
output of the sensor is given by

M..=m - B
ij =™ 2

where §j rust be defined in sensor coordinates. But §j = Bjaj‘ with 35

n
being the representation of nj in sensor coordinates. Thus
N
M../B. =m, « n.'
- - A ~ I3
considering m, and nj' as column vectors we can rewrite the dot procuct

-§ v = S (m
Mij/Bj S M Nyt t é(m )‘.d_nm_.j
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But V(SEN) = (R) ¥(GE0)

so that
~ o = ”~
n;" =®n;
or
’ =4 ..
P j Q&GHU
Hence
T
. /B. = $¢& . R.n..
"u/ z 5(" )wc iM% j
or
<4 T . =
Z6 Ry T M8 (37)

This equation is identical to eq. (36) when the calibration matrix (Bc)

is diagonal, i.e. only ona calibration coil is excited in any one measurement.
Since i and j are fixed there are six unknowns in eq. (37). To solve

for them we must parform at least six different expariments with the sensor

El,i taking dif;’erent orientations relative to the calibration coil GJ.. Using

(¥) to designate each of thase experirents we have

fg Ra.§(§) m i n‘j = Hij(g)/gju)
Y=]’ 2, .o H (38)

- - - - - » A
To linearize this equation w2 assume that we know the orientations of m,
A .. . . .
and v}j to about one degree. This is reasonabie since both the coil axes

and magnetic axes can be manufactured with this accuracy. Thus we take

initially,
(1]
m.=m .
i i
@ c (39)
Na. = no‘y :
(] FJ

We then make a Taylor series expansion of the left hand side of (38) about
this initial model, obtuining .
A0 % an'
M. (3)/B.(Y) E A + =
VB 60 + 5
‘X

8X A (40)



‘ - -
In this expansion x is a six component column vector constructed from

the two wnknown vectors, i.e.

A (m
(%)
n
Thys "o
x° = (m )3 the initial codel
a0
8x = (Ag)g corrections to the initial medal
&n
- 20y | \ .0 o~
Hence, Ab(x ) —3% Rﬁ}()) Mo M5
The derivatives are given by
A Am .
mhl =i g2
m.. |a oD R
Al Xo « § Al ;o
but
-
um‘_ﬁ . r
so that
3A
X = { R, (Y) n% .
Miileo & AT A
X
Similarly we find
3h
v _ i 0
T = R (!) B ».
INys ro ¢ 2 B

Substituting irnto eq. (40) gives

-

D
;-: AN T N

(¢
| €
rd

( Ré),(j)mogi)én’\j (a1)

R,:(¥) nS . Jam
: <

>
AL

(x oo NPT Y
H; (2178503 g% Resld) m i n55

+
|

We may simplify eq. (41) by the use of the matrix notation.
Ltet
P = M.. ' . ‘
bi;(¥) = M5 (¥)/8,(3)
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Then
_ R0 (T " 0 A Oy an T, 2 O 2
by (1) = (@) (R($IA;%) + (R(2)n;%)-0R; + (R (¥);°)-4n, (42)
This equation may be interpreted physically as follows. The left side

th th cati-

is the norralized measurement of the i~ sensor in response to the j
bration coil. The first term on the right hand side is the pradicted,
normalized response when we use the initial model for the orientations of

the sensor and coil. The second term on the right hand side is the projection
of the initial coil axis on the correction to the sensor axis in sensor ccordi-
nates. The third term is the projeciion of the initial sensor axis on the
correction to the ccil axis in geographic coordinates.

If we move the first term of the rightside to the left we obtain
(R(2)R%)-27, + (RT(a)Qz°)-eﬁj = by;(4) - E) RG] for ¥ =1, 2, ... 1 (43)

in this form, we clearly have a set of N linear equations in the six unknowns,

AR, 4h. The form of this equation is
3
£ A% =Y ¥=1,2, ... N (44)

where Xe are the elements of the correction vectors &m, 4n; Y‘ is the difference
between the measured and predicted values of the normalized measurements; and

Ays is an (N x 6) matrix with rows constiructed from the initial coil axis

Y
r’
in sensor coordinates and the initial sensor axis in geographic coordinates.

[ 4

We solve the set of N eg's (43) in an iterative marnner. An initial guess
is made for the direction cosines of ai and ﬁj' By construction these are
designed to bz as nearly alignad with the corresponding axes of sensor and

geographic coordinates. Thus the initial guess is

(7.°9) =§. and (3j°) = 9.

LI ix ® %
Evaluating the constant terms in eq. (43) we obtain a set of eguations of

. . ~1
the form (44). These equations are solved for the correction vectors &m .,
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Aalj by the method discussed below. The corrections are added to the initial

guess to obtain a new starting model. Thus

A4 1°_ 0 Al
Al _aAo Al
n. =pn. + .
j T tan;

Using these new vectors as a starting model, we repeat tha procedure obtaining
a second set of solutions aiz, ﬁsz. Provided the initial model is close to
thne correct model, the problem is nearly linear and the sequence of corrections

converge rapidly to zero.
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Solution of the set of ! equations and M unknowns

In the preceding section we showed the problem of simultaneously
determining the direction cosines of sensor and coil could be reduced to a

problem of solving N lineir equations for six unknowns. Thus we solve
m
"f" Ays Xz = Yy Y=1,2, ... K (44)

2. In matrix form this may be written

for the m (m = 6) unknowns XP

(A)x =y
A general procedure for doing this has been described by Lanazos, 1961 (p. 10C-
162). We briefly summarize this procedure below.

Let (A) be the (N x M) matrix of coefficients in equation (44). Censtruct
the (N x B) symmetric matrix AAT and tne (M x M) symretric matrix ATA. Solva

the two eigenvalue problems

Ml u =12y N eigenvalues
(45)
ATA v =42 v M eigenvalues

Construct two matrices U and V from the eigenvectors u and v. The matrix
Uis (N x N) and V is (M x M). At most there will be only p, non-zero
eigenvalues A, where p < min (N,M). The non-zero eigenvalu2s are the same
for both AA" and A'A

Now construct an (N x P) matrix Up and an (N x (N-P)) matrix Uo by
partitioning U into two matrices having columns corresponding to non-zero
and zero eigenvalues respectively. Similarly construct an (M x P) matrix
Vp and an (M x (M-P)) matrix Vo from V. The matrices U_, V_ diagonalize

pT P
the matrix A by the transformation

AV (46)

where.Ap is a p x p matrix with diagonal elements corresponding to the square
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roots of the non-zero eigenvaluas of eq. (45). From (46) we have

A=U A VT

p’p Yp (N x M) (47)

The natural inverse of (A) is given by

) -1 T

B=V A U (M x N) (48)
.

AS = W (49)

BA = WV

The solution to our set of equations {44) is then as follows

Ax =y
T, -
(upd vp ) X = y
_ , =1 , T
X = (Vpﬂp Up )y
x = (B)y (50)

The solution, eq. (50), always exits, but it will not necessarily be
a good one. First, some eigenvalues Ai may be non-zero but small. In this
case, corresponding elements in the inverse matrix.Ab'] will be very large.
As a consequence, very small errors in the constant vector y will be magnified
in the solution vector x.

A second problem is that errors made in the measurement of A and the
vector y may make the equaticns incompatible. Lanczos shows the set of
equations are compatible only if

y=0 (51)

Physically this implies that the constant vector y must be orthogonal to
all eigenvectors corresponding to zero eigenvalues.

Finally, the set of equations may be deficient. In this case they contain
insufficient information to determine certain linear combinations of the
unknowns. These combinations are given by

VT (52)
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where V is the matrix of zero eigenvectors from the matrix V and R is an

arbitrary column vector.
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Computer simulation of the simultaneous determination of the
orientations of a single sensor and single coil - no
constraints

To test the procedure describad in the preceding two sections, w2 h;ve
used a computer program to simulate an actual calibration experiment. Inputs
to this simulation program are tha direction cosines of the coil and sensor
in their }espective Cartesian coordirate systeins and six transformation matrices
corresponding to different orientations of the sensor relative to the coil.
Qutputs from the simulation program are the normalized magnetometer measure-
ments which would have been made in the absesnce of measurement errors.

Six different sensor orientations vers used as summarized in Figure 8.
For this experiment, the sensor was chosen to be along the x axis of sensor
coordinates and the coil along the z axis of geographic coordinates. The
nina differant transformation matrices and the corresponding normalizad sensor
measurements are presented in Table 1. A Tisting of the simulation program
is included as Appendix A2.

The second step in the simulation required a computer program which
implements the procedure described in the preceding two sections. This
program was written in the IBM-TSO (Time Sharing Option) version of SPEAKEZ.
This language was written and is maintained by the Argonne National Laboratory
(Cohen and Pieper. 1976). It is especially designed to facilitate the manipu-
lation of vectors and matrices. A listing of the latest version of this
progrem (MAGCAL1)is included as Appendix A3.

The results obtained by this program were quite satisfactory, converging
to nearly correct values after at most three iterations. A representative
result using five measurements

Fal

M, = (.99235, .030011, .039929)

as corpared to the known input,

A

Mx = (.99375, .030000, .040000)
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While the foregoing procedure is successful it is difficult to carry
out experimentally. The problem is that it is exceedingly difficult to
perform tﬁe m2asurements necessary to calculate the transformation matrix
(R). Thus the most desirable procedure is one which minimizes the numbar
of different orientations of sensor and coil.

One method of reducing the number of necessary orientations is to take
acvantage of the unit vector constraints. Since both ﬁi and ﬁj are unit
vectors thera are only four unknowns rather than six. Henée only four orienta-

tions should be required.

Utilization of the unit vector constraint to reduce the
number of experimental measurements

Thus far we have not used th2 constraint that both H% and ﬁj should be
unit vectors. This constraint can be included in two ways. The most straight
forward way is to linearize the constraint equations and include them in the
set of linearized equations solved by the computer procedure. A second way
is to use the constrain*= directly to eliminate two unknowns from eq. (38)
and then linearize these modified equations. We find empirically that only
the second method works. Basically, the reason appears to be a result of
Tosing too much information in separately linearizing the fundamental

equation (38) and the constraints.

To include the unit vector constraint directly we rcturn to the original

equation describing the result of any particular measurement, eq. (38).

Z n..o= M. (Y (Y .
g;%RM(!) mg Ny = M Q)Bs(N) y= 1,2, LN (33)
X ¥

Since M and N are unit vectors we have

f(m'.)2 =1 and £ (n,.)2 = ]
A *1 x *J
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we may solve these for the diagonal elements

V- fm)?
- (53

—

J]- £ (n )2

n..
JJ_ d;}a eld

while these can be substituted directly in eq. (38) it is not necessary to
do so. Instead, we treat eq. (38) as bafore as a function of six variables,
i.e.

f(mxi’ Myis M0 nxj’ "yj’ nzj)

-

but utilize the rules for implicit differentiation to evaluate the derivatives

of the diagonal elements. Thus,

f = f(£0) + df A (54)
X
(o
where 2
af 7 9f
dfF = ¢ an .+ 5 25 4, (55)
=) vaa- <1 7 "'"a;j <]
Isolating the diagonal element in each sum gives
s Af 2t af Vail
df = £ == dm 4+ or—dn + £ ST —dn .+ o —dn,. (56)
O(#‘ dmd'i ol m'i'l 11 x___‘}- Jndj X J vnjj JJ
From equations (54 & 55) the total derivatives of the diagonal elements are
am..
dm,. = E 5—-33—- dm
T g M i
n. .
dn.. = {g;;u dn
JJ 0(4//‘ o j
Substituting in eq. (56) gives
2m, .
L I £ bi %
in..
f af Ji
+ Z ()? + 5 = ) dn_. (57)
“%3 n gy Ong o

Since X takes on only two values in each sensor we have clearly reduced the

number of unknowns from six to four. The remaining two unknowns are defined
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by the equation (53). Since

f = ;,RA/,(J) i 5 (53)

we may evaluate the derivatives in (57). Thus

£ R g = RA),

"'m_._—
&1
of - ¢ = Ta
2n._"*R (X)m;\i (Rmi}x
xJ A
ém..
ii i
i a# i
?mpx‘i mi’l
an.. n .
J = _ __CLJ. a(fj
Tj "ij

Hence the quantities within parenthesis in equation (57) are

m. .
af ./f ii A A
[T~ . 1 = [(Rn,) - (Rn); ( )]
?m .;Jmm Jx h| 35
an. . M n .
AL+ 2. 2y - @R, - R, )
«d JJ «] 3

N
These derivatives must be evaluated for the initial model, i.e. M. and %j

A a3 ¢ .
are replaced by the guesses mi0 and r.J. in the above expressions.

Then, proceaeding as we did in the derivation of eq. (43) we find

0
£ L(RA°%) - (RAy); (= <h) am .
X HL mn
+ 5 [R50, - R0, (°ﬁl>1 b,
Ok "jj
= M8 - L) - R (59)

Mote for convenience we have not indicated the dependence of R, M].J. and BJ.
(4), the relative orientation of sensor i and coil j.
This expression is very similar to eq. (43) except it no longer has

an obvious physical interpretation because we have explicitly included
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the unit vector constraint. The major difference is the reduction of the

numbsr of unknowns from six to four. Thus the equation now has the form

(R) x =y =1, 2, ... N 60)
These equations may be solved by exactly the same method as used before.
Tha only changes required are in the dimensionality of the (A) matrix and

the calcuvlation of its elements.

Computer simulation including constraints

The procedure described in tha previous saction was implemented by
making slight modifications in the program FAGCAL. A listing or the new
program MAGCALY is included as Appendix A3. This program was tested
using the same data as were used to test MAGCAL (c.f. Table 1). On a basis

of this test we conclude the second procedure is far superior to the first.

%

find that the inclusion of the unit vector constraint improves the
rate of convergence, improves the accuracy and reduces the number of necaessary

measuremants. A sample result obtained after two i.erations was

ﬁx = (.99875, 030000, .039996)
az = (.010001, .020006, .99975)

These should be compared o the known valuss

>
"

N (.99875, .030020, .040000)

=0
fl

2 (.o010000, .020000, .999750)

Similarly good results viere obtained using only four experiments, provided
experiment number 3 of Table 1 was not included. This experiment cerresponds
to alignmernt of the sensor with the calibration coil.

This un xpected result suggests that some sensor orientations are bestter
than othars Tor determining the direction cosines of sensor and coil.

We interpret this result in the following fashion. The function

f=22 n . =b,.
;{;R“ﬁm«l " bu
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is a maxirmum for a matrix R corresponding to alignment of ﬁi and ﬁ;. Qur
method of linearizing the equaticn to solve for ﬁi, %j utilizes the deriva-
tives of f as a function of the elements of M and n to calculate corrections
in the initial quess. Since cur initial guess corresponds to exact alignment
the ini fal de~ivacives should be exactly zero. Thus there is no way lo
calculate a correction to the initial guass.

Examinztion of the eigenvalues obtainad in the solution of the set of
four equaticns for this ccmputer simulation shows that one of the four eigen-
valuas was much smaller than the remaining three. This implies that there
are fewer equatfons than unkncuwns and therefore the equations are not really
soluble. Clearly the data obtained in experiment 3 by near alignment of

sensor and coil does not contribute much information.

Errors in magnetic axes orientation using simultaneous determination

procedure

In our procedure for simulatnecus determination of sensor and coil axis

we utilized the Lanczos inverse. Thus
Ax = y

has a solution
X = By

. _ -1, T
where B Vp,J\p Up
As discussed by Jackson, 1972, the errors in the solution vector X are given by

i 2
2 (8,;)° var {y,) (61)

Var (Qk) = |
L.‘

P
will cause very iarge errors in all components of the solution vector.

Since B, ; depends on the reciprocal eigenvalues of A_ ' any small eigenvalues

Equation (61) may be written in matrix form as

var (%) = (8%) var (3) (62)
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In this relation 82 is a matrix whose elements are the squares of the elements
of B. var (;) and Var (¥) are vectors constructed from the respective
componant variances.

To obtain some idea of the errors to be expected in our simultaneous
determination procedure we have includad eq. (62) as part of program MAGCAL
and MAGCAL] For the simulation describad in the preceding section (four
experiments using constraints) we find tha following results.

First we assuse the variance of all input measurements to be the sama,
and roughly of order 1 gamma in 50,000 J, i.e. VAR(yi):s (]/50,000)2.

Then from eq. (61) '

Var (x) = VAR(y) - £ (8,.)

[ 3

2

A typical row in the matrix (32) was Tor our first simulation

(.5, 3.0, 1.0, 5.5)
which sums to 10. Thus the expacted variance in the solutions is roughly
ten times that of the input data. Hence
VAR (x,) % 10 (1/50,000)?
Or RMS error in x ~ 6 x 1075,
To convert this to angular measure w2 note
cos € =n, = .02+6x 107
and
§& = Arc cos(.02 +6 x 10‘5) - Arc cos (.02)
or

§60 3.4 x 1073

= 12 arc seconds.
This error is quite large compared to the design goal of one arc second.

One pessible means of reducing this error is to reduce the magnituds of
the elements of the inverse matrix. Since this depends on the original
matrix (A) which in turn depends on the relative orientation of sensor and

coil, it is possible that a different set of four experiments would provide

a more accurate determination.
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To check this possibility we have performed a second simulation using
the four orientations shown in figure 9 and Table 2. To decide on which
orientations to use we guessed that large elements of the inverse B depend
on small elemrnts of A. Apart from zero elements, the smallest elements of
A arise from the 45° relative orientations. Wz thus decided to use only S0°
rotations to obtain the four orientations shown in figure 9.

The results from this second simulation were quite surprising. We
found

M AX (RMS (x,)) = 2.5 x 1070

This is more than a factor of two improvement over the first set of four
orientations. The corresponding angulzr accuracy is of order 6 arc seconds.
While an error of six arc seconds does not m2et the design goal it

is at least as good as can b2 expected if the coil cosinas are determinad
with a conventional magnetic theodolite. This error might be fu.ther reduced
by using the resuits of an initial determination to design an optimum set of
four measurements. It could be reduced still further by repeating the set

of four measurements a number of times.



58

Calibration of Three Sensors Using Thrae Calibration Coils

In the preceding section we showed how a single sensor could
be calibrated using only one coil. This procedure requires a sufficient
number of relative oriantations of the sensor and coil to define all
of tha unknowns. In this section we show how the use of three coils makes it
possible tc calibrate three sensors with the same number of orientations.

Let us assume as before, that for each sensor orientation we carry out
three measurements. Fach measurement is the vector output of the sensor
assembly for a given calibration field. The expected fields for this sat of

three measurements may be written

(8) = [ Rl (B) (36)

where Bm and BC are 3 x 3 matrices with column corresponding to the three

measured and calibration fields respactivaly This may be written

u Rn= b (63)

where b = (Bm)(BC)-' is the "normalized" observation matrix.

To linearize this set of equations for py and n we assum2 an approximate
mode: is kacw, i.e. u = o and n = fo° W2 then write uy and n as small pertur-
bations about this known model, thus

+ Sy
u uo [

+ 4§
n Tlo n

Substituting in equation (63) we find

T Rn ] (6%)

T T z -
(uo R)sn + & (Rno) b -y, o

T .
wnare we drop the second ordar term §u &n which we assume to be very small.
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The righthand side of =quation (64) is the difference between the actual
measurements (b) and the measurements that would be expected as a resuii of
the initial mocdel. The unknowns 8n, 6u on the left hand side are the
corrections to the initial model required to obtain better agreement between
the observations and the model.

This set of nine equations in eightean unkrowns has the form

(R) x =y (65)
Here x is a column vector with 18 rows constructed from the unknown elerents
of 6u and én. The vector y is a column vector with 9 rows constructed from
th2 residuals between the measured and predicted magnelic field measurerments.
The matrix (A) is @ 9 x 18 rectangular matrix with elements constructed
from the two matrices (uoTR) and (Rno). Since this matrix equation coasti-
tutes only 9 relations b2iween the 18 unknowns we must obtain additional,
Tinearly independent relationships. UWe do this by using a different orienta-
tion of sensors and coil. Frovidad these orientations are properly chosen
the coefficient matrix wili b2 non-singular and the set of equations will
be soluble.

To demonstrate the feasibility of the above approach we have carried
out a caomputer simulation as was done for the single sensor, single coil
calibration procedure. Direction cosines of the magnitude expected for sensor and
coil ware chosen arbitrarily (Table 2). Then equaticn {63) was used to
calculate the expected magnetic field measurements. Seven different
orientations of sensors and coils were used as this was the minimun necessary
to define all sensor axes when oniy one calibraticn coil is used. The seven
transformatinn matrices and the seven calculated measurerent matrices were

then used as data in the periurbation procedure described above.
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To set up the set of nine algebraic equations corresponding to thz matrix

equation (64) we take the ijth elemernt.
3 T 3 1 ‘
ugl (uo R)ja g * uél (6, Via (R"G)uj = byj (66)

Clearly, the Ijth equation couples only the jth coil axis with the ith sensor,

i.e. each equation links only six of the 18 unknowns. Thus if we adopt the
convention of first fixing j and then allowing i to run through its range
we generate the set of 9 equations shown schematically in Table 5. In
Table 5 each coluwmn contains the coefficients of the three unknowns associated
with a given unit vector. Each rcw corresponds to successive values of j and
i. The entries within this table, i.e. ROW 1, COL 3 refer to rows or colusns
o7 the model matrices, (uoTR) and (Rno) shown at the bottom left and right
sides of the Table. A1l blank entries correspond to coefficients of zero.

This represeataticn of the set of nine squations is particulariy convenient
for the computer language, SPEAKEZ. Because this language allows the manipu-
lation of vectors and matrices as entities it is possibly to efficiently
define the 9 x 18 coefficient matrix (A) sirply by placing the abpropriate
rows and columns of the modal matrices at appropriate lccaticns of (A).

A program wihich gererates the (7*9 x 18) "A" matrix corresponding to
the seven orienta*ions of sensor and coil shown in Table 3 was written.
The solubility of this set of €3 equations was then tested in the fellowing
manner. Assume an initial model correspornding to exact alignment of both
sensors and coils in their respactive coordinate systems, i.e. uoand n, are
identity matrices. Furthermore assume the transformation matrices correspond
to exact alignimeats of the sersor and geographic coordinate systems (not
normaily the case for actual measurements). With these assumptions the
columns of (Rno) are the unit vectors of the coils expressed in sensor

coordinates. However, because we assume the coils are exactly aligned with
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geographic coordinates the columns of (Rno) are actually the unit vectors of
geographic coordinates as seen in sensor coordinates. Similarly, rows of
(voTR) carrespond to columns of (RTuo), but by the same arguments as above
these are the unit vectors of sensor coordinates as seen in geographic
coorc . 1ates. Using these facts we can immediately write down the elements
of the A matrix by inspection. To decide whether this set of
equations can be solved we take the determinant. If this is non-zero the
matrix is non-singular and the equations soluble.

For the A matrix based on the seven orientaticns of Table 3 SPEAKEZ
methods showed the determinant was zero. Thus the equations were insoluble.
Our interpretation of this result is as follows. The seven orientations of
table 3 were deliberately chosen to produce a specific set of four orienta-
tions of each sensor relative to one coil. These sets of four orientations
were chosen so that the four unknowns associated with one coil and one sensor
could be determined. Only four unkncwns viere present because the unit vector
constraints were used to eliminate two of the six unknowns.

This argument leads us to the conclusion that at least sevaral
additional orientations vwould be required to solve for the 18 unknowns by
the above method. Because of the experimental difficulties associated with
the measurement of the R matrix we rule this gut as a viable procedure.
Consequently, we extend the foregoing procedure to make use of the six unit
vector constraints.

The constraint equations may be written
3

n -2 =1
o=1 ™
’ 3 ) (67)
il

1 L 1

3
—d
"

Solving for the diagonal elements we have for columns of (n)
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n.. = J] -In (68
AR ofj ay )

In our perturbation approximation

n . .
aj ~ Maj T ®Maj

So that the diagonal elements become

n.. + én.

_ ) 24172
i 5 S0 - 3 nggm + a5

a?j
Expanding the square and dropping second order terms gives

G 0,2 o 172
n..+én.. [O0- ] (n.))-2 n . én .]
ofj } QJ

3 Jl ofj a)
But
0. . 0,2,1/2
P53 g GZ (“aj )71
so that o
) Ny ong;
o - o ot j 1/2
.+ 8n.. T n.. -
ngg tenyy Ty 0-27 (n..0)2 ]

JJ

Because the second term within the brackets is much smaller than one we

have Z o
n . &n .
. a)} al
4 6n.. *n 01 -0 ]
3i i i (n..%)2
JJ
or finally
n .0
- 23y sn .
%33 agj (=) on,; (69)
JJ
In an analogous fashion
m .0
- ai
Smyg = - agj (m_ o) M (70)

ii
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To include these constraints in a modified A matrix we note the following.

The two constraints may be written in the form
o

g n,s-

- (__l_)én . =0

es1 i W
m.° (71)
al -

i GZ] (m. 0)6m°i "0
1i

Now multiply the first equation by the column of the A matrix corresponding
to the unknown G"jj' Similarly multiply the second equation by the column

of A corresponding to Gmii. Then, add the two equations obtaining

3 A(én..) 3 A(sm..)
0=- 3 [——-J%—-n.o]-an.— [——-D——mio]-c’;m. (72)
a=1 "jj aJ o o m. s @ el

Finally, add this equation the ijth equation previously obtained without
using constraints. (eq. (66)).

When this procedure is carried out explicitly it can be seen that it is
exactly equivalent to substituting the constraint equations for the diagonal
elements and then rearranging terms. Thus to modify the A matrix shown in
Table 5 we must construct 2 (9 x 18) N matrix with the elements shown in
Table 6. Then this matrix (N) must be subtracted from the matrix (A).
Subtraction will introduce zeros in the columns of the modified A matrix
corresponding to the diagonal elements of the unknown matrices (5u), {&n).
If we now eliminate all comumns of the modified A matrix corre.ponding to

these diagonal elements we will obtain a new set of equations of the form

(RR) x' =y

L3

where now x' is a column vector with 12 unknowns taken from the off diagonal

elements of (&n), (6u). y is a 9 row column vector of residuals between

observations and predictions as previously defined. The matrix (AA) is a
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(9 x 12) rectangular matrix obtained as described above.

A SPEAKEZ program “EQUATS" was written to implement this procedure.

A listing of this program is included as Appendix A5. 1In the initial text of
this proéram all seven orientations of table 3 were used to construct

a (63 x 12) matrix (AA). The determinant of this matrix was found to be
non-zero for the particular simulation used. Consequently two additicnal
programs were written to solve for the direction cosines in an iterative
fashion.

Program "SOLEQU" (1isting also included in Apéendix A5), utilizes a
SPEAKEZ linkule (similar to subroutine) to solve the set of equations defined
by the matrix (AA) and the vector y- This linkule utilizes the singular
value decomposition procedure of Lanzcos described earlier.

Because this linkule is written to minimize time and storage requirements

it does not provide as much information as our own implementation of this
procedure embodied in program MAGCAL and MAGCAL 1 (See Appendix A3).
However, because our implementation utilizes too much storage we were unable
to use it to solve the set of 63 equations.

A second program "MAINPQ" was written to implement the iterative perturba-
tion procedure our method of simultaneous solution is based on. This program
initiatizes the calculation first reading in the measurements and transformatior
matrices, and then reading a first guess of the unknowns, (no) and (°).
Normally w2 assume these are identity matrices since these are the design
goals for both sensors and coils. The program then calls program EQUATS.

As its first step program EQUATS increments (uo) and (n°) using previously
calculated corrections (8u) and (8n). (Initially these are zero). EQUATS
then uses the constraint conditions to calculate the diagonal elements of the
modified matrices (u° + &u) and (n® + én). It then proceeds to generate

the matrix (AA) and the vector y. Control is passed to program MAINPO which
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calls SOLEQU to solve the set of equations for the vector 5. In its final
step SOLEQU creates the correction matrices (éu) and (én) from elements of the
solution vector X. Control - returned to program MAINPO which loops back
to call program EQUATS. This procedure is repeated the number of times
specific .during the initiatization phase of program MAINPO.

Results obtained with program MAINPO are comparable to those obtained
with the programs which were written to solve the case of one sensor and one
coil. For example, the second corrected modal was equal to the model used in
the simulation program to better than the fifth decimal place.

To determine the minimum number of orientations required to carry out
a procedure we progressively reduced the number of different orientations
input to program MAINPO. When this nuaber was less than four, the determinant
became zero and we were unable to obtain a correct solution to the proolem.

Although we have only examined thes case corresponding to the first four

. ‘entations of table 3, we believe that any four orientations satisfying the
foli-wing criteria would be sufficient to define the 18 direction cosines of (u)
and (n) using our procedure. These criteria are the same as was found for
calib}ating a single sensor with a single coil: (1) there must be 4 different
orientations of the sensor and the coil, (2) direct alignment of the sensor and
coil provides no useful information, (3) rotations of 90° from the initial
position generate satisfactory orientation provided one rotation brings the sensor
axis initially transverst to both coil and sensor parallel to calibration coil.

In summary, our procedure for calibraling the direction cosines of a

three axis sensor assembly using a three axis Helmholtz coil system is the
following. Attach an optical cuba to the sensor assembly. Place the sensor
assembly in a fixture that allows 90° rotations about two orthogonal axes
and which do2s not allow the center of the cube to translate during rotation.
Begin with an alignment which places the x', y', z' axes of the sensor, i.e.
of the optical cube, in near coincidence with the x, y, z axes of the coil,

i.e. of geographic coordinates {c.f. Figure 9 ). Level the fixture using
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two theodolites in the horizontal plane on the positive x and y axes of

geographyc coordinates. The leveling procedure should be sufficiently

accurate to guarantee that theodolite cross hairs remain reflected within
their fields of view after successive 90° rotations about the two axes of

the fixture. Use the theodolite setting circles to measure the actual
orientations of the x' and y' axes of the optical cube to one arc second or
batter. Apply an accurately known ficld in the x calibration coil and measure
the output of the three sensors. Repeat for the y4ca]ibration coil and the

z coil using exactly the same field magnitude. From the measurements
construct two matrices (Bm) and (Bc) using the successive measurements and

calibration fields as columns. Thus.

Bxl Bx2 Bx3
(Bm) = By] By2 By3
le Bzz B23
B 0 0
0
(Bc) = 0 B0 0 = BO(I)
0 0 Bo

Next, calculate the normalized measurement matrix
b=(8)()"
m' ¢
which by the choice of calibration fields becomes

1
b=+ (B)
80 m

Now create a nine element column vector of normalized measurements by placing

the three columns of the matrix (b) successively beneath each other. Thus
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Finally, using the orientation angles determined by the theodolites construct
the transformation matrix (R) from geographic to sensor coordinates.

The (3 x-3) rotation matric (R) and the ninz element column vector

M are the data to be input to the simultaneous equation solving program MATIPO.

Having completed the measurements far the first orientation we rotate
the sensor assembly + 90° about its z axis (azimutﬁ axis of fixture). The
actual orientations of two sensor axes of the sensor assembly are determined
by the x and y theodolites as before. We then repeat the previous sequence
of three calibration fields and corresponding measurements. A matrix !~
and a vector @ calculated as above form the second set of input data *, pr. .
MAINPO.

For the third orientation of figure 9 we rotate an additional + 90°
about the azimuth axis of the fixture and cbtain measurements as before.
Finally, the fourth orientation is obtained by a 90° rotation about tha
elevation axis of the fixture. This brings the top of the optical cube down
to a position where it may be viewed by the y theodolite.

After all data have been properly entered into program MAINPO, the program
requests an initial guess for the r:trices (r) and (n) defining the direction
cosines of the sensors in sensor coordinates and of the coils in geographic
coordinates. If no prior information is available these are assumed to be
identity matrices. The program then proceeds through several iteraticns
obtaining a final, least square determination of the best fit of the dircction

cosines of sensors and coils to the input data.

Recommendations

The high absolute accuracy desired for the MAGSAT magnetometer requires

accurate calibration equinment and some new procedures. We reconmend acquisition
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To make an accurate determination of sensor direction cosines, the
calibration coil direction cosines must alse be determined accurately. This
can be done in two ways.

1) .Hitb a magnetic theodnlite which would need to be purchased

2) Simultaneously as the sensor cosines are determinad

In our report we choose the simultan2ous datermination procedure. WYe
show that this technique should be able to provide~accuracy of order 5-10 arc
seconds. Tnis accuracy is comparable to that of easily acquired magnatic
theodolites. To significantly improve this accuracy would requice repsated
measurement of the direction cosinas. This procedure requires four reorien-
tations of the sensor assembly. For each orientation both theodolites must
be read and a series of three calibration fields applied and the magnetometer
~iput recorded.

We recommend that this procedure ba automated and placed under the
control of a minicomputer. This would require that the rotation fixture have
motor control of eack axis. Additionally, the theodolites should have digital
readouts. ~

If we accept 10 arc seconds as the obtainable accuracy of the direction
cosines of the sensors, then the absolute accuracy of the magnetometer cannot
be better than + 2 gamma. However, individual sensor errors will 21so be
about + 1 gamma, so we expect the finél accuracy to be aboul + 3 gamma.
Siagnificantly improving this accuracy appears to involve very labor intensive

calibration procedures.



69

of the following equipment:

1) Two optical theodolites of one arc second accuracy

2) Six digit digital voltmeter

3) Tﬁo precision levels of one arc second accruacy

4) Smooth, nun-magnetic test table of granite or glass

5) Brass fixture for rotating sensor assembly about horizontal and

vertical axes with precision of order one minute

6) Minicomputer controller and data logger with video display keyboard

entry

Several modifications of the existing facility also appear to be
required. These include:

1) Separate pillars sunk to bedrock on the North and East calibration

coil axes. These will hold the two theodolites.

2) Two optically flat ports at right angles to each other in the thermal

snroud to monitor changes in sensor orientation as a function of

temperature.

One major problem likely to be encountered in the calibration procedures
is digitizing the magnetometer output with sufficient precision. If a 16 bit
Analog to Digital Converter is used for ths +64K to -64K gamma dynamic range
the least significant bit will correspond to 2 gamma. This uncertainty
of + 1 gamma limits the accuracy of the calibrations to an unacceptaboe level.
Two solutions for this problem are possible:

1) Use a data Toager to make a larga number of samples and average

to higher precisiorn. (This works only if the facility noise is large.;

2) Use AC signals rather than DC signals as the calibration fields.

If facility noise is low, small signals must be present in calibration

axes orthogonal to main calibration fields. Use least square singe wave

fits to determine AC signal amplitudes precisely.
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Figure Captions

1. Schamatic illustration showing the arrangement of calibration coils
test table and theodolites. Theodolites and levels define the orthogonal,

”~ -~ ~

geographic coordinates X, Y, Z. The direction cosinas of the calubratign

coils in geographic coordinates are given by the non-orthngonal unit

"~ ~ -~

vectors n,, ny. n,.

2. Diagram showing a possible arrangamznt of three ring core sensors
supported by a plastic cube and toppaed by a silvered, optical octagon.
Norma's to the faces of the octagon establish an orthogonal seasor
coordinate system. The direction cosines of the magnetic axes of the
ring cores in sensor coordinates are given by the non-orithogonal uait

"~ ~ "

vectors my, m,, m,.

3. A photograph of an easrth inductor (or magnetic theodolite) showing
the type of fixture required for calibrating the angular orizntation of
a sensor magnatic axis in sensor coordinates. As discussed in text the

rotating search coil is replaced by a wounting plate to hold sensor.

4. A schematic diagram showing the modifications of the earth inductor

required to obtain a magnatomater test fixture.

. . . o
5. A schematic illustration showing how angles O ~ 90° and ¢~ 0
are measured by theodolites to determine absolute orientation of rormals

to tha2 faces of an optical octagon.

6. A fixture for aligning individual sensors with the calibration field.

7. Tygical noise spectrum for a ring core fluxgate sensor. Horizonta
brackets at top show frequency band measured by an experimant of given
duration and sample rate. Dashed horizontal lines show quantization

noisc for 68 = ly and &3 & 1/32y.



8. Six relative orientations of sensor and coil used in first

computer simulation.

9. Four relative orientations of sensor and cnil necessary for a

full calibration of three sensors and three coils.

13
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List of Tables

Transformation matricics used in simulataed calibration of a single

sensor with 3 single coil.

N . . T . T .
Diraction cosines of sensors (u ) and coils (n') assumed in

simulation of full calibration.

Transformation r .t "icies for sevan differant relative orientatioas

of senscers and coils in full calibration.
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List of Appendicies

MAGSAT magnetomester specificatioas.

SPEAKEZ program "MAGSIM'' which generates simulated sensor output
when excited by a calibration coil in a given orientation. Inputs
are the direction cosines of the sensor and coil in their respective

coordinate systems.

SPEAKEZ program "MAGCAL 1" which solves for the direction cosines

of sensor and coil using initial guess and simulated measurements.

SPEAKEZ program "NEWSIM'® which genzrates simulated mzasurements

for three sensor and three coil simulation.

SPEAKEZ programs “MAINPO,' 'EQUATS," and “SOLEQU." Together these
programs use measurements of the transformation matrix and magnat-
ometer output with an initial guess to solve for direction cosines

of three sensors and three coils.
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MAGSAT magnetometer specifications.

Specifications for the Measurement of Vector Magnetic Fields

1. General - The magnetometer system described in this specification shall
measure three orthogonal components of the ambient vector magnetic field aboard
2 low altitude earth-orbiting spacecraft. It is specifically intended for
flight on the NASA Applications Explorer Mission (AtM) spacecraft. The
spacecraft will be launched by a Scout vehicle into a near polar, low altitude
orbit for the purpose of making a global survey of the earth vector magnetic
field.

In order to minimize the effect of spacecraft magnetic fields, the sensor
portion of the magnetometer will be mounted at the end of a 3-6 meter extensible
boom to be provided by the spacecraft. Boom deflections and twist will be
monitored by an attitude transfer system, provided by the spacecraft, which
will make available an orthogonal transformation between the sensor coordinate
system and the coordinate system of a stellar attitude determination system
within the spacecraft body. If required for magnetic cleanliness, the
electronics for the magnetometer can also be mounted within the spacecraft
body, and connected to the magnetometer by cabling routed along the boom
structure.

The magnetometer sensor shall have defined a gecmetric coordinate system,
and means shall be provided through optically flat mirrors, or other optical
devices, for determination of two orthogonal axes of the georetric coordinate
system to one (1) arc second accuracy. The magnetometer shall measure projec-
tions of the ambient field along three orthogonal magnetic axes, whose nominal
directions within the geometric coordinate system shall be specified to ane (1)

arc second precision.
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2. Environmental Constraints - The environmental constraints on the magneto-

meter are presented in section 4 of this specification. All performance
specifications of section 3 shall be met after exposure to shock, vibration

and acceleration tests. All performance specifications shall be met under
exposure to the orbital thermal and under ground simulatinn of that environment.
It is expected that both active and passive thermal design of the magnetometer

sensor will be necessary to satisfy the requirements of section 3.

3. Performance Specification

3.1 Stability of Magnetic Axes - The angular deviation of any magnetic axis

from its nominal dirgction shall not exceed 5 arc seconds after exposure te
shock, acceleration, and vibration testing in accordance with section 4 of

this specification. The angular deviation of any magretic axis from its

ncminal direction shall not exceed 5 arc seconds during exposure to the thermal-

vacuum environment specified in section 4.

3.2 Orthogonality of Magnetic Axes - The angle between any two magnetic

axes shall he 90° plus or minus 0.1°,

3.3 Range - The instrument shall be capable of measuring field components
along any axis from -64000 gamma to plus 64000 gamma. (1 gamma equal to 10’9
Tesla).

3.4 Resolution - The resolution along any axis shall be plus or minus 1

gamma or less.

3.5 Measurement Bandwidth - The instrument shall be capable of measurement

in a bandwidth of up to 25 Hz, and shall be compatible with bandwidth

limiting to 1 Hz.
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3.6 Noise - Fluctuation noise associated with any axis shall be less than

0.1 gamma zero-to-peak when measured for 10 seconds in a 25 Hz bandwidth.

3.7 Zero-Oifset - The zero offset change associated with any axis shall
be less than plus or minus 0.4 gamma over the expected range of sensor and
electronics temparature. Long term stability of the zero offset shall beA

less than 0.4 gamma/year.

3.8 Absolute Accuracy - The total instrumental error from all sources in

the determination of the field component along any senscr geometric axis shall
be less than 5 gamma. This error budget inciudes the effects of magnetic
axis stability, zero offset, fluctuation noise, quantization noise, sensitivity

changes, and all other purely instrumental sources of error.

3.9 Power Consumption - The total power consumption for the magnetcmeter,

including power for normal controi of the sensor, shall be less than 6 watts.

3.10 Height - Total weight of the system shall be less than 5 kilograms,

inclusive of the boom cable interconnecting sensor and electronics.

3.11 Volume - The sensor structure shall be cotitained within a 30 cm.
diameter sphere, while the electronics package shall be contained within a

volume 20 cm x 15 c¢cm x 15 cm.

4. Environmental Requirements

4.7 Vibration -

4.1.1 Sinusoidal Vibration:

Frequency Leve) Svieep Rate
Axis Range (Hz) (0 to Peak) (Oct/Min)
A1l (X,Y,2) 10-18 5.0 g*
16-36 0.3 in (D.A.) 4.
36-150 20.g
150-2500 5.¢g

*Limited to 0.5 in double amplitude {D.A.)
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4.1.2 Random Vibration

Frequency PSD Level Acceleration ODuration
Axis Range(Hz) (g2/Hz) (g9-rms) (minutes)

20-200 0.045

200-400 +3dB/0ct 12.9 2/axis

400-2000 0.090

4.2 Acceleration - The performance specification of section 3 shall be

satisfied after non-operating exposure of acceleration of 22.5G in the thrust
axis and 6.06 in the lateral axis. The acceleration shall be simultanzously

applied for a duration of three minutes.

4.3 Storage Temperature - Performance specifications shall not be compromised

by non-operating storage for 6 hours at -50°C and 6 hours at plus 85°C.

4.4 Thermal Shock - The performance specifications shall not be compromised

by exposure to 5 cycles of thermal shock, a cycle consistinr of:
Step 1 - 1 hour storage at -50°C
Step 2 - transfer to plus 85°C in not more than 5 minutes
Step 3 - 1 hour storage at plus 85°C

Step 4 - transfer to -50°C in not more than 5 minutes

4.5 Electronics Operating Temperature - The performance specifications shall

not be compromised by operation of the electrunics at all temperatures in the

range of -10°C to +50°C while the sensor is at room temperature conditions.

-

4.6 Thermal Vacuum Operation - The temperature of the sensor is to be

actively and passively controlled by the contractor to insure tcinperatures
compatible with the performance specifications of section 3. In orbit the

sensor will “e exposad to comriete insplation and complete eclipse on a varying
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duty cycle basis. The extremes of the cycling are expected to be (a) a
continuous insolation for the indefinite period of time and (b) sixty (60)
minutes of insolation to thirty (30) minutes of eclipse.

Confirmation of performance under these conditions will be performed by
the government during acceptance tests of the magnetometer. The sensor will
be operated at pressure of 1/2 micron or less in a ncn-magnetic thermal vacuum
system and magaetic test facility in which the environment specified herein
shall be simulated by use of a liquid nitrogen shroud and solar simulatar.
During these tests, the electronics will be aperated at atmospheric pressure

and in the temperature range -10°C to +50°C.
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t50 legon rmp

ENTER T30 PASSWORD: 20RZARAZ

RMP LO3GDN IM PRCGRESS AT 14:BuH:35 ON xAY 25, 1977
wELCOHE TC UCLA-CCM TSO

RZADY: alloc fi(mykeep) da(my%cep)

REACY: speale:z

TSO SPEAKEASY 3 MU 2:85 PH MAY 25, 1677

: libdindex

A 8HEAS CHECKX COMPAR EQ EQUATS MACSOL MAGCAL HAGCALY
YAGSTH MAINPO MMATRIX MODEL  MUTNUT o HEWSECALMEWSIM SENCAL

TENMCALY SOLEQU THAT TRAMAT

-
-—

“dit wagsim
N'GSId IS NOT DEFINED
HANUAL MOBDE
_kept(magsinm)

edit magsim

EDIT CCHMMAND MODE
4

ORIGINAD PAGH
EDITING MAGSIM OF POOR wnng

0 PROGRAM
0 I%NPUT NUYX,NHUZX
0 IMNPUT MUXZ,HMUYZ
0 MUXX=-1+SQRT(1-(NUYX®¥2,3U2X¥22))
1 NUZZ=-1+SQRT(1-(NUXZ*224AUYZ*%2))
2 DELMU=VEC(:MUXX,MUYX,NUZX)
3 DELLU=VEC(:NUXZ,NUYZ, HUZZ)
4 XYV=VEC(:1 0 0)
5 YUV=VEC(:0 1 0)
6 ZUV=VEC(:C 0 1)
7 MU=XUV+DELNY
8 MU=2UV+DELNU
9 PRINT(DELMU, MU, DELNU,NU)
Q0 R=MAT(3,3:)
0 INPUT HE PLEASE
D PRINT(HE)
C M=VEC(12:)
0 FOR I=1,HE
0 PRINT ('DATA FOR EXPERIMENT 2',I)
5 IMPUT R MATRIX PLEASE
1 PRIHT(R)
12.0 UP=R*NY
12.1 PRINT(NP)
13.0 H(I)=TUMER(:IU, NP)
12.1 PRINT()
%140 E5DLOOP I

-t b s



A3-1

i&nuuﬁ; A3

kept(magcall)
: edit mageall
EDIT CCHMAMD MCDE

tflist

pEDITING MAGCALD

1.00
1.10
1.20
1.3C
1.31
1.50
1.60
2.00
3.00
.00
9.00
10.00
11.00
12.00
13.00
15.00
16.00
17.00
18.09
19.00
20.00
21.00
22.00
22.50
24.C0
24.50
25.00
25.10
25.20
26.00
23%.00
29.00
30.090
31.09
32.00
33.00
34.09
34.59
35.00
35.50
35.00
37.00
32.00
38.12
39.C0
45 .00
k6 .00
47.05
43,00
43.%59

S S

PROGRAM

MARGINS(132)

INPUT ME THE NUMBER OF EXPERIMENTS
AAC-MAT(NE,R:)

ME=VEC(HE:)

CA=ME

A=VEC(4:)

PRINT('ARE OLD DATA AVAILABLE?')

INPUT ANS (O=F& 1=T)

IF(AKS.GE.1) GO TO LCC1

FOR I=1,KE

HEMCEFORTH R IS OBJECT('R',I)
PRINT('INFUT DATA FOR EXPERIMENT ¢ *,I)
INPUT ME(I) THE NORMALIZED MAGHMETOMETER MEASUREHENT
NE(I)

INPUT R THE TRAKSFORMATION MATRIX

R R

=NDLOOP 1 :

INPUT RMSERR (THE RMS ERROR IN THE NORMALIZED MAGNETOMETER MEASUREMENT
VARYI=MAT(NE,1:)

VARYI(,1)=RMSERR*¥2

RMSERR;VARYI

$

INPUT MUY,MUZ (THE Y AND Z COMPCNENT OF MU)

INPUT NUX,NUY (THE X AMD Y COMPONENTS OF NU)

HUX=SGRT (1-MUY%22-4Uz%%2)

NUZ=SQRT (1-NUX®*2_NUY*¥*2)

MY=VEC(:MUX,MUY ,NUZ)

NU=YEC(:NUX, NUY, KUZ)

MU;NU

LOC1:CONTINUE

$

FCR I=1,ME

HEMCEFORTH R IS OBJECT('R',I)

CA(I)=IHNER(MU,R®*NU)

A1=R%NU

A2=TRANSPOSE(R)*MU

AC1)=A1(2)-A1{1)*MUY/MUX

A(2)=A1(3)-A1(1)*HUZ/HUX

A(3)=A2(1)-A2(3)*NUX/HUZ

ACE)=A2(2)-A2(3)*HUY/NUZ

AA(T,)=A

SHpLoOOP I

AA URIGINAL PAGE 19
RES=ME-CA OF POOR QUALITY
ME;CA;RES

s

SETHULL(1.0CE-10)

HENCEFORTH T IS TRANSPOSE

SEIGTNAKALYS IS OF AA®T(AN)

nte s a R~ 7 2 A N




52.0U0 RULEV

53.00 AUEVT=AUEV A3-2
-~ 55200 yr=U

55.00 INPUT LOWLIM (LOWLIM IS THE LOWEST ACCEPTABLE EIGEUVALUE)

556.C0 LOWLIM

57.00 YHERE(AUEV.LT.(LOWLIM)) AUEVT=0

58.00 IU=LOCS(AUEVT)

59.00 IF(IU(1).EQ.1) GO TO LOCAU

60.20 I=LOCS(.NOT.AUEVT)

61.00 UP=U(,IU)

52.00 U0=U(,I)

§3.00 LOCAU:COUTIMNUE

64.00 SEIGENANALYSIS OF T(AA)®AA

65.00 AV=T(AA)XAA

66.00 AVEV=EIGEHNVALS(AV,V)

§7.00 AVEV

63.C0 AVEVT=AVEVY

63.00 VP=V

T0.00 WHERE(AVEV.LT.LOWLIM) AVEVT=0

71.00 IV=LOCS(AVEVT)

T2.C0 IF(IV(1).EQ.1) GO TO LOCAV

73.00 I=-LOCS(.NOT.AVEVT)

78.00 VP=V(,IV)

75.00 vO=V(,1)

76.00 LOCAV:CONTINUE

T77.00 $SEE IF UP AHD VP GIVE A POS DEF DIAG NAT

78.00 L=T(uP)*ptsyp

79.092 DE=DIAGELS(L)

89.00 WHERE(DE.GT.O0) DE=0

81.00 IFX=LOCS(DE) -

82.00 $CHAMGE SIGN OF COLUMNS OF UP CCRRESPONDING TO NEGATIVE EIGEMYVALUES

83.00 ¥DO=NOELS(IFX)

88.C0 IF(IFX{1).EQ.C) GO TO 3ELOW

85.00 FOR I=1,KDO

8£.00 UP(,IFX(I))=-UP(,IFX(I))

87.00 ENDLOOP I

83.00 BELOW:COHTIXNUE

£§3.00 L=T(UP)*AA*VP

90.00 DIAGELS(L)

91.00 INVAA=VPE(1/L)*T(UP)

92.00 X=INVAA*RES

93.C0 NR=MOROWS(INVAA)

94,00 NC=MOCOLS(INVAA)

94,10 H2=MAT(NR,NC:)

95.00 FOR I=1,KR

96.00 FOR J=1,NC

97.C0 H2(I1,J)=IHVAA(L,6J)**2

93.Cc0 ENDLOOP J

99.00 ENDLOOP I

102.00 VARXX=H2*VARYI

101.00 SQRT(VARXK)

101.10 IF(IU(1).EQ.1) GO TO HERE

102.09 VAR=(T(UD)*RES)**2

103.00 LRESSQ=RES**2

104.09 VAR;LRESSQ;VAR/LRESSQ ORIGINAD PAGE B
104,10 HERE:CONTINUE OF POOR QU
195.00 X

105.00 MUY=X(1)+MUY

135.50 MUZ=X(2)+MUZ

137.00 HUX=X(2)+NUYX

107.50 HUY=X(U4)+N0Y

03,00 MUX=3QRT(1-MUY¥*2_MUZ%%2)

103.50 HUZ=SQRT(1-NUX**2}lUY#¥2)
ﬁquiLQQ,ﬁuiiﬁC(:HUX.ﬁUY,HUZ) s . —

., : ; {




113.00 NU;Ny®*2

118,09 PRINT("ARE THESE VALUES GOOD ENOUGH?')
115,00 INPUT AES (O=F & 1:=T)

116.00 IF(ANS) GO TO PROEND

117.02 GO TO LOC1

118.00 PROEND:COUTINUE

119.00 AR;INVAA;U;V;TMVAARAA;AARIHVAA ;H2
116,12 IF(IU(1).HE. 1) PRINT(VO,UQ,T(UO)*RES)
$120.00 PRINT('HORHAL END OF PROGRAM MAGCAL')
- 4

end
44

enter apl or tso
tso

360/91 temporarily not available
6
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L 3 .\‘

end
MANUAL MODE
1 edit newsin
NEYSIM IS NOT DEFINED
MANUAL MCDE
:_kept(newsin)
: edit newsim
ECIT COMMAHND MODE

HY

1
EDITING NEWSIM

1.0 PROGRAM

2.0 INPUT MUT A HAT WITH ROWS BEING UMIT VEC OF SEN IN SEM COOR

3.0 IHPUT NUT A MAT WITH ROWS BEIHNG UNIT VEC OF COIL IN GEC COOR

.0 HENMCEFORTH T IS TRANSP

5.0 MU=T(MUT);HU=T(NUT)

6.0 MU;NU . .

7.0 S$OBTAINM LIST DEFINIHG NUM OF SEN ORIENT AND TRANS MAT

8.0 KEPTLIST(TMAT)

3.0 ROYWS=9*NE

10.0 B=VEC(ROWS:)

11.0 %

12.0 SLOOP TO CREATE MEASUREMENT MAT FOR CAL HAT BC=I

13.0 L=1

18.0 FOR K=1,NE

14.1 PRINT ('EXPERIMENT £ =*, K)

15.0 HENCEFORTH R IS OBJECT('R',K)

16.C BM=MUT*R*IU ;BN

17.0 $§

15.0 & PUT COLUMNS OF BM INTO COLUMYN VEC OF MEASUREMENTS
16.0 FOR J=1,3

20.0 B(L)Y=8BM(,J)

21.0 L=L+3

22.0 ENDLOOP J;ENDLOCP X

23.0 SPRINT AND SAVE THIS VECTOR

24.0 TMAT=NMAMELIST(NE,R1,R2 R3 R4 R5 R6,R7 ,B)
25.0 KEEPLIST(TMAT)
26.0 8

-
L

end
MANUAL MODE

.
a—

INAL PAGE IS
O POOR QUALITY
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« Appandix A5

ED

i
1
2
3
i
2
6
7
8

-
QW

43

TIUG MATNPO

PRCGRAM

$ FROM HERE TO ITLOOP: IS PROGRAM INITIALIZATIOH
DELMU=MAT(3,3:);DELNU=DELNMU

PRINT('INITIALIZE PRCGRAM TO CALCULATE SENSOR AED ZOIL COSINES')
INPUT MUT,NUT (ROWS ARE GUESSES OF SENSOR AED COIL UNIT VECTCRS)
HENCEFORTH T IS TRANSPOS:

MU=T{(MUT ) ;RU=TI(NUT)

PRINT(*THE IMITIAL MCDEL ON IMPUT WAS')

MU; NU

3

$ OBTAIN MEASURED TRANSFORMATION MATRICIES
RR=MAT(21,3:)

KEPT (TRAMAT)

LCADDATA(RR, TRAMAT)

PRINT('THE IMPUT TRANSFORHMATION MATRICIES ARE')
RR

3

$ OSATAIN MEASURED FIELD VALUES

KEPTLIST(BMEAS)

o

$

$ FREE AS MUCH SPACE AS POSSIBLE

FREE(MUT,NUT, TRAMAT)

3

$ FIND OUT HOW MANY SENSOR ORIEMNTATIONS MEASURED
INPUT NE (THE NUMBER OF SENSOR ORIEMTATIONS)
ROW3I=9 *}E

3

% CCHE HERE FOR ITERATION OF SOLUTICHY

LSTOP=3

LMP=1

ITLO

$ OBTAIN AN EXECUTE PROGRAM TO CREATE EQUATIOHS FOR THIS MODEL
PRIUT('BEGINNING ITERATION NUMBER ',LMP)
KEPT{EQUATS)

EXECUTE(EQUATS)

FREE(EQUATS)

3 OBTAIN AND EXECUTE PROGRAM TOS SOLVE EQUATIONS
SHEPT(SCQLEQU)

3EXECUTE(SOLEQU)

$FREE(SCLEQU)

KZPT MACSOL

EXECUTE MACSOL

FREE MACSOL

LMP=LMP+1

IF(LMP.LE.LSTOP) GO TO ITLOQF

MU=MU+DELMU; NU=NU+DELNU

DELMU;;DELNU ;MU NU

PRINT(C'INITIAL HODEL HAS BEEM IMPROVED LSTOP TIMES',LSTOP)



edit equats
EE T, COMMAKD MODE A5-2
TR N

list
EDITING EQUATS
PEOGRAM EQUATS
2 UPDATE MU AUD MU WITH PREVIQUSLY CALCULATED CORRECTIOHNS
AUzMUSDELMUNU=MUDELNY
DELMU;DELNRYU
FREE(DELMU,DELNU)
¢ CALCULATE DIAGONAL ELEMENTS OF HU AND MU USING OFF DIAG ELE
MUC1, 1)=SQRT(1-MU(2, 1)*%2-MU(3, 1) %¥2)
NUC1, 1)=SQRT(1-NU(2,1)*¥¥2_NU(3,1)¥%*2)
ﬁu(a,Z):SQRT(I-HU(I,2)**2-HU(3,2)**2)
10 MU(2,2)=SQRT(1-MU(1,2)E22_NU(3,2)2*2)
11 MU(3,3)=SQRT(1-MU(1,3)E*2-MU(2,3)%%2)
12 NU(3,3)=SQRT(1-NU(1,3)%%2-NU(2,3)**2)
13 PRINT('MU AND NU AS CORRECTED TO GIVE UHIT COL MNORMALS ARE')
4 MUNY
15 SCREATE UHIT VECTOR COMSTRAINT MATRIX
16 Vi1=HG(,1)/8U(1,1)
17 V2=NU(,2)/NU(2,2)
18 v3=HU(,3)/8U(3,3)
19 Y&=MU(,1)/7M0(1,1)
20 V5=MU(,2)/MU(2,2)
21 V&=MU(,3)/7MU(3,2)
22 $DO LOOP FOR EACH ORIENTATION
23 PRINT('BEGINMING LOOP FOR EACH SET OF SENSOR ORIENTATIGHNS')
28 J= 15 9 10 14 18

ND OO =) OV BZLO ) -

25 L=1

25 A=MAT(ROWS,12:);BR=VEC(ROWS:)

27 £02 X=1,HlE

28 AizM AT(Q 18: )3 MN=MAT (9, 18: ) ; RMX=MAT(7,3:);BMOD=VEC(9:)
29 a*x:var(7 3:)

30 $ PUT PRCPER TRANSFORMATION MATRIX IN R

31 IT=3%(K-1)+1

32 I3A=IT,IT+1,IT+2

33 R= RR(ISA )

35 sCALCULaTE MODEL MATRICIES

35 C1=T(MU)*R;C2=R*NU;BMM=T (MU)*R*NU
36 RNX(1)=C2(,1)

37 RNX(8)=C2(,2)

38 RUX(T)=C2(,3

39 3 3SET UP MODEL MEASUREMENT VECTOR
40 B 10D (1)=BMH(,1)

41 BOD(H4)=BMM(,2) A
42 a:-zoo(?)zsm-:(,m ORIGINAL PAg‘m
43 13A=INTEGERS(L,L+8) oF POOR QU

Yy BB:B(ISA)

45 28(L)=BB-BMOD

46 I5ET UP LEFT HALF OF COEFFECIENT MATRIX
47 A\(l 1)=C1

B8 AA(Y. 4)=C1 )

!l9 n\(? 7)=C1

50 $SET UP RIGHT HALF OF COEFFECIENT MAATRIX

51 22(7,10)=RNX
52 AA(2,13)=RIX
53 #‘(3,15) RN X
(1,1)-VCL‘RP”Y(7 AA(, 1)) *ROWARRAY(3:V1)
N(1,4)=COLARRAY(9:AA(, 5))*RO”APRAY(3 v2)
(1, T)Y=COLAPRAY(9:4A(,9)) *ROZARRAY(3:V3)
1;(1,13)-”PLARF5Y(9 AQ( 105)’°O'ARFAY(3 Vu)

I T .




TTHYT NN, 12)IULULAKKAY(YIAAL, 10 ) )T RUNRRHRAY($:VD) T T T
80 KA=AA-MFAMONY) A5-3
6t AA=ELIMCOLS(AA,J)
F a2*a(L,1)=A4
63 L=L+9
64 E/DLOOP K
65 BR
€5 FREE(V1,V2,V3,V4 V5,V6,J,K,AA, NN, IT,ISA,R,CY,C2, MM, RNX,BMCD,BB)
®B7 PRINT('PROGRAM EQUATS HAS COMPLETED CALCULATION COF EQUATIONS FOR THIS MODD
r-4

-

M;PAGEﬁ
or?oo“““m



end
(MAHUEL MODE A5-4
:_ke¥po(solequ)
: edit solequ
ETIT COMMAND MODE
thlist

EDITING 3SOLEQU.

PROGRAM

& INITIALIZE ARRAYS FOR SOLVING SET OF EQUATIOHNS

X=i =T (ROWS:)

T=1.0E-6

S=4ARRAY{12:)

Z=SIMEQUAT(A,BR,T:5)

]

$ SET UP CORRECTICN MATRICIES

DELNU=TRANSP(MAT(3,3:0 X(1) X(2) X{(3) 0 X(4) X(5) X(56) 0 ))
10 DELMU=TRANSP(MAT(3,3:0 X(7) X(8) X(9) 0 X(10) X(11) X(12) 0 ))
11 FREE(X,T,S,A,BR)

WO =] U L) M) -

%13 ;RIﬂT('PROGRAM SOLEQU HAS COMPLETED SCLUTION OF EQUATIOQONS FGR THIS MODEL')



