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STRESS-INTENSITY FACTORS FOR A THICK-WALLED
CYLINDER CONTAINING AN ANNULAR IMBEDDED OR
EXTERNAL OR INTERNAL SURFACE CRACK*

by

Ragip Erdol ** and F. Erdogan
Lehigh University, Bethlehem, PA

Abstrnact. The paper considers the elastostatic axisymmetric problem
for a long thick-walled cylinder containing a ring-shaped internal or
edge crack. Using the standard transform technique the problem is
formulated in terms of an integral equation which has a simple Cauchy
kernel for the internal crack and a generalized Cauchy kernel for the
edge crack as the dominant part. As examples the uniform axial load
and the steady-state thermal stress problems have been solved and the
related stress intensity factors have been calculated. Among other
findings the results show that in the cylinder under uniform axial
stress containing an internal crack the stress intensity factor at the
inner tip is always greater than that at the outer tip for equal net
ligament thicknesses and in the cylinder with an edge crack which is
under a state of thermal stress the stress intensity factor is a de-
creasing function of the crack depth, tending to zero as the crack
depth approaches the wall thickness.

1.  INTRODUCTION

In studying the fracture problem in pressure vessels, pipes, and
other cylindrical containers, if the wall thickness relative to the
mean radius is sufficiently small, the related crack problem may be
solved by assuming the structure to be a shallow shell. In this case
the problems which lend themselves to analytical treatment are those
involving relatively short circumferential and axial through cracks
in (infinitely) long cylindrical shells (for review and references see,
for example, [1]). The problems of a through crack in a thick-walled
cylinder and a part-through crack of finite size in a thick or thin-
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walled cylinder at the present time do not appear to be tractable.
Nevertheless, these are the practical problems. Therefore, it would

be of some interest if one can provide bounds for or give some idea
about the magnitude and the trends of certain relevant quantities such
as the stress intensity factors by solving the problem under certain
idealized conditions regarding the crack geometry and the loading. One
of the simplest of such idealized problems is considered in this paper.
If (a) the flaw in the cylinder is a part-through circumferential crack
lying in a plane perpendicular to the axis, (b) the radial dimension of
the flaw is relatively constant and its circumferential dimension is
large compared to the wall thickness, and (c) the external loads are
axisymmetric, then the axisymmetric ring-shaped crack shown in Figure 1
may approximate the problem around the center portion of the flaw.

From the viewpoint of fracture propagation, since this mid-portion of
the flaw is the most critical location, the approximate solution thus
found would be very useful. The ring-shaped crack may be an internal
crack (a<c<d<b), an edge crack on the inner surface (a=c<d<b), or an
edge crack on the outer surface (a<c<d=b) (see Figure 1). Once the
governing integral equation is obtained, the problem can be solved for
any axisymmetric quasistatic external load. In this paper the results
will be given for uniform axial loading and for steady-state temper-

ature distribution.

The corresponding problem for the solid cylinder with a penny-
shaped crack (i.e., a=0=c) was treated in [2-4], and for the strip

with internal or edge cracks in [5].
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2. DERIVATION OF THE INTEGRAL EQUATION

Consider the problem for a long thick-walled cylinder which con-
tains a concentric ring-shaped crack in z=0 plane, z being the axis of
the cylinder (see Figure 1). Let the cylinder be subjected to (quasi-
static) axisymmetric external loads which may be mechanical, thermal,
or residual in nature and are independent of z. In the absence of the

crack let the stress components at z=0 be
0},(r,0) = £x) , o (x,0) =0 , awh &y

where f(r) is a known function. If the cylinder is sufficiently long
the solution of the cylinder containing the crack may be obtained by
superposition, namely, by adding to the (homogeneous) solution of the
cylinder without the crack and under given external loads a perturba-
tion solution obtained for the cracked cylinder in which self-equili-
brating crack surface tractions are the only external loads. These
tractions are equal and opposite to the stress given by (1). From
the viewpoint of fracture, the relevant problem is the latter. There-

fore, only the perturbation problem will be considered in this paper.

In terms of the Love function x(r,z) the axisymmetric problem

may be formulated as follows [6]:

vx =0 , (2)
2 2
ur,a) = - R L W) = 4 20T E (3)
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where u and w are r and z-components of the displacement vector, u is
the shear modulus, and v is the Poisson's ratio. For an axisymmetric
elastic cylinder in which z=0 is a plane of symmetry and the stress

state vanishes at z=+» the biharmonic function y may be expressed as

(t,2) = 2 f [£1(s) T, (rs) + £,(s) TSI, (r5)

+ fs(s)Ko(rs) + f4(s)rsK1(rs)]sin zs ds

Q0

* J fs(p)p(2v+2p)e-ZpJo(rp)dp ; (5)
O

where the functions £ ,...,fs are wnknown. From (3), (4), and (5) the

displacements and the relevant stress components are found to be
u(r,z) = 711-1- 2 E[fl(s)ll(rs) + £,(s)rsI_(rs)
- fs(s)l(l(rs) - f4(s)rsKo(rs)]szcos zS @s
{ﬁwﬁwwmﬁ%@W}, (6)
1

Wir,z) = g {2 Jm[f ()T, (rs) + £,(s) [4(1-V)T, (xs)

+ rsIl(rs)] + fs(s)Ko(rs) + f4(s) [rsKl(rs)
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- 4(1-v)K (rs)]]s’sin zs ds

- | £, @03 12a-vzpie  (rp)ep) ()
(o}

00

orr(r,z) = ?Zr Jo{szfl(s) [-sIO(rs) + Il(rs)/r]

+

s3f2 (s)[(2v-1) IO (rs) - rsI1 (rs)]

i

szfs(s) [sKo(rs') + Kl(rs)/r] + 53f4(s)[(1~2v)1(0(rs)

o o]

rsl(l(rs)]}cos zs ds + Iopsfs(p) [p(l—zp)Jo(rp)

- (-2v-zp)Jy (p)/rle Tdp (8)
o (r,z) =2 E 1£ (81 (x5) + £,(5) [2(2-v) I (x5) + 151, (r5)]

+ £4(s)K (rs) + £,(s) [rsKl(rs)’ - 2(2-V)K (rs)]}cos zs ds

+ [: pf.(p) +zp)e T (rp)dp 9)
o, (r,2) = %r. rb{fl(s) I (xs) + £,(s)[rsI,(rs) + 2(1-V)I; (x5)]

0

£4(s)K, (xs) + £, (s) [-rsK (rs) + 2(1-\))K1(rs)]}s? sin zs ds

+ Jopsf5 () ze—ZpJ1 (rp)dp . (10)



In the crack problem shown in Figure 1 the following are the bound-

ary conditions:

crr(a,z) =0 , orz(a,z) =0 , 0<z<o (11
o&r(b,z) =0 , GrZ(b,z) =0 , 0<z<» (12)
Grz(r,o) =0 , a<r<b , (13)
ozz(r,O) = -f(r) , c<r<d ,

(14)

w(r,0) =0 , a<r<c , d<r<b

From (10) it may be observed that the condition (13) is satisfied by the
solution (5). The four homogeneous conditions (11) and (12) may be used
to eliminate four of the unknowns fi,...,f and the mixed boundary con-
ditions (14) may be used to obtain a system of dual integral equations
for the fifth unknown function. Thus, using (8) and (10) the boundary

conditions (11) may be expressed as

fl(s)[»slo(as)*-Il(as]/a]-*sfé(s){(Zv—l)Io(as)'-asIl(as)]

- fs(s)[sKo(as)4-Kl(as)/a]+-sf4(s)[(l—2v)Kb(as)-asKl(as)]

LFM&@

57 ) 53—;f§5-{pJo(ap)-(1-2v)J1(ap)/a

2
+ [pd,(ap) - Iy (a)/a] Sk} @ as)
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fl(s) I1 (as) + fz(s) [asIo(as) + 2(1~\>)Il(as)

- fs(s)Kl(as) + f4(s) [2(1~v)K1(as) - asKo(as)]

g = 2P0 )
i [0 —prrszyz J1(apdp . (16)

Conditions (12) give two more equations which may be obtained from (15)
and (16) by replacing a by b. Now, rather than substituting f.,.. ,f4

given by these four equations into (14) and obtaining a system of dual
integral equations for fs (p), the problem may be reduced to a singular

integral equation in terms of a new unknown function defined by

T%;w(r,o) = g(r) . (7

From (7), (17), and the second equation of (14) it follows that

P50 = | mmneoe (18)

If we now solve (15), (16) and two similar equations for r=b for
fl,..,f4 in terms of g(t) by using (18) and substitute the results into
the first equation of (14), by using again (18) and the expression for
g,, as given by (9), after somewhat lengthy but straightforward manipula-

tions, we obtain
d 1 1-v
J g7 *+ k(r,t)Jg(t)dt = - STl mf(r) , c<r<d , (19)
c
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where the kernel k(r,t) is given by

k(r,t) = k (r,t) + 2tky(r,t) (20)
ky(r,e) = MpUL L nm0 21)

E(r/t) , <t ,
m(r,t) =< . (22)
%E(t/r) + t_t%_r_ K(t/r) , 1>t

00

4 b
k,(r,t) = f 73—&;%— {(Z Ah )T (xs) + ()1: B.h.) [2(2-v) Io(rs)

o

4 %
+ 151, (rs)] + (% C;hy)K (rs) + (; D;h.) [rsK, (rs)
- 2(2-v)K (rs)1} . (23)

Here, K and E are the complete elliptic integrals of first and second
kind, respectively and the functions A(s), Ai(s), Bi(s), Ci(s), Di(s),
and hi(t,s), (i,1,..,4) are defined in the Appendix. The expressions
of the infinite integ‘rals used in this part of the analysis are given
in [7]. From the second equation of (14) and the definition (17) it

is clear that the integral equation must be solved under the following

single-valuedness condition:

d
J g(r)dr = 0 . ' (24
c



3. INTERNAL CRACK

A close examination of the kernel k(r,t) defined by (203 to (23)
would show that the first part kl(r,t) has a simple logarithmic singu-
larity (in the form of log|t-r|), whereas the second part kz(r,t) is
bounded in the closed interval c<(r,t)<d provided a<c<d<b, that is if
the crack is a fully imbedded internal crack. In this case the Cauchy
kernel 1/(t-r) is ths dominant kernel, the index of the integral equa-

tion is +1, the solution is of the form [8]

o) = 6 (<) @] 25)

and, hence a standard numerical technique such as that described in [9]
may be used to determine the unknown function G(r) which is bounded in
the closed interval c<(r,t)<d. Thus, defining the following normalized

quantities

g(r) = 6(p) = F(®@-pDF , £) =P() , K(p,) = $Ek(r,1)

(26)
equations (19) and (24) may be expressed as
If Lpr)=t- + mK(o;,t)] = - £ (o)
j=1 B i Ti-pj pj, i H J ’
j=1,..,n-1 (27)



J TF(p) =0 (28)
=g B ’

2i-1
T, = COS (w-—%—n——) , 1=1, ,n]

> (29)

After solving the integral equation the stress intensity factors

which are defined by

k(c) = 1lim v2(c-r) czz(r,O) , L
k(d) = 1im /ZTr——-_dTozz(r,O) J
T+d
may be obtained as follows:
k(©) = lin {5 /2GC) g() = iy /E@A/Z FCD) )
r-C - (31)
k(d) = -1;113 T /2@T) glx) = - 75 /@072 FQ) . J
T
\\M\N

~——
wheré™F{z1) and F(+1) are obtained from F(t;), i<1,..,n, by using the

interpolation form given in [10].
—

e SPOU

4. EDGE CRACKS

In the case of edge cracks (i.e., for a=c<d<b or a<c<d=b, Figure 1)
the integral equation (19) is still valid. However, in this special

case the kernel k(r,t) in (19) is no longer bounded in the corresponding
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closed interval and, of course, the single-valuedness condition (24) is
no longer valid. Therefore, the solution of the problem requires some
care. The asymptotic analysis of the integrand in (23) for large values
of s indicate that the kernel ky(r,t) may be expressed as the sum of

two parts as follows:
kz(r,t) = sz(r,t) + kZS(r,t) (32)

where sz is bounded in the corresponding closed interval and kZS becomes
unbounded as r and t approach the end point c=a or d=b. After some manip-
ulations the asymptotic expressions for the integrand and the singulafa\

part of the kernel k2 are found to be

00

_ ds
kZS(r,t) = JO ST [2s2(r-a) (t-a) - 3s(t-a)
-s(r+t-2a)
- s(r-a) +2]e
1 6(r- 4(r-a)?
B ijf - wgzm * (r+£f22%2 ) (r+tTZZ)3] (33)

in the neighborhood of the end point a (i.e., for r-a<<d-a and t-a<<d-a),

and
kzs(r,t) = -Jo 55%% [2s2 (b-1) (b-t) - 3s(b-t) - s(b-T)
-s(2b-r-t)
+ 2le ds
1 1 6(b-r) , 4(b-1)? (34)

A SR SR BTk
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V in the neighborhood of the end point b (i.e., for b-r<<b-c and b-t<<b-c).
It should be noted that the singular kernels (33) and (34) are essentially
the same as the expressions found for the corresponding plane strain prob-
lem considered in [5]. Thus, repeating the analysis of [5], it may be
shown that the solution of the integral equation (19), which now has a
generalized Cauchy kernel, has no power or logarithmic singularity at the
end point which is on the surface and the solution is of the following

form

gr) = G)(d-1) 7 , ascer<d<d )
( (35)
g(r) = Gr) (r-0) F , a<c<r<dsb J)

where G;and G,are bounded in their respective closed intervals. In this

case the stress intensity factors are given by

k() = -133 VZ(@a-1) g(r) = ‘/—” G (d , a=< ,

' (36)
k(c) = 11n1 v?(c r) g(r) = (c) , d=b

r*+C

The integral equations for the edge cracks may be solved by follow-

ing the procedure outlined in [5].

5. RESULTS AND DISCUSSION

As an example, the integral equation (19) is solved under two types

of input functions, namely, a uniform stress in z direction and a steady
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state thermal stress distribution. In the former case
G;Z(r,O) = f(r) =0, , .agrd (37)

and in the latter (see, for example, [11])

61, (1,0) = £(r) = o, [1-210g (b/T) - 2y log(b/a)]/log(b/a)  (38)
where

g, = uE(TO-Ti)/Z(l—v) s (39)

o, E, T, and Ti being the coefficient of thermal expansion, Young's

0’
modulus, outer wall temperature, and inner wall temperature, respect-
ively. The calculated results are shown in Tables 1-4. Figures 2 and

3 show some sample results which are taken from Tables 3 and 4.

Table 1 shows the normalized stress intensity factor
k' = k/(o 0/‘(‘d“'-c) /2) (40)

for a thick-walled cylinder which contains a ring-shaped internal crack
along c<r<d and is under uniform axial tension 9,,~% (Figure 1). It
may be seen that as the crack size becomes very small in comparison with
other dimensions k' approaches 1 which is the value for a uniformly
loaded infinite plane containing a line crack. This was verified by

5 in the program. It may also be observed that

substituting (d-c)/b=10"
if the thicknesses of the net ligaments, c-a and b-d are equal then the

stress intensity factor k(c) at the inmer tip is always greater than
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k(d) at the outer tip, whereas in the corresponding plane problem for a

strip they are, of course, equal. The practical consequence of this is
that generally one would expect the internal flaws in thick-walled
cylinders to propagate inward. Another observation which may be worth
mentioning is that, for a fixed c¢/b, as d/b increases (starting with
=c), initially there is & slight reduction in k'(d), then it increases
and becomes unbounded as d+b.” However, as seen from (40), the stress
intensity factor k(d) itself is proportional to (d-c)li and, despite the
slight decrease in k'(d), is always an increasing function of the crack
size. If b=» with a and ¢ finite one would expect that as d increases
k(d) would approach -72? cso/a which is the stress intensity factor for a
penny-shaped crack in a uniformly loaded infinite medium. This means
that in this case 2/m is the asymptotiﬁ value of k'(d) and 1>k'(d)>2/w.

For d-c<<b the reduction in k'(d) is therefore not surprising.

Table 2 shows the normalized stress intensity factors in a thick-
walled cylinder with an internal crack which is under a state of steady-
state thermal stress given by (38) and (39). Here it is assumed that
To>Ti, i.e., the cylinder is heated from outside. For again a fixed c,
it is seen that as d increases k'(d) decreases and eventually becomes
zero as d advances into the compressive stress region. Also as d+c,
k(d) and k(c) approach the local plane strain value i.e., k(d)~£(c)
/(d-0)/Z, k(c)+>£(c)/(d-c)/2 where £(c) is the magnitude of the thermal
stress S, at r=c (see equations 38 and 39). This was again verified

by selecting (d-c) /b=10" 3
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Table 1. Stress intensity factors in a thick-walled cylinder with an

internal crack under uniform axial stress ¢,,=0q, k'(d)=k(d)4bb

xV@=0)72) , k'(c) = k(c)/ (ooV{d-C)72).
a/b=0.3, ¢/b=0.4 | a/b=0.3, c/b=0.5 a/b=0.2, c/b=0.4
d/b
. k'(d) k' (c) k'(d) k'(c) k'({d) k' (c)
0.4} +1.0 +1.0 +1.0 ~+1.0
0.5 0.9973 1.0591 | ~+1.0 +1.0 0.9864 1.0405
0.6 1.0167 1.1493 0.9931 1.0377 0.9963 1.1017
0.7 1.0626 1.2690 1.0150 1.1035 1.0345 1.1900
0.8 1.1645 1.4416 1.0833 1.2098 1.1262 1.3252
0.9 1.4361 1.7374 1.2870 1.4022 1.3726 1.5644
1.0 00 00 300
Table 2. Stress intensity factors in a thick-walled cylinder with an
internal crack under steady state thexmal stresses. k{(d)/ (o,
VDY, )/ (/@I , or=eh(To T /20-) , /b=0. 3
C = . .
d/b 0.4 0.401 0.5 0.6 0.7 0.8
ké(d) +0.8893 | 0.8859 | 0.6044 | 0.3762 | 0.1827 | 0.0093
ké(c) +0.8893 | 0.8885 | 0.8328 | 0.7836 | 0.7279 | 0.6591

Table 3 shows the normalized stress intensity factors for an edge
crack on the inside wall of the cylinder (i.e., a=c, d<b). Here k'(d)
refers to the uniform axial loading, k%(d) refers to the case of thermal
stress. k'(d) is also shown in Figure 2 in order to compare it with
plane strain and penny-shaped crack results. It is seen that as d+a
k(d)~»1.1215 GOJETE for uniform axial tension 0,,~% and k(d)+1.1215

f(a)/d-a for thermal stress f(r) given by (38).* Note that for a half

%

The limiting values of the stress intensity factors for the edge cracks
given in Tables 3 and 4 were also verified by letting the crack depth
to be 10~°b, where a/b is of order unity.
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Table 3. Stress intensity factors for the inside edge crack in a thick-
walled cylinder (a=c<d<b, Figure 1). k'(d)=k(d)/oo/d-a (ex-
ternal load: uniform tension ¢,,=0), ki(d)=k(d)/ot/d-a (ex-

ternal load: steady-state thermal stress, ot=aE(To-Ti)/2(1-v)).

a/b=0.3 a/b=0.8

d/b

K@ | K@ | k@
0.30 | »1.1215 | +1.5333
0.40 0.9655 1.0120
0.50 0.9162 0.7099
0.60 0.9204 | 0.5027
0.70 0.9764 0.3498
0.80 1.1172 0.2323 | +1.2046
0.84 0.9671
0.90 1.4981 0.1372 0.7190
0.95 0.4751
1.00 | - & +0.0 +0.0

Table 4. Stress intensity factors for the outside edge crack in a thick-
walled cylinder, a/b=0.8 (a<c<d=b, Figure 1). k'(c)=k(c)/o,
vb-c (for uniform axial stress 0,,=0y), ké(c)=k(c)/ot¢5—c (for
thermal stress, o¢=0E(Ti-T)/2(1-V)).

c/b 1.00 0.98 0.96 0.94 0.92 0.90 0.85 | 0.80

k'(c)| +1.1215] 1.1615| 1.2513| 1.3706 | 1.5141| 1.6817 -0

k{(c) +1.0383| 0.9487 | 0.8905| 0.8385| 0.7832| 0.7189 | 0.4892| ~0.0

plane with an edge crack of depth £ under uniform tension 9, the stress
intensity factor is 1.1215c%/§ (see, for example, [5]). Thus the ex-
pected results are recovered in limit. Table 3 and Figure 2 show that
for a fixed a/b as d/b increases starting with a/b, the initial reduction
in k'(d) is much more noticeable than the internal crack case. Figure 2
also shows the stress intensity ratio for the penny-shaped crack in an
infinite solid, namely 2/wr. The dashed line shown in the figure approx-

imates the stress intensity factor ratio k’(d)=k(d)/co/d-a in an infinite

-16-



solid containing a cylindrical hole and an internal edge crack. It would
be expected that for d-a<<a§k'(d)+1.1215; for d>>a;k'(d)+2/w; andiin be-
tweenik'(d)»would be a monotonically decreasing function of d. This
appeafs to be the reason for the decrease in k'(d) when d-a is small

compared to b.

The result for the outer edge crack in a uniformly loaded cylinder
is shown in Table 4. Here the stress intensity ratio k'(c) increases

quite rapidly with increasing crack depth b-c.

For a/b=0.8 the edge crack results for the steady-state thermal
stress case are shown in Tables 3 and 4. The same results and the ther-
mal stress ozz/ot given by (38) are also shown in Figure 3. It is assumed
that TO>Ti for the imner edge crack and T0<Ti for the outer edge crack,

T0 and T.1 being the outer and inner wall temperatures (Figure 3 shows
only To>Ti). Note that (a) the stress intensity factor is always posi-
tive if the edge crack starts from the wall which is under tension, (b)
it monotonically decreases as the crack depth increases, and (c) it
approaches zero as the thickness of the net ligament goes to zero.
Basically, this is the same result found in [12] for a strip under (self-

equilibrating) residual stresses.
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APPENDIX

The functions Ai(S) ’ Bi(s) ’ Ci(S) > Di(S) ’ hi(t,s) , (i=1,..,4),
and A(s).

A= (ML, + ML)z,

A, = 4Ly - MLIZ,

o =3
]

3 M1[~5L125 + LZ(SZ2 + Zl/a)]

+ MZ[-L4(sZz+Zl/a) + SZ - AKl(bs)/Z1 s

5Lz
A, = Ml[Ll(sZS- Zl/b) - sz L ]
+ M, [sL,Z, —LS(SZS- Zl/b)] + AKl(ats)/Z1 :

B = 'Lzzl ’

B2 = lel ,

B, = Ll(sZS-Zl/b) - sL224 ;
Cp = (LM + LMJZ,
C, = (LMg-LMIZ,

Cr = MS[-Sle + LZ(SZZ + Zl/a)]

5

+ Md[-Ll,'(sZZ+ Zl/a) + SLSZS] - AI1 (bs)/Z1 ,
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C4 = MS[Ll(SZS"Zl/b) - sLZZ4]
+ M4[sL4Z4-L3(sZS'-Zl/b)] + AIl(as)/Z1 ;
Dy =Ly
D, = L2 ,
D, = —L4(sZ2 + Zl/a) + sL325 "
D4 = SL4Z4 - LS(SZ3 - Zl/b) H
Z, = Kl(as)Il(bs) - Kl(bs)Il(as) y
Z2 = Io(as)Kl(bs) + Kb(as)Il(bs) ,
Z3 = Io(bs)Kl(as) + Ko(bs)Il(as) ,

Z, = Io(as)Kl(as) + Ko(as)Il(as) ,

Z. = Io(bs)Kl(bs) + Kb(bs)Il(bs) H

M, = [asI (as)K, (bs) - sbI (bs)K,(as) - 2(1—\))Z1]Zil ,
M2 = [~asKo(as)K1(bs) + bsKo(bs)Kl(as)]Zi1 ,
M, = [asIo(as)Il(bs) - bsIo(bs)Il(as)]Zi1 ,

M, = [2(1-V)Z, - asK_(as)L (bs) + bsK_(bs)I, (as)12;"
L, = as2[Z,K (as) - 2K (as)] - bs’ZK (bs) 209 g ¢ (as)

L, = as’Z.K_(as) - bs?[Z K (bs) +2,K, (bs)] - 209 7. (bs)
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Ly = as?[-Z,1_(as) - 2,1, (as)] +bs’z, I (bs) - 24) 71 (as)
L, = -aSZZSIo(as) +bs[2,1_(bs) - 2,1, (bs)] - 2(1-v 2,1, (bs) ;
A=L

1 273

h, = -s[I (as)K, (ts) AW a6?) + %I (as)K (ts)
+ sI_(as)K) (ts) - = I (as)K (ts)]

hy = -s[I (ts)K; (bs) LML - s%b) + 5T, (s)K, (bS)
- sI, () (bs) + 3= I (t)K; (b))

h, = -s?[aI (as)K, (ts) - tI;(@s)K (ts)]

hy = -s“[-bI; (ts)K, (bs) + I (ts)K; (bs)]
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Figure 1. Geometry of a thick-walled cylinder containing a ring-shaped
crack.
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Figure 2. The stress intensity factor for an (internal) edge crack in a
thick-walled cylinder under uniform axial stress o,,=0.
a/b=0.3, k'(d)=k(d) /oo/d—a (the dashed line is the approxi-
mate k'(d) for an infinite medium with a cylindrical hole of
radius a and an internal edge crack of depth d-a).
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Figure 3. Stress intensity factors for an internal edge crack, ké(d),

and for an external edge crack, k¢(c), in a thick-walled
cylinder under steady-state thermal stress. a/b=0.8, ky(d)=

k(d)/oy/d-a, k' (c)=k(c)/o.Vb-c, or=0B|To-Ts|/2(1-v).
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