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Abstract

We consider dynamical systems subject to control by two agents, one

of whom desires that no trajectory of the system, emanating from outside

a given set, intersects the set no mater what the admissible actions of

the other agent. Conditions are given whose satisfaction assures that a

given control results in avoidance. Furthermore, these conditions are

constructive in that they yield an avoidance feedback control. Some

examples are presented.



1.	 Introduction

We consider dynamical systems subject to control by two agents,

one of whom desires that no trajectory of the system, emanating from outside

of a given set, intersects that set no matter what the actions of the other

agent; that is, the first agent desires avoidance of a prescribed set. A

number of problems fall into this category. Among them is that of evasion

by one agent (evader) from one or p rom more than one pursuer, e.g., Refs. 1,2,3.

The pursuer(s) may act with fixed (predetermined) strategies or as active

pursuers capable of choosing any one out of a given set of strategies. Also

of interest are protlews in which avoidance is sought in the presence of

uncertainty. This latter problem encompasses evasion by one agent from

anotherone who is not a purposeful pursuer but whose unplanned actions may

result in collision, e.g., 	 Refs. 4,5.

Heretofore problems of the type mentioned above were treated in one of

two ways (Refs. 6,7): as games of degree (quantitative games) g tth time or distance

of approach as cost, e.g., Refs. 1,2,3,8,9, or a-^ games of kind (qualitative games)

involving the construction of barriers, e.g., Refs. 4,5. 	 Even for, systems of low

dimensionality	 (< 3), these techniques usually require numerical integration

so that only particular cases can be discussed. Furthermore, results are

obtained by use of necessA_ conditions. Here we propose an alternative

approach, namely, the constructive utilization of conditions sufficient to

assure avoidance. This method is simple and elementary; its main drawback

lies in the requs-cement for a Lyapunov-type function for whose construction

no general recipe is given.



2. Problem Statement

We consider dynamical systems in the sense of Filippov (Ref. 10).

In particular, let

d.
p'(•)	 R n x R • nonempty subsets of R 1	 i	 1, 2.

be (feedback) strategies belonginq to given classes of possibly set-valued

functions, u i , with control values, u^ 	 ranging in given  sets, U 

that is, given (x, t) E R  x R

d.
u 1 E p I (x, t) C U i C R 1	 ,	 i= 1, 2

Now consider a given function

f (• ): R11	

d
x R x R 1 

x R d 2 , R 

and for given p^( • ) E U i 	i - 1, 2,	 the set-valued function F(-)

defined by

F(x, t) =fz I z = f(x, t, u	 u 2 ),	 u^ E= p^(x, t)}

= f (x, t, p1 ( x , t), p2 ( x , t))

Then a dynamical system is defined by the relation

x	 F(x, t) .

Givon (x0 , to ) E R  x R , the solutions of (1) are absolutely continuous

functions on intervals of R

X(-) : [ t 0 , t l ] . R 	 , x(t 0 ) = x 0	 (2)

satisfying ( 1 ) a •.e.: namely,

XM c f (x, t, 
p  
WO,  t), p 2 (x(t), t)) a.e. [t0 , t 1 ]	 (3)

3 We allow state acid time-dependent constraints U i = U i (x, t)
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Sometimes it may be convenient to restrict x by x E A , where A

is open or the closure of an open set in R n 	In that event,

(x 09 t o ) E A } R and Rn is replaced by A in (2)4

Now let there be given an anti- target, T , in A , that is a

given set into which no solution of (1) must enter for some p l (•) E Ul

no matt,.r what u 2 ( • ) E U2 . Furthermore, consider a closed subset, A

of A such that

A ^ T

and the closure, AE , of an open subset of A such that

A D A
C

and

3A E n3A n intA = ^

Figure 1, Anti-target, Avoidance Set

and Safet y Zone

4 We shall e , ,ihloy A henceforth with the urderstanding that A may be R 

itself.
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We term A the avoidance set and

AA r, A
E 

- A

the safety zone. This nomenclature is employed for the following reasons.

If a solution avoids A then itit cannot enter T , and if a policy is

implemented in AA that guarantees avoidance of A then a solution

originating outside of A cannot reach A .

It is out , purpose to determine an avoidance strategy p l ( • ) E U1

such that, given (xo , to ) E A , no solution of (1) intersects A no matter

what p 2 ( • ) E U2	To put this more precisely we introduce

K(xo , t ° , t)	 fx(t) I given ( x° , t o ) E ,,and  p I ( • ) F U 1	 all	 p 2 (•) E U2}

attainable set of motions from (x	 +.	 at t	 t	 ,

given p 1 ( • ) c u l	 , for all	 p 2 ( • ) E U,

K(x , t , [ to ,  W )) n	 U	 K(x , t , t)
°	 o 	 tF [t	 u)	 0	 0

0

= U2 funnel of motions from (x o , t°)

K(UA , R) 
-6	

U
	

K(x°, t° , [t o , W))

( X° , t° ) E SiA

where

QA 
Q 

AA x R .

Now we have

Definition 2.1	 Given relation (1), and U i , i = 1, 2, a prescribed set A is

avoidable_iff there is a p l (•) E u 	 and a QA # b such that

K(QA , R) n A = ^
	

(4)
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Remark 2.1 Note that (4) implies global avoidance; tnat is, satisfaction of

(4) implies

K((A - A) ), 2, R] n A =

Remark 2.2 Avoidance set A can be any set containing anti-target T	 In

specific cases it may be convenient, or indeed necessary, to select A dif-

ferent from T ; e.g., see Sec. 6.

3. Avoidance Strategies

The following theorem embodies sufficient conditions for avoidance

of a given set A .

Theorem 3.1 A given set A is avoidable if there exist an PA and two functions, a

strategy p 1 ( • ) E ul and a C	 function V(-) : SI A ' R , such that for

all	 (x, t) E 2A

( i )	 V(x, t) > V(x l , t l )	 d 
X  

e M , V t l `' t

and	 V u  E 1) 1 ( x , t)

(ii)	 ;►t t) + V x V(x, t) f(x, t, u 1 , u 2 )	 0 V u 2 E U2

where	 pl( -) 
= p l (.) I Q

A

Proof Suppose that for some (x o , t o ) E SS A there is a t 2 > to such that

K ( xo, t0 1 t 2 ) ' A #
	

Then there is a t 1 E (to , t 2 ] and an

x 1	 K(xo, toy t l' 
) , ,)A
	

such that

V(xo. t^) > V( xl , t1)	

i

by (i).	 By (ii), however,	 V(x, t)	 is nondecreasing along every solut-ion of

(1); e.g., see Ref. 11.
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Theorem 3.1 has an inrnediate corollary. Let

H(x, t, u l , u2)	 3V(x ' t) + V
x V(x, t) f(x, t, u l , u2)

Then we have at once

•	 Co rollary 3.1 Given (x, t) E QA , if thorn is (u l , u 2 ) F U 1 x U 2 such that

Fl(x, t, u l , u 2 ) =	 max	 min	 H(x, t, u l , u 2 )	 (5)

UIEU1 u2(-U2

and

H( x , t, u l , u2) a 0	 (6)

then condition (ii) of Theorem 3.1 is met, with u 1 E 01 (x, t) provided the

resulting p l ( • ) E U l ; that is, it may be possible to deduce an avoidance

strategy from (6).

Proof The corollary follows directly from

H(x, t, 6 1 , u 2 )	 H(x, t, u l , u 2 )	 d u 2 E U2

Remark 3.1 Note that an avoidance strategy need be known only on SSA

that is, only	 p l (•)	 riot	 1) 1 ( • )	 is required.

Remark 3.2 As is usually the case with conditions involving Lvapunov-typC-

functions, the most difficult part of applying these conditions is the

determination of V-Functions. In the next section we address this problem

for a special case.

Remark 3.3 Theorem 3.1 is related to Theorem 6.2 of Ref. 7.
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4.  L i nea r ors tems

Con e ider a linear system for which eq. (3) is

	

x(t) = A x(t) + a u  + C u2	(7)
d.

where	 x e A c R n 	u^ F U  c R	 i= 1, 2, and A, B. C are

constant matrices of appropriate dimensions.

Now suppose	 that matrix	 -A	 is stable. Let	 Q	 be a negative

definite n x n matrix, and consider the Lyapunov equation

PA +A' P + Q = 0 (8)

Then matrix P	 is	 positive	 definite	 (Ref.	 12). We choosy	 V( • )	 such	 that

V(x, t) =	 x'	 P	 x (9)

If the avoidance set

A = Ix	 ; x'	 P	 x ., constant} ( 10)

that	 is, if it	 is	 a	 ball	 in	 R 	 ,	 then condition (i)	 of	 Theorem	 3.1	 is

satisfied.5

Furthermore, if there	 is a matrix	 D	 such that	 C =	 aD	 ,	 and	 if

U 
= fu' III	 u 1 	II	 < p i	 =	 constant	 '^	 0)	 i	 - 1 ,	 2 ( 11) 6

with	 p l	 I II	 D II	
f'2	

,	 then	 condition (ii) of Theorem 3.1	 is met and the

corresponding avoidance strategy	 is given by

1(x ' t) = IIa'Pxp	 il ^'l	 V (x, t) $ N x R	 (12)

where

N n fx I B'Pic = 0

For (x, t) E N x R	 p 
1
(x, t) may take on any admissible value.

II

5 That is, anti-target, T , must belong to a ball containing {0)

6 Here, 11 • 11	 denotes Euclidean norm.
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The satisfaction of (i) follows at once, whereas th,it of (ii) is

readily seen by considering

H(x, t, u l , u2 ) = 2x'P [Ax + Bu l + Cu2]

= x'(PA + A'P) x	 _x'PBu I + 2x'PBDu2

_ -x'Qx + 2[x'PBu I + x'PBDu21

> -x'Qx + 2[x'PBu I - IIB'Px1I IIDII P ? ] .

Remark 4.1	 If	 -A is not stable but (-A, -B) is stabilizable so that there

exists a matrix E such that -A -BE is stable, then (12) is replaced by

i	 B'Px
p (x, t) - E x +^IB'Pxll 11  11 P 2	 (13)

and for this strategy to be admissible, U 1 = U I (x,t)	 must be such	 that

p l (x,	 t) E U  for all (x, t) E QA

5. Example - Linear System

Consider the linear system with

	

A r0 I0
	

B=C= N

ar,d wi th

U 2 = fu 2  1 I X 2 1 c 1)

Avoidance set A and constraint set U 	 will be specified

subsequently.

Since -A is not stable but (-A, -B) 	 is stabilizable, we

determine first the linear part of p l ( • )
	

It is readily deduced to

b  Ex where, for instance,

E = [-I	 1

Then, if

I	 U

Q	
rl 

I	 ORIGINAL PAGF'F, IS
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the solution of (8), with A replaced by A + BE , is

P	
312

	

11 /2 	 1

so that the nonlinear part of p l ( • )	 is sgn (-^ x l + x2 )	 Thus,

provided A is a ball

A n (x I x'Px < a - constant > 01

an avoidance control is given by

p l (x, t) = -x 1 + x2 + sgn (-2 x  + x2)

for all

(x, t) 4 N Y R = f(x, t) I x l = 2x2)

Constraint set U l dep;^r , is on the choice of safEty zone A A .

For instance, we may choose

AE - (x I x'Px w a+c, c ,0)
so that 11 1 must be such that p l (x, t) E U l f(,r all x E A A = Ac - A	 t E R .

6.	 Evasion of Pure Pursuit.

Here we consider the problem of evasion from a slower pursuer whose

strategy is one of pure pursuit, that is, such that the pursuer's velocity is

directed along the line-of-sight (see Figure 2).

Figure 2, Pure Pursuit

01
	 _	 `



For constant purs

kinematic equations are

r = V  cos 0 - v 

ra ' v  sin T

while the evader's normal a

a n = V  (^ + 4')

Iet

Vk 4 
P 
E (0, 1

v	
)

E

and

x = (
x l ^ ( r	 ^ ul

` x2 -

Then

x 1 = v  (cos x2 - k)

v
X2 = vu

E 

_ x 

1
E s' n x2

With control constraint

11 1 = U = ( u l l u l< u= constant > 01

Note that here the pursuer's strategy -- that is, his normal

acceleration -- is fully specified.	 In other words, U2 is a sincllet.

Now sulj>ose that evader E wishes to assure that the distance r

from pursuer P remain greater than a specified length a ; that is,

anti-target

UPI 
YvUit ^l AL1TY

I



T - I x1 x 1	a n constant > 01

In choosing avoidance set A D T , we are guided by the following consi,'erations.

When

x   = x l n.'ax z v  - v
I, > 0	 (cos x 2 = 1)

P can be allowed to approach to within the min i irum distance of approach, a

However, when

X l u x l min = - v  - v
p	0	 (cos x 2	-1)

P must be kept farther away to give E sufficient time to evade. Thus if 

A = ( x1 x  E R+	 IX 2 1 < ni

we are led to an avoidance set of the form ; (see Figure 3)

A= t x1 x• -" a +n+b- /(n+ is) x, d>01

Figure 3, Avoidance Set

7 We shall see subsequently that	 x 2
 
 

< TT
	 assured.

8 Of course, there are other possibilities; for example, instead o' a cir-

cular arc one can choose a parabolic one for aA .

i



Upon applying Corrolarry 3.1, one obtains the expected avoidance

control

u = u if x2<0

U = -u if x2 > 0

For x2 = 0 , any admissible control may be used; clearly, u = 0 is the

reasonable one.

Condition (6) of Corollary 3.1 is met for all x E A A if

vE(k -cos x 2
) 

/( n	 d)2
u a	

_TX 27
	 v x F AA

2

Since x 2 c [— Ti, nJ , a conservative bound is given by

u a	

cos-1 k

Note that the larger b the closer P may approach E when

x l = x
l min + and hence the larger the required control u . Also, as k

increase, so does tie lower bound of u .

The treatment utilized above may be applied to the problem of

planar evasion from an active pursuer. This problem is treated by the

method of bar, , ier trajectory construction in Ref. 5 , and by the method

of this paper in Ref. 13 .
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Figure I. Anti-Target, Avoidance Set and Safety Zone

Figure 2. Pure Pursuit

Fi-ijre 3. Avoidance SEt
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