General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Qualitative Differential Game. with Two Targets

W. M. Getz ${ }^{+}$and G. Leitmann ${ }^{\text {H }}$
(NASA-CR-152044) QUALITATIVE DIFFERENTIAL
N78-10825
GAMES WITH TWO TARGETS (National Research
Inst. Lor Mathematical) $19 \mathrm{p} \mathrm{HC} \mathrm{A02/MF} \mathrm{s01}$
CSCl 12B Unclas
G3/66 52033

August 1977
NSG - 2242
+National Research Institute for Mathematical Sciences, CSIR, Pretoria,
South Africa
\#University of California, Berkeley, California, USA

Abstract

We consider so-called differential games of kind (qualitative games) involving two or more players each of whom possesses a target toward which he wishes to steer the response of a dynamical system that is under the control of all players, Sufficient conditions are derived, which assure termination on a particular player's target. In general, these conditions are constructive in that they permit construction of a winning (terminating) strategy for a player. The theory is illustrated by a pursuit-evasion problem.

Abstract

We consider so-called differential games of kind (qualitative games) involving two or more players each of whom possesses a target toward which he wishes to steer the response of a dynamical system that is under the control of all players. Sufficient conditions are derived, which assure termination on a particular player's target. In general, these conditions are constructive in that they permit construction of a winning (terminating) strategy for a player. The theory is illustrated by a pursuit-evasion problem.

1. INTRODUCTION

Differential games of kind, especially games of pursuit and evasion, were introduced by Isaacs, Ref. 1. Much of the subsequent literature on this subject deals with extensions and generalizations of problems discussed by Isaacs; a particular favorite is the "honicidal chauffeur game", Refs. 2,3. These games concern situations in which two players exert control over a system; one player (pursuer) wishes to steer the state of the system to a given set, while the other player (evader) desires to keep it out of that set. Thus, such games involve a single set which is the pursuer's "target" and the evader's "anti-target".

Differential games of kind (qualitative games) in which each of two players has his own target toward which he wishes to steer the system's state were considered by Blaquière et al., Ref. 4; such multi-target games encompass games with a single target, of course. A general discussion of two-target games may be found in Ref. 4, where there are also presented conditions sufficient to assure one player that a particular subset of the state space is one from which his opponent cannot guarantee himself a win (that is, termination on his target).

In this paper we consider qualitative two-target differential games. For such games we give conditions sufficient to assure one player that a particular subset of the state space is one from which he is guaranteed a win; that is, if he utilizes a strategy for which certain conditions are met and play begins in an appropriate subset of the state space, then he is assured of steering the state to his own target before his opponent can steer it to his.

2. PROBLEM STATEMENT

In order to admit a class of strategies sufficiently general to be of interest in many applications we allow the system under discussion to be a generalized dynamicäl system, Refs. 5, 6.

We suppose that n real numbers $, x_{i}, \boldsymbol{i}=1,2, \ldots, n$, fully describe the system at a given instant of time, $t \in(-\infty, \infty)$. Thus, the system is described by a vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\top} \in D$, loosely called the "state" of the system, where D is a domain or the closure of a domain in R^{n}. The state evolves, that is, changes with time, as a trajectory of a generalized ơynamical system
$\dot{x}(t) \in F(x(t), t)$
where $F(\cdot)$ is an appropriately defined vector-valued function from $D \times R^{1}$ into all nonempty subsets of R^{n}.

Since the system is under the control of two agents (players), we consider two prescribed sets, $\mathrm{pi}^{\mathrm{i}}, \mathrm{i}=1,2$, of set-valued functions of x and t. Let $U^{j}, i=1,2$, be given subsets of $R^{d_{i}}$, the players' control spaces. ${ }^{\dagger}$ The elements of p^{i} are the $i-$ th player's admissible feedback controls (strategies) $p^{i}(\cdot): D \times R^{1}+a l l$ nonempty subsets of U^{i}.

Next let there be given a function $f(\cdot): D \times U^{1} \times U^{2} \rightarrow R^{n}$,
and for given $p^{i}(\cdot) \in p^{i}, i=1,2$, define $F(\cdot)$ by
$F(x, t) \triangleq\left\{z \in D \mid z=f\left(x, u^{1}, u^{2}\right), u^{i} \in p^{i}(x, t)\right\}$
$=f\left(x, p^{1}(x, t), p^{2}(x, t)\right)$.
For given $\left(x_{0}, t_{0}\right) \in D \times R^{1}$, a solution of (1) is a function

Tone can allow for state and time-dependent constraint sets $U^{i}=U^{i}(x, t)$ by prescribing set-valued runctions Ui(.) .
$x(\cdot):\left[t_{0}, t_{f}\right)+D, x\left(t_{0}\right)=x_{0}$, that is absolutely continuous on all compact subintervals of $\left[t_{0}, t_{f}\right)$ and satisfies
$\dot{x}(t) \in f\left(x(t), p^{1}(x(t), t), p^{2}(x(t), t)\right)$
a.e. $\left[t_{0}, t_{f}\right)$.

To assure existence of solutions of (3) we make the following assumption. Assumption 1. The sets of admissible strategies, $p^{i}, i=1,2$, are such that for all $p^{i}(\cdot) \in p^{i}, i=1,2$, and all $\left(x_{0}, t_{0}\right) \in D \times R^{1}$, there is at least one solution of (3).

Of course, the choice of P^{i} satisfying Assumption 1 depends on function $f(\cdot)$. Conditions assuring existence of a solution at (x_{0}, t_{0}) are of the following kind (egg., see Refs. 5,6,7):
i) $F\left(x_{0}, t_{0}\right)$ is compact and convex, and
ii) $F(\cdot)$ is upper semicontinuous on a compact set containing $\left(x_{0}, t_{0}\right)$. Now let T_{1} and T_{2} be two prescribed closed sets contained in D and such that $D \neq T_{1} \cup T_{2}$. These are the "targets" of players 1 and 2 , respectively.

Before we can define a "winning strategy" and a "winning set" for a player we need to introduce the concept of "play". Definition 1. A play is a quadruple $\left\{\left(x_{0}, t_{0}\right), p^{1}(\cdot), p^{2}(\cdot), x(\cdot)\right\}$ such that
$1 .^{\dagger}\left(x_{0}, t_{0}\right) \in\left[D \backslash\left(T_{1} \cup T_{2}\right)\right] \times R^{\top}$,
2. $p^{i}(\cdot) \in p^{i}, i=1,2$,
$\overline{\text { Given two sets, }} A$ and $B, A \backslash B \triangleq\{a \in A \mid a \notin B\}$.
3. $x(\cdot):\left[t_{0}, t_{f}\right] \rightarrow D$, or $x(\cdot):\left[t_{0}, t_{f}\right) \rightarrow D$ if $x\left(t_{f}\right)$ is not defined, with $x\left(t_{0}\right)=x_{0}$, is a solution of (3) generated by $p^{i}(\cdot), i=1,2$,
4. $x(t) \notin T_{1} \cup T_{2}$ for $t \in\left[t_{0}, t_{f}\right)$,
5. either i) $x\left(t_{f}\right) \in T_{1} \cup T_{2}$ for $t_{f}<\infty$, or
ii) $t_{f}=\infty$, or
iii) t_{f} is a finite escape time for $x(\cdot)$; that is, $x(t)+x \in \partial D$ or $\|x(t)\|+\infty$ as $t \rightarrow t_{f}$.

Now we can define the concepts of winning strategy at a point and then of a winning set.
Definition 2. A strategy $\hat{p}^{1}(\cdot) \in \mathrm{p}^{1}$ is winning for player 1 at $\left(x_{0}, t_{0}\right) \in\left[D \backslash\left(T_{1} \cup T_{2}\right)\right] \times R^{1}$ if the set of all plays $\left\{\left(x_{0}, t_{0}\right), \hat{p}^{l}(\cdot), p^{2}(\cdot), x(\cdot)\right\}$ for all $p^{2}(\cdot) \in p^{2}$ is nonempty and contains no members satisfying ai) with $x\left(t_{f}\right) \in T_{2}$, or Si) or 5iii) of Definition 1. A completely analogous definition, with 1 and 2 interchanged, holds for a winning strategy $\hat{p}^{2}(\cdot) \in \mathrm{p}^{2}$ at $\left(x_{0}, t_{0}\right)$.

Simply stated, a winning strategy for a player at $\left(x_{0}, t_{0}\right)$ guarantees termination on his, and only his, target no matter what the strategy of the other player.

Definition 3. A set $W \subset D \backslash\left(T_{1} \cup T_{2}\right.$) is 1-winning (or 2-winning) if player 1 (or 2) has a strategy $\tilde{p}^{1}(\cdot)$ (or $\tilde{p}^{2}(\cdot)$) that is winning for him at all $\left(x_{0}, t_{0}\right) \in W \times R^{1}$.

An essential part of the solution of a ganne is the mapping of D into its 1 -winning and 2 -winning subsets, along with the characterization of the associated winning strategies, $\tilde{p}^{1}(\cdot)$ and $\tilde{p}^{2}(\cdot)$. In the terminology of Ref. 4, the union of all 1-winning (or 2-winning) sets together with T_{1} (or T_{2}) is S_{E} (or S_{p}).

In the next section we consider the problem of finding winning strategies by giving a theorem of conditions sufficient for a set to be 1-winning (2-winning).

3. WINNing SETS

The game as defined in Section 2 is completely symmetrical with respect to players 1 and 2. In this section we give conditions sufficient for a set to be 1 -winning. Of course, the theorem with 1 and 2 interchanged holds equally for a 2 -winning set.

The conditions in the theorem below depend on an a priori chosen quadruple $\left\{V_{1}(\cdot), V_{2}(\cdot), k_{1}, k_{2}\right\}$ where $V_{i}(\cdot): D+R^{1}, i=1,2$, are C^{1} functions for which there exist constants C_{1} and C_{2} such that
i) $T_{1} \supset \Delta_{1} \triangleq\left\{x \in D \mid V_{1}(x) \leqslant C_{1}\right\}$
ii) $T_{2} \subset \Delta_{2} \triangleq\left\{x \in D \mid V_{2}(x) \leqslant C_{2}\right\}$
and
iii) $k_{1}>0, k_{2}$ are scalar constants.

Given a quadruple $\left\{V_{1}(\cdot), V_{2}(\cdot), k_{1}, k_{2}\right\}$, let
$W\left(v_{1}, v_{2}, k_{1}, k_{2}\right) \triangleq\left\{x \in D \backslash\left(T_{1} \cup \Delta_{2}\right) \left\lvert\, \frac{k_{1}}{V_{1}(x)-C_{1}}>\frac{k_{2}}{V_{2}(x)-C_{2}}\right.\right\}$.

Before stating a theorem, we introduce another assumption. Assumption 2. If $D=R^{n}$, given $p^{i}(\cdot) \in P^{i}, i=1,2$, and a quadruple $\left.\mathfrak{f} V_{1}(\cdot), V_{2}(\cdot), k_{1}, k_{2}\right\}$, no solution of (3) with $\left(x_{0}, t_{0}\right) \in W\left(V_{1}, v_{2}, k_{1}, k_{2}\right) \times R^{1}$ has a finite escape time.

This assumption is satisfied if
i) equation (3) satisfies a linear growth condition, or
ii) function $V_{1}(\cdot)$ in Theorem 1 below is radially unbounded; that is, $V_{q}(x)+\infty$ as $\|x\|+\infty$.

Now we are ready to state the main theorem.
THEOREM 1. If there exist a quadruple $\left\{V_{1}(\cdot), V_{2}(\cdot), k_{1}, k_{2}\right\}$, a strategy $\tilde{p}^{1}(\cdot) \in P^{1}$ and a function $\bar{p}^{-1}(\cdot): 0+$ all nonempty subsets of U^{1}, such that
i) $\tilde{p}^{1}(x, t)=\bar{p}^{-1}(x) \quad V(x, t) \in D \times R^{1}$,
ii) $\forall x \in W\left(v_{1}, v_{2}, k_{1}, k_{2}\right)$ and $\forall u^{1} \in \bar{p}^{1}(x)$,

$$
\sup _{u^{2} \in u^{2}} \nabla v_{1}(x) f\left(x, u^{1}, u^{2}\right) \leqslant-k_{1}, \inf _{u^{2} \in u^{2}} \nabla V_{2}(x) f\left(x, u^{1}, u^{2}\right) \geqslant-k_{2}
$$

iii) Assumption 1 is met,
iv) D is an invariant set of (3) with $p^{1}(\cdot)=\tilde{p}^{1}(\cdot)$ and all $p^{2}(\cdot) \in p^{2}$, or else $D=R^{n}$ and Assumption 2 is satisfied,
then $W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$ is 1-winning.
Proof. First we show that if a trajectory of (3), with $p^{1}(\cdot)=\tilde{p}^{1}(\cdot)$, any $p^{2}(\cdot) \in p^{2}$ and $\left(x_{0}, t_{0}\right) \in W\left(V_{1}, V_{2}, k_{1}, k_{2}\right) \times R^{l}$, remains in $W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$ for $t<t_{f}$, then it terminates on $T_{1} \cup T_{2}$; that is, 5ii) of Definitipn 1 cannot occur. In view of condition iv), no such trajectory has a finite escape time and so may be
extended over any interval $\left[t_{0}, t_{f}\right.$), including $t_{f}=\infty$ in case of nontermination, Consider a trajectory corresponding to solution $x(\cdot):\left[t_{0}, t_{f, 7}+D\right.$, or $x(\cdot):\left[t_{0}, t_{f}\right)+D$ if $t_{f}=\infty$, with $x\left(t_{0}\right)=x_{0} \in W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$. In view of $\left.i i\right)$ and the supposition that $x(t) \in W\left(v_{1}, V_{2}, k_{1}, k_{2}\right)$ for $t \in\left[t_{0}, t_{f}\right)$
$\nabla V_{1}(x(t)) \dot{x}(t) \leqslant-k_{1}$
$\nabla v_{2}(x(t)) \dot{x}(t) \geqslant-k_{2}$
a.e. $\left[t_{0}, t_{f}\right)$. Upon integration, e.g., see Ref. 7 , we obtain for $t \in\left[t_{0}, t_{f}\right)$
$v_{1}\left(x_{0}\right) \geqslant v_{1}(x(t))+k_{1}\left(t-t_{0}\right)$
$V_{2}\left(x_{0}\right) \leqslant V_{2}(x(t))+k_{2}\left(t-t_{0}\right)$.
Let
$\tilde{t} \triangleq t_{0}+\frac{V_{1}\left(x_{0}\right)-c_{1}}{k_{1}}$
and suppose that $\tilde{\mathrm{t}}<\mathrm{t}_{\mathrm{f}}$. Then it follows from (5) and (7) that $V_{1}(x(\tilde{t})) \leqslant C_{1}$.

By the definition of $V_{1}(\cdot)$, namely, $T_{1} \supset \Delta_{1}$, this implies that
$x(\tilde{t}) \in T_{1}$, contradicting the supposition of termination at $t=t_{f}$ or else non-termination, $t_{f}=\infty$. Thus, $\tilde{t} \geqslant t_{f}$ and termination must occur on $T_{1} \cup T_{2}$ at $t=t_{f}<\infty$.

Next we demonstrate that termination takes place on $T_{1} \backslash T_{2}$. Two cases must be considered, $k_{2} \leqslant 0$ and $k_{2}>0$.

$$
\text { For } k_{2} \leqslant 0 \text {, since }
$$

$V_{1}(x)-C_{1}>0$ for $x \in D \backslash T_{1}$
$V_{2}(x)-C_{2}>0$ for $x \in D \backslash \Delta_{2}$
it follows from (4) that
$W\left(V_{1}, v_{2}, k_{1}, k_{2}\right)=D \backslash\left(T_{1} \cup \Delta_{2}\right)$.
Hence, by condition $i v), x(t) \in W\left(v_{1}, v_{2}, k_{1}, k_{2}\right)$ for $t \in\left[t_{0}, t_{f}\right)$.
In view of (9), for each $x_{0} \in W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$ there exists an $\varepsilon>0$ such that
$V_{2}\left(x_{0}\right)=C_{2}+\varepsilon$.
Since $x(t) \in W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$ for all $t \in\left[t_{0}, t_{f}\right)$, it follows
from (6) that
$V_{2}\left(x_{0}\right) \leqslant V_{2}(x(t)) \quad \forall t \in\left[t_{0}, t_{f}\right)$
whence, by (11),
$V_{2}(x(t)) \geqslant C_{2}+\varepsilon \quad \forall t \in\left[t_{0}, t_{f}\right)$
which implies that $x\left(t_{f}\right) \notin \Delta_{2} \supset T_{2}$. But $x\left(t_{f}\right) \in T_{1} \cup T_{2}$ so that $x\left(t_{f}\right) \in T_{1} \backslash T_{2}$.

For $k_{2}>0$, suppose there is a $t<t_{f}$ for which $x(t) \notin W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$. Then, by continuity of $V_{1}(\cdot), V_{2}(\cdot)$ and $x(\cdot)$, there exists a $\overline{\mathrm{t}}<\mathrm{t}_{\mathrm{f}}$ such that $x(t) \in W\left(V_{1}, V_{2}, k_{7}, k_{2}\right) \quad v t \in\left[t_{0}, \bar{t}\right)$
and
$\frac{k_{1}}{v_{1}(x(\bar{t}))-C_{1}}=\frac{k_{2}}{v_{2}(x(\bar{t}))-C_{2}}$.

Now, (A_{1}) and (5) hold for $x(t) \in W\left(v_{1}, v_{2}, k_{1}, k_{2}\right)$ and so, by continuity of $V_{1}(\cdot)$ and $V_{2}(\cdot)$ and by positivity of k_{1} and k_{2},
$\frac{v_{1}\left(x_{0}\right)-c_{1}}{k_{1}} \geqslant \frac{V_{1}(x(\bar{t}))-c_{1}}{k_{1}}+\left(\bar{t}-t_{0}\right)$
$\frac{V_{2}\left(x_{0}\right)-C_{2}}{k_{2}} \leqslant \frac{V_{2}(x(\bar{t}))-C_{2}}{k_{2}}+\left(\bar{t}-t_{0}\right)$.
Since $x_{0} \in W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$, it follows from (4) and (14) that
$\frac{k_{1}}{v_{1}(x(\bar{t}))-c_{1}}>\frac{k_{2}}{v_{2}(x(\bar{t}))-c_{2}}$.
This contradicts (13), and so
$x(t) \in W\left(v_{1}, v_{2}, k_{1}, k_{2}\right) \quad \forall t \in\left[t_{0}, t_{f}\right)$.
Thus, as shown earlier, $x\left(t_{f}\right) \in T_{1} \cup T_{2}$.
Now suppose there is a $\overline{\mathrm{t}} \leqslant \mathrm{t}_{\mathrm{f}}$ such that $\mathrm{x}(\overline{\mathrm{t}}) \in \Delta_{2} \backslash T_{1} \supset T_{2} \backslash T_{1}$ and $x(t) \notin T_{1} \cup \Delta_{2} \partial T_{1} \cup T_{2}$ for all $t \in\left[t_{0}, \bar{t}\right)$. Since $x(\bar{t}) \in \Delta_{2} \backslash T_{1}$,
$V_{1}(x(\bar{t}))>c_{1}$
and
$V_{2}(x(\bar{t})) \leqslant C_{2}$.
Substitution of (16) and (17) in (14) yields
$\frac{k_{1}}{V_{1}\left(x_{0}\right)-C_{1}}<\frac{1}{\bar{t}-t_{0}}$
and
$\frac{k_{2}}{V_{2}\left(x_{0}\right)-C_{2}}>\frac{1}{t_{-}-t_{0}}$
so that
$V_{1}\left(\frac{k_{1}}{\left.x_{0}\right)-C_{1}}<\frac{k_{2}}{V_{2}\left(x_{0}\right)-C_{2}}\right.$
which contradicts $x_{0} \in W\left(V_{1}: V_{2}, k_{1}, k_{2}\right)$. Hence, $x(t) \& \Delta_{2} \backslash T_{1} \supset T_{2} \backslash T_{1}$ for $t \leqslant t_{f}$ so that $x\left(t_{f}\right) \in T_{1} \backslash \Delta_{2} \subset T_{1} \backslash T_{2}$.

Since these conclusions hold for all $x_{0} \in W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$, that set is a l-winning set.

Remarks

1. Since a winning strategy $\tilde{p}^{1}(\cdot)$ with $\left(x_{0}, t_{0}\right) \in W\left(V_{1}, V_{2}, k_{1}, k_{2}\right) \times R^{1}$ guarantees that $x(t) \in W\left(V_{1}, V_{2}, k_{7}, k_{2}\right)$ for all $t \in\left[t_{0}, t_{f}\right)$, only the restriction of the strategy to the 1 -winning set need be determined.
2. There may exist 1 -winning strategies at $\left(x_{0}, t_{0}\right) \notin W\left(V_{1}, V_{2}, k_{1}, k_{2}\right) \times R^{l}$. In general, however, such strategies will not be 1-winning at other initial points.
3. If $k_{2} \leqslant 0$, region Δ_{2} is an avoidance set in the sense of Ref. 8 .
4. As $k_{1} \rightarrow 0, \tilde{t}$ given in (7). tends to ∞. Thus, if $k_{1}=0$, termination cannot be guaranteed; in particular $W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$ need not be l-winning. However, the inequality in (4) then requires $k_{2}<0$ so that, by the second of conditions ii) of the Theorem, $W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$ cannot be 2-winning.
5. If $T_{2}=\phi$, let $V_{2}(x)=$ constant $\neq C_{2}$ for all $x \in D!T_{1}$ and let $k_{2}=0$. The inequality in (4) is then satisfied trivially.

The set $W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$ being l-winning is then equivalent to target T_{1} being capturable in finite time. Theorem 1 is thus related to the target capture theorem of Ref. 9.
6. Let
$S(\ell) \triangleq\left\{x \in W\left(V_{1}, V_{2}, k_{1}, k_{2}\right) \mid V_{1}(x) \leqslant \ell\right\} \supset T_{1} \cup T_{2}$
and suppose that it is required to accomplish termination on
$T_{1} \backslash T_{2}$ for all $x_{0} \in S(\ell)$ in a time interval not exceeding $t^{*}-t_{0}$.
This can be assured by the conditions of Theorelll 1 with
$k_{1} \geqslant \frac{\ell-C_{1}}{t^{*}-t_{0}}$.
For, as shown in the proof of Theorem 1, for given $x_{0} \in W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$ $\tilde{t}=t_{0}+\frac{r_{1}^{\prime}\left(x_{f}\right)-c_{1}}{k_{1}}=t_{f}$ and $x\left(t_{f}\right) \in T_{1} \backslash T_{2}$. Thus we impose $\sup _{x_{0} \in S(\ell)} \tilde{t} \leqslant t^{*}$, whence $\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{0} \leqslant \frac{\ell-\mathrm{C}_{1}}{\mathrm{k}_{\mathrm{p}}} \leqslant \mathrm{t}^{*}-\mathrm{t}_{0}$
giving the condition (18).
i. If more than one set, say $T_{2}, T_{3}, \ldots, T_{r}$, is to be avoided before terminating on $T_{1} \backslash\left(T_{2} \cup T_{3} \cup \ldots \cup T_{r}\right)$, the conditions of Theorem 1 are augmented by introducing for $i \in\{2,3, \ldots, r\}$
$\Delta_{i} \triangleq\left\{x \in D \mid V_{i}(x) \leq C_{j}\right\} \supset T_{i}$,
replacing $W\left(V_{1}, v_{2}, k_{1}, k_{2}\right)$ by

$$
\begin{aligned}
W\left(v_{1}, v_{2}, \ldots, v_{r}, k_{1}, k_{2}, \ldots, k_{r}\right) \triangleq & \left(x \in D \backslash\left(T_{1} \cup \Delta_{2} \cup \ldots \cup \Delta_{r}\right) \mid\right. \\
& \left.\frac{k_{1}}{v_{1}(x)-C_{1}}>\frac{k_{i}}{v_{i}(x)-C_{i}}, i=2, \ldots, r\right)
\end{aligned}
$$

and requiring $v u^{1} \in \bar{p}^{1}(x)$

$$
\inf _{u^{2} \in u^{2}} \nabla v_{i}(x) \quad f\left(x, u^{1}, u^{2}\right) \geqslant-k_{i}
$$

4. EXAMPLE

Here we illustrate the use of Theorem 1 by means of a very simple example, a pursuit-evasion game between inertialess objects P and E with constant speeds v_{p} and v_{E}, respectively. The equations of motion (see Figure 1) are

$$
\begin{align*}
& \dot{R}=v_{E} \cos \left(\alpha+\theta_{E}\right) \\
& \dot{\theta}=\frac{v_{E}}{R} \sin \left(\alpha+\partial_{E}\right) \tag{19}\\
& \dot{r}=v_{P} \cos \theta_{P}-v_{E} \cos \theta_{E} \\
& \dot{\theta}=\frac{1}{r}\left(v_{P} \sin \theta_{P}-v_{E} \sin \theta_{E}\right)
\end{align*}
$$

$T_{2}=\left\{(R, \theta, r, \theta) \in R^{4} \mid r \leqslant \rho_{p}=\right.$ constant $\left.>0\right\}$.
Thus, the evader, E, wishes to choose the values of θ_{E} so that he reaches $T_{1}\left(R=\rho_{E}\right)$ before he is intercepted $\left(r=\rho_{P}\right)$, no matter how the pursuer, P, chooses the values of θ_{p}.

To apply Theorem 1, let
$v_{1}=R \quad, \quad v_{2}=r$
so that $\Delta_{i}=T_{i}, i=1,2$, and
$\nabla V_{1}=(1,0,0,0)$
$\nabla V_{2}=(0,0,1,0) \quad$.
Conditions ii) of Theorem 1 become
$v_{E} \cos \left(\alpha+\theta_{E}\right) \leqslant-k_{1}<0$
$-v_{p}-v_{e} \cos \theta_{E} \geqslant-k_{2}$
and $W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$ is defined by
$r-\rho_{p}>\frac{k_{2}}{k_{1}}\left(R-\rho_{E}\right)$.
Condition (21) implies
$-1 \leqslant \cos \left(\alpha+\theta_{E}\right) \leqslant-\frac{k_{1}}{v_{E}}<0$
so that
$k_{1}=\frac{v_{E}}{1+\delta}$ for $\delta \in[0, \infty)$.
For give, k_{1}, region W is maximized by choosing the smallest k_{2} such that (22) is met for all possible $\alpha=0-\theta$. This results in $k_{2}=v_{p}+\frac{v_{E}}{1+\delta}$
whence
$\frac{k_{2}}{k_{1}}=1+(1+\delta) \frac{v_{P}}{v_{E}}$.
Hence, the largest W results from $\delta=0$, namely,
$r-\rho_{P}>\frac{V_{E}+V_{P}}{V_{P}}\left(R-\rho_{E}\right)$.
The cirresponding escape strategy, according. to (24), is given by $\cos \left(\alpha+\theta_{E}\right)=-1$; that is, E moves radially inward and is assured termination without interception by P provided the intial conditions satisfy (25).

Strategy $\theta_{E}=\pi m(\theta-\theta)$ is continuous on $D=R^{4}$. Hence, for sufficiently well-behaved θ_{P}, system (19) possesses a solution at every initial state. Furthermore, (19) satisfies a linear growth condition. Thus Assumptions 1 and 2 are met and ' W given by (25) is indeed 1 -winning, that is, winning for the evader, E.

Since v_{p} and v_{E} are positive, (25) implies that
$r-\rho_{P}>R-\rho_{E}$ no matter how much faster the evader is than the pursuer. Thus, $W\left(V_{1}, V_{2}, k_{1}, k_{2}\right)$ dues not include initial configurations for which P lies between E and his target, T_{1}. This restriction is not surprising since Theorem 1 relates to all initial positions for which the evader's strategy is winning (see Remark 2).

References

1. R. Isaacs, "Differential Games", Wiley, N. "., 1965.
2. O. Hajek, "Pursuit Games", Academic Press, N. Y., 1975.
3. A. Merz, The Honicidal Chauffeur - A Differential Game, Ph.D. Dissertation, Stanford University, 1971.
4. A Blaquière, F. Gerard and G. Leitmann, Qrantitative and Qualitative Games, Academic Press, N. Y., 1969.
5. E. Roxin, On Generalized Dynamical Systems Defined by Contingent Equations, Journal of Differential Equations 1 (1965), 188-205.
6. A. F. Filippov, Classical Solutions of Differential Equations with Multi-Valued Right-Hand Side, SIAM Journal on Control 5 (1967), 609-621.
7. Yu. I. Alimov, On the Application of Lyapunov's Direct Method to Differential Equations with Ambiguous Right Sides, Automation and Remote Control 22 (1961), 713-725.
8. G. Leitmann and J. Skowronski, Avoidance Control, Journal of Optimization Theory and Applications, to appear.
9. D. J. Sticht, T. L. Vincent and D. G. Schultz, Sufficiency Theorems for Target Capture, Journal of Optimization Theory and Applications 17 (1965), 523-543.

List of Symbols

x lower case "eggs"
\times "multiplication" symbol
0 zero
T script upper case "tee"
ϵ "belongs to" symbol
ε lower case epsilon
p lower case rho
θ lower case theta
0 upper case theta
a lower case alpha
δ lower case delta
Δ upper case delta
$\pi \quad$ lower case pi
\& script lower case "ell"
∞ "infinity" symbol
ф "empty" symbol

Figure 1, Pursuit-Evasion
original Page is

