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Abstract

:.	 I
We consider dynamical systems subject to control by two agents

one of whom desires that no trajectory of the system emanating from

outside a given set, intersects that set no matter what the admissible

actions of the other agent. Constructive conditions sufficient to

yield a feedback control for the agent seeking avoidance were given

earlier. These are employed here to deduce an evader control for
>a

the planar pursuit-evasion problem with bounded normal accelerations.
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1. Introduction

A problem 'of collision avoidance arises whenever two, or more,

objects move in space. Here we consider the case of two objects

moving in the same plane, e.g., two ships. One object (evader) is

capable of determining the relative position and velocity of the

other object (pursuer). The pursuer may be active or passive; that is,

he may desire collision, or he may be unable to measure the evader's

relative position and velocity and thereby cause collision through

inadvertence. Each controls his motion by means of his normal

acceleration whose values are constrained. The evader desires to

maneuver so as to avoid collision no matter what the actions of the

pursuer.

The problem outlined above belongs to the following class of

problems. There is given a dynamical system subject to control by

two agents, one of whom desires that no trajectory of the system,

emanating from outside a prescribed set, intersects that set no matter

what the admissible actions of the other agent. 	 Such problems have

been discussed in Refs. 1-9, among others. There the treatment is

within the framework of differential games, Refs. 6 and 7, either as

games of kind (qualitative games) or games of degree (quantitative

games). In the former approach, the players seek a saddlepoint for

time of collision or for miss-distance, Refs. 1-3 and S, 9,and in the

latter,barriei^s are sought which separate regions in which collision

can be brought about from regions in which avoidance can be assured,

Refs. A and 5. These techniques usually require numerical integration.

Furthermore, only necessary_ conditions are employed so that avoidance
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cannot be assured. In Ref. 10 we propose an alternative approach,

namely, the constructive utilization of conditions sufficient to

guarantee avoidance. Before discussing the planar avoidance problem

in Sec. 3, we state the general avoidance problem and the results of

Ref, 10. The more general case in which each player has his own

target on which fie desires termination is treated in Ref. 11.

2. General problem Statement and Results

Let

d.

P 1 ( )	 Rn x R -} the nonempty subsets of R 1	
i = 1, 2

be feedback controls (strategies) belonging to given classes of possibly set-

valued functions, U i , with control values ui ranging in prescribed sets, Ui

(which may depend on state and time); that is, given (x, t) E Rn x R

d.

uI E p ' (x, t ) ^ Ui c R 1	 ,	 i = 1, 2

Let

f(-) :  
R n x R x R 

d	 d
1 x R 2+ R n

be a prescribed function, and for given p i (•) E U i	i = 1, 2,

define a set-valued function F( • ) by

F(x, t) 6 fz E R n	 z = f(x, t, u l , u 2 ), u  E p i (x, t))

= f(x, t , p I (x , t), p2 (x, t)),

Then a dynamical system, e.g. Refs. 12 and 13, is defined by the relation

x E F(x, t) ,	 (1)

Given (xC
, t0 ) e.6 , where A is an open set (or the closure of

an open set) in Rn x R , solutions of (1) are absolutely continuous

functions on intervals of - R

X(-) : [to , tl ] -r R n	 x(to) = x o	(2)

such that
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X(t) e f(x(t), t, pl (x( t ), t), p 2 (x(t), t))	 (2)	
(i .

a. e.	 [to , t 1 1 .

Now let there be given an anti-target, T , in A , that is a given set

into which no solution of (1) must enter for some p l (-) c U 1 and all

p 2 (•) c 11 2 . Consider a closed subset, A , of A such that A D T

and consider also the closure, A E , of an open subset of A such that

AE DA and DA, nDAnintA=^

We call A the avoidance set and

AA6Ac\A

the safety zone. If a solution avoids A then it cannot enter T	 and if

a strategy P
I
N is used in AA that guarantees avoidance of A for all

p2 (•) , then a solution originating outside of A cannot reach A

For given p l (•) c- 11 1 , let K denote the set of all trajectories of

(1) for all (x 
o' 

to ) e AA x R and all p 2 ( • ) e U2 . Then, given system

(1) and sets U 1 and U2 	a prescribed set A is avoidable if there is a

p 
1
(-) e L1 1 and AA x R #	 such that

K n A = 0	 (3)

Note that (3) implies global avoidance, that is, avoidance for all

( xo , te ) c- (A \ A) x R. Avoidance set A may be any set containing anti-

target T ; often it is different from T .

The following theorem and corollary are proved in Ref. 10.

Theorem A given set A is avoidable if there exist a nonempty set A A and two

functions, a strategy p l (•) c L1 1 and a C1 function V( • ) : S f R ,

S(open) D AA x R , such that for all (x, t) E AA x R

E

i



(i) V(x, 0 > V(x', t')	 V x' G DA ,	 V t' ;^- t,

and V u l e 01 (x, t)

(ii)N , t + vx V(x, t) f(x, t, u l , u2 ) > o

V u 2 a U 2 , where p ( ) is the restriction of p l ( • ) to

A x R .

Let

H(x, t, u1, u
2 ) 

Q av(x, t + Ox V(x t) f(x t u l 	u 2 ) .

Then the Theorem has a

Corollary_ Given (x, t) a AA x R , if there is a

("u l , u2 ) e U1 x U2 such that

(i)	 H(x, t, ul; u 2 ) =	 max	 min	 H(x, t, u 1 , u2)

u I G U 
1 

u2N2

and

0i)	 li(x, t, u l , u 2 ) > 0

then condition (ii) of the Theorem is met. Furthermore, "ul e "p l (x, t)

provided the resulting pi 	 c- ul .

Note that the Corollary is constructive in that it may permit construction

of 01  .3

3, Avoidance in the Plane

Consider two agents, called pursuer P and evader E , moving in a

plane. Let V
P 

and vE be the velocities (relative to an inertial

reference frame) of P and E , respectively. We suppose that their

speeds, vp = 1 Vp j and v E =.IvE I , are constants and that vE > v  .

Referring to Figure 1, the kinematic equations of motion are 

3Usually, ùl = p l (x, t) a.e „ that is, except on discontinuity manifolds.

Note that here, unlike in Ref. 5, position is relative to the pursuer.
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r=vE Cos R-VP' sill 0

e = r (vE sin R - vP cos 0) - uP	 (Q)

R= r (v E sinR - vP cos 0) +E

where

uE^OE	 ,	 uP^OP

are the controls of E and P	 respectively; that isy E and P control

their motions by means of their normal acceleration components. These are

constrained; namely,

uE	
:'E ( g

iven)	 up I < up (given)	 (5)

Evader, E	 wishes to avoid having pursuer, P , approach more

closely than a given distance r 	 that is, the anti-target

T = {(r, 0., R) ® A I r < r}	 (6)

wi th`l

A = {(r, 0, R) 1 r e; R+ , 0 E R	 ,	 I R 1 < ir} ,

There arises now the question of selecting an avoidance set, A .

To allow E maneuverability, one wants r "sufficiently" large when

"min	
but when r = rmax one can allow r = r , where5

"min --vE - vp (02i 2mr, R = ^ T)

Max" 	 vE+vP (0 = -2 2n7r, R=0)

This is accomplished, for instance, by

A = {(r, 0, R) e o I r - r < b(1 -1• sin 0) + cR 2 }	 (7)

for given constants b > 0 , c > 0 .

'I 

As will be seen subsequently, it suffices to consider { R	 < IT

5 Here, n is any integer.
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To satisfy condition (i) of'the Theorem we choose	 V( • ) such that

V(r, 0,	 R, t) = r - r - b(1	 + sin 0)	 - 0 (8)

To apply condition (ii) of the Theorem we form

H(r,	 0,	 R,	 t,	 u E ,	 up )	 =	 ( v E cos R - vp sin 0)

- b cos 0 [	 (v E sin R - v p cos 0) - up]r

(9)

- 20
r
 (vp cos 0 - vE sin R) + uE7

First we check to see what is required to assure	 H a 0 for all

U P	 satisfying constraints	 (5),	 and for all	 (r,	 0 .,	 R) c AA . S At	 R = 0

b	 pH = (v E - v p sin 0) +	 cos t 0 + b up cos 0r

N v E - vp sin 0 + b up cos 0 > v E -	 vp 2 + b 2 up2

Thus, to satisfy condition (ii) of the Theorem we make the conservative

choice

/vE	
vp

b < (10)

Lip

Next we impose the conditions of the Corollary. 	 Since QE	
and	 up

are separated in	 li	 ,	 it follows readily that

a  = - u 	 for	 R > 0

u"E =	 u E	 for	 R < 0 (11)

u 	
e [ - 5 E , u E a	 for	 R = 0

and

AA has not been defined yet; it depends on AE . For instance, one might let

Ac = {(r, 0, R) c- A I r 6 r + b(l + sin 0) + cR2 i• e , e = constant > 0} .
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u
p
 = u

p
	for cos 0 < 0

up = - u P 	for cos 0 > 0	 (12)

up e [ - up, up] for cos 0 = 0

Now we investigate conditions onu E which assure satisfaction of

(ii) of the Corollary; namely, in view of (11) and (12), for all

(r, 0, R) a AA and all	 ( u E , u P ) satisfying (5)	 i

min max N = v E cos R - vp sin 0 + b (vp cos 0 - v E sin R) cos 0
uP 	uE

+ C (v E sin R - v P cos 0)

(13)

+ 2 c 131 u E - b Icos 01 u p Z^' 0 0

To obtain a conservative estimate for the required value of O
E
 we

rewrite (13) as

5 	 max	 2 cl R [ VP sin 0 - vE cos R
(r, 0, R) e 0A

+ r( v E sin R- v P cos 0) cos 0

+ 2 r R (v p cos 0- v E sin R) a • b 1cos 01 6p

whence

uE a	 max [ vP +	 1 ( 3 v	 ' + b^ ur2
R c[ 0, Tr]	 r	 2 c R

- vE cos
by

R +	
E

sin R)]
r

Letting •Q

g(R)	 _ ,vP 	 b
2 5- vE cos

b vE	
RR + - VE sin

r

h(R) 
=

2 c p

ORIGINAL PAGE IS
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we rewrite (14) as

VP,

uE a	 +	 g (R)	 h(R)	 (15)R c
max	 ff]

An even more conservative bound is .hen found by replacing

^f g (R)	 h(0)
4 e [0, Tr]

by

max g (R)	 max h(R)	 for	 R e {R E! [0r IT]	 g(R) a 0) l

i

In this connection we utilize condition (10) whence

g(0) _ _ vE d ,	 v 	 + b z 5 P2 < 0

so that	 R c- (0, n]	 for	 g(R) = 0	 We arrive at the very conservative

bound

E	

vim,	

2c	 v 	 , 1 + ( b /r)2
r

v 2 ^• b2 u

2	
1	 P	 P

`+ 3 v	 + U2	 Lcos_l
	 (16)

p	 P	 vE	 1	 + (b/i^)2
1

- cos-

To reiterate, given pursuer and evader speeds	 v p	 and	 vE

i
respectively, pursuer control bound	 u P	 ,	 missdistance	 r	 and

constants	 b > 0 , c > 0 , with	 b	 subject to (10), the use of evader

g control	 (11) with	 u E	 satisfying	 (16)	 guarantees collision avoidance;

n
of course, the evader needs to implement such a control only on	 AA , t

As assumed in the definition of	 :A',	 R e [-Tr, Tr]	 since 1	 j

= yPcos e T :u{
=.t

	
E

7g R•IT	 r {.	 d

and by (16)

Pu E	 r<r ^)

Pr^,•of course,	 U l	 admits piecewise continuous functions.
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whence it follows that

Ala =n<0 ale=
-n>0 .

To illustrate the aforegoing results consider

vE = 300 m/s
v 
	 = 225 m/s

u 
	 = 1 rad/s "r	 = 3000 m

Then	 (10) becomes

b c [0,	 198.4)

For example, with c = 6 x 104	and

(i ) b = 100 uE ;;, 0.083

(ii) b = 10 uE > 0.081

(iii) b =	 1 6  > 0.081

Finally, we can draw these conclusions:

(i) The bound on uE	given by (16) is quite insensitive to changes

in the value of	 b , and it can be decreased by increasing the

value of	 c (that is,	 by increasing the size of the avoidance

set	 A ).

(ii) For given	 a ,	 the contour of A	 is	 "nearly" circular (more

so at	 a = it than at	 a = 0 ).
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