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Abstract

We consider dynamical systems subject to control by two agents
one of whom desires that no trajectory of the system emanating from
outside a given set, intersects that éet no matter what the admisrible
actions of the other agent. Constructive conditions sufficient to
yield a feedback control for the agent seeking avoidance were given
earlier., These are employed here to deduce an evader control for

the planar pursujt-evasion problem with bounded normal accelerations.
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lntroduction_

A problem 'of collision avoidance arises whenever two, or more,
objects move in space, Here we consider the case of two objects
moving in the same plane, e.g., two ships. One object (evader) is
capable of determining the relative position and velocity of the
other object (pursuer). The pursuer may be active or passive; that is,
he may desire callision, or he may be unable to measure the evader's
relative position and velocity and thereby cause collision through
inadvertence. Each controls his motion by means of his normal
acceleration whose values are constrained. The evader desires to
maneuver so as to avoid collision no matter what the actions of the
pursuer,

The problem outlined above belongs to the fo]lowing class of
problems. There is given a dynamical system subject to control by
two agents, one of whom desires that no trajectory of the system,
emanating from outside a prescribed set, intersects that set no matter
what the admissible Ections of the other agent.  Such problems have
been discussed in Refs. 1-9, among others; There the treatment is
within the framework of differential games, Refs. 6 and 7, either as
games of kind (qualitative games) or games of degree (quantitative
games). In the former.approach, the players seek a saddlepoint for
time of collision or for miss-distance, Refs. 1-3 and 8, 9,and in thg
latter,barriefs are sought which separate regions in which collision
can be brought about from regions in which avoidance can be assured,
Refs. 4 and 5. These techniques usﬁa11y require numerical 1ntegration;

Furthermore, only necessary conditions are employed so that avoidance



cannot be assured. In Ref. 10 we propose an alternative approach,

namely, the constructive utilization of conditions sufficient to

guarantee avoidance. Before discussing the planar avoidance problem
in Sec, 3, we state the general avoidance problem and the results of
Ref, 10, The more general case in which each player has his own

target on which he desires termination is treated in Ref. 11.

General Problem Statement and Results

Let
. d .
p'(*) : R" x R+ the nonempty subsets of R ', i=1, 2

be feedback controls (strategies) belorging to given classes of possibly set-

valued functions, ui , with control values u! ranging in prescribed sets, Ui

(which way depend on state and time); that is, given ({(x, t) € Rn_x R

d,

depl, ey crRT L i=t, 2,

i

Let
d d

fo) : RTxRxR xR °

+ R
be a prescribed function, and for given pi(-) € U
define a set-valued function F(-) by

Fix, t) 8 zeR" [ 2 = flx, ¢, o, v®), ul e plix, )
f(x, t, p](.x, t), pz(x, t)).

]

Then a dynamical system, e.g. Refs. 12 and 13, is defined by the relation
X € F(x, t). (1)
Given (xo, to) €. A, where A is an open set {or the closure of
an open set) in R" x R , solutions of (1) are absolutely continuous

functions on intervals of R

x(+) 1 [t £+ RY L x(tg) = % (2)
such that
,opGE
gm@\:(ﬂ)gé GUALIER



x(t) € F(x(t), t, p'(x(t), t), pA(x(t), t)) (2)
a.e. [to, t1] .

Now let there be given an anti-target, T , in A, that is a given set

into which no solution of (1) must enter for some p](-) e U, and all

]
pz(') € U,. Consider a closed subset, A, of A such that ADT

and consider also the closure, A, , of an open subset of A such that

AE > A and A, N Anidint A=9 »

We call A the avoidance set and

A
AA-AE\A

the safety zone. If a solution avoids A then it cannot enter T , and if
a strategy pj(-) is used in AA that guarantees avoidance of A for all
pz(-) , then a solution originating outside of A cannot reach A .

For given p](-) € u1 , let K denote the set of a1l trajectories of
(1) for all (x,, t ) €8,
(1) and sets Ul and u2 , a prescribed set A s avoidable if there is a

» R and all p2(°) €u, . Then, given system

p1(.) €U, and &, xR F Q such that

KnA=§ . (3)
Note that (3) implies global avoidance, that is, avoidance for all
(xo, to) € (AN A) x R. Avoidance set A may be any set containing anti-
target T ; often it is different from T .
The following theorem and corollary are proved in Ref. 10.
Theorem A giv?n set A is avoidable if there exist a nonempty set AA and two

]

functions, a strategy p](-) & U and a €' function V{:) : S+R,

S{open) 2 Ay X R, such that for all (x, t) € 4, xR

A



(i) V(x, £) > V(x', t') Vx'€d, Vit >t

and ¥ u' & 5(x, t)
(i) WM B g vk, t) flx, ¢, ), WP) >0

y u2 € U, , where 51(-5 is the restriction of p](-) to

AA XR .

et
Hix, t, u], uz) g QML%%-EJ—+ v, vix, t} f(x, t, u], u2)

Then the Theorem has a
Corollary Given (x, t) & Ay x R, if there is a

(G], GZ) € U, % Uz- such that

1

(1) H(x, t, G]; Ez) = max min - H(x, t, u], uz)

1- 2.
u CU] u CU2

and
(1) Hx, t, @', ©) > 0
then condition (ii).of the Theorem is met., Furthermore, il e ﬁ](xg t) ,
provided the resulting pl(-) €U . |
| Note that the Corollary is coqstructive in that it may permit construction
of §1() .2

Avoidance in the Plane

Consider two agents, ca11ed_pursuek P and evader E , moving in a
plane. Let VP and 3E be the velocities (re]ative to an inertial
reference frame) of P and E , respectively, We suppose that their

_ - .
spegds, vp = Vol and vp =-|vg| , are constants and that v > v, .

. . ' . . . X 4
Referring to Figure 1, the kinematic equations of motion are

'3Usua11y, i = ﬁ](x, t) a.e., that is, except on discontinuity mapifolds.

'Note that here, unlike in Ref. 5, position is relative to the pursuer.



F = yp €OS B - vp sin @

.=l-r i - - .
0= (VE 5in B - v, cos 9) Up (4)
é = %; (vE sin B - vp cos ) + ug

where
U 4 65 ;U & 6p
are the controls of E and P , respectively; that isyE and P control
their motions by means of their norma) acceleration components. These are
constrained; namely, |
| | ug | <% (given) [ up | <y Qﬂvcn) . (5)
| Evader, E , wishes.td avoid having pursuer, P , approach more

closely than a given distance 1 ; that is, the anti-target

T

{(r, 8,B8)€A]| r<vr} - (6)
with?

A {ﬁ,a,m | rerR,_,0€R , | B]|=<u},

S+ 2

There arises now the question of selecting an avoidance set, A .

To allow E wmaneuverabiltity, one wants r ‘"sufficiently" Targe when

v X .=o '..,_" , 5
r rmin , but when .r Pyax ©O"e can allow re=r, where
" = . - =T, _—
Pmin == YE - Vp (6 =75 20w, p=tr7)
. = = - Xy -
CPhax S Vg T Vp (o 5 20w, B = 0)

max
This is accomﬁ1ished, for instance, by
A={(r,0,B)EA|r~-r< b(1 + sin 0) + ch} (7)

for given constants b =0, ¢ >0 .

1 As will be seen subsequently, it suffices to consider | B | <7 .

: Here, n -is any integer. -
ORIGINAL PAGL }S
OF POOR QUALI’lY



To satisfy condition (i) of the Theorem we choose V(-) such that

V(r, 05 B, t) =1 - F - b(1 + sin 8) - cg% . (8)

To apply condition (ii) of the Theorem we form

H(r, 8, B, t, Ug s up) = (vE cos B - Vy sin 0)

- bcos 0 [ % (VE sin g - Vp cos 8) - uP]

(9)
- 2cB [ %'(Vp cos 6 - vp sin B) *+ UE] '

First we check to see What is required to assure H =0 for all

Up satisfyinyg constraints (5), and for all {r, 0, B) € AA.G At =10
. bve 5
N = (vE - Vp sin 0) + ——c05" 6 + b Uy cos @

= vE ~ Vp sing+b “P Cos B & VE - /vpz +-b2 ”P2

Thus, to satisfy condition (i1} of the Theorem we make the conservative

choice

E VP _ (10)

Next we impose the conditions of the Corollary. Since ug and Up

are separated in H , it follows readily that
u = O for B <0 (11)

Up E.[ - DE, U] for 8=10

and

6

by has not been defined yef; it depends on Aé . For instance, one'might let -
A= {{r,o,B)e A | r<sr+b(1+sing)+ ¢2 + ¢, & = constant > 0} .



ﬁp = UP for cos 0 < 0

Up = - up for cos 8 > 0 » (12}

il
o
-

EP € [ - Up, tp]l for cos ©
Now we investigate conditions on GE which assure satisfaction of
(i1) of the Corollary; namely, in view of (11) and (12}, for all
(r, 8, B) € AA and 511 (uE, up) satisfying (5)

min max H = Vg €0 B - Vp sin © + %—(vp cos 0 - Vg sin B) cos ©
U U

+

E%E (VE sin g - v cos 0)
(13)

<

2 c 8} Uz - b |cos 8] GP >0 o

To obtain a conservative estimate for the required value of GE vie

rewrite (13) as

‘ 1 .
Up 2 ma X 7 [ v, sin 6 - v. cos B
O N L -

+

= |

( Ve sin B - vy cos 8) cos 0

+ 2 i B ( Vp €0s 8 = vp sin B) + b |cos 6 GP

whence

y
> max C fﬁ b — ( f/VPZ + be ﬁpz
g e [0, m] r 2cB (14)
' b v
- Vg cos B+ —=sin 8)] .
r

Letting . ;

‘A - - b Vg
g(B) fy B + b2 uP2 - Vg cos f+—~—=singp

= ‘VP
r

Ug

h{e) = 573

.. 3 IS
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we rewrite (14) as -

Vo,
Ug =’-I_:p-+ ; szﬁg . 'Q(B) h{B) (15)

An even more conservative bound is then found by repiacing

g Em%, . a(B) h(R)

by
max g{p) max h(B) for Be {ge [0, w] | g(g) >0} -

In this connection we utilize condition (10) whence

2

Up
.s0 that B € (0, n] for g(B) =0 . WHe arrive at the very conservative

bound

. v
> Lo l:VE /1 + (b7
r

U

2‘1'[32-?

2 2-2] [ -'l_l_/VP Up
+ {(vp + b UP cos v
-1

16
E 1+ (byf)e (16)

- cos“1 1 }

To reiterate, given pursuer and evader speeds Vp and VEI,
respectively, pursuer control bound iy , missdistance r , and
constants b =0, ¢ >0, with b subject to (10), the use of eJader
control (11) with ﬁE satisfying (16} guarantees collision avoidance;7
of course, the Fvader needsltojimp1ement such a control only on AA .

As assumed in the definition-of 2, : B € [-n, w] since

Lk .. P cos O -
‘ 'Bis.:.t S

~and hy (16}

[ |
(7]
W
l
-5
A
-

-7'Prov§ded,-of course, admits piecewise continuous functions,



hasll B ¥ B

whence it fo?]ows that

To illustrate the'aforegoing results consider

Vg © 300 m/s Vp = 225 m/s
GP =1 vrad/s , T =3000m
Then (10} becomes
b e [0, 198.4)
For example, with ¢ = 6 X 104 and
(i) b=100 , u;=>0.083
(1) b=10 , U >0.08i
(i13) b =1 s GE = 0,081

Finally, we can draw these conclusions:

(1) The bound on GE given by (16) is quite insensitive to changes
in the value of b , and it can be decreased by incireasing the
value of ¢ (that is, by increasing the size of the avoidance
set A ),

(ii) For given B , the contour of A is "nearly" circular (more

soat B=mw thanat 8=0 ).
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