NASA CR-152056

STUDY TO DEVELOP IMPROVED FIRE RESISTANT AIRCRAFT PASSENGER SEAT MATERIALS PHASE I

By Edward L. Trabold

•	(NASA-CR-152056) STUDY TO DEVELOP IMPROVED	-	N78-11042
•	FIRE RESISTANT AIRCRAFT PASSENGER SEAT MATERIALS, PHASE 1 (Douglas Aircraft Co.,		,
-	$T_{\rm DC}$ Λ Γ HC Λ Λ Λ Λ Λ Λ Γ Γ Λ Γ Γ Γ Λ Γ Γ Γ Λ Γ Γ Γ Γ Λ Γ	G3/03	Unclas 52881
	د میں معاملہ اور		

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161
المسمسينينية المعمينيين والمعمينيين والم

Prepared Under Contract No. NAS 2-9337 By

McDonnell Douglas Corporation

Douglas Aircraft Company 3855 Lakewood Blvd. Long Beach, California 90846

for

Ames Research Center National Aeronautics and Space Administration

STUDY TO DEVELOP IMPROVED FIRE RESISTANT AIRCRAFT PASSENGER SEAT MATERIALS PHASE I

By Edward L. Trabold

Prepared Under Contract No. NAS 2-9337 By

McDonnell Douglas Corporation Douglas Aircraft Company 3855 Lakewood Blvd. Long Beach, California 90846

for

Ames Research Center National Aeronautics and Space Administration

PREFACE

This is the Final Technical Report submitted under contract NAS-2-9337 in the NASA FIREMEN program. The report covers the period 15 October 1976 through 15 July 1977 (Reference 1).

This program was sponsored by the Chemical Research Projects office of Ames Research Center, Moffett Field California. Mr. Larry L. Fewell was program monitor under direction of Dr. John Parker.

The program was performed at Douglas Aircraft Co., McDonnell Douglas Corporation, Long Beach, California. Mr. Edward L. Trabold was Principal Investigator and Program Director at Douglas Aircraft Co. and was assisted by the Adhesives/Textiles Lab and the Instrumental Chemical Analysis Lab. The subcontractor associated with the program was Massachusetts Institute of Technology, with a program under the direction of Dr. G. C. Tesoro assisted by Dr. Albert Moussa.

All data is submitted unpublished, in confidence, to NASA-Ames.

ABSTRACT

The Phase I "Study to Develop Improved Fire Resistant Aircraft Seat Materials" involved the procurement and testing of a wide range of candidate materials. These improved fire resistant nonmetallic materials were subjected to tests to evalute their thermal characteristics, such as burn, smoke generation, heat release rate and toxicity. In addition, candidate materials were evaluated for mechanical, physical and aesthetic properties. Other properties considered included safety, comfort, durability and maintainability. The fiscal year 1977 and the projected 1980 cost data were obtained for aircraft seat materials. The above factors were used to evaluate materials for use in aircraft seating and specific materials were selected for Phase II testing.

TABLE OF CONTENTS

SECTIO	TION PAGE		PAGE
1.0	INTRODU	ICTION AND DISCUSSION	1
	1.1	Introduction	1
	1.2	Discussion	1
. 2.0	Symbols	S AND ABBREVIATIONS	7 :
3.0	TESTING	3	97
	3.1	Purpose	9、
	3.2	Material Classification	9
	3.3	Screening Tests	9
	3.4	Performance Tests	12
	3.5	Advanced Tests	12
4.0	MATERIA	ALS EVALUATION	9917
	4.1	Decorative Fabric Cover	99
	4.2	Fire Blocking Layers	102
	4.3	Cushioning Layers	1.06
	4.4	Economic Analysis	106
5.0	CONCLU	SIONS AND RECOMMENDATIONS	117
	5.1	Conclusions	117
	5.2	Recommendations	117

6.0 REFERENCES

i19

TABLE		PAGE
1	Industry Contacts Phase I	3
2	Screening Test Methods	11
3	List of Materials Screened	Ĩ3
4	Screening Test Results - Decorative Fabric Cover	17
5	Screening Test Results - Fire Blocking Layers	18
6	Screening Test Results - Cushioning Layers and Miscellaneous Materials	20
7	Burn Tests and Smoke Tests on Aged Specimens	23
8	Performance Tests - Table	31
۶	Performance Tests - Decorative Fabric Cover	32
10	Performance Tests - Fire Blocking Layers	34
11	Performance Tests - Cushioning Layers	37
12	Flash Fire Propensity Test Data Summary	58
13	Summary - Decorative Fabrics Acute Relative Toxicity Test Data	66
14	Summary - Fire Blocking Layers Acute Relative Toxicity Test Data	67
15	Summary - Cushioning Layers Acute Relative Toxicity Test Data	70
16	Sample and HRR Calorimeteroperational Data	76
17	Heat Relase Data - Decorative Fabric Covering	77
18	Heat Release Data - Fire Blocking Layers	80
19	Heat Release Data - Cushioning Layers	88
20	Decorative Fabric Cover - Comparisons	100
21	Fire Blocking Layers - Comparisons	103
22	Cushioning Layers - Comparisons	107
23	Material Cost - Decorative Fabric Cover	110
24	Material Cost - Fire Blocking Layers	112
25	Material Cost - Cushioning Materials	114

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Material Test Program Phase I	10
2	TGA - Decorative Fabric Cover Material	24
3	TGA - Fire Blocking Layers	2 5
4	TGA - Cushioning Layers	30
5	NBS Flash Fire Cell	40
6	Flash Fire TC Trace (100)	42
7	Flash Fire TC Trace (101)	42
8	Flash Fire TC Trace (103)	43
9	Flash Fire TC Trace (104)	43
10	Flash Fire TC Trace (105)	44
11	Flash Fire TC Trace (107)	44
12	Flash Fire TC Trace (200)	45
13	Flash Fire TC Trace (202)	45
14	Flash Fire TC Trace (203)	46
15	Flash Fire TC Trace (204)	46
16	Flash Fire TC Trace (205)	47
17	Flash Fire TC Trace (206	47
18	Flash Fire TC Trace (207)	48
19	Flash Fire TC Trace (208)	48
20	Flash Fire TC Trace (210)	49
21	Flash Fire TC Trace (212)	49
22	Flash Fire TC Trace (214)	50
23	Flash Fire TC Trace (215)	50
24	Flash Fire TC Trace (216)	51

FIGURE		PAGE
25	Flash Fire TC Trace (217)	51
26	Flash Fire TC Trace (300	52
27	Flash Fire TC Trace (301)	53
28	Flash Fire TC Trace (303) No. 1	53
29	Flash Fire TC Trace (303) No. 2	54
· 30	Flash Fire TC Trace (304)	54
31	Flash Fire TC Trace (305)	55
- 32	Flash Fire TC Trace (306)	55
33	Flash Fire TC Trace (307)	56
·· 34	Flash Fire TC Trace (308)	56
35	Flash Fire TC Trace (403)	57
36	Flash Fire TC Trace (404)	57
37	Toxicity Chamber (J413017)	62
38	Toxicity Chamber (J413019)	64
39	Relative Acute Toxicity of Candidate Decorative Fabrics	72
40	Relative Acute Toxicity of Candidate Fire Blocking Materials	73
41	Relative Acute Toxicity of Candidate Cushioning Materials	74
42	Douglas Modified HRR Chamber (J705503)	75
43	·Heat Release Rate Material No. 104	93
44	Heat Release Rate Material No. 200, 202, 203	94
45	Heat Release Rate Material No. 208	95
46	Heat Release Rate Material No. 304	96
47	Heat Release Rate Material No. 308	97

1.0 INTRODUCTION AND DISCUSSION

1.1 Introduction

The NASA Fireman Program has been established to provide a technology base for improved fire resistant materials for aircraft. This "Study to Develop Improved Fire Resistant Aircraft Seat Materials" is an important part of the "Fireman Program" (Reference 2).

There are approximately 300 passenger seats in a modern, wide bodied, commercial jet aircraft. These seats contain approximately 2400 pounds of potentially combustible materials. It is not surprising, therefore, that passenger seating has been singled out for special consideration in a program to improve aircraft fire safety.

It should be noted that aircraft passenger seats are usually airline furnished and obtained from companies in the aircraft seat industry. It is unlikely that any individual aircraft seat manufacturer supplying a highly customized, limited market item could sponsor and carry out a fire resistant seat program of this magnitude. NASA sponsorship was essential to the program's initiation and success.

The individual objectives of the overall seat program have been identified as follows:

- 1) Development of a data base for improved materials.
- 2) Design and fabrication of full-scale seats from data base material.
- 3) Testing of full-scale seats in the Cabin Fire Simulator (CFS)
- 4) Testing full-scale seats in airline operational service.
- 5) Analyzing and reporting design performance, materials data and preparation of material and seat specifications.

The resulting seat designs are expected to provide significantly improved fire resistance.

1.2 Discussion

This report covers Phase I of the multiphase fire resistant seat materials program. During this phase of the program, candidate materials were identified and sampled in coordination with the material suppliers. Contacts with suppliers were accomplished initially by visits and subsequently by telephone and letter. Referrals were an important source of contacts, and industry cooperation throughout was found to be outstanding. A list of companies contacted during Phase I is found in Table 1.

> ORIGINAL PAGE IS OF POOR QUALITY

Sampled materials were screened, mechanical data was obtained from suppliers where possible, and advanced testing was conducted. Advanced testing included heat release rate; animal toxicity and flash fire propensity. The cost data developed for the selected materials is based on 1980 commercial availability from data primarily furnished by material suppliers.

COMPANY	ADDRESS	CONTACT
American Kynol	251 N. Maitland Ave. Altamonte Springs, FL 32701	Michael Storti
E. R. Carpenter Co., Inc.	La Mirada, CA	H. Ledesma
Celanese Fibers Marketing Company	Box 1414 Charlotte, NC 28201	Robert H. Jackson
Collins & Aikman	P.O. Box 1599 Charlotte, NC 28232	Vernon C. Smith
Collins & Aikman Automotive Division	P.O. Box 550 Albemarle, NC 28001	Joseph R. Palladino
Dan River Inc.	2291 Memorial Drive Danville, VA 24541	John M. Terpay
Dow Corning Corp.	Midland, Michigan 48640 Los Angeles, CA	Robert Kuhn Robert Hart Earl Beck
E. I. DuPont de Nemours	Wilmington, Delaware 19898 Elastomer Chemicals Dept. Textile Fibers Div.	John R. Galloway R. S. Tobey William C. Long R. S. Tobey
Expanded Rubber & Plastics Corp.	14000 S. Western Ave. Gardena, CA	John Dixon
Fire Safe Products	2617 Poe St. St. Louis, MO 63114	Paul Vance
Firestone Tire & Rubber Co.	Central Research Laboratories Akron, OH 44317	David P. Tate
General Electric Co. Silicone Products Dept.	Waterford, NY 12188	Donald L. Finney C. Yonclas
General Tire & Rubber Co.	Akron, OH 44329	W. J. Van Essen
W. R. Grace & Co.	7379 Route 32 Columbia, MD 21044	A. B. Holmstrem Robert N. Murch
Hardman Aerospace Macrodyne Industries, Inc	1845 S. Bundy Dr. Los Angeles, CA 90025	Robert M. Oppegard
Horizons Research Inc.	23800 Mercantile Rd. Cleveland, OH 44122	Dr. Wainer Arthur Gerber

INDUSTRY CONTACTS PHASE I

TABLE 1

COMPANY	ADDRESS	CONTACT
JA-Bar Silicone		R. Lisofski G. R. Jacobs
Kirkhill Rubber Co.	300 East Cypress Ave. Brea, CA 92621	R. Cannemeyer
Langenthal International Corp.	Design Center Northwest P.O. Box 81045 Seattle, Wash. 98108	Dale Havens
H. Lelievre	13 Rue Du Mail 75002 Paris, France	J. Lenoir
Mobay Chemical Corp. Plastics & Coatings Div.	Pittsburgh, PA 15205	Walter Becker J. F. Szabat
Monsanto	800 N. Lindbergh Blvd. St. Louis, MO 63166	K. McHugh
Mosites Rubber Co., Inc.	P.O. Box 2115 Fort Worth, TX (Rep 37 East Duarte Rd. Arcadia, CA 91006)	John Winkler
Reeves Bros.	Reeves Bros. R&D Center P.O. Box 26596 Charlotte, NC 28213	David C. Priest
Rhodia, Inc.	600 Madison Ave. New York, NY 10022	H. L. Kenvin
Ronsil		Wm. Arthur
Rubatex Corp.	Bedford, VA 24523	K. E. Balliet
Silicone Engineering Ltd.	Brookhouse, Blarkburn Lancashire, BB16JE England	B.E.T. Rostron
Solar Division International Harvester	2200 Pacific Highway San Diego, CA 92138	Wm. A. Compton John F. Hussey
Toyad Corp.	Latrobe, PA 15650	Gardner A. A. Fredericks R. H. Morford
Ultra Systems, Inc.	2400 Michelson Dr. Irvine, CA 92715	K. L. Paciorek
Aerospace Div. Universal Oil Products	Bantam, CT 06750	A. C. Copeland M. J. Dodd K. Taylor

.

INDUSTRY CONTACTS PHASE I

.

TABLE 1 (Cont'd)

COMPANY	ADDRES	S,	CONTACT
Uniroyal Plastic Co.	Mishawaka, Ind. 465	44 .	Jill R. Skalecki
Weber Aircraft	Burbank, CA		Gordon Cress
	.]		
·	·		

INDUSTRY CONTACTS PHASE I

TABLE 1 (Cont'd)

•

ORIGINAL PAGE IS OF POOR QUALITY A technical data base was developed for material selection and design in subsequent phases of the program that will increase in complexity and scale.

Additional related data on joint design under thermal load is being developed by Dr. G. C. Tesoro and staff at Massachusetts Institute of Technology (M.I.T.) under Grant No. NSG-2204 from NASA. Thermoplastic material data has been developed by Lockheed Aircraft Co. for their fire resistance characteristics under contract NAS 2-8835.

The data obtained and reported for individual products are for the specific conditions stated and are not necessarily representative of results obtainable in other test methods, procedures, or conditions. The data is intended for use in selection of materials for the Phase II Program. Any other use must be carefully considered, taking into account the major impact of design and other conditions which affect performance of any material. This data shall not be used for sales or promotional purposes or as a basis for discrediting any product or group of products mentioned herein.

2.0 SYMBOLS AND ABBREVIATIONS

	av	average
	Btu	British thermal unit
	°C	degrees Celsius (centigrade)
	cc	cubic centimeter
•	cm .	centimeter
	cm^2	square centimeter
	DAC	Douglas Aircraft Company
	dm^2	decimeter square
	o _F	degrees Fahrenheit
	FAA	Federal Aviation Agency
	FAR	Federal Aviation Requirements
	ft	feet
	g/cc	grams per cubic centimeter
	g/m ²	grams per square meter
	hr	hour
	in	inch
	kg	kilogram
	kg/cm ²	kilogram per square centimeter
	kg/m ²	kilogram per square meter
	kw	kilowatt
	1ь.	pound
	1b/ft ²	pounds per square foot
	1b/ft ³	pounds per cubic foot
	m į	meter
	mm	millimeter
	min	minutes
	NASA	National Aeronautics and Space Administration
	NASA-Ames	National Aeronautics and Space Administration, Ames Research Center
	N	Newton
	PBI	Polybenzamidazole
	psi -	pounds per square inch'
	sec	second
	TC	thermocouple
	TGA	thermal gravimetric analysis
	W	thermal gravimetric analysis watt ORIGINAL PAUL OF POOR QUALITY

7

3.0 TESTING

3.1 Purpose

The Phase I program involved the progressive screening and testing of candidate seat materials in order to identify those materials offering significant performance improvement under thermal load. Screening tests were selected based on reasonable fire threats to identify the types of properties related to inflight fire situations. Major areas of emphasis in the test program were flammability, smoke generation, fire induced toxicity, flash fire propensity and heat release. A general schematic of the test program is shown in Figure 1. The data base developed in Phase 1 can be used to make selections of multilayer material combinations for testing in Phase II and can be used for other fire safety research.

3.2 Material Classification

For purposes of comparison in this report, materials have been classified by anticipated end use in new designs under three categories as follows:

- 1. Decorative fabric covering (Material No. 100 Series.)
- 2. Fire blocking layers (Material No. 200 Series.)
- 3. Cushioning layers (Material No. 300 Series.)

Other materials for armrest covers thermoplastic covers, and doors, etc. when available were classified under miscellaneous and limited data is reported. In order to classify materials, it was necessary to examine the screening data and performance test data as well as raw material limitations such as available thickness, and manufacturing limitations such as forming temperature. Many of the new thermally resistant fabrics could not meet color fast requirements in the dyed form except for blends in which the natural color could be used in the decorative pattern. Those not colorfast had to be classified as Category 2. In some cases, the new fabrics were too easily abraded for Category 1 use. Some foams could not be made in sufficient thickness to be used in Category 3 and had to be considered a Category 2 material. It is believed that this type of analysis and classification has facilitated comparison of data and provided increased utility.

3.3 Screening Tests

All materials were first screened to current FAA burn requirements. Screening tests consisted of a series of selected small scale laboratory tests. The combination of these screening tests represented a significantly higher fire resistance performance standard than laboratory test standards currently imposed on aircraft seat materials. (See Table 2.)

The modified burn test was the only nonstandard test that was conducted. The modification took into account that the standard burn test permits melting material to be removed from the direct flame by the very mechanism of melting and in affect reducing exposure time to the flame for those materials.

Preceding page blank

ORIGINAL PAGE IS OF POOR QUALITY

PHASE I MATERIAL TEST PROGRAM

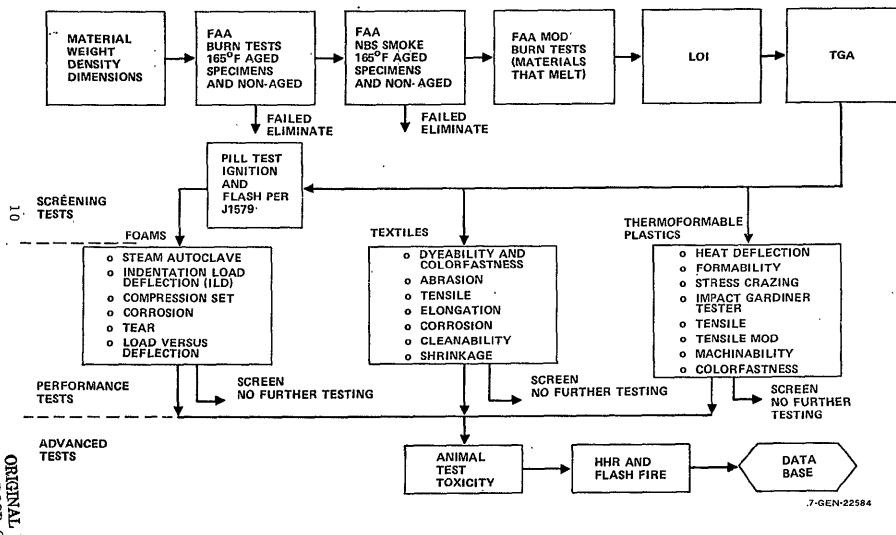


FIGURE 1

ORIGINAL PAGE IS OF POOR QUALITY

FABRIC .		FOAM	
PROPERTY	TEST METHOD	PROPERTY	TEST METHOD
Screening:			
Weight	*Method 5041	Density	ASTM 1564 Suffix W
Burn	**FAR 25.853(b)	Burn	**FAR 25.853(b)
	**FAR 25.853(a)		**FAR 25.853(b) Mod.
NBS Smoke	***Tech Note 708	NBS Smoke	***Tech Note 708
		Ignition	ASTM D2859
		LOI	ASTM D2863-70
		TGA	@ 20°C per minute in air
loi	ASTM D2863-70		
TGA	@ 20°C per minute in air		
			, ,

*Federal Test Method Standard No. 191, Textile Test Methods

**Federal Aviation Regulations Part 25 Airworthiness Standards: Transport Category Airplanes

***NBS Technical Note #708; Test Method for Measuring the Smoke Generation Characteristics of Solid Materials

SCREENING TEST METHODS

TABLE 2

The modified vertical burn test that was developed was essentially the standard l2-second vertical burn test per F.A.R. 25.853(b) (equivalent to DMS 1511 and FTMS 191 Method 5903). The exception was the method of hold-ing the specimen as follows:

Each specimen was clamped in such a manner that the back face was in direct contact over the entire surface with a single layer of MIL-C-9084 glass fiber cloth type 1XA (Style 1582) and that the two long edges were held securely. The frame was such that the exposed area was at least 2 inches wide and 12 inches long. The direction of the specimen corresponding to the most critical burn rate was parallel to the 12-inch direction. Foam specimens were 1/2 inch thick.

Materials for which fire retardant additives provided flammability resistance were tested for persistence of the retardant when aged at $(165^{\circ}F)$ for 72 hours and then retesting for burn per FAR 25.853(b). The two materials showing the greatest change were then tested for smoke per NBS Technical Note 708 to determine any affect of aging on smoke generation. Testing for persistence after laundering or dry cleaning was not conducted. Materials that were sampled and screened were tabulated and are reported in Table 3. The results of screening tests are reported in Tables 4 thru 6. Results of aging tests are reported in Table 7.

The candidate materials were tested for weight loss by standard procedures using a DuPont Instrument Company Thermal Analyzer. Approximately 5 to 15 mg samples were introduced into the sample cup and heated at a rate of 20°C per minute in a low flow of dry air (75 ml/min). Rates of weight loss versus temperature (time) were recorded by potentiometric recorder until no further weight loss was detected (usually in 30 to 35 minutes). TGA curves are shown in Figures 2 thru 4.

3.4 Performance Tests

Tests for mechanical and physical properties, identified as performance tests, are specifically identified in Table 8. These tests were standard test methods and were performed and reported by the material supplier unless otherwise indicated in the data. Performance test results are reported in Tables 9-11. Tests were selected such that materials passing the performance tests would at least equal performance requirements of current seat materials. This includes expected service performance of assemblies made from these materials which must later be proven by service experience.

3.5 Advanced Tests

Selected materials from the screened materials were tested to fire related advanced tests as follows:

3.5.1 Flash Fire Propensity - Modified NBS Flash Fire Cell

The NBS Flash Fire Cell was modified in design and fabricated to NBS and DAC specifications. It was constructed of heavy wall pyrex glass, duplicating as closely as possible the size and configuration described in Reference 3.

MATERIAL NUMBER	PRODUCT NUMBER	MATERIAL DESCRIPTION	TRADE NAME	SUPPLIER
100	ST7193-29	100% nylon, Airgard treated 11.4- 12.6 oz/yd ² Landscape fabric	Landscape	Collins & Aikman Corp.
101	20787	52.5% Kermel/47.5% Wool 277 g/m ²	-	H. Lelievre, Paris
102	OL618	100% Cotton doubleknit 10± 5% oz/yd ² (LI spec 33)	-	Langenthal International Corp
103	69-407	100% Nomex 8.4-9.7 oz/yd ² Tulsa (drapery fabric)	Tulsa '	Collins & Aikman Corp.
*1.04	ST7427-112	90% Wool/10% Nylon fabric 12.2 to 14.0 oz/yd ² Sun Eclipse	Sun Eclipse	Collins & Aikman Corp.
105	7979	50% Kynol/50% Nomex 10.7 oz/yd ² fabric	"No Burn" Fabric	Collins & Aikman Corp.
106	Nylon Gold 1902	Nylon Gold/Vonar 3 Neoprene foam backing	-	DuPont de Nemours
107	Urethane Coated Nylon	Urethane Elastomer coated Nylon fabric		Reeves Brothers
200	#24	100% Kynol fabric twill weave	Kynol	American Kynol, Inc.
201	#1110	70% Kynol/30% Nomex permanent press finish 6.2 oz/yd ²	Kynol	American Kynol, Inc.

.

* Baseline Fabric

•

13

MATERIAL NUMBER	PRODUCT NUMBER	MATERIAL DESCRIPTION	TRADE NAME	SUPPLIER		
202	#1090	70% Kynol 30% Nomex 4.6 oz/yd ² with permanent press finish	Kynol	American Kynol Inc.		
203	B-104S	100% Kynol batting on polyester scrim- needle punch	Kynol	American Kynol Inc.		
204	40-9010-1	PBI fabric natural unstabilized 5.1 oz/yd ² 2 x 1 twill		Celanese Fibers Marketing Co.		
205	40-4010-1	PBI batting 4 oz/yd ² natural unstabil- ized from staple	-	Celanese Fibers Marketing Co.		
206	35-4020-1	Black batting 4 oz/yd ² (proprietary)		Celanese Fibers Marketing Co.		
207		Remay spun bonded polyester fabric needled with 100% Kynol fiber 2.8 oz/yd ²	"Flameout"	Dan River, Inc.		
208	Neoprene foam	1/16" Neoprene foam with 1-2 oz/yd ² cotton scrim	Vonar #1 Interliner	DuPont de Nemours		
209	Neoprene foam	2/16" Neoprene foam with 1-2 oz/yd ² cotton scrim	Vonar #2 Interliner	DuPont de Nemours		
210	Neoprene foam	3/16" Neoprene foam with 1-2 oz/yd ² cotton scrim	Vonar #3 Interliner	DuPont de Nemours		
211	Nylon Gold 1902	See No. 106				

LIST OF MATERIALS SCREENED TABLE 3

.

<u>14</u>

ORIGINAL PAGE IS OF POOR QUALITY

•

MATERIAL NUMBER	PRODUCT NUMBER	MATERIAL DESCRIPTION	TRADE NAME	SUPPLIER
212	Upholstery Fabric	Durette upholstery fabric	Durette	Fire Safe Products, Inc.
213	SE5559	Elastomer, silicone rubber S.G. 1.33	-	General Electric (Waterford, NY)
214	Nomex III	Aramid fabric	Nomex III	DuPont de Nemours & Co.
215	Kermel	Kermel fabric 250 g/m ² amide-imide	Kermel	Rhodia, Inc.
216	400-11	Durette Batting	Durette	Fire Safe Products, Inc.
300	FG215	Glass fiber block cushion edge grain blocking of glass fibers	-	Expanded Rubber and Plastics Corp.
301	R-207080	APN phosphazene open cell foam 0.14 g/cc	APN foam	Firestone Tire & Rubber Co.
302	9907-13	Urethane foam, flexible	Нуроl	W. R. Grace & Co.
303	EXP1408	Silicone Rubber sponge 11 lb/ft ³		Kirkhill Rubber Company
304	14183-B	Silicone rubber sponge ll.8 lb/ft ³	Mosites	Mosites Rubber Co., Inc.

.

.

.

MATERIAL NUMBER	PRÓDUCT NUMBER	MATERIAL DESCRIPTION	TRADE NAME	SUPPLIER		
305	<i>#</i> 510	Silicone rubber sponge 0.21 g/cc	-	Silicone Engineering Ltd. England		
*306	H-45C	Urethane foam 0.03 g/cc	-	E. R. Carpenter Co., Inc.		
307	HL1-7-77	Neoprene foam, open cell		Toyad Corp.		
308	Koylon Firm	Neoprene foam, open cell 0.14 8/cc	Kaylon	Uniroyal Inc.		
400	170	Silicone Adhesive	Sylgard	Dow Corning Corp.		
401	-	Carpet mod acrylic	Brunswall	Brunswall Corp.		
402	-	Polyphenylenesulphone PPS Thermoplastic	Radel	Union Carbide		
403	57-1825	ABS thermoplastic sheet	Royalite	Uniroyal		
404	10052-72D	Rigid urethane foam	Нуро1	W. R. Grace & Co.		
· · · · · · · · · · · · · · · · · · ·	· ·					

** *

,

•

* Baseline Fabric

LIST OF MATERIALS SCREENED TABLE 3

. .

16

ORIGINAL PAGE IS OF POOR QUALITY

	' TEST & TEST METHOD	UNITS	ST-7193-29 FABRIC (100) C & A	20787 KERMEL BLEND (101) H. LELIEVRE	OL618 COTTON KNIT (102) LANGENTHAL	69-407 NOMEX (103) C & A	ST-7427-112 WOOL/NYLON (104) * C & A	7979 KYNOL BLEND (105) C & A	NYLON GOLD & VONAR 3 (106) DUPONT	#15691 COATED NYLON (107) REEVES BROS.	
	Weight/Area Thickness	g/m ²	389 -	· 290 -	335 . –	311 -	457 -	319 -	1367 -	295 -,	
	Density	g/cc	-	-		-	-	-		-	
	Burn Test FAR 25.853b Burn Time Burn Length Drip	sec.	3 6 71.1 71.1 1 1	0 0 114.3 127.0 ND ND	0 114.3 ND	0 0 71.1 66.0 ND ND	1 1 58.4 66.0 ND ND	0 0 58.4 63.5 ND ND	282** 261.6** ND	0 0 124.5 116.8 1 0 ·	
. 17	NBS Smoke Tech Note 708 Nonflaming Flaming	90 sec 4 min 90 sec 4 min	4 12 10 33	21 38, 21 37	40 41 8 13	2 3 6 12	28 73 64 127	2 '6 11 19		12 43 30 46	
	LOI ASTM D 2863			· · 30 50	28 28	31 32	33 31	30 32	- 7	22	
	Pill Test Ignition ASTM D 2859	Ignition burning of		No burn char in area of pill on foam	-	No burn char in area of pill on foam	Char in Char in area of .5" area pill on on foam foam			No burn 1" dia. char	
	TGA	Total weight loss %	98	95		98	98	88,	·	93	

* Baseline **Failed requirements . testing discontinued

SCREENING TEST DATA - DECORATIVE FABRIC COVER

.

TABLE 4

•

Test Test M		Units	#24 . Kynol (200) AKI	#1110 Kynol Blend (201) AKI	#1090 Kynol Blend (202) AKI	B-1045 Kynol 100% (203) AKI	40-9010-1 PBI (204) Celanese	40-4010-1 PBI (205) Celanese	35-4020-1 Blackbattin (206) Celanese	Flameout Kynol (207) Dan River
Weight/ Thicknes		g/m ²	244	200	159	、 213	172.9	118.7	142.4	95
Density		g/cc		· ·						
Burn Te FAR 25. Burn T Burn L Drip	853b ime	sec. mm.	1 1 58.4 58.4 ND ND	0 0 78.7 73.7 ND ND	0 0 73.7 73.7 ND ND	0 0 63.5 61.0 ND ND	0 0 30,5 30.5 ND ND	0 0 35.6 30.5 ND ND	0 0 43.2 48.3 ND ND	0 0 58.4 58. ND NE
NBS Smol Tech No Nonflar Flamin	te 708 ming	90 sec. 4 min. 90 sec. 4 min.	0 1 0 1	0 , 1 , 3 , 6	2 2 4 6	4 8 11 16	1 2 0 1	1 2 0 1	0 2 1 0	2 · 8 3 3
LOI ASTMD 2	863	warp % fill %	·34 33	30 29	29 29	35 34	39 40	37	38 ·	31
Pill Te ignitio ASTM D	n		-	wa	-	-	Material charred & shrank on foam		0.8 in char area around pill	No burn char in area of pill on foam
TGA		Total weight loss %	100	98	98	99	-	-	98	100

SCREENING TEST DATA - FIRE BLOCKING LAYERS

,

TABLE 5

•

•

ORIGINAL PAGE IS OF POOR QUALITY

	Test & Test Method	Units	Vonar #1 Neoprene (208) DuPont	Vonar #2 Neoprene ·(209) DuPont	Vonar #3 Neoprene (210) DuPont	Durette Upholstery (212) Fire Safe Products	SE-5559 Silicone Elastomer (213) G.E.	Nomex III Fabric (214) DuPont	Kermel Fabric (215) Rhodia	400-11 Durette Batting (216) Fire Safe Products
	Weight/Area Thickness	g/m ²	42 . 5·	723	954	322	2516 @75mm	254	250	
 1 1	Density	g/cc		- :		-	1.31	_	-	
	Burn Test FAR 25.853b Burn Time BBurn Length Drip					0 0 33.0 33.0 ND ND	0 3 2.5 2.5 ND ND			0 0 15.2 17.8 ND ND
19	•	90 sec. 4 min. 90 sec. 4 min.	22 34 30 43	30 57 45 78	40 98 70 136	0 3 8 15	0 11 7 26	1 5 8 16	3 10 6 16	0' 1 6 11
·	LOI ASTM D 2863	warp % fill %	38	41 .	. 62	46	40	27	30 29	-
:	Pill Test ignition ASTM D 2859		No burn char in pill area	No burn char in pill area	No burn char in pill area	No burn 4 in. dia. char	No burn char in area of pill	No burn .6 in. dia. char around pill	 '	-
	•	Total weight loss %	·		62	98	[.] 15	-	100	-

19

.

- .

.

.

٠

TABLE 5 (Cont'd)

.

•

· · · · · · · · · · · · · · · · · · ·		······································		,	·····			f	
Test & Test Method	Units	FG125 Glass Fiber Blocks (300) Exp. Rubber	R-207080 APN Phosphazene (301) Firestone	9907-13 Hypol Foam (302) W. R. Grace	ËXP1408 Silicone Foam (303) Kirkhill	14183-B Silicone Foam (304) Mosites	#510 Silicone Foam (305) Silicone Eng	Ч́́Н-45С Urethane Foam (306)* ER Carpente:	HL1-7-77 Neoprene Foam (307) Toyad
Weight/Area Thickness	g/m ²		-	-	-	-			-
Density	g/cc	.0306	0.14	0.20	0.15	0.19	0.21	0.03	0.12
Burn Test FAR 25.853b Burn Time Burn Length Drip	sec. mm	0 2.5 ND	0 21.0 ND	0 2.5 ND	3 22.9 ND	0 38.1 ND	89 20.3 ND	1 21.1 ND	0 25.4 ND
NBS Smoke Tech Note 708 Nonflaming Flaming	90 sec. 4 min. 90 sec. 4 min.	- 5 8 4 6	14 113, 43 89	49 181 153** 335**	47 163 31 67	42 118 51 115	2 17 -54 100	51 134 27 37	45 115 84 165
Colorfastness Method 5660 Method 5651(B)	Light Crock- ing	-	 -	-	-				-
LOI ASTM D 2863	warp % fill %	33	41	-	33	31	29	[.] 23	45
Pill Test Ignition ASTM D 2859			No burn .67 in char area	-	No burn .4" char area	No burn char in pill area	No burn char in pill area	l" deep hole x 1.9" D	No burn char in pill area
TGA	Total weight ss %	24 ,	58		43	50	52	99	60

,

20

* Baseline material ** Failed requirements

SCREENING TEST DATA - CUSHIONING LAYERS & MISC.

TABLE 6.

,

	····		· ····	······	+	 T	
Test & Test Method	Units	Koylon (Firm) Neoprene (308) Uniroyal					
Weight/Area	g/m ²	-					
Thickness		-		·		 ļ	
Density	g/cc	0.14				 	
Burn Test FAR 25.853b Burn Time Burn Length Drip	sec. mm	0 0 30.5 35.6 ND ND					
NBS Smoke Tech Note 708 Nonflaming Flaming	90 sec. 4 min. 90 sec. 4 min.	107 222* 122 231*					
,	-	-					
LOI ASTM D 2863	warp % fill %	29					
Pill Test Ignition ASTM D 2859		No burn char in pill area					
TGA	Total weight loss %	62	•				

* Failed recommended limits

SCREENING TEST DATA - CUSHIONING LAYERS & MISC.

.

21

				-		<u>* </u>	· · · · · · · · · · · · · · · · · · ·		
Test & Test Method	Units	170 Sylgard ADH (400) Dow Corning	Carpet Mod Acrylic (401) Brunswall	Radel - PPS (402) Union Carbide	57-1825 ABS Royalite (403) Uniroyal	10052-72D Rigid Ure- thane Foam (404) W. R. Grace		~~~~~~	• 、
Weight/Area Thickness	g/m ²	-	644		1687 -	·			
Density	g/cc	-		-	_		······································		
Burn Test FAR 25.853b Burn Time Burn Length Drip	sec. mm		FAR 25.853a 0 0 149.9 144.8 ND ND	- u m	0 1 43.2 45.7 ND ND	0 2.54 ND			,
NBS Smoke Tech Note 708 Nonflaming Flaming	90 sec. 4 min. 90 sec. 4 min.			0 2	-	55 160 71 181			
Colorfastness Method 5660 Method 5651(B)	Light Crock- ing	-		Severe stain 50SFH		-			
LOI ASTM D 2863	warp % fill %	28	-	-	32 30	61			
Pill Test Ignition ASTM D 2859		~	-	-	-	-			
TGA	Total weight loss %	-	-		-	-			

SCREENING TEST DATA - MISC:

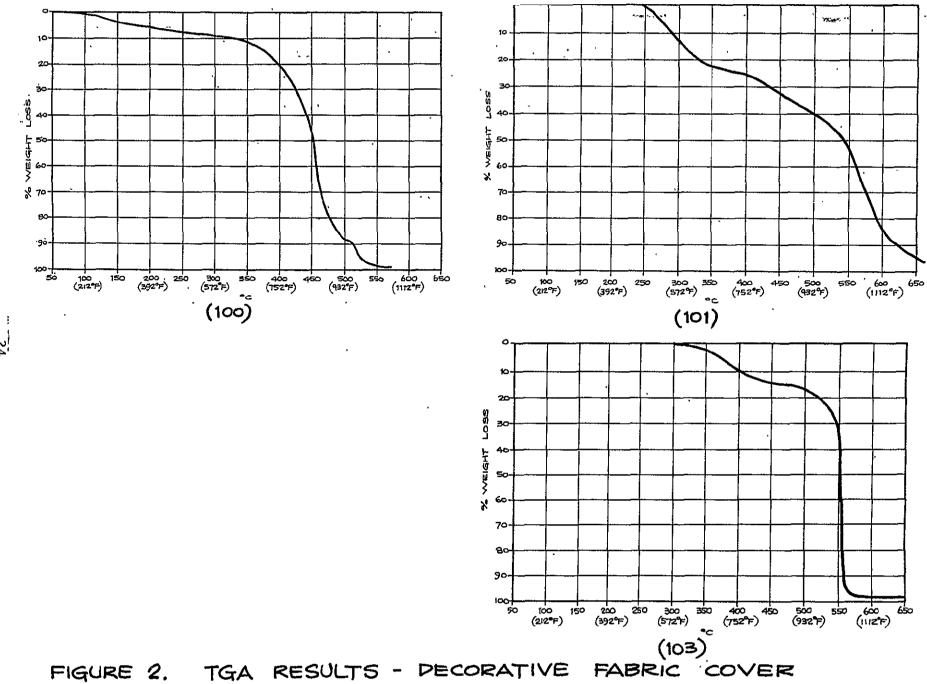
.

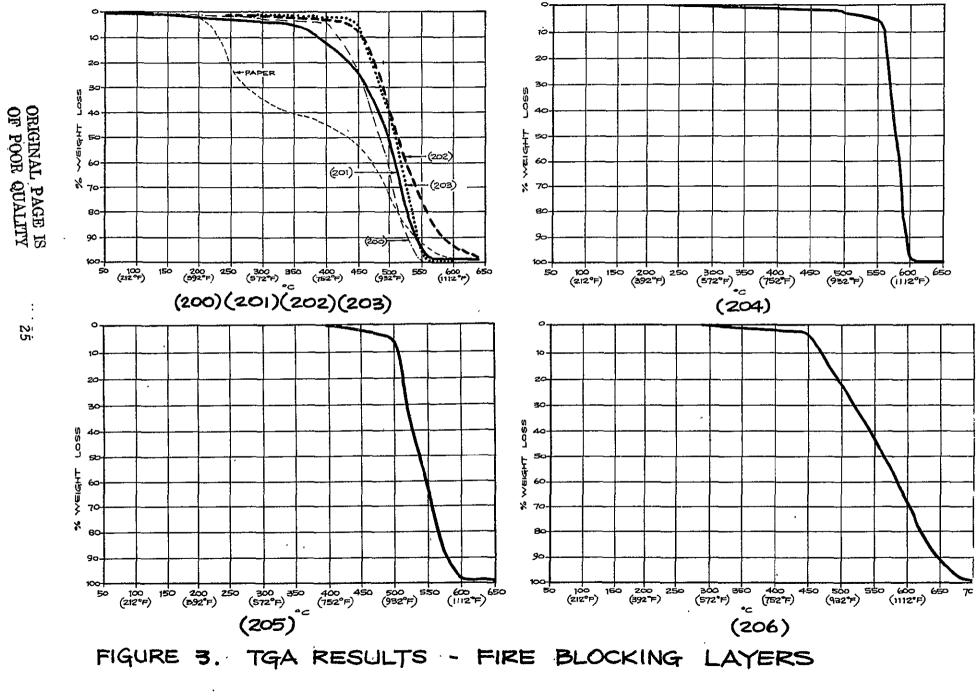
TABLE 6 (Cont'd)

22

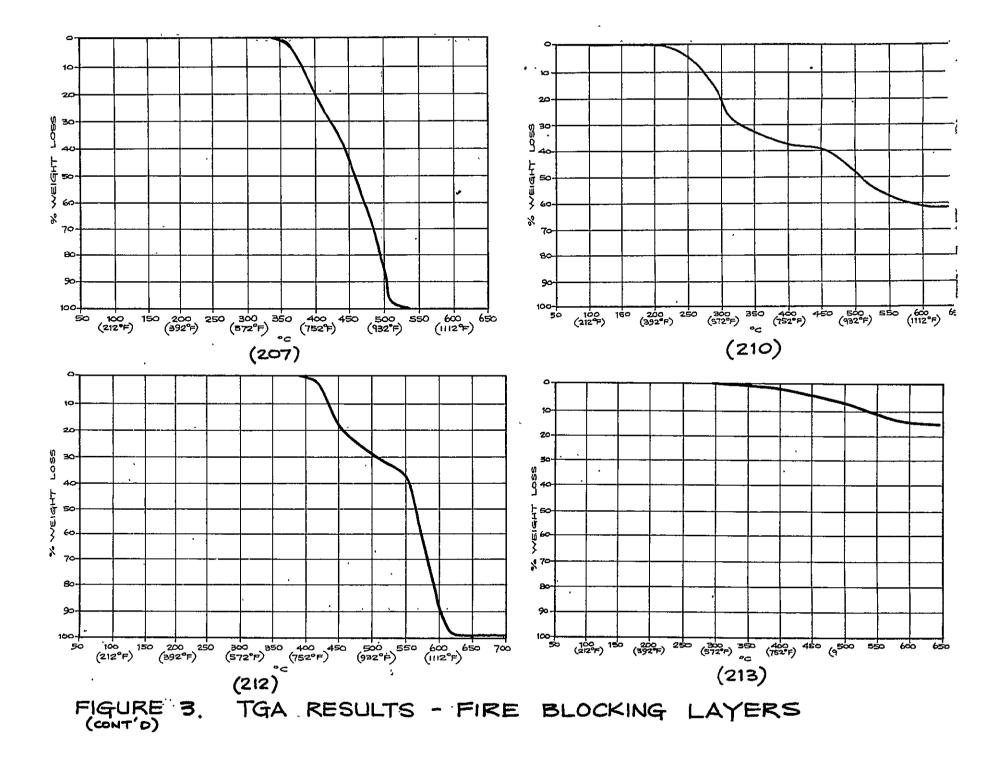
			NONAC	GED	(1)	AGED**			(1)
MATERIAL	MAT'L NO.	FLAME TIME, SEC.	BUI		FLAME TIME OF DRIPS,	FLAME TIME, SEC.	BUR LENG		FLAME TIME OF DRIPS,
			INCH	mm	SEC.	01101	INCH	mm	SEC.
ST-7193-29 Fabric	(100)	2	2.7	68.6	l	1	2.5	63.5	0
#20787 Fabric	(101)	0	4.5	114.3	ND	1	5.1	129.5	ND
ST 7427-112 Fabric	(104)	1	2.3	58.4	ND	2	2.7	68.6	ND
OL618 Fabric	(102)	0	4.5	114.3	ND	0	4.6	116.8	ND
Vonar #3 Foam	(210)	0	1.7	43.2	ND	0	2.0	50.8	ND
14183-B Silicone Foam	(304)	0	1.5	38.1	ND	0	0.9	22.9	ND
HL Neoprene Foam	(307)	0	1.0	25.4	ND	0	. 1.0	25.4	ND
H-45C Urethane Foam	(306)	1	2.8	-71.1	0	0	5.0	127.0	0
#510 Foam	(305)	89	0.8	20.3	ND	53	0.6	15.2	ND
Exp 1408 Foam	(303)	3	0.9	22.9	ND	0	0.7	17.8	ND
NATERIAL	MAT'L NO.		NONAGED		(2)		AGED	(2)	
		TEST	in the second se	AX. DS	IN 4 MIN	TEST	MAX 90 SI	$\begin{array}{c c} \mathbf{L} & \mathbf{D}_{\mathrm{S}} & \mathbf{I} \\ \mathbf{L} & \mathbf{C} & \mathbf{I} & \mathbf{I} \\ \mathbf{L} & \mathbf{L} & \mathbf{L} \\ \mathbf{L} \\ \mathbf{L} & \mathbf{L} \\ \mathbf{L} \\ \mathbf{L} & \mathbf{L} \\ $	N MIN
#20787 Fabric	(101)	F L M I N G		20 3 21 3		N G	28		.4 6
H-45C Urethane Foam	(306)	N O N F L A M I N G	44 51 <u>58</u> Av 51		113 132 <u>157</u> 134	N ON F LA M I S	43 41 <u>41</u> 42		27 32 <u>32</u> 30

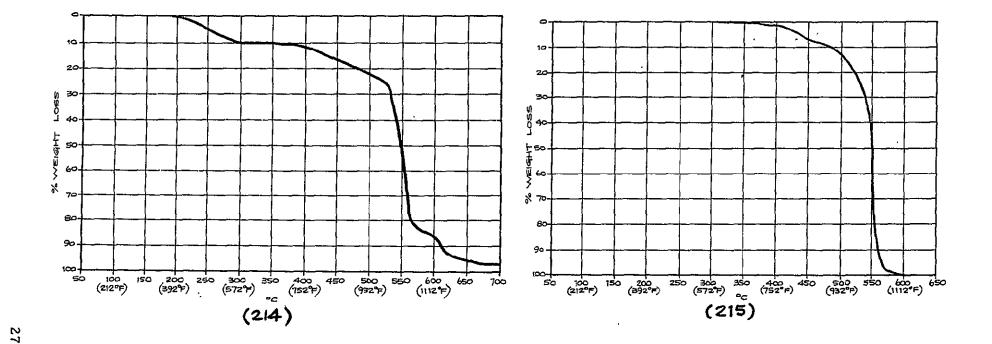
(1) Fed Aviation Regulations Part 25 Test 25.853b


**Material aged 72 hours at 165°F

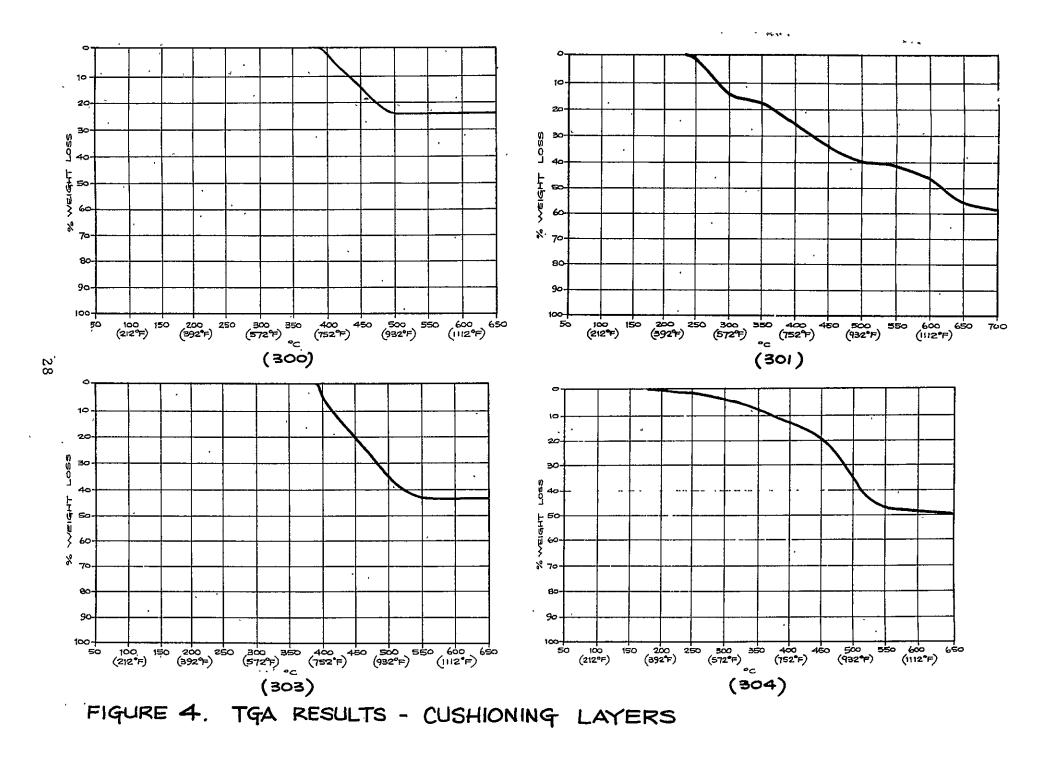

(2) NBS Technical Note 708; Test Method for Measuring the Smoke Generation of Solid Materials

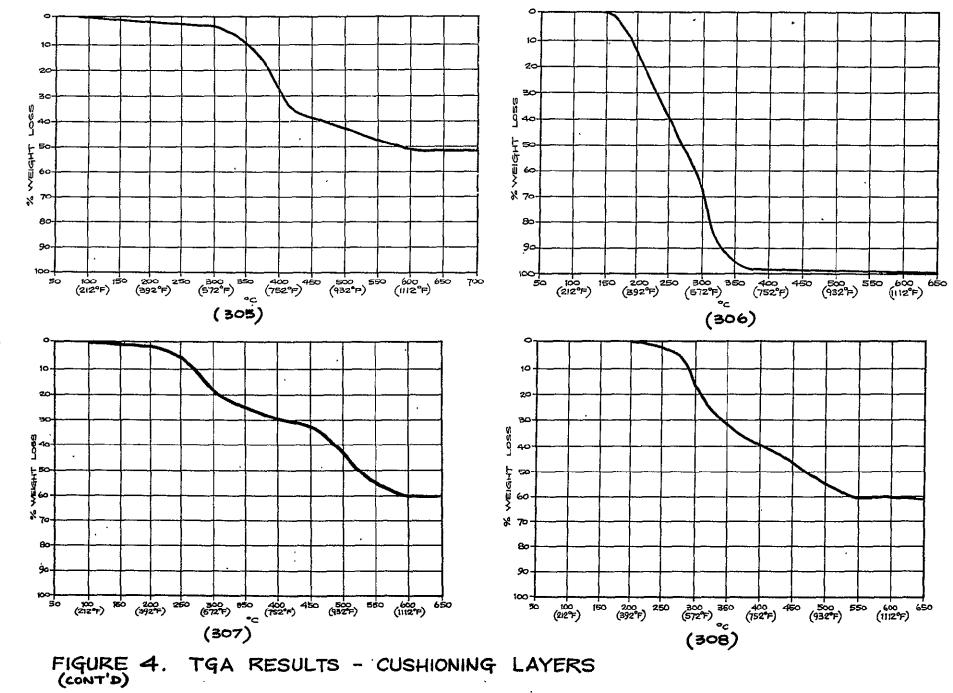
ND = No drippings


SMOKE AND BURN TEST RESULTS AGED VS NONAGED MATERIALS


ORIGINAL PAGE IS OF POOR QUALITY

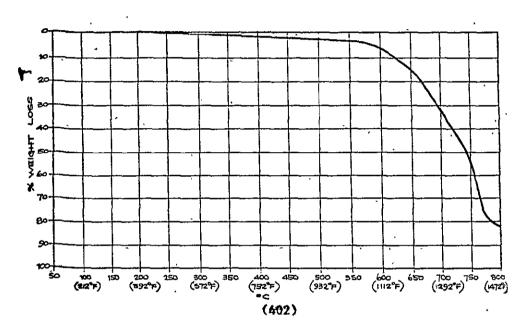
ខ្មុរ

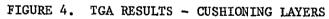




.

.


FIGURE 3. TGA RESULTS - FIRE BLOCKING LAYERS



ORIGINAL PAGE IS OF POOR QUALITY

29

•

FAB	RIC .		FOAM
PERFORMANCE			
Tensile Ultimate Elonga- tion Tear	*Method 5100 *Method 5132	Steam Autoclave Indentation Load Deflection (ILD) @ 25%, 65%	ASTM 1564 Sect.5-11 ASTM 1564 Method A Sect. 19-25
Shrinkage	*Method 5580	Compression Set	ASTM 1564 Sect. 12-18
Colorfastness .	*Method 5660 *Method 5651(B)	Corrosion	DPS 8.86
Corrosion	DPS 8.86	Tear	ASTM 1564 Suffix G
Cleanability	*Method 5580		
Abrasion	*Method 5306		

(DPS - Douglas Process Standard)

*Federal Test Method Standard No. 191, Textile Test Methods

PERFORMANCE TEST METHODS

TABLE 8

ORIGINAL PAGE IS OF POOR QUALITY

	TEST	TEST METHOD	.ST7193-29 Fabric (100) C & A	20787 Kermel Blend (101) H. LeLievre	OL618 Cotton Knit (102) Langenthal	69-407 Nomex (103) C & A	ST7427-112 Wool/Nylon (Baseline) (104) C & A	7979 "No Burn" Kynol Blend (105) DuPont
	Tear	* Method 5132 kg lbs.	>6.4 >6.4 >14.1 >14.1	}		> 6.4 > 6.4 > 14.1 > 14.1	>6.4 4.8 >14.1 10.6	>6.4 >6.4 >14.1 >14.1
•	Colorfastness	* Method 5660 Light * Method 56561(B) Crocking	20SFH 40SFH Exc. Exc.		20SFH 40SFH Fair Fair Little or no tran st.	20SFH 40SFH Poor Poor	20SFH 40SFH Exc. Fair	20SFH 40SFH Poor Poor
Ī	Corrosion	DPS 8.86	••••		-	-	-	-
32	Cleanability	Method 5580	· -	-	_	-	-	-
	Abrasion	*Method 5306	-	-	Poor (1)	-	Broke Pooryarns (1)	
Ī	Abrasion	ASTM 1175 Abrade #8 Cotton Duck				_	22 Cycles	-

32

.

*Federal Test Method Standard No. 191, Textile Test Methods

(1) 750 cycles 1000g C5-10 Wheel

PERFORMANCE TEST RESULTS - DECORATIVE FABRIC COVER

. .

.

TABLE 9

	TEST	TEST METHOD	Nylon Gold & Vonar Backing (106) DuPont	#15691 Coated Nylon (107) Reeves Bros.			
	Tear	*Method 5132 Kg. lbs.	4	>6.4 >6.4 >14.1 >14.1			
	Color Fastness	*Method 5660 Light *Method 5651(B) Crocking	20SFH 40SFH Good Good	20SFH 40SFH Good Good			
Ĩ	Corrosion	DPS 8.86	-		 		,
33	Cleanability	Method 5580	· _	• •		κ	
~[Abrasion	*Method 5306					· ·
	Abrasion	ASTM 1175 Abrade #8 Cotton Duck	-				

* Federal Test Method Standard No. 191, Textile Test Methods

.

.

OF POOR QUALITY

PERFORMANCE TEST RESULTS - DECORATIVE FABRIC COVER

TABLE 9 (Cont'd)

.

.

•	TEST	TEST METHOD	#24 Kynol (200) AKI	#1110 Kynol Blend (201) AKI	#1090 Kynol Blend (202) AKI	B-104S Kynol Needle Punch (203) AKI	40-9010-1 PBI Fabric (204) Celanese	40-4010-1 PBI Batting (205) Celanese
	Compression Set	ASTM 1564 Sect 12-18	، بیب جریب ہے۔ بی ایک میں میں م					-
	Corrosion		-	-		-	_	-
	Tear	ASTM 1564 Suffix G	_		-	_	-	-
	Tensile	*Method 5100	_	-		-	-	-
	Ultimate Elongation			-	- <u> </u>		-	_
	Tear	*Method 5132 kg lbs.	>3.18 - ´ >7 -	>3.18 1.85 >7 4.07		3.14 >3.18 6.92 >7		1.46 1.33 3.21 2.92
34	Shrinkage	*Method 5580 %			<u> </u>			,
	Colorfastness	*Method 5660 Light *Method 5651(B) Crocking	-	-				-
	Abrasion	*Method 5306	-	-		-	-	
	Thermal Cond.	ASTM C 177			-		_	

*Federal Test Method Standard No. 191, Textile Test Methods

PERFORMANCE TEST RESULTS - FIRE BLOCKING LAYERS

TABLE 10

TEST	TEST METHOD		"Flameout" Kynol Needled Remay	•	Vonar #2 Neoprene Foam	Vonar #3 Neoprene Foam	Durette Upholstery
		(206) Celanese	(207) Dan River	(208) DuPont Mfg. by (Nafi	(209) DuPont Division of ((210) DuPont hriscraft)	(212) Fire Safe Prod.
Compression Set	ASTM 1564 Sect 12-18		-		D1055 50% 22hrs 72° 70%		
Corrosion		-	-	-	_		-
Tear	ASTM 1564 Suffix G	· _	·	~	-		-
Tensile	*Method 5100	-	_	_	_	-	-
Ultimate Elongation	· · · · · · · · · · · · · · · · · · ·	-	. –	-	**		•••
Tear	*Method 5132 kg.	1.01 .91			_	_	>6.4 >6.4
	lbs.	2.24 2.01	-				>14.1 >14.1
မှု Shrinkage	*Method 5580 %		, -	-	-		-
Colorfastness	*Method 5660 Light		_	-	_	_	-
	*Method 5651(B) Crocking		-	-	-	-	-
Abrasion	*Method 5306	-	-		-	_	
Thermal Cond.	ASTM C 177	-		 .	, –		· –

*Federal Test Method Standard No. 191, Textile Test Methods

ORIGINAL PAGE IS OF POOR QUALITY

PERFORMANCE TEST RESULTS - FIRE BLOCKING LAYERS

TABLE 10 (Cont'd)

Test	Test Method	SE5559 Silicone Elastomer (213)	Nomex III Fabric (214)	Kermel Fabric (215)	
		G. E.	DuPont	Rhodia	
Compression Set	ASTM 1564 Sect 12-18	-			
Corrosion	<u> </u>		-	_	
Tear	ASTM 1564 Suffix G	-		-	
Tensile	*Method 5100	(1250 PSI)	_	_	
Ultimate Elongation		(530%)	····	_	
Tear	*Method 5132 kg. lbs.	-	5.43.311.87.2	4.4 6.2 9.6 13.6	
Shrinkage	*Method 5580 %		-	-	
Colorfastness	*Method 5660 Light *Method 5651(B) Crocking	-		-	
Abrasion	*Method 5306		-		
Thermal Cond.	ASTM C 177		-	-	

.

,

*Federal Test Method Standard No. 191, Textile Test Methods

PERFORMANCE TEST RESULTS - FIRE BLOCKING LAYERS

•

TABLE 10 (Cont'd)

		H-45C Urethane Foam *	HL1-7-77 Neoprene Foam	Kaylon Firm Neoprene Foam			
TEST	TEST METHOD	(306)	(307)	(308)			
		E. R. Carpenter	Toyad	Uniroyal			
Steam Autoclave	ASTM 1564 Sect 5-11		No change in comp. deflec- tion or set	-			
Indentation Load Deflection (ILD)	ASTM 1564 Method A Sect 19-25	10.2cm (4 in) thickness	6.4cm 2.5 in thickness	-			
newtons per 3.2dm ² 25%	25%	195.7N-222.4N (44-50'1bs)	164.6N (37 1bs)				
(1bs. force per 50 in ²) 65%	65%	-	725N (163 1bs)				
		∂80% = 5%					
Compression Set	ASTM 1564 Sect 12-18 ASTM D1055 @50%	@90% = 10%	10-15%	-			
Tear	ASTM 1564 Suffix G		1.2 lb	-			
Tensile	ASTM 1564	4.4N (1.0 16)	8-10psi elong. 300- 360%	-	•	•	

.

*Baseline

PERFORMANCE TEST RESULTS - CUSHIONING LAYERS

.

TABLE 11 (Cont'd)

38

.

TEST	TEST METROD	FG215 Glass Fiber Blocks (300)	R-207080 APN Phosphazene Foam (301)	9907-13 Hypol Foam (302)	EXP1408 Silicone Foam (303)	14183-B Silicone Foam (304)	#510 Silicone Foam (305)
		Expanded Rubber	Firestone	W. R. Grace	Kirkhill	Mosites	Silicone Engr.
Steam Autoclave	ASTM 1564 Sect 5-11	-	-	-	. –	2.5p 2.6% 16psi 1.9%	
Indentation Load Deflection (ILD)	ASTM 1564 Method A Sect 19-25	12.1cm (4.75 in) thickness					
newtons per 3.2dm ² 25% (1bs. force	25%	41.9N (9.4 lbs)	- (1)	155.7N (35 lbs)	_	1334.4N (300 lbs)	1334.4N (300 1bs)
per 50 in ²) 65%	. 65%	252.6N (6.8 lbs)	- (1)	889.6N (200 1bs)		12232.0N (2750 1bs)	9563.2N (2150 lbs)
Compression Set	ASTM 1564 Sect 12-18	-		32%	@50% = 19.6% deflection	@50% = 30% deflection	- .
Tear	ASTM 1564 Suffix G		-		-	1.85 lb/in	-
Tensile	ASTM 1564	_	-	3.6kg 8 lbs Elong.=144%	-		-

* Baseline

(1) Development material

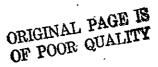
ORIGINAL PAGE IS OF POOR QUALITY

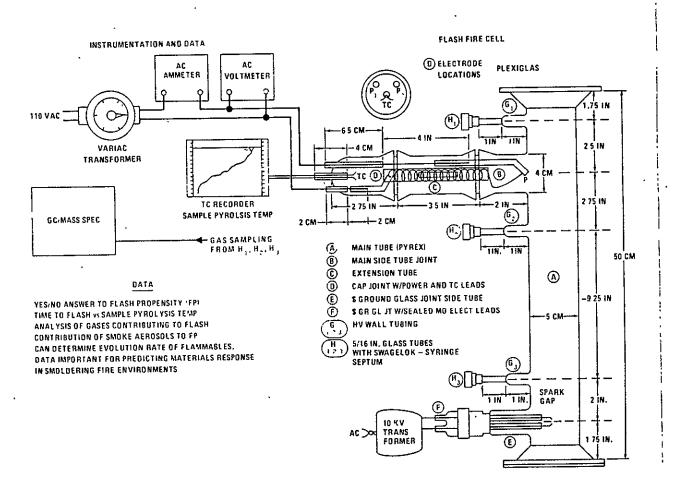
PERFORMANCE TEST RESULTS - CUSHIONING LAYERS

.

TABLE 11

The cell was modified, as shown in Figure 5, by incorporation of a minature, electrically powered, pyrolysis tube furnace in a demountable side arm of the apparatus. It was anticipated that this feature would permit faster and more reproducible heating regimes than provided by the NES external heater design. See Reference 3.


Further important modifications have been incorporated. A thermocouple junction was inserted through the septum at H₂, Figure 5, with the junction positioned in the center of the main vertical tube. This TC and the TC probe inserted in the sample within the pyrolysis tube were connected respectively in series to a dual channel recorder. During a test, the output from the sample pyrolysis zone TC and the main tube TC were recorded simultaneously on the same chart. The latter TC automatically detected a flash fire front traveling vertically upward as the test proceeded.


A cycle control and timer with counter connected to the 10 KV transformer spark generator was set to cycle the 1 cm spark in the base of the cell for approximately 0.5 sec with a repetition rate of 6 per minute. The heat generated in the air inside the main tube was detected on the recorded TC trace as a short upscale pulse each time the ignition source spark was cycled. Power for the pyrolysis combustion tube heating coil was supplied by a variac transformer (20 amp) and adjusted manually to preselected wattage level. This pyrolysis assembly permitted the selection of virtually any heating profile (max. approx. 600° C/min.) by adjustment of the voltage level. (See Figure 5.) The coil wire was found to be uniform in output; theoretical heating levels (thermal flux) from 0.1 to 4 watt cm² (over internal surface of the pyrolysis tube) were attained.

Test Procedure -

The candidate materials were tested using the following selected pyrolysis heating regime and operational procedures.

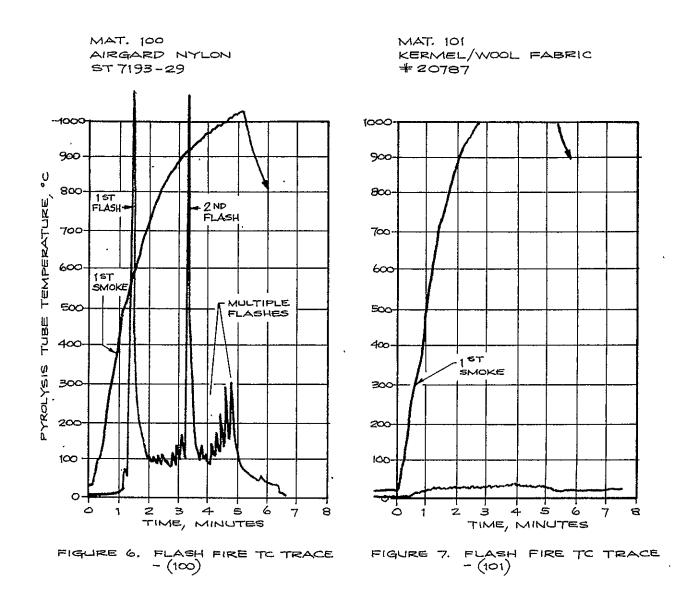
- (a) A 0.5 g sample, weighed to ±0.0001 g was inserted in a preweighed heating coil/pyrolysis tube assembly.
- (b) The pyrolysis tube with the sample was installed in the side tube as shown in Figure 5, and connected to the variac power source.
- (c) The pyrolysis zone TC probe was inserted through the entrance tube in cap/joint D (Figure 5) and plugged into the ice point electronic reference. The recorder range for this output was set on 50 mv/FS.
- (d) The flash fire detector TC was inserted through port H_2 , connected to the ice point electronic reference and the recorder range set to 5 mv/FS.
- (e) The cycle time was set for a 0.5 sec. spark at 10 sec. intervals and the counter set to zero.
- (f) The dual pen recorder was started at a paper transport speed of 6.25mm per minute.
- (g) Each experimental run was initiated by switching on the pyrolysis coil power, the spark cycle time and depressing the hand-held record event marker switch to mark time zero on the recorder chart. Power to the pyrolysis tube was smoothly and rapidly (<5 sec.) adjusted to 5.5 amp (at 19.1 volt).

FIGURE 5. NBS FLASH FIRE CELL

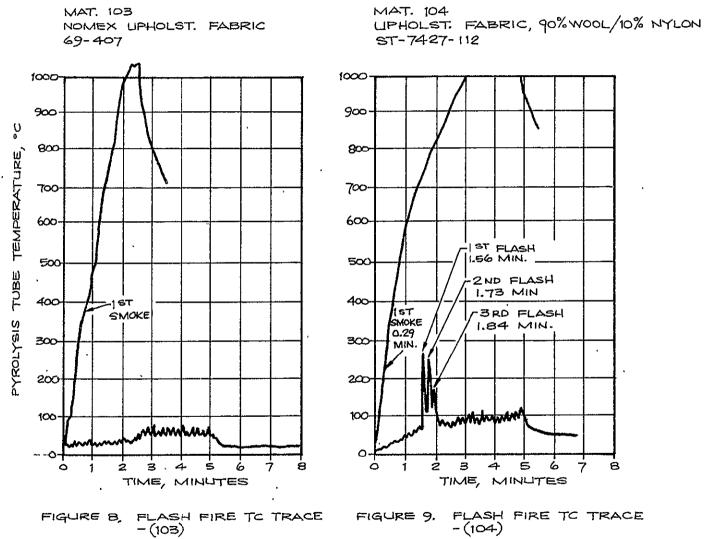
- (h) The outlet at the internal end of the pyrolysis tube was observed and the event marker switch was depressed to mark the recorder chart at the time of first appearance of smoke.
- (i) Visual appearance, estimated quantity and color of smoke, and relative intensity (light, sound, flame front travel) or violence of a flash reaction was noted.
- (j) When a flash occurred, additional air was allowed to enter momentarily into the bottom of the cell by depressing the spring loaded flow-off cap. Multiple flashes were detected and visually assessed for intensity.
- (k) Experimental runs continued for 5 minutes (30 spark source cycles) at which time power was shut off and the experiment terminated.
- (1) After cooling, the pyrolysis tube and sample were weighed to obtain the char residue.
- (m) The flash fire cell was disassembled and cleaned preparatory to the next test.

Flash Fire Test thermocouple traces are shown in Figures 6 thru 36. Test results are reported in Table 12.

3.5.2 Animal Toxicity Tests


The exposure chamber used in the animal toxicity tests was developed and modified by Spieth (Reference 4) from an original design employed by Gaume (Reference 5). The equipment provided for pyrolysis and combustion products to be generated directly in the chamber and for a motor driven exercise wheel to be driven at 6 rpm to provide a constant level of animal activity, during the period of exposure. The toxicity test chambers were constructed of rectangular clear glass jars sealed at the top with plexiglas lids. The lids permitted rapid demounting from the glass chambers. They had the exercise wheel and drive mechanism, electrical power leads, radiation heat shield, gas sampling, and temperature measuring tube feed-throughs integrally assembled as shown in Figure 37.

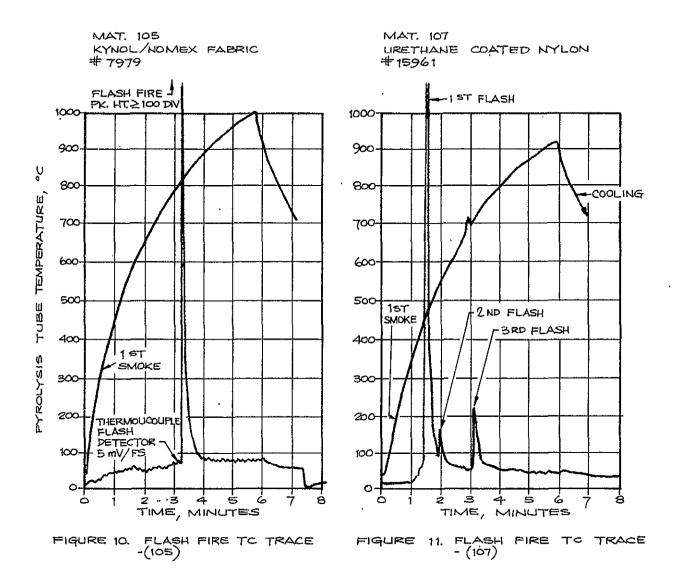
A close-cell silicone rubber gasket, held in place with bunge cords and clamps, sealed the chamber. Test samples weighing 0.1-2 grams were loaded in the 26 ga. chromel A heating coil and inserted into a Vycor glass pyrolysis tube. This assembly was, in turn, inserted into an aluminum oxide felt roll which effectively insulated the pyrolysis tube during the decomposition phase of a determination. The microcombustion/pyrolysis tube was suspended inside the chamber by connecting the heating coil leads to the electrical power leads mounted on the lid.

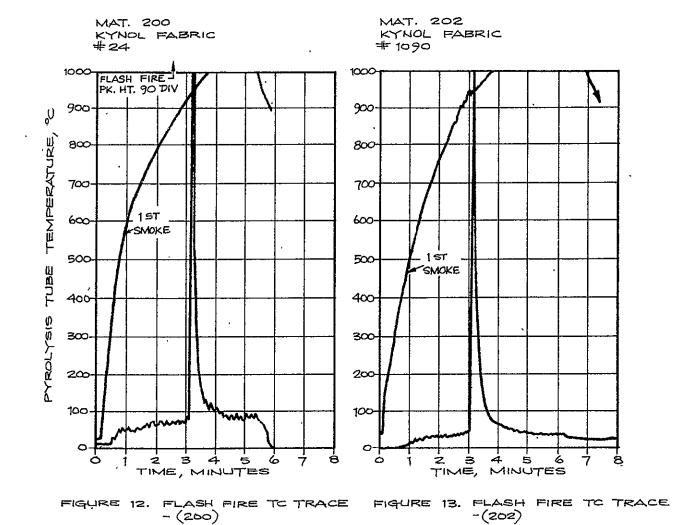

An aluminum foil heat shield was placed between the pyrolysis tube unit and wheel to reduce the heating of the exercise wheel during a run.

A magnetically driven stirring was placed behind the exercise wheel to provide rapid mixing of the gases and smoke with the air in the chamber as evolution occurred, completing the assembly.

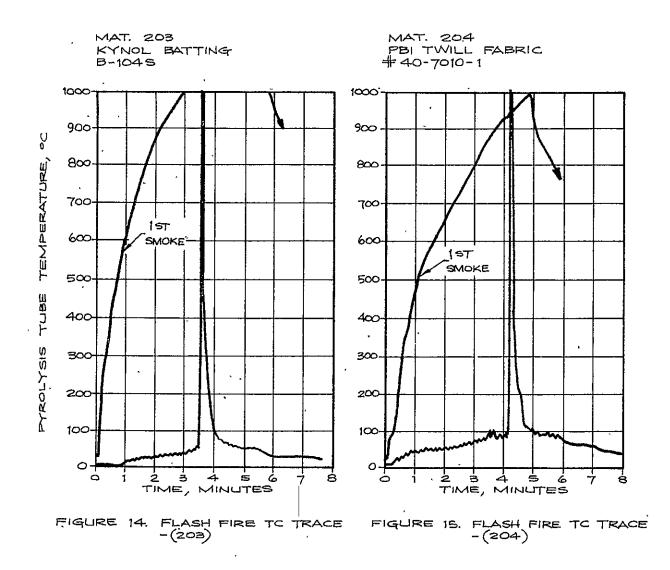
> ORIGINAL PAGE IS OF POOR QUALITY

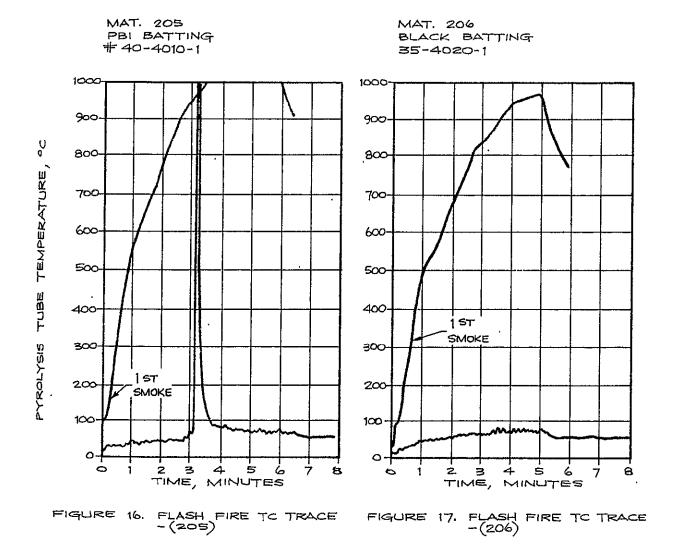
•


•


MAT. 103 NOMEX UPHOLST. FABRIC

ORIGINAL PAGE IS OF POOR QUALITY


. 43


•

ORIGINAL PAGE IS OF POOR QUALITY

47

ORIGINAL PAGE IS OF POOR QUALTTY

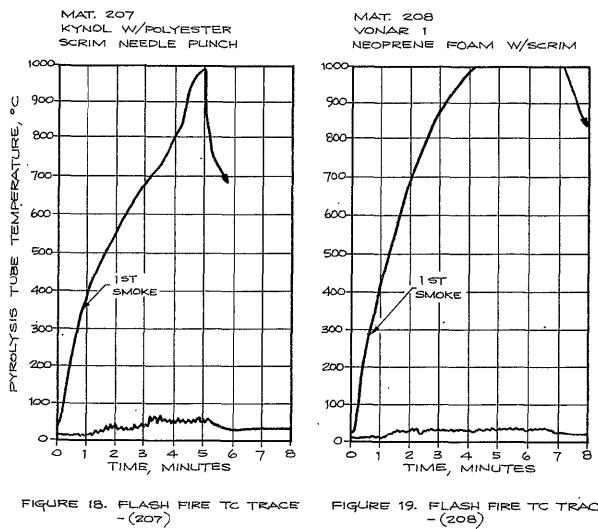
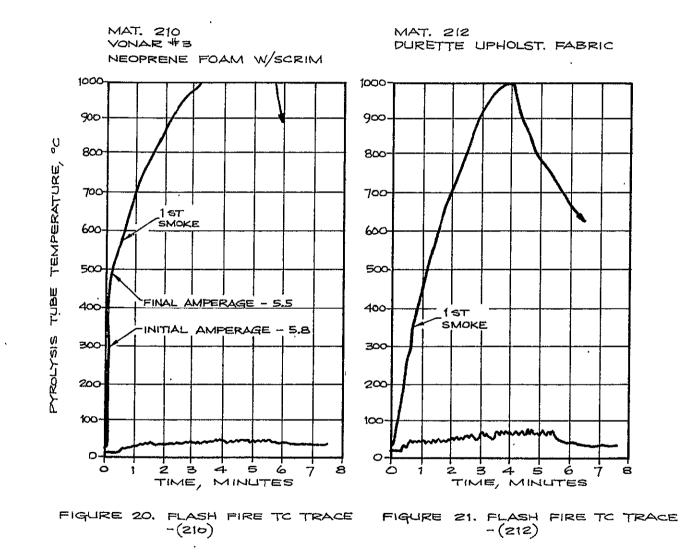
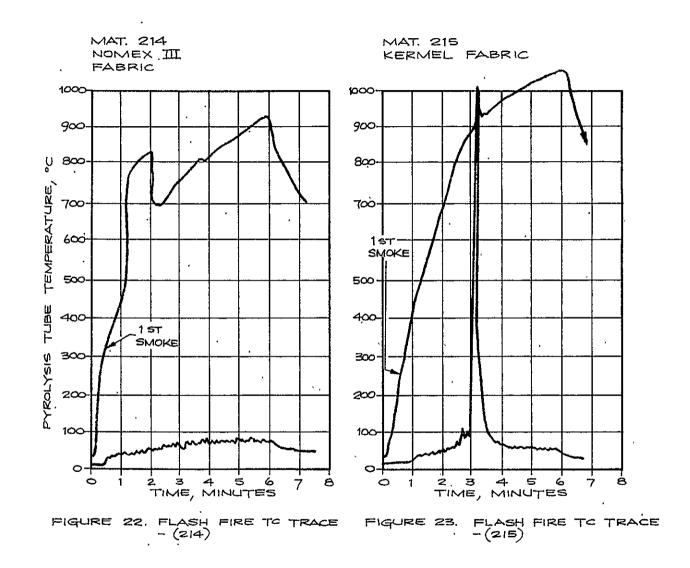
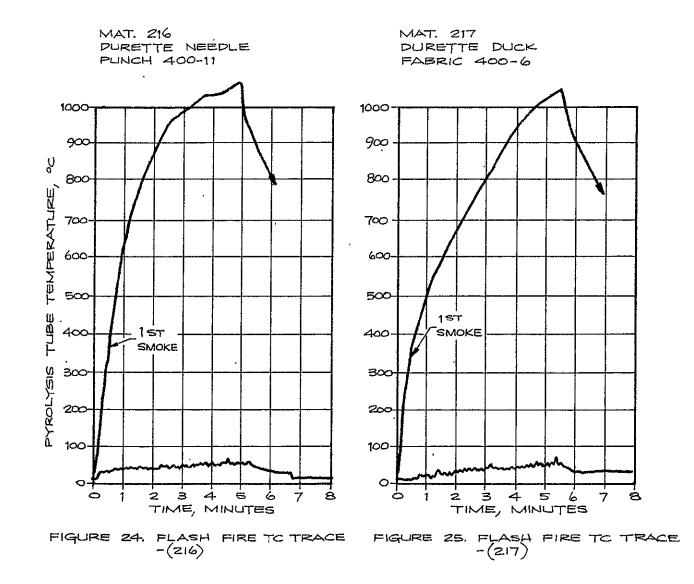



FIGURE 19. FLASH FIRE TO TRACE - (208)

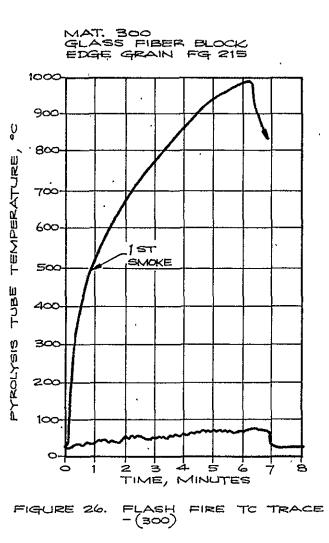

.



ORIGINAL PAGE IS OF POOR QUALITY

49

•

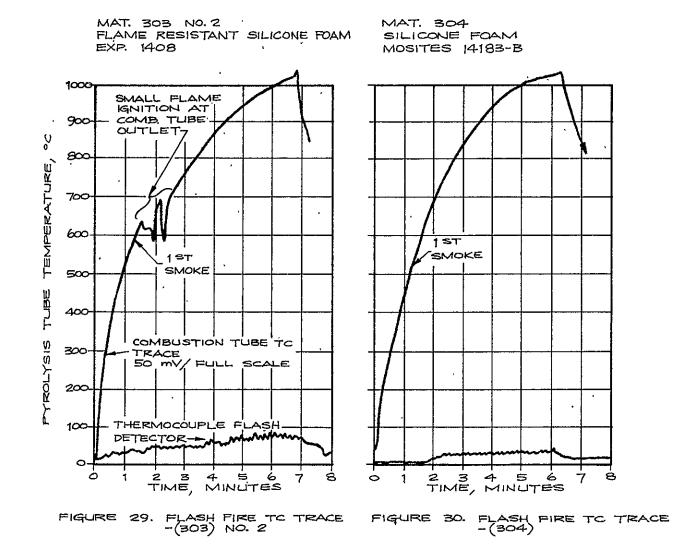


,

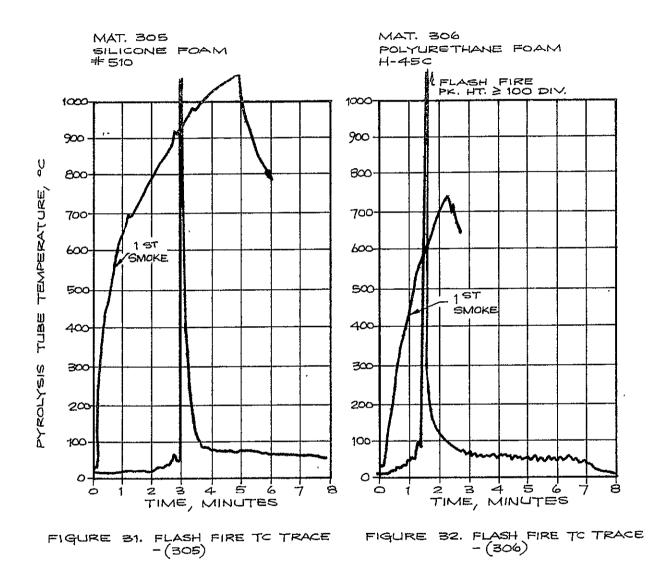
ORIGINAL PAGE IS OF POOR QUALITY

.

.

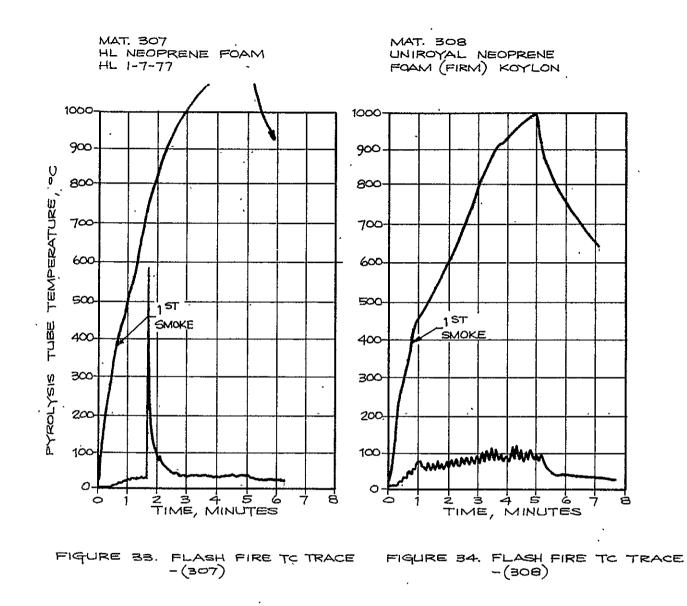

52

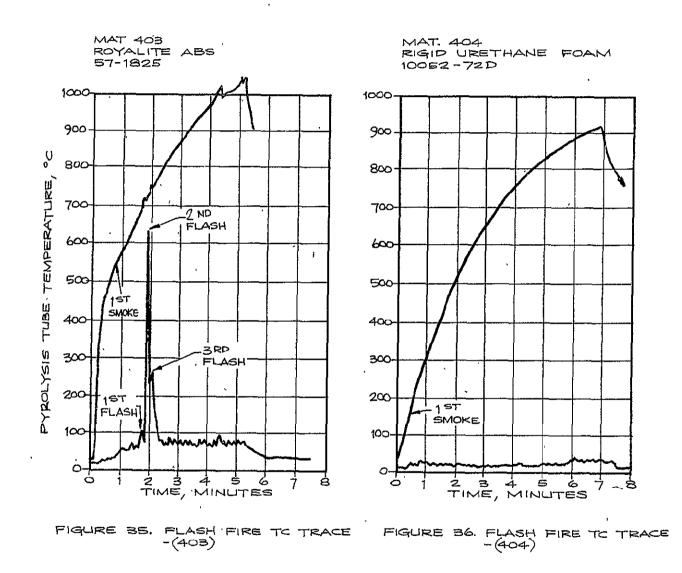
•

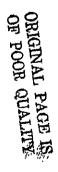


ORIGINAL PAGE IS OF POOR QUALITY

υ Ω




.



ORIGINAL PAGE IS OF POOR QUALTTY

•

ſ	,,,,,	MATERIAL	TIME TO	SAMPLE PYROLYSIS		F	LASH RESPONSE		
	NO.	IDENTIFICATION & WT.	lst smoke MIN.	TEMP. AT 1ST SMOKE °C	NO.	TIME MIN.	THERMAL PULSE HTDIVNS.	SPLE.PYRO. TEMP. ^O C	OBSERVATIONS
ļ	-	Airgard Nylon	e it — a caning sult — incension		lst.	1.2	100	570	Medium light & sound
	100	ST 7193-29	0.8	380	2nd.	3.28	85	910	Low light & sound
		0.5g		*	3-6	4.5-4.8	8-12	1000	Very low level
	101	Kermel/Wool Fabric 2028T 0.5g	0.44	290			No Flash		Heavy yellow smoke
	103	Nomex Fabric Off-White 69-40T 0.5g	0.72	378 .			No Flash		Heavy yellow smoke
		Dress Cover Sun			lst.	1.56	17	275	Low noise & light
58	104	Eclipse Blue Fab. 90% Wool/10% Nylon	0.29	, 229	2nd.	1.73	15	264	Heavy gray smoke
		ST7427-112 0.5g	·····	······	3rd.	1.84	9	175	······································
		Kynol/Nomex							Medium sound
	105	Fabric 7979	0.53	319	lst.	3.28	95	810	Low light emission
		0.5g			ļ				Dense 1t. yellow smoke
		Urethane Coated				1.36	100	450	Multiple explosions w/med. light emission
į	107	Nylon 15691	0.50	184	2nd.	1.88	5	550	Low light & sound
		0.5g			3rd.	3.10	. 14	700	Low light & sound
	200	Kynol Fabric #24 0.5g	0.60	350	lst.	1.60	100	850	Fast detonation wave w/med. sound and low light emission
	201	Kynol Fabric #1110 0.5g	0.80	480	lst.	1.72	100	750	Fast detonation wave w/low level sound and light

FLASH FIRE PROPENSITY TEST DATA SUMMARY

.

•

TABLE 12

		MATERIAL	TIME TO	SAMPLE PYROLYSIS	ļ		FLASH RESPONSE		
	NO.		1ST SMOKE MIN.	TEMP. AT 1ST SMOKE °C	NO.	TIME MIN.	THERMAL PULSE HTDIVNS.	SPLE. PYRO. TEMP. ^O C	OBSERVATIONS
	202	Kynol Fabric #1090 0.5g	0.71	463	lst.	3.1	100	940	Rapid flash front low light & sound
	203	Kynol Batting Needle Punch B-104S 0.5g	1.08	600	lst.	3.56	100	1040	Low light & sound
	204	PBI Twill Fabric 40-9010-1 0.5g	1.00	510	lst.	4.18	83	940	Very low light & sound Rapid flame front travel
59	205	PBI Batting 40-4010-1 0.5g	0.24	150	lst.	3.10	100	960	Light white smoke Rapid flame front & Medium light emission sound
	206	Black Batting 35-4010-1 0.5g	0.44	305			No Flash		Very low smoke
	207	Kynol "Flameout" Not Run	-	-			Not Run		• ••
	208	Vonar #1 Neoprene Foam W/Scrim 0.5g	0.48	263			No Flash		Light smoke
	209	Vonar #2 Neoprene Foam W/Scrim	-	61 1	a		Not Run ,		· _

FLASH FIRE PROPENSITY TEST DATA SUMMARY

		MATERIAL	TIME TO	SAMPLE PYROLYSIS	<u> </u>		FLASH RESPONSE	<u> </u>	<u> </u>	
	NO.	IDENTIFICATION & WT.	1ST SMOKE MIN.	TEMP. AT 1ST SMOKE °C	NO.	TIME MIN.	THERMAL PULSE HTDIVNS.	SPLE. TEMP.		OBSERVATIONS
	210	Vonar #3 Neoprene Foam W/Scrim 0.5g	0.54	580			No Flash			Light smoke
	212	Durette Upholstery Fabric 0.5g	0.67	331			No Flash			Med. quantity of smoke Brown color Density air Odor - phthalate (ester)
	214	Nomex III 0.5g	0.35	319			No Flash			Temp. perturbations in pyrolysis tube Yellowish smoke Density air
60	215	Kermel Fabric 0.5g	0.28	· 233	lst.	2.86	>100	91(0	Rapid flash Low light emission & sound
	216	Durette Batting Needle Punch 400-11 0.5g	0.40	. 370			No Flash			Med. quantity of smoke Brown color Density air
	217	Durette Duck Fabric 400-6 0.5g	0.40	343			No Flash		•	Medium quantity of smoke Brown color Density air
	300	Glass Fiber Block Edge Grain FG-215 0.5g	0.83	485			No Flash			Very low quant. smoke Phenolic odor
	301	APN Phosphazene Foam #R-207080 0.5g	0.17	295			No Flash			High quant. of smoke Density air White color

.

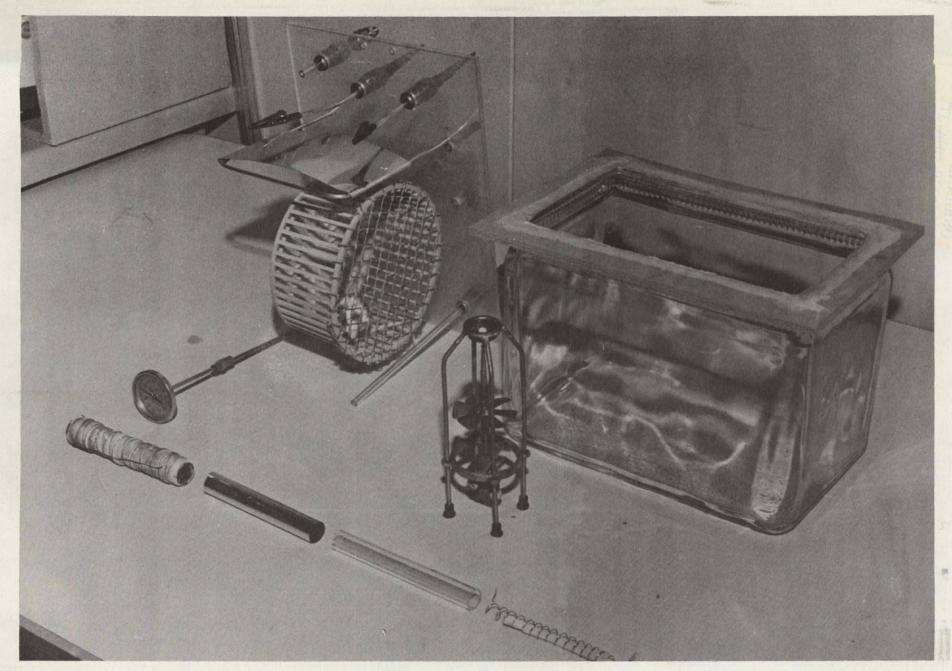

FLASH FIRE PROPENSITY TEST DATA SUMMARY

TABLE 12 (Cont'd)

	MATERIAL				FLASH RESPONSE		
NO.	IDENTIFICATION & WT.	TIME TO 1ST SMOKE MIN.	SAMPLE PYROLYSIS TEMP. AT 1ST SMOKE ^O C	NO. TIME MIN.	THERMAL PULSE	SPLE. PYRO. TEMP. ^O C	OBSERVATIONS
303	Flame Resistant Silicone Foam Exp. 1408 0.5g	0.50	391	lst. 3.00	12	825	Large quant. white smoke Very low flash
304	Silicone Foam Mosites 14183-B 0.5g	1.20	520		No Flash		-

FLASH FIRE PROPENSITY TEST DATA SUMMARY

TABLE 12 (Cont'd)

NEG. 1413017

FIGURE 37. ANIMAL TEST HOUSING DISASSEMBLED

62

OF POOR QUALITY

Each test subject was held in place inside the exercise wheel with a transparent plexiglas disc. This modification was found to be necessary since the test subject tended to ride the hardware screen lid previously used in the free turning wheel tests (as shown in Figure 37).

The final assembly is shown in Figure 38. Power leads from a 110 vac variac transformer wired in series with an AC ammeter and in parallel with a volt meter were connected to the external leads on the chamber lid. A variable speed controlled electric motor drive was attached to the exercise wheel vertical friction drive just prior to beginning a test.

Swiss albino male mice of the Webster strain weighing from 25-37 grams were used for most of the tests. Several initial tests were conducted with mice of mixed breed and unknown strain.

Samples were weighed to ± 0.0001 gram in the range of 0.1-2 gram for those materials found to be most toxic to those least toxic, respectively. The tare weight of the heating coil and pyrolysis tube was recorded for each run so that the quantity of material pyrolyzed into the 53 liter free volume of the chamber was calculated after the conclusion of each test run, to determine the efficiency and repeatability of the pyrolysis.

The toxic endpoints selected for these tests were time to incapacitation Ti and time to death T_D . Ti was determined, with rare exceptions, to a precision of approximately one revolution of the exercise wheel (10 seconds). T_D was determined on the basis of time to cessation of breathing.

Measurements of internal temperature and oxygen residual associated with thermal decomposition of the samples indicated maximum temperatures of $30-40^{\circ}C$ (86-104°F) and oxygen levels above 15%. Therefore, hyperthermia and anoxia were not significant factors in animal mortality, but probably contributed marginally to the Ti determination. Pryor, et al (Reference 6) reported 4 hour lethal temperatures of 49°C (120°F) and an oxygen concentration of 7.5% for mice. Swiss albino male mice, however, have shown less resistance to temperature averaging 77 minutes survival time at 40°C (104°F) as reported by Maul, et al (Reference 7).

The test was terminated at the end of a 30-minute test period if the animal subject survived. These animals were not used in additional testing. Detailed post test observations and pathological examinations were not made on surviving animals. Within the scope of the 30-minute acute exposure procedure, the recorded data was limited to the Ti and Td determination as measures of short term survivability, rather than a determination of LC₅₀ or LD₅₀, which require more testing.

Each animal was acclimated to the powered wheel for a short period (2 min.) with air circulating through the chamber prior to a run. The air supply was shut down, and an electronic timer started at the same time the power was applied to the pyrolysis tube heating coil. Input energy was adjusted to 5.3 amperes which provided a heating profile of approximately 300-400°C per minute inside the pyrolysis tube, depending upon the quantity and packing density of sample, sample thermal conductivity, decomposition temperature, heat capacity and orientation. The pyrolysis phase was limited to 200 seconds; temperature inside the pyrolysis tube exceeded 800°C at that time.

ORIGINAL PAGE IS OF POOR QUALITY

NEG. 1413019

FIGURE 38. ANIMAL TEST HOUSING

Examination of sample residues and weight measurements indicated practically complete decomposition occurred in the 200-second heating interval for most materials, as shown by the char yield. Toxicity test data is reported in Tables 13 thru 15 and shown graphically in Figures 39 thru 41.

3.5.3 Heat Release Rate Testing

The candidate materials were tested in the Ohio State University version of the heat release rate calorimeter (HRR), Reference 8. This calorimeter was used to evaluate the heat released from 15 x 15 cm samples cut from each material under varying thermal heat fluxes representative of various fire environments. Quantitative measures of heat released in terms of kilowatt (kw) or BTU/minute were calculated per square meter (m^2) of original surface areas exposed as a function of time.

Figure 42 shows the Douglas (modified) HRR chamber and auxiliary pen recorder and gas monitoring instrumentation employed to evaluate the fire response of nonmetallic materials. The principal value of testing the seat materials in the HRR calorimeter was to provide an insight into the dynamic response of each material in a fire environment, and the potential contribution of the material to the propagation of fire. These characteristics are applicable to the identification and selection of the best materials for seat construction in each use category as discussed later in the report.

Table 16 lists the physical characteristics of the samples and the HRR calorimeter operational modes and parameter settings.

For screening purposes of the program the samples were not conditioned per the method outlined in Reference 9. Samples were stored in a laboratory atmosphere varying from 38-45% relative humidity.

A special modified, lightweight, stainless steel sample holder and refractory backing board of low thermal capacitance was used for all tests to reduce heat absorption by the holder immediately following injection of the mounted sample into the HRR chamber.

The electrically powered Glowbar^R radient panel heating source was adjusted to the required thermal flux using a Hycal Radiometer-Calorimeter and allowed to equilibrate to a constant level with air flowing through the chamber. In most tests baseline recorded temperature variations (noise) differentially recorded between the air input temperature and the exit stack of the HRR were observed to hold within ± 0.5 division of chart (equivalent to approximately $\pm 1 \text{ kw/m}^2$ heat release).

The recorded curves of heat (temperature) were read out and calculated against calibrations obtained at the same airflow setting as the test materials using natural gas of known heat content. Heat release rate data are summarized in Tables 17 through 19. Typical types of heat release curves are shown in Figures 43 through 47. Approximate black body temperatures for the heat fluxes used were 2.5 w/cm² - 532°c (990°F), 3.5 w/cm² - 616°c (1140°F), and 5 w/cm² - 693°c (1280°F).

[·	·····	,		OBSE	RVED			APPARENT	APPARENT	
MATERIAL NO.		MATERIAL WEIGHT	ANIMAL WEIGHT	Ti		NORMALIZ PER GM MAT'L		MATERIAL PYROLYZED	PYROLYZED MAT'L CONC.	NOTES
NAME		GRAMS	GRAMS	MIN.	MIN.	Ti	Td	MG	IN CHAMBER MG	
100		0.5	28	6.47	7.88	2.89	3.52	, 500	94	
Airgard Nylon		0.5	28.9	8.83	10.83	3.82	4.68	492	93	<u>Av. % Char</u>
Fabric		0.5	30.2	4.75	9.17	1.97	3.80	401	76	<1
ST7193-29	Av	0.5	/ 29.0	· 6.68	9.29	X=2.89 ±0.93	X=4.00 ±0.61	X = 464	$\overline{\mathbf{X}} = 88.$	
101		0,5	`25.8*	3.33	4.67	1.61	2.26	316.	60	*Unknown breed
Kermel/Wool		0.5	31.8	4.08	14.42	1.60	5.67	308	58	Av. % char
Fabric		0.5	<u>31.9</u>	2,50	3.75	0.98	1.47	<u>315</u>	<u>·59</u>	37 ± 0.6
20787	Av	0.5	29.8	3.30	7,61	$X=1.40 \pm 0.36$	X=3.13 ±2.23	$\overline{X} = 313$	$\overline{\mathbf{X}} = 59$	
103		1.0	24.5	4.28	6.25	4.37	6.38	520	98	
Nomex Fabric		1.0	33.6	2.83	. 3.58	2.11	2.66	484	91	$\frac{\text{Av. \% Char}}{49 \pm 3}$
Off White	г	0.5	35.3	2.58	4.42	0.91	1.57	262	49	$\frac{49 \pm 3}{49 \pm 3}$
69-407	-	0.25	33.0	4.43	15.58	0.84	2.95	122	23	
	ŀ	0.25	32.0	3.67	15.80	0.72	3.09	121	23	
	Av L	- 0.33	33.4	3.56	11.93	$\bar{X}=0.82 \pm 0.10$	X=2.54 ±0.84	168	32	
104		0.5	28.7	2.27	3.15	1.00	1.37	360	68	
90% Wool/10% N	ylon	0.25	25.5	2.83	4.27	0.70	1.05	199	38 -	$\frac{\text{Av. \% Char}}{26 \pm 4}$
Fabric	-	0.25	24.3	3.75	17.50	0.97	4.50	178	34	$\frac{26 \pm 4}{26 \pm 4}$
ST7427-112		0.25	33.6	3.42	18.55	0.64	3.45	<u>183</u>	35	
	Av	0.25	27.8	、3.33	13.44	X=0.83 ±0.18	X=2.59 ±1.66	187	36	
105		0.25	30.4	8.58	24.17	1.76	4.97	118	22	
Kynol/Nomex		0.50	33.4	3.00	16.25	-1.12	6.08	224	42	$\frac{\text{Av. \% Char}}{55 \pm 1.7}$
Fabric		0.50	36.5	5.00	21.50	1.71	7.36	209	39	55 ± 1.7
7979		0.50	34.5	6,58	10.17	2.38	3.69	234	44	
	Av	0,50	34.8	4.86	, 15.9 7	X=1.74 ±0.51	X=5.53 ±1.57	222	42	
107		-6 0.25	35.5	5,66	13.17	1.00	. 2.32	230	43	·····
Urethane Coate	d	0.25	32.5	11.67	14.67	2.24	2.82	214	40	Av. % Char
Nylon Fabric		0.25	30.0	8.67	23.87	1.81	4.96	205	39	13 ± 4
15691		0.25	34.0	12.42	20.00	2.28	3.68	221	42	
	Av	0.25	33.0	9,61	17.92	$X=1.83 \pm 0.59$	X=3.45 ±1.16	$\overline{\mathbf{X}}$ = 218	$\overline{\mathbf{X}} = 41$	

SUMMARY - DECORATIVE FABRICS ACUTE RELATIVE TOXICITY TEST DATA (Swiss Albino Mice - Webster Strain)

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 13

ORIGINAL PAGE IS OF POOR QUALITY

ſ			MATERIAL	ANIMAL	OBSE	RVED	NORMALIZ	ZED DATA	APPARENT	APPARENT PYROLYZED	· · · · · · · · · · · · · · · · · · ·
	å		WEIGHT	WEIGHT	T1	Tđ	PER GM MAT'I	25 GM MOUSE	MATERIAL	MAT'L. CONC.	NOTES
	NAME		GRAMS	GRAMS	MIÑ.	MIN.	Ti	Td	PYROLYZED MG	IN CHAMBER	
ſ	200	, , , , , , , , , , , , , , , , , , ,	1.00	28.4*	3.90	5.10	3.43	4.49	450	. 85	*Unknown breed
	Kynol Fabric		0.5	20.4*	5.90 6.25	15.75	2.88	7.26	235	44	of mouse
	#24		0.5	24.3	6.67	8.83	3.43	4.54	211	44	Av. % Char
	" <u> </u>		0.5	28.5	6.00	11.92	2.63	5.23	211	40	$\frac{1100 \text{ m}}{57 \pm 2}$
	А	.v.	0.62	27.1	5.65		=3.09 ±0.40		277	52	
ſ	201		0.5	29.1*	7.33	11.58	3.15	4.97	289	55	*Unknown breed
	Kynol/Nomex		0.25	36.9	4.33	5.92	1.47	2.01	118	22	
		v.	0.36	× 33.0	5.83		=2.31 ±1.19	x=3.49 ±2.1	204	39	<u>Av. % Char</u> 55 ± 4
ſ	202		1.0	28.3*	5.0	5.83	4.42	5.15	460	87	*Unknown breed
	Kynol/Nomex		0.5	27.2	6.25	10.83	2.87	4.98	211	40	Av. % Char
	Fabric 1090		0.5	29.4	6.98	9.33	2.97	3.97	211	<u>40</u> .	57 ± 2
67	A*	y.	0.7	28.3	6.08	x 8,66	=3.42 ±0.87	$x = 4.7 \pm 0.64$	294	56	·
~	203	· .	0.5	23.5	8.00	10.25	4.26	5.45	216	41	Av. % Char
	Kynol Batt.		0.5	26.8	7.40	10.00	3.45	4.66	244	46	53 ± 4
	w/Scrim B-104S		0.5	27.4	6.00	7.77	2.74	3.54	251	47	•
	A.	v.	0.5	18.1	. 7.13	. 9.34	=3.48 ±0.76	x=4.55 ±0.94	$\overline{\mathbf{X}} = 237$	$\overline{\mathbf{X}}$ = 45	•
	204		0.5	34.7	1.58	2.33	0.57	0.84	153	29	Av. % Char 72 ± 4
	PBI Fabric		0.25	33.1	3.00	4.33	0.57	0.82	60	11	72 ± 4
	40-9010-1		0.15	30.5	3.17	Lived	0.39	<u> </u>	<u> </u>	8	
	A-	v.	0.30	/ 32.8	<u>,</u> 2.58	<u>3, 33</u>	=0.51 ±0.10	x=0.83 ±0.01	85	16	
	206	[0.5	30.7	1.58	2.42	0.62	0.99	163 ·	31	
	Black Batt.		0.25	24.3	1.58	3.08	0.41	0.79	95	18	$\frac{\text{Av. \% Char}}{64 \pm 2}$
		ĺ	0.15	29.0	1.83		0.24	0.39	55	10	64 ± 2
	35-4020-1		0.10	33.5	2.00	3.12	- 0.15	0.23	37	<u>7</u> ·	,
			0.10	33.5	N.D.	Lived	N.D.	Lived	37		
	Α		0.10	33.0	2.58	Lived	-0.20	Lived X=0.31 ±0.11	<u> </u>	7 13	
L	A1	v.	/ 0.20	v 30 . 7	1.91	<u>< 2.91</u>	$=0.2 \pm 0.05$	V=0.31 #0.11	11		

SUMMARY - FIRE BLOCKING LAYERS ACUTE RELATIVE TOXICITY TEST DATA

TABLE 14

	MATERIAL	ANIMAL	OBSE	RVED	NORMALI	ZED DATA	APPARENT	APPARENT PYROLYZED	
MATERIAL NO.	WEIGHT GRAMS	WEIGHT GRAMS	Ti MIN.	Td MIN.	PER GM MAT'L	25 GM MOUSE	MATERIAL PYROLYZED	MAT'L. CONC IN CHAMBER	NOTES
NAME			MITH .	FILM.	Ti	Td	MG	MG	
207	0.5	30.0	6.67	10.00	2.78	4.17	243	46	Av. % Char
Kynol Batt.	0.5	29.0	6.83	13.00	2.94	5.60	. 243	46	$\frac{\text{Av. \% Char}}{52 \pm 1}$
w/Polyester scrim	0.5	36.5	6.00	10.00	2.06	3.43	234	44	
"Flameout" Av.	0.5	31.8	. 6.50	11.00	- 2.59 ±0.47	₹=4.4 ±1.10	$\overline{X} = 240$	45	
208	0.5	24.7	ND	Lived	-	_	243	46	
Vonar #1	1.0	29.9	ND	Lived	-	-	490	93 .	Av. % Char 52 ± 1
	2.0	32.2	, 5.50	12.83	8.54	19.92	927	175	52 ± 1
· .	2.0	31.6	7.92	14.00	12.53	_22.15	960	181	
Av.	1.4	29.6	6.71	13.42	$\bar{X} = 10.54$	$\bar{X} = 21.05$	655	× 124	
. 205	0.5	30.9	3.00	4.17	1.21	1.69	143	27	Av. % Char
PBI Batt.	0.25	26.8	3.17	4.58	0.74	1.07	66	13	72 ± 1
40-4010-1	0.15	32.7	3.83	24.33	0.44	2.79	46	9	
Av.	0.30	30.1	3,33	12.42 ^X	=0.8 ±0.39	X=1.85 ±0.87	85	1.6	
210	0.5	28.0*	20.3	Lived	9.06	Lived	242	46	*Unknown breed
Vonar #3	1.0	24.9		Lived	-	Lived	477	90	Av. % Char
	1.5	25.7	7.5	Lived	10.90	Lived	710	134	
	2.0	36.5	9.5	Lived	13.00	Lived	946	178	53 ± 0.7
Av.	• 1.3	28.8	12.4	Ī	=10.99±1.97		- 593	, 112	<u></u>
212	0.5	30.0	2.83	4.00	1.18	1.67	198	37	<u>Av. % Char</u> 58 ± 3
Durette	0.25	32.8	2.83	4.58	0.58	0.87	99	19	58 ± 3
Upholstery Fabric	0.15	36.8	4.00	Lived	0.41		67	13	
Av.	0.30	33.2	3.22	4.29	=0.71 ±0.41	$\bar{x}=1.27 \pm 0.57$	121	23	
214	0.5	30.8	2.83	4.67	1.38	2.28	238	45	Arr 9 Char
Nomex III	0.25	33.0	5.17	14.50	0.98	2,75	110	21	Av. % Char 55 ± 3
Fabric	0.25	32.5	3.05	14.90	0.59	2.86	121	23	
Av.	0.33	. 32.1	· 3.68	11.36	0.59 =0.98 ±0.40	x=2.63 ±0.31	156	30	

SUMMARY - FIRE BLOCKING LAYERS ACUTE RELATIVE TOXICITY TEST DATA

TABLE 14 (Cont'd)

		MATERIAL	ANIMAL	OBSE	RVED	NOPMALT	ZED DATA	APPARENT	APPARENT	
MATERIAL NO &	•	WEIGHT GRAMS	WEIGHT GRAMS	Ti	10		25 GM MOUSE	MATERIAL	PYROLYZED MAT'L. CONC IN CHAMBER	NOTES
NAME				MIN.	MIN.	Ti Td		MG	MG	
215		0.5	23.4	· 3. 80	5.83	2.03	3.11	236	45	Av. % Char
Kermel Fab.		0.5	29.5	3.25	4.83	1.38	2.05	. 240	45	54 ± 2
		0.5	35.4	3.08	4.83	1.09	1.71	235	44	
	Av.	0.5	29.4	3.38	<u> </u>	=1.5 ±0.48	≩ 2.29 ±0.73	x = 237	44.7	
217	· .	Ŏ.5	31.7	3.00	4.50	1.18	1.81	1.89	36	Av. % Char
Durette Duck	•	0.25	33.9	3.25	4.83	0.60	0.89	94	18	. 66 ± 8
4006		0.15	33.3	4.25	22.67	0.48	2.55	68	13	
······································	Av.	0.30	32.0	3.50		=0.75 ±0.37	≵1.75 ±0.83	117	22	
216		0.5	30.0	2.00	3.00	0.83	1.25	269	51	Av. % Char
Durette Batt.		0.25	30.9	5.30	11.63			79	15	57 ± .11
400-11		0.25	38.7	3.17	4.82			109	21	
	Av.	0.33	33.2	3.49	5,48	=0.80 ±0.28	₩1.46 ±0.81	152	29	

٠

69

ORIGINAL PAGE IS OF POOR QUALTIN

SUMMARY - FIRE BLOCKING LAYERS ACUTE RELATIVE TOXICITY TEST DATA .

.

۲

TABLE 14 (Cont'd)

			OBSEI	RVED	NORMALT	ZED DATA	APPARENT	APPARENT	
MATERIAL NO. &	MATERIAL WEIGHT	ANIMAL WEIGHT	Ti	10	PER GM MAT'L	. 25 GM MOUSE	MATERIAL' PYROLYZED	PYROLYZED MAT'L. CONC	NOTES
NAME	GRAMS	GRAMS	MIN.	MIN.	Ti	Td	MG	IN CHAMBER MG	م. هم در ۱۹ م. در ۱ ۹ د. مرور در در ۱ ۹ د. ,
301	0.5	30.4	ND	Lived	_		215	41	
APN Polyphosphazene		35.9	13.3?	Lived	9.26?	- I	442	83	Ti doubtful
Foam PN R207078	2.0	29.6	2.0.	15.0	3.38	25.34	862	163	Av. % Char
	2.0	34.5	1.67	19.2	2.42	27.83	861	163	57 ± 0.5
· Av.	1.4	32.6	5.66			⊼ =26.6 <u>+</u> 1.76	595	11.3	
303	0.5	29.0	13.33	Lived	5.75		212	40	1
Silicone Sponge	1.0	31.5	15.00	Lived	11.90		407	`77	Av. % Char
Exp. 1408	1.0	32.5	4.83	9.16-	3.72	7.05	288	54	$\frac{\text{Av. \% Char}}{62 \pm 6}$
	1.0	32.5	7.25	10.83	5.58	8.33	414	78	
. Av.	.9	31.4	10.10	X 10.00	=6.74 <u>+</u> 3.56	₩7.69 ±0.91	330	. 62	
304	0.5	25.0	18.00	20.83	9.00	10.47	206	39	Av. % Char
Mosites Silicone	0.5	28.9	14.00	15.87	6.41	6.86	230	43	<u>54 ± 5</u>
Sponge 14183-B	0.5	29.1	11.67	18.00	5.01	7.73	252	48	-
Av.	0.5	. 27.7	11.56	X 18.23	=6.81 ±2.02	x=8.34 ±1.86	229	43	
306	0.5	25.3	5.27	5.67	2.60	2.80	375	71	
Polyurethane	0.25	26.5	7.07	7.92	1.67	1.87	189	36.	Av. % Char
Foam	0.25	35.5	7.93	10.17	1.40	1.79	163	31	$\frac{Av. \% Char}{26 \pm 6}$
н–45С	0.25	23.6	4.67	5.92	1.24	1.57	20 6	39	
	0.5	30.0	6.25	9.67	2.60	4.03	364	69	,
	0.25	29.6	10.33	33.33		7.04	183	35	
Av.	0.33	28.4	6.92	12.11 12.11	=1.95 ±0.60	⊁3.18 ±2.1	247	47	•
307	1.0	23.7	5.25	Lived	5.54	-	440	83	
Neoprene	0.5	24.9	ND	Lived	-	-	230	43	<u>Av. % Char</u> 53 ± 2
Foam HL	1.5	30.3	10.00	17.83	12.38	22.07	718	136	53 ± 2
、	1.5	30.8	5.17	20.00	6.29	24.35	711	134	
	1.5	33.5	10.50	Lived	11.75	- ·	731	138 ·	
	1.5	32.0	11.33	28.00	13.20	32.8	709	1.34	*
Áv.	1.25	29.2	8.45	21 0	⊨10.71 ±3.13	¥23.2 ±1.61	590	111	

SUMMARY - CUSHIONING LAYERS ACUTE RELATIVE TOXICITY TEST DATA

TABLE 15

			OBSE	RVED	NORMALI	ZED DATA	APPARENT	APPARENT	•
MATERIAL NO. &	MATERIAL	ANIMAL WEIGHT	Ti	Td	PER GM MAT'L	25 GM MOUSE	MATERIAL PYROLYZED	PYROLYZED MAT'L. CONC.	NOTES
NAME	GRAMS	GRAMS	MIN.	MIN.	Ti _	Td.	MG	IN CHAMBER	
308	0.5	25.8	ND	Lived	_	_	322	61	No effects - 1 week
Neoprene	1.0	28.5	2.87	12.17	3.03	12.83	434	82	Av. % Char
Uniroyal	1.0	31.5	2.67	6.67	2.12	5.29	438	83	56 ± 2
Foam Firm Av	•		ri.		=2.58 ±0.64	X=9.06 ±5.3			
Baseline	0.25	26.6	2.0	12.30	0.47	2.89	177	33	Av. % Char
Royalite 57	0.25	33.3	2.1	12.06	0.39	2.26	195	37	$\frac{26 \pm 5}{26 \pm 5}$
ABS R60268 Av	•			X	=0.43 ±0.06	X=2.58 ±0.45	186	35	
305	0.5	35.0	8.00	10.33	2.86	3.69	265	50	Av. % Char
Silicone Sponge	0.5	35.0	14.17	19.08	5.06	6.81	265	50	51 ± 5
#510	0.5	37.0 [.]	18.92	22.17	6.39	7.49	275	_52	
Av	,			X	=4.77 ±1.8	X=6.0 ±2.0	268	51	

71

٠

OF POOR QUALITY

SUMMARY - CUSHIONING LAYERS ACUTE RELATIVE TOXICITY TEST DATA

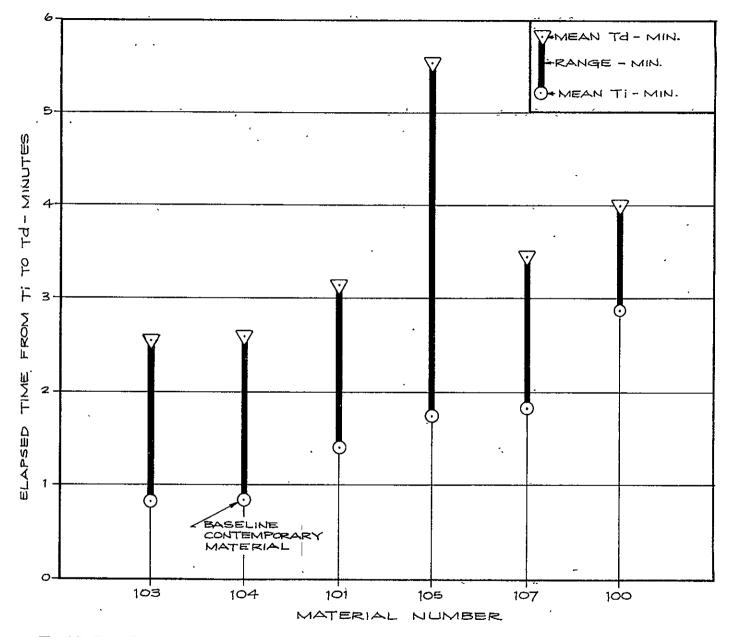
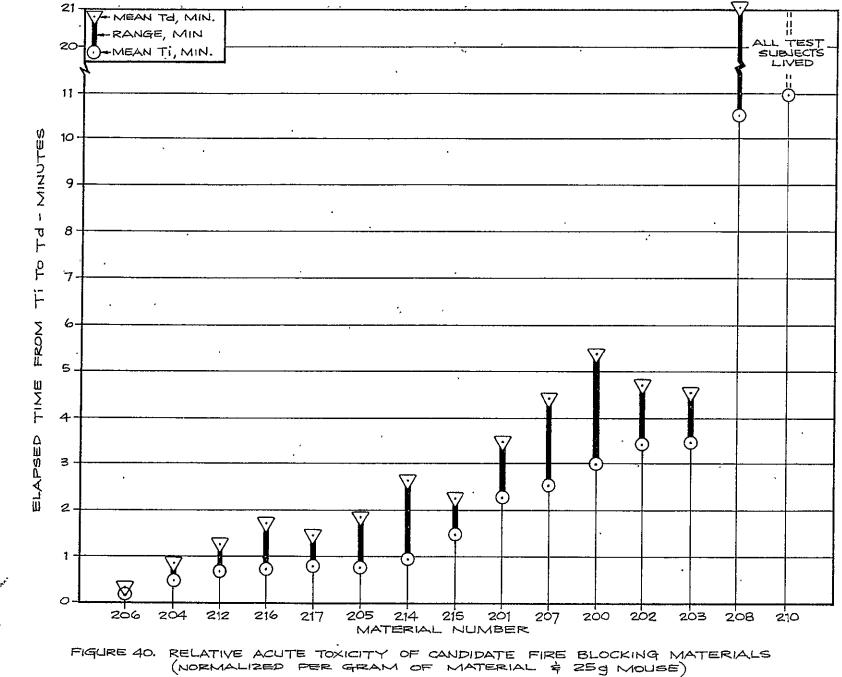



FIGURE 39. RELATIVE ACUTE TOXICITY OF CANDIDATE DECORATIVE FABRICS (PATA NORMALIZED PER GRAM OF MATERIAL \$ 25 g MOUSE)

73

ORIGINAL PAGE IS OF POOR QUALITY

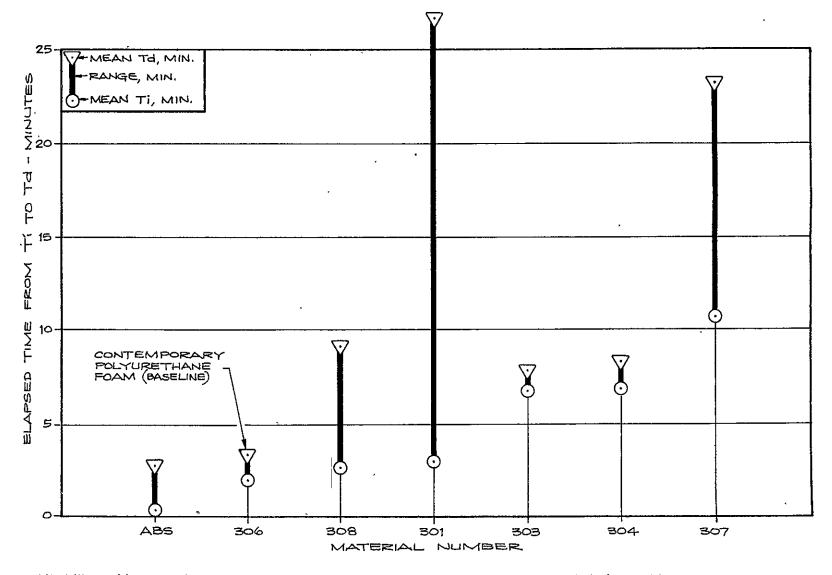


FIGURE 41. RELATIVE ACUTE TOXICITY OF CANDIDATE CUSHIONING MATERIALS (NORMALIZED PER GRAM OF MATERIAL & 25 g MOUSE)

NEG. 1705503

FIGURE 42. DAC MODIFIED HEAT RELEASE RATE CHAMBER

ORIGINAL PAGE IS OF POOR QUALITY

ITEM	PARAMETER	DATA UNITS
SAMPLE		
Identification	Material No. & Name	
Size	Length X Width X Thickness	15 x 15 cm (6 x 6 inch)
Thormal Function		thickness mm (inch)
Thermal Exposure	Area	$225 \text{ cm}^2 (36 \text{ in}^2)$
Mass	Weight, Pre and Post Test	Grams
Response	Shrinkage	Percent
Orientation	Vertical	
HRR CALORIMETER		
Airflow (set)	Cubic Feet/Minute	60
Thermal Flux (set)	Watt/Centimeter ² (w/cm ²)	2, 2.5, 3.5, 5.0
Test Time (set)	Sample Exposure Time	5 - 15 minutes
Visual Ignition	Time to Ignition	Seconds
Visual Flaming	Flame Travel Rate (FTR)	mm/sec
Ignition Test Mode	Point Pilot Flame	10 cm from Sample, bottom cente
Heat Release	Max Heat Release Rate/Area Heat Release vs. Time/Area	KW/m ² at sec KW/m ² , 1.5, 3, 5, 10 minute
Effective Heat of Combustion	Total Heat/Area (Integrated)	KW/m ² at min
Smoke Release	Max. Smoke Release Rate/Area	SRR; 1 unit = 10% T Reduction/
	Smoke Release vs. Time/Area	meter Path SRR 3/m ² , 1.5, 3, 5, 10 min.
Total Smoke	SRR X Time (Integrated)	SRR/m ² at min.

Table 16. Sample and HKK Calorimeter Operational Data

		TIME	FLAME	~		HEAT REL	EASE			SAMPLE	·
	$\triangle P \cong 2$; FLUX AS SHOWN	TO IGNI-	TRAVEL	RATE	HEAT	RELEASE	AFTER -	-		WT.g & CHAR	REMARKS
	MATERIAL NO.	TION	RATE	Max@ s	90 sec.	3 min.	5 min.	<u>.10 min.</u>	TOTAL	YIELD	
1	AND HEAT FLUX	sec.		kW/m2	kW/m2	kW/m^2	kW/m ²	kW/m ²	kW/m ²	%	
	100 AIRGARD NYLON FABRIC							•			
	2.5 W/cm ²	Flashes 22	`2.7	78.5 @ 57 sec.	51.6	120.5	164 . 4	-	199 7.5 min	9.27 g < 2 %	
	3.5 W/cm ²		•	70 @ 42 sec.	62.5	143.1	165.2	180	180 10 min	9.00 g < 2 %	
	5.0 W/cm ²	Flashes 5	N.D. melt- ing	117.4 @ 80 sec.	87.4	155.0	181.3	- ,	181	9.41 g < 1 %	
	-	,									• •
77	101 Kermel/wool		•				•				· · ·
	2.5 W/cm ²	Flashes 5	12	65.5 @ 26 sec.	36.0	42.1	49.4	65.2	>65.2	6.82 g 36.7 %	
	3.5 W/cm ²	Flashes 5	7	44.3 @ 22 sec.	32.6	41.0	43.6	1	>49 10 min.	6.70 g 23.1 %	
	5.0 W/cm ²	Flashes 5	9	59.1 @ 17 sec.	50.3	72.9	102.3	-	130 7 min.	6.76 g 40.8 %	
						,					

HEAT RELEASE DATA - DECORATIVE FABRIC COVERING

ORIGINAL PAGE IS OF POOR QUALITY

;

LP≅2; FLUX AS SHOWN	TIME TO	FLAME		<u> </u>	HEAT' REL	EASE		,	SAMPLE	
MATERIAL NO.	IGNI-	TRAVEL	· RATE		r release	AFTER -	-		WT.g & CHAR	REMARKS
	TION	RATE	Max@s	90 sec.	3 min.	5 min.	10 min.	TOTAL ·	YIELD	
AND HEAT FLUX	sec.	mm/sec	kW/m2	kW/m2	kW/m ²	kW/m^2	kW/m ²	kW/m^2	_ %	
103 Nomex (Off White) 69-407		,		· ·					· ·	
2.5 W/cm ²	None		5.5 @ 100 sec.	2.9	7.6	11.2	22.8	22.8	7g 67.6%	No flame Shrinkage 66% Blue flame surface flashes
3.5 W/cm ²	· ·		13.4 @ 45 sec.	15.1	20 .	25.9	49.3	49.3	7.2 g 23.6 %	Spalls off Flashes Shrinkage 70%
5.0 W/cm ²			31.9 @ 27 sec.	26.4	42.1	52.7	·	52.7	6.9 g 26 %	Spalls off as white powder 77% shrinkage
\sim 5.0 W/cm ²	Flashes < 6	>6	31.5 @ 25 sec.	28.6	48.7	64.2		64.2	-	Spalls off as white powder 77% shrinkage
104 90% Wool/10% Nylon . ST7427-112										
2.5 W/cm^2	_		125.8 @ 32 sec.	91.8	115.4	132.5	162.8	163	10.63 g < 1 %	Burns rapidly 50% shrinkage Smolders & spalls off
3.5 W/cm^2	-	1		88.8	115.6	130.9	158.9	159	10.40 g < 1 %	Flameout - 80 sec.
5.0 W/cm ²	Flashes <5	6.7	133.8 @ 25 sec.	85.6	112	132	160	160	10.63 g < 1 %	Flameout - 78 sec. 50% shrinkage Smolders to fine white ash

HEAT RELEASE DATA - DECORATIVE FABRIC COVERING

.

TABLE 17

78.~

•	and the second se	· · · · · · · · · · · · · · · · · · ·			. <u></u>		·····			
LUX AS SHOWN	TIME TO	FLAME	·	·····	HEAT REL	EASE	·	.	SAMPLE	
		TRAVEL			RELEASE	AFTER -	-		WT.g & CHAR	REMARKS
	TION	RATE			3 min.	5 min.			YIELD	
EAT FLUX	sec.	mm/sec	kW/m2	kW/m2	kW/m^2	kW/m ²	$\frac{kW/m^2}{m^2}$	kW/m ²	and the second se	
LO5 omex Fabric 7979					, '		. ,			, • , •
2.5 W/cm^2	Flashes 10	3.8	30.9 @ 41 sec	22.0	36.5	52.7	101.9	101.9	7.2 g -	Flashes occasionally Smolders for 15 min.
		•	49.6 @ 35 sec.	26.9	39.3	52.1	76.7	76.7	7.5 g 6 %	Flameout - 49.5 sec. Smolders
5.0 W/cm ²	Flashes < 5	3	37 @ 20 sec.	27.3	45.1	62.5	-	86.5 8.3 min	7.18 g 1 < 1 %	Flameout - 38 sec. and Smolders to 7.5 min. 20% shrinkage
	·		· ,	-		· · ·				• •
LO7 Coated Nylon		•								•
2.5 W/cm ²	Flashes < 5	>6	86.3 @ 37 sec	64	90.1	107.2	-	107.2 & 103.7	6.6 g < 1 %	Flameout - 100 sec. Melts and drips
			62 @ 23 sec	64.7	90.1		- ,	>90.1 3 min.	6.88 g <1%	Flameout - 77 sec. Melts and drips 95% shrinkage
5.0 W/cm ²	Flashes < 5	>6	80.5 @ .20 sec	62.9	83.2		-	>83.2 3 min.	6.80 g <1%	Flameout - 95 sec. Melts and drips
			-						j	
	RIAL NO. EAT FLUX LO5 Domex Fabric 2.5 W/cm ² 3.5 W/cm ² 5.0 W/cm ² 07 Coated Nylon 2.5 W/cm ² 3.5 W/cm ²	RIAL NO. EAT FLUX IGNI- TION Sec. 105 2.5 W/cm^2 Flashes 10 3.5 W/cm^2 Flashes 5.0 W/cm^2 Flashes 5.0 W/cm^2 Flashes 5 3.5 W/cm^2 Flashes 5 3.5 W/cm^2 Flashes 5 5.0 W/cm^2 Flashes 5 5.0 W/cm^2 Flashes 5 5.0 W/cm^2 Flashes 5 5.5 W/cm^2 Flashes 5 5 5 5 5 5 5 5	RIAL NO. EAT FLUX 1GNI-TION TRAVEL RATE $mm/sec105mm/sec1052.5 W/cm^23.83.5 W/cm^25.0 W/cm^25.0 W/cm^25.55.0 W/cm^25.55.0 W/cm^25.55.0 W/cm^25.55.55.53.85.55.$	RIAL NO.IGNI- TION Sec.TRAVEL RATE Max@ s mm/secRATE Max@ s kW/m2LO5 Domex Fabric /979 2.5 W/cm^2 Flashes 10 3.8 30.9 @ 41 sec. 2.5 W/cm^2 Flashes < 5 3.8 30.9 @ 41 sec. 3.5 W/cm^2 Flashes < 5 5.5 49.6 @ 35 sec. 5.0 W/cm^2 Flashes < 5 3 37 @ 20 sec. 07 Coated Nylon 2.5 W/cm^2 Flashes < 5 3 2.5 W/cm^2 Flashes < 5 >6 86.3 @ 37 sec. 3.5 W/cm^2 Flashes < 5 >6 86.3 @ 37 sec. 3.5 W/cm^2 Flashes < 5 >6 86.3 @ 37 sec. 3.5 W/cm^2 Flashes < 5 >6 86.3 @ 37 sec. 3.5 W/cm^2 Flashes < 5 >6 80.5 @	RIAL NO.IGNI- TION sec.TRAVEL RATERATE Max@ s 90 sec.EAT FLUXsec. mm/sec $max@ s 90 sec.$ mm/sec 105 pomex Fabric 79792.5 W/cm2Flashes 103.8 $30.9 \ @ \\41 \ sec.$ 22.03.5 W/cm2Flashes < 5 5.5 $49.6 \ @ \\35 \ sec.$ 26.95.0 W/cm2Flashes < 5 3 $37 \ @ \\20 \ sec.$ 27.3.07 Coated NylonFlashes < 5 >6 $86.3 \ @ \\37 \ sec.$ 643.5 W/cm2Flashes < 5 >6 $86.3 \ @ \\37 \ sec.$ 643.5 W/cm2Flashes < 5 >6 $86.3 \ @ \\37 \ sec.$ 643.5 W/cm2Flashes < 5 >6 $86.3 \ @ \\37 \ sec.$ 643.5 W/cm2Flashes < 5 >6 $86.3 \ @ \\37 \ sec.$ 643.5 W/cm2Flashes < 5 >6 $80.5 \ @ \\62 \ @ \\23 \ sec.$ 64.7	RIAL NO. IGNI- TION sec. TRAVEL Max@ s 90 sec. HEAT RELEASE Max@ s 90 sec. MEAT RELEASE Max@ s 90 sec. Meat RELEASE $Max@ s 90 sec.$ 105 sec. mm/sec $Max@ s 90 sec.$ 3 min. 105 sec. mm/sec kW/m^2 kW/m^2 kW/m^2 105 sec. 10 3.8 $30.9 \ @ 41 sec.$ 22.0 36.5 3.5 W/cm² Flashes < 5 5.5 $49.6 \ @ 35 sec.$ 26.9 39.3 5.0 W/cm² Flashes < 5 3 $37 \ @ 20 sec.$ 27.3 45.1 .07 Coated Nylon sec. 56 $86.3 \ @ 37 sec.$ 64 90.1 $3.5 W/cm²$ Flashes < 5 >6 $86.3 \ @ 37 sec.$ 64.7 90.1 $3.5 W/cm²$ Flashes < 5 >6 $80.5 \ @ 64.7$ 90.1 $5.0 W/cm²$ Flashes < 5 >6 $80.5 \ @ 62.9$ 83.2	RIAL NO. IGNI- TION sec. TRAVEL RATE RATE Max@ s 90 sec. HEAT RELEASE AFTER - 3 min. Max@ s 90 sec. 3 min. 5 min. L05 Domex Fabric 7979 sec. mm/sec kW/m^2 kW/m^2 kW/m^2 kW/m^2 kW/m^2 L05 Domex Fabric 7979 $2.5 W/cm^2$ Flashes 10 3.8 $30.9 @$ 41 sec. 22.0 36.5 52.7 $3.5 W/cm^2$ Flashes < 5 5.5 $49.6 @35 sec. 26.9 39.3 52.1 5.0 W/cm^2 Flashes< 5$ 3 $37 @20 sec.$ 27.3 45.1 62.5 $.07Coated Nylon -5 -6 86.3 @37 sec. 64 90.1 107.2 3.5 W/cm^2 Flashes< 5$ -6 $86.3 @37 sec. 64.7 90.1 -7 5.0 W/cm^2 Flashes< 5$ -6 $80.5 @$ 62.9 83.2 -7	RIAL NO. IGNI- TION sec. TRAVEL mm/sec RATE Max@ s 90 sec. HEAT RELEASE AFTER - 3 min. IO min. EAT FLUX sec. mm/sec $Max@$ s 90 sec. 3 min. 5 min. 10 min. 105 sec. mm/sec kW/m^2 kW/m^2 kW/m^2 kW/m^2 kW/m^2 kW/m^2 105 sec. mm/sec kW/m^2 kW/m^2 kW/m^2 kW/m^2 kW/m^2 105 sec. mm/sec kW/m^2 kW/m^2 kW/m^2 kW/m^2 105 sec. 3.8 $30.9 \ @$ 22.0 36.5 52.7 101.9 3.5 W/cm ² Flashes 5.5 $49.6 \ @$ 26.9 39.3 52.1 76.7 $5.0 W/cm^2$ Flashes 3 $37 \ @$ 27.3 45.1 62.5 $.07$ coated Nylon $ 56$ $86.3 \ @$ 90.1 107.2 $ 3.5 W/cm^2$ Flashes >6 $26 \ @$ 64.7 90.1 $ 5 \ 0 \ W/cm^2$ Flashes	RIAL NO. IGNI- TION sec. TRAVEL RATE mm/sec RATE Max@ s HEAT RELEASE AFTER - 3 sec. Max Max	RIAL NO. IGIT- TION Sec. TRAVEL RATE mm/sec RATE Max@ s HEAT RELEASE AFTER So Sec. IO min. IO min. TOTAL W/m² $kW/m²$

.

79

HEAT RELEASE DATA - DECORATIVE FABRIC COVERING

TABLE 17

Γ		TIME	FLAME	······	· · · · · · · · · · · · · · · · · · ·	HEAT REL	EASE	<u>.</u>	•	SAMPLE	(* · · · · · · · · · · · · · · · · · · ·
	ÀP≅2; FLUX AS SHÓWN	TO IGNI-	TRAVEL	RATE	1	RELEASE		•		WT.g & CHAR	REMARKS
y	MATERIAL NO.	TION	RATE	Max@ s	'90 sec.	3 min.	5 min.	10 min.	TOTAL	YIELD	· REMARKS
	AND HEAT FLUX	sec.	mm/sec	kW/m2	kW/m2	kW/m ²	kW/m^2	kW/m ²	kW/m ²	%	
	200 Kynol Fabric #24			•		•				•	. <i>.</i>
	2.5 W/cm ²	Flashes 6	Flash	14 @ 34 sec.	11.8	23.5	43.1	66	66 10 min	5.7 g 22.9 %	Flameout 40 sec. Flashes & smoldering
	3.5 W/cm ²				17.3		52.7	-	62 7 min	5.3 g · <1 %	Flickering fl. over surface Flash & smoldering 95% shrinkage
, , , ,	5.0 W/cm ²	Flashes <2	Flash	36.0 @ 22 sec.	22.5	44	63.8	-	63.8 5 min	5.6 g <1 %	Flickering flameout 290 sec. Smoldering & glow embers
	- · · · · ·						•				
80	201 Kynol Fabric #1110		•				·		:		·
	2.5 W/cm ²	Flashes <5.	Repeat Flashes	7.5 @ 230 sec	4.3	14.4	29.3	51.3	51.3. 10 min	4.6 g 10.9 %	Sporadic flashes & smolder 75% shrinkage
	3.5 W/cm ²	Flashes <5	>6	29.4 @ 25 sec	19,5	36.7	52.3	84.8	84.8 10 min	3.9 g 4.9 %	Sporadic flashes to 360 sec. Smoldering 75% shrinkage
	5.0 W/cm ²	Flashes <5	>6	41.2 @ 16 sec	28.3	51.6	70	-	70.0 10 min	4.8 g <1 %	Flickering flameout 290 sec. Smoldering for 5 min. Lt ash remains
					Ţ						

HEAT RELEASE DATA - FIRE BLOCKING LAYERS

· Г	·····	TIME	FLAME	<u> </u>		HEAT REL	EASE	<u> </u>		SAMPLE	
	$\triangle P \cong 2$; FLUX AS SHOWN	TO	TRAVEL	RATE	HEAT	RELEASE				WT.g	REMARKS
	MATERIAL NO.	IGNI- TION	RATE	Max@ s		3 min.	5 min.	10 min.	TOTAL	& CHAR YIELD	KEMARKS
	AND HEAT FLUX	sec.		kW/m2	kW/m2	kW/m ²	kW/m^2	kW/m ²	kW/m ²	%	
	202 Kynol Fabric #1090			•	,					•	
	2.5 W/cm^2	Flashes None	None	6.3 @ 324 sec.	5.3	13.2	23.8	43.6	43.6	3.8 g 15.3 %	Sporadic flashes Near 300 sec.
	3.5 W/cm^2	Flashes < 5	8.6	24.1 @ 25 sec.	15.8	26.7	,34 . 8		34.8	3.9 g <5 %	Sporadic flashes Flashes Smolders
,	5.0 W/cm ²	Flashes <2		26.4 @ 16 sec.	22.5	43.4	57.7	-	57.7	3.6 g <1 %	Shrinks & cracks Thin flickering flame Following smoky flame
∞	· · ·	*			-	:		•			•
1	203 (B-104S) Kynol Needle Punch Bat.		•				•				
	. 2.5 w/cm	Flashes 25 sec.	3.6	16.1 @ 40 sec.	12.1	24.8	41.9	74.7	74.7	4.8 g <2 %	Flameout - 34 sec. Flashing sporadically w/ smoldering over 6'
	OF PO	Flashes <5	7	20.8 @ 19 sec.	13.6	28.1	39.6	47.9	47.9	3.8 g <1 %	Flashes Smoldering 10% shrinkage
	OF POOR QUALITY	Flashes <1	8.6	25.3 @ 16 sec.	24.2	45.8	65.5	-	65.5	5.0 g <1 %	Flickering blue-white flames over surface Smoldering - burns out sample to ash in 6 min. 25 sec.
		、 									1

.

•

.

.

.

HEAT RELEASE DATA - FIRE BLOCKING LAYERS

.

Ī		TIME	FLAME	[HEAT REL	EASE	· · · · · · · · · · · · · · · · · · ·		SAMPLE	······································
	$\triangle P \cong 2$; FLUX AS SHOWN	TO IGNI-	TRAVEL	RATE	HEAT	RELEASE	AFTER -			WT.g & CHAR	REMARKS
l	MATERIAL NO.	TION	RATE	Max@s	90 sec.	3 min.	5 min.	10 min.	TOTAL	YIELD	
ļ	AND HEAT FLUX	sec.	mm/sec	kW/m2	kW/m2	kW/m ²	<u>kW/m²</u>	kW/m ²	kW/m ²	%	1
ļ	204 PBI Fabric 40-9010-1		-	•							
	2.5 W/cm ²	none		None	2.2	6.6	11.7	31.6	31.6 10 min.	4.0 g 74 %	No flame 55% shrinkage Char flexible
	3.5 W/cm ²	Flashes None	None	None	2.3	8.4	15.4	43.1	43.1 10 min.	3.9 g 25.6 %	Smoldering with flickering flames
	5.0 W/cm ²	Flashes None	None	None	5.7	19 . 0'	34	67.9	95.7 13 min.	4.0 g <1 %	Smolder w/ flickering flames at 60 sec. 50% shrinkage (initial)
82 1	205 PBI Batting '40-4010-1		•				•				
	2.5 W/cm ²	Flashes None	None	None	1.2	4.6	13.9	_	13.9	2.28 g 74 %	No flames
ĺ	3.5 W/cm ²	Flashes None	None	None	3.0	5.9	7.4	-	7.4	2.2 g 77 %	No flames 80% shrinkage
	5.0 W/cm ²	Flashes None	None	None	0.7	6.4	12.9	-	12.9	1.9 g <1%	Shrank away from pilot lt. Blue flickering flames Smoldering ends in 9 min 89% shrinkage (initial)
											-

HEAT RELEASE DATA - FIRE BLOCKING LAYERS

ŤABLE 18

		TIME	FLAME	· · ·	· · · · · · · · · · · · · · · · · · ·	HEAT REL	EASE	·		SAMPLE	
	$\triangle P \cong 2$; FLUX AS SHOWN	TO IGNI-	TRAVEL	· RATE	HEAT	releasé		• ` _		WT.g	DEMARKS
	MATERIAL NO.	TION	RATE		90 sec.	3 min.	5 min.	10 min.	TOTAL	& CHAR YIELD	REMARKS
	AND HEAT FLUX	sec.		kW/m2	kW/m2	<u>kW/m²</u>	kW/m^2	kW/m ²	kW/m ²	%	
	206 Black Batting			•			,			• · · ·	· ·
•	2.5 W/cm^2	Flashes	-	19.1 @ 10 sec.	12.8	20.3	28.5	-	28.5	3.1 g 65.8 %	No fire - multiple flashes over surface
	3.5 W/cm^2	Flashes	-	15 @ 12 sec.	10.5	20.0	. ^{23.3}	28.2	28.2	3.95g <2 %	No fire - multiple flashes over surface Shrinkage - 8.3%
·	5.0 W/cm ²	Flash only	N.D.	7.6 @ 10 sec.	7.7	16.2	26	29	29	. 3.2 g <2 %	No fire - flash only
83	•	-									
ω	207 Kynol Bat/polyest. scrim				RECEIVED	TOO LATE	- Not i	SUN		, ,	
	2.5 W/cm ²			,				,			· ·
	$O_{\rm H}$ 3.5 W/cm ²					,				ĺ	
	OF POOR QUALITY	х х							-	-	, , ,

.

.

,

HEAT RELEASE DATA - FIRE BLOCKING LAYERS

:

APZ; FLUX AS SHOWN	TIME	FLAME		• •	HEAT REL	EASE			SAMPLE	and a second s
	TO IGNI-	TRAVEL	RATE	HEAT	RELEASE	AFTER -	·		WT.g & CHAR	REMARKS
MATERIAL NO.	TION	RATE	.Max@s		3 min.	5 min.	10 min.	TOTAL	YIELD	
AND HEAT FLUX	.sec.	mm/sec	kW/m2	_kW/m2	kW/m ²	kW/m ²	kW/m^2	kŴ/m ²	÷. %	
208 Vonar #1 Neoprene 2.5 W/cm ²	Flashes	None	9.8 @	9.1	22.3	37.7	58.9	58.9	10.4 g	Flames briefly around
	slight		43 sec.		2210				<5. %	pilot lt some smoldering Shrinkage - 30% Spalls off
3.5 W/cm ²	Flashes <10	Flash vert.	15.0 @ 55 sec.	13.0	23.6	30.0	-	>51.4 8 min.	10.6 g <5 %	Flashed across top edge Smoldering - spalling
5.0 W/cm ²	Flashes <6	Flash vert.	0.4 @ 30 sec.	17 . 2	-	-`	_	17.2	10.3 g <5%	Flameout - 68 sec. Spalls off - 92 sec.
										· · · · · ·
210 Vonar #3		•				•				
2.5 W/cm ²	none	None	11.3 @ 500 sec.	.8,8	19:5	33.3	82.7	82.7	22.7 g < 5 %	Friable char No smoldering Shrinks 16.6% Spalls off
3.5 W/cm ²	Flashes <7	.6	9.3 @ 96 sec.	11.5	24.0	40.3	76.7	76.7	21.0 g < 5 %	Flameout 96 sec. Spalls off
5.0 W/cm ²	Flashes < 7	0.9	52.9 @ 85 sec.	25.6	52.7	74.8		74.8	23.5 g < 5 %	Flameout in 100 sec. Sporadic flashes Spalls off

HEAT RELEASE DATA - FIRE BLOCKING LAYERS

.

$\triangle P \cong 2$; FLUX AS SHOW	TIME TO	FLAME	<u></u>	······	HEAT REI	EASE	·	····	SAMPLE WT.g	,
MATERIAL NO.	IGNI-	TRAVEL	RATE	· · · · · · · · · · · · · · · · · · ·	r RELEASE		the second s	1	& CHAR	REMARKS
AND HEAT FLUX	• TION sec.	RATE mm/sec	Max@ s kW/m2	90 sec. kW/m2	3 min. kW/m ²	5 min. kW/m ²	10 min. 	TOTAL kW/m ²	YIELD %	x t
212 Durette Fabric		· · · · · · · · · · · · · · · · · · ·	•							
2.5 W/cm ²	Flashes None	None	7.0 @ 80 sec.	. 7	15.9	27.5	70.7	70.7	7.8 g 44.6 %	No flame propagation 95% shrinkage
3.5 W/cm ²	Flashes None	None		3.1	14.3	.21.3	44.4	44.4	7.8 g N.D.	No flame propagation 95% shrinkage
5.0 W/cm ²	Flashes < 5	• 4	31.3 @ 32 sec.	≈26 . 2	≃ 57.9	≈104.3	≃217 [`]		7.5 g N.D.	HRR values high due to baseline shift Strong smoldering
· · · · · · · · · · · · · · · · · · ·				,					·	
214 Nomex III					, , , , , ,		•			
2.0 W/cm ²	-	• _	·	4.0	6.3	10.3	·	>10.3		
2.5 W/cm ²	1	ʻ>6 `	12.3 @ 25 sec.	7.2	11,8	15.4	21.3	>21.3	5.8 g 57 %	Flameout 33 sec. Shrinkage - 10% No smoldering
1900 3.5 W/cm ²	Flashes <5	>6	46.3 @ 25 sec.	25.7	37.7	49.6	71.6	71.6	6.25 g 4 %	Flameout - 45 sec. Shrinkage - 95%
ORIGINAL PAGE IS 5.0 W/cm ² 5.0 W/cm ²	Flashes <2	>6	39.5 @ 16 sec.	34.1	55.4	73.3	-	73.3 7.6 min	6.1 g <2 %	Flameout @ 62 sec. and smoldering begins 75 sec. Shrinkage - 50%
22									4	

HEAT RELEASE DATA - FIRE BLOCKING LAYERS 1 •

△P≅2;'FLUX AS SHOWN	TIME	FLAME TRAVEL	RATE	НЕАТ	HEAT REL			• ·	SAMPLE WT.g	and is an even and a
MATERIAL NO.	IGNI- TION	RATE	Max@ s		3 min.	5 min.	10 min.	TOTAL	& CHAR YIELD	REMARKS
AND HEAT FLUX	sec.		kW/m ²	kW/m ²	. kW/m ²		kW/m ²	kW/m ²		
215 Kermel Fabric			•							
2.5 W/cm ²	Flashes 17	4	23.6 @ 45 sec.	16.0	23.8	33.7	60.2	>60.2	6.2 g 29 %	Shrinkage - 50% Burns irregularly
3.5 W/cm ²			34.4 @ 35 sec.	25.5	` 33.9	^{51.8}	60.6	>60.6	6.15g 25.2%	Charred to white residu Flameout 45 sec. Shrinkage 95%
5.0 W/cm ²	Flashes 3	>6	71.2 @ 25 sec.	32.4	48 . 9 ·	63.8	66.95	>66.95	6.2 g <1 %	Totally charred out - white residue Flameout at 46 sec. Shrinkage 95%
216. Durette Batting 400-11						•				•
2.5 W/cm ²	Flashes None	None	None	7.3		28	71.7	71.7	8.8 g N.D.	33% shrinkage
3.5 W/cm ²	Flashes None	Nonẹ	None	1.6	6.3	13.7	36.9	36.9	7.8 g N.D.	50% shrinkage After 5 min - flash flames
5.0 W/cm ²	Flash @ 40 sec.	None	None	8.8	28.4	47.4	-	77.4 9 min.	7.8 g N.D.	3 blue flashes @ upper center of specimen Smolders - 40 sec 6 min 28" 10% shrinkage

•

HEAT RELEASE DATA - FIRE BLOCKING LAYERS •

TABLE 18

······	TIME	FLAME		<u> </u>	HEAT REL		·····		SAMPLE	
$\triangle P \cong 2$; FLUX AS SHOWN	то	TRAVEL	RATE	HEAT	RELEASE		•		WT.g	DEMADUC
MATERIAL NO.	IGNI- TION	RATÈ	Max@ s		3 min.	5 min.	10 min.	TOTAL	& CHAR YIELD	REMARKS
AND HEAT FLUX	sec.	mm/sec	kW/m2	kW/m2	kW/m ²	kW/m^2	kW/m ²	kW/m ²	%	·
217 Durette Duck 400-6			• •						•	
2.5 W/cm^2	Flashes <5	None	None	70	13.8	17.7	19.6	>19.6	3.76 ģ N.D.	Minimum shrinkage Flashes rapidly over surface Some smoldering
3.5 W/cm ²	Flashes <5	6	9.9 @ 20 sec.	9.3 @ 20 sec.	18.5	27.6	38.6	38.6	3.45 g 14.5 %	Flameout - 34 sec.
5.0 W/cm ²	Flashes <2	Flash 7.5	24.7 @ 18 sec.	17.7	36.5	-	-	36.5	3.78 g N.D.	Flameout - 18 sec. Flickering flame Smoldering ends 3 min. 15 sec. Minimum shrinkage
00						•				тіміший этілкаде
ORIGINAL PAGE IS OF POOR QUALITY					÷				• •	·
AGE IS JALITY										
								X		
									•	

•

8

.

HEAT RELEASE DATA - FIRE BLOCKING LAYERS •

Ì		TIME	FLAME			HEAT REL	EASE	-		· SAMPLE	
	△P≅2; FLUX AS SHOWN	TO IGNI-	TRAVEL	RATE	and the second se	RELEASE	AFTER -	and the second		WT.g & CHAR	REMARKS
	MATERIAL NO.	TION	RATE	Max@s	90 sec.	3 min.	5 min.	10 min.		YIELD	
	AND HEAT FLUX	sec.	mm/sec	kW/m2	kW/m2	kW/m ²	kW/m^2	kW/m ²	kW/m ²	%	
•	300 Glass Fiber Block		-	•							
	2.5 W/cm ²	Flashes None	None	None	6	11.8	23.2	35.1	35.1	24.4 g 83.2 % ·	Adhesive side exposed No flame Charred 50% through
	3.5 W/cm ²	Flashes None	None	None	3.2	9.1	13.6	24.6	24.6	17.84 g 85.2 %	No flame
	. 5.0 W/cm ²				INSUFFI	CIENT SAM	PLE - NC	T RUN			· .
. 88								-			•
·	301 APN Polyphosphazene Foam						•				
	2.5 W/cm ²	Flashes 10	1.4	55.0 @ 63 sec	63.8	119.9	167.5	226.2	226	63.4 g 58.3 %	
	3.5 W/cm ²	Flashes <5	3	58.3 @ 335 sec	44.2	131	232.5	368.6	492.9 @ 14.5 min	N.D.	Flameout 370 sec. Burns steadily No shrinkage
,	5.0 W/cm ²	Flashes < 5	5	59.9 @ 300 sec	66.1	146.7	248.8	384.1	412 @ 13.5 min	65 g n 52 %	Flameout - 512 sec. Burns steadily 5 min. Swells - white char

TABLE 19

AP≅2; FLU		TIME	FLAME			HEAT REL	.EASE	*		SAMPLE	
1		TO IGNI-	TRAVEL	RATE	HEAT	RELEASE	AFTER -			WT.g & CHAR	REMARKS
MATERIA		TION	RATE	Max@s	90 sec.	3 min.	5 min.	10 min.	TOTAL	YIELD	Kin Britte
AND HEAT	T FLUX	sec.	mm/sec	kW/m2	kW/m2	kW/m ²	kW/m^2	kW/m ²	kW/m^2	%	
303 Silicone Exp 1	Sponge			•							· · ·
	2.5 W/cm^2	Flashes 8	2.3	62.4 @ 290 sec.	29.3	78.8	148.8	274	306 @ 15 min	63.6 g 54.1 %	Flameout - 760 sec.
	3.5 W/cm ²	Flashes 4	10	63 @ 230 sec.	44. 8	113.6	Ż29	365.3	530 @ 13.5 mir	65.7 g 73 %	Flameout - 620 sec. Loss due to spalling White char layer 1/8 - 3/16"
	5.0 W/cm ²	Flashes <2	20	71.2 @ 256 sec	65.7	154.6	315.3	485.6	473 @ 14' 17"	Spalls off	Flameout @ 450 sec.
304 Mosites 14183	Foam						•				
ORI	2.5 W/cm ²	Flashes <10	5.5	62.4 @ 37 sec.	67.4	151 ·	258.7	466.7	519.5	80.5 g 60.5 %	Flameout - 865 sec. Charred white Spalls off
GINA: POOF	3.5 W/cm ²	Flashes <5	>6	60.5 @ 52 sec.	72.8	159.5	252.4	393.6	468.5 16 min	66.6 g 70 %	Flameout - 820 sec. Spalls off
ORIGINAL PACE IS OF POOR QUALITY	5.0 W/cm ²	Flashes <5	>6	97 @ 271 sec.	94.9	226.7	411.6	594`.3	596.7 12 min	83.4 g 61.1 %	Flameout - 505 sec. Spalls off

,

HEAT RELEASE DATA - CUSHIONING LAYERS

68

,

-

.

•

+

• • • • • • • • • • • • • • • • • • •										
·△P≅2; FLUX AS SHOWN	TIME	FLAME			HEAT REL	EASE	,	~	SAMPLE	
MATERIAL NO.	TO IGNI-	TRAVEL	RATE	HEAT	RELEASE	AFTER -			WT.g & CHAR	REMARKS
	TION	RATE	Max@ s	90 sec.	3 min.	5 min.	10 min.	TOTAL	YIELD	KEPHIKO
AND HEAT FLUX	sec.	mm/sec	kW/m2	kW/m2	<u>kW/m².</u>	.kW/m ²	kW/m^2	kW/m^2	%	
305 Silicone Sponge #510			•		,					
2.5 W/cm ²	Flashes 9	1.9	56.4 @ 282 sec	59 . 2	142.9	269.2	483	525 16 min	66.5 g 76 %	Spalls off Sample char lost
3.5 W/cm ²	Flashes 5	3 . 1	69.6 @ 287 sec	61	150.6	283.6	529	531 14 min	71.7 g 67 %	Flameout - 685 sec. Spalls off
5.0 W/cm ²	Flashes <5	3.8	118.8 @ 252 sec	92.1	212 ·	431	664	671 13.3 mi	70.0 g n 53 %	Flameout - 495 sec.
							·			· · ·
306 Polyurethane Foam H-45C		•				•				
2.5 W/cm ²	Flashes <5	3	141.3 @ 46 sec.	188.8	213:8	***	-	213.8	9.0 g <1 %	Burns very rapidly i Melts Flaming drips
3.5 W/cm ²	Flashes <5	Melts N.D.	138.8 @ 34 sec.	100.0	130.0	144	159.8	>159.8	9.2 g <1 %	
5.0 W/cm ²	Flashes <5	>6	108.1 @ 18 sec.	76.8	100.4	110.7	115.9	115.9	9.1 g <1 %	Flameout - 75 sec.

TABLE 19

90

∆P≅2;F	LUX AS SHOWN	TIME TO	FLAME		· · · · · ·	HEAT REI				SAMPLE WT.g	
MATE	RIAL NO.	IGNI-	TRAVEI	RATE Max@s	90 sec.	RELEASE	5 min.	- 10 min.	TOTAL	& CHAR	REMARKS
AND HI	EAT FLUX	TION sec.	RATE	kW/m2	kW/m2	kW/m ²		$\frac{10^{1} \text{ m}^2}{\text{kW/m^2}}$	kW/m ²	YIELD %	
Neopr	307 ene Foam 1-7-77 _.			•					,	-	
	2.5 W/cm^2	Flashes None	None	None	7.9	21.6	38.4	97.2	97.2	37.3 g N.D.	Burns only near pilot 1 Swells & spalls off after 11 min.
	3.5 W/cm^2	Flashes <5	Flash None	44.9 @ 33 sec.	22.3	45.3	142 . 6.	- - ,	142.6 5 min.	38.7 g 17 %	Flameout - 52 sec. Spalls off
. ,	5.0 W/cm ²	Flashes <2	>6	48.8 @ 107 sec.	56.1	112.8	138.6	-	138.6 5 min.	35.5 g 27.8 %	Flameout - 165 sec. Chars to white Spalls off
Ko	308 Sýlon Foam (Firm)						•				
ORIGI OF P	2.5 W/cm ²	Flashes 4.8	>6	24.2 @ 120 sec.	25.2	75.1	100.4	162.8	188.2 840 sec.	36.9 g 26.6 %	Flameout - 167 sec. Flashes across surface Stand-off flames observed
NAL OOR	3.5 W/cm ²		1	49 @ 95 sec.	68.2	87.0	106.7	147.8	202	36.4 g N.D.	Flameout - 158 sec. Spalled off
ORIGINAL PAGE IS OF POOR QUALITY	5.0 W/cm ²	Flashes <5	>6	68.4 @ 57 sec.	75	106.9	125.9	· -	141 398 sec.	39.2 g N.D.	Flameout - 111 sec. Spalls off

ĸ

Γ	△P≅2; FLUX AS SHOWN	TIME	FLAME	·	<u> </u>	HEAT, REL	EASE			SAMPLE	······································
	•	TO IGNI-	TRAVEL			RELEASE	AFTER -		······	WT.g & CHAR	REMARKS
	MATERIAL NO.	TION .	RATE		90 sec.	3 min.	5 min.	10 min.	TOTAL	YIELD	· ·
ļ	AND HEAT FLUX	sec.	mm/sec	kW/m2	kW/m2	kW/m ²	kW/m^2	kW/m^2 .]kW/m ²	%	· · · · · · · · · · · · · · · · · · ·
	ABS Royalite 57			•			, ,				· ·
	2.5 W/cm ²	Flashes <10	1.3	68.6 @ 188 sec	42.7	180.8	314.5	-	327.2 8 min.	39.0 g Ň.D.	Flameout - 570 sec.
	3.5 W/cm ²	Flashes	3.1	132 @ 138 sec	83.6	242.9	300	344	344 10 min.	38.0 g 10 %	Flameout - 160 sec.
	5.0 W/cm^2	Flåshes 7	.N.D. Melts	113 @ 99 sec.	102.4	224.6	270.4	- .	293 8 min.	39.6 g N.D.	Flameout - 179 sec.
										•	•
	•									;	
			• •								
Į					•	٠					
			•		•	,			, ,		
									•		
										•	
											' '
								•			
			1		,						<u>.</u>

.

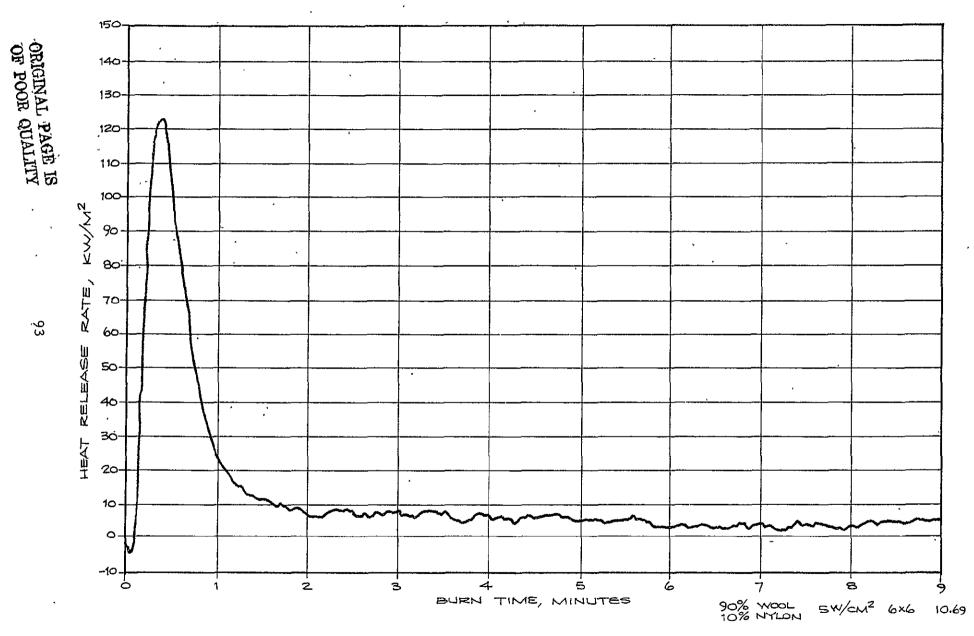
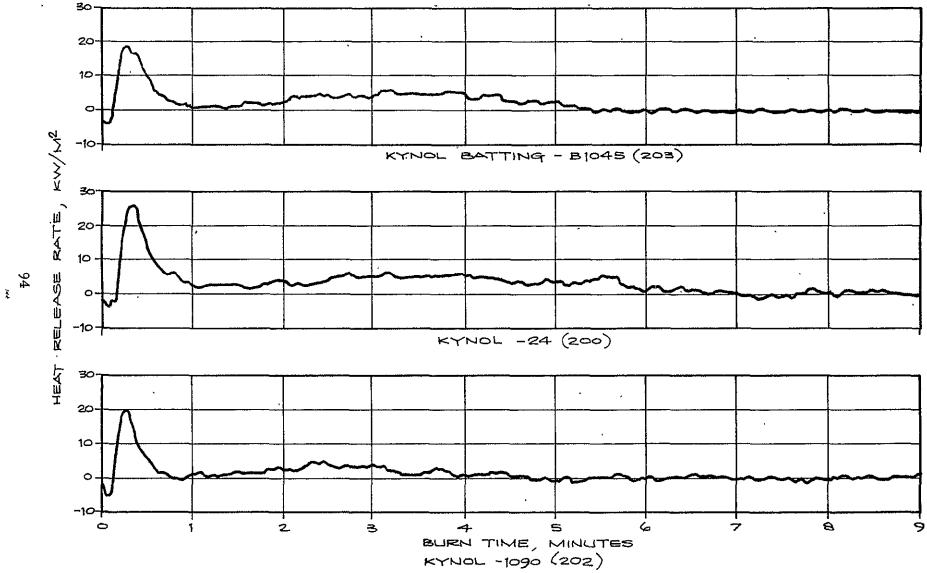
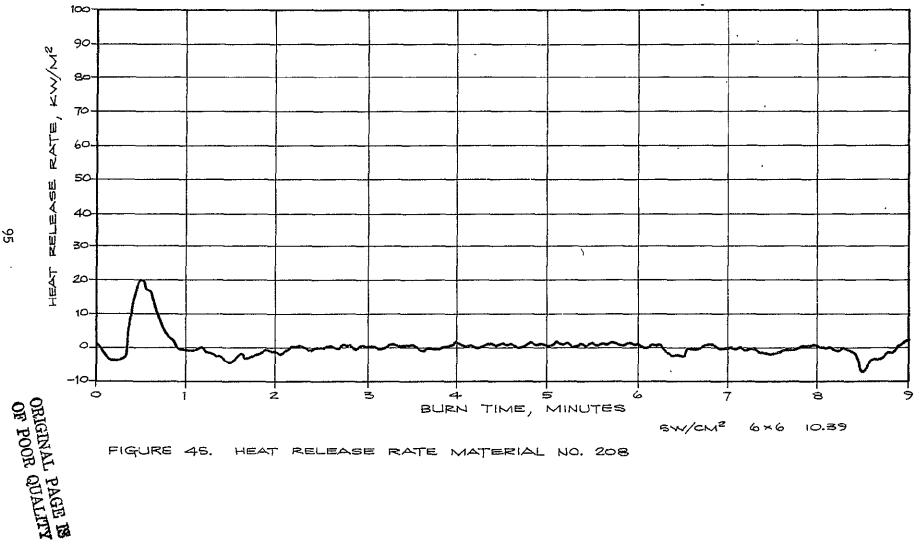
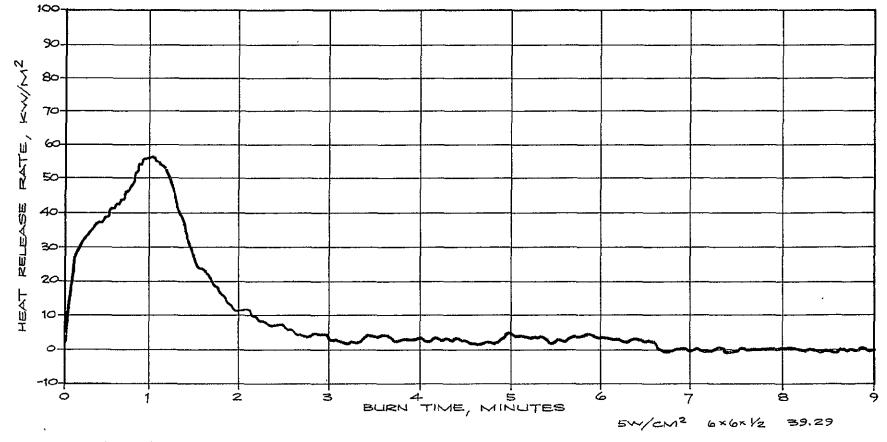




FIGURE 43. HEAT RELEASE RATE MATERIAL NO. 104

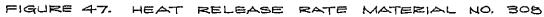
.

FIGURE 44. HEAT RELEASE RATE MATERIAL NO'S. 200, 202, 203

,


,

95 .


FIGURE 46. HEAT RELEASE RATE MATERIAL NO. 304

ORIGINAL PAGE IS OF POOR QUALITY

.

-

4.0 MATERIALS EVALUATION

'4.1 Decorative Fabric Cover

Decorative fabrics used for seat covers must meet various aesthetic, thermal and mechanical requirements. In order to aid in comparing the candidate materials in this program, a table was developed with requirements in order of importance. The mandatory requirements were colorfastness, color availability, FAA required burn test and FAA recommended smoke density. Heat release was not considered as first level importance due to the small mass of fabric in the seat and its distribution. The fabric's resistance to ignition and the rate of burning were considered second level of importance. (See Table 20.)

On the basis of the stated requirements OL618 (102), 69-407 (103) and 7979 (105) were eliminated for consideration due to fading. The OL618 (102) also showed poor abrasion resistance. Nylon material backed with Vonar #3 was discontinued for development by the supplier but would have been eliminated by burn requirements. The 15691 coated nylon (107) was not available in sufficient colors and, in addition, had a low tear strength and therefore questionnable serviceability. The remaining materials were the baseline fabric (104), ST7793-29 (100) nylon and 20787 fabric (101), a Kermel blend. These materials are candidate materials for Phase II testing. The toxicity of these materials on a comparative basis under the test conditions was lower than the baseline material, and the smoke density was significantly improved over baseline material. These candidate materials are currently in service as upholstery materials in aircraft seating, and therefore are expected to be satisfactory from a mechanical performance standpoint when considered as an individual material.

The decorative fabrics that were evaluated for the Phase I program were those that were available in a suitable fabric form and met the schedule constraints of the nine month program. Some of the new advanced polymers have reached a development stage where further evaluation of new fabric blends incorporating these fibers would be appropriate. Kynol was recommended for use as fire blocking layers only by the supplier due to poor abrasion and colorfastness in the required blend ratios. PBI fiber is not colorfast and shrinks drastically under thermal load. A blend with PBI (natural) cannot be ruled out as a possibility. Nomex fabric (103) was not colorfast but is in airline use today, and further investigation of blends may be warranted. It is anticipated that some of the more immediate fabric developments might be incorporated in the Phase II program if other availability constraints are met.

> ORIGINAL PAGE IS OF POOR QUALITY

Preceding page blank

					MATH	ERIALS			
REQUIREMENT	TEST METHOD	ST-742 (10 Baseline	4)	ST-719 Fab		20787 Kermel H (10)	Blend	156 'Coated (10	Nylon
COLOR:	Availability Wide Range	Y	es		Yes	Yes	3	. Ye	s
Colorfastness - Light	FTMS No. 191 *Method 5660	20SFH Exc	40SFH Exc	20SHF Exc	40SHF Exc	20SFH Exc	40SFH Good	20SFH [.] Fair	40SFI Fair
- Crócking	*Method 5651(B)	-	-	-		-		-	
NBS SMOKE:	NBS TECH NOTE 708								
(Aged and nonaged specimens)	Nonflaming, D _m 90 sec. 4 min.	27	8		4 12	21	3_	4	0
	Flaming, D _m 90 sec. 4 min.	64 12		1	10 33	21		1	8
FLAMMABILITY: Burn Test FAR 25.853(b)	Burn Time Burn Length Drip	1 2.3 ND	1 2.6 ND	3 2.8 1	6 2.8 1	0 4.5 ND	0 5.0 ND	· 0. 4. ND	5
WEAR: Abrasion	*Method 5306 #8 cotton ASTM 1175 duck abrader	-		-	-	-	•	Poor 750cy CS-10	
Tear	*Method 5132 Kg lbs	>6.4	4.8	> 6.4	>6.4	4.0	3.1	>6.4	> 6.4
IGNITION: Pill Test	ASTM D 2859	No burn area of foam.			ic dia	No burn in area on foam.	of pill	-	-
TOXICITY:	Av Ti Min	0.	83	2.8	89	1.	40		
Normalized Data per Gram of Material; 25-gram Mouse	Av Td Min	2.	59	4.0	00	3.	13	-	-

ORIGINAL PACEMET I

DECORATIVE FABRIC COVER - COMPARISONS

٠

TABLE 20

	TEST METHOD			MATERIALS							
REQUIREMENŤ			69-407 Nomex (103)		7979 "No Burn" (105)		15691 Coated Nylon (107)		Nylon Gold Vonarbacked (106)		
COLOR:	Availability Wide Range		No		Yes		- No		Discontinued		
Colorfastness - Light	FTMS No. 191 *Method 5660	-	20SFH Poor	40SFH Poor	20SFH Poor	40SFH Poor	20SFH Good	40SFH Good	20SFH Good	40SFH Good	
- Crocking	*Method 5651((B)	_	-			_		_		
NBS SMOKE: (Aged and nonaged specimens)	NBS TECH NOTE 708 Nonflaming, D _m 90 sec. 4 min. Flaming, D _m 90 sec. 4 min.		2 3		· 2 6		12 43				
			6 · 12		11 · ·19		30 46		-		
FLAMMABILITY: Burn Test FAR 25.853(b)	Burn T Burn L Drip		0 2.8 ND	0 2.6 ND	0 2.3 ND	0 2.5 ND	0 4.9 1	0 4.6 0	10	82** • 3** D	
WEAR: Abrasion	*Method 5306 #8 cotton ASTM 1175 duck abrader		-		-		-				
Tear	*Method 5132	Kg 1bs	> 6.4	>6.4	22 k >6.4	cycles >6.4	2.5	3.2	>6.4	>6.4	
IGNITION: Pill Test	ASTM D 2859		No burn in area on foan	of pill		i of 2" dia.	No burn area of 1 in. or	p111	_		
TOXICITY: Normalized Data per Gram of Material; 25-gram Mouse	Av Av	Min Td		0.82 2.54		1.74 5.54		1.83 3.45		÷	

**Failed Requirements

DECORATIVE FABRIC COVER - COMPARISONS

.

4.2 Fire Blocking Layers

The use of a fire blacking layer(s) under the decorative cover is a new aircraft seat design concept. These layers can perform a number of potential functions that include the following:

- 1. Substitutes for cushion topper (muslin over cushion that provides a slippery surface for decorative cover application and removal and foam reinforcement).
- 2. Insulates to delay involvement of the cushion mass in a fire.
- 3. Contributes to the tactile comfort.
- 4. Absorbs some of the toxic gases produced by the decorative fabric and cushion material.
- 5. Reinforces mechanically the tear strength of the cushioning layer.

The fire blocking layer is not intended to compensate for a cushion material that does not meet a high level of fire resistance as an individual material.

Table 21 was developed to improve visibility for the purpose of comparing blocking layer materials. Requirements are listed in order of importance.

Due to the complexity of the heat release flash fire propensity, and toxicity data, the comparison table was used with the individual data tables to make selective judgments.

All materials tested met the required FAA burn and recommended smoke requirements. In addition, all materials passed the pill ignition test showing good resistance to flame spread at that thermal exposure. PBI materials (204)(205) and proprietary black batting (206) showed indications of serious shrinkage problems and high toxicity compared to other materials and were dropped as Phase II candidates. These PBI materials were not stabilized. Stabilized material will be available by the end of the year and should be evaluated then. Of the Kynol materials the B104S showed best all around performance. Smoke generation was at a higher temperature and the material required a longer time to flash. The heat release was higher than other Kynols. The toxicity rating (Ti) was one of the longest for textile materials. This material is recommended for Phase II testing. The Durette duck 400-6 (217) showed very low heat release. Toxicity was not favorable, but further evaluation should be performed. This Durette (217) showed less shrinkage than (216) or (212). The (212) material showed serious shrinkage problems. The Durette (217) was recommended for Phase II testing. Nomex III performed in the same general range as Durette and in flash fire propensity tests did not flash. The small weight loss supports the low prepensity to flash. Nomex III (214) was recommended for Phase II testing. The Kermel fabric (215) showed significant shrinkage problems. The possibility of stabilizing the material should be investigated. This Kermel fabric will not be included in Phase II testing unless further testing can justify inclusion. Vonar #3 a foam material showed a significantly lower toxicity rating than any of the other blocking materials. In addition, it did not flash. Vonar #3 (210) was recommended for Phase II testing.

	· · · · · · · · · · · · · · · · · · ·		l		`.		<u>*</u>							
REQUIREMENT	. TEST M	E THOD	Ку	24 nol 00)	#11 Kynol (20	Blend	#10 Kyno1 (202	90 Blend			40-90 PB Fabr (20	I ic	- 40-40 PB Batt (20	ing
IGNITION	Pill Test AS	TM D 2559	No b char pill on f	in area	No bu char pill on fo	in area	No bu char pill on fo	in area	No bu char pill on fo	in area	Mater charr shrun foam	ed &	-	
BURN TEST		R 25.853(b) Burn Time Burn Length Drip	1 2.3 ND	1 2.3 ND	0 3.1 ND	0 2.9 ND	0 2.9 ND	0 2.9 ND	0 2.5 ND	• 0 2.4 ND	0 1.2 ND	0 1.2 ND	0 1.4 ND	0 1.2 ND
NBS SMOKE (Aged and nonaged	NBS NOTE Nonflaming,			0	0	v	2		4	4	1		12	
specimens) TGA Based on wt loss/m ²	Flaming, D _m Paragraph 3.3	90 sec. 4 min.		0 1 4g	3 6 19		4 6 15		11 16 210		0 1 		01	
HEAT RELEASE TOTAL	Paragraph 3.5.3	2.5 w/cm ² 3.5 w/cm ² 5.0 w/cm ²	66 62 63	.0	51 84 70	.8	43 34 57	.8	74. 47. 65.	7	31. 43. 95.	1	13 7 12	• 4
FLAME SPREAD @ 5.0 w/cm ²	Paragraph 3.5.3	mm/sec	Fla	sh	6		6		8.6	6	Nor	he	Noi	ne
FLASH FIRE PROPENSITY	Paragraph 3.5.1	Smoke ^Q C Flash, min No. of Flash Pyro Temp ^Q C	1	50 • 6 1 50	48 1. 1 75	72	46 3. 1 94	1	. 600 3.5 1 1040	6	51 4. 1 94	18	15) 3.1 1 96)	10
TOXICITY Normalized Data per Gram & 25g Mouse	Paragraph 3.5.2	Av Ti min Av Td min		.09 .38	2. 3.		3. 4.		3.4 4.5	1-a	0.5 0.8		0.1 1.1	
WEAR Tear	FTMS No. 191 Method 5132	Kg lbs	3.18 7		3.18 7	1.85 4.07		3.18 7	3.14 6.92	3.18 7	_	•	1.01 2.24	

.

Fabric Baseline (104) Foam Baseline (306)

FIRE BLOCKING LAYERS - COMPARISONS

•

,

٠

	÷		τ. ω. ^γ ει	<u>, </u>			· · ·	
•					M	ATERIALS		
REQUIREMENT	TEST MÉ	THOD	35-4020-1 Black Batting (206)	"Flameout" Kynol .on Remay (207)	Vonar #1 Neoprene Foám (208)	Vonar #2 Neoprene Foam (209)	Vonar #3 Neoprene Foam (210)	Durette Upholstery (212)
IGNITION	Pill Test A	STM D 2559	0.8 in char area around pill on foam	No burn char in area of pill	-	-	No burn char in pill area	No burn 4 in/dia char
BURN TEST		R 25.853(b) Burn Time Burn Length Drip	0 0 1.7 1.9 ND ND	0 0 2.3 2.3 ND ND	0 0 2.6 2.2 ND ND	0 0 2.0 1.6 ND ND	0 0 1.7 1.6 ND ND	0 0 1.3 1.3 ND ND
NBS SMOKE (Aged and nonaged	NBS NOTE Nonflaming, D		0 · 2	' · 2 8	22 34	30 57	40 98	0
specimens) TGA Based on wt loss/m ²	Flaming, D _m Paragraph 3.3	90 sec. 4 min.	1 0 139g	3 3 95g	30 43 -	45 78	70 136 591.5g	8 15 148,1g
HEAT RELEASE TOTAL	Paragraph 3.5.3	2.5 w/cm ² 3.5 w/cm ² 5.0 w/cm ²	28.5 28.2 29.0		58.9 51.4 17.2		82.7 76.7 74.8	70.7 44.4 -
FLAME SPREAD @ 5.0 w/cm ²	Paragraph 3.5.3	mm/sec	ND '	-	Flash Vert	-	0.9	4
FLASH FIRE PROPENSITY	Paragraph 3.5.1	Smoke ^o C Flash, min No. of Flash Pyro Temp ^o C	305 No Flash - -		263 No Flash	- - - -	580 No Flash - -	331 No Flash - -
TOXICITY Normalized Data per Gram & 25g Mouse	Paragraph 3.5.2	Av Ti min Av Td min	0.20 0.31	2.59 4.40	10,54 21.05	-	10.99 Lived	0.71 1.27
WEAR Tear	FTMS No. 191 Method 5132			1.19 1.09 2.61 2.41		-	-	>6.4 >6.4

Fabric Baseline (104) Foam Baseline (306)

FIRE BLOCKING LAYERS - COMPARISON

TABLE 21 (Cont'd)

104

ORIGINAL PAGE IS OF POOR QUALITY

.

	,			MATER	RIALS	
REQUIREMENT	TEST METHOD	SE-5559 Silicone Elastomer (213)	Nomex III (214)	Kermel Fabric (215)	Durette Batting 400-11 (216)	Durette Duck 400-6 (217)
IGNITION	Pill Test ASTM D 2559	No burn char in area of pill	No burn 16 in/dia char in area of pill	, - ·		-
· BÜRN TEST	FAR 25.853(b) Burn Time Burn Length Drip	0 0 0.1 0.1 ND ND	2 0 2.7 2.7 ND ND	1 2 2.2 2.4 ND ND	0 0 .6 .7 ND ND	
NBS SMOKE	NBS NOTE 708	0	1	3.	0 ·	
(Aged and nonaged	Nonflaming, D _m 90 sec. 4 min,	11	5	10	1	-
Specimens) TGA Based on wt loss/m ²	Flaming, D _m 90 sec. Paragraph 3.3	7 26 377.4g	8 16 68.6g	6 16	6 11	-
HEAT RELEASE TOTAL .	Paragraph 2.5 w/cm ² 3.5.3 3.5 w/cm ² 5.0 w/cm ²	-	21.3 71.6 73.3	60.2 60.6 67.0	71.7 36.9 77.4	19.6 38.6 36.5
FLAME SPREAD @ 5.0 w/cm ²	Paragraph 3.5.3 mm/sec	-	> 6	> 6	None	Flash 7.5
FLASH FIRE PROPENSITY	Paragraph 3.5.1 Smoke ^o C Flash, min No. of Flash Pyro Temp ^o C	- - -	319 No Flash	233 2.86 1 910	-	-
TOXICITY	Paragraph Av Ti min	-	0.98	1.5	0.80	0.75
Normalized Data per Gram & 25g Mouse	3.5.2 Av Td min	-	2.63	2.29	1.46	1.75
WEAR	FTMS No. 191 Kg		5.4 3.3	4.4 6.2	_	. –
Tear	Method 5132 1bs		11.8 7.2	,		

.

Fabric Baseline (104) Foam Baseline (306)

FIRE BLOCKING LAYERS - COMPARISONS

TABLE 21 (Cont'd)

There was no baseline material with which to compare the fire blocking material candidates. The materials selected for Phase II testing appeared to have a balance of critical properties that was suitable for a range of designs. The further evaluation of modified forms of these fibers should be conducted during Phase II as well as investigation of any new material developments meeting program constraints. During Phase II, further testing will be performed to identify the contribution of the fire blocking layers to flame penetration and thermal insulative protection of the cushioning layers.

4.3 Cushioning Layers

Table 22 was developed to aid in comparing candidate materials and was used together with detailed advanced test tables. In this group of materials, ease of ignition was considered most important. Heat release rate was considered a primary requirement due to the mass of material available. Flash fire and toxicity were also of prime importance for the same reason. It was assumed that the thermal threat would be high to penetrate the decorative and blocking layers to reach the cushioning layers.

Three materials and the baseline in this category were logically grouped together as deep foams or materials known to be available in thicknesses of 7.62 cm (3 in.) to 10.16 cm (4 in.). They were the FG215 glass fiberblock (300) the HL neoprene foam (307) and Koylon neoprene foam (308). The Koylon foam (308) was dropped from the program due to significant smoke generation over the FAA recommended requirements. The FG 215 glass fiber block (300) exceeded the baseline foam in all categories for which it was tested and had the lowest heat release of the materials tested. The HL neoprene foam (307) had the next best performance in total heat released. The 307 foam also was significantly better in toxicity than the baseline material and all other foam. Both the (300) and (307) materials were recommended for Phase II testing. The remaining foams were available in lesser thicknesses that might be built up to greater thicknesses by plying or might be used as one of the layers of a multilayer cushion.

The R-207080 (301) foam was lower in heat release than the other foams and did not flash but showed a high toxicity interms of Ti. Further, the development sizes available did not permit mechanical testing. Visual examination indicated a relatively weak foam. New developments for an open cell foam of this type are expected to proceed more rapidly and it was recommended that this foam be dropped until the new APN phosphazene becomes available for evaluation and then be included in the Phase II program. Of the remaining foams, the (303) and (304) had relatively low heat release and were reasonably equivalent in other properties. The (305) foam was slightly inferior in performance but offered a mechanically tougher material in terms of tear and a different range of properties.

All three foams were recommended for evaluation in the Phase II program in order to provide sufficient design flexibility.

4.4 Economic Analysis

. Commercial seating outside of the transportation field is under significant material cost pressures due to the competitive structure of the market. Passenger seating in the aircraft field is not under these cost pressures. It has been estimated that a ten fold increase in material costs would only increase the total aircraft seat price by 10-15%.

> ORIGINAL PAGE IS OF POOR QUALITY

	,			MATERIAL		
REQUIREMENT	TEST METHOD	H-45C Urethane Baseline (306)	FG215 Glass Fiber Block (300)	R-207080 APN Phosphazene (301)	9907-13 Hypol Foam (302)	Exp 1408 Silicone Foam (303)
HEAT RELEASE	Total $\frac{KW/m^2}{2.5W/cm^2}$ 3.5W/cm ² 5.0W/cm ² Par. 3.5.3	213.8 159.8 115.9	35.1 24.6	226 492.9 412.		306 530 473
	Flame Spread @ 5w/cm ² Par. 3.5.3 mm/sec.	>6	None	5	~~	20
FLASH FIRE	Pyro Temp at 1st Smoke °C Flash Time in min Number of Flashes Sample Pyro Temp @ Flash °C	433 1.36 1 600	485 No flash	295 No flash		391 3.0 1 825
BURN TEST Warp	**FAR 25.853b Burn Time Burn Length Drip Burn Time	1 2.8 ND	0 0.1 ND	0 0.8 ND	-	3 0.9 ND
Fill .	Burn Time Burn Length Drip Burn Time	-	-		-	_
NBS SMOKE	NBS Tech. Note 708 90 sec Flaming 4 min Nonflaming 90 sec 4 min	27 37 51 134	4 6 5 8	43 89 14 113	-	31 67 47 163
	on wt. loss 28m ³ (lft ³)	1.68kg	0.20kg-0.41kg	2.30kg		1.83kg
	imal Toxicity Av T ₁ min r 3.5.2 Av T _d min	1.95 3.18	-	2.9 26.6		6.74 7.69
NDENTATION LOAD EFLECTION (ILD)	ASTM 1564 Method A Sect 19-26 25% 65%	10.2cm(4.0in) 195.7-222.4N (44-50 lbs)	12.1cm(4.75in) 41.9N(9.41 1bs) 252.6N(56.81bs)		155.7N(35 1bs) 889.6N(200 1bs)	
OMPRESSION SET	ASTM 1564 Sect 12-18				32%	

L.

CUSHIONING LAYERS - COMPARISONS

×*-	······	[MATERIAL	<u></u>	
REQUIREMENT	TEST METHOD	#14183-B Silicone Foam (304)	#510 Silicone Foam (305)	HL 1-7-77 Neoprene Foam (307)	Koylon Firm Foam (308)	
' HEAT RELEASE	KW/m ² Total 2.5w/cm ² 3.5w/cm ² 5.0w/cm ² Par. 3.5.3	519.5 468.5 596.7	525 531 671	97.2 142.6 138.6	188.2 202 141	
	Flame Spread @ 5w/cm ² Par. 3.5.3 mm/sec.	> 6	< 5	> 6	>6	
· FLASH FIRE	Pyro Temp at 1st Smoke °C Flash Time in min Number of Flashes Sample Pyro Temp @ Flash °C	520 No flash	555 2.96 1 930	375 1.6 1 740	396 No flash	
.BURN TEST Warp	**FAR 25.853b Burn Time Burn Length Drip Burn Time	0 1.5 ND	89 0.8 ND	0 1.0 ND	0 1.2 ND	<u></u>
Fill	Burn Time Burn Length Drip Burn Time	_	-	-	0 1.4 · ND	
NBS SMOKE	NBS Tech. Note 708 Flaming 90 sec 4 min Nonflaming 90 sec 4 min	51 115 113	54 100 17	84 165 45	122 231* 107 222*	
	n wt. loss 8m ³ (lft ³)	2.69kg	3.12kg	2.04kg	-	
	al Toxicity Av T _i min 3.5.2 Av T _d min	6.81 8.34	4.77 6.0	3.13 1.61	2.58 9.06	<u> </u>
INDENTATION LOAD DEFLECT ION (ILD)	ASTM 1564 Method A Sect 19-26 25% 65%	1334.4N(3001b) 12232.0N (27501bs)	1334.4N(3001b) 9563.2N (21501bs)	6.4cm(2.5in) 164.6N(371bs) 725.0N(1631bs)	-	
COMPRESSION SET	ASTM 1564 Sect 12-18	@50%-30%			-	

*Failed Requirement

CUSHIONING LAYERS - COMPARISONS

TABLE 22 (Cont'd)

108

ORIGINAL PAGE IS OF POOR QUALITY The real driving force in aircraft seating is performance. Tables 23 through 25 show the comparative material price estimates for 1977 and projected prices for 1980. These prices are not hard cost projections. In general, the prices tend to cluster for similar types and forms of material, such as woven fabrics of upholstery weight, woven fabrics of nonupholstery weight, nonwoven textiles and forms of similar generic type.

It is anticipated that price can affect the early use of a material in the industry on a one-for-one substitution basis even though price is not the most important factor in this program. Price will also be reflected in an eventual cost/performance evaluation of full scale seats designed, built and tested in this program.

đ		·			MATER	ŢĂĹ		× ×	
	COST	ST-7193-29 FABRIC (100) C & A	20787 KERMEL BLEND H. LELIEVRE	OL618 COTTON KNIT (102) LANGENTHAL	69-407 NOMEX (103) C & A	ST-7427-112 WOOL/NYLON (104) C & A	7979 "NO BURN" "KÝNOL BLEND (105) C & A	NYLON GOLD W/VONAR 3 BACKING (106) DUPONT	#15691 COATED NYLON (107) REEVES BROS
	1977 Cost \$/m2 @418 sq.m	8.31	11.47	7.61	13.49	13.72	- '.		- · ·
	Cost \$/yd2 @500 sq/yd.	6.95	7.35	6.36	11.28	11.47	<u>.</u>		-
	Cost \$/m ² @1672 sq.m	8.31	11.47	7.11	13.49	13.72	-		
	Cost \$/yd ² @2000 sq/yd.	6.95	7.35	5.94	11.28	11.47	-	_	-
	<u>1980</u> Côst \$/m ² @418 sq.m	14.39	-	8.37	26.99	22.49	-	_	-
	Cost \$/yd2 @500 sq.yd.	12.03	-	7.00	22,56	18.80	-	-	-
	Cost \$/m2 @1672 sq.m	14.39	-	7.83	26.99	22.49	-		-
	Cost \$/yd ² @2000 sq/yd.	12.03	-	6,55	22.56	18.80	-	`	-

MATERIAL COST - DECORATIVE FABRIC COVER

TABLE 23

,

110

ORIGINAL PAGE IS OF POOR QUALITY

.

				MATERIAL		•	
COST	SE-5559 SILICONE CLASTOMER (213) GE	NOMEX III FABRIC (214) DUPONT	KERMEL FABRIC (215) RHODIA	VONAR 2 NEOPRENE FOAM (209) DUPONT	• •		
<u>1977</u> Cost \$/m ² @418 sq.m	_	6.48	7.89	1.47	•		· · · · · ·
Cost \$/yd ² @500 sq/yd.		5.42 :	-	1.23			
Cost \$/m ² @1672 sq.m .	-	6.48	7.89	1.47		، م <i>نتد</i> ,	
Cost \$/yd ² @2000 sq/yd.	-	5.42	-	1,23			
<u>1980</u> Cost \$/m ² @418 sq.m		7.78*	-	2.19			
Cost \$/yd ² @500 sq/yd.	-	6.50*	_	1.83			
Cost \$/m ² @1672 sq.m	••••••••••••••••••••••••••••••••••••••	7.78*	. · -	2.19			
Cost \$/yd ² @2000 sq/yd.		6.50*		1.83		•	

*DAC Projection

.

-

111

ſ				<u>`````</u>	MATERI		· · · · · · · · · · · · · · · ·		
	ÇOŞT	#24 Kynol (200) AKI	∜1110 Kynol Blend (201) AKI	#1090 Kynol Blend (202) AKI	B-104S Kynol Needle Punch (203) AKI	40-9010-1 PBI Fabric (204) Celanese	40-4010-1 PBI Batting (205) Celanese	35-4020-1 Black Batting (206) Celanese	"Flameout" Kynol Needled Remay (207) Dan River
	<u>1977</u> Cost \$/m ² @ 418 sq.m	7.21	6.08	4.89	2.72	- (1)	~ _ (1)	- (1)	3.59
	Cost \$/yd ² @ 500 sq.yd.	6.03	5.08	4.09	2.27	- (1)	<u>ن</u> (۱)	·(1)	3.00
	Cost \$/m ² @ 1672 sq.m	7.07	5.98	4.81	2.60	-	-	_	3.59
	Cost \$/yd ² @ 2000 sq/yd.	5.91	5.00	4.02	2.17	- (1)	- (1)	- (1)	3.00
	<u>1980</u> Cost \$/m ² @ 418 sq/m	6.08	5.02	3.59	2.15	13.16	9.27	1.95-2.09	2.99
	Cost \$/yd2 @ 500 sq.yd.	5.08	4.20	3.00	1.80	11.00	7.75	1.63-1.75	2.50
	Cost \$/m ² @ 1672 sq/m	5.53	4.81	3.35	1.91	13.16	9.27	1.95-2.09	2.99
	Cost \$/yd ² @ 2000 sq/yd.	4.62	4.02	2.80	1.60	11.00	7.75	1.63-1.75	2.50

(1) Development material.

112

•

ORIGINAL PAGE IS OF POOR QUALITY

				MATER	IAL			
COST	Vonar #3 Neoprene Foam (210) DuPont	SE-5559 Silicone Elastomer (213) G.E.	Nomex III Fabric (214) DuPont	Kermel Fabric (215) Rhodia	Vonar #2 Neoprene Foam (209) DuPont	400-11 -Durette (216) Firesafe Prod		
<u>1977</u> Cost \$/m ² @ 418 sq.m	1.99	-	б . 48	[•] 7.89	1.47	14.65		
Cost \$/yd ² @ 500 sq/yd.	1.66	:	5.42		1.23	12.25	``````````````````````````````````````	
Cost \$/m ² @ 1672 sq.m	1.99	-	6.48	7.89	1.47	13.16	•	
Cost \$/yd ² @ 2000 sq/yd.	1.66		5.42	· · · · · · · · · · · · · · · · · · ·	1.23	11.00		
<u>1980</u> Cost \$/m ² @ 418 sq/m	2.60	-	7.78*	_	2.19	-	•	· · ·
Cost \$/yd ² @ 500 sq/yd.	. 217		_6 . 50*		1.83	-		
Cost \$/m ² @ 1672 sq.m	2.60	-	7.78*		2.19			
Cost \$/yd ² @ 2000 sq/yd.	2.17	-	6.50*	-	1.83	-		

*Dac Projection.

MATERIAL COST - FIRE BLOCKING LAYERS - Cont'd

.

•

				MATERI	AL			
COST	FG215 Glass Fiber Block (300) Expanded Rubber	R-207080 APN Phosphazene Foam (301) Firestone	9907-13 Hypol Foam (302) W.R. Grace	Expl408 Silicone Foam (303) Kirkhill	14183-B Silicone Foam (304) Nosites	#510 Silicone Foam (305) Silicone Eng.	H-45C Urethane Foam (306) E.R.Carpenter	HL 1-7-77 Neoprene Foam (307) Toyad
<u>1977</u> \$/m ³ @ 454 kg qty	3535.7	-	-	39714.29	69000	53571.42	78.41	198.23
\$/ft3 @ 1000 1b.qty	9.90	۱ - ·		111.20	193.20	150.00	2.22	5.61
\$/m3 @ 2270 kg.qty	3392.86	-	-	39714.29	69000	49957,14	78.41	198.23
\$/ft3 @ 5000 1b.qty	9.50	-	-	111.20	193.20	139.88	· 2.22	5.61
<u>1980</u> \$/m 3 @ 454 kg.qty	3964.29	-		49242.85	91800.00	71307.142	-	264.66
\$/ft ³ @ 1000 1b.qty	. 11.10	17.47 to 87.36	_	137.88	257.04	199.66	- .	7.34
\$/m ³ @ 2270 kg.qty.	3803.57		-	49242.85	91800.00	66496.43		264.66
\$/ft ^{3.} @ 5000 lb.qty	10.65	17.47 to 87.36	-	137.88	257.04	186.19		7.34

114

ORIGINAL PAGE IS OF POOR QUALITY

MATERIAL COST - CUSHIONING LAYERS

			 MATERI	ΛL			
COS T	Koylon Neoprene Foam (308) Uniroyal						
<u>1977</u> \$/m ³ @ 454 kg.qty	.5678.57 ·						
\$/ft ³ @ 1000 1b.	15.90						
\$/m ³ @ 2270 kg.qty	5678.57	4					
\$/ft ³ @ 5000 lb:qty	15.90				·	· ·	
<u>1980</u> \$/m ³ @ 454 kg.qty.	6532.14						
\$/ft ³ @ 1000 lb.qty.	18.29	- 					
\$/m ³ @ 2270 kg.qty.	6532,14						
\$/ft ³ @ 5000 lb.qty.	18.29						

115

MATERIAL COST - CUSHIONING LAYERS

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

A data base has been established for a wide range of condidate fire resistant seat materials, and selections are made for incorporation in Phase II testing.

The new modified burn test for materials that melt and the pill test for foam represent a higher seat material standard than in current use when tested to the limits of current FAA requirements. The baseline fabric and foam, in current use, were totally consumed when subjected to the modified burn test. It is believed that the modified burn test more closely represents a combined material "as used" and is therefore a more practical test than isolated individual testing.

The difficulty of obtaining mechanical test data from suppliers focused on the test methods used in various building and transportation industries to identify material performance for application and development purposes.

The emphasis in the Phase I program was fire oriented, and missing data needed for specific design applications is expected to be accumulated as necessary to meet Phase II program requirements. Flash fire and toxicity testing were done at probable high flux levels, and a variety of thermal fluxes were used for heat release rate determinations.

Many of the materials tested are still in a development state and can be significantly improved by minor development modifications that will be forthcoming in the near future. Candidate materials were retained from each grouping where this could be justified. In some areas, the few materials available required retention of materials in order to provide the designer with sufficient options.

Several material developments had not progressed at the anticipated rate and were not available in a suitable form to meet the July 1 cutoff date for Phase T. Phosphazene foam (Firestone), polyimide foam (Solar Industries), and stabilized PBI (Firestone) were in this group.

5.2 Recommendations

It is recommended that the following materials be incorporated in the Phase II program multilayer construction evaluations:

- 1. Decorative Fabric Coverings
 - a. ST7793-29 (100) Nylon
 - b. 20787 (101) Kermel Blend
- 2. Fire Blocking Layers
 - a. B104-S (203) Kynol (Needlepunch)
 - b. 400-6 (217) Durette Duck Fabric
 - c. Nomex III (214) Fabric
 - d. Vonar 3 (210) Foam Interliner
- 3. Cushioning Layers
 - a. FG215 (300) Glass Fiber Blocking
 - b. H.L. Neoprene Foam (307)

ORIGINAL PAGE IS OF POOR QUALITY

Preceding page blank

117,

- c. EXP 1408 (303) Silicone Foam
- d. 14183-B (304) Silicone Foam
- e. #510 (305) Silicone Foam

Physical configuration selections, such as the coring of foams and blending of fibers for selected candidates, can be pursued in order to further enhance the utility and performance of these materials.

New materials should continue to be evaluated on an on-going basis to take. advantage of the considerable momentum this program has contributed toward new material development. Some materials could very well meet the time requirements of being available in sufficient quantity for Phase II and in commercial production by 1980.

6.0 REFERENCES

- 1. Parker, J. A., Technology Base for "Firemen-Program," NASA-Headquarters, January 20, 1975.
- Contract NAS 2-9337, "Study to Develop Improved Fire Resistant Aircraft Seat Materials." NASA, Ames Research Center, Moffet Field, CA, September 20, 1976.
- Comeford, J. J.; Paabo, M., "A Study of Decomposition Products of Polyurethane Foam Related to Aircraft Cabin Flash Fires," FAA-RD-73-46, Federal Aviation Administration, July 1973, with modification of instrumentation per McDonnell Douglas Engineering Report MDC-J1686 (see Figure 1).
- 4. Spleth, H. H., "A Simple Animal Test for Evaluating Relative Toxicity," presented at the International Conference of Fire Safety held at the University of San Francisco, January 1976.
- 5. Gaume, J. G., Barter, P. and Rostami, H. J., "Experimental Results on Time of Useful Function (TUF) After Exposure to Mixtures of Serious Contaminats," Aerospace Medicine, 42 N09 987-990, September 1971.
- Pryor, A. J., Johnson, D. E. and Jackson, N. N., "Hazards of Smoke and Toxicology in Urban Fires," Combustion Toxicology, Vol 2 No. 1, 64-112, February 1975.
- 7. Maul, T. W., Walden, W. E., and Hoy, D. A., "Effect of Heat on Swiss Albino Male Mice," NASA Grant NSG 2087, August 1975.
- 8. Smith, E. E., "Measuring Rate of Heat, Smoke, and Toxic Gas Release," Fire Tech. <u>8</u>, 237, 1972.
- ASTM E 5.020.03, Heat Release Rate, Test Methods, "Draft of a Test for Heat and Visible Smoke Release Rates in Materials and Products," Revised, March 18, 1977.