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EXPERIMENTAL PERFORMANCE OF AN ABLATIVE MATERIAL AS AN EXTERNAL INSULATOR 

FOR A HYPERSONIC RESEARCH AIRCRAFT 

Richard L. Pus te r  and Andrew J. Chapman 
Langley Research Center 

SUMMARY 

An a b l a t i v e  material composed of s i l ica-f i l led elastomeric s i l i c o n e  was 
tested t o  evaluate  its thermal and s t r u c t u r a l  performance as an e x t e r n a l  insu- 
lator,  or heat s h i e l d ,  for  a hypersonic research aircraft .  The material was 
a l s o  tested t o  determine whether it would form a durable char  layer when i n i -  
t i a l l y  heated and thereafter funct ion pr imar i ly  as an i n s u l a t o r  w i t h  l i t t l e  
f u r t h e r  pyro lys i s  or char removal. Aerothermal tests were rep resen ta t ive  of 
nominal Mach 6 c r u i s e  condi t ions of the  aircraft ,  and add i t iona l  tests were 
rep resen ta t ive  of Mach 8 c ru i se  and in t e r f e rence  hea t ing  condi t ions .  
heating tests were used t o  s imulate  t h e  complete nominal Mach 6 surface- 
temperature h i s t o r y .  The s i l ica  char t h a t  formed during aerothermal tes ts  was 
not durable. The char experienced a genera l  and p r e f e r e n t i a l  sur face  reces- 
s i o n ,  w i t h  the  primary mechanism f o r  char removal being e ros ion .  Tests 
revealed t h a t  r ad ian t  hea t ing  is not a v a l i d  technique f o r  s imulat ing aerody- 
namic heat ing of the material. 

Radiant 

INTRODUCTION 

The National Aeronautics and Space Administration and the  U.S. A i r  Force 
have conducted a j o i n t  study t o  de f ine  a hypersonic research aircraft ( ref .  1 ) .  
Minimum performance requirements f o r  t h i s  vehic le  include Mach 6 c r u i s e  sus- 
ta ined  f o r  40 seconds a t  an a l t i t u d e  of 27 t o  30 km (88 600 t o  98 400 f t ) .  A 
poss ib l e  vehic le  configurat ion and a nominal Mach 6 f l i g h t  t r a j e c t o r y  are shown 
i n  f i g u r e  1. 
por t ion  o f  tne  t ra jec ' to ry  are presented i n  table I f o r  t h e  nominal Mach 6 
f l i g h t  as w e l l  as f o r  f l i g h t  t o  Mach 7 and 8. 
t h i s  vehic le  poses s t r u c t u r a l  and material problems which must be resolved i n  
the  design of the  vehicle .  
vent iona l  aluminum s t r u c t u r e  protected by an a b l a t i v e  i n s u l a t i v e  material 
(SLA-220) bonded t o  the  outer  sur face  (refs. 2 and 3 ) .  SLA-220 material i s  
a si l ica-fi l led elastomeric  s i l i c o n e  which has been proposed as an ex te rna l  
i n s u l a t o r ,  or heat s h i e l d ,  on the  basis of its predic ted  a b i l i t y  t o  pyrolyze 
and form a durable  char l aye r  during i n i t i a l  exposure t o  aerodynamic heat ing,  
and t h e r e a f t e r  t o  funct ion pr imari ly  as an i n s u l a t o r  wi th  l i t t l e  f u r t h e r  pyrol- 
y s i s  and e s s e n t i a l l y  no char removal. 
s h i e l d  for a hypersonic research aircraft is dependent upon its a b i l i t y  t o  per- 
form i n  t h i s  mode. 

The r e s u l t i n g  aerothermal f l i g h t  condi t ions  during t h e  c r u i s e  

The aerodynamic heat load f o r  

One approach being considered is the  use  of a con- 

The s u i t a b i l i t y  of SLA-220 as a heat 



The present  i nves t iga t ion  was carried o u t  t o  eva lua te  the  thermal and 
s t r u c t u r a l  performance of SLA-220 and t o  v e r i f y  the  predicted performance mode 
stated above. Three panels ,  cons i s t ing  of SLA-220 bonded t o  aluminum s u b s t r a t e  
panels ,  were tested i n  the  Langley 8-foot high-temperature s t r u c t u r e s  tunnel  
during repeated aerothermal cycles a t  test condi t ions  r ep resen ta t ive  of the  
nominal Mach 6 c r u i s e  condi t ions ,  and a t  add i t iona l ,  more severe test condi- 
t i o n s  r ep resen ta t ive  of t h e  Mach 8 c r u i s e  or i n t e r f e rence  hea t ing  condi t ions.  
Tests were made wi th  t h e  SLA-220 molded i n  two d i f f e r e n t  conf igura t ions  and i n  
two d i f f e r e n t  lengths .  
about one-half t h a t  of t h e  e n t i r e  f l i g h t  t r a j e c t o r y .  
of the SLA-220 when subjected t o  the  e n t i r e  f l i g h t  heat load ,  one panel was 
exposed t o  r ad ian t  hea t ing ,  which simulated sur face  temperatures f o r  t he  
600-second Mach 6 f l i g h t  t r a j e c t o r y .  

The t o t a l  heat load of these aerothermal tests was 
To eva lua te  performance 

SYMBOLS 

Values of phys ica l  q u a n t i t i e s  are given i n  t he  I n t e r n a t i o n a l  System of 
Units (SI) and i n  U.S. Customary Units. Measurements and c a l c u l a t i o n s  were 
made i n  U . S .  Customary Units.  
given i n  re ference  4. 

Conversion factors r e l a t i n g  the  two systems are 

a 

T 

TPS 

t 

U 

X , Y , Z  

Xp7Yp7Zp  

6 

panel l eng th ,  m ( i n . )  

temperature, K (OR) 

thermal pro tec t ion  system 

exposure t i m e ,  s 

ve loc i ty  , m / s  ( f t /sec 

panel-holder coordinates ,  m ( i n .  ) (see f ig .  4 )  

panel coord ina tes ,  m ( i n . )  (see f ig .  3) 

boundary-layer th ickness ,  m ( i n . )  

Subscr ipt :  

e edge of  boundary layer 

APPARATUS 

Test Material and Panels 

The material evaluated was a si l ica-fi l led elastomeric s i l i c o n e  w i t h  an 
average dens i ty  of  240 kg/m3 (15 l b / f t 3 ) .  
w i t h  a lesser amount of t h e  silica being i n  t h e  form of short  f ibers.  
material, designated SLA-220 by the manufacturer, is described i n  re ferences  2 
and 3. 

The silica is  primari ly  microspheres, 
T h i s  

The material was fabricated t o  form two d i f f e r e n t  conf igura t ions ,  stri- 
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ated and re inforced .  The striated test material had c u t s  t o  one-half the  mate- 
r ia l  thickness  i n  a 1.27-cm (0.5-in.) square gr id  pa t t e rn .  The purpose of the 
s t r i a t i o n s  was t o  r e l i e v e  thermal stresses which occur during py ro lys i s  and t o  
allow f o r  material shrinkage. 
(14 l b / f t 3 ) .  
fiber and polymer r e s i n  honeycomb s t ruc tu re .  The p a r t i t i o n i n g  of t he  material 
by the honeycomb walls se rves  t h e  same funct ion as t h e  s t r i a t i o n s  i n  the  first 
configurat ion;  i n  add i t ion ,  the  honeycomb s t r u c t u r e  is intended t o  h e l p  main- 
t a i n  char i n t e g r i t y .  
( 16 l b / f t 3 ) .  

The striated material has a dens i ty  of 224 kg/m3 
The reinforced material was molded i n t o  small cel ls  by a glass 

The reinforced material had a dens i ty  of 256 kg/m3 

Test panel 1 ( f ig .  2 )  and tes t  panel 2 consis ted of fou r  25.4-cm 
(10.0-in.) square quadrants of the tes t  material, 1.52 cm (0.60 i n . )  t h i ck ,  
bonded t o  50.8-cm (20.0-in.) square s t i f f e n e d  carrier panels .  The carrier 
panels  were fabricated from sheets of 2024 aluminum 0.127 cm (0.050 i n . )  th ick .  
A ske tch  of test panels  1 and 2 is shown i n  f igu re  3 ( a ) .  The s t i f f n e s s  and 
mass of the carrier panels  are rep resen ta t ive  of  aircraft  s t ruc tu re .  The two 
material s e c t i o n s  on t h e  l e f t  half of panel 1 were composed of t he  re inforced  
material, and t h e  two sec t ions  on the r igh t  half  o f  panel 1 were composed of 
t he  striated material. On panel 2 the  two tes t  materials were appl ied  alter- 
na te ly  t o  each side, as shown i n  f i g u r e  3(a) .  Test panel 3, shown i n  f ig- 
ure  3 ( b ) ,  was composed of t h e  s t r ia ted material; t he  length ,  w id th ,  and depth  
of the material were, respec t ive ly ,  84.6 cm (33.3 i n . ) ,  50.8 cm (20.0 i n . ) ,  and 
1.27 cm (0.50 i n . ) .  The aluminum subs t r a t e  was r e l a t i v e l y  th i ck ,  0.24 cm 
0.094 i n . ) ,  al though the e f f e c t i v e  thermal capacitance of the th i ck  plate  was 
t h e  same as t h a t  of t he  carrier p l a t e  and s t i f f e n e r s  of the  o the r  two panels.  

Panel Holder 

Test panels  were mounted i n  the panel holder ( f igs .  4 and 5 )  f o r  t e s t i n g  
i n  the  Langley 8-foot high-temperature s t r u c t u r e s  tunnel .  
a rectangular  slab with a sharp  leading edge, i n  t he  plane of the  top sur face ,  
which was faired t o  the lower su r face  by a 20° bevel.  A spanwise row of metal 
spheres on the upper su r face ,  parallel t o  and 12.7 cm (5.00 i n . )  a f t  of t he  
leading edge, t r i p p e d  the boundary layer t o  insure  uniform turbulen t  flow over 
t he  test sur face .  Aerodynamic fences were used on tests of panels  1 and 2 t o  
provide parallel flow over the  sur face  of the panel holder .  The tes t  panels  
were mounted i n  openings on t h e  sur face  of the  panel holder a t  the  p o s i t i o n s  
shown i n  f i g u r e  4 .  
surfaces  were f l u s h  wi th  t h e  surrounding panel-holder surface, which was cov- 
ered wi th  high-density Glasrock. The l o c a l  flow and aerodynamic heat f l u x  on 
the  panel holder have been calibrated, and these r e s u l t s  are reported i n  
re ference  5. 

The panel holder was 

Test panel 1 can a l s o  be seen i n  figure 5. The tes t -panel  

Instrumentation 

Test panels  1 and 2 were instrumented w i t h  thermocouples t o  measure the  
temperature of t h e  a b l a t i v e  material and the  aluminum carrier p l a t e .  
couple i n s t a l l a t i o n  d e t a i l s  and loca t ions  are shown i n  f i g u r e  6. 
couples were i n s t a l l e d  i n  the  tes t  material i n  plugs in se r t ed  from the  back of 

Thermo- 
S ix  thermo- 
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the  panel so t h a t  the thermocouples were 0.32 cm (0.125 i n . )  from the  sur face .  
Ten thermocouples were attached t o  the  aluminum s u b s t r a t e  as shown i n  f i g u r e  6 .  

Surface temperatures were measured by a scanning in f r a red  radiometer f o r  
An area of 5040 cm2 (781 in2)  is mechanically scanned by t h e  test panel 2. 

i n f r a red  radiometer w i t h  a spatial r e so lu t ion  of 1.3 cm (0.52 i n . )  i n  diameter. 
About 5 seconds is requi red  to  scan the  e n t i r e  area. The data are recorded on 
an FM system, d i g i t i z e d ,  and then p lo t t ed .  This  system operates a t  a wave- 
length o f  2.4 pm t o  avoid absorpt ion bands of carbon dioxide and water vapor 
present  i n  the  tes t  medium. 

A survey probe ( f ig .  71, comprised of a p i t o t  p ressure  probe and a t o t a l  
temperature probe, was used t o  measure the  flow above the  su r face  of the  tes t  
panel and was loca ted  j u s t  ahead of test panels  1 and 2 ( f ig .  4 ) .  The probe 
was f l u s h  w i t h  t he  su r face  of the panel holder  when not  i n  use.  
pressure was measured from o r i f i c e s  f l u s h  w i t h  t h e  panel ho lder ,  as shown i n  
f i g u r e  4 ,  and was assumed t o  be i n v a r i a n t  throughout t h e  boundary layer. With 
t o t a l  temperature, p i t o t  p ressure ,  and static pressure  measured as a funct ion 
of d i s t ance  normal t o  the  panel su r f ace ,  t h e  equat ions and procedures given i n  
re ference  6 were used t o  c a l c u l a t e  boundary-layer parameters of i n t e r e s t .  

The static 

F a c i l i t y  

Tests were performed i n  t h e  Langley 8-foot high-temperature s t r u c t u r e s  
t u n n e l ,  a hypersonic blowdown wind tunnel .  The high-energy tes t  stream con- 
sists of t h e  products of combustion obtained from a mixture of methane and a i r  
burned under pressure i n  a plenum chamber. The flow is  expanded through an 
axisymmetric, contoured nozzle t o  approximately Mach 7 i n t o  an open-jet test 
sec t ion .  The flow is decelerated i n  a supersonic d i f f u s e r ,  pumped through a 
mixing tube,  and exhausted i n t o  the  atmosphere by a s ingle-s tage annular a i r  
e j e c t o r .  
is stowed i n  the  pod below the test sec t ion  p r i o r  t o  t h e  establishment of 
hypersonic flow, as shown i n  f i g u r e  8 ,  and is then r a p i d l y  in se r t ed  i n t o  t h e  
test stream after t r a n s i e n t  s t a r t i n g  condi t ions  have subsided and t h e  des i red  
flow has been establ ished.  A s  t h e  panel holder moves from its stowed pos i t i on  
it is simultaneously p i t ched  to  t h e  angle  of  attack required f o r  t he  tes t .  The 
panel holder then moves through the tes t  stream stopping a t  t he  cen te r  l i n e .  
The panel holder w i t h  i ts aerodynamic fences can be used a t  angles  of attack up 
t o  15O without causing tunnel  flow breakdown. Additional information about t he  
f a c i l i t y  may be found i n  re ference  7. 

A schematic of the  f a c i l i t y  is shown i n  f i g u r e  8. The panel holder 

Radiant heaters were used t o  s imulate  the  heat . load t o  the panel3 f o r  an 
e n t i r e  t r a j e c t o r y  time of  600 seconds. The r ad ian t  heaters, loca ted  outs ide  
the  wind tunnel  and operated i n  air  a t  ambient condi t ions ,  c o n s i s t  of quar tz  
lamps w i t h  a t o t a l  power capac i ty  of 0.4 MW and an e f f e c t i v e  lamp area of 
142 x 158 c m  (56 x 62 i n . ) .  The maximum model s i z e  t h a t  can be tested is 
108 x 152 c m  (42.5 x 60 i n . )  wi th  t h e  t es t  panel located from 10.2 cm ( 4  i n . )  
t o  20.4 c m  (8 i n . )  from the quar tz  lamps. 
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TEST CONDITIONS 

Most of the present  tests were performed a t  condi t ions  r ep resen ta t ive  of 
An at tempt  was made t o  match the  nominal Mach 6 c r u i s e  for about 40 seconds. 

t he  sur face  heat f l u x  and shear stress for the re ference  l o c a t i o n  254 cm 
(100 i n . )  from the  nose of the  hypersonic research aircraft. 
The test condi t ions required t o  s imulate  f l i g h t  condi t ions  were determined from 
the  wind-tunnel and panel-holder c a l i b r a t i o n s  of re ference  5.  A thermochemical 
equi l ibr ium computer program (ACE) described i n  r e fe rence  8 was used t o  calcu- 
la te  the  gas composition, and the  thermodynamic, t r a n s p o r t ,  and flow p r o p e r t i e s  
of the  test medium. The gas composition is l i s t e d  i n  table I1 f o r  each test. 
The boundary-layer condi t ions on t h e  panel-holder su r face  were ca l cu la t ed  by 
us ing  measurements from the boundary-layer survey probe. Addit ional ly ,  the  
computer program of re ference  9 was used t o  c a l c u l a t e  t h e o r e t i c a l  boundary- 
l a y e r  p rope r t i e s ,  including the aerodynamic heat f l u x  and shear stress, by 
using measured condi t ions  as input .  The pe r t inen t  parameters for each tes t  
panel are l isted i n  table 111. 

(See table I.) 

During t h e  tests on panel 1 ( table  I I I ( a ) )  the  aerodynamic heat f l u x  was 
varied from 25 kW/m2 (2.2 Btu/ft2-sec) t o  306 kW/m2 (27.0 Btu/ft2-sec) , and 
shear stress was varied from 29.2 Pa (0.61 l b / f t 2 )  t o  232 Pa (4.85 l b / f t 2 ) .  
This range of condi t ions r ep resen t s  sur face  heat f l u x  below, a t ,  and above the  
nominal Mach 6 aerodynamic heat f l u x  a t  the re ference  loca t ion  254 cm (100 i n . )  
from the  nose of the hypersonic research aircraf t .  (See f ig .  1 and table I.) 
The higher o r  more severe aerodynamic heat-flux condi t ions  could represent  
i n t e r f e rence  heat ing,  or increased heat f lux  assoc ia ted  w i t h  f l i g h t  a t  a lower 
a l t i t u d e ,  higher angle of attack, or higher Mach number. The tests on panel 2 
( table I I I ( b ) )  and panel 3 ( table  I I I ( c ) )  were a t  heat-flux and shear-stress 
l e v e l s  r ep resen ta t ive  of the  re ference  loca t ion  for the nominal Mach 6 c r u i s e  
condi t ions except for the  very sho r t  exposure during the  last  test ( tes t  7) on 
panel  3; t h e  aerodynamic heat-flux and shear-stress l e v e l s  f o r  t h i s  t es t  were 
equivalent to. those of tes t  10 on panel 1 .  

RESULTIS AND DISCUSSION 

Boundary-Layer Character izat ion 

A t y p i c a l  boundary-layer ve loc i ty  p r o f i l e  is presented i n  f i g u r e  9 f o r  a 
panel-holder angle of attack of  7O for tes t  7 on tes t  panel 2. 
the  l o c a l  v e l o c i t y  t o  the ve loc i ty  a t  t h e  edge of the boundary layer is 
p lo t t ed  as a funct ion of the r a t i o  of t h e  normal d i s t ance  from the  sur face  t o  
the boundary-layer thickness  y/6. The experimental r e s u l t s ,  ind ica ted  by the  
symbols, are compared wi th  the  curves obtained using re ference  9. 
t i o n  of the  experimental ve loc i ty ,  the.Rayleigh equation wi th  the  measured 
s ta t ic  p r e s s u r e  a t  t h e  surface, the  p i t o t  p ressure ,  and the t o t a l  temperature 
was used, and an i s en t rop ic  r e l a t i o n s h i p  between s ta t ic  temperature and the  
measured total  temperature was assumed. The boundary-layer thickness  6 above 
t h e  panel-holder surface was determined by the accepted c r i t e r i o n  - local 

The r a t i o  of 
U / U e  

For ca lcu la-  
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ve loc i ty  equal  t o  0.995 of the  free-stream v e l o c i t y  above the  panel-holder sur-  
face. 
the  mean ve loc i ty  a t  a d i s t ance  normal t o  the su r face  from 2.80 cm (1  . I O  i n , )  
t o  7.62 cm (3.00 i n . )  with a minimum of 15 data poin ts .  
boundary-layer ve loc i ty  p r o f i l e s  agreed wi th  t h e  predicted turbulen t  p r o f i l e  
obtained by using re ference  9. Similar comparisons f o r  the  o the r  tes ts  indi-  
cated t h a t  t h e  boundary layer on t h e  panel holder was f u l l y  turbulen t  f o r  a l l  
tests. 

The free-stream ve loc i ty  had a maximum standard devia t ion  of 0.008 of 

The experimental 

Test Panel 1 

Low aerodynamic heat flux.- The first 6 tests on panel 1 ( table I I I ( a ) )  
represented t h e  low aerodynamic heat f l u x  and shear stress f o r  t he  i n i t i a l  por- 
t i o n  of a f l i g h t  t r a j e c t o r y  (ref. 1 )  or l oca t ions  on the aircraft  where the 
aerodynamic heat f l u x  was below t h a t  of t h e  nominal Mach 6 condi t ions of 
table I. During t h e  first four  tests, the  maximum temperature measured by the  
embedded thermocouples of both t h e  striated and reinforced SLA-220 was 575 K 
(1035O R ) ;  during the  next two tests,  t h e  maximum temperature was 711 K 
(1280O R ) .  
s i x  tests was a s l i g h t  opening of t h e  s t r i a t i o n s  because of material shrinkage 
from pyro lys is .  
ening of t he  honeycomb c e l l  walls. 

The most no t iceable  change i n  t h e  striated material after the  first 

The only v i s i b l e  change i n  the  reinforced material was a dark- 

Nominal aerodynamic heat f lux.-  The first s i g n i f i c a n t  change i n  t h e  
appearance of t h e  t e s t  panel occurred during tests 7 and 8 .  (See 
table I I I ( a ) . )  The 
maximum temperature measured by t h e  embedded thermocouples was 850 K (1530O R ) .  
The su r face  of t he  str iated and reinforced SLA-220 pyrolyzed forming a s i l i c a  
char. The striated SLA-220 eroded s l i g h t l y ,  producing wider s t r i a t i o n s  w i t h  
rounded edges i n  the  flow d i r e c t i o n ,  an effect  which d i d  no t  occur i n  the  span- 
wise s t r i a t i o n s .  The re inforced  SLA-220 changed very l i t t le .  Localized cra- 
te rs  seen on the  su r face  of the  panel r e su l t ed  from impingement by s o l i d  parti- 
cles which or ig ina ted  i n  the  tunnel  combustion chamber. 

Figure 10 shows t h e  panel condi t ion after these tests. 

Severe aerodynamic heat f lux . -  The next two tests ( tes ts  9 and 10, 
table I I I (a ) )  were conducted a t  heat-f lux l e v e l s  greater than those of the nom- 
i n a l  Mach 6 condi t ion and comparable w i t h  the c r u i s e  heat f l u x  of Mach 8 f l i g h t  
condi t ions a t  t h e  dynamic pressure l i s t e d  i n  table I. The aerodynamic shear- 
stress l e v e l  i n  tests 9 and I O ,  however, is about 35 percent higher than t h a t  
given i n  table I. The appearance of, t h e  panel after these tests is shown i n  
f i g u r e  11.  The striated SLA-220 eroded t o  a very not iceable  and s u b s t a n t i a l  
ex t en t ,  and the streamwise s t r i a t i o n s  continued t o  widen. The re inforced  
SLA-220 has a rough i r r e g u l a r  su r f ace ,  and t h e  material above the embedded 
thermocouples is absent .  

The last two tests (tests 11 and 12, table I I I ( a ) )  are rep resen ta t ive  of 
aerodynamic heat-flux and shear-stress l e v e l s  an t i c ipa t ed  i n  in t e r f e rence  heat- 
ing  regions.  The panel ,  after these tests,  is shown i n  f i g u r e  12. The.stream- 
wise s t r i a t i o n s  of t he  str iated SLA-220 have eroded i n t o  channels which 
increase  i n  wid th  wi th  tes t -pane l  length.  I n  c o n t r a s t ,  the spanwise s t r i a t i o n s  
show minimal erosion.  The re inforced  material was more r e s i s t a n t  t o  e ros ion;  

6 



the  erosion formed a r egu la r  p a t t e r n  of shallow channels between honeycomb 
cell-wall i n t e r s e c t i o n s .  

P o s t t e s t  examination.- The p o s t t e s t  condi t ion of the  SLA-220 is shown i n  
f i g u r e  13 by a series of spanwise-section photographs of test panel 1 i l l u m i -  
nated by long-wavelength u l t r a v i o l e t  l i g h t .  U l t r a v i o l e t  l i g h t  causes  the  char 
layer t o  appear f luorescent  and al lows it t o  be d is t inguished  from the  v i r g i n  
material. Also, t h e  char was i d e n t i f i e d  by a d i f f e rence  i n  t ex tu re .  I n  t h e  
re inforced  material the add i t iona l  f luorescence of the  honeycomb is character- 
i s t i c  of the  glass fiber/polymer r e s i n  material and does not i n d i c a t e  char for -  
mation. The char and its i n t e r f a c e  w i t h  t h e  v i r g i n  material are t y p i c a l l y  
labeled i n  f igu re  13(g) .  A s  ind ica ted  earlier,  the  s t r i a t i o n s  increase  i n  
wid th  from the leading edge t o  the  t r a i l i n g  edge. Examination of f i g u r e  13 
a l s o  shows t h a t  f o r  both t h e  striated and re inforced  SLA-220 the su r face  has 
receded from the o r i g i n a l  su r f ace  (O.S.) pos i t ion ;  the  re inforced  material 
appears t o  have less recession than t h e  striated material. The su r face  reces- 
s ion  and the char-virgin-material i n t e r f a c e  depth are p lo t t ed  as a funct ion of 
t h e  streamwise pane l  l ength  (xp/k) i n  f i g u r e  14. 
and the  v i r g i n  material are indica ted .  The d i s t ances  p lo t t ed  i n  f i g u r e  14 are 
averages of values  measured from the  middle two-thirds of t he  spanwise sec- 
t i ons .  The surface recession increased wi th  panel length on both the  striated 
and reinforced sec t ions .  This  r e s u l t  was not  expected s ince  aerodynamic heat 
f l u x  was predic ted  t o  decrease s l i g h t l y  wi th  panel length.  Although the  sur -  
face was very rough ( f ig .  12) after the severe heat-f lux tests, the  measure- 
ments presented i n  f i g u r e  14 i n d i c a t e  t h a t  a t  
cen t  of the reinforced material and 33 percent  of the striated material was 
affected. The ove ra l l  sur face  recession was 11 percent  f o r  the re inforced  
material and 16 percent f o r  t he  str iated material. 
t i v e  t o  the  o r i g i n a l  th ickness  of the  material. 

The th icknesses  of t he  char 

xp/k = 0.9 no more than 25 per- 

A l l  percentages are rela- 

From t h e  tests and data of test panel  1 some t e n t a t i v e  observat ions can be 
made about t h e  SLA-220. The material i n  both t h e  str iated and re inforced  forms 
remained reasonably i n t a c t  and protected the  underlying aluminum s t r u c t u r e  from 
the hot hypersonic test  stream under condi t ions ranging from below the  nominal 
Mach 6 c r u i s e  condi t ions  l i s t ed  i n  table I t o  condi t ions  far more severe than 
the  re ference  condi t ions.  The material pyrolyzed and formed a silica char; 
however, t he  char d i d  not remain i n t a c t .  Both SLA-220 conf igura t ions  experi-  
enced genera l  sur face  recession.  

Test Panel 2 

Nominal aerodynamic heat flux.-  Repeated f l i g h t  exposures of test panel 2 
conducted a t  the  nominal Mach 6 c r u i s e  condi t ions  were used t o  eva lua te  the  
performance of SLA-220. A comparison of the condi t ions  of t h i s  test, which are 
l i s t ed  i n  table I I I ( b ) ,  wi th  table I f l i g h t  condi t ions  shows t h a t  almost a l l  
aerothermal parameters of s ign i f i cance  were either dupl icated or closely simu- 
lated. The appearance and condi t ion of the  panel  after tes t  3, or 122 seconds 
of c r u i s e  f l i g h t  exposure, are shown i n  f i g u r e  15 and are similar t o  the  
appearance and condi t ion of panel 1 after test 8 (fig.  10). A s  before, numer- 
ous impact craters caused by s o l i d  particles from the  tunnel  combustor were 
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evident .  
of pane l  1 after exposure t o  the nominal Mach 6 c r u i s e  condi t ions.  

The appearance and condi t ion of the  panel are very similar t o  those 

Tes t ing  of panel  2 was terminated after n ine  tes t  exposures so t h a t  t he  

The o v e r a l l  
panel  could be examined without f u r t h e r  de t e r io ra t ion .  Photographs of the 
panel following removal from the holder are shown i n  f i g u r e  16. 
panel view i n  f i g u r e  16(a) shows loca l i zed  craters, caused by p a r t i c l e  impingg- 
ment, and damaged thermocouple plugs i n  the  re inforced  sec t ions .  F igures  16 (a3 
and 16(b) show that  the long i tud ina l  s t r i a t i o n s ,  as observed on panel 1 ,  have 
eroded t o  narrow channels t h a t  increase  i n  width with panel  length.  Fig- 
u r e  16(c)  shows t h a t  shallow, wide channels between honeycomb cell-wall i n t e r -  
s e c t i o n s  were eroded on the su r face  of the re inforced  material, which was more 
r e s i s t a n t  t o  erosion than the striated material. The eros ion  through the stri- 
a t i o n s  of sec t ion  3 ,  shown i n  f i g u r e  16 (a ) ,  has c u t  sho r t  grooves i n t o  the 
reinforced material of s ec t ion  4; conversely there is no appreciable  effect of 
the  reinforced material of s ec t ion  1 on the  downstream striated material of 
s ec t ion  2. 
stress of the  nominal Mach 6 c r u i s e  condi t ions ,  panel 2 eroded and had a s i m i -  
lar  appearance t o  t h a t  of  panel 1. 

Under repeated exposure t o  t h e  aerodynamic heat f l u x  and shear 

Panel temperatures.- The maximum temperatures of t h e  material, measured by 
the  embedded thermocouples 0.32 em (0.125 i n . )  below the  su r face ,  var ied from 
about  849 K (1528O R )  during the first fou r  tests t o  a maximum of about 889 K 
(1600O R )  during t h e  las t  f i v e  tests. 
each exposure. 
the radiometer, was about 1000 K (1800O R )  during the  first four  tests and 
about 1080 K (1944O R )  during the  last f i v e  tests. 
relief map of tes t  panel 2 during test 8 is shown i n  f i g u r e  17. 
t h e  material were s l i g h t l y  h o t t e r  than most of t h e  surface.  The sharp tempera- 
t u r e  peaks represented local hot  spots that  were caused by recesses i n  the  sur- 
face either from impacts or material l o s s  over t he  thermocouples embedded i n  
the material. The temperatures of t h e  honeycomb-reinforced material were 
always 40 to  50 K ( 7 2 O  t o  90° R )  higher than those of the striated material. 
This temperature d i f f e rence  was probably due t o  d i f fe rences  i n  sur face  geome- 
t r y ,  dens i ty ,  and t o t a l  emiss iv i ty  because of surface roughness. 

The temperature increased s l i g h t l y  with 
The maximum sur face  temperature of t he  material, as  measured by 

A surface-temperature 
The edges of 

Test Panel 3 

Nominal aerodynamic heat f lux.-  To i n v e s t i g a t e  f u r t h e r  the  previously 
observed effect of panel length ,  panel 3 was tested a t  the  nominal Mach 6 
c r u i s e  condi t ions.  The combustion chamber was cleaned and overhauled to-mini -  
mize sources of s o l i d  particles which impinged upon t h e  su r faces  of  panels  1 
and 2. Test condi t ions  f o r  panel  3 are given i n  table III(c). 

After six tests and an aerothermal exposure time of 190 seconds, the  con- 
d i t i o n  of the panel was as shown i n  figure 18. 
ter is t ics  similar t o  those of panel  2 ,  al though the  l e v e l  of t h e  effects is 
less. The streamwise s t r i a t i o n s  are wider than the spanwise s t r i a t i o n s  and 
inc rease  i n  width wi th  panel length.  
i s  a s l i g h t  recess ion  of t h e  material t h a t  increqses  with panel length: 

The material e x h i b i t s  chaFac- 

Although not evident  i n  f i g u r e  18, there 
The 

a 
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damage sites from*impacting particles, p r i n c i p a l l y  i ron  oxides from the  combus- 
t o r ,  have been dramatical ly  reduced but  not  eliminated. 

The last  test on panel 3 was under almost the  same condi t ions  as test 10 
on panel 1 .  The test dura t ion  was short ,  only 15 seconds, s i n c e  tunnel  flow 
breakdown occurred i n  the test sec t ion .  The panel is shown after the  test i n  
f i g u r e  19; damage t o  the SLA-220 from the abrupt  pressure  change was loca l i zed  
and l i m i t e d  pr imari ly  t o  the  edges. 

P o s t t e s t  examination.- The p o s t t e s t  condi t ion of the SLA-220 is shown i n  
f igu re  20 by a series of spanwise-section photographs of  panel 3 i l luminated by 
long-wavelength u l t r a v i o l e t  l i g h t ,  which causes  the  char layer t o  appear f luo-  
r e scen t .  Each photograph is i d e n t i f i e d  by its d i s t ance  from t h e  leading edge 
of the panel.  The s t r i a t i o n s  increased i n  width from the leading edge t o  the 
t r a i l i n g  edge, although t h i s  effect is not as pronounced as it was on panel 1 .  
(See f ig .  13.) The char on panel 3 ( f ig .  20) is more uniform than t h a t  on 
panel  1 ( f ig .  13). This is probably because the  test condi t ions  for panel  3 
were less severe;  t he  test dura t ion  was shorter and t h e  d e b r i s  from the  combus- 
t o r  was reduced. The su r face  recess ion  and t h e  char-virgin-material i n t e r f a c e  
depth are p lo t t ed  as a func t ion  of t h e  streamwise length  (xp/k) i n  f i g u r e  21. 
The thicknesses  of the char and the v i r g i n  material are indica ted .  A s  men- 
t ioned previously,  sur face  recesss ion  increased wi th  panel length.  The mea- 
surements presented i n  f i g u r e  21 ind ica t e  t h a t  a t  about 27 percent  
of t h e  SLA-220 was affected and the o v e r a l l  surface recession was about  5 per- 
cen t .  A l l  measurements are r e l a t i v e  t o  the o r i g i n a l  material thickness .  Thus, 
t h e  surface recess ion  on panel  3 was about one-third t h a t  of the  striated mate- 
r i a l  of panel 1 ,  although the percentages of material affected differ  only 
s l i g h t l y .  

xp/k = 0.9 

Erosion Mechanism 

The mechanism f o r  material removal, or su r face  recession,  i n  these tests 
appears t o  be erosion caused by two maid sources  of s o l i d  particles: 
(1)  deb r i s  from the tunnel  combustion chamber and (2)  s i l ica  char dislodged 
from upstream sur faces  of the  panel. The s i l i ca  char, composed of s i l i ca  
microspheres held tagether wi th  very fragile mechanical bonds, is a very sig- 
n i f i c a n t  source of erosion particles. The s i l i ca  microspheres within the char 
could easily be dislodged by the  mul t id i r ec t iona l  shear fo rces  of a compres- 
s i b l e  turbulen t  boundary layer which scrub the exposed su r faces .  Once free, 
the  microspheres, as small as 30 pm (1.2 m i l s )  i n  diameter, would be acceler- 
ated to  v e l o c i t i e s  approaching the  local ve loc i ty .  Thus, the  cloud of high- 
ve loc i ty  si l ica particles would increase  i n  particle dens i ty  and become 
increas ingly  abras ive  t o  the  test  panel  as panel  length  increased.  

The p a r t i c u l a t e  d e n s i t i e s  from the two sources i n  these tests were evalu- 
ated fo r  panel  3. After the  first s ix  tests of panel  3, there were about 
1400 impact sites on the  panel  caused by particles from the  combustor. 
there were about 17 impacts per second and a particle f l u x  of about 43/m2-s 
(4/ft2-sec). 
from the char impacting the sur face  was estimated t o  be 2.16 x 109/m2-s 
(2  x 108/ft2-sec). 

Thus, 

The size of these particles is unknown. The particle f l u x  

T h i s  f lux was determined from the measured recess ion ,  the  
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char composition, and the t ime-variant properties of t he  compressible turbulen t  
boundary l aye r .  The silica p a r t i c l e  size var ied from 30 t o  125 
4.9 m i l s ) .  It was concluded t h a t  i n  these tests the  larger particles from t h e  
combustor caused discrete and random damage t o  the  SLA-220 test panels.  
ever ,  t he  si l ica particles from t h e  SLA-220 char, which had a particle f l u x  
about 20 x IO9 times t h a t  of the  combustor p a r t i c l e s ,  caused a uniform surface 
e ros ion  of the  test panel.  The eros ion  was more pronounced i n  the streamwise 
s t r i a t i o n s ,  s ince  the l o c a l  flow probably attached t o  the  sidewalls and the  
upper edges of the  streamwise s t r i a t i o n s .  
ve loc i ty  silica cloud would cause the  streamwise s t r i a t i o n s  i n  the  SLA-220 t o  
inc rease  i n  wid th  w i t h  time and panel length ,  and would cause t h e  upper edges 
t o  become rounded. Eventually,  the  streamwise s t r i a t i o n s  would become stream- 
wise channels.  The spanwise s t r i a t i o n s  would not  experience such a preferen- 
t i a l  erosion.  The re inforced  SLA-220 would also be subjected t o  such an abra- 
s i v e  mechanism; however, the i n t e r s e c t i o n  of the  honeycomb cells is more 
r e s i s t a n t  t o  the  e ros ion  which r e s u l t s  i n  the  formation of shallow channels 
between the  honeycomb cell-wall i n t e r s e c t i o n s .  Therefore,  t h e  propos i t ion  t h a t  
t h e  SLA-220 forms a durable  char l a y e r  and performs pr imar i ly  as an i n s u l a t o r  
was not  demonstrated i n  tests a t  t h e  nominal Mach 6 condi t ions.  

(1.2 t o  

How- 

Therefore,  e ros ion  from t h e  high- 

Radiant Heating Tests 

The aerodynamic tests simulated c r u i s e  heat f l u x  b u t  imposed a lower t o t a l  
heat load than p r e d i c t e d  f o r  t he  e n t i r e  f l i g h t .  Consequently, t h e  aluminum 
carrier-plate temperatures d i d  not  reach the  s t r u c t u r a l  temperatures expected 
during f l i g h t .  To evaluate  the effects of  a t o t a l  f l i g h t  heat load ,  t es t  
panel 2 was exposed t o  two r ad ian t  hea t ing  cyc le s  which were programmed t o  
s imulate  su r face  temperatures during f l i g h t .  During t h e  r ad ian t  heat ing tests, 
panel 2 was exposed t o  the  surface-temperature h i s t o r y  shown i n  f i g u r e  22. 
Th i s  temperature h i s t o r y  is real is t ic  f o r  t h e  nominal Mach 6 f l i g h t  condi t ions.  
I n  f igu re  22 t h e  su r face  temperature of t h e  striated SLA-220 was measured by a 
radiometer. The temperature 0.3 c m  (0.13 i n . )  below t h e  sur face  and t h e  tem- 
pera ture  of the aluminum carrier p l a t e  were measured by thermocouples. 
temperature of the aluminum carrier plate increased 147 K (265O R ) ,  which i s  
c lose  t o  the  167 K (300° R )  predicted f o r  t he  nominal Mach 6 f l i g h t  condi t ions.  

The 

During another  r ad ian t  heat ing tes t ,  t he  panel was inadver ten t ly  heated 
t o  a su r face  temperature of 1488 K (26780 R ) ,  which was near ly  400 K (720O R )  
higher than the  maximum su r face  temperature predicted f o r  f l i g h t .  
plate temperature increased 257 K (4630 R ) .  The upper su r face  of t h e  SLA-220 
decomposed t o  form a chalky, rubbery res idue .  (See f ig .  23.)  The depos i t s  
were more pronounced along the  upper edges of the  honeycomb walls and i n  t h e  
s t r i a t i o n s  than on other parts of t h e  surface.  

The carrier- 

Photographs of a series of spanwise s e c t i o n s  of test panel  2 i l luminated 
by u l t r a v i o l e t  l i g h t  are shown i n  f i g u r e  24. 
duced the  dark l a y e r ,  which d i d  not  occur i n  the material exposed only t o  con- 
vec t ive  hea t ing .  (Compare f i g .  24 wi th  f ig .  13.) During the convective heat- 
ing  tests, py ro lys i s  occurred i n  a well-defined zone a t  the char-virgin-material 
i n t e r f a c e ,  below which e s s e n t i a l l y  no r eac t ions  occurred. Most of the  carbon 
and hydrocarbon compounds produced by py ro lys i s  combined with oxygen from t h e  

The r ad ian t  hea t ing  tests pro- 
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boundary layer and escaped through the  porous char. I n  c o n t r a s t ,  t he  r eac t ion  
of the material during r ad ian t  hea t ing  is p a r t l y  due t o  t he  transparency of the 
material t o  r a d i a t i o n ,  which produced higher temperatures and py ro lys i s  reac- 
t i o n s  i n  greater depth than d id  convective heat ing.  These r e a c t i o n s  probably 
occurred a t  lower temperatures and a t  d i f f e r e n t  rates t o  produce d i f f e r e n t  com- 
pounds than those r e s u l t i n g  from convective heat ing.  However, the  r eac t ions  i n  
depth  occur i n  a def ic iency of oxygen, so t h a t  carbon and hydrocarbon products 
are not oxidized but form the  dark layers shown i n  f i g u r e  24. 
sur face  i r r e g u l a r i t i e s  such as the eroded s t r i a t i o n s  form rad ia t ion  pa ths  which 
inc rease  the r ad ia t ion  penet ra t ion .  A s  a r e s u l t  of the r ad ian t  hea t ing ,  the  
material affected by the hea t ing  was as great as 60 percent ,  as compared w i t h  
33 percent f o r  test panel 1 ,  which was tested a t  more severe aerothermal 
condi t ions.  

I n  add i t ion ,  

The r e s u l t s  of t e s t i n g  panel 2 show t h a t  r ad ian t  hea t ing  does not s imulate  
convective hea t ing  such as t h a t  encountered i n  f l i g h t  because of the d i f f e r e n t  
temperature g r a d i e n t s  produced i n  t he  material as a r e s u l t  of d i f f e r e n t  heat ing 
and sh ie ld ing  mechanisms i n  t h e  material. Moreover, during r ad ian t  heat ing 
t h e r e  are no aerodynamic shear stresses t o  remove material from t h e  sur face .  

CONCLUDING REMARKS 

An a b l a t i v e  material (SLA-220) composed of s i l ica-f i l led elastomeric sili- 
cone was tested to  evaluate  its thermal and s t r u c t u r a l  performance as a heat 
s h i e l d  f o r  a hypersonic research aircraft. The SLA-220 was a l s o  tested t o  
determine whether i t  would form a durable  char layer when i n i t i a l l y  heated and 
thereafter funct ion p r i m a r i l y  as an i n s u l a t o r  w i t h  l i t t l e  f u r t h e r  py ro lys i s  or 
char removal. Three panels ,  cons i s t ing  of the  SLA-220 bonded t o  aluminum sub- 
strate panels ,  were aerothermally tested i n  the  Langley 8-foot high-temperature 
s t r u c t u r e s  tunnel  a t  hea t ing  condi t ions r ep resen ta t ive  of nominal Mach 6 c r u i s e  
of the aircraft. 
ference hea t ing  condi t ions were performed. Radiant heat ing tests were used t o  
simulate on one panel t h e  complete nominal Mach 6 f l i g h t  surface-temperature 
h i s t o r y ,  which could not be simulated i n  the tunnel  because of run-time 
l imi t a t ions .  

Additional tests rep resen ta t ive  of Mach 8 c r u i s e  and i n t e r -  

The s t r u c t u r a l  performance of the SLA-220 during aerothermal tests was 
poorer than expected. The SLA-220 formed a si l ica char, but t he  char was not  
stable; t h a t  is, it d i d  not remain i n t a c t  after repeated aerothermal exposures 
a t  the nominal Mach 6 c r u i s e  condi t ion.  Both striated and re inforced  SLA-220 
experienced a genera l  sur face  recess ion ,  w i t h  the  primary mechanism f o r  char 
removal being erosion.  
cles which were dislodged from upstream char sur faces  by the mul t id i r ec t iona l  
shear forces of the  tu rbu len t  boundary layer. 
t h e  downstream sur faces  as a r e s u l t  of the  fo rces  of the  compressible boundary 
layer and became increas ingly  abras ive  t o  the test panel as panel length  
increased.  
t he  streamwise edges of t he  s t r i a t i o n s  became rounded. The re inforced  SLA-220 
was more r e s i s t a n t  t o  e ros ion ,  but  shallow streamwise channels formed between 
the  honeycomb cell-wall i n t e r s e c t i o n s .  
which represented t h e  surface-temperature h i s t o r y  of the e n t i r e  Mach 6 f l i g h t ,  

The erosion was probably due t o  impacting s i l i ca  p a r t i -  

These p a r t i c l e s  then impacted 

The streamwise s t r i a t i o n s  increased i n  width wi th  panel length ,  and 

The r ad ian t  heating tests of t h e  panel ,  

11 



showed tha t  r ad ian t  hea t ing  is not  a v a l i d  technique for s imulat ing aerodynamic 
heat ing of t h e  SLA-220 material. 
radiant heat ing caused more severe degradation of the SLA-220 than t h a t  of 
aerothermal heat ing.  

The d i f f e r e n t  hea t - t ransfer  mechanisms of 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
September 23, 1977 
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TABLE 11. - MOLE FRACTIONS OF TEST-MEDIUM CONSTITUENTS 

T e s t  

1 
2 
3 

5 4 
6 
7 
8 
9 

T e s t  

02 N 2  co2 H20 A r  

0.0087 0.0747 0.733 0.0611 0.122 

.0436 , I .I22 I . 0 ~ 5 2  i .i50 1 .Or86 1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

T e s t  

1 
2 
3 
4 
5 
6 
7 

( a )  T e s t  p a n e l  1 

Mole fraction of - 
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I O . ~  
.096 .741 

02 
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0.0752 

.051 I 

0.116 
. I04  
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.081 
.081 
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. lo4  
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-096 
.050 
.065 

820 

lilo ,103 
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Section 2 

Panel 1 Reinforced 

Panel 2 Striated 

I 

Section 1 

Panel 1 Reinforced 

Panel 2 Reinforced 

\-25.4 

Section 4 

Panel 1 Striated 

Panel 2 Striated 

Section 3 

Panel 1 Striated 

Panel 2 Reinforced 

(10.01 c 

(a> Panels  1 and 2. 

Figure 3 . -  Test panels .  A l l  dimensions are i n  c m  ( i n . ) .  
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I O P  

84.6 
(33.3) 

Aluminum substrate -/ 

- - 
-f-/ 

50.8 (20.0) 

I xp 

k p . 2 5 . 4  (10.0)-+-25.4 (10.0)- 

(b) Panel 3 ( s tr iated) .  

Figure 3 .  - Concluded. 

21 

i 



102 (40.2) - 
k 1 2 . 7  (5) I .  . .  

Flow - 
Boundary-layer tr 
0.24-cm (0.094-in 

diam spheres 

1,-300 (118) 1 

( a )  Test panel  1 o r  2 i n s t a l l e d .  

0 Surface pressure  orifice 
0 Boundary-layer probe 

t '  /-' Glasrock -\ 

I 

Aerodynamic fences 
( u s e d o n p a n e l l a n d 2 t e s t s )  ~ - - - - - - - - - - - - - - - - - I  

(c) Cross sec t ion  of panel  holder  ( t e s t  panel  3 i n s t a l l e d ) .  

7 142 

1 

Figure 4.- Panel holder  detai ls  and instrumentat ion.  
A l l  dimensions are i n  cm ( i n . ) .  
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Figure 5.- Top view of panel holder  i n  test  sec t ion .  

23 



I = 50.8 
(20.0) 

0.238 

0.450 

0.750 

0.238 

0.550 

0.750 

0*32 2.54 (1.00) D (0.Y5) 4 
-0.250 

-0.075 

-0.250 

0.250 
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0.250 

25.4 (10.0)- t - 25.4 (10.0) 

t xp 

Thermocouples 4/ . 

Typical thermocouple installation 
in plug and on back surface 

Flow 

Thermocouple location 

Thermocouple in phg and on back surface fs) 
I % 

0.500 -0.250 
0.500 0.250 
0.700 

Figure 6.  - Thermocouple loca t ions  and i n s t a l l a t i o n  de ta i l s  f o r  
test panels  1 and 2. A l l  dimensions are i n  cm ( i n . ) .  
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4.65 (1.83) 

k- 3.69 (1.45) 

\ 

- Flow 

Total temperature 
probe 

0.16 (0.063) diam 
1 Vent holes 

Panel-holder surface 1 

(a) Schematic of probe. 

Figure 7.- Boundary-layer survey probe. A l l  dimensions are i n  c m  ( i n . ) .  
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(b)  Probe i n  extended pos i t i on .  

Figure 7. - Concluded. 
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Laminar theory 
of reference 9 

3.23 cm 
(1.27 in.) 

Present 
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Figure 9.- Boundary-layer velocity profile. Panel-holder aagle 
of attack, 7 O ;  test 7 on-test panel 2. 
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! 
Flow 

Figure 10.- Panel 1 after tes t  8. 
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4 Reinforced -L- Striated 

0.5 

0s 
, 

,-Char +Char 
O.S. 

I nterface J L ~nterface 

( g )  xp/R = 0.938. 1-77- 306 

F i g u r e  13.- Spanwise - sec t ion  p h o t o g r a p h s  of t e s t  p a n e l  1.+ 
R = 50.8 ern ( 2 0 . 0 - i n . ) .  
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Original surface (0.S.) f Surface recession 

(a) Striated sec t ions .  
0 riginal surface (0. S. ) 

/‘- ,-Surface recession - 
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yP ’ cm 

( b )  Reinforced sec t ions .  

Figure 14.- D i s t r ibu t idn  of sur face  recess ion  and char-virgin-material i n t e r f a c e  
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L-75-7024.1 
(c>  Reinforced sec t ion .  

Figure 16.- Concluded. 
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I, 84.6 cm (33.3 in.) l q  

Figure 18.- Panel 3 after tes t  6 .  
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L-76-729.1 
Figure 19.- P a n e l  3 after t e s t  7. 
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Or iq ina l  surface (0,s.) 

(a) xp/R = 0.25.  

O.S. 

( b )  xD/R = 0.54.  

(c )  xp/R = 0.77. 

(d)  xp/R = 0.92.  Char  
0s. 

L- interface 
( e )  xp/R = 0.98. L-77-307 

F i g u r e  20 .- Spanwise - sec t ion  p h o t o g r a p h s  of p a n e l  3. = 84.6 cm (33.3 in.). 
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Figure 21.- D i s t r ibu t ion  of surface recess ion  and char-virgin-material 
i n t e r f a c e  depth for panel 3 after tes t  completion. 
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Figure 22.- Temperature h i s t o r y  of panel 2 during r ad ian t  hea t ing  tes t .  
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