General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

INORGANIC CHEMISTRY--DIRECT SYNTHESES FROM
PURE LIQUID SO₃ AND FROM TRIVALENT AND PENTAVALENT
MITROGEN DERIVATIVES

B. Vandorpe and J. Heubel

(NASA-TM-75171) INORGANIC CEEMISTRY:
DIRECT SYNTHESES FROM PURE LIQUID SO3 AND
FROM TRIVALENT AND PENTAVALENT NITROGEN
DERIVATIVES (National Aeronautics and Space Unclas Administration) 7 p HC A02/MF A01 CSCL 07D G3/25 49799

Translation of "Chimie Minerale--Synthèses directes à partir de SO3 pur liquide et de dérivés azotes tri et pentavalents," Comptes Rendues Hbdomaires des Séances de l'Academie des Sciences, Paris, Vol. 260 (June 21, 1968) Group 8, pp. 6619-6621

NASA TM-75171	2. Government Acc	essian No.	3. Recipient's Catal	og No.
4. Title and Subtitle INORGANI SYNTHESES FROM PURE TRIVALENT AND PENTA	3 AND FROM	September September Performing Organi		
DERIVATIVES 7. Author(s) Bernard Vand Heubel, Laboratory	oseph ic Chemistr	8. Performing Organization Report No.		
Faculty of Sciences Delespaul, Lille, N		10. Work Unit No.		
9. Performing Organization Name and Address		1	NASW-2790	No.
Leo Kanner Associat Redwood City, Calif	3	13. Type of Report and Period Covered Translation		
12. Sponsoring Agency Name and Addre National Aeronautic	e and Snac	e Adminis	11 01151001	**
tration, Washington	46	4. Sponsoring Agenc	y Code	
de SO3 pur liquide et de dérivés azotes tri et pentavalents, Comptes Rendues Hebdomaires des Seances de l'Academie des Sciences, Paris, Vol. 260 (June 21, 1968) Group 8, pp. 6619-6621 16. Abstract From pure liquid SO3 the authors carried out direct synthesis reactions with N2O5, NO2C1, NOC1 which yielded N2O54SO3, 3SO3, 2SO3-NO2C12SO2-NOC12SO3 and Moc1SO3, the latter being obtained for the first time in the pure state. In all cases the crystallized product was obtained first by separating the constituents of the mixture and then going through a single viscous liquid phase.				
17. Key Words (Letected by Author(s)) 18. Distribution Statement				
		Unclassified-Unlimited		
19. Security Classif. (of this report) Unclassified	20. Security Class Unclassi		21. No. of Pages	22. Price
NAME OF TAXABLE PARTY OF TAXABLE PARTY.				

INORGANIC CHEMISTRY--DIRECT SYNTHESES FROM PURE LIQUID SO3 AND FROM TRIVALENT AND PENTAVALENT NITROGEN DERIVATIVES*

B. Vandorne and J. Heubel Laboratory of Inorganic Chemistry, Faculty of Sciences, 103, rue B.-Delespaul, Lille, Nord

Nitryl polysulfates are usually obtained at low /6619** temperature from SO₃ and N₂O₅ in solution in various solvents: nitromethane [1], POCl₃ [2], CCl₄ [3], liquid SO₂ [4]. To our knowledge, synthesis in the absence of solvent has never been attempted, or was attempted under such conditions that the formation of polysulfates was impossible [3]. One might think that the authors relied on solvents because of the difficulty of obtaining stable liquid SO₃ and also because the reaction is exothermic.

The fact that we had at our disposal a sure method of preparation and a proven apparatus encouraged us to attempt this synthesis and then generalize it to other nitrogen derivatives.

SO $_3$ is obtained according to a method specified by J. Bernard [6]: reaction of oleum on P_2O_5 , distillation of the raw product and passing over P_2O_5 with the formation of $P_4O_1O_5O_3$. The thermal dissociation of the latter yields pure SO_3 , the head fraction of which serves to wash the reactor. This fraction is passed off into an ampule which is removed. The reactor has a ground inlet on the side, connected on the one hand to the apparatus which produces the N_2O_5 and on the other hand to a feed pipe of dry nitrogen. The reactor

^{*}Paper by Bernard Vandorpe and Joseph Heubel, read by Georges Champetier, at the June 14, 1965 meeting of the Academy of Sciences, Paris.

^{**}Numbers in the margin indicate pagination in the foreign text.

remains in place under a current of dry nitrogen and is constantly shielded by columns of P_2O_5 until the completion of the operations. By means of a by-pass system the apparatus can be purged and the head fractions of N_2O_5 can be removed. The latter is produced according to a method described earlier [7] which has been improved so as to produce an hourly yield of about 20 grams of pure product.

In the reactor containing SO3, N2O5 vapor is caused to be given off at ambient temperature which is carried away by the dry nitrogen. A slight increase in temperature is observed which can be compensated for -- without its being absolutely necessary -- by immersing the reactor in cold water. The liquid becomes cloudy and then the constituents of the mixture separate.

The composition of the lower layer remains constant between -30° and +20°. It corresponds approximately to the formula $N_2O_57SO_3$. Following disappearance of the upper layer, the viscosity of the liquid increases sharply, then solid particles form which gradually take over the reactor. When the gas no longer passes easily some pure nitrogen is $\frac{/66}{1000}$ introduced and the temperature is raised to 60° for about 48 hours in order to remove the excess of SO_3 .

The solid obtained sometimes corresponds to the formula $N_2O_54SO_3$, sometimes to $N_2O_53SO_3$. This is explained by the large degree of viscosity of the liquid prior to crystallization. This viscosity promotes the supercooling of $N_2O_34SO_3$, thus the passage of the gas and the concentration of N_2O_5 . In fact, one more often obtains $N_2O_53SO_3$ than $N_2O_54SO_3$. In order to be sure of obtaining the latter it is necessary to wait for spontaneous crystallization by supercooling or by feeding which requires a special technique to avoid any traces of water.

The method thus described is limited to the preparation of trisulfates and tetrasulfates, but it never enabled us to obtain directly $N_2O_32SO_3$.

 $\rm N_2O_5^{4}SO_3$, ground and subjected to the action of $\rm N_2O_5^{}$ gas at ambient temperature, fixes the latter and is gradually transformed into $\rm N_2O_3^{}3SO_3^{}$. $\rm N_2O_5^{}3SO_3^{}$ submitted to the same treatment does not undergo any significant increase in weight.

By contrast, by grinding $N_2O_53SO_3$ or $N_2O_54SO_3$ with solid N_2O_5 in a glove box or on a heated plate under a current of dry nitrogen, one can increase the N_2O_5 concentration of the initial product, ending up with the final limit formula $N_2O_5^2$, $2SO_3$. This mixture of two polysulfates is stable up to 125° . It is not surprising that one reaches a limit formula without being able to obtain $N_2O_5^2SO_3$, since a solid-solid action is involved without the release of gas. It is possible, on the other hand, to obtain $N_2O_5^2SO_3$ in the pure state by causing N_2O_5 to react on N_2C12SO_3 or N_2C1SO_3 , the direct synthesis of which is mentioned below. The reactions seem to proceed as follows:

 $NO_{t}Cl_{2}SO_{t}+N_{t}O_{t} \rightarrow N_{t}O_{t}_{2}SO_{t}+NO_{t}Cl$ and $2NO(Cl_{2}SO_{t}+3N_{t}O_{t}) \rightarrow 2NO_{t}Cl+2N_{t}O_{t}+N_{t}O_{t}_{2}SO_{t}.$

With cooled NO₂Cl carried away by an inert gas the reaction on SO₃ occurs with a slight increase in temperature and is analogous to that of N₂O₅: formation of turbidity, followed by separation of the constituents, the lower layer corresponding approximately to the formula NO₂Cl5SO₃, increase in viscosity and crystallization of a solid which, after removal of the excess SO₃ at 60°, corresponds to the formula NO₂Cl2SO₃. The S/N ratio = 2.01; N/Cl = 1.01 as against S/N = 2.16 and N/Cl = 1.075 respectively in the violent reaction of SO₃ on NO₂Cl maintained at -80° [8].

The same type of reaction is found again with NOC1 carried away by inert gas: turbidity, separation of the constituents, lower layer corresponding to NOC15SO2, formation of a solid and obtainment of NOC1SO2 after heating the reactor to 70°. This compound is particularly interesting, since it is the only one among the derivatives described which corresponds to S/N = 1. Although having the formula $2SO_3$, NO2Cl it seems to have been obtained in a very impure form by Weber in 1864 [9]. Since that time attention has no longer been drawn to it, except by Seel [10] who doubts that it exists.

By causing an excess of SO3 to react on NOC1 cooled to -50° one can obtain NOCl2SO3 pointed out by Seel [10] and prepared by Weinreich in solution in liquid SO, [4, 11].

Tests in progress with SO3 and N2O3 and NO show that all of these synthesis reactions (gas + liquid SO2) proceed according to the same plan: the synthesis by means of separation of the constituents in the mixture which in turn, when one of the liquid phases disappears, is followed by an increase in viscosity and then crystallization of a solid. Quantitative transformation from liquid into solid presents a certain degree of experimental difficulty.

These syntheses have the advantage of doing without any solvent, taking place at ambient temperature and easily lending themselves to the preparation of large quantities of product.

REFERENCES

- 1. Goddard and Ingold, J. Chem. Soc., 2559-2575 (1950).
- 2. Gerding and Eriks, Rec. Trav. Chim. 71, 773-778 (1952).
- 3. Pictet and Karl, Bull. Soc. chim. Fr. 3(4), 1114 (1908).
- 4. Weinreich, Bull. Soc. chim. Fr., 2820 (1963).
- 5. Pascard, Mém. Serv. Chim. Etat (Paris) 38(4), 305-310 (1953).
- 6. Bernard, Thesis, Paris, 1957.
- 7. J. Heubel, Comptes rendus 252, 3268 (1961).
- 8. Batey and Sisler, J. Amer. Chem. Soc. 74, 3408-3410 (1952).
- 9. Weber, Pogg. Ann. 123, 333-346 (1864).
- 10. Seel, Angew. Chem. 68, 272-284 (273) (1956).
- 11. Ultimately we hope to be able to specify the composition of the various compounds pointed out. For the time being we are using dualistic formulas.