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EVOLUTION OF ION EMISSION YIELD OP ALLOYS WITH THE NATURE
OF THE SOLUTE. II. INTERPRETATION

G. Blaise and G. Slodzian
Laboratory of Solid Physics Associated with CNRS [Conseil
national-de la recherche scientifique, National Council
' '. of Scientific Research] .

1. Presentation of a model.- ' ••

The atomic particles ejected during bombardment of a target

have energy with a spread between a fraction of one electron-volt

•and several hundreds of electron-volts. Their velocities are so weak

that one cannot assume that the conduction electrons at the Fermi

level, which are much more'rapid, • remain in a neutral state at the

moment of their exit from the metal. From this observation it

follows that the process of ionization cannot occur except outside

the metal and in the condition that the atom carries, in its elec-

tron procession, an energy of excitation higher than the ioniza-

tion energy. Then one has a case of auto-ionizing states [1].

In order to determine the probability of the formation of

auto-ionizing states, one has to follow the evolution of the

electron structure of the atom during its motion in the metal from

its crossing"of the surface up until it has sufficient elongation

not to interact with this surface any longer.

The difficulties of such -a rigorous approach have led us to

construct a simple model, going from known experimental data.

Also, photon emission of the ejected atoms belonging to the first

transition series shows the existence of numerous strongly excited

states in which an electron of the d shell participates [2-3].

This suggests that the auto-ionizing states of even higher energy

are themselves the result of excitation of at least an electron

*Numbers in the margin indicate pagination in the foreign text.



of the d shell. To put it another way, the auto-ionizing states

responsible for ion emission are, at departure, carriers of a

hole on the d shell. We have shown that the existence of this

hole was a necessry but not sufficient condition for the state to

be auto-ionizing because it must be no more than the energy divided

among the electrons outside the d shell, being too high for a

spontaneous deexcitation of the atom following its ionization

A very diagrammatic description of the exit of the atom, which

uses a frequently assumed hypothesis for problems of the surface •

[5] makes it possible to reach a simple formulation of the proba-

bility of the formation of auto-ionizing states. This hypothesis

consists of introducing a critical distance x beyond which the

particle.can be considered as free, and to assume that the ba-

lance of the electron structure of an atom can be translated, in

x , as a transition of electrons occupying the states near to the

Fermi.level toward the states of a free atom [4]. Beyond x ,
^

electron changes remain possible still, and can lead to a modifi-

cation of the proportion of auto-ionizing states obtained in x ,

destroying a small part of them .[6]. •. '

If one defines a probability Fd(v) for an atom expelled with

velocity v, one finds in x with a d hole and a probability
\*

P (E -6-E_) for the energy of electrons outside the d shell asxc m F

being higher than the energy of ionization, the probability for

an atom being in an auto-ionizing state will be equal to the

product of F, (v)P (E -6-E_). In our model, the calculation ofd x m Fc _
P (E -6-E_) rests on the hypothesis that the electrons which re-x m r .c
main excited, during transition to x , retain the same baryonic

C
center"of energy [4]. It is a .question then of determining the

probability at which these electrons taken in the., metal will

have a baryonic center of energy located above a certain value

E corresponding to the first auto-ionizing state. If Ep is the



departure work and 6 is the energy of excitation of the ion formed,

electrons in which the baryonic center is located between the Fermi

level and the E -6-E,-, level are the only ones which occur in them r
formation of auto-ionizing states (Fig. 10 in the Appendix). It is

natural that the level drops in the section of states occupying

the conduction band, that is to say, that E -6-E_ is positive.m r

The probability P,(v) that an atom expelled with velocity v

shows that a secondary ion is the result of possible breakdown of

auto-ionizing states by interaction of the atomic surface beyond

x . One can point out [6] that probability PQ(V) that an auto-

ionizing state escapes this destruction by increases with v and

approaches unity for particles emitted with a kinetic energy

above 30 e V . ' • - . ' - . •

Finally, one. then has:

-Fi(v)PXc(Em-S-Ef)P0(v). (i)

This probability of ionization corresponds with the.rate of

ionization of atoms expelled with velocity v, which was defined

in the first section. In the case of an A, B alloy, one has
_L ~~ C C

for each of the elements:

(2)

As we have already indicated, one can easily obtain the re-

lationships of ionic yields from ions emitted at a given energy

by testing. If one has carried out measures on ions of energy

which are too high, so that PQ(v) will be practically equal to

one, one has
KC(B') r/VB*)
—'. _ = — #

Pln(Em-d-Ef) C,(i;) c (3)



A B A
In this expression, P.- and P.g on one side, F R on the other,

represent the probabilities P and F relative to the AB alloy
•"• u (Ji

and its elements A and B. Experience shows that the energy distri-

butions of the A and B ions, coming from alloys between transi-

tion metals, are homothetic if -the energy of emission is above

30 eV [7]. The relationship F*L( v)/F^n(v) is' then independent ofAr> AB
the speed of ejection of ions which are sufficiently fast. This

observation inspires us, at the first stage, to compare the experi-

mental values of ion constants

K
AA"

B A '
and. the calculated relationship P B/P = xAn-.

For a series of al-

loys of the same matrix, one returns in some way to take in a

probability of the formation of a constant d hole for the dissolved

elements and for the matrix. We will examine this point a little

later on, discussing a possible modulation of emission for

probability p
d- ' .

' In aluminum .alloys with an element of transition T. at which

one no longer has similarity between energy distributions of the

T and AL ions, one will simply compare the yields of K(T ) to

the probabilities pAlT(Em~5"EF') '

The explicit calculation of P (E -6-E.J necessitates know-xc m F

ledge, on the one hand, of the nature of auto-ionizing states

and their density g(E) on the atom .and, on the other hand, of

density n(e) of the initial electron states in the metal.

Examination of energy distributions of the ions emitted, as-

suming the condition E -6- Eri>0, we have retained two types ofm r
auto-ionizing structures in the alloys being studied [6]:



— for copper: .

.3d"'nlnT-»(3dV + e

— for elements of titanium in nickel:

-. 3d-2nlnT'nT-»(3d-l4s)* + e.

One sees, .from these two structures, that it leads to considera-

tion of excitation of two electrons in the first case, and three

electrons in the second. The values of E -6-E~ which follow fromm F
these structures are recalled in Table 1. • .-

" ' • . ' . - . - • ' • TABLE 1 ' -
• • ' . . ' • . VALUES OF E -5-E™ . ' 'm r

atrices

Fe
Co
Ni
Cii
Al .

Ti

+ 1.18
+ 1
+ 0.6

" + 1.03
+ 1.22

V

+ 1.35
+ 1.19
+ 0.79
+ 1.2
'+ 1.4

Cr

+ 1.25
+ 1.09
+ 0.7
+ I.I
+ 1.3

Elements
Mn

+ I.I
+ 0.93
+ 0.55
+ 0.95
+ 1,14

in solut ion . •
Fe

+ 0.75
+ 0.35
+ 0.75
+ 0.95

Co

+ 0,85

+ 0.3
+ 0.7
+ 0.9

Ni

+ 1
+ 0.85

+ 0.85
+ 1.05

Cu

+ 1.1
+ 0.95
-I- 0.55

+ 1.15

We will assume in the series of calculations that density

g(E) of auto-ionizing states of the atom is constant.

Because of the density of the states n(e), one knows that in

most of the alloys, the solute atoms have their own electron

structure localized in a volume on the order of atomic volume,

and that it is very different from the electron structure of

atoms of the matrix. One can ask then if•the-auto-ionizing

states of solute atoms are caused by electronsvhich travel from

the conduction band of the matrix or if, on the other hand, they



are the result of electrons well-localized around the atom. The

first eventuality causes one to take the same electron density

n(e) to explain ion emission of diverse types of atoms and one

sees then that it directly attests to the fact that it can play

the role of a matrix in the over-excitement phenomena which we

have observed. The second eventuality leads one to take electron

densities which are different for the two types of atoms and then

again the matrix controls the mechanism of emission of solutes

where the electron structure- of the latter depends on the metal

in which it is -dissolved.

We have first tested the first eventuality which was found

very often not to conform to experimental results [8-9], One

should always emphasize that the electrons of the matrix can in-

tervene with the emission process of slow ions where they are

responsible for breakdown of. part of :.the auto-ionizing states [6].

In this article. we will examine the second eventuality, that

is, that the .local electron structure of the atom can interfere

i n " t h e ionizing mechanism. ' • . - . • • • .

One shows in addition that the probabilities

R(Em-6-EF)

P(E -<$-£„) are equal to:m r

«r * r, mP(Ea-d-Ef)= - T— -or

as 2 or 3 electrons intervene in the auto-ionizing structure. N»

is the number of electrons'd + s of the atom and the function

R(E -6-E,.,) is the result of a convolution on electronic densitym r
n(e) of the atom in the metal on the field of energy which oc-

curs between E -6 and E^.



2. A comparison of experimental ion constants k.E of alloys and

the -relationships calculated of probabilities of formation of
auto-ionizing states y.p. .

In substituting an element of transition of an atom of pure

metal in order to form an alloy, one introduces an excess or a

deficiency of electrons equal to the difference of the Z valence

-of atoms of metal and the element of transition. Electrostatic

equilibrium of the metal alloy requires that the dissolved atom .

maintain its electrical neutrality in an atomic volume of about

(10). This filtering is the result, of distribution of a group of

electrons with the valence of the dissolved atom on the states in

which density is, in general, different from the density of the

states of the-matrix. - It is the distribution in energy n(e) of

these electrons that we have described in order to deduce finally

the probabilities of ionization. This description applies, more

precisely, to the d electrons which are found distributed in the

densest states localized in a narrow field of energy. The impor-

tant number of these electrons and their distribution are, the

factors which determine the efficiency of the ionization process

analyzed from the local electron structure.- On the other hand,

the electrons of conductibility, less numerous and distributed

on low-density states, more extended in energy would contribute

little to the ionization process.

The alloys are classed in two categories:

— those in which the electron structure does not have a

resonant state,

— and those which carry a resonant state or a potential

bound state [10]. .

The numerical calculations of probabilities of the forma-

tion of auto-ionizing states have been made from simple analyti-

cal expressions approaching, at best, electron densities; some

of the results already pointed out in reference [4] are repeated

simply in the Appendix.



2.1. Alloys which do not have a resonant state. •

2.1.1. Alloys on a base of nickel and cobalt which contain im-
purities from the neighboring valence: No^Co; Ni_Fe; NiMn; CoNl;
CoFe ;

The d bands of ferromagnetic nickel and cobalt are separated

into two halves containing opposite spin electrons d and d_ . The '

Fermi level uniquely intercepts the highest energy d half-band

[11]. When one alloys these two metals and elements of the neigh-

boring valence, the excess or deficiency of electrons carried by

the solute modifies .filling of the d_ half-band of highest • density .

at the Fermi level without changing the shape itself of the

density of the states too-much (this corresponds to a model with

rigid bands [10-12]). •-' -. . . • "' . . .• •

To the extent that deformation of the density of the states " • .-

close to the Fermi level is weak, one can estimate the probability-
B ' • ' • '

of the formation of auto-ionizing states P.R in using the para-.
' ; XT. £3 ' • -]

meters of density of the states of pure matrices of nickel and cobalt..

If N' is the number of -electrons d + s of an atom of the ma- • /2^

trix and N + "Z that., of. a solute atom, one finds-. -• - .- - '

V :""= ( E m - t - Ef)i>ult I • N Y
/AB (Em - fi - E r)^ t < x ' \N + Zj

in using the approximate expressions of density of constant states

(§4 in the Appendix). .

The appearance of an antiresonant state at the height of the d
band has little effect on the probability of ionization given
the fact that electrons located at this level are too far below
the Fermi lever to participate effectively in the .formation of
auto-ionizing states.

8



The values are the following:

Matrices

Ni

Co

Z

z*"
/All

Mn

- 3
5

- 2
4.5

Fc

- 2
0.9
1

1.7

Co ,

- 1
0.41
0

Ni

0

4- 1
1.

In reporting the experimental results presented in the first

section, one can state that XAR -*-s

constants measured (Figs. 1 and 2).

g°°d agreement with the ion

d.ld.

k

SO
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20
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Alloys

40

30--10,'

• • 5

(

•\\I \
• • '. N

T ••••*•
Cr Mn Fe . Co Ni Cu

Fig. 1. Emission of elements of
transition T in solution in nickel;
• measurements of ion constants k;
X calculations of -

2.1.2. Alloys of nickel
and cobalt containing non-
magnetic Impurities: NiCu;
C£Cu.

In the first ser-

ies of transition elements,

stability of d orbitals in-

creases with the atomic

number [14]. This involves,

for an element at the end

of a series such as copper

in solution in cobalt or

nickel, a lowering of the

energy of the d states be-

low the Fermi level of the

matrix. One observes well,

experimentally, that the

density of the d states on

copper is practically zero

at the Fermi energy [15].

The electron structure of

copper is made up here of

a zone with strong density



k
X

10

Alloys CoT

states containing the complete

shell of d electrons topping a

band of weak density conduct 1-

bility. In its form, this

structure quite resembles that

which one finds in pure copper

(Fig. lla Appendix) except for

differences in the width and

position'of the d band. One

does not have any precise data

for these two parameters in

order to calculate the proba-

bility. of formation of auto-

ionizing states of copper in

these alloys. However, one

could remark that this struc-

ture must have probabilities

which are too weak comparable

. . . . - to those of pure copper due

to lowering of energy of the d states, high -density, -slightly be-

low the Fermi level. •

In simply transposing electron density of pure copper

to each of the alloys, one would obtain the probabilities on the same
Cu Cu Cuorder P . _ ̂ P_ „ ^P^ , which explains qualitatively that the co-

UOOU OU

Ti Cr Mn Fe Co Ni Cu

Fig. 2. Ion emission of elements
of transition T in solution in co-
balt: • measurements of ion con-
stant k;' X calculations of x-

efficient's of~e~xcitation measured are in the neighborhood of one:

/'NJC-U ~ /'c-ocu ^ I .

2.1.3. Alloys on an-iron base: FeCo, FeMrv, FeCr, FeV.

The complexity of the structure of the band of iron makes

study of these alloys very difficult. In the model developed by

Gomes [16], the density of the states for each of the spin direc-

tions of the d band is represented by two identical parabolas

10



"' '̂.x ^ *</

Fig. 3- 'Electron structures of al-
loys on an iron base according to
Gomes [16]: a) structure of the
iron band; b) 'electron density of
cobalt in iron; c) shifting of
Z,(e) charges and electron densi-

ties of V, Cr, Mn.

twhich overlap in

part (Fig. 3a). The energy

divergence of the two half-

bands is such that the Fermi

level drops in the zone of

strong d density and weak

d_ density. Then there will

be a majority of + spin

electrons located close to

the Fermi level which will

contribute most to shielding

from the impurity. This

shield results from a dis- 72^7

.placement of the 2,(e)

charges and consequently

from a change in density of

the d states of the iron

de

around the impurity. When one dissolves manganese, chromium or

vanadium, the balance of this operation results in elimination of

one, two or three charges in such a way as to maintain the neutral-

ity of the atomic cell. On the other hand, when cobalt is dis-

solved, an additional charge is added.

The calculations developed by Gomes give the expressions

An(e) and consequently, the probability formation of auto-ionizing

states is in principle calculable by taking a density of the

states n,(e)+An(e) around each impurity. However, the complicated

forms of the d .band of iron and the An(e) expressions make this

calculation difficult. On the other hand, the approximations which

we make are too rough to be able to correctly deduce the method of

precise numerical calculation. For these reasons, we have prefer-

red to discuss qualitatively, according to the Gomes model, the

11
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d. id. d, d. d. d.

Alloys F«T

V
\

Cr ft Co Ni Cu

Fig. 4. Ion emission of the ele-
ments of T transition in solution
in iron: • measurements of ion con-
stants k; X calculations of x-

values which show weTl the in-

crease in ion emission of cobalt to manganese (Fig. 4).

'form of densities of the states

around the impurities (Fig. 3)

and to directly deduce the con-

cept of evolution of the proba-

bilities of ionization.

If the potential dis-

turbance created by the impur-

ity is weak, the Z,(e) charge

displaced by the e energy is

proportional to the density of

the n (e) states of iron [16],

This is approximately the case

for manganese, for which defor-

mation of the d band is slight.

Likewise, for cobalt, deforma-

tion close to the Fermi level

is very weak. One can then

have an estimation of probabili-

ties Pp11.* and Pp0^ in using

the d Fand of iron. One then

finds *„_,„,_> 2 and XFeCo^
Q'75f

The d band of iron contains 7.2 electrons/atom, that is to

say, 2.5 in each of the two full parabolas and 2.2 in the third,

which is intercepted by the Fermi level. But for impurities with

valence lower than that of iron, such as chromium and vanadium, the

largest part of elimination of charges results in this latter para-

bola. One could then consider that it is practically vacant around

chromium and vanadium after 2 and 3 charges have.been repelled. The

electron structure of these impurities can be placed side by side

with the two deformed parabolas in the same manner and contain very

12



close to the same number of electrons. The approximation of a

constant for a width A^4.5 eV, does not seem very unreasonable in

a case where one is carrying out an approximate calculation. The

probabilities are then, respectively

P&c, - 8,5 x 10-' et P v̂ ~ 10-.'

in which-• • • ' ' '
Xh.tr ~ 14 Ct XFeV ~ 16 .

The result for vanadium is in good accord with the experimental

ion constant (k ^13) but it is much higher than that of chromium
C A. LJ

(k ^3) (Fig. 4). In reality, one must not attach too much im-
C •**£•' - ' '

portance to numerical values, given the very approximate diagram

used for describing the electron's structure. Qualitatively, on

the other hand, the increase of the ion constant which one finds

when the valence of the impurity decreases, is interpreted well /248

by the fact that the electrons are more and more repelled across

the Fermi level, which then .increases the probability of the for-

mation of auto-ionizing states. .. .

2.1.^. Alloys on a base of iron containing nickel and nonmagnetic
elements: FeNi and FeCu.

The two additional electrons of nickel or the three of cop-

per have not been found to lodge in the d half-band almost full of

iron-where there are only 0.3 holes available per atom. Shielding

is then assured by filling of the empty parabola of the d states.

One then has a total of 2.5 + 0.3 places. In these conditions, it

is probable that the d electrons localized around the copper atom

together fill the d states in the same way as in an NiCu alloy.

One would not expect then to find an emission of Cu ions almost

identical in the two FeCu and NiCu alloys, and this is what exper-

ience shows when

13



. ' Figure 5

The electron structure of

nickel in solution in iron is not suf-

ficiently well known to be able to

calculate the probability of the for-

mation of auto-ionizing states. Pre-

serving the structure of the band of

the iron matrix, one obtains

Xp N.^1.8, a value which is close to

the ion constant (Fig. 4). Although

obtained in a very arbitrary manner,

this result cannot be, however,

extended to that which gives a more

exact model of the electron1 s structure.

2.2. Alloys having a resonant state or a potential bound state.

It frequently occurs that the atomic d level of an element of

transition in solution is found immersed in the band of conducti-

bility of the matrix too close to the Fermi energy. The level is

enlarged in order to form a potential bound state by resonance

with the d components of the dissolved state of the conduction

band [17] • The energy states involved with this resonance are

divided into a small band with width 2F centered around an energy

e (counted from the bottom of the conduction 'band) (Fig. 5).

There is then locally an excess of density of states which can

contain the charge of the initial state, that is to say, 10 elec-

trons at a maximum for a d level.

This phenomenon occurs in AIT, CuT and also in the alloys be-

tween transition metals where the valence of a solute is very

much weaker than that of the matrix, as for example NiCr .

The addition of density of the states per unit of volume

6n,(e) of the potential bound state varies like a Lorentzian

centered on the energy e -[17] (Fig. 5)



2(27-1-1) ,.
This approximate expression fixes the width 2T very well for the

potential bound state so that one can deduce the measurements of

specific electron heat and resistivity. The mean number <N,> of

d electrons contained in the potential bound state is equal to

where e,, is the Fermi energy counted from the bottom of the con-
r

duction band of the matrix.

Calculation of the probability of formation of auto-ionizing

states is carried out in the "following manner : .

— One chooses -ja. reasonable value of the width 2F of the poten-

tial state. This is maintained constant in a determined matrix.

Then one ignores widening involving setting up a resonant state [17].

-- Knowing the number <N,> of d electrons, one deduces the

position of the center of the resonant state by relationship to

the Fermi -energy.

— Finally, one calculates the probability P(E -6-E_) using

the values E -<$-£_ of Table 1.; One can write this probabilitym r
in the form

I kj3
3 "0

in the case where auto-ionizing states carry three excited elec-

trons. Nn i:

.in solution;

trons. Nn is the total number of d and s electrons of the atom

15



d.

Fig. 6. Electron
structures of Ti,
V, . Cr in nickel.,

represents the number of triplets of energy

states favorable to the formation of auto-

ionizing states; R, 3 relates to three states

taken in the 6. band. R,2 two states of thea s

d band and a band of conductivity s ( the

electrons of conductivity will always be de-

signated by s) and so forth. In many alloys,

the most important term comes, from R,3 and we

can limit ourselves to estimating it.

The method of positioning e becomes in-

applicable when the potential state is com-

pletely full, or at least very imprecise

. .when it is close to filled or almost empty.

The density of the Lorentzian state shows, in

effect, too.important an enlargement in energy (Fig. 5) which

causes, for extreme situations, the center e of the resonance to

be found rejected very far below the Fermi, level or, on the con-

trary, too high, which corresponds more to the idea of a potential

state very localized in energy. In this case, one could use di-

rect experimental measurements of the center of resonance, for ex-

ample, by photoemission [18-20].

7249

For convenience in calculation, one could equally well have

used a parabolic density of the states (Fig.. 5)

2(2/4- I)

(7)

adjusted as well as possible to density of the Lorentzian states

by means of the parameter b (calculations in the Appendix).

16



2.2.1. Alloys on a base of nickel and cobalt containing impurities
of very distant valence: Ni_Cr, N1V, N1T1.

When the potential of the impurity.is strongly repellent,

the d states are repelled at the Fermi level and then form a po-

tential bound state. In the first series of transition, this ef-

fect appears when the difference of Z valence of the solute and of

the matrix is higher than or equal to 4 for alloys on a nickel

base [13, 15, 21]. Then, starting with chromium, there is a forma-

tion of a resonant state at the Fermi level.

The electron structures of chromium, vanadium and titanium

are shown diagrammatically in Figure 6. They are made up of a re-

sonant d state of narrow width, 21̂ 0.3 eV- and a d "of nickel

more or.less deformed according to the nature of'the impurity

[13, 22-24]. . • .

For chromium, the d state contains an electron of about

(N+=l) and a d_ half-band of 4.5 electrons (N =4.5). The deforma-

tion of this band is very slight here Fig. 6). The probability

PNiCr i s equal t o • ' - • ' • " - • •

To calculate this expression, one assumes that the electrons of

the potential d state are localized at Fermi energy (this is

proven by the fact that 2T^0.3 eV is smallj and that the density

a in the d half-band is constant. As E - 6-E =0.7 eV is larger— . m r
than the width 2T, all the electrons of the d state participate

in the formation of auto-ionizing states.

Then one has
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N=6 for chromium and it has retained the value a 1̂.1 electron/

atom.eV in uniformly distributing the 4.5 electrons of the d

band on a width A^4 eV, being 1 eV less than the total width of

the d band of nickel. This difference of 1 eV corresponds to the

divergence of the d and d bands [11].

, One finds P x i c r °r v^ w±th an electron

less than that of vanadium, the potential bound level is open.

For titanium, an additional electron is then removed from the d

band. In these two cases, the d density is repelled across the

Fermi energy. Not having any way of knowing this density, we

assume it always to be constant, but it is -certain then that the

results will be deficient.- One finds.

P^y - 2,5 x KT2 and /jJ/Ti - 2 x IO'1

in which • . • •.
y.Niv ~ 8 and £Nm ~ 7 .

If one refers to Figure 1, one sees that in the series of

alloys on a nickel base, the calculated values of xflR show the
riD

same evolution as experimental ion constants. In particular, one

can state that the peak observed at the level of chromium seems

to be well-related to the appearance of a potential bound state

in which the electron density at the Fermi level is very high.

2.2.2. Alloys CuT.. .

The width of the potential bound state is estimated at

1 eV. It should be noted always that this choice is not impera-

tive. It simply represents a reasonable order of magnitude jus-

tified by theoretical considerations [17] and by experimental

measurement [18-20].
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One fixes the position of the center of a potential bound

state by relationship ,to Fermi energy as a function of its filling.

For certain alloys, one must also take into account the decoupling

following the two directions of spin. This decoupling exists for

vanadium, chromium, manganese and iron, but does not exist for ti-

tanium, cobalt and nickel. The degree of occupation of the two

states of spin is indicated in Table II [25]. One notices that d

TABLE II

TABLEAU II

Ti

1.5
1.5
3

Cr Mn Fe Co Ni

2ou3
0

2ou3

4
0
4

5 5 4.25
0.7 1.2 4.25
5.7 6.2 8.5

4.5
4.5
9

is completely empty for vana-

dium and chromium, while for

manganese and iron d_ is

partially filled and d+ is

.full. .

The position of the

Fermi level as a function of

the N, number of electrons is

shown for each alloy in Fig-

ure 7. The calculations of

probability are made taking

into account only the d states.

One ignores the slight contri-

bution coming from the assoc-

iation of the d and s states.

Cu Ti Cr Mn Fe Co Ni

Fig. 7. Electron structures of-
the elements of transition in solu-
tion in copper. The hatched areas
represent .occupied states. The
arrows show the quantities Em-6-Ep.

We will review the

results of these calculations

for different elements:

— Titanium: the

quantity E -6-Ep̂ l eV is

slightly higher for the half-

width of a potential bound

Then, it is not. unreasonable to assume that all the dstate.

electrons participate in the formation of auto-ionizing states.
Ti

Calculation of PQUTI is then very simple and is shown by:
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Ti
With Nd=3 and a, total number of electrons N=4, one finds

and Xo T-
=l60. This is a value which is very close to the ion

constant .k VLOO+20 (Pig. 8).
• "™~

It is interesting to note the very direct manner by which this

.result has. been obtained. The error from which it could be vitia-

ted would eventually be provided from evaluation of N,, but not by

the width of the potential state. This then is a good test of the

mechanism of proposed ionization.-

— Vanadium: One chooses the mean number of d electrons equal

to 2.5 which figures in Table II. The potential d+ state is then

true for half full. As E -6-E =1.2 eV is higher than T, one couldm r . . .
also consider that all the d electrons participate in populating

the auto-ionizing states. Then one finds in taking the mean value

of 2.5 electrons PCuV^0.125 and XCuV'
v50. This value is higher

than the ion constant (k ^20) (FTg. 8), but the calculation viti-

ates an error which arises from imprecision at which N, is known.

— Chromium: With four electrons, the d state is almost full.

One must have recourse this time to a complete calculation begin-

ning with the parabolic approximation (expression 7). The details

of the calculation are developed in the appendix. Here we will
r r — 2

give the result PcuCr>9
x10 and xCuCr%35> The last estimate is

higher than the experimental value~k ^15, but always, is within
Q Xp

acceptable limits (Pig. 8). .

— Manganese and iron: The d state is full and cannot be used

as Lorentz distribution for fixing its center according to the

relationship to Fermi energy. The experimental studies of photo-

emission [18] show well the presence of high density of states
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Fig. 8. Ion emission of elements
of transition T in solution in
copper, o measurements'of ion con-
stant k; x calculations of x-

kCuMn=7 and kCuFe=l.8 are weaker than

merits of the ^series (Fig. 8).

slightly below the Fermi level.

It would seem that according

to these experiments that one

part of the d states of man-

ganese, for example, is super-

imposed on the d states of

the copper, but one cannot be

precise as to the position of

the resonance center. Calcu-

lation of the probability is,

consequently, of no interest.

Be that as it may, it is cer-

tain that the values of xAn

of these elements must drop

slightly in relation to the

preceding from the fact of

depression of the d states in

the conduction band. This

conclusion is supported by

an experiment where one obser-

ves that the ion constant

those of the three first ele-

-2

— Cobalt: There is no decoupling of the d state which contains

8.5 electrons. Approximate calculation is the same for chromium:

one uses a parabola (Fig. 5). This time, one finds PQ°C ̂1.5>

and XpjjpQ^lS. This value is much higher than the ion~onstant

k ^0.3- One must always recall the particular case of this alloy

which actually is not in solid solution at all if the concentration

in cobalt is lower than 0.1$. [26]. It is not magnetic in this case

and it is with this hypothesis that one has obtained xc Co^l8. On

the other hand, above a concentration of 0.1/5, cobalt ha"s a tendency

to form small accumulations in which there is a magnetic state [26].
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But the alloy studied has the concentration of 40%, and precipitates

of cobalt have been observed (see the first section). Therefore,

it is clear that the experimental result is not one which would

give a good, solid solution.

—Nickel: The d state is not decoupled and is found almost fil-

led with 9 electrons. This is a case where positioning of the reso-

nance center in relation to the Fermi level is .delicate. If one

considers the Lorentz distribution of the center of resonance, it

is located at 1.4 eV below the Fermi level. 'The photoemission ex-

periments indicate 1.2 eV [18], which is in good agreement with the

preceding value. The results are the following P̂ 1,,.̂ !. 5X10~ and

. This latter value is in very good agreement with

3.5+0.5 .(Fig. 8). . • ' •

In a general manner, one can say that in alloys based on cop-

per (Fig. 8), the progression of the potential bound state across

the Fermi level involves an increase in the probability of forma-

tion of auto-ionizing states -measured by XAB
 an<3 comparable to

that of ion emission; this shows a new justification for our ioniza-

tion mechanism.

2.2.3. AIT Alloys.

One can show with a good approximation, the density of states

of the conduction band of aluminum by a parabola [27] of 13 eV ap-

proximately in width. Shielding of the impurity of transition is

assured by conduction electrons and by a crown of d electrons

which are distributed on the potential bound state [17]. One would

suppose that the conduction electrons which surround the atom of im-

purity are distributed on energy states in which the density is pro-

portional to that of the conduction band of aluminum. The parabolic

approximation is then maintained. There is no decoupling of the

potential bound state in these alloys [17]. The situation is then
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probabilities starting with the

relationship PM1-S 3 with N
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TABLE III

Ti V Cr Mn I c Co Ni

/V total
electrons d < /Vd )
electron!) a N.

6 7 K 9 10
5 5 .6.6 7.25 (•) K
I 2 1.4 1.75 2

much more simple in CuT alloys.

Experimentally, one observes

an increase in ion emission of

copper to iron, then a drop in

the level of manganese, fol-

lowed by a rise (Cr) and a

decrease (V and Ti) (Fig. 9).

We are going to show that the

behavior is related to pro-

gression of the potential

bound state across the Fermi

level, as with the CuT alloys,

and to the number of electrons

which it contains.

The width of the potential

bound state of impurities of

transition is slightly larger

in the aluminum matrix than

in -that of copper [17]. We

have chosen 2T=2 eV. The num-

ber of d electrons has been

determined experimentally

[28-29]. It is shown in

Table III. One sees in the

table that the number of s

electrons is about one for Ti,

V, Cr to 2 for Mn, Fe, Co, Ni.

It is this statement that

makes it possible to explain

the oscillation of ion yields

of titanium to iron.

"The mean value is interpolated between the values of iron and nickel.
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— Titanium, vanadium, chromium, manganese, iron: The bound 7252

state is, at most,'filled to half for iron. But the quantity

Em-6-ET.,'̂ l eV is higher or on the same order as the half-width of. r
P. The situation is then identical with that of titanium and cop-

per and one can consider that all the d electrons participate in

the formation of auto-ionizing states. One could then write

. pT „ *̂ L±
1 AH *

Overlapping of .the conduction band and the potential state being

weak, one can neglect any contribution to auto-ionizing states
2 • 2which would lead to associations d s or ds . -In the same way,

one ignores the s associations. The preceding relationship is

written :

If N is nearly constant for a series of elements, the probability
S .

of forming auto-ionizing states must increase when N increases,

that is to say, when the atomic number increases. The effect is

shown in figure 9 for N =1 and N =2. One sees that a minimum
S S

for manganese appears" clearly. The probabilities are calculated

(Fig. 9) for each element, beginning with the d number of elec-

trons which figures in Table III. These probabilities reproduce

very faithfully the variations of ion yields.

T 3
One should note that the expression FAlT=^Nd//N certainly

represents a good approximation .to the extent that N, is well

known for titanium, vanadium and chromium. For iron, this ex-

pression slightly overestimates the probability because all the

electrons probably cannot be localized between the Fermi level

and the E -6-E^ energy,m p



— Cobalt and nickel: One must proceed here to calculation

using a parabolic approximation of the density of the.d states

(calculation in the Appendix). In addition, one must have taken
2 2into account the contributions of d s and ds which are not truly

negligible due to the fact of important overlapping of the s band
Co Niand the d state. Then, one finds P7';r, ̂ 0.14 and P , M.^0.08. TheseA _L O O A J-iN 1

values reflect very well the spectacular drop of ion emission of

cobalt and nickel. • • . • •

— • Copper: The ring of d electrons is full, and the d states

are dropped into the band of conductibility below the Fermi level.

One does not have more information on the position of the center

of resonance in order to calculate the probability of the forma-

tion of auto-ionizing states in copper. Meanwhile, one must ex-

pect that the lowering of the d states involves a-drop in this

probability as far as nickel is concerned; this is in agreement

with the reduction in ion yield. Assuming that the ion emissions
Cuof copper and nickel are proportional to probabilities Pfl-,,-,,, and

.PAlNi' °ne finds

1 -"" -2,5x10-*.

This probability, higher than that which was calculated for pure
Cu — 1copper Pp ^2.5*10 [**]» could not have been obtained by partici-

pation of the d electrons in the formation of auto-ionizing

states. One could then estimate that the center of resonance is

located at 2 eV approximately below the Fermi level.

3. Discussion of the interpretation.

It stands out from our study that, for an element in solu-

tion', a very clear correlation exists between electron density

close to the Fermi level and the ion emission yield.

On the other hand, residual resistivity of the alloys exa-

mined depends equally on electron density at the Fermi level.
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Also, is it natural to observe a certain relationship between the

evolutions of residual resistivity of a series of alloys with the

same matrix and ion emissions. There always exist differences

which occur, due to the fact that electrons which participate in

the formation of auto-ionizing states are retained in a band of.

energy which is relatively large (approximately 1 eV) whereas .

those which cause resistive effects are.localized at the Fermi le-

vel itself. . • . . • _" ' : .. '

Inasmuch as the fraction of electrons concerned'in the forma-

tion of auto-ionizing states and the electron density of the ' •".

Fermi level progress simultaneously,'one can witness a parallel

evolution of the curves of resistivity [17] and ion emission. •

'This is roughly the situation of elements of transition at the . •

end of. the series in most of the matrices used, and it is the

case in alloys based on nickel where chromium gives;a particularly •".

spectacular effect. On the other hand, for the elements at the

beginning of the series, in solution in normal metal, resistivity

is low because the electron density at the Fe'rmi level decreases .

[17], whereas ion .emission is often very high (for example, ti-

tanium and vanadium in copper). All the same, for the elements

in the middle of the series, the minimum ion emission of mangan- -•

ese in aluminum is not found on the curve of resistivity [17]

and the double hump of resistivity of CuT alloys [17] was not ob-

served in ion emission.. •

Our calculations'take into account the general course of the

phenomena and, in particular, the peculiarities of emissions of

chromium in nickel and elements of transition in aluminum (Ti,

Cr, Mn, Fe) but they are often very approximate.

One could consider improving the agreement with'experiments

by adjusting, for example at least the width of the potential

state in the CuT alloys where again a fraction of electrons
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would be slightly modified which participate in the formation of

auto-ionizing states in NiT alloys. That amounts, in a way, con-

sidering that the calculator probability x/\g is comparable to the

ion constant. But this method of operation has a limited interest

because one must not lose sight of the fact that.up until now, we

have not been able to take into account the eventual variation of

Fd(v) in which the effect naturally would change the probabilities

of ionization. We will then restrict ourselves to taking values /253

generally admissible in literature in spite of their lack of precision."

Our model describes too briefly the exit of the atom which

would make it possible to calculate probability F,(v). On the . :-

other hand, Joyes and Toulouse [30], going from the idea that. . ••

electrons delocalized close to the Fermi level cannot easily fol- •

low the atom in its movement, have shown that a certain probability

exists for an electron deficiency on the d layer of the atom once

the latter has left the metal. Then, one has there the mechanism

of formation of the d hole which can serve as the basis for cal-

culation F,(v). However, these authors have not taken into ac- .

count electrons which could form excited states and compare

"ionization of the d level" to ionization of the atom. Then, one • .

finds the existence of another interpretation of ion emission

in which the probability of .ionization would equally follow an

evolution similar to that of residual resistivity, taking into

account the fact that the magnetic state of an ejected atom could

be different from that of an immobile atom at a site. Also, de-

coupling of the .magnetic state of chromium and manganese in cop-

per [17] would not be maintained on an atom in motion which would

lead to a stronger probability of ionization than could occur

from the large residual resistivity of these impurities in a

nonmagnetic state, (one no longer observes a double hump in this

case). On the contrary, the atoms of mangenese coming from an

aluminum matrix could take on a magnetic state which would give

slight resistivity and would lower emission of this.element in re-

lation to emissions of their close neighbors, chromium and iron

.(Fig. 9).
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This interpretation is attractive, but it remains qualitative

because the -amplidute of the effects have not been calculated. In

other words, it is difficult to interpret from this model, evo-

lution of ion emissions of alloys on a base of copper (Fig. 8)

and, in particular, it is difficult to prove the strong possibili-

ties of ionization.of•titanium and vanadium.

It is not just that if one limits the model to

the formation of the d hole, Frf(v) could vary with the solute and

the matrix being considered .One still has to "find out if (and in

which cases) the amplitude of variations is sufficient to have a

significant effect on the probabilities of.ionization.

Nevertheless, it is clear that if a theory similar to that of

Joyes and Toulouse could be carried out to the numerical conclu-

sions and if one takes into account all the electrons, it would

make it possible at least to rate the validity of our model and

perhaps to prove such hypotheses as that of the conservation of

the baryonic center of energy of electrons which form an auto-

ionizing state during transition which causes exit from the metal,

Let us note again that this transition has been formulated by

Schroeer [31] within the framework~of~ an" adlabatic approximation.

In treating the exit of the atom as a perturbation and in arbit-

rarily choosing a solution with two adjustable parameters for

Hamiltonian interaction, one arrives at the expression of proba-

bility of ionization as:

•1

A is the energy of sublimation, J is the energy of ioniza-

tion, $ is the work of exit, h is Planck's constant. The para-

meters a and n are adjustable. .
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The parameter A varies slightly in the series of elements of

3d transition (with the exception of manganese) and the variations

of ionic yield essentially carry the differences I-$. These dif-

ferences have a tendency to diminish- when one examines the series

of copper to titanium of the type where the ion yields forseen

increase from the end to the beginning of the series. Effectively,

it is that which one observes qualitatively for pure metals, but

the relationship proposed by Schroeer gives results which often '

diverge from" experimental results. It has been remarked that,

by playing with the end parameter, one cannot reach a. correction

of these divergences, but one simply modifies the amplitude of

variation of the function. (Based- on the measurements of Beske,
°Schroeer has deduced from them n^3 and

The same formula can be used to calculate ion constants of al

loys and in all cases, it gives a slight increase of copper in

titanium without taking into account the also-marked effects such

as those noted in the CuT, NiT or AIT alloys.

.. The process_of ion emission which we have proposed and which

is well supported by experiments is in a narrow relationship to

the local electron structure of the atoms. Therefore, it seems

that ion emission can be a new source of information for elec-

tron properties of impurities in alloys.
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APPENDIX

In using the notations of figure 10:

e', e" energy of electrons of an atom when x

e Fermi energy
r

n ( e ) electron density of the atom in x

et

ion

nit) nle)-,

Um

U.

3d

mtlol xe •• atom

One shows [4] that the probabilities of formation of auto-ionizing

states are written:

P(Va - EF)
TJE,

r[2(C/0 - (/•)] dt/

fV0

Jr.,
T[2(U0 - U)]dU

with «p
( A . I )

r[2(t/0 - C/)] = I n(e') n[2(U0 - U) - E'] dc'

when a process of auto-ionization between two electrons is put

into play, and: _

P(Vm - Er)

.
- (/)] dU

32
f °
Jf,

(A. 2)



with - . /255

N[3(U0 - U)] = j n(r.') T[3(U0 - U) - e'] dc'
Jo

when the process involves three electrons.

In making changes in the variable X=2(UQ-U) and taking into

account the fact that U-.-£„=£„. one finds that the denominator
U r r .

of 'the expression ( A . I ) is written:

Itri r1" i rr r c1* i
1 7W«Ur = 5 "(f/) nUr.-V)d*\ dc .
2Jo . Jo LJo ; : . J

But, n ( e ) = 0 for - e ' < e < 0 and for eT ,<e<2e r ,-e ' (e' is at the maximum
.. • ' -t1 . -f

equal to e-c,), and therefore: . . ' "
r . •

r2" r2"-'' f'F
j n(X - e') dX = n(c) de = I n(e) dc = N0

Jo- ' J-«- Jo

where NQ is the number of d+s electrons of the atom. Finally:

(•"•

JE,

•
r[2(f/0 -

One obtains a similar result for the denominator of the (A. 2) ex-

pression, being: .

i

Je
N[3(U0 - U)] AU = ̂  Â 0

3 .

For .carrying out the calculations, it is convenient to introduce

the variables U-EF=A,
 u
m-

Ep=Am
 and un~EF=A ' If ^a> b^ ls one of

the intervals of variation of A so that a<_A<b, calculation of the

probabilities is brought back to that of integrals:
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I T^dA . Qr Rah(x) - I N+AA .
J» JaBeing:

Ko.̂ MJMA ) -'Vl") . *0iJ(j) - ; • - . . ( A . 3 )

wlth

The approximation used in the calculations consists of taking elec

tron density n(e) of atoms in x identical to that which one finds
O

in the neighborhood of the Fermi level around the atom, in the me-

tal or in the alloy. In practice, this approximation is applic-

able, to a width equal to 2 or 3 times A (being 2 eV maximum) as

the structure of the auto-ionizing states carries two or three

electrons. If it is deemed necessary to pursue the calculations

to this limit, one has no other recourse but to take this same ap-

proximation because one ignores exactly the electron density of

the atom in x , but .the results will be less valid then.
C '

1. Electron density a is constant; the auto-ionizing states

formed by two electrons (Fig. lib). This approximation has been

used for pure metals [4], manganese, vanadium, titanium, for

which A <A/2, being: • ••

2. Density of states A and two constants a and a' (a'<a);

auto-ionizing states formed by two electrons (Fig. lla and c).

This approximation has been used for pure chromium [4] (A <A'/2)

being: •

/UJ-214:
**.' .. (A.5)



7256

Fig. 11. The approximate forms of density of the states of
pure -metals used for calculating the probabilities of for-
mation of auto-ionizing states: a) case of copper; b) case
of nickel, cobalt, titanium, vanadium and manganese;
c) case of chromium (hatched zone) and of iron (zone with
dots added). •

and for pure copper where

A' A .,,
-=•< — < A2 m

I
2

(A.6)

3. Electron density constant a; the auto-ionizing states for-

med by three electrons (Fig. lib). The approximation used for

pure cobalt and nickel [4], for which A <A/3 is:
m

(A.7)

4. The density of states A of two constants a and a' (a'<a);

the auto-ionizing states formed by three electrons (Fig. lie).
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n(e) = « 0 < r. < e'
n(e) » a e' < e < d

The calculation is made for the following order of increasing

values of A:

0 — 2A> A A- * + A' d + 2/T 2 A 2A + A'
"' 3' 3 ' I*. ' 3 ' 3 ' T* 3 ' *•

Interval
a < A < b

0 — " 3- . ; ' 3 : . • .;. 2a '
A ' 2 A '
T ;~r

+ -z-

6

aa'

- 3 x)2 + A '(1 J-3 x-10 /<')]

'2 )
- l(A-3x)i + A ' (5A- \ -S x-»-7 /<')] ^
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[(2 J-3 jt)2 + 3 A'(2 d-

3 3
" *2 3

J + /T VI
-- *} J '.

This approximation is applied.to pure iron [|J] where A -<2A'/3

5"'
(A.8)

5. Electron density in a potential bound state. The Lorentzian

electron density is approximated by a parabola. With the notations

used on figure 12, the equation of this parabola is written:

dn(e) = ac(a - e) f or 0 < e < A

dn(t) - 0 for e < 0; t > A .

The parameters a and a are adjusted for each particular case. One

always arranges to conserve the value of the density of states of
2 (21 + 1 )the center of resonance, being — - — = — - if there is no decoupling

and
 2l+I

•nT if there is decoupling. This imposes the ' following

relationship:

am2 2(2/4-1)

when there is decoupling.

4 «r when there is no decoupling and

- » 'I •4 ni

The auto-ionizing states formed by three electrons: one assumes

k=3(A-A).
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Fro. 12.

Interval

a < A < b

4^',,, »A>' «d ^'\ , .«/«' ««^ 'I'
— <2 *-"> (,T-T+TJ " (""55"+

A 2 A
r~T

I /a' ,, 24*\ . , a'k" aP k* Ja'
, -SoiT-4 +— j* +T20-420+5040-24-('"

>
fl3 j^» a3 re , a t.7 fc" 1
120^ 120 "*"420 5040] '
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Calculation of R K ( x ) . One assumes that X = 3 ( A - x )ab

Interval

a < A m < - b

/ . , ,
" + ~1 5 ~* + + ~ ~ ^

'I+^l^-fl^ o^1 ^'\ ^6 (c? a1* aX* X3

\ 360 \ 6 7 + 28 378J 360 \ 6 7 .28 378

A particular case: a=A, X = 3 ( A - x ) .

Interval

• < * * < * > Rat(x)
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a) Application, to CuT alloys. The width of the potential

state, is 2T=1 eV. .

— Chromium: The decoupled potential state d+ contains 4 elec-

trons. It has an excellent approximation for the parabola a=2/2T

(Fig. 13)', which gives a width at mid-height' 2T. equal to that of

the Lorentzian.. ' . '

The parameters are the following: . ' .

a ~ 1.4 c V

electrons
a = 6.3

alom (eV)3

This approximation has the large-advantage of making it possible

to use the particular case a=A=1.4 eV. •• •

One could have an order of magnitude very satisfactory for

probability, noting that A =l.l'V'2A/3. Assume

1 AIVI 'jCr _ "O.4/3V"f/ ' J '^/3.24/3V^ al-3l

With . . .

. A - U .an» - /^ 334

One finds then

3 360x756" " ' "««"^ 3 ) ~ 360 x 756" " ' (A. 9)

- 9 x l<r j .

" /260

— Cobalt: There is no decoupling. The potential state

contains 8.5 electrons, of which 3-5 are above the center of re-

sonance. One calculates the parameters of the parabola by main-

taining this number of electrons above the center of resonance;

assume:
a = A- 1.65 eV, a = 9.4. electrons

atom (eV)3 '
40 . ' ' .



Co i

*:££T 'V•2̂  N:r

• Nl

• Cr

7

•

Fig. 13. Parabolic approximations used as a' function of
the degree of occupation of the potential state. If the
d state is decoupled, it must be divided by double the
number -of <N,> which is indicated on the figure.

In'this approximation, a is slightly below the Fermi level, about

0.175 eV (Fig. 13).

from 0.175 eV. It stops at 0.525 eV.

The value of Am=0.7 eV must then decrease

When 0.525 3, it will be

with RO /\/o(A/3) given by expression (A. 9). Assume

fcu0co~4.5 x 10-'.

The approximation used subtracts a certain number of auto-

ionizing states. But on the other hand, the density of the

states in the parabola is higher than in the Lorentzian. Then,

there is a partial compensation and it is probable that the er-

ror committed is not too important.

ill



—Nickel: The potential state contains 9 electrons, four of

which are above the center of resonance. One uses the same type

of parabolic approximation as for cobalt, which retains 4 electrons

above the center of resonance. The parameters-are the following:

a = A = 1.9 eV. « = 7 cleclrons

3 'atom (eV)

The quantity A =0.85 must decrease in the case of. 0.4 eV. It stops

then at 0.45 eV.0.45<A/3; the calculation must then be conducted

starting from the expression of RQ ,_(x) in a particular case

a=A: One finds . •

215 x l<

b) Application to AIT alloys. There are, respectively, 7.25

and 8 d electrons for cobalt and nickel. The parabolic approxima- .

tion with a=2/2~r agrees perfectly then (Fig. 13). It has selected

T=l eV, in which a^2.8 eV and a=5/ir^l.6 electron/atom (eV) . Other-

wise, one considers the two electrons which the atom loses at the

band of conductibility of aluminum. In always assuming that the

density of the states is parabolic around the impurity, one is led

to an electron density at the Fermi level n =0.22 electron/atom eV.
• • ' . S

One would assume this density to be constant at "2 or 3 eV, in order

to carry out the calculation:

pr
-T

— R>r cobalt A-2. 28 eV<a and Am=0.8 eV is very slightly higher

at A/3.

-- For nickel, a=A=2.8 eV and Am=1.06 eV>.-.
 R
d2rille ible]

 ls

calculated .for 4<A <̂ -.
.. 3 m 3
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flnds ^nickel, and for cobalt ,,,;.,. ,H, ,„ ,.




