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SECTION I 

INTRODUCTION 

This is an interim report concluding the third period of research
 

under Grant NSG 1128, dealing with optimal design of subsystems of
 

the proposed Microwave Landing System. The research reported includes
 

both optimal design studies of 14LS angle-receivers and a theoretical
 

design-study of MLS DME-receivers.
 

The angle-receiver results include an integration of the scan
 

data processo5 and tracking filter components of the optimal receiver
 

into a unified structure and then an extensive simulation study comparing
 

the performance of the optimal and threshold (Phase III) receivers
 

in a wide variety of representative dynamical and interference
 

environments. The optimal receiver was generally superior, offering
 

improvements ranging up to 20:1 or better in certain situations.
 

The DME portion of this report includes a simulation study of
 

the performance of the threshold and delay-and-compare receivers in
 

various signal environments. This study provides an-analysis of combined
 

errors due to lateral reflections from vertical structures with small
 

differential path delays, specular ground reflections with neglible
 

differential path delays, and thermal noise in the receivers.
 

The angle-receiver research and DME-receiver research are two,
 

completely independent studies and are documented accordingly in the
 

following eleven sections, the first part, Section's II thru VT, dealing
 

with the angle-receiver and the second part, Sections VII thru XII,
 

dealing with the DME-receiver. No cross referencing occurs between
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these major parts of this report, and also the symbol and notation
 

systems used in the two parts are independent. For easy access,
 

however, results and conclusions from both parts of the year's work
 

are summarized in Section XII.
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PART ONE 

ANGLE-RECEIVER STUDY
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SECTION II
 

SIGNAL MODEL AND APPROACH
 

The reader is referred to our prior reports [I], [2], [3]
 

for details. This is a summary included to communicate minor revisions
 

in prior results and establish notation.
 

GEOMETRY AND SIGNAL MODELING
 

The angular coordinate to be estimated and other relevant
 

quantities that evolve are assembled into an N-dimensional state
 

vector x, modeled as the solution of a suitable-linear difference
 

equation evolving in discrete-time, from scan-to-scan, and excited
 

by a white zero-mean random process, {z(k), k = 0,1;'-'}. The receiver
 

log-envelope signal, a continuous-time signal within a scan, is
 

sampled throughout a window on each semi-scan at a sampling rate
 

approximately equal to the i-f bandwidth and then suitably exponentiated
 

and squared; the resulting J samples of the amplitude-squared
 

envelope taken within a given scan are then normalized to a suitable
 

measure of receiver noise power and assembled into an observations,
 

or measurement, vector u, which clearly is nonlinear in the state 

and also corrupted non-additively by receiver noise. For the kth scan, 

k = 0,1,2,---, therefore we have the model form 

x(k+l) = F(k)x(k) + G(k)z(k) (2.1) 

u(k) = h(x(k), n(k)) 

relating state x, excitation z and observations u, generally.
 

More specifically, in terms of a discrete-time variable T. local
 

to the scan, and assuming the presence of a direct-path component,
 

5
 



a single multipath component and receiver noise, the jth component
 

of u, say u., j = 1, , J, is approximated as follows with little 

error (see
 

uj = {ap[Q - eA (t)] + cR P[OR - GA(Ti)] COS ( + W sc)T j e.}
J 

+ {cRp [ 8A (0 j )] sin (8 + Wsc Tj) + n (2.2)R 

J
 

where 

a = a(k) =-direct path signal-to-noise ratio (2.3) 

0 = 0(k) = angular coordinate of own A/C (2.4) 

= R 'R(k) = multipath signal-to-noise ratio (2.5)
 

R = OR (k) = angular coordinate of reflector specular point (2.6)
 

S = 5(k) = direct path-to-multipath phase difference at the 
beginning of the scan (propagating scan-to-scan 

as follows: 

5(k + 1) = 0 (k) + sc Tk 

where Tk = time interval, kth-to-(k+l)th scans. (2.7) 

Wsc = the scalloping rate (2.8)
 

A(.) = the transmitting antenna scanning function (2.9) 

p[.] = the transmitting antenna selectivity function (2.10) 

and 

n , n are independent Gaussian random variables 
c. Sj with mean zero, variance 0.5. (2.11) 

On the basis of the above the state vector x is defined as follows:
 

x = ,, R,0R,0R,Sts)T (2.12) 
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where ( )T denotes transpose and ( denotes dt
 

Matrix F in (1) is then defined by
 

10000000
 

o 1 1k0 0 0 0 0 

00 0 0 1 0 
0 0 0 01 

00000100 

0 0 
TkO 

=F(k) (2.13) 
0 

o 0 0 0 0 0 1 Tk 
0 0.0 00001 

In -(2.1) the vector process fz(k), 1 = 0,1, ---1 is a zero-mean white 

Gaussian sequence which excites the aO ctRR and wse state components.
 

Consequently
10 0
 
00000
 

0 1- 0 0 0
 
GA 00100 
= 0 0 0 0 0 , a constant matrix. .(2.14)

00010
 
00000'
 

0 0 0 '0 1 

Also
 

1 ,Q22,Q3 3,Q44,Q55) (2.15)
z(k)z (W Q(k) = Diag (Q9


where < > denotes mathematical expectation. This completes the
 

modeling summary.
 

APPROACH
 

The objective of the desired NTS angle receiver is to produce
 

an estimate of the A/C angular coordinate, e, which is minimally
 

affected by multipath interference. State estimation in conjunction with
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the model (2.1) assumed is the approach used.to.develope the desired
 

signal processor. Specifically, defining
 

U (k) = {u(k1), kI = 0,1,---,k}, the sequence of observations 
from some initial time through the present; (2.16) 

x (kik) A estimate of x(k), given U(k) (2.17)
 

Then the estimate evolution is described as follows:
 

x(kjk) = x(klk-l) + c(klk) (2.18)
 

where
 

x(klk-l) = F(k-l) x (k-li k-i) 	 (2.19) 

&(klk) g estimate of the error in x(kik-i), given U(k) (2.20) 

The calculation of C(kjk) in general, as defined, is complicated 

because 	of the form of h (",-) in (1), as implied by (2). A
 

simpler form for C based in part on the "tracking assumption" that
 

E is "small" in some sense (and the vector GCjalso) has been used
 

thus far with good results (though without benefit of formal
 

derivation from (2.20) as yet). This relation is
 

W(kjk) = K(k) s(kjk) (2.21) 

where 
A^
 

e(klk) 	 ^
estimate of the error in x(klk-l) in the neighborhood
 
of zero error, given u(k). (2.22)
 

K(k) A 	a gain matrix, depending on x(kjk-l), Q(k), and
 
statistics of s.(klk) (2.23)
 

The calculation of e (kk)is based on the locally optimum
 

estimation (LOE) criterion of Murphy [ 4 1 and does not make any use
 

of the assumed dynamical model of state evolution, (2.1). This stage
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of the computation processes the raw scan data {u(k), k = 0,1,---} and 

is described in summary form in the nextsection. The calculation 

of K(k) represents the determination of a suitable weighting matrix 

such that use of'the resulting E(kjk), (2.21), in the estimate update 

equation, (2.18) gives a smoothly evolving state estimate which.is
 

appropriate to and consistent with the assumed dynamical model (2.1);
 

in short, the constraints represented by the assumed state dynamics,
 

heretofore ignored, are applied at this point. The quantity K(k) is
 

the Kalman gain of a recursive tracking loop (or filter), closed
 

around the LOE. This aspect of the design is summarized in Section IV.
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SECTION III
 

SCAN DATA PROCESSOR DESIGN
 

The observations taken on a'scan have been modelgd as a J-vector,
 

u, with components uj, j = 1,2 ,..-,J, as given in (2.2). The application 

of locally optimum estimation to this problem requires the conceptualization 

of a noise-free observation vector, say q(k), whose jth- component 

q. has the form
 

qj = = [j p(e) + RPj(Y cos aj]2 + [aRPj(OR)sin y2 (3.1) 

C. 

=0 n 
S.S
 

- ?% 2(e) + 2 aaRPj(e)m(OR) cos $j +Rp2(eR)3.2) 

where 

++ W 'r._j sc j (3.3) 

p() A p [0 - A(T)] (3.4) 

and similarly for pj (OR). Using the qj - formulization, it is
 

possible to write u. as follows:
 
S
 

Uj= qj + 2 .qj [n cos B. + n sin J +nc. s 2 (3.5)
= + 2 V 3. C. nS 

1 

n ( 



Letting the noise vector, (nC. ns.) be modeled as follows
 

3 *J I 

n A Cos -sin 

(3.7)
n ! sin Cos TI 

where
 

=0 
(3.8)(T K)Ts) 

Kjt = 0, V jl (3.9) 

KIc5i micl) = K js) 2= 67 (3.10) 

clearly assures these same assumed properties in (nC. nS ), T and 
3 3 

in addition simplifies u. in (3.6)
3
 

u3 3 + s
q+2tC. lc.u.j q + 2+ T 2 (3.11)
3 .3 3 

Henceforth, references to receiver noise will refer to the new vector 

( n T1s)unless otherwise noted. 
31 3 

Paralleling the prior development somewhat [ 3 ], the likelihood 

ratio. X(ufq), in terms of the revised formulations of u and q, is 

given now by
 

A(ulq) = R M0(4qju.) exp(-qj (3.12) 
j=l 

where, as before, M( ) [for positive argument--as is the care here] 
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is defined in relation to Io( ) the modified Bessel function of 

the first kind, zeroth order, as follows 

MO(z) I(Z ), z>O, real (3.13) 

The theory of locally optimum estimation is applied to the
 

scan data processing problem by first assembling a selected subset of
 

the state variables into a parameter vector Y and then processing
 

the observations u to obtain an estimate, e, of the error in the
 

current y-estimate, as follows:
 

^ A -!. C'
 
e A (u q) (3.14)
 

where 

=P KA (ulq) AT (ujq) q (3.15) 

q q (q(y), given in (3.2) (3.16) 

and
 

A(ulq) H lln uq())j (3.17) 

The estimate e is both locally unbiased at zero error (i.e. when 

y = y) and has minimum mean square error of all estimates locally 

unbiased at zero error. The matrix Q-1 is the -covariance matrix 

for the error in the estimate e when y = y. The averaging done in 

the calculation of 1', (3.15), is taken under the assumption that y-=Y, 

i.e. that the parameter value entering the q calculation equals the
 

true value giving the u observation; the result is independent of the
 

observation and is a function only of q. The observations u, enter
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calculation of e only through A(ulq), which is a function of both
 

u and q. Substituting (3.12) into (3.17) we may write, specifically
 

A(ulq) = J(4q - (3.18) 
j=i 

I 'i 4y-] (3.19) 

j~l 0 

- D (q)w(u q) (3.20) 

where 

D(q) 3q1 ~q2 , Dqj a matrix (3.21) 

(4u~
w(nlq) = Mj-(4qjuj )-l) a J-vector (3.22) 

and, as before 

M Ad (z). (3.23)
dz o
 

Using the previously developed asymptotic approximation for MI/o,
 

i.e. [3, egn (III-42p)]
 

M1 1
 
M 0 2 V+ z (3.24)
 

The vector w(ulq), through which the :observations, u, enter the
 

computations, has representative element
 

wj(ulq) = - (3.25) 

14 



Substituting (3.20) into (3.15) results in an expression for matrix
 

)(q), as follows:
 
(^ ^)wT ( u "q Tq 

.D(q)= D(q) (uI) J q) D (q) (3.26) 

A A TA 
= D(q) H (q) D (q) (3.27) 

w
 

where 

Hw(q) q q q (328 

A simulati6n study was performed of the statistics ofw (ufq),(3.25),
 

involving up to 10,000 samples. Refer to Appendix A for details.
 

Conclusions reached are as follows:
 

(uf q) q) 0, independent of q (3.29) 

(3.30)u" q (u wq q q Ijj j(q) 

where 6jk is the Kronecker delta, and
 

2 (u I )()-q (3.31)h q̂) =A q 


The process fw.(ujq), j=l, JI is white; consequently, 

(q) Diag [hl(q), h2(q), , hj(q)] (3.32) 

H (q j. , 

The sample statistics study also produced an asymptotic approximation
 

for h (q)
 

31 

h.(q) - - (3.33) 

l+ 2 qj 

15
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whose error peaked briefly at 20% (for qj = 2), but which produced 

good results in the receiver simulation studies. 

All receiver simulation studies to date dealt with a receiver 

design based on the following choice of the parameter vector Y 

A 

Y a R 	 (3.34)
 

The corresponding 	D-matrix is the following:
 

... 2apj1
2 () + 2aRPj())pj(e.)cosj... 

2 2pj (a) p (8) + 2aahj (0)pj (OR)osi ...
 

D(q) = *.. 2 apj()pj(eR) cos 8j + 2ciRPj2 (R)...
 

. 2acOj(J R ) p (OR ) cos j + 2cR 2 j(aR)p(R)... 

-2.aRp ( 0 )p j (OR ) sin B .... 

where ( ) denotes 	d ().
 
dt
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SECTION IV
 

TRACKING LOOP DESIGN
 

The scan data processor produces an estimate e of the error e
 

in the last-estimate y of paiameter vector y, a masked version of the
 

state x. The algorithm employed provides that e is locally optimum
 

at e = 0 in a least mean square irror sense and supplies also the
 

associated covariance matrix
 

R Kere)(e- e)T I q - 41 A 	 (4.1) 

e=o
 

The tracking loop design was obtained as follows:
 

1. 	Generation of a pre-estimate of y by simply adding the
 

estimate e to the value of y used in the calculation of e.
 

2. 	Interpretation of the pre-estimate as a synthetic measurement
 

of y, additively corrupted by white, discrete-time noise
 

with covariance R.
 

3. 	Use of a linear Kalman filter designed to accept the
 

synthetic measurements produced (and the matrix R), for
 

generating an update estimated, x of the full state.
 

The 	method embodies certain assumptions, including specifically
 

1. 	The whiteness of the synthetic measurement noise.
 

2. 	A knowledge of matrix Q, defined in (2.15) 

3. 	The form of state-estimate error in (2.21).
 

The algoritum therefore is deemed suboptimal; nevertheless the
 

tracking performance results were good and probably represent the
 

limiting performance obtainable from the standpoint ,of algorithmic
 

complexity.
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We will now formalize the approach mathematically and present
 

in summary form the algoritum, whith benefits from some simplifications
 

that are possible.
 

Pre-estimate: ;(kjk) = y(kjk-l) + e(k) = Hx(kjk-l) + e(k) (4.2) 

= [y(k)*- e~k)] + e(k) (4.3) 

= Hx(k) + v(k) (4.4) 

where H A masking matrix associated with choice - (4.5) 

v(k) A e(k) - e(k) (4.6) 

and 

vk) e = 0 (locally unbiasedness) (4.7) 

Kv(k)vT(k)) I 	 = R(k) = C-1 (q(k) (by 4-1) (4.8) 

Kalman filter: 	 x(kjk-l) = F(k-l) x (k-ijk-i) (4.9)
 

P(klk-l) = F(k-l)P(k-lIk-l)FT (k-l)+G(k-l)Q(k-l)GT(kl)(
4 .1 0) 

K(k) = P(klk-l)HT [HP(kIlk-l)HT + R(k)] -l (4.-il) 

x(klk) = x(klk-l) + K(k)y(klk) ' H x(.klk-l)] (4.12) 

P(kfk) = P(klk-i) - K(k) HP(klk-l) (4.13) 

= [I-K(k)HJP(klk-l)[I-K(k)H]T + K(k)R(k)KT(k) (4.14) 

(4.14) is preferred to (4.13) for preservation of symmetry and 

positive-definiteness properties. 

Substantial simplification follows from substitution of (4.2) 

into (4.12), giving 

x(klk) = x(klk-l) + K(k) e(k) (4.15) 

where 
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= KU-A (4.16)'K(k)e(k) = P(klk-l)HT[HP(klk-)HT + 0--6-1A 


= PHT{ [HPH + i }-A (4.17)
 

"
 = M(k)A (ulq) (41. 18) 

in which 

M(k) A P(k~k_1)HT [I + HPT]I-1 (4.19) 

Thus the state estimate update operation, i.e. 

x(kjk) = x(klk-1)"+ M(k)A(ul-q), (4.20) 

does not require the inversion of matrix 0. 

The error covaviance update equation (4.14) can be written 

in terms of '0 also by first noting from -(4.16) and (4.18) 

-above that M = K l, or more specifically
 

K(k) = M(k) cD (4.21) 

A -1 
= o-Substituting this into (4.14) and recalling that R , gives 

P(klk) = [I-M4H] P(kjk-l) [Il-H]T + M 4MT - (4.22) 
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SECTION V
 

SIMULATION STUDIES 

The principal simulation models with which we were concerned 

during the past year are the following: 

i. 	The environment and baseband receiver signal;
 

ii. The LOE/Kalman filter recursive receiver structure,
 
and specifically both multipath-adaptiva and non-adaptive
 

variants, thereof;
 

iii. 	 A representation of the phase III MLS receiver, denoted
 

the threshold receiver
 

Simulation studies conducted, included principally the following:
 

i. 	Crossing multipath interference, initiating as out-of
beam interference.
 

ii. Time-varying in-beam multipath interference
 

iii. Simulated landing scenarios
 

Results are presented below and discussed; programs developed and
 

used will be transmitted to the sponsor under separate cover.
 

Simulation Models
 

A. 	Environment and Baseband Receiver Signal
 

Generally, the environmental dynamics are simulated with a
 

state model of the form (2.1) (without the random excitation), using
 

the state vector (2.12). To provide some commonality between the
 

optimal and threshold receiver simulations, however, the observations
 

are generated in absolute-amplitude form. The full model is as
 

follows: 

x(k+l) = Fx(k) , X(0) = x (5.1) 

v(k) = h (x(k),a,n(k)) 	 (5.2)
v
 

where 	x = the initial state at the start of the simulation.
 
0
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x 

F = the matrix (2.13) except Tk is a selected constant in
 

the simulation (1/13.5 sec. for AZ, 1/40.5 sec. for EL).
 

a = 	rms value of receiver noise at a point in the I-F
 

channel having the same signal amplitude as the demodulator
 

output. The parameter a is assumed known, being a receiver
 

characteristic.
 

hv( ) = a matrix-valued function of its arguments which compiles 

the J-vector v(k) as one with representative element vj(k), 

j=l,...,J, 

where 

v.(k) = 2u. 
J I
 

and 	ui is as given in (2.2).

I
 

All other quantities are as previously defined. The components of
 

are specified either in program DATA statements or read in at
 

run time.
 

The quantity Oi, (3.3) is reduced to its principal value on
 

(-,1) after each change.
 

Signal data samples are generated only during sampling windows
 

of J/2 samples each, located in the TO and FRO scans respectively,
 

and centered where the centroid of the received signal pulses are
 

expected. For all runs to date
 

J = 	130 (5.3)
 

corresponding (at the sampling rate of 160 kHz) to window widths of 80
 

in each semi-scan.
 

B. 	The Optimal Receiver Simulation
 

The optimal receiver simulation consists basically of the following:
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i. Extrapolation of x to the present, via (4.9).
 

ii. 	 Scan data processor calculations of A, via (3.20), and
 

', via (3.27).
 

iii. Kalman filter calculations as follows:
 

(a) 	P(klk-l), via (4.10)
 

(b) 	Gain matrix, M(k), via (4.19)
 

(c) 	x(klk), via (4.20)
 

(d) P(kjk), via (4.22)
 

The scan data processor calculations begin with a computation of
 

the squared amplitude observations vector u component-wise as follows:
 
2
 

v.
J
 
U. 

i 202 

In the subsequent calculations the following models for the antenna
 

selectivity function, p(8), and its derivative (e) were used:
 

-6 = 	B/2.4
 

p(O) = 	 (5.5) 

cos (1.2)110/B elsewhere
 

1-(2.46/B)9
 

and 

.3 Signum (6), 0 = B/2.4
B
 

sin H (Z+I)
 
(0) 	 o= R 

(z+l) 
0.3H2 (zl) (5.6) 

B (z+i) 

+(5 : ): sin::;Z) 

2 Zelsewhere
 

(Z-1)2 
B
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in which B, the -3db beam width in degrees, was given the value of 1
 

degree.
 

In the Kalman filter calculations the diagonal elements of the
 

diagonal matrix Q were given values as follows:
 

A2Qll = Q33 = max [0.25, 0.01O2(k)1] (5.7) 

where a is the estimated direct path signal-to-noise ratio, thus giving
 

some adaptation on the basis of 10% uncertainty in a(k + 1), given a(k)
 

(for a(k)>5).
 

=
Q22 = Q44 1maxi2 T,, (5.8)
 

where T is the interscan interval. All runs to date were made with the
 

AZ receiver simulation, and, based on a prior study of representative 

lnigpatterns [3,p.401., a value of 16maxi = Olscwas used. 

22 

Q55 = 0.04/T2 (5.9) 

&orresponding to a mean-square uncertainty in ds (k + 1), given m sc(k),
 

no greater than that which would cause an interscan extrapolation error
 

in R of about 100 while tracking.
 

The optimal receiver simulation is programmed with maximum
 

dimensions of 8 and 5 for the vectors x and y respectively (and all
 

associated matrices). The actual dimensions used in the calculations
 

however are parameterized with the integer variables NS and NG
 

respectively. When NS=8 and NG=5, the optimal multipath-adaptive
 

receiver, which has been described, obtains; when NS=3, NG=2, a lesser
 

dimensional model of the same basic structure results for which
 

x = ( T,O,3) (5.10) 

y =(ae)T (5.11) 
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corresponding to an optimal receiver design predicated on the assumption
 

of 	a multipath-free environment. Clearly, in the current work this
 

latter design is a suboptimal one, nevertheless it served as a
 

comparison standard in this work and is referred to 
as the suboptimal
 

design or the nonadaptive design.
 

C. 	The Threshold Receiver
 

The threshold receiver simulation first computes the log-amplitude
 

envelope observations signal, vlog' component-wise as follows:
 

vlog 20 log 1 0 (1 + Av) 
 (5.12)
 

where A = 100, corresponding to 40 db of logging action. The result is
 

then filtered by a 25 kHz bandwidth low pass digital filter with transfer
 

function
 

H25 (z) = 0.34831(1 + -i 	 (5.13)5
 
-


1 - 0.30336z
 
The signal that results is then passed to the thresholding and
 

interference-rejection logic that characterizes the standard phase III
 

MLS angle receiver'design. This is described as follows:,
 

1. On each the TO- and FRO-semi-scans the signal peak within the
 

tracking gate (located as described below) is determined
 

and a threshold level 3db below the peak established.
 

2. 	Dwell gates are defined for those intervals during which the
 

log video signal exceeds the thresholds. The tracking gate for
 

the next TO-scan will be symmetrically located about the expected
 

dwell gate centroid position with a duration of 1.5 times the
 

present TO-scan dwell gate duration; similarly for the FRO-scan.
 

3. Dwell gates less than 15s or greater than 350 s cause the scan
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to be aborted and the prior estimate of e to be used again.
 

4. 	When the dwell gates are acceptable, the interval from the center
 

of the TO dwell gate to that of the FRO dwell gate is determined,
 

quantized to 0.5psec, and used to calculate the new estimate 0,
 

which is output.
 

The threshold receiver simulation was programmed to be interchangeable
 

with the optimal receiver simulation as far as the main simulation program
 

(and sampling window positioning) is concerned. Performance evaluation,
 

however, was based on the angle estimate error filtered as follows:
 

AZ: H(z) = 0.5 	 (5.14) 
-
1 -	 0.5z 

0.25 
EL: H(z) = 1 (5.15) 

-0.75z 

corresponding to available evaluation data. In this respect, however, 

the simulated threshold receiver is more like the phase II model than 

the phase III model (which apparently uses an a-$ filtered error for 

performance evaluation). 

Simulation Runs and Results 

Four key parameters important to the performance of an IlLS receiver 

are the following: 

S/N = Direct-path signal-to-noise ratio (denoted DSNRDB in the 

simulation), (db). (5.16) 

A
 
p = Multipath-to-direct path signal amplitude ratio (5.17) 

FSC = scalloping frequency (Hertz) (5.18) 

esep = - e the separation angle of the multipath interference (5.19) 

The MLS receivers are expected to operate with S/N ratios of 8 db or higher;
 

values in the range 8 to 20 db were used in the simulation study.
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A recent MIT study of multipath interference at air terminal areas [5]
 

shows relative multipath amplitudes, p, to 1.0 or more and scalloping
 

frequencies, Fsc , to 1300 Hz. Representative values are as follows:
 

p = 	0.9, F = 2,22,51 Hz
sc
 

p = 0.8, F = 63,81,130 Hz (5.20)
 

p = 	0.5, F = 381 Hz
sc
 

Values spanning these ranges of p, F were used in the study. Separation
se
 

angles, 8sep' corresponding to both in-beam and out-of-beam multipath
 

were considered.
 

A fifth pa~ameter, 0, the r-f phase difference initial values
 

(at the start of the simulation run) also affected results somewhat. Its
 

effect is studied some and its value is always noted.
 

A. 	Crossing Multipath Studies 

This scenario begins with 

0 s - 2.750 (AZ) 

sep 
dO
 

dt = + 0.70/sec constant (5.21)
 

and runs for 100 scans (approx. 7.4 sec). Forty runs each for the threshold,
 

optimal and suboptimal receivers were made in this series, corresponding to
 

various values of key parameters SIN, p, and Fsc. In all runs the receivers
 

were initialized in the track mode, i.e. all estimated variables produced by
 

each 	receiver were initialized to true values. Figures I thru 10 show compara

tive results of selected runs for the optimal and threshold receivers; Fig. 1
 

presents time histories of error for SIN = 14 db, no multipath; note the two
 

plots are made to the same scale for easy comparison. Fig. 2 is the same, but
 

with heavy multipath interference, p=0.8, F = 51.3 Hz.(This scalloping
 
sc 

rate and the associated value of $, - 1680, produces maximum enhancement 
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by the multipath on the TO scan and maximum cancellation on the FRO 

scan as the separation angle traverses zero). Figures 3, 4 and 5 

summarize for F8c = 5, 51.3 and 500 Hz, respectively, comparative 

studies of peak absolute error versus SIN and p. Figures 6, 7, 8 and 9 

present time histories of error for runs corresponding to selected' 

points in Figure 3, 4 and 5 representing both moderate and heavy 

multipath interference. The high ratios of improvement provided by the
 

optimal receivers are especially noteworthy -- typically about 20:1
 

for the p=0.8 eases. Figure 10 shows, for the S/N = 20 db, p=0.8 cases,
 

only optimal receiver results, plotted with enlarged scales to show
 

more clearly the sample functions of the error process, which appears
 

to 	be more random than that of the thresholds receiver (See
 

Figures 6, 7 and 8).
 

Tables 1, 2, 3, and 4 summarize all the crossing multipath studies.
 

Table 1 presents a comparison of the 3 receivers, optimal, threshold
 

and sub-optimal (or non-adaptive), in terms of peak-absolute-error.
 

Tables 2, 3 and 4 each summarize the performance of respectively one
 

receiver in terms of several error measures computed over the set of
 

l00 scans per run for each case.
 

The crossing multipath scenario represents a strenuous test of the
 

tracking capabilities of a receiver algorithm. Conclusions drawn are
 

as follows:
 

1. 	The optimal receiver generally outperformed the threshold
 

receiver, sometimes by a wide margin.
 

2. 	The optimal receiver is algorethmicly much more complex than
 

the threshold receiver.
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3 20.0 0,80 500,0 -120.0 0.25720 -0.00616 0.04131 0,04085 3
 
4 20,0 0.80 SO0 .0 -90.0 .. 0.02715 -0,00439 0.0 189 0,0110s 4
 

20.0 	 0,00 500.0 -60,0 0.04362 -0,00106 0,01235 0,01231 
6 	 20.0 0,00 .50.0 --30.0 0.035.16 -0.001084 0,01164 0,0j 149 6
 
7 	 20.0 0.80 .500,0 0,0 0.0,5699 -0,00330 0.01440 0.01407 7
 
8 20.0 0.8O 500.0 30,0 0.03367 -0.00035 0.01222 0,01222 8 
9 20,0 0.1 0 500.0 60.0 0.04565 --0,00024 0.01217 0.01216 9 

20.0 	 0.80 500.0 90,0 0,04443 0,0021l 0.01270 0,012U9 
O0 000.0 O,0.11511 20,0 slo 120.0 O,03097 -0,00.112 0,0 1100 11 

12 20.0 0,80 500,0 1'0.0 0.013701 0, OO0J/ 0,01377 0.01375 12 
13 81.0 0.00 0,0 0.0 0, 069(31 --0. 00614 0,02045 0,02762 13 
14 J14.0 0,00 0,0 0.0 0,04'.707 -0.OOb57 0.01689 0,01595 14 

20.0 	 0,00 0.0 0.0 0.024/. -0.00LJ3 0,00933 0.00926 
-_____16 	 ..._ 26,0 0.00 0.0 -- 0,0. ,00813 -0'00120 0.006,3b 0.00622 16 

17 8,0 0,50 5,0 0.0 0.06054 0,00020 0,02582 0.020132 17 
1 14.0 0.50 5.0 0.0 0,04065 -0.00419 0,01791 0,01742 18 
19 20.0 0.50 53.0 0.0 0 02118U 0.0002U 0,00901 0.00900 19 

o 	 26.0 0.50 5,0 0,0 0.01756 -0.00106 0,00614 0 100605 
21 0,0 0.80 5.0 0.0 0.09599 -0.00344 0.03240 0.03 230 21 
2 14,0 0.80 5,0 0,0 0.04413 -0,00509 0.01640 0.01567 22 
23 20,0 0,80 5.0 0.0 0.02002 --0.00023 0. 0 1030 0.0 1030 23 
24 26.0 0.80 5.0 0,0 0.02069 -0.00121 0.00633 0,00621 24 

0.0 0,50 5L.3 -168.0 -- 0.06429 0,00001 0,02391 0.02391 
26 14.0 0.50 OL,3 -1611.0 0, .3600 -0,00543 0,01532 0,01433 26' 
27 20,0 0,50 51,3 -168.0 0,0237Y 0,00066 0.001163 0,0086.1 27 
28 	 :26.0 0.50 51.3 -168.0 0,01496 -0.00139 0.00499 0,00400 28 
29 8.0 0.010 51. 3 -168. 0 2.35204***** LOST TAR** 

14.0 	 0,80 51.3 - 68.0 0,04350 -0.00474 0,01667 0.01 s98 
31 :20.0 00 -- 51.3 -168.0 0.02112 0.00099 0,00021 0.001J5 31 
32 26.0 0,80 '5L,3 -160.0 0.01603 -0.00096 0.0050"7 0,00549 32 

-	 33 8.0 0,50 500.0 180,0 0,11694 --0.00312 0.04637 0.04627 33 
34 14.0 0.50 SOO.0 180,0 0.0)875 -0.01269 0.02422 0,02063 34 

20.0 	 0,50 O0,0 L90.0 0,02992 0.00066 0,01237 0.012,16

36 26.0 0.50 500.0 1(Ho. 0 0.03611 -0. 0025 0.00807 0.00766 36 
37 -. 8.0 0.80 500,0 JC0,0 2,3B1019**** LOST TRACk***** 
38 14.0 0.080 500,0 1(0.0 0.09727 -0.00990 0.02571 0.02370 38 
39 	 20.0 0,00 500.0 180.0 0,02.72 0.0010 0,01293 0.01279 39
 

26.0 0.80 5U00.0 180.0 0.02120 -0.00179 0.0065[8 0.00634 
STOP -

--Table 2. 	Optimal Receiver Error Performance;
 
Grossing Multipath Scenarios.
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35

40

FNRE.ESHOLD RECEIVER FROR' F'ERFORMANCE.
 
rUN n8NRtD RHO FS DET PM AD ER MEAN ERR RMS ERR ER SI DV NRUN
 

200. _ 0.80 .. _ 500.0 ...- 1tl0,0 ... 0. 9 123 -0,00790 0.2-2795 0.25776 1 

2 20.0 0.80 	 500.0 -110.0 0.75310 -0. OOJ IM 0.20507 0.20506 2 
3 20t0 0.80 bO0*O -120.0 0.47984 0.027J2 0.16613 0.16390 3 

.......4 200.0 . 0. 00 ---9(.0 0.409J 1 0,00716 0. j240 0. 1 S224 4 
5 0.60 	 300.0 -0.0 0.30470 0.00729 0. 15(1811 0. 15.71 
6 	 :20.0 0.30 500.0 -30.0 0.37707 0.00 LJ,2 ' 0. 15,(LL 0. 1580 6 

500 - 020,0 U000 0.0 0.44524 -0.0103[ 0.1 6421 [638 0 7 
a - 20.0 0.00 000.0 3010 0. 440,-7 -0. 025 ? 0. J 6048 0. 1W346 9 
9 20.0 0.30 	 500.0 60.0 0.,4022 -0.02490 0.1983 0.1968, 9 

10 . 20.0 0.8W0 U00.0 90.0 0.604,15 -0.,05,596 0.2365 3 0.22903 
11 20.0 0. 80 500.0- J20.0 0.74053 -0. O1,25/ 0.27644 0.27 140 11 
12 20.0 0.80 500.0 150.0 0. 04,74 -0.0:2560 0.2699Y 0.26876 12 
13 ... .. (0 -. 0.00 -. 0.0 -- 0.0 _ 0.15672 --0,00416 0.05312 0.05295 13 
14 14.0 0100 0.0 0.0 0.070.16 -0.00600 0.02463 0.102368 14 
i 20.0 0.00 0.0 0.0 0.02655 0.00009 0. 01056 0. 01056 
16 26.0 0.00 0.0 010 0. 10J619 -0.00230 0.00635 0.00592 16 
17 8,0 0.50 5.0 0.0 0.35a90 0.000.19 0.09461 0.0046L 17 
10 4.0 0. 50 3.o 0.0 0,143U8 -0. W5 0.04018 0.04802 LO 
19-- 20,0 -- 0150 5.0 0.0 ---- 0,J24?9 -0.001.25 0.04315 0.04313 19 
20 26.0 0.50 3.0 0.0 0. 12927 -0.00 L42 0.04301 0.04299 
21 8.0 0.8O 5.0 0.0 0.41537 . 02204 0. 013 0. 10;86 1 
22 14.0 0. 8O ' . 0 0.0 0. 40627 -0. 0224 1 0, L.2229 0. L120222 2:2 
23 20.0 0.50 -1,0 0.0 0.52193 -0.00226 0. 1854 0.18852 23 
24 26.0 0.00 15 10 0.0 0. 54 [39 --0.01108 0.20017 0.19981 24 
25' 8.0 00-0 j-51,.3 -16 .0 .. 0. [4716 0. 0 )3 0.,06355 0.06079 
26 14.0 0. 50 51 .3 -J68.0 0.11148 -0.004Y3 0.03660 0.03634 26 

-27 	 20.0 O ,.3 -160.0 0.0969 0.00016 0.03077 0.03077 .7 
28 26.0 0.50 I .3 -168.0 0.0622.L -0.00140 0.019, 0 0.02926 28 
29 0.0 0.00 51 3 -160.0 0.43984 0.0,3106 0. J,2373 0. J1773 29 
30 14.0 01D0 M1.3 -168.0 0.48091 -0.0 119 [01093 0. 13086J. 	 0 

20,0. 0,80 ,. 1 3 -.160. 0 0. 567,04 0.01236 0.1 342 0.15292 31 
32 260 0.110 51,3 -1 60,0 0.610:10 -0.01379 0,101963 0. 1913 32 
33 8.0 0.LO 500.0 *1U0,0 0. 17920 0.002'27 O.J 1:241 0. I1239 33 
14 ...... 14.0 -. O.sO 50010 100.0 .. 0.190377 -0.00317 0.0W56L 0.07,M55 34 
35 20.0 0.50 500.0 100.0 0.21320 0.00!370 0.0 ,]075 0.onJo0' 
36 26.0 0.50 500.0 3;10. 0 0.20749 0,00334 0.028I12 0.0'/804 36 
37-------- 8.0 - 0.00 0.0.00 -. ,(0. 0.45202 0.01674 0.12708 0."12598 37 
38 14,0 0,80 500,0 180. 0 0.79227 -0.004-4 0,.2294 0.22289 30 
39 20.0 0.80 500,0 100-.0 0.89128 -0.01001 0,25795 0.25776 39 

40 26,O 0.80 500.0 100.0 0.92404 -0.03378 0.29673 0.29480 
STOP --

Table 3. 	Threshold Receiver Error Performance;
 
Crossing Multipath Scenarios.
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NON-ADAPTIVE RECEIVER ERROR PERFORMANCE 
.- RUN DISNRDB RUiSC . BETA . PIN AE ER MEAN ERR RM$ ERR ER ST DV NRUN 

1 20.0 0.80 500.0 -180.0 0.02075 0,01921 0.20634 0,20044 1 
2 20.0 0.80 500.0 -150.0 0,47096 0.01.963 0.18508 0.18407 2
 

. . 3 20.0 0180 500.0 -120.0 0.44490 0.02396 0.18211 0.18053 3
 
4 20.0 0.80 500.0 -90.0 0.4171 0,01490 0.17675 0.17612 4 
5 20,0 0.80 500.0 -60.0 0;4L174 0.01405 0.L7726 0. L7671 5 
6 20,0 .g0 5O0.0 -30.0 - 0.44284 0.00L98 0,1740 0.17739 6 
7 20,0 0.00 500.0 0.0 0.46339 -0.00037 0.18007 0.111007 7
 
8 20,0 0.80 5100.0 30,8 0,50667 -0.00W03 0.111610 0.1)591 0
 
9 20.0 0,0 00.00 60,0 0,51262 -0,00723 0,19500M 0,1 9574 9 

10 20,0 0.80 00.0 90.0 0.52711 -0,00810 0.21371 0.21363 10 
j1 20.0 0.80 500.0 120.0 0,54248 0,00084 0.2322 .23"52 11 
1.) 
 0 O,1210... 12
20.0 0.0 500.0 1!,0.0 0.01792 0,00222 . 0 2209 

13 8.0 0.00 0.0 0.0 0., -0.00200 0.02403 C. 040538 13 
14 14.0 0.00 0,0 0.0 0.03?748 -0,00610 O,0L48t 0.0L3W 14 

* 	 ....... 1 J 20.0 0°00 0.0 0,0 0.01892 -0,00067 0,00779 0.00774 15 
16 26,0 0,00 0.0 0,0 0.01021 -0.00149 0. 00456 0,00431 16 
17 8.0 0.50 5.0 0,0 0, 1 783L1 -0.00026 0. 06022 0.06022 17 
18 140 0 O.0 	 0,0 0,0 A24 -0,00691 0.06792 0.06756 10
 
19 20.0 0,50 5.0 0,0 0,16479 -0,00095 0,06713 0.067.12 19 
20 26.0 0.50 S,0 0,0 0,165,5 -0,00229 0,06052 0.06040 20
 
-21 8,0 0,0 5.0 0,0 0,37735 0,01436 0,J9664 0. 1961.1. 21 

22 14.0 0, 0 5.0 0,0 0, 38014 -0,00217 0,10909 0.1139!5 22 
23 20.0 0,0 0,0 0.0 0,35944 0,00215 0,1U33 1. 0.1 0329 23 
24 .. 26.0 0.80 .5.0 0,0 0,372S6 -0.0009L 0,t7940 0,17940 24 
25 8,0 0.30 1 ,3 -16,0. 0,1.6901 -0,00012 0,07246 0.07246 25 
26 14.0 0,0 Si .3 -1.60,0 0.15234 -0,00692 0.06936 0,0690) 26 

S.... .7 - 20,0 0,50 51.3 -1613 .... 0. 13425 -0,00066 0. 06456 00645 "27 
28 26.0 0,50 51.3 -.168,0 0L1955 -0.00209 0.060/3 0,06069 20 
29 8.0 0.80 51.3 -168,0 0,38284 0,01402 0.19630 0, 195130 29 

O . 51 .3 	 -0.00202 0,18967_ 	 30.__ 14.0 0,80 - ._ 1,-J63,0 0,30693 0°.189,8 30 
31 20.0 0.80 51.3 -160,0 0,340/0 0.00246 0,17066 0,17864 31 

O 	 32 26.,0 0.80 5J .3 -±68,0 0.34102 -0.00143 0.J6963 0.11963 32 
.33 .. 8,0 * 0.00 500.0 i80,0 - 0,27490 0.00014 0.09365 0.09330 33 
34 14.0 0.30 500.0 I00, 0,26974 0.000J4 0.09715 0,09715 34 
3r 20,0 0.,0 1300.0 1F0,0 0,20707 0.00530 0.10647 0. J0?,4 3 

36 26.0 0,50 500,0 .180,0 - 0,2.704 0,00234 0,10093 0,10090 36 
37 0.0 0,80 500.0 Flo, 0 	 0.0364 1 0.21j13 0:.2I1_04.1 0.53740 	 37 
38 14.0 0.00 500.0 100.0 0.491149 0.00937 0.20930 0.20909 "In
.9 20.0 0.80 500.0 *10.0 0.52,575 0,0J 921 0,20634 0,20'.44 39
 
40 26.0 0,o o00.0 J0 ,0 0,49073 0,01601 0,19639 0.19574 40
 
STOP -

fable 4. 	Non-adaptive Receiver Error Perfdrmance;
 
Crossing Multipath Scenarios.
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4. 	Generally the suboptimal (non-adaptive) receiver performed as
 

well or better than the threshold receiver.
 

5. 	Generally the suboptimal design performes less well that the
 

optimal design, though it was never observed to lose track.
 

It is felt that the optimal and suboptimal receivers represent,
 

within this family of receiver structures, two extremes in use of
 

any information in the received signal concerning the multipath
 

interference -- both being generally superior to the threshold
 

receiver. Futther, it is felt that a carefully drawn design
 

intermediate to these extremes can effect a substantial reduction in
 

complexity at little loss in tracking performance with respect to the
 

optimal design described. This, in part, is our recommendation for
 

future work; the reader is referred to Section III for more details.
 

B. 	Time-Varying In-Beam Multipath Scenario
 

This is primarily a test of the multipath-acquisition capabilities
 

of the optimal receiver. Figure 11 presents the result of a simulation
 

run, which began with no multipath, the receivers tracking and
 

S/N = 20 db. After about a second, multipath interference begins
 

to appear at a constant separation angle of 0.50, growing in amplitude
 

to about 0.8 of the direct path signal amplitude, then diminishing,
 

again to zero. The optimal receiver offers a 10:1 improvement in
 

peak error performance.
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C. Simulated Landing Scenarios
 

-A landing scenario in general is characterized' in terms of our
 

simulation'parameters, by simultaneously varying p, 6se p andFsc [5
 

A case that was simulated is shown in Figure 12, suggestive lof heavy
 

in-beam multipath, a Fresnel reflection pattern and closing ranges.
 

Error time-histories for the optimal and threshold receivers, operating,
 

at 20 db S/N ratios, are shown in Figure 13. The receiver simulations
 

were initialized in the track mode.
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SECTION VI
 

THE EXPERIMENTAL SYSTEM
 

A philosophy and design plan for an experimental system was
 

described in the last report [3]. Three small circuit boards under
 

construction at that time have been completed, but asidd from that,
 

no effort during the current grant period was expended on the experimental
 

system. This task was halted because it was becoming increasingly
 

apparent the computational requirements of the optimal receiver
 

algorithm, as it was evolving, would be beyond the capacitites of
 

the PDP-11/03 microcomputer to supply as a real-time processor synchronized
 

to the MLS time-frame. Also, all project personnel were needed on the
 

simulation studies (angle-and DME-receivers). The status of the
 

experimental system development, as it stands, is summarized in
 

Table 5.
 

The immediate objective with respect to an experimental system
 

is the spjecification of the functional characteristics of a mini-or
 

micro-computer suitable to the computational load of the receiver
 

algorithm as it becomes firm. The work done to date is nearly machine
 

independent, and the experience obtained will facilitate the drawing
 

of a computer specification when appropriate.
 

4 tOEDING PAGE BLANK -NOT F LMED 
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PAIT TWO
 

DME-RECEIVER STUDY
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SECTION VII
 

DME SIGNALMODEL
 

The DME signal model is initiated at the RF stage of the receiver.
 

At this point, the signal consists of a direct path bignal, a
 

reflected path signal, and added noise. It can be modeled as:
 

X(t) = R(t) COs (ect) + pR(t-Y) COs (Wc(t-T) + S1 ) + n(t) (7.1) 

where R(t) = direct path envelope 

p = amplitude of reflected signal relative to the direct signal 

= time delay of reflected signal 

= phase shift of carrier wave upon reflection 

n(t) = receiver noise assumed to be covariant stationary, Gaussian,
" and bandpass with spectrum centered at the RF carrier, to 

CC 

X(t) =R(t) cos (wo t) + p R(t-T) cos (wto-t + 6 )+ n(t) (7.2) 

= R(t) cos (w .t) + p R(t-T) Lcos(S 2 ) cos (w t) - sin 0 2) sin 
c C 

(WCt)] + n(t) 

where S2 =1 - W T 

Because of the assumed properties of the receiver noise process,
 

it can be expanded into quadrature components with respect to the
 

carrier frequency, w .
 

n(t) =' n (t)cos(wet) - n (t) sin (w t) -(7.3)
C S c 

consequently X(t) can be written 

X(t) = [R(t) + p R(t-T) cos 02) + n (t)] COs (W t) . C c 

[P R(t-r) sin (02) + n (t)] sin(w t) (7.4)
S C.
 

X(t) Xc(t) cos(, t) + X (t) sin(w t) (7.5) 
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After heterodyning, the IF signal is
 

Y (t) = Xc(t) cos (mot) + -Xs(t) sin(ff0t) 

+ higher harmonics (7.6)
 

With good tracking of the IF frequency,-the output of the IF
 

filter can be approximated as 

Y2 (t) = Yc (t) cos(ot) + Y s(t) sin(wot) (7.7) 

where Yc (t) = XC(t) * h(t) 

Y (t) = X (t) * h(t)
5 s5 

h(t) is the impulse response of the lowpass analog of the IF filter 

* -denotes convolution 

It follows that the IF envelope is 

V(t) 5 [Yc 2 (t) + Ys2 (t)11/2 (7.8) 
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SECTION VIII
 

DME SIMULATION
 

The DME signal is simulated by generating the functions R(t),
 

n (t), and ns(t) and combining them as in (7.4) to produce the
 

quadrature components, Xc(t) and Xs(t). Each component is filtered
 

by separate but identical lowpass filters to produce the IF components,
 

Yj(t) and Yj(t). The IF envelope is obtained by (7.8) and
 

examined to determine when a threshold crossing has occurred. A large
 

number of simulation runs are made (about 250) for each set of
 

multipath and hoise conditions so that an approximate statistical
 

average and distribution function for the error will result. The
 

error itself is then passed through a ten radian per second bandwidth
 

filter to reduce random pulse-to-pulse errors. Another average
 

and distribution function are obtained for the filtered error.
 

8.1 IF Filters
 

The quadrature components of the DE signal are filtered through
 

a five-pole Butterworth lowpass filter. The effect of this filter
 

is equivalent to that of the Butterworth bandpass filter used in the
 

Hazeltine DE system. It is implemented in the simulation as a
 

digital lowpass filter with a sampling frequency of 100 MHZ. Although
 

a sampling frequency of this magnitude might be impractical in a real
 

time situation, its use on the computer is justified since the
 

response of the digital filter should be as close to that of the
 

analog filter as possible. The bandwidth of the filter is 1.75 MHZ
 

so that the simulation results will be directly comparable to the
 

Hazeltine study [6J.
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8.2 False Alarms
 

In any type of receiver there is a danger of mistaking an early
 

threshold crossing due to noise as the'final crossing due to the
 

DME 	pulse. The rate of these "false alarms" varies with the'
 

proximity of.the threshold level to the noise level and has the
 

potential for causing a high negative bias in the error. Therefore,
 

there is a-need for some logic in the.receivers to recognize and
 

eliminate some of these false alarms.
 

,The primary factor that distinguishes a false alarm from the
 

actual threshold crossing is the amount of time the signal stays
 

above threshold. Samples of the,signal which are separated by a
 

time constant (reciprocal of the bandwidth of the bandpass IF filter)
 

are 	nearly uncorrelated so that the probability of the signal
 

remaining above the threshold due to noise alone for a period of
 

time greater than a time constant is very small. The half-amplitude
 

pulse width is over ten times the length of a time constant so it
 

should be possible to distinguish between false alarms and the
 

actual threshold crossing due to the DME pulse. It is on this basis
 

that false alarms are reduced in the simulation.
 

8.3 	 Error
 

Errors due to multipath and noise are combined here instead of
 

being treated separately as in the Hazeltine and M.I.T. studies, [6],
 

[7]. These two sources of error are not independent of each other
 

since the signal to noise ratio (S/N) is affected whenever.multipath
 

is present. Of course, if the threshold is placed at a very high point
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on the pulse, multipath will be the primary source of error with noise
 

errors being negligible.' The opposite is true if the threshold is
 

placed at a very low point on-the signal, but since one tries to place
 

the threshold at a point where there is an effective trade-off
 

between the two it is not realistic to analyze each sepirately.
 

Previous studies [6], [8] have assumed that the noise effects
 

on the IF signal envelope, V(t) are Gaussian. The density function
 

under these conditions is
 

PV(t) 2 1 exp [V(t) - V (t)]2 / 202] (8.1)
 

where V (t) is the IF signal envelope uncorrupted by noise.
 

This kind of assumption ignores the non-linear effects of the
 

envelope detection process and as Rice [9] has shown,, the density function
 

for the envelope is actually.
 

PV(t) = V(t) exp [(V2 (t) + Vo2 (t))/2 2] I [V(t) V (t)/o 2] (8.2)
 

where I [V(t)V (t)/r 2] is the Bessel function.
 

Rearranging terms, this density function is
 

V(t) exp 1
 
V(t) t)/)2] o[(V(t)/a)(Vo(t)/a)]


(8.3)
 

If a(t) = V(t)/o and y(t) = Vo(t)/a, then a new density function 

for the random process, a(t), will result. 

Pa(t)- = a(t) exp j [a2(t) + y2 (t)] I la(t) y(t)] (8.4) 

This is a normalized density function for the envelope with the
 

parameter y(t) representing the signal to noise ratio.
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When (8.4) is evaluated at the threshold crossing time, a density\ 

function for the amplitude variations in the I.F. envelope at this point 

in time results. Figure 14 shows this Rician density function for 

various values of y. The distribution is Rayleigh when y is zero 

and approaches a Gaussian distribution as y is increased. y in this 

case is the threshold to noise ratio (T/N). 

A variation in the amplitude of the envelope can either shorten
 

or lengthen the time it takes to reach threshold. If the error in
 

the measuremeit of the arrival time of the pulse is considered to
 

be the shift in the threshold crossing time from the ideal (the
 

crossing time on an incoming pulse uncorrupted by interference from
 

any form of multipath or noise), then this density function also
 

applies to the error. Positive and negative variations in the envelope
 

amplitude cause early and late threshold crossings, respectively,
 

so one would expect from the graph in Figure 14 that there would be
 

a negative bias in the error at low T/N. Therefore, the assumption of
 

a Gaussian distribution of error is only valid for relatively high
 

T/N.
 

8.5 Power Budgets
 

The power budgets for the ground-based and airborne receivers
 

are based on the landing pattern shown in Figure 15. The flight path
 

is at a three degree angle with respect to a 14000 foot runway with
 

the groundbased receiver at one end. Signal-attenuation is-incurred
 

along the flight path due to the antenna pattern [6]. This effect
 

must be compensated for if accuracy is to be maintained as the plane
 

approaches the runway.
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For a cos-cos2 pulse shape with a 3.5 V sec half-amplitude
 

pulse width, the ratio of pulse peak to RMS amplitude is 3.7 decibels
 

(D5). The average power allowable for this pulse shape under the
 

ICAO Annex 10 specification on effective radiated power in adjacent
 

channels is 55 DB. This is obtained by integrating the pulse spectrum
 

over all frequencies and comparing it with the power allowed in a
 

0.5 MHZ band, 2 MHZ from the carrier. The peak is then 58.7 DBM.
 

The assumed power budgets follow. The signal to noise ratios in
 

the assumed budgets are defined as the ratio of peak signal level to
 

RMS noise level and are defined at the input of the receiver before
 

any power loss occurs (antenna losses are neglected). Under these
 

circumstances the noise power used is 4 kTB + NF instead
 

of kTB + NF which is used to describe the available noise power in
 

many cases.
 

AIR TO GROUND POWER BUDGET [6J
 

ERP (peak) 58.7 DBM 

Transponder'Antenna Gain 8.0 DB 

Path Loss (18000 Ft) 107.0 DB 

Peak Signal (18000 Ft) -43.3 DBM 

Noise (4kTB + NF) -87.5 DBM 

NF = 15 DE 

S/N (18000 Ft) 47.2 DB 

S/N (16000 Ft) 44.2 DR 

S/N (15000 Ft) 38.2 DB 
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GROUND TO AIR POWER BUDGET [6] 

ERP (peak) 

Path Loss 

61.7 DBM 

107.0 DB 

Peak Signal -45.3 DBM 

Noise (4 ktB + NF) 
NF = 15 DB 

-87.5 DBW 

S/N (18000 Ft) 42.2 DBM 

S/N (16000 Ft) 

S/N (15000 Ft)" 

39.2 DBM 

33.2 DBM 
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SECTIONS IX - XII
 

The following sections give simulation results for both the
 

threshold and delay and compare receivers in the ground-based transponder
 

and the airborne interrogator. Each section is broken up into sub

sections which describe how the receiver performs as each parameter
 

is varied in turn with the others.remaining constant. This allows
 

one to extrapolate as to the performance of the receiver under a
 

wide range of conditions.
 

An error simmary is provided at the end of each section to
 

provide a more detailed accounting of the performance of each
 

receiver. This includes the performance under varying multipath
 

conditions at the signal to noise ratio outlined in the power
 

budget and also with a 6 DB drop in the signal to noise ratio
 

as might occur with a specular reflection. The threshold level
 

for this summary is chosen to be within a range of values where
 

the receiver provides the best performance with respect to noise
 

and multipath errors. The error in the summary has been filtered
 

through a 10 rad/sec lowpass filter. This process has very little
 

effect on the mean but reduces a by a factor of approximately 2.2.
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SECTION IX
 

SIMULATION RESULTS - TRANSPONDER
 

FIXED THRESHOLD RECEIVER
 

The threshold level is assumed to be set at a constant voltage
 

level in the fixed threshold receiver. This means that the position
 

of the threshold with respect to the pulse shape changes with the
 

strength of the signal. A subtractive multipath with a relatively
 

small delay would lower the signal to noise ratio (SIN) of the pulse.
 

The resulting shift of the threshold to a higher point on the
 

signal would cause a late threshold crossing and bias the error in
 

the positive direction. An additive multipath signal would cause the
 

opposite effect and negatively bias the error.
 

This type of receiver is assumed to be limited to the ground

based transponder so that the air to ground power budget applies here.
 

9 .1 Threshold Levels
 

The performance of the fixed threshold receiver is greatly
 

dependent on the threshold setting. For a threshold to noise
 

ratio (TIN) of 6 DB, the mean error is negatively biased for both
 

additive and subtractive multipath signals (Figure 16). Early
 

threshold crossings are due to the proximity of the threshold to
 

the noise level and multipath has little effect under these conditions.
 

A subtractive multipath signal, however, can provide a slight
 

improvement since it causes a positive shift in the mean error
 

bringing it closer to zero.
 

The noise errors are diminished and a positive shift in the
 

error results when the threshold is raised to higher levels. For
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subtractive multipath, it increases almost linearly and 

becomes positive as the threshold level is increased. For additive 

mnultipath, the error reaches a minimum and shifts toward the negative 

again. The graph in Figure 16 can be separated into regions where 

noise is the primary cause of error (up to TIN = 9DB) and where multipath 

is the primary cause of error (TIN = 12DB and above). The region between 

these two is where an effective tradeoff between the two sources of 

error occurs,
 

9.2 	Error Disiribution
 

The density function for the error has been described in section
 

8.4. Figure 17 shows the error distribution for a threshold to
 

noise ratio of 18 DB and a subtractive half-amplitude multipath.
 

This is a nearly Gaussian distribution with a narrow spread about
 

the mean. A very different distribution of error results when the
 

threshold level is lowered to 6 DB (Figure 18). The mean is shifted
 

into the negative region and the spread of error is no longer nearly
 

symmetrical about this point. The error has now approached a
 

Rayleigh form with the error spread over a large range below the
 

mean and concentrated in small range above the mean.
 

When the error is filtered through a 10 rad/sec lowpass
 

filter, the spread is reduced by a factor of two to three but the
 

original shape remains. This makes it difficult to obtain one
 

expression which accurately expresses the spread of error about the
 

mean. Using the standard deviation, a, as a measure disquises the
 

fact that the error is not symmetrical about the mean in all cases,
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but should provide a good approximation for thresholds in the range
 

of interest.
 

9.3 Changes in the Signal to Noise Ratio
 

A change in S/N shifts the position of the threshold on'the
 

pulse and therefore changes the threshold crossing time. S/N is
 

affected by changes in the signal strength due to specular ground
 

reflections and receiver to receiver gain variations due tq temperature,
 

aging and other factors.
 

Ground reflections have very short differential path delays
 

with respect to the direct path signal and this makes them recognizable
 

only as changes in SIN at the receiver. Lateral reflections (multipath)
 

have longer delays and are treated as a separate problem.
 

Figure 19 shows the changes in the error bias for ± 6 DB 

changes in S/N while under the influence of a subtractive half

amplitude multipath signal. The 6 DB change can causea shift in the 

error bias of up to 33 feet. This shift generally increases as 

the threshold is raised.
 

9.4 Multipath Effects
 

Multipath in the fixed threshold receiver causes a shift in SIN
 

which in turn causes error as explained above. The magnitude of the
 

error is dependent upon the multipath parameters with error increasing
 

as amplitude increases or as the differential path delay decreases.
 

The error is most severe at short delay times as shown in Figure 20.
 

It levels out to a relatively small error at about 150 nanoseconds (ns).
 

In the noise-free case, one would expect the error to level out at zero.
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When noise is added in, there is a negative bias in the error, the
 

magnitude of which depends upon T/N. At T/N = 6DB, the noise bias is
 

large so that short multipath delay times can actually cause an
 

improvement in the error. When T/N is raised to 12 DB, the noise
 

bias decreases and the error is near zero for multipath delays above
 

150 ns.
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SECTION X
 

SIMULATION RESULTS - TRANSPONDER
 
DELAY AND COMPARE RECEIVER
 

A delay and compare receiver compares the IF envelope with a
 

delayed an slightly amplified version of itself to determine the
 

arrival time of the DME pulse.. A diagram of this type of receiver-is
 

shown in Figure 21. The threshold crossing time is given by the
 

negative going zero crossing of the difference signal, d(t), and the
 

threshold level is set by the delay and gain parameters, t and k.
 

A form of automatic gain control is inherent in this type of receiver
 

since the input signal is being compared with itself.
 

Before the pulse arrives, the receiver will essentially be
 

comparing noise signals which are highly correlated with each other
 

due 	to the short time delay. The delayed signal will also be
 

amplified so that there is a high probability that the difference
 

signal will he below zero during this period.- Therefore, the false
 

alarm rate for this receiver is more significant than that of the
 

fixed threshold receiver under similar conditions and must be
 

reduced as outlined in section a2.
 

10.1 	 Threshold Crossing Point
 

Figure 22 shows the mean error as a function of the threshold
 

crossing point. The negative bias in the error due to noise occurs
 

at higher levels on the pulse than it does in the fixed threshold
 

receiver under the same circumstances. Assuming that the receiver
 

delay, T, is fixed, it is necessary to increase the gain, k, to
 

lower the threshold. This results in an increase in the noise level
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in the delayed signal which in turn causes an increase in early
 

threshold crossings and contributes to this effect.
 

It is possible to separate the graph in Figure 22 into a region
 

where noise is the primary source of error (up to T/N = 24 DB) and
 

a region where multipath is the primary source of error (T/N = 29 DB
 

and above). The region between these two is where the minimum
 

over-all bias in the error due to multipath and noise occurs.
 

Subtractive multipaths signals cause the most significant errors
 

and also reach an overall minimum in this region, so these are studied
 

in more detail.
 

10.2 	Error Distribution
 

The density function for the error developed in section 8.4
 

does not apply directly to the error in the delay and compare
 

receiver. The error density function applies only to the-direct
 

IF envelope signal, V(t), and not to the difference signal, d(t).
 

However, the overall effect is much the same. Figure 23 shows
 

the error distribution for a subtractive half-amplitude multipath
 

signal at a T/N of 25 DB. This distribution is in the Rician
 

form and is similar to that found at a 6 DB threshold level in the
 

fixed threshold receiver. A threshold level of 29 DB gives an
 

error distribution which is more nearly Gaussian (Figure 24).
 

The 	most significant difference between the error distributions
 

in the two receivers is the difference in the threshold levels where
 

the near Gaussian distribution is acheived. This point is of interest
 

because it indicates the signal level at which the receiver becomes relatively
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insensitive to noise effects. It takes an increase in the
 

threshold level of approximately.12 DB for the delay and compare
 

receiver to approach the same.level of insensitivity as the fixed
 

threshold receiver. This is significant because the higher threshold
 

levels mean more susceptibility to multipath errors.
 

10.3 Changes in the Signal to Noise Ratio
 

Positive or negative shifts in the signal to noise ratio may
 

be caused by specular ground reflections or receiver to receiver gain
 

variations. The effect of these shifts on the error bias is most
 

pronounced in the case of a drop in gain (Figure 25). The inherent
 

automatic gain control of the delay and compare receiver does not
 

allow the threshold level to shift with respect to the pulse shape
 

as S/N changes. The result is that the greatest penalty is incurred
 

when S/N drops since this increases noise errors. A 6 DB S/N
 

increase causes the error bias to improve slighty.
 

The variations in the error bias decrease as the threshold
 

level is raised due to a lessening of noise errors.
 

10.4 	Multipath Effects
 

The H.I.T. study [71 has shown that the error caused by
 

multipath alone in this receiver is small when the multipath delay
 

is small, increases to a peak, and then diminishes steadily as the
 

delay time is increased with all other factors remaining constant.
 

This is also true when multipath and noise errors are considered
 

together (Figure -26). However, in this case when subtractive
 

multipath is involved, the point where the peak error bias occurs
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is dependent on the threshold level. The error bias at the 25 DB
 

threshold level peaks at a multipath delay of approximately 50 ns. As
 

the threshold is increased to 28 DB the peak error point shifts
 

forward to about 100 ns.
 

The key to understanding this -is .the fact that subtractive
 

multipath causes a change in the signal to noise ratio and at the
 

point where the threshold is crossed there is a relatively larger
 

change when the multipath delay is small. Low signal to noise
 

ratios cause more noise errors (Figure 25) as do low threshold
 

levels (Figure 26) so that the combined effect of both of these
 

causes a shift in-the peak error.
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SECTION XI
 

SIMULATION RESULTS - INTERROGATOR
 

ADAPTIVE THRESHOLD RECEIVER
 

The adaptive threshold receiver takes the DME pulse at the IF
 

stage and uses automatic gain control to normalize it. The threshold
 

is set at a constant voltage level below the pulse peak and so
 

does not shift its position on the pulse due to varying signal
 

strengths as in the fixed threshold receiver.
 

The effect of the ACC is such that the noise level is increased
 

whenever a loss of signal strength occurs as in subtractive multipath
 

conditions. This is in contrast to the delay and compare receiver
 

which is self-AGC'd and thus does not change the noise levels. In
 

cases of severe signal loss, the noise level could potentially
 

be multiplied to the point that it approaches the threshold level.
 

There should be a limit on the range of the AGC to prevent this.
 

11.1 	Threshold Crossings 

Under the influence of additive multipath, the error bias is 

positive and relatively constant through a large range of threshold 

levels (Figure 27). Under these conditions, noise errors are 

insignificant due to the decrease in the noise level caused by the 

AGC and as a result there is no negative shift in the bias at the 

lower threshold levels. 

The noise levels are increased by subtractive multipath 

causing a subsequent negative shift in the error bias at low 

threshold crossing points (up to T/N = 15.5 DB). The error reaches a 

minimum point in the 15.5-20 DB region and again shifts toward the negative 

at higher threshold points due to the larger error penalties caused
 

by the multipath.
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Multipath and noise are not necessarily the primary causes
 

of error for this receiver as they were for the delay and compare
 

and fixed threshold receivers. Any loss of signal strengh can
 

potentially cause large errors due to the multiplication of the
 

noise level by the AGC. This dictates the investigation of a
 

somewhat larger range of threshold levels than in previous receivers.
 

11.2 	Changes in the Signal to Noise Ratio
 

The shift in the error bias due to a 6 DB drop in the signal
 

to noise ratio is about 24 feet at a threshold level of 15.5 DB
 

(Figure 28). This a larger shift than any encountered in the
 

two transponder receivers. As the threshold level is raised the
 

shift decreases and finally reaches a value of about 2 feet at the
 

23 DB level. This suggests that the increased penalties in error
 

bias incurred at the higher threshold levels may be offset by less
 

sensitivity to signal degradation.
 

11.3 	Multipath Effects
 

When the multipath delay is increased with all other factors
 

remaining constant, the error increases to a peak at about 300 ns
 

(Figure 29). The adaptive threshold receiver is therefore sensitive
 

to a larger range of multipath delays than either the fixed threshold
 

or the delay and compare receiver.
 

For multipath delays between 0 and 300 ns, the peak value of
 

the pulse is approximately constant and as a result the AGC compensation
 

is the same throughout this range. The effect on the leading edge
 

of the pulse, however, is greatly dependent on the multipath delay
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and the AGC compensation.- The first portion of the leading edge
 

is unaffected by the multipath so that when the AGC normalizes
 

the pulse, it either sharpens or flattens this part of it. This
 

causes the threshold crossing time to be pushed either backward
 

or forward, respectively, from the ideal crossing time (Figure 30).
 

This effect increases as multipath delay increases and the direction
 

of the error shift is dependent only on the phase of the multipath.
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SECTION XII
 

SIMULATION RESULTS - INTERROGATOR
 
DELAY AND COMPARE RECEIVER
 

The delay and compare receiver used in the interrogator is
 

identical to that used in the transponder. The conditions under which
 

it operates are different, howeverand are outlined in the ground-to

air power budget.
 

12.1 	Threshold Crossings
 

The increased noise level in the interrogator results in a
 

larger region where noise is the dominant source of error (Figure 31).
 

The minimumt error bias with respect to both noise and multipath
 

occurs in the 0.13 to 0.17 level range on a normalized pulse
 

which translates into a range of threshold to noise ratios between
 

22 	and 25 DB.
 

12.2 	Changes in the Signal to Noise Ratio
 

A 6 DB drop in the signal to noise ratio causes an increase
 

in 	the error bias of 9 to 12 ft. depending on the threshold level
 

(Figure 32). This degradation in performance is caused by an
 

increase in noise errors. A 6 DB gain in the signal to noise ratio
 

results in a slight improvement in each case.
 

12.3 	Multipath Effects
 

The error caused by multipath in the delay and compare receivers
 

under these conditions is larger than it is in the transponder.
 

The higher threshold levels that are necessary here are the reason
 

for this, making multipath and noise errors the major constituent in
 

the combined error.
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Multipath errors peak at delay times of approximately 100 ns
 

for threshold levels between 23 and 25 DB (Figure 33). One would
 

expect a shift of the peak point to shorter delay times and an
 

increase in error at lower thresholds as in the delay and compare
 

transponder.
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SECTION XIII
 

OVERALL STUDY CONCLUSIONS
 

Angle-Receiver Study
 

The integrated LOE/Kalman filter receiver algorithm tested in
 

simulation as generally superior to the threshold receiver. Specifically,
 

in the crossing-multipath scenario, primarily a test of tracking
 

performance, improvement ratios (in peak absolute error) ranged to
 

20:1 and better in certain situations involving high multipath
 

interference. In the in-beam multipath and representative landing
 

scenarios the optimal receiver superiority was confirmed, though less
 

dramatically, partly because of the element of multi-path
 

acquisition present in these runs.
 

A distinct disadvantage of the optimal receiver is its complexity.
 

The non-adaptive receiver (of the same structure), evaluated as a
 

suboptimal alternative,retained some of the superiority of the optimal
 

receiver in multipath environments at a fraction of the computational
 

demand. This suggests a carefully drawn compromise of performance
 

and complexity might result in a computationally more efficient
 

algorithm offering most of the principal benefits of the optimal
 

receiver demonstrated. This problem area along with multipath
 

acquisition.(identification) have been included in our plans for
 

next year's effort.
 

DME Study
 

Under the assumed operating conditions of the transponder, the
 

fixed threshold receiver seems to provide marginally better performance
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than the delay and compare receiver. The fixed threshold receiver
 

can have considerable immunity to both multipath and noise effects
 

if the noise level is relatively low and the threshold is set at the
 

proper point above this level. A disadvantage of this receiver is
 

its sensitivity to changes in S/N which may be caused by specular
 

reflections, receiver to receiver gain variations, and other causes.
 

The delay and compare receiver has an inherent automatic gain control
 

and is insensitive to these effects.
 

The adaptive threshold receiver used in the interrogator performs
 

poorly under any condition which reduces the input signal amplitude.
 

The AGC under these conditions multiplies the noise level and increases
 

noise errors. The AGO also causes this receiver to be susceptable
 

to multipaths with a large range of differential path delays. The
 

delay and compare receiver with its inherent AGC can provide performance
 

superior to the adaptive threshold receiver under all of these conditions.
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ANGLE-RECEIVER INNOVATIONS STUDY
 

In the scan data processor, new observations data are entered
 

via a random process represented by the J-vector w(ulq) with representative
 

element wj, defined in (3.25), and repeated here with index j suppressed:
 

A -1 (A.1) 

1 + qh 

where 

2 2
u A 	q + 2n q+n +n (A.2) 

q is a real number > 0 	 (A.3)
 

n ,n are independent Gaussian random variables with
 
mean 0, variance 0.5 (A.4)
 

The 	results of a simulation study of the first and second-order
 

statistics of w (A.l) are given in Table A.lI. The sample size was
 

1000 points;.the quantity RI in the table is on independent variable
 

equivalent to twice the q parameter in (A.l) above. The autocorrelations
 

shown are really values of the sample correlation coefficient, having
 

been normalized to the appropriate sample mean square value.
 

Conclusions drawn are as folloqs:
 

1. The sample mean (MEAN) is much less than the sample rms yalue
 
(WRMS) for all 5 RI values used and also it seems, as a
 

random variable, to be well dispersed about zero; hence, it
 

seemed plausible that
 

* = 0, independent of q 	 (A.5) 

and 	this conclusion',was d'rawn.
 

2. 	The sample correlation coefficients for non-zero shifts are
 

much less than unity for all 5 RI values used, sugesting that
 

a sequence of w-values with q fixed is a white process; the
 

whiteness property was assumed to extend to the more general
 

non-fixed q case.
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The further observations, concerning the sample mean square value
 

(WMS), that
 

1. 	WS : 1, for RI = 0
 

1
 
2. WMS- , for RI large
 

suggested a tenative approximation formula, in terms of q, as follows:
 

(w2q> 	 =h(q) 1 2q(A.6) 

The results of a more extensive simulation, involving 10,000 samples
 
RHO,
 

and values of'q (=-R--) from 0 to 50 (corresponding to SIN = 34db),
 

are shown in Table A.2 and in Figures A.1 and A.2, comparing plots
 

of the sample-mean square value ,and the approximation (A.6). The
 

error in the approximation peaks at about 20% for q = 2 (RHO = 4)
 

and seems in an average sense to be asymptotic to zero for smaller and
 

larger values of q. The approximation (A.6) was employed in the
 

scan data processor with good results.
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ABSTRACT
 

This paper addresses an estimation problem in which a landing air

craft uses ground-transmitted microwave information to determine its azi

muth angular position 9(t) relative.to a fixed reference. State estima

tion is used to lower the mean-square error in estimates of 9(t) produced 

by an envelope processor in the airborne receiver. e(t) is modeled as 

part of the state of a linear dynamic system driven by white Gaussian 

noise of unknown covariance. The envelope processor estimates become 

linear observations of the state corrupted by additive Gaussian noise of 

known covariance. Adaptive-Kalman filtering is examined as a means of 

computing estimates of O(t) having minimum mean-square error. Adaptive 

filtering methods are found in the technical literature which work for 

systems wh@re the noise is stationary. They are then modified for use in 

the aircraft position estimation problem, where the noise statistics are 

time varying. The adaptive filters are tested in a digital computer sim

ulatiOfl, where o(t) is updated according to aircraft motion along,an
 

unknown flightpath. Several of the adaptive filters work very well,
 

though not significantly better than suboptimal estimators of less
 

complexity.
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t Time
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W(k) Innovations covariance 
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WNfm, P] Denotes white Gaussian distribution with mean m and covari

ance P 

xk). State of general system on kth scan 

x(klj) Estimate of x(k) based on measurements through y(k) 

Xk- Set of all past states from x(1) to x(k) 
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state 

Y k Set of all past measurements from y(l) to y(k) 

aVector containing unknown elements of Q and R for the sta
tionary noise case 

At Time between consecutive measurements (period of azimuth 
scan update rate) 

p - Input matrix multiplying state noise term in the general 
state model (IV-l) 

Ok) Aircraft's azimuth angle during kth scan period 

e(kjJ) Estimate of e(k) based on measurements up to and including 
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* Aircraft's elevation angle 

State transition matrix in general state model (IV-l) 
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CHAPTER I
 

INTRODUCTION
 

This paper describes the application of state estimation theory to
 

an aircraft landing problem where the system model is incompletely
 

defined. In general the problem requires estimation of the state of a
 

linear dynamic system driven by white Gaussian-noise with unknown covari

ance. The state is observed by a linear function of the state corrupted
 

by additive white Gaussian noise. When all model parameters are known,
 

the optii-a minimum variance estimator becomes the Kalman filter [1, pp.
 

228-2293, [2, pp. 195-201]. However, when the model noise covariances
 

are unknown, the optimal estimator cannot be achieved, and some subopti

mal approach must be employed. Several adaptive Kalman filtering methods
 

from the literature are examined in this paper as possible solutions to
 

the aircraft landing problem.
 

Before giving a formal description of the state estimation problem,
 

let us first provide a background description of the aircraft landing
 

problem. A more rigorous problem definition can then be presented, along
 

with a proposed course of solution.
 

Background on Microwave Landing System
 

The problem examined in this paper is part of an airborne receiver
 

study for the Microwave Landing System (MLS). The MLS, developed by the
 

I 
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Federal Aviation Administration (FAA) and the National Aeronautical and
 

Space Administration (NASA), provides electronic guidance in an air ter

minal area for landing aircraft [3], [4]. The system enables an
 

approaching aircraft to compute its position in space relative to a fixed
 

ground reference. The required coordinate information is derived by the
 

aircraft's receiver from ground-transmitted microwave signals.
 

Let us establish a cartesian coordinate system, with its origin at
 

the stop end of the runway. Referring to Fig. I-l.A, the runway center

line forms the I axis, while the Z axis is normal to the ground plane.
 

We also establish a spherical reference system centered at the same
 

origin.- At time t, the aircraft's position shall be defined by the fol

lowing spherical coordinates:
 

r(t) = direct path distance from the origin to the
 

aircraft. 

e(t) azimuth angle from the X axis to the projection 

onto the ground plane of a ray from the origin 

to the aircraft. 

kL) = elevation angle from the ground plane up to this 

ray. 

The MLS enables the aircraft to compute these three coordinates. We
 

restrict ourselves in this paper to considering only the azimuth angle
 

o(t). First we present a brief description of the azimuth channel in
 

the MLS.
 

An antenna, located at the coordinate origin,electronically- scans
 

a ±600 azimuth coverage sector with a narrow fan-shaped microwave beam.
 

The beam is narrow only in the azimuth sense (10 between -3 db points),
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while being wide in elevation coverage. The beam is scanned in a
 

"TO-FRO" fashion, as shown in Fig. I-l.B: the beam boresight OA(t)
 

starts at +600 azimuth, moves at constant rate to -60', holds there for a
 

brief "dead time," and then moves back. This scanning procedure takes
 

12.2 milliseconds and repeats at a 13 1/3 Hz update rate [3, pp. I-10,
 

11, 27J.
 

We define tk as the time at the start of the kth scanning proce

dure. We also assume that e(t) is constant at e(tk) during the12.2 mil

lisecond duration of the scan. During this time the scanning beam 

signal, viewed at the input to a receiver at the aircraft, is amplitude

modulatec, having large amplitude when the boresight EA(t) is near e(tk). 

The envelope-detected signal, shown in Fig. I-I.C, has two-pulses: one 

which peaks wren eA(t) = 0(tk) during the "TO" scan; and the second which 

peaks when GA(t) = e(tk) during the "FRO" scan. As seen in Figs. I-l.B, 

C, the time differential between the centroids of the two pulses is 

directly related to the value of e(tk). The aircraft can therefore 

determine its azimuth angle by receiving and envelope detecting the 

ground-transmitted signal and measuring this time differential. 

This scheme for computing e(tk) runs into difficulty when we real

ize that the received signal is corrupted by front-end noise in the air

borne receiver. This front-end noise produces random distortions in the
 

envelope so that any attempt to estimate 0(tk) from envelope information
 

will have random errors as well.
 

An optimal envelope processor has been designed which, given the
 

noise-corrupted signal envelope for the kth scanning interval, computes
 

an estimate of e(tk) which minimizes mean square error. The
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envelope-detected IF signal is sampled in the vicinity of the two large
 

pulses during the 12.2'millisecond scanning process. Then, during the
 

"down time," before the next scanning process begins, the envelope sam

ples are sent to a minicomputer. Here a "locally optimum estimation"
 

algorithm computes an estimate of e(tk) [5, pp. 8-29], [6,pp. 4-281,
 

52-61]. Using a stochastic model for the signal envelope, this algorithm
 

provides an estimate of e('tk), given the envelope samples for the kth
 

scanning process, which is optimal in terms of minimum mean square error.
 

The optimal envelope processor estimates e(t 1 based only upon the 

envelope samples taken on the kth scanning interval. At a 13 1/3 Hz azi

muth update rate, we would expect the effects of thermal noise upon the 

signal envelope to be independent between consecutive scans. The error 

in consecutive estimates should therefore be independent as well. On the 

other han:, the true angle 0(tk) cannot change appreciably between scans 

for a large aircraft. In plotting a time sequence of estimates we 

therefore expect to see random fluctuations. about a slowly changing 

mean. 

Since the estimates change much more rapidly than the true azimuth
 

angle, it seems reasonable that the estimate of e(tk) could be improved
 

by averaging it with past estimate values. This would produce a new
 

estimate based on all past envelope information and not just that
 

obtained on scan k, This is the objective of the work preseted in this
 

paper. Adaptive Kalman filtering is examined as a means of producing an
 

estimate of e(tk) having a smaller mean square error than that of the
 

envelope processor estimate.
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Thesis Overview
 

The above-stated problem is presented mathematically in Chapter II,
 

where a stochastic system model is derived. The Kalman filter requires a
 

state variable model, where an nth-order linear dynamic system is driven
 

by white noise of known covariance. We therefore model e(tk) as part
 

of the state of such a system. The discrete Kalman filter is presented
 

in Chapter I11 as the optimal estimator of o(tk), given the state model of
 

Chapter II. It is also shown that the Kalman filter requires knowledge
 

of the plant noise covariance,which is unknown in our problem model.
 

Adaptive Kalman filtering is therefore studied as a suboptimal estima

tion approach in which the unknown Kalman gain is estimated from measure

ment information..
 

Several candidate adaptive-filtering methods from the literature
 

are presented in Chapter IV. Each filtering scheme is developed under
 

the assumption of stationary noise. In Chapter V we modify each of the
 

candidate filters to work for our specific problem, where the unknown
 

noise covariances are time varying.
 

The adaptive Kalman filters are tested in digital computer simula

tion in Chapter VI. This testing proceeds in two stages. First the
 

assumed stochastic model of Chapter II is simulated.with additively cor

rupted measurements of the state sent to a candidate adaptive filter.
 

The error in the filter's estimate e(tk) is plotted as a function of
 

time. If a candidate filter performs well here, it is then tested in a
 

second simulation phase where the stochastic model assumption is
 

removed. e(tk) is now updated deterministically as the aircraft moves
 

along a prescribed flight path. Additively corrupted measurements of
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e(tk) are again sent to the candidate filter which then computes the
 

estimate e(tk). That adaptive filter issought which minimizes the mean
 

square error in e(tk). A conclusion is given in Chapter VII.
 



CHAPTER II
 

PROBLEM DEFINITION AND MODEL DEVELOPMENT
 

In this chapter we offer a more rigorous problem d~scription and
 

then develop a stochastic model describing the evolution of the-azimuth
 

angle o(tk). This model is then used in subsequent chapters to develop
 

an estimate of e(tk), based on all past envelope information.
 

Problem Definition
 

Before formally describing the estimation problem, we place some
 

mild restrictions on the aircraft's azimuth coordinate and its estimate
 

produced by the envelope processor. We first change notation, using 0(k)
 

instead of e0tk) to represent the azimuth coordinate at the start of the
 

kth scanning interval.
 

Let us assume that the aircraft is making a landing approach along
 

some prescribed flight path unknown to us. As the aircraft moves along
 

this path, let its azimuth angle be given by
 

e(k) = f(k.) (II-1) 

While we do not know the relation f(.), we shall assume that it is a
 

member of a known "class" of functions representing evolutions in e(k)
 

for typical landing approaches. For example, we can limit the aircraft's
 

maximum air speed or minimum radius of turn. More is said about this in
 

Chapter VI.
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We define y(k) as the estimate of o(k) produced by the envelope
 

processor using the locally optimum estimation algorithm. This estimate
 

is unbiased and can therefore be given by
 

y(k) = e(k) + vk) (11-2)
 

where v(k) is a zero-mean additive error term with covariance R(k). R(k)
 

is computed by the locally optimum estimation algorithm so that we know
 

its value [6, p. 5]. The probability distribution of v(k) is unknown.
 

Here, we assume that it is Gaussian. This does not appear to be an
 

unreasonable assumption insofar as we would intuitively expect the error
 

density t be symrnetric about a single,mode at zero. Also, the Gaussian
 

assumption makes the state estimation problem to follow mathematically
 

tractable. We therefore write the probability density of v(k) as
 

p[v(k)] = N[O, R(k)] (11-3)
 

We hereafter denote the first-order density of an n-dimensional Gaussian
 

process x(k) with mean m(k) and covariance P(k) as
 

p[x(k)] = N[m(k), P(k)] (11-4) 

where
 

n 1
 
P2p(k) P (11-5)
2exp--x(k)-m(k) (k)[x(k)-m(k)]} 


If x(k) is white or uncorrelated in time, we write:
 

p[x(k)] = WNEm(k), P(k)] (11-6)
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The envelope processor error v(k) is produced by the effects of front-end
 

noise on the IF signal. These effects are independent from one scan
 

interval to the next, so that v(k) is uncorrelated. We therefore write
 

p[v(k)] = WNFO, R(k)] (11-7)
 

As mentioned in Chapter I, the envelope processor estimate y(k)
 

uses only the envelope information from the kth scan interval. Our
 

objective is to develop an estimate of e(k) based on Yk' the set of all
 

past values of y(k):
 

Yk -f y(1), y(2), y(k)} (11-8)
 

For a slowly changing azimuth angle there is a high correlation between
 

e(k) and e(k 1-1), while the estimates y(k) have uncorrelated errors from
 

scan to scan. As mentioned in Chapter I,we intuitively expect to
 

improve the-estimate y(k) by averaging it in some way with past values.
 

This could be viewed.as a low-pass filtering approach.
 

Let us consider a stochastic state model, driven by noise, as a
 

representation for the evolution of e(k). Given a valid state model, we
 

could then, by treating the estimates y(k) as observations of the state,
 

produce a new state estimate which minimizes error in some mean-square
 

sense. This is the approach taken here.
 

We now offer a formal problem description. Given in the problem is
 

an unknown azimuth coordinate e(k) described by (II-1), where f(.) is a
 

member of a known class of functions. Also given is the set Yk of past
 

envelope processor estimates. The estimate y(k) has zero-mean, white
 

http:viewed.as
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Gaussian error with known covariance, described by (11-2) and (11-7).
 

The objective can be stated as follows: ustng an assumed stochastic
 

model for the evolution of e(k), develop an adaptive Kalman filter which
 

estimates e(k) so as to minimize mean-square error in the estimate. Sev

eral adaptive Kalman filtering methods are obtained from the literature
 

and modified for use in this problem. Each candidate filter is tested in
 

computer simulation, with error in the-estimate of e(k) being the quant

ity of interest.
 

Stochastic Model
 

The Kalman filter requires a state variable model where an nth

order linearsystem is driven by white Gaussian noise. We therefore use
 

such a stcchastic model in representing the evolution of the azimuth
 

angle e(k). In order to keep the resulting Kalman filter computationally
 

feasible we elect to use a two-dimensional model where the angular accel

eration is set equal to white Gaussian noise:
 

(t) lUt_ =e0 +11fj (1-) 

p[u(t)] = WN[O, S(t)] (II-10)
 

Our decision to model acceleration as white noise provides us with the
 

lowest order stochastic model for which both e(t) and 6(t) can be esti

mated. As shown in Chapter III, 6(t) is used to linearly extrapolate the
 

estimate of e(t) between measurement times.
 

In using the noise process u(t) to model e(t), we must relate the
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noise covariance S(t) to the actual value which 0(t) takes on. Since
 

S(t) is the expected value of the square of u(t), we set it equal to the
 

square of the actual acceleration:
 

S(t) = ;2(t) (I I-II) 

Of course, inestimating (t) we do not know e(t), since the only availa

ble information is the set Yk of envelope processor estimates. S(t) is
 

therefore unknown in our model, at least from the aircraft's point of
 

view.
 

As stated in the problem definition, we are interested in estimat

ing e(k), the value of 0(t)-at the start of the kth scanning interval.
 

We therefore obtain a discrete-time representation of the state model in
 

(11-9). Le- us first replace (11-9) with a more general state equation:
 

i =:t)Ax(t) + Gu(t) (11-12) 

where x(t) is a general state vector driven by a vector noise process
 

u(t). (I1-10) can still be used to describe u(t). A general discrete
 

state model is given by:
 

x(k) = )(At)x(k - 1)+ r1(k - 1) (11-13)
 

=
p[w(k - 1)] WN[O, Q(k - 1)] (11-14)
 

where At i tk - tk 1' (11-14) becomes the discrete equivalent of
 

(11-9) with x(k) representing x(t)It _ tk when we use the following
 

transformations [7, pp. 60-61, 72-75]:
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=
.($At) exp{AAt1 (II-15.A)
 

rQ(k - l)rT tk s(t - t)GS(t)GTT(t - t)dt (II-15.B) 
tk - I 

Substituting the A matrix of (11-9) into (II-15.A), we obtain for our
 

model:
 

( 1-16) 
O(At) = [A 

We assume At to be constant, so that '$At) also becomes a constant and is
 

written hereafter as P. For evaluation of (II-15.B) we assume that S(t)
 

is constant at S(tk) over the limits of integration. This seems reasona

ble, as O(t) cannot change appreciably during one scan period at a
 

13 1/3 Hz update rate. Moving the scalar S(tk) outside the integral and
 

changing variables we obtain:
 

T At
 

T
rQ(k - 1)r = S(tk) fA(T)GGT(T)dT (11-17) 
0-

We then substitute for G and o(T) from (II-9) and (11-16) and evaluate
 

the integral:
 

rQ(k l)rT (1-18)
-

-at2 At 

The linear At term in the matrix dominates for small At, as is the case
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for our problem, where At = .075 (the period of a 13 1/3 Hz update rate).
 

We approximate the other terms as zero:
 

rQ(k - 1)rT = AtS(t (If-19) 

With this approximation Q(k - 1) becomes a scalar, so that the state
 

equation becomes
 

+jJk (11-20)
-1)
0(k) I 6[(k -l1) 

L(k 1) + 1k--oI 

p[w(k - 1)] = WN[O, Q(k - 1)] (11-21) 

Q(k - 1)= AtS(tk) (11-22)
 

Since S(t) is unknown in the continuous-time model, Q(k - 1) isunknown 

as well.
 

We can see from (11-20) that the effect of our assumption in 

(11-19) is to add noise only to the velocity 6(k), so that o(k) becomes 

piecewise linear between measurement updates. Ifwe were to assume a 

constant acceleration between times tk 1 and tk, e(k) would be 

described by 

o(k) = o(k - 1) + At6(k - 1) +lt O(k 1) (11-23) 

1 2" 
In (11-20) we 'have discarded the nonlinear term jt e(k - 1), assuming it
 

to be negligible. For reasonable landing approaches we do not expect
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to exceed 0.1/sec2 [6, p. 40]. For a 13 1/3 Hz update rate, At is 75
 

milliseconds, and the error in neglecting the nonlinear term is always
 

less than -. 075 sec) 2(.1/sec2), or 2.8 x 10-4 degrees. Since 0.01' is
 

given as a desired r.m.s. error specification, (11-20) is a valid
 

approximation.
 

We now -have a discrete time state model describing the evolution of
 

e(k). We recall from (11-2) and (11-7) that the envelope processor esti

mate y(k) equals e(k) plus a Gaussian error term. We can therefore view
 

y(k) as a linear observation, or "measurement" of the state corruptedby
 

additive noise
 

y(k) = [1 01  + v(k) (11-24) 

Finding the value of e(k) now becomes a state estimation problem. We
 

must estimate the state of a linear dynamic system excited by white
 

Gaussian noise of unknown covariance, given linear measurements of the
 

state corrupted by additive white Gaussian noise of known covariance.
 



CHAPTER III
 

THE DISCRETE KALMAN FILTER
 

In this chapter we examine the discrete Kalman filter, which is the
 

optimal estimator for the assumed state and measurement models in our
 

problem. As previously mentioned, the optimal estimator cannot be used
 

here, as the state noise covariance is unknown. The optimal estimator is
 

of use, however, in obtaining the suboptimal solutions to follow, and
 

provides a lower bound on error performance.
 

Let us first provide the state and measurement equations in concise
 

form. From (11-7), (11-20), (11-21), and (11-24) we have:
 

e(k) A - 01 

lJ L6k -)(111-1)-(k 


e(k)] 
yAk) = [1 0 ] ( + v(k) (111-2)

I (k)JI 

p[4(k - 1)] = WN[O, Q(k - 1)] (IT-3) 

p[v(k)] = WN[O, R(k)] (111-4)"
 

where Q(k - 1) is unknown, Equations (III-1) and (111-2) describe a spe

cific member within a general class of linear systems given by:
 

16
 



17 

x(k) = c@x(k - 1) + rm(k - 1) (111-5) 

y(k) = Hx(k) + v(k) (111-6) 

where x(k) is an n-dimensional state vector, y(k) is an m-dimensional,
 

measurement of x(k), and where w(k - 1) and v(k) are Gaussian noise vec

tors of dimension r and m. The noise sequences for the general case are
 

still described by (111-3) and (111-4), where Q(k - 1) and R(k) are now
 

symmetric, non-negative definite matrices of respective dimensions r x r
 

and m x m.
 

Let us consider the general system of (111-5) and (111-6). We
 

assume in this chapter that the state noise covariance Q(k - 1) is known.
 

Our objective is to estimate the state x(k) given the set Yk of all past
 

measurements:
 

Yk a {y(l), y(2), y(k)} (111-7)
 

Let us define x(klj) as an estimate of x(k), given Yj. We are concerned
 

with finding the optimum state estimate x(klk).
 

In order to have a quantitative measure for optimality we define a
 

performance index, or loss function J(kjk):
 

J(kjk) = E{[x(k) - x(klk)] W[x(k) - x(klk)J} (111-8) 

where W is an n x n symmetric, non-negative definite matrix. When W is
 

diagonal J(klk) becomes a weighted sum of the mean-square errors in the
 

elements of x(klk). We define the optimal state estimate of x(k) as that
 

estimate x(klk) which minimizes J(klk). It can be shown that J(kjk) is a
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member of a class of loss functions which are minimized by that estimate
 

given by the conditional mean of the state given all past measurements;
 

i.e., the optimal estimate x(klk) becomes
 

x(klk) = E{x(k)IYkl (111-9)
 

[l, pp. 227, 231], [2, pp. 147-148]. This is true for any non-negative
 

definite W.
 

We again reference the general linear system (II-3)-(II-6), and
 

still assume that the noise covariances are known. It is well known that
 

the optimal estimate of x(k) for this system, the conditional mean which
 

minimizes J(kjk), is given by the discrete Kalman filter [1, pp. 228

229], [2, pp. 195-201]. The Kalman filteris described by the following
 

equations [2, p. 201]:
 

x(klk - 1)= ux(k -lk - 1) (1-I0) 

P(kjk - 1) = PP(k - Ilk - 7)DT + rQ(k - l)rT (III-11) 

-
K(k) :P(kk - I)HT[HP~kk - I)HT + R(k)] 1 (111-12) 

x(klk) = x(klk - 1)+ K(k)[y(k) - Hx(klk - 1)] (111-13) 

P(kfk) = P(klk - 1) - K(k)HP(kk - 1) (111-14) 

where 4(klk - 1) denotes the optimal predicted, or extrapolated estimate 

of x(k) given Yk - ' while x(kjk) is the optimal updated estimate. using 

all measurements Yk up to the present time, The term P(klj) is the error 
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covariance in the estimate x(kfj):
 

P(klj) = E{[x(k) - x(klj)][x(k) - x(klj)]T} (111-15) 

K(k) is the Kalman gain, which determines the weighting given the present
 

measurement y(k) in computing x(klk). Note that K(k) is not a function
 

of measurement values, so that x(klk) is a linear estimate of x(k)'.
 

Returning to our original problem of (III-1) to (111-4), we define
 

the state estimate x(klk) by
 

x(klk) = [E(klk), T(klk)] (111-16)
 

We seek.to minimize mean-square error in e(kjk), so that our performance
 

index becomes
 

PI(kjk) = E{[e(k) - e(klk)]21 (111-17)
 

From (I!!-8) we see that PI(klk) is a special case of the general loss
 

function J(kjk) where W is the diagonal matrix diag{l, 01. Therefore the
 

Kalman filter produces the optimal estimate for our problem when the
 

noise covariances are known. We now give the Kalman filter equations for
 

our specific model:
 

e(klk - 1) = e(k - lik -1) + At6(k - Ilk - 1) (111-18) 

Pll(klk-l) = Pll(k-1lk-l) + 2AtP12 (k-lIk-l),+ At2P22(k-llk-l) (111-19)
 

P1-2 (kjk - 1) = P12(k - ljk - 1) + AtP 2 2(k - Ilk - 1) (111-20) 
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(111-21)
P22(k Ilk - 1) + Q(k -1)P2 2(klk - ) 

- 1) + R(k)] (111-22)
-
KI(k) : P11(klk l)![P 11(kjk 


(111-23)

K2 (k) = Pi2(klk - l)/[Pil(klk - 1) + R(k)] 


- e(kjk - I)] (111-24)
e(klk) &(klk - 1)+ Kl(k)[y(k) 


e(kik) 6(k - Ilk - 1) + K2(k)[y(k) - e(kik " 1)] I1-25)
 

(111-26)
P11(klk - 1)[I - K(k)]Pll(kjk) = 

(111-27)

P12(kk)= P1 2 (klk - 1)[1 - KI(k)] 

- - K)(k)P1 2(klk - 1) (111-28)
P299(kk) = P22(klk 

case of an n-

Let us consider the Kalman filter for the general 


state vector with scalar noise and measurements. 
From (III

dimensional 


12) we can see that the optimal gain matrix K(k) becomes an n-dimensional
 

Some of the properties of this gain vector are 
useful for the
 

vector. 


adaptive Kalman filter development of Chapter 
IV,
 

- 1) and R(k) are
 
We first note that for stationary noise where 

Q(k 


as the error covariances
 
scalar constants, the gain K(k) as well 


- 1) and P(kjk) reach constant steady-state 
values. If Q(k - 1)
 

P(klk 


a function of the ratio
 
and R(k) are constant or slowly varying, 

K(k) is 


1)IR(k). Furthermore, K(k) can be specified if
only one of its
 

Q(k 

elements are known; all remaining entries 
are deterministic functions of 
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the one known element. The dependence of the gain on Q and R as well as
 

the functional relationships between gain elements can be observed numer

ically, but we cannot usually find closed-form expressions for such pro

perties, especially when n is large [8, p. 274]. Another useful property
 

of the gain for the scalar measurement case is given by Alspach [8, p.
 

272]:
 

0 HK(k) < 1 (111-29)
 

We offer a proof for (111-29), but first we rewrite the general
 

Kalman gain equation (111-12):
 

W(k) HP(kjk - 1)HT + R(k) (111-30) 

K(k) = P(klk - l)HTW-I(k) (111-31) 

P(kjk - 1) and R(k) are non-negative definite matrices, so that W(k) is 

non-negative definite as well, having the same form as a covariance 

matrix. More is said about this property of W(k) in Chapter IV. Alspach 

notes that W(k) can be written: 

W(k) = [I - HK(k)]-1 R(k) (111-32)
 

[8, p. 270]. We can prove this by starting with the right-hand side and
 

substituting:
 

[I - HK(k)]-IR(k) (III-32.A)
 

[I - HP(klk - 1)HTw- (k)]-IR(k) a (III-32.B) 
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= W(k)[W(k) - HP(kjk - 1)HT1-1R(k) (111-32.C) 

= W(k)[R(k)]- R(k) (III-32.D) 

= W(k) (III-32.E) 

(III-32.B) is obtained by substituting for K(k) from (111-31), while
 

(III-32.D) is obtained from (111-30). For the scalar noise and measure

ment case R(k) and W(k) become positive scalars, and (111-32) can be
 

rewritten:
 

1 - HK(k) = R(k)/W(k) (111-33) 

Since R(k) and W(k) are positive, their ratio cannot be negative, From
 

(111-30) we know that W(k] must be greater than or equal to R(k), so that
 

the ratio in (111-33) cannot exceed unity. We'therefore have:
 

0 < 1 - HK(k) < 1 (111-34) 

or
 

0 < JHK(k)< 1 (111-35) 

For the two-dimensional aircraft problem we can show that the gain
 

of the filter given by (111-18)-(111-28) is a function of Q(k - 1)/R(k).
 

We can also obtain a closed-form expression for the second gain element
 

in terms of the first. We first need to express the error covariances
 

..,P(klk - 1) and P(klk) in terms of K(k). From (111-22) we can write: 

Pll(kjk - 1) = Kl(k)R(k)/[l - Kl(k)] (111-36) 
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Substituting this expression for P11(kjk - 1) into (111-26) we obtain:
 

P 1l(klk) = K1(k)R(k) (111-37)
 

Substituting (111-36) for Pll(klk - 1) into (111-23), we have:
 

P12(kjk - 1) = K2(k)R(k)/El - Kl(k)] (111-38) 

And substituting this expression for P12(klk - 1) into (111-27) we have:
 

P12(klk) = K2(k)R(k) (111-39)
 

We now make the assumption that the noise covariances are slowly
 

varying in time. This seems reasonable, as Q(k - 1) is determined by the
 

acceleration e(tk) and R(k) depends on the signal-to-noise ratio. Nei

ther of these quantities can change appreciably between scan intervals at
 

a 13 1/3 Hz update rate. We therefore approximate the error covariance
 

P(kjk - i) as having the same value for two consecutive time periods:
 

P(k + ljk) Z P(kjk - 1) (111-40) 

Using this approximation; we substitute (111-38) and (111-39) into (III

20) and obtain:
 

P22(klk) = Kl(k)K 2 (k)R(k)/[At(l - Kl(k))] (111-41) 

We can now represent the second entry of the optimal gain in terms of the
 

first. Using the approximation of (111-40)- we substitute (111-36),
 

(111-37), (111-39), and (111-41) for the needed covariances into (I11-19)
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and simplify, obtaining:
 

K2(k) = 2( k ) / [ At ( 2 - Kl (k))] (111-42) 

We observe that K2(k) is a monotone-increasing function of Kl(k). Using
 

(111-35) and (111-42) and noting that here HK(k) equals Kl(k), we estab

lish bounds on the gain:
 

0 < Kl(k) < 1 

(111-43)
 

0 < K2(k) < I/At 

Keeping the assumption of (111-40), we find from (111-21) and (111-28) 

that we have two expressions for the difference P22(kk - 1).- P22(kk). 

Equating these we have: 

Qk - 1)'= K2(k)Pl 2 (klk - 1) (111-44) 

Substituting (111-38) for P12(kjk - 1), we have: 

Q(k - 1)/R(k - 1) = K(k)/[l - Kl(k)] (111-45) 

And by using (111-42) for K2(k)we finally have: 

Q(k - 1)/R(k) K4(k)/[At(2 - K1 (k))2 (1 - Kl(k))] (111-46)1 1. 

Q(k - 1)/R(k) is clearly a monotone-increasing function of Kl(k), ranging
 

from zero when K1(k) is zero to infinity when Kl(k) is unity. Since
 

Q(k - 1)/R(k) and KI(k) are both positive, we can infer that Kl(k) is a
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monotone-increasing function of Q(k - 1)/R(k) as well.
 

We can make some intuitive observations from this about the optimal 

filter of (111-18)-(111-28). From (111-18) we see that e(klk - 1) is a 

linear extrapolation of ;(k - llk - 1), based upon the velocity estimate 

6(k - lk - 1). We-then accept a new measurement y(k) of e(k)-, and use 

the weighted difference between y(k) and e(klk - 1) to update our esti

mate to o(klk) in (111-24). The weighting applied to this difference is 

Kl(k), varying from 0 to 1. We have just found Kl(k)to be a monotone

increasing function of Q(k - l)/R(k). We might view Q(k - l)/R(k) as the 

ratio of uncertainty in our knowledge of the state x(k) to uncertainty in 

the measurement y(k). When this ratio is low, indicating high confidence 

in our estimate of the state, K(k) issmall, so that y(k) has little 

effect on the new estimate x(klk). When this ratio is high, we have 

greater conficence in our new measurement y(k). K(k) becomes large, and 

y(k) has more weighting indetermining x(klk). Of course when 

Q(k - l)/R(k) approaches infinity, we have no prior knowledge of the 

state: x(k U lik - I) gives no information about x(k). Kl(k) becomes 

unity, causing e(klk) to become y(k). 

Before leaving the subject of optimal filters, let us study the
 

effects of using a Kalman filter with incorrect or suboptimal gain. This
 

would be the case if incorrect values were used for the noise covariances
 

Q(k - 1) and R(k). Assume that the filter of (III-10) and (111-13) is
 

implemented, with a suboptimal gain K(k). From (111-5), (111-I0), and
 

(111-13) we can write the error in the state estimate:
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x(k) - x(klk) = x(k - 1)+ rif(k - 1)- Ox(k - Ilk - 1) 
(111-47) 

- K(k)[y(k) - H4x(k - Ilk - 1)] 

Substituting for y(k) from (111-6) we have:
 

=
x(k) - x(klk) D[x(k - 1) - ;(k -Ilk 1 )] + r.(k - 1)
 

K(k)[H'x(k - 1) + Hrm(k - 1) + v(k) - H'x(k --Ilk - 1)] 

(111-48) 

x(k) - x(klk) [I - K(k)H][x(k - 1) - x(k - Ilk - 1)] 
(II1-49) 

+ [I - K(k)H]rw(k - 1) - K(k)v(k) 

We recall that w(k - I) and v(k) are samples of white sequences and are 

independent of each other. Since x(klj) is a combination of measurements 

through y(j), we can make the following assertions: 

k<i
 
[x(k) - x(klj)] is independent of w(i): (111-50)


j<i 

all k 
[x(k) - x(klj)] is independent of v(i): (111-51)

j < i
 

Therefore all three terms in (111-49) are independent, and we write the
 

suboptimal error covariance:
 

P(klk) = k[x(k) xx(k(kfk)] I{ - ) - (III-52.A)
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:[l-K(k)HlipE{[~x(k-l)-x(k-llk-l)][x(k-l)_x(klkIkl]} T[lK(.k)H]T
 

T A 
 T T A
 

+ [I - K(k)H]rE{w(k - l)0T (k - l))rT[I - k(k)H] T + K(k)E{v(k)vT(k)IKT(k) 

(III-52.B)
 

Simplifying this expression, we obtain:
 

P(klk) = [I - K('k)H][DP(k - ljk - 1p T + rQ(k - l)rT][I - K(k)H]T 

(111-53)
 

+ K(k)R(k)KT(k) 

Equation (111-53) has been iterated until steady-state is reached
 

for our problem of (111-1)-(111-4) with stationary noise. Figure III-I
 

shows Pll (k[k), the steady-state mean-square error in e(klk), as a func

tion of suboptimal gain. Pll(klk) versus K1(klk) is plotted for three
 

ratios of Q(k - 1)/R(k). Note that for each case P11 (kjk) is minimum for
 

the optimal gain and then rises to R(k) as Kl(k) approaches unity. We
 

can see that as long as the suboptimal gain is near or above the optimal
 

value, the estimate e(kjk) will have a lower mean-square error than y(k).
 

When the suboptimal gain becomes less than the optimal value, however,
 

P11(kk) rises rapidly, approaching infinity as the-gain goes to zero.
 

Here the suboptimal filter diverges. The gain is so small that insuffi

cient weighting is given to the most recent measurement y(k) in updating
 

the state estimate x(klk). Too much emphasi's is placed on old measure

ment information, so that the filter cannot follow the true dynamics of
 

e(k).
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CHAPTER IV
 

ADAPTIVE KALMAN FILTERING: THE STATIONARY NOISE CASE
 

In Chapter III we introduced the discrete Kalman filter.as the
 

optimal state estimator for the linear system described by:
 

x(k) = x(k - 1)+ rn(k - 1) (IV-l) 

y(k) = Hx(k) + v(k) (IV-2) 

p[w(k - 1)] = WN[O, Q(k - 1)] (IV-3) 

p[v(k)] WN[O, R(k)] (IV-4)
 

We made the assumption, however, that the noise covariances were known.
 

Reviewing the-Kalman filter equations (III-10)-(III-14) we note that both
 

Q(k - 1) and R(k) are needed for computing the optimal gain K(k) and the
 

error covariances P(klk - 1) and P(kjk). If either Q(k - 1) or R(k) is
 

unknown, as is the case for our problem, the gain K(k) cannot be found.
 

We could implement the Kalman filter equations by substituting estimates
 

for the unknown noise covariances, but the performance of the resulting
 

estimator could be highly suboptimal if these estimates are poor.
 

In this chapter we introduce adaptive Kalman filter as a suboptimal
 

estimation scheme when the noise covariances are unknown. The adaptive
 

Kalman filter takes the form of the optimal filter:
 

29
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x(kIk - 1) = ux(k - Ilk - I) (1V-5) 

x(klk) = x(klk 1) + K(k)[y(k) - Hx(klk - 1)] (IV-6) 

where K(k) is an estimate of the unknown optimal gain K(k). The subopti

mal K(k) is a function of the measurements Yk: we use the measurements
 

to either estimate K(k) directly or to estimate the unknown noise covari

ances for use in the Kalman equations (I1I-lO)-(III-14). The adaptive
 

filter is therefore a nonlinear estimator, unlike the optimal Kalman
 

filter, which is linear since the gain K(k) is independent of the
 

measurements.
 

Here we present three adaptive Kalman filtering methods for the
 

stationary noise case from the literature, as well as a simpler intuitive
 

scheme. Each method assumes the system model of (IV-I)-(IV-4), with both
 

Q(k - 1), and R(k) unknown and constant. Some methods assume a model of
 

general dimension, while others assume scalar noise and measurements. In
 

this chapter we present the development of each method for the general
 

stationary case. In Chapter V we modify the adaptive filters to work
 

when the noise covariances are time-varying and apply them to our speci

fic problem of (111-1) to (111-4).
 

The Innovations Sequence
 

Before presenting a development of the adaptive Kalman filtering
 

methods, let us first define the innovations sequence. This concept is
 

useful in the filtering developments to follow.
 

We first recall the general Kalman filter equations (111-10)-(III

14). Specifically, the updated estimate is given by (111-13):
 



31 

x(kjk) = x(klk - 1) + K(k)[y(k) - Hx(kJk - 1)] (IV-7) 

We shall, define the innovations residual v(k) by:
 

v(k) = y(k) - Hx(klk - 1) (IV-8)
 

The time sequence of these residuals is called the innovations sequence. 

We can show that the residual v(k) is actually the error in the optimal 

predicted estimate of the measurement y(k) given Yk - I From Chapter 

III we recall that the optimal, least-mean-square error estimate of y(k) 

is the conditional mean of y(k) given the available measurements. From 

(111-9) we write the optimal predicted estimate as: 

y(klk - 1) = E{y(k)jYk _ 11 (IV-9.A) 

1}
- E{Hx(k) + v(k)IYk _ (IV-9.B)
 

= HE{x(k)IYk I1+ E{v(kI)} (IV-9.C) 

Equation (IV-9.B) results from substituting (IV-2) for y(k), while the 

second term in (IV-9.C) results from noting that v(k) is from a white 

sequence and thus independent of Yk - " Recalling that the optimal pre

dicted state estimate is given by the Kalman filter, and that v(k) is 

zero-mean, we have: 

y(klk - 1) = Hx(klk - 1) (IV-10) 

where x(klk - 1) is from the Kalman equation (III-10). The innovations 
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residual v(k) is therefore the difference between the measurement y(k)
 

and its optimal predicted estimate. This error is then multiplied by the
 

Kalman gain K(k) and used to correct ;(kjk 1) in (IV-7) to produce the
 

optimal state estimate x(klk).
 

The residual v(k) can easily be shown to-be zero-mean:
 

E{x(k)} E{y(k) - Hx(klk - )1 (IV-Il.A) 

= HE{x(k) - x(klk 1)1 + E{v(k)1 = 0 (IV-ll.B) 

(IV-1l.B) is obtained by substituting (IV-2) for y(k)- It equals zero
 

because the Kalman estimate x(kjk - 1) is by definition unbiased, while
 

v(k) is zero-mean. We can also find the innovations covariance W(k):
 

W(k) = E{fv(k)vT(k) (IV-12.A) 

Ef[H(x(k) - x(kfk - 1)) + v(k)][H(x(k) - x(klk - 1)) + v(k)]TI 

'(IV-12.B)
 

From (111-51), [x(k) - x(kfk - 1)] and v(k) are independent, so that (IV

12.B) becomes:
 

W(k) = HE{[x(k) - x(klk-l)][x(k) - x(klk-l)] TH + E{v(k)vT(k)H 

(IV-i3.A)
 

= HP(klk - l)HT + R(k) (IV-13) 

From (111-12) we see that the optimal filter computes W(k) in
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finding the Kalman gain K(k). The gain was written as a function of W(k)
 

in (111-30), (111-31), although no physical interpretation was given for
 

W(k) at the time. We sometimes find it convenient to express the Kalman
 

gain and updated state estimate of (111-12), (IIl-13).in terms of the
 

innovations sequence:
 

v(k) = y(k) - Hx(klk - 1) (IV-14) 

W(k) = HP(klk - )HT + R(k) (IV-15) 

K(k) = P(kk - )HTW-1(k) (IV-16) 

x(kjk) = x(kfk - 1) + K(k)v(k) (IV-17) 

The innovations residual v(k) can be shown to be Gaussian. Assum

ing the initial state x(O) to be Gaussian, we can see from (IV-i) that 

x(k) is Gaussian, since it is a linear combination of Gaussian random 

variables. Similarly from (IV-2) we see that y(k) is the linear combina

tion of Gaussian random variables and must be Gaussian as well. Finally 

we recall that for the optimal filter x(klk - 1) is a linear combination 

of the measurement values in Yk - l' and is therefore Gaussian. Since 

v(k) is a linear combination of y(k) and x(kjk - 1), itmust also be 

Gaussian: 

p[v(k)] = N[O, W(k)] (iV-18)
 

We have already established in (IV-8)-(IV-lO) that v(k) is the
 

zero-mean difference between y(k) and its optimal estimate y(kfk - 1).
 

http:IIl-13).in
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Since y(klk - 1) is the conditional mean E{y(k)IYk . , we can represent 

the conditional density p[y(k)IYk 0] as the density of v(k) with its
 

mean displaced to y(klk 1):
 

p[y(k)IYk I N[Hx(kjk - 1), W(k)] (IV-l9) 

The innovations sequence becomes important when we realize that it
 

is an obtainable measure of the estimator's performance. From (IV-13) we
 

know that the innovations covariance W(k) is directly related to the pre

dicted estimate error covariance P(kjk - 1). The derivation of (IV-13)
 

makes no assumptions of filter optimality, so that this relation holds
 

whether the filter gain is optimal or not. (Of course P(kjk - 1) and
 

P(klk) are computed for the optimal case, and W(k) is not needed). For
 

our specific aircraft model of (III-l)-(III-4), equation (IV-13) is given
 

by(II-22):
 

W(k) = Pll(kjk - 1) + R(k) (IV-20) 

For a constant R(k), we see that the innovations covariance rises and
 

falls with the mean-square error in e(kjk - 1). W(k) should therefore be
 

minimum when the state estimator is optimal.
 

We can solve for W(k) as a function of suboptimal gain K(k) for our
 

specific system model of (111-1)-(111-4) when the noise is stationary.
 

We have already obtained the error covariance P(kfk) as a function of
 

suboptimal gain R and constant covariances Q and R in Chapter III by
 

iterating (111-53) until steady-state is reached. From (IV-20) we have
 

W(k) as a function of P(kfk.- 1). We can therefore express W(k) in terms
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of K by relating P(kjk - 1) to P(klk) for the suboptimal filter. Using 

(IV-l) and (IV-5) vie write the error in the predicted estimate: 

x(k) - x(klk - 1) = D[x(k - 1) - x(k Ilk - 1)] + rw(k - 1) (IV-21) 

Recalling from (111-50) that [x(k - 1) - x(k - Ilk - J)) and w(k - 1) are 

independent, we have: 

P(kjk - 1) = E{f[x(k) x(kjk - l)][x(k) - x(klk - 1jjT} .(IV-22.A) 

= cP(k - Ilk - 1) T + rQ(k - ) T CIV-22) 

This is the same relation as (111-10) for the optimal filter, which is 

given by (Il-19)-(111-21) for our specific aircraft problem. To obtain 

W(k) we only need P.(k - 1), given by (111-19): 

P1ICKjk--, = Pkllk-Ilk-]) + 2AtPlZ(k-lk-l) + t 2P22(k-Ilk-l) (IV-23) 

We can therefore find W(k) as a function of K, Q, and R.by first obtain

ing P(klk) from the steady-state solution of (111-53) and then applying
 

(IV-21) and (IV-20).
 

Figure IV-I shows plots of W.(k) versus suboptimal gain K1 with con

stant Q(k -:1) and R(k) for aircraft system model (I1I-1)-(I111-4). We 

note that W(k) is minimum when K1 equals the optimal gain K1 This is 

expected, since W(k) is the sum of Pl1 (klk - 1) plus R(k), and both 

P11(klk - 1) and P11(klk) are minimized when the filter gain is optimal. 

We also note that W(k) rises toward infinity as K, approaches zero; here 

P11(kjk - 1) and P11(klk) are-both approaching infinity as the suboptimal 
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filter diverges. We observe this same effect in Figure III-I.
 

-The properties of the innovations sequence presented here are of
 

immense value in the adaptive Kalman filtering developments which follow.
 

It has been shown that the innovations sequence contains all new state
 

information obtained by the measurements Y k [9, p. 176].. In,addition to
 

the properties stated above, Mehra shows that the innovations sequence is
 

white for the optimal filter and correlated when the filter gain becomes
 

suboptimal [9, p. 177], This property is not used by the adaptive fil

tering methods presented here.
 

We are now ready to present methods of adaptive Kalman filtering
 

for general stationary noise problems.
 

The Method of Saae and Husa
 

Let us assume the general system model of (IV-I)-(IV-4), where the
 

state vector x(k) has dimension n and the measurement y(k) has dimension
 

m:
 

x(k) = ox(k - 1) + Pw(k - 1) (IV-24) 

y(k) = Hx(k) + v(k) (IV-25)
 

p[w(k - 1)] = WN[O, Q(k - 1)] - (IV-26) 

p[v(k)] = WN[O, R(k)] (IV-27) 

The noise covariance matrices Q(k - 1) and R(k) are unknown constants,
 

and shall be written hereafter as Q and R. We recall from (11-8) that Yk
 

is the set of all past measurements, and we define Xk as the set of all
 

past state values:
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Yk = {y(1), y(2), - - • y(k)} (IV-28) 

Xk = {x(l), x(2), - - • x(k)j (IV-29)
 

Sage and'Husa develop maximum a posteriori (MAP) estimates x(klk),
 

Q(klk), and R(klk) which maximize the conditional probability density of
 

the unknowns given the measurements. They actually address the more gen

eral problem where the noise terms of (IV-26) and (IV-27) have unknown
 

means to be estimated as well. This more general procedure is not appli

cable for our problem, however, and is not covered here. The reader is
 

referred to the works of Sage and Husa for a description of their general
 

method [1OJ. [i11.
 

Let us form the a posteriori density of the unknown states and
 

noise covariances given the measurements, i.e.., the conditional probabil

ity density of Xk' Q, and R given Yk:
 

PEYklXk, Q, RJP[Xk. Q, RJ
 
P[Xk, Q, RTY k] = Plyk] (IV-30)
 

The right-hand side of (IV-30) is obtained from Bayes Law, where
 

P[Xk , Q, R] is the a priori density of the unknowns given no measurement
 

information. For maximum a posteriori estimation we need to find those
 

values of x(k), Q, and R which maximize (IV-30). Noting that the denomi

nator p[Yk ] is unaffected by the choice of these values, we seek to maxi

mize the function:
 

J(k) = p[YkIXk, Q, Rjp[Xk, Q, R] (IV-31) 
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Sage and Husa assume that the unknowns are independent in the absence of
 

measurement information, yielding:
 

J(k) = p[YkIXk, Q, RJp[Xk]P[Q]P[RJ (IV-32) 

They next assume that the a priori densities of Q and R-areuniform
 

between some known limits. For example:
 

PEQ~IJLf QJI

-QijMAX
-ijMIN' ijMIN f Qij- QijMAX (IV-33) 

0 otherwise 

All we know about theijth element of Q is that it lies somewhere between
 

QijMIN and QijMAX" All values between these limits are equally likely.
 

Of course, if we have no information on how large Q and R become, we can
 

allow the limits to approach infinity (QijMIN must be positive for diago

nal elements, as Q is non-negative definite), As long as we remain
 

within the allowable limits on Qi. and Rij the densities p[Q] and p[R] are
 

constant and do not affect the maximization of J(k). We therefore write:
 

J(k) = CP[YkIXk Q, R]p[X kJ (IV-34)
 

where C is a constant.
 

We now solve for J(k) in terms of its component densities. P[Xk]
 

can be expressed:
 

1]
PEXk] = p[x(k), Xk - (IV-35.A) 

1]
 - PEX(k)IXk - l]P[Xk - (IV-35) 
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where the last step results from the definition of conditional probabil

ity. We then substitute (IV-24) to write:
 

l]
p[x(k)IXk - p[ox(k - 1) + rw(k - l)IXk - (IV-36) 

Given Xk - l' x(k - 1) is known. No new information about rw(k - 1) is 

obtained, since from (III-50) w(k - 1) and x(j) are independent for 

j < k -.1. p[x(k)JXk - l] therefore assumes the density of r(k - 1) shifted 

in mean by ox(k - 1): 

l]
p[x(k)IXk _ = N[x(k - 1), rQrT] (IV-37) 

Reapplying (IV-35) and the substituting (IV-37) we have:
 

k
 
1]
P[XkJ p[x(O)J II Ptx(i) (IV-38.A)
 

fj=l
 

k T 
= N[x(O), P(O)J if N['x(j - 1), rQr ) (IV-38) 

4j=l
 

We now reapply the definition of conditional probability to obtain:
 

P[YkIXk, Q, R) = p[y(k), YRk- ljXk ' Q, R) (IV-39.A)
 

= p[y(k)jYk - 1V Xk, Q, RJP[Yk - lIXk ' Q, RJ (IV-39) 

Using (IV-25) for y(k) we write:
 

P[y(k)lYk - 1' Xk' Q' RI = p[Hx(k) + v(k)IYk - I' Xk' Q, RJ (IV-40) 
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Given Xk, we know the value of x(k). Knowledge of the conditioning vari

ables gives no new information about v(k), which is independent of Xk and
 

y(j) for j < k. (IV-40) therefore becomes the density .ofv(k) with mean
 

displaced by Hx(k):
 

P[Y(k)IYk -.1' Xk' Q' R] N[Hx(k), R] (IV-41)
 

In the same manner used to obtain (IV-38) we reapply (IV-39) and then
 

substitute (IV-41):
 

k 
PrYk IXk, Q, R] = pry(j)JYj , Xk Q,. RJ (IV-42)

" -'Ktj - 1 N 

k 
Sii N[Hx(j), RJ (IV-43)

j=l 

We can now solve for J(k) by substituting (IV-38) and (IV-43) into
 

(IV-34):
 

J(k) = CN[x(O), P(O)J 11 N[Dx(j - 1), rQrTj kv N[Hx(j), R]
 
j=l j=l
 

(IV-44.A)
 

CN[x(O),P(O)]
 
n 1
 
2 ' 'T 1."- T T
 

x -IT(2r) IrQr I exp{-ff[x(a)-x(J-l)J (rQr ) [x(j)-')x(j-l)J1 
j=l (IV-44) 

~~ m xp{4Eycj)Hj)jT1 yH~fJt_]

(2i 7r)-jRf J[Y(R)-Hx)R [y(j)-Hx(j)]}
 

j=l
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Incorporating into C all components of J(k) which are unaffected-by Xk,
 

Q, and R and therefore constant for the maximization procedure, we have:
 

O•) C . To 
k k T -

iJ(k i 1 2jR1 2exp{-2 Z [x(j)-.Dx(j-l)]T(rQr-
j=l 

lx(j)-()x(j-l)] 

. (IV-45) 
k T I T 
Z Ey(-Hx(j)]

:5=1 
[Y(j)-Hx()] TI 

We now have J(k) as a function of Xk, Q, and R. Needed at time k
 

are the values x(klk), Q(kjk), and R(kjk) which maximize J(k). Sage and
 

Husa solve this problem by using a "discrete maximum principle" [10, p.
 

770]. Here we offer an alternate approachyielding the same results.
 

We first maximize J(k) with respect to Q and R.
 

To obtain the MAP estimate Q(kjk) we rewrite (IV-45):
 

k
 
T2 1 k T T


JQ(k) = clrQr 2exp{-7 z [x(j)-zx(j-l)1 (rQr T) [x(j)-Ox(j-l] -'(IV-46)j=1
 

where C contains all factors of J(k) which are not functions of Q. We
 

choose to redefine J in terms of In()) and maximize this function 
 -

instead. This is allowable, since In(-) is a monotone increasing
 

function:
 

(k) -klnfrQrT I-z [x(j) - Ox(j-l)] (rQrT) [x(j) - Dx(j-l)J .(IV-47)
j=l
 

Note that JQ(k) is a function of rQFT, so that we cannot estimate Q
 

directly. Substituting P for rQrT and z(j) for [x(j) - ox(j - 1)], we
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have:
 

J(P) = -klnlP - Z zT(j)p-lz(j) (IV-48)
j=l
 

We seek that value P0 of P which maximizes (IV-48).
 

Let us define e as a scalar arbitrarily close to zero, such that
 

P0 + A represents a small deviation in P from P"0' Since P represents
 

T
rQr , both P0 and A are non-negative definite. We can write:
 

J(P0 + sA) = J(P0 ) - 6J(P0, ) (IV-49) 

Obviously, &J 0 when F 0. Since J(P) is maximum at PO. 6J cannot go 

negative and isminimum at P P., or at c = 0: 

--{ J(po')} =0 = 0 (IV-50) 

We now must obtain a functional relation for SJ(P 0, e) in order to
 

solve for P0. Using (IV-48), we write:
 

kT
J(P0 + sA) = -klnlP 0 + EAJ - Z ZT(j)(P0 + 1A)'IZJ) (IV-51 

j=l
 

where
 

Ip0 + sAf = [P0(I+ EP0 1Ail jPoIJI + CP0 "Al (IV-52) 

We use the approximation, valid for small E:
 

11 + EB I 1 + e trace(B) (IV-53) 
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to write:
 

jP0 + EA= IPoI[ + e trace(Po A)] (IV-54) 

We next use the matrix identity [12, p. 79]: 

C)- B" I -(B + - BI(B + C l ) B - (IV-55) 

to write: 

-
(P0 + 
EA)-1 = P p 0[P 0 + (sA')- p- (IV-56) 

-
For smaTl e, (A) >> P , yielding the approximation: 

1
(P0 +sA) Z P0 -EP0-1AP 0 (IV-57)
 

Now we substitute (IV-54) and (IV-57) into (IV-51):
 

J(PG+ A) : -klniPoI - kln[1 + e trace(Po- A)]
 

(IV-58)
k Tk 

Z- z zT)Po0Iz) + E zTc)Po-APo0zcJ
 

j=1 j=l
 

We recognize the.first and third terms of (IV-58) as J(Po) from (IV-48).
 

The second and fourth terms give us SJ(P O , e), so that we have:
 

-1 -1I
 

-
A)] [trace(Po-lA)]+ S zT1j)P
(6j(Po,s)1=-k[l+s trace(P O " 

j=l 0 I)
 

(IV-59)
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From (IV-50), we let this become zero for e = 0, yielding:
 

trace(P -1A) S zTi)Po-AP0 -z() (IV-60)

j=l
 

Using the matrix identity for symmetric, non-negative definite B [1, p.
 

231]:
 

xTBx = trace(BxxT) (IV-61) 

we have: 

trace(P 0 A) = z trace[Po APo z(j)zTj)J (IV-62)
 
j=l
 

-1- -1 kT
 trace(kP0-A) = trace[Po0APo0 z(j)z (j) (IV-63) 
j=1 

Equating trace arguments and simplifying:
 

P 0 T z(j)zT(J) (IV-64)
 
j=1
 

Recalling from before (IV-48) that z(j) = [x(j) - x(j - 1)] and that P0 

is that value of rQrT that maximizes JQ(k), we have: 

rQ(klk)=T F [x(j) - Ox(j - l)][x(j) - Ox(j - 1)] (IV-65)=l
 

The state x(j) is unknown and will be replaced by the optimal smoothed
 

estimate of x(j) given the measurements Yk:
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rkjr T 

= 1 kT
 

T
r6(kl [x(Jlk) -x( - lik)][x(jlk) - Ox(i - Ilk)] (IV-66)j=l
 

We obtain the MAP estimate R(klk) in similar fashion, defining
 

JR(k) those factors of J(k) in (IV-45) which are functions of R:
 

k
 

R(k) = CIR I 2 1 [y(j) Hx(j)]TR-l[y(j) - Hx(j)1}exp{-k = (IV-67)
j=l
 

JR(k) has the same form as JQ(k) in (IV-46), with R replacing rQr and
 

[y(j) - Hx(j)] replacing [x(j) - cx(j - 1)]. Maximization of JR(k) with 

respec:t to R should therefore yield an estimate R(kjk) of the same form
 

as rQ(klk)r' i (PV-65):
 

Rilk = z Ey(j) - Hx(j)J[y(j) - Hx(j)]T (PV-68)
j=l
 

We aga-in replace x(j) with the optimal smoothed estimate x(ijlk):
 

k
k 
T
 

R(kjk) jz [y(j) - Hx(jlk)][y(j) - Hx(jlk)]T (IV-69)j=l
 

We make the assumption that the optimal MAP estimates of (IV-66)
 

and (IV-69) are very nearly equal to the true noise covariances:
 

rQ(klk)rT - rQrT , R(klk) : R (IV-70)
 

Under this assumption we can obtain the optimal MAP state estimate x(klk)
 

from the linear Kalman filter of (III-lO)-(III-14), where rQr T and R are
 

replaced by their MAP estimates. This assumption also allows us to
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obtain the estimates x(ilk), needed by rQ(kik)rT and R(kjk), from optimal
 

linear smoothing.
 

In using the Kalman equations (III-10)-(I1I-14) to compute x(klk),
 

we must substitute R(k - ljk -1) for R. x(kjk) requires R in the gain
 

equation (111-12), and since R(kjk) requires x(kfk) in (IV-69), it does
 

not yet exist. R(k - ljk - 1) is the best available estimate of R for
 

computing x(klk), and is therefore redefined:
 

k k-I
 

(k1k-l) - R(k-Ijk-l) k-I[y(j) Hx(jJLk)[y(j) - Hx(alk)] (IV-71)
 

Sage and Husa develop an estimation algorithm which uses (IV-66)
 

and (IV-7i) to compute rQ(klk)rT and R(klk - 1) for use in the Kalman
 

filter. 'Howeverthe result quickly becomes complicated and impractical,
 

because-of the'need to process smoothed estimates x(lk) [10, p. 762].
 

They then derive from (IV-66) and (IV-71) equations for computing subop

timal estimates r4s (kk)rT and Rs(ktk). These equations require only the
 

estimates (jfJ - 1) and x(ii) produced by the Kalman filter. We now
 

present a development of their suboptimal method.
 

In the suboptimal design to follow we first assume that the esti

mates for rQrT and R will be good enough that the Kalman filter using
 

them will be nearly optimal. We therefore assume that the error covari

ances P(klk - 1) and P(klk) are computed correctly by the Kalman filter.
 

We first replace R(kjk - I) in (IV-71) with a suboptimal estimate
 

A(klk - 1)which does not require smoothing:
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1 k-I
 
(k - - 1I [y(j) - H - 1)][y(j) - H;(jlj - 1)]
i(jlj 


(IV-72.A)
 

k-l T
 

-1 z j) (j) iV-72)
 

where v(j) is the innovations residual given by (IV-8). To be unbiased, 

A(kik - 1) must have R as its expected value:-

k-I T 

E{A(kjk - 1)} = _- E{v(j)vj (IV-73) 

E-{-(j)T(j)) : W = HP(jjJ - 1)HT + R (IV-74)
 

where W is the steady-state innovations covariance, given by (IV-13). 

E{A(kik - I)1 thus equals W, so that A(kjk - 1) is biased. We note how

ever that -P(jiIj- l)H' is computed in the Kalman filter's gain equation 

(111-12), and can therefore be subtracted out of the summation term to 

produce an unbiased estimate: 

s(kjk - 1) = k-1 k v(j)-i - HP(jj - )HT (IV-75)T 


s k Ij=l 

We now replace rQ(klk)rT in (IV-66) with a new suboptimal estimate:
 

A(kjk) = 5Z [x(jli)- sx(ijiJ 1)l][x(jlJ) - sx(ijJ - 1 )]T (IV-76.A)
j=l
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1 k T
 
- j- [K(j)v(j)][K(j)g(j)]T (IV-76)
 

j=l
 

where (IV-76) follows from noting that K(j)v(j) is the difference between 

estimates x(jlJ) and x(JJ - 1) in (111-13). To find whether A(klk) is 

unbiased we compute: 

E{A(kZk 1)) E K(j)E{v(j)v (j)KT(j) (IV-77)
j=1
 

Kij)E{v(j)vT(j)}KT(j) = K(j)W(j)KT(j) (IV-78.A) 

=,K(j)W(j)[P(jlj - I)HTW-l ()]T (IV-78.B)
 

= K(j)HP(jlj - 1) (IV-78.C) 

- P(jfj - 1) - P(iJi) (IV-78.D) 

= P(j - Iji - I) T + rQrT - P(jjj) (IV-78) 

(IV-78.B) results from. substituting (111-12) for K(k), while (IV-78.C)
 

results from noting that P(iji - 1) and W(j) are symmetric by definition.
 

We then obtain (IV-78.D) from (111-14) and (IV-78) from (III-11). A(kik)
 

is biased, but we note that P(j - liJ - U6T and P(j1j) are computed by
 

the Kalman filter and can be removed from the summation. We therefore
 

obtain the suboptimal estimate for rQrT:
 

T 
= I k T T T
 

(k lk ) T
r6s r : TZ K(j)x(j)v (j)K (j) + P(jj) - P(J - li I),D
 
j=1
 

(IV-79)
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We now write (I.V-75) and (IV-79) in recursive form:
 

Rs(klk-l) = kI I[(k-2)R(k-llk_2) + v(k-l) T(k-1) - HP(k-ljk-2)HT
 

(IV-80)
 

~T(klk)r =i (k-l)rQ(k-llk-l)rT + K(k)v(k)jT(k)KT(k) 

(IV-81)
 

+ P(kIk) - @P(k-lk-l)pT 

Sage and Husa devise a suboptimal state estimation algorithm by
 

merely using the Kalman filter equations (111-10)-(111-14) and substitut

ing the estimates of (IV-80) and (IV-81) for the true values R and rQr
 

We modify this algorithm in Chapter IV to work for time-varying Q and R.
 

The algorithm is given below:
 

x(kIk - 1) = x(k - llk - 1) (IV-82) 

P(kJk - 1) = -(k llk - )PT + rQ(k - Ilk - l)rT (IV-83)
 

v(k) = y(k) - Hx(klk - 1) (IV-84) 

-I
K(k) = P(klk - l)HT[HP(klk - 1)HT + R(klk - I)] (IV-85) 

x(k[k) = x(kjk - 1) + K(k)v(k) (IV-86) 

P(klk) = P(klk - 1) - K(k)HP(klk - 1) (IV-87) 

1 T T
R(k + Ilk) = k f[(k - 2)R~kk - 1) + v(k)vT(k) - HP(klk - 1)HTJ 

(1V-88)
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rQ(kIk)rT = [(k - l)rQ(k - Ilk - )r + Kk)v(k)vT(k)KT(k) 

(IV-89)
 

+ P(klk) P(k IIlk T ]
 

The Method of Magill
 

The method of Magill assumes that the unknown covariances can take
 

on a finite number of possible combinations. A bank of parallel station

ary Kalman filters is run, where each filter assumes a different allowa

ble combination of Q and R. The adaptive Kalman filter estimate x(klk)
 

then becomes a weighted sum of the estimates produced by the parallel
 

filters [13].
 

We-first assume the system model of (IV-l)-(IV-4), where the noise
 

covariances are constant and thus denoted as Q and R. The unknown ele

ments of Q and R are contained in the vector a; we sometimes use the
 

notation Q(a) and R(a) to indicate that a knowledge of a specifies Q and
 

R. Magill assumes that a can take on one of L possible values:
 

aE{c' a2, . . . ad (IV-90)
 

where the ith value has an a priori probability density p[ai].
 

We recall from (111-9) that the optimal minimum variance estimate
 

x(kjk) is the conditional mean of x(k) given the measurements Yk:
 

-x(kjkj E{x(k)IYk) (IV-91.A)
 

Sx xpExIYk]dX (IV-91)
 

where X is the space of all x(k). Defining A as the space of all a, we
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have:
 

P[XIYkJ = Af pEx, ajYkida (IV-92) 

By the definition of conditional probability:
 

p[x, alYkI = p[xja, YkJp[aiYk] (IV-93)
 

Substituting (IV-92) and (IV-93) into (IV-91):
 

x(kfk) = X1 XAf Pixja Yk]p[aIYk dadx (IV-94.A) 

:Af {X1 xp[xla, Yk]dx}p[ajIYk]da (IV-94)
 

where the last step is accomplished by reversing the order of integra

tion. From (IV-91) we recognize the term in brackets m (IV-94) as the
 

optimal estimate of x(k) given a (Magill calls this the optimal condi

tional estimate). (IV-94) thus becomes:
 

x(kfk) = A1 x(kjk, a)p[aIYkIda (IV-95) 

L
 
- Z x(kjk, ai)p[aiYk] (IV-96)
 

where (IV-96) follows from the quantization of a.
 

Magill notes here that the optimal estimation of x(ky has been fac

tored into the linear calculation of a set of conditional estimates and
 

the nonlinear calculation of a set of weighting coefficients [13, p.
 

434). The first half of this factorization is easily obtained, since the
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optimal conditional estimate x(kjk, ai) is the linear Kalman filter esti

mate produced by assuming a to be i:
 

x(klk - 1, .) = x(k - Ilk - I,.a.) (IV-97) 

P(klk - 1, ai) = 0P(k -Ilk - 1, ai) + rQ(cti)r (IV-S8) 

v(klai) = y(k) - H(kjk - 1, ai) (IV-99) 

.W(k1li) = HP(klk - 1, ai)HT + R(ai) (IV-100) 

K(klai) = P(klk- I, ai)TWl(klai) (IV-101) 

x(k'k, ai) = x(klk - 1, aj) + K(klai)v(kla i) (IV-102) 

P(kik, ci) = P(klk - 1, Ci) - K(kfai)HP(klk - 1, a i) (IV-103)
 

The remaining problem is to find the weighting coefficient p'aiIYk].
 

We recognize the conditional density p[ailYk] as the a posteriori
 

density of the unknown noise covariance elements given the measurements.
 

From Bayes Law we have:
 

l ~iP[Ykt_ P[ iT (IV-IO4.A) 

.p[aiIYk] - p[yJ 

= cP[YkIJ]P[Li] (IV-104) 
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where p[Yk is independent of i and thereby represented by a constant C
 

whose value ischosen so that the sum of P[ailYk] over all i is unity. We
 

now write:
 

P[YkIai] = ply(k), Yk - Ilai] (IV-lO5.A) 

= P[y(k)jYk - 1, ai]P[Yk la~i (IV-105) 

We know from (IV-I9) that: 

p[y(k) IYk _ 1 N[Hx(kjk - 1), W(k)] (IV-I06) 

where x(klk - 1) and W(k) are given by the optimal filter. Given that 

a= ~i, we have the optimal filter and write: 

P[Y(k)IYk- 1' ai) = N[Hx(klk - 1; a:), W(kjai)] (IV-I07). 

Reapplying (IV-I05) to obtain p[Ykli] for use in (IV-104), we have: 

k 
PlilYk] = CP[c±i] l J - I' ai) (IV-lOB.A) 

k 
Cp[aj] N[Hx(jlj - 1, ai), W(-ili)] (IV-108.B)

jl
 

k1
 
Cp[a i]  Jw(Jjai)j .exptrIV Ojli)w-l(j[ai)V(jjai ) } (IV-lOB)
 

j=l
 

The adaptive Kalman filter algorithm of Magill is now defined. For
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the ith stationary parallel filter we compute x(kjk, a,) from (IV-97)-(IV

103) and p[ailYk ] from (IV-108). The adaptive filter estimate x(klk) fol

lows from (IV-96).
 

Two modifications will improve the practical implementation of
 

Magill's algorithm. First, Sims and Lainiotis note that (IV-108) can be
 

realized by-a faster recursive form requiring less storage [14]. We
 

reproduce their result here by rewriting (IV-l08):
 

.1

2 1 T )-1ii)P[cilYk] = CP[ai]jW(kjai)j exp{-v (klai)w-lk]aiY klai) 

(IV-1O9.A)
1. 

k IW(Jlai)! exp{-p-(jiai)W- (jai)v(jai)) 
j=l
 

1
 

1] 
- C8{(kHa;)' exp{-}T(kjci)W-1 (kjai)v(kjai)1p[iIYk _ (IV-l09) 

The second modification results from noting that since the parallel Kalman
 

filters are stationary, their gains and covariances reach constant,
 

steady-state values. Before actual implementation the gain and covariance
 

equations for each parallel filter can be run until K(kja i) and W(klai)
 

reach steady-state values K(ai) and W(ai). Then (IV-97)-(IV-103) for the
 

adaptive filter can be replaced by:
 

;(klk - 1, ai) = <x(k - lfk - 1,ai) (IV-llO) 

v(kci) y(k) - Hx(klk - 1, ai ) (IV-Ill) 
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xkk, ) = (kk - 1, ai) + K(ai)v(kjai) (IV-ll2) 

W(ai) replaces W(kla i) in (IV-109).
 

The Method of Alspach
 

The method of Alspach assumes that the unknown optimal gain K(k) of
 

the Kalman filter is a random variable with a posteriori density p[KIYk].
 

Alspach runs a bank of parallel stationary Kalman filters with enough gain5
 

K, to coverthe space of allowable K. The innovations sequence of the ith
 

filter is used to obtain the density P[KilYk]. The resulting discretized
 

a posteriori density is then used to compute an estimate K(k) of the
 

optimal gain for use in an adaptive Kalman filter.
 

We assume the system model of (IV-l)-(IV-4), where the noise covar

lances Q and R are unknown constants. For known Q and R the optimal
 

state estimate is given by the stationary Kalman filter:
 

x(klk - 1) = x(k - Ilk - 1) (IV-I13) 

x(kjk) = x(klk - 1) + KOPT[y(k) - Hx(klk - 1)] (IV-114) 

where KopT is the gain K(k) when the Kalman filter equations (III-10)

(111-14) are run to steady-state. For the problem here KOPT is unknown
 

and is assumed at time k to be a random variable with an a posteriori
 

density PKOPT[KIYk]. We next implement a bank of L stationary Kalman
 

filters running in parallel, where the ith filter has a fixed suboptimal
 

gain Ki :
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x(klk - 1, K) = Dx(k - ljk - 1, K.) (IV-If5) 

v(kjKi) = y(k) - Hx(kjk - 1, Ki) (IV-116) 

;(klk, K.) x(klk 1, E) + Ki(klKi) : (IV-117) 

The gains fKl , K2, KL} are chosen to cover the space of allowable
 

KOPT. We desire to use the observed statistical properties of the ith
 

filter to compute the conditional density PKOPT[KiilYk]. By computing
 

a function of Ki for a sufficient number of gains we can
PKOPT[KilYk] as 


identify the a posteriori'density of KOPT well enough to estimate its
 

value.
 

'We define WOPT as the steady-state innovations covariance of the
 

optimal filter. Alspach first solves for the joint a posteriori density
 

of KOPT and WOPT' which by Bayes Law becomes:
 

PEYkIK, W]PKOPT WOPT[K, W] 
P wPT = OP (IV-ll8.A)WT[K, WIYk] PT'y 


PKOPT' OPTk]E 
 ]
 

CP[YkK, W~p[K, W] (IV-llS)
 

where p[Yk ] is constant for all K, W and therefore replaced by C.
 

WOPT[K, W] is the a priori density of K and W, representing any
PKOPT 


knowledge of KOP T and WOPT without measurement information. The sub:
 

scripts on p[-] are dropped where no confusion results. From the defini

tion of conditional probability we can rewrite (IV-ll8):
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p[K, WIYki : Cp[YkIK , WJPEWKIP[K] (IV-II9)
 

We then write:
 

PEYkIK, W] = p[y(k), Yk - 11K, W] (IV-120.A) 

= P[Y(k)IYk - I' K, W]p[Yk - 1IKW] (IV-120) 

From (IV-19) we know that:
 

P[Y(k)IYk - = N[Hx(klk - 1, KOPT), WOPT] (IV-121) 

Given that KopT = K, WopT = W, we can therefore impute: 

P[Y(k)IYk - V. K; W] = N[Hx(kfk - 1, K), W] (IV-122)
 

Applying this result to (IV-120) we have:
 

k
 
PEYkJK, , =-i p[y(j)jY1 K, W1 (IV-123.A)
 

j =1
 

k 
- N[Hx(jjj - 1, K), W] (IV-123) 

j=1 

We now rewrite (IV-119):
 

p[K, WIYk = Cp[WK]p[K] 1 ]WI 2exp{-{[y(j) - Hx(jlj - 1, K)j
j=1 (IV-124.A) 

x W [y(j) - Hx(jjj - 1, K)J} 
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k
 
Cp['dKJ"p[K]1 1 2exp{- Z T(jIK)W-Iv(jlK)1 (IV-124)
 

2j=1
 

Alspach now specializes the adaptive Kalman filtering development
 

to the case of scalar noise and measurements- This is general enough to
 

cover our specific aircraft model of (111-1)-(111-4). Q, R, and WOPT are
 

now scalars, and (IV-124) becomes:
 

p[KkWLvkk 2
 
p[K, W[Y k]  p[W(K1p[K]W_2exp{- f s vii ~1 K) (IV-125) 

j=l 

We define the sample covariance of v(kjK) by:
 

k
 
W(kjK) 1 v (jjK) (IV-126)
j=l
 

For stationary Gaussian noise W(k1K) is an unbiased estimate of W. (IV

125) thus becomes:
 

^
k k W 1K
p[K, WIYk] k WkIK)I
p[WkK]p[K]W2exp{- (IV-127)
 

We now express WOP T in terms of KepT by using (111-32):
 

Wop t =,R/[l - HKOPT] (IV-128)
 

Assume that the only a priori information we have about Q and R is that
 

they are bounded by the values QMAX and RMAX. Then given KOPT the only
, 


information we have about WOPT is that it lies somewhere between zero and
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an upper bound WMAX(KoPT): 

WMA X(KOPT) = RMAX/El - HKOPT] (IV-129) 

Alspach therefore assumes that the conditional density of WOPT given. KOPT 

is uniform: 

1 0 W< W (K) 

p(WIK) = WMAX - MA (IV-130) 
0: otherwise 

Substituting ('IV-130) for p[KIW,], we can obtain p[KIY by integrating 

the joint conditional density of (IV-127) over the range of W: 

p[KIY k]I= f p[K, WlgkYdW (IV-131.A)
 

WiIAX (K) 

:' [K II - "(kjK)d 
-. fKJ , 2e p-.- -Tq)dW (Iv-131) 

W1 AX T ..
0 

Using the variable of integration z = y(kIK)/W, (IV-131) becomes: 

-
p[K Yk] - - 2)/2 j (k- 4)/2eZdz (IV-132.A)
"lAX a 

= P [W(klK)](k - 2)/2 WT(k, K) (IV-132) 
"MAXT-' 
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where
 

k^
 
a (kIK)/WMAX(K) (IV-] 33)
 

WT(k, K) is the integral of (IV-132.A) and is a function of the ratio 

^W(kIK)/WMAX(K). We define M as the value (k - 4)/2. When M is an inte

ger (meaning k is even and greater than 2) we can evaluate WT: 

WT(k, K) = zMeZdz (IV-134.A) 
a 

M
M a 
-
= M!e a Z - (IV-I34.8)

j=0T j)
 

k A(k, K),(k - 4)/2 - I 
-.k-4 _k W(kK) 4)/2 7W.xM J (IV-134) 

2jex 2-W\~ (K) k-
MAX j=O 1k - -

Alspach plots WT(klK) as a function of W(kIK)/WMAX (K) for different
 

values of k. His results are reproduced in Figure IV-2. He notes that
 

for k above 1000,WT(k, K) can be approximated as a unit step which falls
 

to zero at W(kjK) = WMAX(K) (This is not a bad assumption even for
 

k = 50 or 100). Thus WT(k, K) acts to discriminate against gains for
 

which the sample innovations covariance exceeds the maximum value:
 

- 2)/2: (kjK) < WM x(K)wHAX')[W(kiK)]-

p[KIYk ] = (IV-135) 
0: W(KjK) > W MA X(K) 
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We now assume no a priori information about Q and R, so that QMAX
 

and RMAX become infinite. Since nothing is known about KOpT , p[KJ can be
 

made uniform over the limits of allowable gain. WMAX(K) now approaches
 

infinity, so that WT(kjK) becomes unity for all W(kjK). We now have:
 

I C[W(kIK)](k - 2)'2, allowable gain 

j 0, otherwise 

The adaptive Kalman filter of Alspach is now ready for implementa

tion. For each of the parallel suboptimal filters the-estimate
 

x(klk, Ki) and innovations residual v(kJK i) are obtained from (IV-IS)

(IV-117). The a posteriori gain density P[K ilk1 is then computed by
 

(IV-136), using the sample innovations covariance of (IV-126), which
 

Alspach writes in recursive form:
 

N(kIK) = k![(k - l)W(k - I1K) + -,(kjK)) (IV-137) 

The adaptive filter implementationis greatly simplified when we 

recall from Chapter III that for scalar noise and measurements the opti

mal gain KOPT is known when only one element is specified. (K2 (k) is 

given as a function of KI(k) in (111-42) for our aircraft model). Also, 

the gain KOPT is always bounded. We can therefore implement the parallel 

filters by uniformly.incrementing the first gain element between limits 

KIMIN and K MAX, allowing Kji (2 j < n) to be determined by the appro

priate functional relation. We can therefore use (IV-136) to find 

PEKI'Yk] and thus estimate K, Alspach does not specify what
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estimation scheme to use in computing K.(k). However, since we know the 

conditional mean E{K1 1tYk to be the optimal minimum variance estimate 

from (11-9), we use it here: 

L
 

(k) Z KiP[KiYk] CIV-138)
 

Kp(k) automatically defines K(k), which is then used in the adaptive 

filter of (IV-5) and (IV-6). 

Alspach admits that his algorithm may be impractical for use in a 

general-purpose digital computer where the L suboptimal stationary fil

ters must be implemented serially. However, in a special-purpose paral

lel implementation the stationary filters can run simultaneously, produc

ing a fast adaptive algorithm. He also notes that, though similar to the 

parallel filters method of Magill, his algorithm is simpler, requiring 

fewer parallel paths. Consider the scalar noise case where Q and R are 

both unknown,. For n possible values of Q and m values of R, we would 

need n x m parallel filters in Magill's algorithm. The number of allowa

ble Q and R values may increase further if we do not know their upper 

bounds QMAX and RMX, which can approach infinity. In Alspach's algo

rithm the only unknown is K, which is always bounded. -We need only to 

use enough parallel filters to adequately cover the range of allowable Kl 

values, 

The Minimum Innovations Covariance Method
 

The last adaptive Kalman filtering method presented here is an,
 

intuitive scheme which has some theoretical backing. As in the methods
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of Magill and Alspach, a bank of parallel fixed-gain Kalman filters is
 

run. The gain of that filter with the minimum innovations sample covari

ance is chosen as the gain K(k) for use in the adaptive Kalman filter.
 

We again assume the system model of (IV-l) to (IV-4), but with
 

scalar noise and measurements, so that Q and R are unknown slbalar con

stants. From (111-13) we recall that the steady-state innovations covar

iance W is minimum when the suboptimal filter gain becomes the optimal
 

Kalman gain. Let us revisit Figure III-1 and IV-I, where P11 (klk); the
 

mean-square error in e(klk), and W are plotted as functions of suboptimal
 

gain K1 for the aircraft system of (I1I-l)-(III-4) with stationary noise
 

(K? is given by (111-42)). Not only are P11(kfk) and W minimum for
 

K1 = KIOPT , but both increase monotonically when K either increases or
 

decreases from the optimal gain. We can assert that the innovations
 

covariance W is a direct indicator of a suboptimal filter's error
 

performance.
 

We now implement a bank of parallel fixed-gain Kalman filters,
 

where, as in the algorithm of Alspach, the gain K, is incremented between
 

the limits KIMIN and KIMAX. The ith filter is realized, just as in
 

Alspach, by (IV-115)-(IV-ll7), The sample covariance W(klai) of the
 

innovations sequence is computed from (IV-137). We note that W(kIK) is
 

the standard covariance estimate for a stationary scalar process with
 

zero mean, and is therefore our best estimate of W4(kIK). It would thus
 

seem reasonable to choose that parallel filter with the lowest value of
 

W(kfKi) as the one whose gain is closest to K OPT' We therefore choose
 

the gain of this filter as the gain K(k) of our adaptive Kalman filter:
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K(k) = Ki: W(kjK i ) < W(k K), 1 < j < L (IV-139) 

The adaptive filter is given by (IV-5) and (IV-6).
 

This intuitive scheme has a theoretical appeal when we recall (IV

136), which gives p[KiIYk] for the ith parallel fixed-gain filter. The 

gain Ki which minimizes W(kIK1 ) is the same gain which maximizes the a 

posteriori density P[KiIYk], as derived by Alspach. Instead of the con

ditional mean estimate of KOPT' we are choosing the maximum a posteriori 

estimate of KOPT. The intuitive, minimum sample covariance estimate K(k) 

may therefore be considered the MAP gain estimate of Alspach. Of course, 

this MAP estimate does not require the calculation of P[KiJYk], and is 

therefore easier to implement than the method of Alspach. 



CHAPTER V
 

ADAPTIVE KALMAN FILTERING WITH TIME-VARYING NOISE STATISTICS
 

In Chapter IV we presented four methods of adaptive Ka.man filter

ing 'for use in problems where the noise is stationary. We recall our
 

general system model of (IV-I)-(IV-4). The noise covariances Q(k - 1)
 

and R(k) were unknowf constants. In this chapter we remove the station

ary noise assumption and allow Q(k - 1) and R(k) to vary with time. We
 

modify the adaptive filtering methods to work for the non-stationary
 

noise case and then specialize them to our aircraft system model.
 

.The Method of Alspach
 

We recall that Alspach assumes that the measurements and noise
 

terms of the system model (IV-I)-(IV-4) are scalars. The a posteriori
 

density of the optimal gain K(k) is found by computing the sample innova

tions covariance N(kjK ) for each of the parallel stationary filters:
 

W(klKi) = ![(k - l)W(k - 1K .)i + v2(klKi)] (V-l) 

Alspach points out that as k becomes large, the present innovations
 

residual v(kIKi) has little effect upon the value W(kjKi). In order to
 

prevent W'kIKi) from becoming insensitive to new information he suggests
 

the following change [15, p. 5531:
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45k - l)N(k - lK ) + 2(kIK i)]  k <N 
W(kjK i) = + NV- 2)

W~kj~) 1-E(N " l)WJ(k - 11Ki) + V2 (klKi)]; k , N V2 

where N is chosen for the stationary noise case such that W(kIK i) is

within some acceptable r.m.s. deviation of the true covariance W(kIKi)
 

for k > N. We can view (V-2) as a fading-memory estimate of W(k1K1 ),
 

where old innovations residuals are deweighted; values v(jlKi) will have
 

little effect on W(kjKi) for j < (k - N). W(kJK i) becomes the output of
 

a first-order lowpass filter with input v2 (k)and time constant NAt.
 

If the noise covariances Q(k - 1) and R(k) are slowly changing with
 

.time, we can approximate them as being constant for N iterations. We can
 

then estimate the state with stationary noise methods where only the last
 

N innovations residuals are used. Alspach has done this by using (V-2)
 

to estimate W(kIKi) as it changes with Q(k - 1) and R(k). Of course, the
 

more slowly changing the noise covariances are, the larger N becomes,
 

making W(kKiK) more accurate. Alspach also modifies (IV-136) for comput

ing the a posteriori density of the gain:
 

C[C4(klKi)]-k-2/, k < N
 
(- 2)/2


p[KilYk]=J " (V-3) 

tC[W(kIKi)]- - / k > N 

The adaptive algorithm of Alspach remains the same as for the sta

tionary case, with (V-2) replacing (IV-137) and (V-3) replacing (IV-136).
 

Alspach adds another modification by restricting the range of W(kjKi)
 

among parallel filters. This is done to enhance the adaptive filter's
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ability to follow time changes in the noise covariances, and is illus

trated by example:
 

Consider two filters in the parallel filter bank, one with very low
 

gain K. and the second with high gain K1. Consider also the case where
 

the ratio Q(k - l)/R(k) is large, so that the optimal gain'ijs near KI-


Recalling Figures III-I and IV-l, we expect W(kjK l) to be low while
 

W(kfK.) becomes very high, indicating a diverging filter. pEKjIYk] will
 

be nearly zero, so that only the higher gains contribute toiK(k). Now
 

assume that Q(k - l)/R(k) suddenly becomes small, so that the optimal
 

gain is near K. The true innovations covariance W(kiK j) becomes small,
 

but the sample covariance W(kfK) will not show this effect for a consid

erable time; the old residuals v(kiKj) taken while the filter was diver

gent must be deweighted and replaced by new residuals of lower covari

ance. Sich a process could require more than a time constant of the
 

fading memory filter of (V-2).
 

Alspach has therefore placed a ceiling on W(kIKj), If W(kjKl) is
 

the minimum sample covariance among all parallel filters, then W(kIK5) is
 

not allowed to exceed an upper bound fMAX x W(kjKI), Whenever this limit
 

is exceeded, we replace the estimate x(kjk, K.) with x(kk, K1 ). This
 

modification allows p[KJIYk] to quickly become significant when the opti

mal gain suddenly shifts toward K.
 

Alspach also modifies his algorithm to allow the value N to adapt
 

to changes in the time variations of Q(k - 1) and R(k). A fading memory
 

estimate W(kJK) of the adaptive filter's innovations covariance is com

puted using (V-2). A second estimate W2(kK) is computed by replacing N
 

.in (V-2).with a smaller time constant N2 (we could make N2 some fraction,
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say 20 percent, of the nominal value of N). If N is large and
 

Q(k - l)/R(k) suddenly changes, the small time constant filter will soon
 

detect this change by changing W2(kjK). When W(kjK) and W2(kIK) differ
 

by more than an allowable amount, N will be decreased.
 

Alspach uses the following procedure for changing N: for station

ary noise we know that the variance in the unbiased estimate W2(kIK) is:
 

Var{W 2 (kjK)} 2W2 (kK)/N2 . (7-4)
 

Assuming W(kIK)-to be our best estimate of W(kJK), we can measure stand

ard deviation in W2(kIK):
 

W(kJK)/XN2/2 (V-5)
 

Alspach then modifies N according to the rule:
 

A IW(klK) - W2(kjK)j (V-6.A) 

•IFAA < 2: N+ N + N2 (V-6.B). 

IF A > 2a2: N N - Integer[f---N 2 ] (V-6.C) 
- 02 -

The above procedure works for situations where changes in Q(k - 1) and 

R(k) produce a wide dynamic range in the values of W(kjK). In the simu

lation testing described in Chapter VI this was not the case, with W(kJiK) 

never changing by more than 25 percent. N was chosen experimentally from 

various simulation runs and left constant.
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Figure V-I is a block diagram of the adaptive algorithm of Alspach 

for the specific MLS aircraft model of (111-1)-(111-4). The algorithm is 

implemented as a computer subroutine, where during the kth iteration the 

measurement y is received and estimates AD and.'A are computed and 

returned to the main program (the subroutine is not given the, noise 

covariances Q(k - 1) and R(k)). The adaptive filter has L parallel sta

tionary filters, implemented according to (IV-115)-(IV-117). The condi

tional density p[KiIYk] is computed for each filter according to (V-3), 

using the sample innovations covariance W(kIK) of (V-2). The adaptive 

Kalman filter is then updated using the gain K computed from (IV-138). 

The, block diagram shown here is for an algorithm using constant N.
 

FIRST is a logical variable which is TRUE until k is greater than N. We
 

should point out that since this algorithm will be implemented as a sub

routine in a digital computer simulation, the parallel filters must be
 

run serially. in an actual parallel implementation, the-i-loops in the
 

block diagram would not exist: the parallel filters would run
 

simultaneously.
 

We now procede to modify the other three adaptive filtering algo

rithms for use in problems where the noise statistics are time varying.
 

We make use of Alspach's fading memory approach to deweighting old inno

vations information. Each algorithm is then specialized to our aircraft
 

problem model of (111-l)-(111-4).
 

The Minimum Innovations Covariance Method
 

As stated in Chapter IV, this method is actually that of Alspach
 

where the maximum a posteriori (MAP) estimate of the gain K(k) is used by
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Figure V - 1.A Algorithm of Alspach (continued) 
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the adaptive filter. The adaptive'filter algorithm looks like that of
 

Alspach, except that the conditional density P[KilYk] is not computed.
 

Instead, the adaptive gain K is just set equal to the gain of the paral

lel filter with lowest sample covariance W(klK.). We can therefore use
 

the block diagram of Alspach in Figure V-I, where the only modifications
 

necessary are between points A and B. These modifications are shown in
 

Figure V-2.
 

The Method of Sage and Husa
 

The suboptimal algorithm of Sage and Husa is that of a discrete 

Kalman filter where the unknown noise covariances Q(k - 1) and R(k) are 

replaced.by the estimat'es of (IV-75) and (IV-79). Wie can make these 

estimates responsive to changes in the noise covariances by using only 

the last N innovations residuals: 

kk
T 
 T 
r(klic)-T =-I K(jNv(JNT(j)KT(j) + P0ijj) (Pjljj-flJ (-7)-

= 1 k-lI
 
T
(klk 1) -- z vi)vT(j) - HP(jlj 1)H (V-8)


s kN j=k-N-I
 

We now use recursive approximations:
 

1-. - T .)~~Tk) T(k
 
(k - )rQs(k - Ilk - )r + K(k)v(k)vT(k)KT(k) 

) JT],
+ P(klk) - P(k - Ilk - k < N 

Fs (klk)r T = (V-9) 
[(N - )rQs(klk)rT + K(k)v(k)vT(k)KT(k) 

+ P(k~k) - oP(k- Ilk - I)PT], k > N 
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A 

CDMPUIE GAIN K FOR ADAPTIVE FILTER 

A 

AK2 = K2 (iin) 

For-i = 1 to L 

IF W(i) >fax Wmin 

Ae (i) = A (i) 

e(i) = e(imi n ) 

Next i 

Figure V - 2. 	 Modifications to Block Diagram of Alspach for 
Implenentation of Minimum Innovations Covariance 
Filter
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-,l[(k-2)Rs(k-llk-2)+v(k)vT(k)-HP(kfk-l)HT], k < N
 

Rs(klk-l) =. (V-10) 
7--f[(NI)Rs(k-ik_2 )+f(k)vT(k)_HP(klkIl)HT, k > N 

We note that the equations in (V-9) and (V-la) for k < N are the recur

sive equations (IV-88) and (IV-89) in the original algorithm of Sage and
 

Husa. We can obtain a more practical form of (V-9), in terms of quanti

ties already computed by the Kalman filter, by recalling from (IV-83)
 

that PP(k - Ilk - l) T equals P(klk - 1) - rQs(k - Ilk - I)rT:
 

rQs(k - Ilk - l)rT + B[K(k)(k )T(k)KT(k)
 

rQs(kik)rTQ + P(klk) - P(klk - 1)], k <,N 

s T" (V-TTl) 
!rQ (k - ljk - l)rm + j[K(k)v(k)vT (.k)K T (k) 

+ P(klk) - P(klk - 1)], k > N
 

The adaptive algorithm of Sage and Husa is now given by the origi

nal algorithm of (IV-82)-(IV-89) with (V-l0) replacing (IV-88) and (V-11)
 

replacing (IV-89). Figure V-3 is a block diagram of this algorithm for
 

the specific aircraft model of (111-1)-(111-4). The Kalman filter equa

tions (IV-83)-(IV-87) are given by the specific equations (III 18)-(III

28), with- rQs(kk)rT replacing rQ(k)rT. R(k) is known in this problem,
 

and so Rs(klk) is not needed.
 

The Method of Magill
 

Here we modify the algorithm of Magill for the case of scalar mea

surements and noise. We make the conditional density P[ailYk] in
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(IV-108) a function of only the N most recent innovations residuals:
 

k _1 2(jIai) " 
P[ailYk] = Cp[] I W 2 (jjai)exp{- W(ila). (V-12)j=k-N 2
 

We then use the recursive approximation:


I 1,2(kjai) kv

CW-2(kja1 )exp{-7 W(kJaIc PLaiIYk _- k < N
 

p[iYk] 11v2 (V-13) 
2~~~)v(klai) N - 1 

.CW-2(kiai)exp{_ W,ka(p[iiyk - N ,k > N 

where pLaii 0J plai ].
 

ierecall that for our specific problem model (III-l)-(III-4) only 

the planc-noise covariance Q(k - T) is unknown. We can therefore set the 

unknown parameter vector a equal to the scalar Q(k - 1). We implement L 

parallel Kalman filters: the ith filter uses the true value R(k) and an 

estimate Qi for Q(k - 1). 

The ith parallel filter is not stationary, since R(k) is time vary

ing. The gain K.(k) is not a steady-state value as in Chapter IV,and
 

this requires running all the Kalman gain and covariance equations. This
 

problem can be avoided in our case by noting that Qi is never explicitly
 

used in computing p[QilYk]; only K(kfQ i) and W(kjQi) are needed (here we
 

have replaced a, with Qi). Since for every Q. and R(k) there exists a
 

unique K(klQi), we might ask why the gain could not be a conditioning
 
variable instead of Qi" We embrace this approach here. For our problem
 

Kl(k) is bounded between 0 and 1. We therefore implement a bank of
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parallel stationary filters with first gain elements KI uniformly spaced
 

between these limits. K2 is given by (III-42). We can use (III-32) to
 
'1 

obtain W(kJKi):
 

W(klKi) :R(k)/[l - Ki]I (V-14) 

The conditional estimates for the ith filter are given by:
 

x(klk - 1, Ki) = Dx(k -Ilk - 1, Ki) (V-15) 

v(kjKi) = y(k) - Hx(klk - 1, K.) (V-16) 

(klk, K = x(klk - 1, Ki) + Kiv(kjKi) (V-17) 

We obtain-p[KiIYk] from (V-13), realizing that it is equal to p[aiyk]
 

where ai is that value Qi which results in a Kalman gain of K.:
 

v 2(klK.) 
CW2(klKi)exp{ }jyK-jP[KiK _ ] k N 

P[KiIYk] = 1 
(kI2(k N INi) (V-l8) 

CW-C(klKi)exp{ Wkl i'-}(P[KilYk i ) k > N 

We then obtain the adaptive state estimate from (IV-96):
 

L
 
x(klk) = z x(kjk, Ki)P[KiIYk] (V-19)
 

The advantage of this approach is that only the Kalman estimate
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equations must be run for the ith parallel filter, since the gain K.
i is
 

fixed. Also, as noted by Alspach, the optimal gain is-bounded, while
 

Q(k - 1) may take on any positive value. For the general problem Where
 

Q(k - 1) and R(k) are both unknown, this modification of Magill cannot be
 

used. Given only Ki, we do not know W(kIKi) and thus PlY k] remains
 

unknown. We must then resort to using parallel filters where various
 

combinations of Q and R are assumed.
 

Figure V-4 provides a flowchart of the modified Magill algorithm 

for the aircraft system model (III-l)-(III-4). As for the other algo

rithms, the adaptive filter is implemented as a subroutine, receiving 

y(k) and R(k) and returning estimates eAp(k k) and 6(klk). The a priori 

density of the gain K,(k) is assumed uniform. 
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CHAPTER VI
 

COMPUTER SIMULATION TESTING
 

We now develop and employ a digital computer simulation'for testing
 

the candidate adaptive filters for our aircraft landing problem. We rea

lize at the onset that poor performance can occur for one of two reasons:
 

first, an adaptive Kalman filter may be a poor estimator, given the sto

chastic state model for which it was developed; secondly, the assumed
 

state model may inadequately describe the physical system for which the
 

adaptive'filter is used. Our testing is therefore conducted in two
 

phases- We first simulate the state model (III-l)-(III-4), repeated
 

-
below: 


ke I At(k -1)
L J.L 1 J - (V-l)w(k 1)


LSmkj L93k -

y(k) [1 0 +)V(k) (V-2)
 

-p[w(k - 1)] = WN[O, Q(k - 1)] (VI-3) 

p[v(k)] = WN[O, R(k)] (VI-4) 

At each new time increment the measurement y(k) and the error covariance
 

R(k) are sent to the candidate adaptive filter, which computes state
 

estimates e(kjk) and 6(kfk). In the second test phase we remove the
 

state model (VI-l) and update e(k) deterministically, as in (II-1):
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0 = f(k) (VI-5)
 

where f(.) describes the'evolution of e(k) for aircraft motion along a
 

given flightpath. The measurement model (VI-2), (VI-4) is retained, and
 

the adaptive filter is retested. In this two-prong approach we establish
 

the performance of each candidate filter for both the a~sumed state model
 

and the actual landing approach.
 

In simulating the stochastic system model (VI-I)-(VI-4) we must
 

select realistic functions for Q(k) and R(k). R(k) is the covariance of
 

the error in the estimate-y(k) computed by the locally optimum estimation
 

algorithm in the envelope processor. This covariance has been computed
 

as a function of receiver signal-to-noise ratio in earlier simulations
 

[5, pp. 25-27j. Q(k) is the covariance of the Gaussian white noise driv

ing the system. We recall from Chapter II that our state model (VI-l)
 

was derived from a continuous-time model where acceleration e(t) was rep

resented by white noise. The mean square of the noise was set equal to
 

the square of the acceleration. From (II-11) and (11-22) the discrete
 

model noise covariance is given by:
 

Q(k - 1) = Ate2 (tk) (VI-6)
 

Of course, the aircraft does not know e(tk), so Q(k - 1) is unknown as 

well. 

In light of (VI-6) we use the following scheme for propagating the
 

state model of (VI-I). The true acceleration o(tk) is computed in a sub

routine for a typical deterministic flightpath and passed to the main
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program. Here Q(k - 1) is computed using (VI.-6). The system state is 

then updated using a sample from a white Gaussian population with covari

ance Q(k - 1). We are careful here not to confuse e(k) and 6(k) with 

o(tk). The former are states of a stochastic process driven by white 

noise. o(tk), a deterministic quantity, is a tool for setting Q(k,:- 1) 

in the simulation and has nothing to do with the state. 

The same subroutine which computes e(tk) for aircraft motion along
 

a given flightpath also computes e(tk) and 6(tk). In the second phase of
 

simulation, where 6(k) is updated deterministically, these values are
 

merely passed to the main program, which sets e(k) equal to e(tk) and
 

6(k) eqalto tk). We now address the task of realizing a suitable
 

flightpath for updating both Q(k) in the stochastic case and E(k) in the
 

deterministic case.
 

The Landing Approach
 

Before assuming a test landing pattern, we first place some
 

restrictions on the set of allowable flightpaths. Let f(k) describe the
 

evolution of e(k) as the aircraft travels a given flightpath. We recall
 

from Chapter I! that, while unknown, f(k) is a member of a known class of
 

functions. We restrict this class to incl'ude those functi.ons attrfbutar
 

ble to aircraft motion along a restricted family of flightpaths. This
 

family includes what we assume to be reasonable flightpaths, thus ruling
 

out unrealistic approaches for which adaptive filtering could not work..
 

For example, a missed approach where the aircraft crosses the runway at
 

high speed within a mile of the azimuth antenna, produces very high and
 

rapidly changing values of O(t). The resulting covariahc6 Q(k) in the
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system model would be too rapidly varying to be followed by an adaptive
 

filter. We therefore place the following restrictions on the landing
 

approach:
 

1. 	Maximum airspeed : 200 knots
 

2. 	Minimum turn radius = 1 N. mile
 

3. 	Flightpath must be coincident with runway
 

centerline before runway is reached (no
 

missed approaches)
 

We assume these conditions to be those of a worst-case approach.
 

Given these restrictions, e(t) has been observed in simulation to
 

remain below 0.10/sec. 2 [6,-p. 40]. From (VI-6) we can therefore place
 

an upper limit on Qk):
 

I0 - 4  QMAX = (.075)(.l)2 = 7.5 x 	 (VI-7) 

where At = .075 seconds, the time between the start of successive azimuth 

scans (at a 13 1/3 Hz update rate). 

We now return to the task of finding a suitable test flightpath 

within the above restrictions. Figure VI-l shows a representative land

.ing approach selected for this simulation. The aircraft travels at 120
 

knots along an S-curve flightpath, staying on runway centerline for the
 

last 3 N. miles of the approach. The runway is 2 N. miles long, with the
 

azimuth antenna at the stop end.
 

We have developed a FORTRAN computer subroutine for computing 0(t)
 

and its derivatives as the aircraft follows an S-curve approach of varia

ble dimension. This general flightpath, shown in Figure VI-2, has the
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following programmable parameters:
 

v = airspeed (knots)
 

d1, d2, d3 = lengths of the straight segments of
 

the flightpath, as show6 in Figure* 

VI-2 (N.miles) 

rl, r2 turn radii (N.miles) 

1 = distance (N.miles) from azimuth 

antenna to that point where the 

approach first coincides with the
 

runway centerline (5 N. miles for
 

Figure VI-l).
 

A flowchart of the flightpath subroutine is given in Figure VI-3.
 

The various straight and curved sections of the approach are labeled from
 

A to E onrboth the flowchart and Figure VI-2. The simulated flight runs
 

from time t, to t5, with t through t marking transition times from one
 

flightpath section to the next. The subroutine receives the present azi

muth scan number and computes the time t. Based upon which flightpath
 

section the aircraft is currently following, its cartesian coordinates x
 

and y and their derivatives are computed. The subroutine then computes
 

e(t), 6(t), and 6(t):
 

o = arctan(yjx) (VI-8)
 

= (xy - y)/(x 2 + ) (VI-9) 

[xy=- y - 26(x + yy)]/(x2 + y2 (VI-lO)
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The values 0(t), 6(t), and B(t) are returned to the main simulation pro

gram, along with the logical variable FINAL, which is set to TRUE when
 

the simulated approach has been completed.
 

Figure VI-4 shows the time functions 0(t), 6(t), and e(t) for the
 

S-curve flightpath of Figure VI-l. The simulated approach begins with
 

°
the aircraft 2 N. miles ahead of the first 90 turn and ends 2 N. miles
 

beyond the second turn, or 1 N. mile before the runway is reached
 

(dI = d3 = 2 N. miles). At 120 knots the aircraft covers 8.88 N. miles
 

in 266 seconds, or 3550 azimuth scan periods (scan update rate 
-

13 1/3 Hz). Figure VI-4 also shows the plant noise covariance Q(k) for
 

the stochastic modeling of this flightpath, computed from (VI-5).
 

Computer Simulation Structure
 

We now describe the actual test simulation, implemented as a 

FORTRAN computer program. A flowchart of the overall simulation is given 

in Figure VI-5. At the kth scan period the main program calls the 

flightpath subroutine, which updates e(t), 6(t), and e(t) according to 

deterministic aircraft motion along the S-curve flightpath. The main 

program then updates the state values e(k) and 6(k), either stochastic

ally with white noise or deterministically, depending on the value of the 

logical variable MODEL. When MODEL is TRUE, the state is updated with 

noise according to (VI-l). Q(k - 1) is computed from e(t) using (VI-6). 

The white noise term d(k - 1) is then obtained from Q(k - 1) and the 

output of GAUSS, a subroutine which uses the machine random number gener

ator to produce independent samples of a standard Gaussian population 

(zero mean, unity covariance). When MODEL is FALSE, the state is updated 
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deterministically by merely setting e(k) to e(t) and 6(k) to 5(t) (xI and 

x2 are used for e(k) and 6(k) in the actual program to avoid confusion 

with ait) and 6(t) when the stochastic model is used -- see flowchart in 

Figure VI-4). 

The main program now uses GAUSS and R(k) to produce an additively 

corrupted measurement y(k) of the state, as-in (VI-2). Q(k - 1), R(k), 

and y(k) are then sent to the Kalman filter subroutine, which computes 

the optimal state estimates OpT(kk) and SoPT(klk) (these estimates are 

optimal when the assumed state variable model (VI-l)-(VI-4) is correct). 

R(k and y(k) are then sent to the candidate adaptive Kalman filter sub

routine, which, without knowledge of Q(k - 1), computes the suboptimal 

state estimates sD(kfk) and 1AD~klk).The main program computes errors
 

in estimazes of o(k) and increments k to the next scan period.
 

Simulation Testin: The Stochastic Model Case
 

The S-curve flightpath of Figure VI-l is used in both the stochas

tic and deterministic phases of simulation testing. Here we use Q(k) 

from Figure VI-4 to update the state variable model (VI-I). 

As a result of the restrictions placed on the family of allowable 

flightpaths, we can limit the adaptive gain K1. We recall from (IV-7) 

that Q(k) is bounded at QMAX = 7.5 x 10-4 . We also recall from Chapter 

III that the Kalman gain Kl(k) is a monotone increasing function of' 

Q(k - I)/R(k). Given QMAX' we can thus limit K1 by placing a lower bound 

on I. error in the envein earlier simulations we have found the r.m.s. 


lope processor estimate y(k) to remain above .01' for the expected range
 

of signal-tc--noise ratios (20 db or less) [5, p. 27]. We,-assume a lower
 



limit on r.m.s. error in y(k) of .0050, yielding the bound
 

- 5
RMIN = 2.5 x l0 . When QMAX and RMIN are used in our system model the 

Kalman filter has a steady-state gain K1 = .602. We assume the upper 

bound KKMAX = .625. 

Three of the adaptive filters tested here use a bank of parallel
 

stationary Kalman filters. In each case we use 24 parallel filters,
 

incrementing K uniformly from .05 to .625. For each of the three adap

tive filters we use .afading memory time constant N of 80 scan periods in
 

computing the sample innovations covariances. This value has been chosen
 

experimentally by studying the effect of different values of N on filter
 

performance for various flightpaths (from typical to worst-case
 

approaches).. The adaptive filter of Sage and Husa uses a constant N of
 

30 scan periods.
 

In-addition to the adaptive filters of Chapters VI and V we also
 

test a suboptima'l filter which does not adapt'to changes in Q(k). This
 

estimator is merely a Kalman filter which uses the true value R(k),-but
 

which replaces the unknown Q(k) with the limit QMAX of 7.5 x lO- 4 , from
 

(VI-7). Such an estimator, which is much simpler than an adaptive
 

filter, has some intuitive appeal. Since R(k) is known, the filter gain
 

Kl(k) is always greater than or equal .to the optimal gain K1 (k) (as
 

QmAX Q(k)). Recalling Figure III-1, such a filter, while not'always
 

optimal, always has a mean-square error in 8(klk) less than R(k). We test a
 

second constant-Q filter which has knowledge of maximum acceleration O(t)
 

for the actual flightpath to be used. For this simulation the S-curve
 

2

approach produces a peak e~t) just above .010/sec , while Q(k) peaks at 
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8 x 10 (see Figure VI-4.C, D). We haeassumed in the problem defini

tion of Chapter II that nothing is known about the actual flightpath
 

except that it belongs to a given family of approaches. We nevertheless
 

include this filter for test comparison with the other candi'date filters.
 

-4
We assume a constant R(k) of 10"- for the simulation (r.m.s. error
 

in y(k) = .010). This is not too realistic, because the signal-to-noise
 

ratio slowly rises as the aircraft approaches the runway. A slowly
 

decreasing function for R(k) would seem more reasonable. But judging
 

from Figure VI-4.D, we would expect the more rapid variations in Q(k) to
 

cause the most difficulty in adaptive estimation. A constant-R simula

'tion should give a fair indication as to whether or not adaptive filter

ing will work-


The candidate adaptive filters have been tested in a FORTRAN simu

lation on a PDP-l103 computer. The stochastic state model (VI-I)-(VI-4) 

is implemented, with Q(k) updated as shown in Figure VI-4.D. R(k) is 

constant at 10 4_ The nonadaptive filter using QMAx has a steady-state 

gain = .476. The second constant-Q filter, which has knowledge of 

maximum acceleration for the actual flightpath, has a steady-state gain
 

K .190.
 

Figure VI-6 shows the optimal gain K1(k)and the adaptive filter 

gains Kl(k) for the simulation. No plot is shown for Magill's algorithm, 

which computes the adaptive state estimate from (V-19) as a-weighted sum 

of parallel filter estimates and consequently does not use K1(k). -The 

optimal gain goes through three near-step changes; at t = 55 sec., 115 

sec., and 200 sec. For all adaptive gain plots shown, Kl(k) lags Kl(k) 

at each of these three times in changing to the new gain level. This 
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time lag is most noticeable in the filter of Sage and Husa, which has the 

most difficulty in estimating the optimal gain. We recall that the adap

tive filters all use sample innovations covariances, either of an assumed
 

optimal filter in the method of Sage and Husa, or of each of a,group of
 

parallel filters for the other methods. The true innovations covariances
 

change immediately whenever Kl(k) changes, but the sample covariances are
 

time averages and consequently change more slowly. The time lag in Kl(k)
 

is most critical at t'= 55 sec. Here the adaptive gain remains low when
 

the optimal gain is high, a condition which can produce high-mean square
 

errors in e(klk) (see Figure 1l1-l).-


Ficure VI-7 shows the error e(k) - y(k) in the envelope processor,
 

as well as the error e(k) - e(klk) for the optimal and constant-Q fil

ters. The reduction in error produced by the optimal filter is obvious.
 

The nonadaPtive filter with gain KI = .476 (Q set to QMAX ) reduces the
 

error in y(k), but not as well as the optimal filter. The filter with
 

gain KI of _190 works about as well as the optimal, except for t > 200
 

seconds, where Q and K (k) go to zero. Figure VI-8 compares the optimal
 

filter's error in e(kfk) with that of the adaptive filters. All of these
 

filters seem to work about as well as the optimal, except near the end of
 

the approach, when Q(k) goes to zero.
 

We realize that results of a single simulation run cannot provide
 

us with a firm basis for any meaningful conclusions. The results shown
 

here are to some degree dependent upon the noise sequences w(k) and v(k)
 

peculiar to this particular run. We therefore repeat the above simula

tion 100 times: the simulation is repeated without reinitializing the
 

machine random number generator, so that noise samples used in one
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experimental run are independent of those used in the other runs. We
 

then obtain an ensemble average of the mean square error in e(kik) for a
 

given candidate filter. Let ei(kjk) be the error in e(kik) for the ith
 

simulation run:
 

Ei(klk) e(k) - 5(klk); ith run (VI-li) 

We obtain a sample mean square error by averaging the square error at
 

time k for all simulation runs:
 

P~kQ 1 lOO- (k Q VI)2100 i 1
 

Assuming e(kjk) to be unbiased, P(klk) is a variance estimate. From (V

4) we know that the standard deviation in this estimate is given by
 

Up = P(klk)/IV'lO/2 = .141P(klk) (VI-13) 

where P(klk) is the true error covariance for e(kjk) (which we know only
 

for the optimal filter). We thus expect our sample error covariance
 

P(kjk) to be within 14 percent of the true covariance most of the time.
 

Here we use the square root of P(kjk) as a sample r.m.s. error in e(klk).
 

Figure VI-9 shows the sample r.m.s. error in (klk) computed from
 

100 simulation runs for each of the estimators tested. The error in the
 

envelope processor estimate y(k) stays near .010; this is consistent with
 

a constant covariance R(k) of 10-4 . The optimal filter significantly
 

lowers the error, usually holding it below .0040. The minimum innova

tions covariance and Alspach adaptive filters work nearly as well as the
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optimal; only for t > 200 seconds, where Q(k) goes to zero, does the
 

optimal filter have a noticeably smaller r.m.s. error. The adaptive
 

filter of Sage-Husa does almost as well, with a peak r.m.s. error of
 

about .0060. The Magill filter was not tested here. It was much slower
 

than the other adaptive filters, and the time required to run a 100

-record simulation was too great to be practical (recall that the bank of 

parallel stationary filters must be implemented serially in simulation).
 

We note, however, that the single-run results for this filter look very
 

much like those of Alspach. This is not surprising, as both methods com

pute the a posteriori gain density P[KilYk] from.parallel filters.
 

We note in Figure VI-9 that the constant-Q filter with gain K1 of 

.476 has an r.m.s. error of about .0060. This is somewhat higher than 

the error associated with the adaptive filters. The nonadaptive filter 

with K at .190 does very well, however, with the r.m.s. error staying 

near .004'. This compares favorably with the optimal and adaptive fil

ters. Only when Q(k) becomes very small, as for t < 50 seconds and 

t > 200 seconds, do the adaptive filters work significantly better than 

this filter. 

Simulation Testing: The Deterministic Case
 

We have established that the candidate adaptive and constant-Q fil

ters work reasonably well when the assumed state model is implemented.
 

We must now find out how well they can work in a true physical environ

ment, where the aircraft is actually moving along a given flightpath.
 

This of course is our original objective: to find an adaptive Kalman
 

filtering scheme for computing a minimum mean square error estimate
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o(kjk) , using the estimates Yk output by the airborne receiver's envelope
 

processor.
 

The entire simulation of the preceding section has been repeated,
 

with the logical variable MODEL now changed to FALSE. e(k) is now
 

updated deterministically as the aircraft travels at 120 knots along the
 

S-curve approach of Figure VI-l (Recall that e(t), 6(t), and o(t) are
 

shown for this flightpath in Figure VI-4). R(k) is still held constant
 

at 10-4 , giving an r.m.s. error of .010 in the envelope processor esti

mate y(k). In addition to the candidate adaptive and constant-Q filters
 

we also run the same optimal filter as before, setting Q(k - 1) to
 

Ate(tk). Of course, this filter is unrealizable, since e(tk) is unknown
 

to the aircraft.
 

Results for the single simulation run are given in Figures VI-lO,
 

11, 12. Figure VI-JO depicts the gain Kl(k) for the optimal and adaptive
 

Kalman filters. The adaptive gains look about the same as for the sto

chastic model simulation, with the Sage-Husa filter again having the most
 

difficulty'in estimating the optimal gain.
 

Figure VI-11 gives the error in e(kik) for the envelope processor
 

as well as the optimal and constant-Q filters. Again, these plots look
 

about the same as for the stochastic case. The optimal filter signifi

cantly lowers the envelope processor error, while the filter with con

stant gain K at..476 also lowers the original error, but not as much.
 

The filter with K at .190 performs about as well as the optimal filter,
 

except for t > 200 seconds. Here, where the aircraft is on runway cen

terline, the optimal filter has less error. Figure VI-12 compares the
 

optimal filter's error with that of the adaptive filters. The minimum
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innovations covariance, Alspach, and Magil filters compare favorably
 

with the optimal. The Sage-Husa filter experiences some difficulty, how

ever, having a noticeable error bias, especially in the time region
 

between 50 and 100 seconds.
 

Figure VT-13 shows the sample r.m.s, error in o(kjk)Jfor 100 simu

lation runs for each of the filters tested. The r.m.s. error in the 

envelope processor estimate y(k) stays near .01Q. as expected. The mini

mum innovations covatiance and Alspach filters significantly reduce this 

error, generally holding it to .004' or less. Both filters show a brief 

rise in error at t = 55 seconds, where the acceleration e(t) suddenly 

changes(see Figure VI-4.C). Here the adaptive gain K1 (k)lags the opti

mal gain, using a low suboptimal gain until the sample innovations covar

iances in the parallel filter bank can respond to the change in e(t). 

Except for this temporary error increase, these two filters work about as 

well as the assumed optimal filter. The adaptive algorithm of Sage-Husa 

lowers the r.m.s. error in the envelope processor, but not to the same 

degree as the other adaptive filters. The error increase at t = 55 sec

onds is much more pronounced, rising almost to .0120. 

The nonadaptive QMAX filter with RKl .476 has an r.m.s. error of
at 


about .0060. This is higher than the .004° error often present with the
 

best adaptive filters. A reduction of error from .0060 to .004° seems
 

rather marginal, though, when we consider the added sophistication
 

required by the adaptive filters. If we assume that maximum O(t) is
 

known for the actual flightpath, then the constant-Q filter with K at
 

.190 can be used. This filter has an r.m.s. error of about .004', this
 

error performance is only slightly different from that of the adaptive
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filter's. We note that the adaptive filters lower the r.m.s.'error to 

about .0020 when t is less than 50 seconds or greater than 200 seconds. 

Citing Figure VI-4.C, e(t) is nearly zero for t < 50 seconds, and it 

equals zero for t > 200 seconds (here the aircraft is flying, on runway 

centerline). Thus the adaptive filters work best only when the accelera

tion is near zero. 

From these results it would seem wise to use the constant-Q filter
 

with knowledge of maximum 0(t) for estimating e(k). This filter works
 

nearly as well as the best adaptive filters, and is much simpler to
 

implement. The constant-Q filter uses the same equations as the Kalman
 

filter of-( IlI-18)-(III-28). On the other hand, the minimum innovati.ons 

covariance and Alspach adaptive filters, which have the best error per

formance, must implement parall-el Kalman filters. While such parallel 

processing would be fast, especially for the minimum innovations covari

ance filter, the hardware cost involved in realizing a bank of parallel
 

filters seems unjustified by the marginal improvement in estimation
 

error.
 

The constant-Q filter use here with gain K1 of .190 requires a 

knowledge of the maximum acceleration eMAX for the actual landing 

approach. In the general problem statement of this-paper we have assumed 

the landing approach to be unknown; we can compute "MAX- only for the
 

family of allowable flightpaths. We therefore cannot realize this filter
 

for our estimation problem as formally described. Yet we assume that the
 

approach pattern used at a given airport and runway is standard. In such
 

a case MAX could be computed and stored until needed by an aircraft
 

landing at that runway. At the beginning of the standard approach, this
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value OMAX could be transmitted to the aircraft, which could then.use the
 

above constant-Q filter.
 

If the landing approach is not standard, or if there is no provi

sion for communicating OMAX to the aircraft, we can still use the
 

constant-Q filter which uses OMAX for the family of allowable flightpaths
 

'(the filter with gain K1 = .476 in our simulation). This filter has a 

higher r.m.s. error in e(kjk) than the best adaptive filters: ,006' com

pared to .0040 when the aircraft is maneuvering. Yet the improvement in
 

performance for~the adaptive filters is still not very significant when
 

weighed against their added complexity.
 

Sngeeral the adaptive filters work well. The filter of Alspach
 

and the minimum innovations covariance filter lower the envelope proces

sor error in eszimating e(k) from .01' to .004' or less: a 60% reduc

tion. But for our specific problem adaptive filtering does not appear to
 

be necessary. The constant-Q filters work nearly as well and greatly
 

simplify the estimation procedure. We should point out that use of the
 

constant-Q filters is made possible by the fact that the measurement
 

noise covariance R(k) is known in our problem. In the general adaptive
 

estimation problem, where Q(k) and R(k) are both unknown, we would expect
 

the constant-Q filter to be highly suboptimal, with the superiority of
 

the adaptive Kalman filters becoming clearly evident. We note that the
 

minimum innovations covariance and Alspach filters do not use R(k)
 

anyway.' These filters would work just as well for our problem if R(k)
 

had been unknown.
 

We digress here to make a general observation regarding adaptive
 

filtering which may be useful in future work. Both in the simulation
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runs presented here and in other runs the filter of Sage and Husa was
 

slower than the other adaptive filters in responding to changes in Q(k).
 

The adaptive gain K(k) did not follow the optimal gain K(k) as well, and
 

the time lags between K(k) and K(k) were much more pronounced when Q(k)
 

varied, rapidly. We can speculate as to why this happened. :The Sage-Husa
 

filter uses the sample innovations covariance of the adaptive filter in
 

computing K(k). If Q(k) experiences a step change, the sample covariance
 

eventually detects this change, causing K(k) to move toward the new
 

steady-state gain. Yet the sample innovations covariance cannot immedi

ately show the effect of using the new adaptive gain K(k), since most of
 

the innovations residuals used in this statistic are those computed when
 

K(k) was at the old value. The other adaptive algorithms use banks of
 

fixed-gain parallel Kalman filters. When the adaptive gain moves to a
 

new value K(k) as the result of a change -inQ(k), we already have a par

allel filter operating with a-gain close to K(k). This parallel filter
 

has always beenrunning at the same gain., so that,the effects of K(k)
 

upon the sample innovations covariance for the new value of Qik) are felt
 

much sooner.
 

We should bear in mind that the fiIter of Sage-Husa was designed
 

for problems where the noise was stationary. Also,_we elected to use the
 

suboptimal algorithm of Sage-Husa, rather than their more complicated
 

optimal design based on MAP estimation. We speculate that this filter,
 

by using smoothed state estimates, would be much faster in adapting to
 

changes in Q(k) and R(k).
 



CHAPTER VII
 

CONCLUSION
 

We have examinedadaptive Kalman filtering for use in estimating an
 

aircraft's azimuth angle e(k) in the Microwave Landing System. Adaptive
 

filters from the literature were modified for application to the MLS
 

problem and then tested in a simulated landing approach. The airborne
 

receiver's envelope processor azimuth estimate y(k) was used as an input
 

to each candidate filter. The filter's task was to produce a new esti

mate e(kjk) having less mean-square error than y(k). In the simulation
 

testino conducted here, where an S-curve flightpath was used, two adap

tive filters performed well: the r.m.s. error in y(k) was.lowered during
 

various pnases of the approach by 60 percent or more. A suboptimal, non

adaptive estimation scheme was found to work almost as well.
 

In Figure VI-13 we presented the results of our S-curve landing
 

simulation, where the square error in e(klk) was averaged for time k over
 

100 simulated approaches. The minimum innovations covariance filter and
 

the filter of Alspach proved to be the best adaptive filters, generally
 

holding the r.m.s. error in e(kjk) to .0040 or less. This compares to a
 

constant r.m.s. error in the envelope processor estimate y(k) of .01'.
 

An r.m.s. error of about .004° was obtained by a suboptimal filter using
 

a fixed estimate of the state noise covariance Q(k) in the assumed sto

chastic model for e(k). The estimate of Q was based upon knowledge of
 

the maximum acceleration eMAX for the actual S-curve flightpath. When
 

eMAX for the flightpath was unknown a second value of 0MAX was used,
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based on maximum acceleration for an allowable family of flightpaths. A
 

filter using a constant Q estimate based on this value of OMAX estimated
 

e(k) with an r.m.s. error of about .0060.
 

In Figure VI-13 we note that the adaptive filters lower the r.m.s.
 

error to about .002' for t above 230 seconds; here the aircraft has been
 

on runway centerline for about a mile. This is the only phase of the
 

landing approach where the adaptive filters significantly outperform the
 

best fixed-Q filter (the filter with steady-state gain K1 of .190 for our
 

simulation).
 

While this constant-Q filter has an error performance comparable to
 

that of the adaptive filters, it is not realizable under the formal con

straints of our problem as defined in Chapter II. We-assumed that the
 

flightpath of the aircraft was unknown to the candidate filter; only the
 

restrictions on the family of allowable flightpaths were given. Thus we
 

would not know SMAX for the actual landing approach. As explained in
 

Chapter V!, however, this filter could be used at an airport runway where
 

the landing approach is standard. 0MAX could be computed and stored for
 

a given standard approach, and its value subsequently transmitted to an
 

approaching aircraft.
 

If there is no provision for makifig the value el4AX for the given
 

flightpath available to the aircraft's MLS receiver, we can resort to the
 

less optimal constant-Q filter where GMAX for the set of allowable
 

flightpaths is used. In our simulation this filter compared reasonably
 

well with the best adaptive filters in error performance (.006' r.m.s.
 

error vs. .004' r.m.s. error for large segments of the approach).
 

The fixed-Q filters use the Kalman filter equations of (111-18)
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(111-28), replacing Q(k) Kith QMAX Revisiting the algorithm flowcharts
 

in Figures V-i to V-4, we note that the adaptive Kalman filters are much 

more complex. The minimum innovations covariance and Alspach filters can
 

run nearly as fast as the Kalman filter, but only when the parallel sta

tionary filters run simultaneously. This requires the use of a special

purpose digital machine with parallel processing capability.
 

We conclude that, for a curved landing pattern similar to the S

curve approach used here, adaptive Kalman filtering iKs not needed. A
 

nonadaptive, fixed-Q filter can estimate o(k) with a mean-square error
 

performance comparable to optimal. While adaptive filters can lower this
 

mean-square error further, the marginal improvement is judged to be
 

insignificant in comparison with the added complexity and cost of realiz

ing a bank of parallel filters.
 

The success of theconstant-Q filter results from the fact that the
 

measurement noise covariance R(k) is known in our problem. Given a know

ledge of R(k), we can be assured that.our nonadaptive filter will not
 

diverge by merely setting our estimate of Q(k) to some maximum limit
 

never exceeded by the true value. The more accurately we can bound Q(k),
 

the closer to optimal this filter becomes. In the more general problem
 

where Q(k) and R(k) are both unknown, we speculate that an adaptive
 

filter would be clearly superior. We note that the minimum innovations
 

covariance and Alspach adaptive filters make no use of R(k) in our
 

problem, but assume it to be unknown. Thus their error performance would
 

remain unchanged if knowledge of R(k) were lost.
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