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SECTION T
INTRODUCTION

This is an interim report concluding the third period of research
under Grant NSG 1128, dealing with optimal design of subsystems of
the proposed Microwave Landing System. The ré;ehrch reported includes
both optimal design studies of MLS angle-receiversjand a theoretical
design~study of MLS_DME—receivers.

The angle-~receiver results include an integration of the scan
data processor and tracking filter compoments of the optimal receiver
into z upnified structure and then an extensive simulation study comparing
the performance of the optimal and threshold (Phase III) receivers
in a wide wvariety of representative dynamical and interference
enviromments. The optimal receiver was generally superior, offering
inmprovements ranging up to 20:1 ox better in certain situations,

The DME portion of this report includes a simulation study of
the performance of the threshold and delay-and-compare receivers in
various sigral emviromments. This study provides an-analysis of combined
errors due to lateral reflections from vertical structures with small
differential path delays, specular ground reflections with neglible
differential path delays, and thermal noise in the_receivers.

The angle-receiver research and DME~receiver research are two,
completely independent studies and are documented accordingly in the
following eleven sections, the first part, Section's II thru VI, dealing
with the angle-receiver and the second part, Sections VII thru XIT,

dealing with the DME-receiver. WNo cross referencing occurs between



these major parts of this report, and alsc the symbol and notation
systems used in the two parts are independent. For easy access,
however, results and conclusions from both parts of the vear's work

are summarized in Section XII.



PART ONE

ANGLE-RECEIVER STUDY



PREC
ILMED

SECTION II
SIGNAL MODEL AND APPROACH

The reader is referred to our prior reports (1], [21, [3]
for details. This is a summary included to communicate minor revisions
in prior results and establish notation.
GEOMETRY AND SIGNAL MODELTING

The angular coordinate to be estimated znd other relevant
guantities that evolve are assembled into an N-dimensional state
vector X, modeied as the solution of a suitable.linear difference
equation evolving in discrete-time, from scan—to-scan, and exciéed
by a white zero-mean random process, {a(k), k = 0,1, """}, The receiver
log-envelope signal, a continuous-time signal within a scan, is
sampled throughout a window on each semi-scan at a sampling rate
approximately equal to the i—f bandwidth and then suitably exponentiated
and squared; the resulting J samples of the amplitude-squared
énvelope taken within a given scan are then normalized to a suitable
measure of receiver noise power and assembled into an observations,
or measurement, wvector u, which clearly is nonlinear in the state
and also corrupted non-additively by receiver noise. For the kth scan,

k=0,1,2,~~-, therefore we have the model form

x(ktl) = FP()x(k) + ¢l z(k) (2.1)

u(k) h(x(k), n(k))

fl

relating state x, excitation z and observations u, generally.
More specifically, in terms of a discrete-time variable T local

to the scan, and assuming the presence of a direct-path component,



a single multipath component and receiver noise, the jth component

of u, say u., j =1, ———, J, is approximated as follows with little

error (see [

. 2
u, = {apld - BA(Tj}] + op p[BR - GA(Tj)] cos (B + msch) ﬁ:nc.}

. 3

' _ : 2

+ {agp 8 - 8, (Tj)l sin (B + w_, Tj) + nsj} (2.2)

where

¢ = (k) =-direct path signal-to-noise ratio (2.3)
8 = 6(k) = angular coordinate of own A/C (2.4)
ap = aR(k) = multipath signal-to-noise ratio (2.5)
BR = GR(k) = angular coordinate of reflector specular point (2.6)

B = B(k) = direct path-to-multipath phase difference at the
beginning of the scan (propagating scan-to-scan
as follows:

Bk + 1) = B (k) + Yoo Tk
where T, = time interwval, kth-to-{k+1)th scans. 2.7)

k
Wow = the scalloping rate (2.8)
SA(.) = the transmitting antenna scanning function {2.9)
pl-1 = the transmitting antemna selectivity function (2.10)
and

n ,n_ are independent Gaussian random variables
cj sjwith mean zero, variance 0.5. (2.11)

On the basis of the above the state vector x is defined as follows:

A . . T
X =@ :eseﬂRaeRseR:Bswsc) (2.12)



»

T
where ( )" denctes transpose and ( ) denotes-é—

dt
Martrix F in (1) is then defined by
{1 00000 00
0 1 Tk 0 0 0 0 0
0O 6L 0o ¢ 0 O O
4l 00010000 | _
Flooo0oo0 1100 | ~FW (2.13)
o ¢ 00 0 1 0 C
0000 0 0 1T
_ c 0.0 0 0 0 01
In {2.1) the vector proceés.{z(k), k = 0,1, —1 is a zero-mean white

» -

Gaussian sequence which excites the a,e,uR,BR and Weo state components.

Consequently
1 0 06 0 0
0O 0 0 0 0O
0O 1-0 0 0O
A 0 0 1 0 0
G = 000 0 O s @ constant matrix,. {2,14)
¢ 0 0 1 0
0 o0 0 0 ©
0 0 0 90 1
Als;h-
T ‘ A .
<Z(k)z (k)> = Q(k-) = Diag (Q11:Q223Q333Q4&:Q55) (2.15)

where < > denotes mathematical expectation., This completes the
modeling summary.
APPROACH

The cobjective of the desired MLS angle receiver is to produce
an estimate of the A/C angular coordinate, &, which is minimally

affected by multipath interference. §tate estimation in conjunction with



the model (2.1) assumed is the approach used.to.develope the desired
signal processor. Specifically, defining
U (k) 4 {u(kl), k. = 0,1,~--,k}, the sequence of observations
from some initIal time through the present; {2.186)

x (klk) & estimate of x(k), given U(k) (2.17)

Then the estimate evolution is described as follows:

;:(k]k) = ;(k]k-—l) + E(k]k) (2.18)
where

x(k|k-1) & P-1) % (k-1]%1) (2.19)

E(k|k) 4 estimate of the error in ;(k[k—l), given U(k) (2.20)

The calculation of E(klk) in general, as defined, is complicated
because of the form of h (",*) in (1), as implied by (2). A
simpler form for £ based in part on the "tracking assumption” that
£ is "small' in some sense {(and the vector Gy also) has been used
thus far with good results (though without benefit of formal

derivation from (2.20) as yvet). This relation is

E(k|k) = K(k) e (k|k) (2.21)
where
e(klk) = estimate of the error in x(k|k—l) in the neighborhood

of zero error, given u(k). (2.22)
R(k) & 4 gain matrix, depending on x(k|k-1), Q(k), and
statistics of a(k[k) (2.23)
The calculation of e(klk) is based on the locally optimum
estimation (LOE) criterion of Murphy [ 4 ] and does not make any use

of the assumed dynamical model of state evolution, (2.1). This stage



of the computation processes the raw scan data {u(k), k = 0,1,-—-1} and
is described in summary éorm in the next .section. The calculation

of K(k) represents the determination of a suitable weighting matrix
such that use of the resulting E(klk), (2.21), in the estimate update
equation, (2.18) gives a smoothly evolving state estimate which.is
appropriate to and consistént with the agsumed dynamical model (2.1):
in short, the constraints represented by the assumed state dynamics,
heretofore ignored, are applied at this point. The quantity K(k) is
the Kalman gaiﬁ of a recursive tracking loop (or filter), closed

around the LOE. This aspect of the design is summarized in Section IV.
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SECTION IITL
SCAN DATA PROCESSOR DESIGHN
The observations taken on a scan have been modeled as a J—vector,
u, with components uj, j=1,2,---,J, as given in (2,2). The application
of locally optimum estimation to this problem requires the conceptualization
of a noise-free observation vector, say q(k), whose jth— compomnent

qj has the form

A .
= 11 = 2 i 2
9 = 8y [p;(6) + opp.(8p) cos B:1% + lupp,(8p)sin 8,1 (3.1
n =20
c,
3
=0
n
s,
3
- 2
_?gzpj (6) + 2 acgp; (8 py (6) cos B +aRZPj2(eR),(3,z)
where
3 AR Fu, 5 (3.3)
. &p 16 -6, (1)
h| A] (3.4)

and similarly for P; (BR). Using the qj - formulization, it is

possible to write u. as follows:

u, =q, +2 / . cos B. " ai - 2
5 qj QJEHC- BJ + nS- 51nBj] + nc. + ns 2 (3.5)
3 k| ] 3

= qj + 2\///_53 {cos Bj sin Bj) n. + (RC- nsz n, (3.6)

J J J J

Uy
i s,
- J

11



Letting the mnoise wvector, (nc o )T, be modeled as follows

i 73
nc. .= cos Bj -sin Bj nc‘
i . J (3.7)
o sin Bj cos Bj ng
J hi
where
<“?: > = <ns > =0 (3.8)
hi J
<;& 0 > = 0,V 3,1 (3.9)
j "1 )
n, 0 = 0 > =2 8
< cj c1> < réj sy 2 il (3.10)

. . T
clearly assures these same assumed properties in (nc ng )7, and

i 3

in addition simplifies uj in (3.6)

= 2° 2

= + X .

uj qj 2Tlc' ‘qu + ﬂc‘ +TIS‘ (3.11)
J J 3

Henceforth, references to receiver noise will refer to the new vector

(”c no )T unless otherwise noted.

i 3
Paralleling the prior development somewhat [ 3 ], the likelihood

ratio A(u[q), in terms of the revised formulatioms of u and ¢, is .

given now by

|
Aulq) =j£1 [Mo(4qjuj) eXP(-qj)] (3.12)

where, as before, Mo( * ) [for positive argument--as is the care here}

2.



is defined in relation to Io( * ), the modified Bessel function of

the first kind, zeroth order, as follows

Mo(z) 4 IO(\I z ), z>(0, real (3.13)

The theory of locally optimum estimation is applied to the

scan data processing problem by first assembling a selected subsget of

the state variables into a parameter vector Y and then processing

the observations Uu to obtain an estimate, e, of the erroxr in the

current y-estimate, as follows:

ed &l (] (3.14)
where

o & <A (u]|q) A" (ulc})l <A1> (3.15)

afaq ey ]Y;Y (a(y), given in (3.2) (3.16)
and

A(ula) A [37 1n'%(u|q(~r5)} Y=;~ (3.17)

The estimate e is both locally unbiased at zero errer (i.e. when

vy = +) and has minimum mean square error of all estimates locally

. . =1 . s .
unbiased at zero error. The matrix @ is the wovariance matrix

for the error in the estimate e when v = y. The averaging done in

the calculation of &, (3.15), is taken under the assumption that y = v,

i.e. that the parameter value entering the g calculation equals the
true value giving the u observation; the result is independent of the

~

observation and is a function only of g. The observations u, enter-

13



calculation of e only through A(ulq), which is g function of both

~

u and q. Substituting (3.12) into (3.17) we may write, specifically

J
]
Malg) =5 T [l Chagup) - g
oy L RN j
J aq., .
-7 ({2 [éd" %;L— (4q.u.)-1]
=) Y 3w 33
=D (@) wlu|®
where
D(q) é B?l a'qZ R .,,an ) , @ matrix
3y * 9y ¥y
Ml
wulg) = éuj ir—{éqjuj)-l , a J-vector

Q

and, as before

y a4
Ml (Z) = dz MO (Z)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

Using the previously developed asymptotic approximation for Ml/MO,

i.e. [3, egn (III-42p)]

Mo 2 V4 + 3

(3.24)

The wvector W(u|q), through which the :observations, U, enter the

computations, has representative element

b
W’j(u!q) = - -1

vl + qjuj

14

(3.25)



Substituting (3.20) into (3.15) results in an expression for matrix

®(q), as follows:

0@ =@ Gl el 1 '@ (3.26)
= D(@ & (2) D* (@) (3.27)

where
m@ 2 (ulo) qu(ulc“;)l&) (3.28)

A simulatidn study was performed of the statistics ofvvj(u[q),(B.ZS),
involving up to 10,000 samples. Refer to Appendix A for details.

Conclusions reached are as follows:

<v5 (u[ :i)[:l> = 0, independent of ‘; ' (3.29)
<r§ (ulgi) Vi (u|4<1)‘[21> = 6jkhj (a) (3.30)

where 5jk is the Kronecker delta, and
<Jj2(ulq)lq> (3.31)

The process ﬁaj(u[q), j=1, ...., J} is vhite; consequently,

hj (g}

H (@) = Diag [hy (@, by(@), --. s By(@)] (3.32)

The sample statistics study alsc produced an asymptotic approximation

for h, (q) :
or b, (q)

1

- (3.33)
1+ 2gqg.
4

hj (q} =

15


http:ufq),(3.25

whose exroxr peaked briefly at 20% (for qj = 2), but which produced
good results in the receiver simulation studies.

All receiver simulation studies to date dealt with a receiver
design based on the following choice of the parameter vector Y :
o
g
¥ *r (3.34)
R

e

8
5

The corresponding D-matrix is the following:

...2apjz(e) + zaRPj(G)pj(eR)CDSBj...
2. ’ -0
+++2a%p; (8)p; (0) + 20003, (6)pj (8p)cosB, . ..

D(q) = ++-20p,(8)p;(8,) cos By + zaRij(eR)...

(3.35)
. 2.

.. .-Z'aaRpj (e)pj (eR) sin Bj FO

where ( ) denotes d_ ( ).
dt

16



The

SECTION IV

TRACKING LOOP DESIGN
scan data processor produces an estimate e of the error e

A

in the last.estimate y of parameter vector Y, a masked version of the

state %. The algorithm employed provides that e is locally optimum

at e =

0 in a least mean square érror sense and supplies also the

associated covariance matrix

R 2

The

The
1.
2.

3.

I
)

~ ~ A~ 1 -_l o
< (e=e) (e-e)f ‘ q > . (q) (4.1)
e=0
tracking loop design was obtained as follows:

Generation of a pre-estimate of v by simply adding the

~

estimate e to the value of v used in the caleculation of e.

Interpretation of the pre—estimate as a synthetic measurement
of v, additively corrupted by white, discrete—-time mnoise

with covariance R.

Use of a linear Kalman £ilter designed to accept the
synthetiE measurements produced (and the matrixz R), for
~

generating an update estimated, x of the full state.

method embodies certain assumptions, dincluding specifically
The whiteness of the synthetic measurement noise.

A knowledge of matrix Q, defined in (2.15)

The form of state-estimate error in (2.21).

The algoritum therefore is deemed suboptimal; nevertheless the

tracking performance results were good and probably represent the

limiting performance obtainable from the standpoint of algorithmic

complexity.

17



We will now foxrmalize the approach mathematically and present
in summary form the algoritum, which benefits from some simplifications .

that are possible.

-~

Pre—estimate: ;(klk) = ;(klk—l) + ;(k) = H;(k]knl) + ;tkj' (4.2)
= () - e®)] + (k) (4.3)
= Bx(k) + v(k) . (4.4)
where H a masalgfirxlrg matrix assoc;‘Lated with choice . - (4.5)
v & e - e (4.6)

and
<}(ki> le;o = 0 (locally unbiasedness) 4.7)
G(R)VT(k)> l = R(k) = ‘Phl(a(k) (by 4-1) (4.8)

e=p

Kalman filter: ;(klk—l) = F(k-1) % (k-1[k-1) (4.9)

P(k[le1) = Fa-1P UL [k-1)F G146 (1) Q=167 (k-1) (4., 109
K(k) = PCk|k-1)H" [P (c[k-1)u" + R(k)1 T (4.11)
;c(k|k) = ;;(klk—l) + K(k) [;(k[k) - H ;:(,k|k_l)] 4.12)
P(klk) = P(k|k-1) - K(k) HP(k|k-1) (6.13)
= [I-K(K)HIP (k|k-1) [T-K(k)HI T + K(k)R(K)K™ (k) 6.1

-

(4.14) is prgferred to (4.13) for preservation of symmetry and
positive-definiteness properties. ‘

Substantial simplification follows from ‘substitution of (4.2)
into (4.12), giving

x(k|k) = x(k]k-1) + K(K) o (k) (4.15)

where
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~ =1 - _
R(k)e(k) = P(k|k-1)HY [HP (k|k-1)H" + &7 T ¢ ~A = K& ™A
= PH {o[EPHT + o 11374
= M)A (u]q)
in which

M(k) & PQk|k-1)E" [1 + & HPH] L

Thus the state estimate update- operation, i.e.

x(|k) = x(k[k-1) + MO ACa]q),
does not require the inversion of matrix 9.

The error covaviance updatz equation (4.14) can be written
in terms of @ also by first noting from -(4.16) and (4.18)
above that M = K@_l, or more specifically

K(k) = M(k) &

He=

- N ___l .
Substituting this into (4,14) and recalling that R & 7, gives

P(k|k) = [I-MeH] P(k|k-1) [T-MOH]® + MoM~

19
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SECTION V
SIMULATION STUDIES
The principal simulation models with which we were concermed
during the past year are the following:
i. The environment and baseband receiver signal;
ii. The LOE/Kalman filter recursive receiver struckture,
and specifically both multipath-adaptive. and non-adaptive

variants, thereof;

iii. A representation of the phase ILI MLS receiver, depoted
the threshold receiver

Simulation studies conducted, included principally the following:

i. Crossing multipath interference, initiating as out-of-
beam interference.

ii. Time-varying in-beam multipath interference
iii. Simulated landing scenarios

Results are presented below and discussed; programs developed ané
used will be transmitted to the sponsor under separate cover.
Simulation Models
A. FEnvironment and Baseband Receiver Signal

Generally, the environmental dynamics are simulated with a
state model of the form (2.1) (withoqt the random excitation), using
the staté vector (2.12). To provide some commonality between the
optimal and threshold receiver simulations, however, the observations
are generated in absolute-—amplitude form. The full model is as
follows:

x(k+1l) = Fx(k) s =(0) = x (5.1)

o
vi{k)

B, (e (k) ,0,0(k)) (5.2)

l

where xo = the initial state at the start of the simulation.
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¥ = the matrix (2.13) except Tk is a selected constant in

the simulation (1/13.5 sec. for AZ, 1/40.5 sec. for EL).

o = rms value of receiver noise at a point in the I-F
channel having the same signal amplitude as the demodulator
cutput. The parameter ¢ is assumed known, being a receiver

characteristic.

hv( ) = a matrix-valued function of its arguments which compiles
the J—vector v(k) as one with representative element Vj(k)’
3=1,...,J,

- Where .
vj (k) = oV 2uj

and U is as given in (2.2).

All other quantities are as previously defined. The components of
%, are specified either in program DATA statements or read in at
run time.

The quantity Bj’ (3.3) is reduced to its principal value on
(-I,N) after each change.

Signal data samples are generated only during sampling windows
of J/2 samples each, located in the TO and FRO scans respectively,
and centered where the centroid of the received signal pulses are
expected. For all runs to date

J = 130 (5.3)
corresponding (at the sampling rate of 160 kHz) to window widths of 8°
in each semi-scan,
B. The Optimal Receiver Simulation

The optimal receiver simulation consists basically of the following:
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~

i, GExtrapolation of x to the present, via (4.9).

ii. Scan data processor calculations of A, via (3.20), and

&, via (3.27).
iii. EKalman filter calculations as follows:

(a) P(k|k-1), via (4.10)

(b) Gain matrix, M(k), via (4.19)
() x(k|k), via (4.20)

(@) Pk|k), via. (4.22)

The scan data processor calculations begin with a computation of

the squared amplitude observations vector u component-wise as follows:
v, 2
w, = ——
| g2

In the subsequent calculations the following models for the antenna

selectivity function, p(8), and its derivative p(8) were used:

(T
, -9 = B/2.
s ] /2.4
p(8) = ¢ (5.5)
cos (1.2)79/B , elsewhere
\. 1-(2.48/B)%
and
- Qﬁéﬂ Signum (8), 6 = B/2.4
. sin I (Z+1)
p(8) = cos-% (Z+1) - i 2
) = (Z+1)
0.31 2 (5.6)
|
B 7 (Z'*jl)
sin-—Il (z-1)
cos E'(Z—l) S
2 I (z-1)
2 2 elsewhere
+
I
7 (-1 7 o 248
L B
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in which B, the -3db beam width in degrees, was given the value of 1
degree.

In the Kalman filter calculations the diagonal elements of the
diagonal matrix Q were given values as follows:

A2 .
Q11 = Q33 = max [ 0.25, 0.01la (k)] {5.7)

where ¢ is the estimated direct path signal-to-noise ratio, thus giving

some adaptation omn the basis of 107 uncertainty in a(k + 1}, given a(k)

(for a(k)>5).

_ e yA
Q22 - Q&é - ’emaxl

T, (5.8)

where T is the interscan interval. All runs to date were made with the
AZ receiver simulation, and, based on a prior study of representative

I = 0.1Ose02 was used.

landing patterns [3,p.40], a value of iemax

Qs = 0.04/T> (5.9)

corresponding to a mean-square uncertainty in.msc(k + 1), given msc(k),
no greater than that which would cause an interscan extrapolation error
in é of about 10° while tracking.

The optimal receiver simulation is programmed with maximum
dimensions of 8 and 5 for the vectors x and vy respectively (and all
associated matrices). The actual dimens%ons used in the calculations
however are parameterized with the integer variables NS and NG
respectively. When NS=8 and NG=53, the optimal multipath-adaptive
receiver, which has been described, obtains; when NS=3, NG=2, a lesser
dimensional model of the same basic structure results for which

(0,6,6)" : (5.10)

b:9

v = (2,07 (5.11)
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corresponding to an optimal receiver design predicated om the assumption
of a multipath-free enviromment. Clearly, in the current work this
latter design is a suboptimal one, nevertheless it served as a
comparison standard in this work and is referred to as the suboptimal
design or the nonadaptive design.
C. The Threshold Receiver

The threshold receiver simulation first computes the log~amplitude

envelope observations signal, v » component-wise as follows:

iog
vlog. = 20 loglo 1+ Avj) (5.12)

]
where A = 100, corresponding to 40 db of logging action. The result ig

then filtered by a 25 kHz bandwidth low pass digital filter with transfer

funetion
0.34831(1 + 1y (5.13)

1 - 0.303362 %
The signal that results is then passed to the thresheolding and

Hy5(z) =

interference-rejection logic that characterizes the standard phase TIIT
MLS angle receiver 'design. This is described as follows:.
1. On each the TO~- and FRO-semi-scans the signal peak within the
tracking gate (located as deseribed below) is determined
and a threshold level 3db below the peak established.
2. Dwell gates are defined for those intervais during which the
log video signal exceeds the thresholds. The tracking gate for

the next TO-scan will be symmetrically located about the expected

dwell gate centroid position with a duration of 1.5 times the
present TO-scan dwell gate duration; similarly for the FRO-scan.

3. Dwell gates less than 15us or greater than 350us cause the scan
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to be aborted and the prior estimate of 6 to be used again.

4. When the dwell gates are acceptable, the interval from the center
of the TO dwell gate to that of the FRO dwell gate is determined,
quantizéd to 0.5usec, and used to calculate the new estimate é,
which is output.

The threshold receiver simulation was programmed to be interchangeable

with the optimal receiver simulation as far as the main simulation program

(and sampling window positioning) is concerned. Performance evaluation,

however, was based on the angle estimate error filtered as follows:

0.5

AZ: H{z) = — (5.14)
1- 0.5z

EL: H(z) = “—-QLs_T— (5.15)
1-0.75=

corresponﬁing to available evaluation data. In this respect, however,
the simulated threshold receiver is more like the phase IT model than
the phase IIL model (which apparently uses an a-f filtered error for
performance evaluation).
Simulation Runs and Results

Four key parameters important to the ferformance of an MLS receiver
are the following:

S/N 4 Direct-path signal-to-noise ratio (denoted DSNRDB in the

simulation), (db). (5.16)

P 4 Multipath~to-direct path signal amplitude ratio (5.17)
Foo = scalloping frequency (Hertz) (5.18)
esep =08 - BR, the separation angle of the multipath interference (5.19)

The MLS receivers are expected to operate with S/N ratios. of 8 db or higher;

values in the range 8 to 20 db were used in the simulation study.
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A recent MIT study of multipath interference at air terminal areas [5]
shows relative multipath amplitudes, p, to 1.0 or more and scalloping

frequencies, FSC, to 1300 Hz. Representative values are as follows:

p = 0.9, Fsc = 2,22,51 Hz ..
p = 0.8, FSc = 63,811,130 Hz (5.20)
p = 0.5, Fsc = 381 Hz

Values spanning these ranges of p, FSc were used in the study. Separation

angles, esep’ corres?onding to both in-beam and out-of-beam multipath

were considered. -
A fifth parameter, 8, the r—f phase difference initial values

{(at the start of the simulation run) also affected results somewhat. Its

effect is studied some and its value is always noted.

A. Crossing Multipath Studies

This scenario begins with

9 = - 2.75% (AZ)
sep

de
——S%B-= + 0.7%/sec constant (5.21)

and runs for 100 scans (approx. 7.4 sec). TForty runs each for the threshold,
optimal and suboptimal receivers were made in this series, corresponding to
various values of key parameters S/N, p, and Fsc' In all runs the receivers
were initialized in the track mode, i.e. all estimated variables produced by
each receiver were initialized to true values. ¥Figures 1 thru 10 show compara-
tive results of selected runs for the optimal and threshold receivers; Fig. 1
presents time histories of error for S/N = 14 db, no multipath; note the two
plots are made to the same scale for easy comparison. Fig. 2 is the same, but
with heavy multipath interference, p=0.8, Fsc = 51,3 Hz.{(This scalloping

. o ,
rate and the associated value of B, — 168, produces maximum enhancenment
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by the multipath on the TO scan and maximum cancellation on the FRO
scan as the separation angle traverses zero). Figures 3, 4 and 5
summarize for Fsc = 5, 51.3 and 500 Hz, respectively, comparative
studies of peak absolute error versus S/N and p. Figures 6, 7, 8 and 9
present time histories of error for runs corresponding to selected’
points in Figure 3, 4 and 5 representing both moderate and heavy
multipath interference. The high ratics of improvement provided by the
optimal receivers are especially noteworthy -- typically about 20:1

for the p=0.8 cases. Figure 10 shows, for the S/N = 20 db, p=0.8 cases,
only optimal receiver results, plotted with enlarged scales to show
more clearly the sample functions of the error process, which appears
to be more random than that of the thresholds receiver (See

Figures 6, 7 and 8).

Tables 1, 2, 3, and 4 summarize all the crossing multipath studies.
Table 1 bresents a comparison of the 3 receivers, optimal, threshold
and sub-optimal {or non-adaptive), in terms of peak-absolute-error.
Tables 2, 3 and 4 each summarize the performance of respectively one
receiver in terms of several error measures computed over the set of
100 scans per run for each case.

The crossing multipath scenario represeunts a strenuous test of the
tracking capabilities of a receiver algorithm. Conclusions drawn are
as follows:

1. The optimal receiver gemnerally outperformed the threshold

receiver, sometimes by a wide margin.

2. The optimal receiver is algorethmicly much more complex than

the threshold receiver.
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4. Generally the suboptimal (non-adaptive) receiver performed as
well or better than the threshold receiver.
5. Generally the suboptimal design performes less well that the
optimal design, though it was never observed to ld;e track.

It is felt that the optimal and suboptimal receive_rs represent,
within this family of recelver structures, two extremes in use of
any information in the received sigral concerning the multipath
interierence — botﬁ being generally superior to the threshold
receiver. Fufther, it is felt that a carefully drawn design
intermediate to these extremes can effect a substantial reduction in
complé%ity at little loss in tracking performance with respect to the
cptimal design described. This, in part, is our recommendation for
future work; the reader is referred to Section III for more details.
B. Time-Varying Iﬁ—Beam Multipath Scenario

This is primarily a test of the multipath-acquisition capabilities
of the optimal receiver. TFigure 11 presents the result of a simulation
run, which began with no multipath, the receivers tracking and
§/N = 20 db. After about a second, multipath interferemce begins
to appear at a constant separation angle of 0.50, growing in amplitude
to about 0.8 of the direct path sigpnal amplitude, Ehen diminishing,
again to zero. The optimal receiver offers a 10:1 improvement in

peak error performance.
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C.  Simulated Landing Scenarios
-A landing scenario in general ig characterized, in terms of our

simulation parameters, by simultanecusly varying p, © and Fsc [5]

sep
A case that was simulated is shown in Figure 12, suggestive :of heavy

13
in~beam mueltipath, a Fresnel reflection pattern and closing ranges.
Error time-histories for the optimal and threshold receivers, operating,

-at 20 db S/N ratios, are shown in Figure 13. The receiver simulations

were initialized in the track mode.

45



. (] [ S T PITIITAT LA Ity A TILOTITIINY
T000 et epsnten sttt e S s g e
ol 5 rpee phimn e sy sy ey S Saaiyes i e e t i

0 i1 LR
e 7.4 Seconds -]
[t

Duration

Figure 12. Representative Landing Scenario

46



'250'7 ST AT L T TUC RN O A SO MU TTE T S TN TN T IR VO TT TR 1LY IO it pine . .1y
Optimal = : =

Receiver
Error (deg.)

0.0° [

Peak = 0.168°

-0.25° : = = : ' s
o 7.4 Seconds >
i o Duration

0.25° .
Threshold
Receiver
Exrror (deg.)

0°

Peak = 0.179°

~0,25° |

Figure 13. Receiver Error Time Histories,
Representative Landing Scenario,

S/N =20 db, B = 0.0°

47



SECTION VI
THE EXPERIMENTAT. SYSTEM

A philosophy and design plan for an experimental systeﬁ-was
described in the last report [3]. Three small circuit boards under
construction at that time have been completed, but aside from that,
no effort during the current grant period was expended on the experimental
system. This task was halted because it was becoming inc%easingly
apparent the computational requirements of the optimal receiver
algorithm, as it was evolving, would be beyond the capacitites of
the PDP-11/03 microcomputer to supply as a real-time processor synchronized
to the MLS time-frame. Also, ali project personnel were needed on the
simulation studies (angle—and DME~receivers). The status of the
experimental system development, as it stands, is summarized in
Table 5.

The immediate objective with respect to an experimental systen
is the specification of the fumctional chara&teristics of a mini-or
micro-computer suitable to the computational load of the receiver
algorithm as it becomes firm. The work dome to date is nearly machine
independent, and the experience obtained will facilitate the drawing

of a computer specification when appropriate.
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PART TWO

DME-RECEIVER STUDY

51
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SECTION VII

DME STGNAEL MODEL

The DME signal model‘is initiated at the RF stage of the receiver.
At this point, the signal consists of a direct path signal, a
reflected path signal, and added noise. It can be modeled as:

X(t) = R(t) cos (w-ct) + pR(t;r) cos (mc(t-—';:) + 8,) + n(t) (7.1)
where R(t) = direct path envelope

o = amplitude of reflected signal relative to the direct signal

T = time delay of reflected signal
Bl = phase shift of carrier wave upon reflection
n(t) = receiver noise assumed to be ceovariant stationary, Gaussian,
“and bandpass with spectrum centered at the RF carrier, w,

X(t) = R(t) cos (mct) + p R(t-T) cos (wét + By) + nt) (7.2)

= R(t) cos (mc.t) + p R{t-T) ICOS(BZ) cos (w t) - sin (82) sin
y c
(mct)] + n(t)
vhere 8, = Bl -wT

Because of the assumed properties of the receiver noise process,

it can be expanded into quadrature components with respect to the

carrier frequency, W,

n(t) = n c(t) cos(mct) kY (t) sin (mc t) {7.3)

consequently X(t) can be written
X(ty= [R(t) + p R(t~1) cos (82) + n\c(t)] cos (mc t) -

[e R(t-7) sin (B,) + n (t)] sin(wct) (7.4)

x(t) = Xc(t) cos(mct) + Xs(t) sin(mct) (7.5)

© 53



After heterodyning, the IT signal is
Yl(t) = Xc(t) cos (mot) +-Xg(t) 31n(m0t)
+ higher harmonics (7.6)
With good tracking of the IF frequency, the output of the IF
filter can be approximated as

Yz(t) = ¥ (t) coS(wot) + Ys(t) sin(u t) (7.7)

where Yc(t) Xc(t) £ h(t)

%
T (6) = X (6) # h(e)
"h(t) is the impulse response of the lowpass analog of the IF filter
*.denotes convolution
It follows that the IF envelope is

V(t) = [Ycz(t) + Ysz(f:)]l/2 ‘ (7.8)
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SECTION VIIT

DME STMULATION

The DME signal is simulated by generating the functions R(t),

nc(t), and né(t) and combining them as in (7.4) to produce the

oy

quadrature components, Xc(t) and Xs(t)' Each component is filtered
by separate but identical lowpass filters tc produce thé IF componentsf:
Yc(t) and Ys(t). The IF envelope is obtained by {(7.8) and
examined to determine whem a threshold crossing has occurred. A large
numbar of simulation.runs are made (about 250) for each set of
multipath and hoise conditions so that an approximate statistical
average and distribution function for the error will result. The
error itself is then passed through a ten radian per second bandwidth
filter to reduce random pulse-to-pulse errors. Another average
and distribution function are cbtained for the filtered error.
8.1 IF Filters

The quadraturecomponents of the DME signal are filtered through
a five-pole Butterworth lowpass filter. The effect of this filter
is equivalent to that of the Butterworth bandpass filter used in the
Hazeltine DME system. It is implemented in the simulation as a
digital lowpass filter with a sampling frequency cf 100 MHZ. Although
a sampling frequency of this magnitude might be iméractical in a real
time situation, its use on the computer is justified since the
response of the digital f£ilter should be as close to that of the
analog filter as possible. The bandwidth of the filter is 1.75 MHZ
so that the simulation results will be directly comparable to the

Hazeltine study [6].
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8.2 False Alarms

In any type of receiéer; there is a danger of mistaking an early
threshold crossing due to noise as the final crossing due to the
DME pulse. .The rate of these "false alarms" varies with the’
proximity of the threshold level te the noise lewvel and ﬁas the
potential for causing a high negative bias in the error. Therefore,
there is a 'need for some logic in the.receivers to recognize and
eliminate some of these false alarms.

.The primar§ factor that distinguishes a false alarm from the
actual threshold crossing is the amount of time the signal stays
above threshold. Samples of the.signal which are separated by a
time constant (reciprocal of the bandwidth of the bandpass IF filter)
are nearly uncorrelated so that the probability of the signal
remaining above the threshold due to noise alone for a period'of
time greater than a time constant is very small. The half-amplitude
pulse width is over ten times the length of a time constant so it
should be possible to distinguish between false alarms and the
actual threshold crossing due to the DME pulse. It is on this basis
that false alarms are reduced in the simulation.

8.3 Error

Errors due to multipath and noise are combined here instead of
being treated separately as in the Hazeltine and M.T.T. studies, [6],
{71. These two sources of error are not independent of each other

since the signal to noise ratio (5/N) is affected whenever mulfipath

is present. Of course, if the threshold is placed at a very high point
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on the pulse, multipath will be the primary source of error with noise

errors being negligible,” The opposite is true if the threshold is

placed at a very low point on the signal, but since one tries to place

the threshold at a point where there is an effective trade—off "

between the two it is not realistic to analyze each sepéragely. W
Previous studies [6], [8] have assumed that the noise effects

on the IF signal envelope, V(t) are Gaussian. The density function

under these conditions is
1

————— exp [V(£) - Vo(t)]2 / 20?)] (8.1)
(21a2) 1/2 X

Py T

where Vo(t) is the TIF sigﬁal envelope uncorrupted by noise.
This kind of assumption ignores the non-linear effects of the
envelope detection process and as Rice [2] has shown, the demsity function

for the envelope is actually.

_¥v(t)

v(t) = po exp [(Vz(t) + Voz(t))/zo-.?.] ID [V(t) Vo(%zl (8.2)

where IOIV(t)VO(t)/Gz] is the Bessel function.

Rearranging terms, this density functiom is

A 1
Py = s R 3 LUE)/6)E + (T (£)/0)2] I [(T()/0) (V. (£)/)]

(8.3)

If a(t) = V(t)/o and v(t) = Vb(t)/c, then a new density function
for the random process, o(t), will result.

Pa(t). = a(t) exp 7 [02() + y2(0)] I [a(t) Y(£)] (8.4)

This is a normalized density funetion for the envelope with the

parameter vy (t) representing the signal to noise ratio.
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o
When (8.4) is evaluated at the threshold crossing time, a den51ty\\(
function for the amplltude variations in the I.F. envelope at this point
in time results. ¥Figure 14 shows this Rician density function for
various values of v. The distribution is Rayleigh when y is zero
and approaches a Gaussian distribution as v is increaseé. ¥ in this
case is the threshold to noise ratio (T/N).
A variation in the amplitude of the envelope can either_shorten
or lengthen the time it takes to reach threshold. If the error in
the measurement of the arrival-time of the pulse is considered to
be the shift in the threshold crossing time from the ideal (the
crossing.time on an incoming pulse uncorrupted by interference from
any form of multipath or noise), then this density functiom also
applies_to the error. Positive and negative variations in the envelope
amplitude cause early and late threshold crossings, réspectively,
so one would expect from the graph in Figure 14 that there would be
a negative bias in the error at low T/N. Therefore, the assumption of
a Gaussian distribution of error is omly valid for relatively high
T/N.
8.5 Power Budgets
The power budgets for the ground-based and airborne receivers
are based on the landing pattern shown in Figure 15. The flight path
is at a three degree angle with respect to a 14000 foot runway with
the groundbased receiver at one end. Signal attenuation is ‘incurred
along the flight path due to the anéenna pattern {6]. This effect
must be compensated for if accuracy is to be maintained as the plane

approaches the runway.
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For a cos-cos? pulse shape with a 3.5 u sec half-amplitude
pulse width, the ratio of pulse peak to RMS amplitude is 3.7 decibels
(DB). The average power allowable for this pulse shape under the
ICAC Annex 10 5pecifica£ion on effective radiated power in adjacent
channels is 55 DB. This is obtained by integrating the'pulse spectrum
over all frequencies and comparing it with the power allowed in a
0.5 MHZ band, 2 MHZ from the carrier. The peak is then 58.7 DBM.

The assumed power budgets follow. The signal to neoise ratios in
the assumed budgets are defined as the ratio of peak signal level to
RMS noise level and are defined at the input of-the receiver before
any péﬁer loss occurs (antenna lesses are neglected). Under these
circumstances 5he noise power used is 4 kIB + NF instead
of kTB + NF which is used to deseribe the available noise power in
many cases. e

ATR TO GROUND POWER BUDGET [6]

ERP (peak) . 58.7 DBM
Transponder Antenna Gain 8.0 DB

Path Loss (18000 Ft) ;07.0 DR

Peak Signal (18000 Ft) -43.3 DBM

Noise (4kTB + NF) ~87.5 DBM )

NF = 15 DB

S8/N (18000 Ft) 47.2 DB

S/N (16000 Ft) 44,2 DB

S/N (15000 Ft) - 38.2 DB

61



GROUND .TO AIR POWER BUDGET [s]

ERP (peak) 61.7 DBM
Path Loss . 107.0 DB

Peak Signal -45.3 DBM
Noise (4 ktB + NF) -87.5 DBM

NF = 15 DB

S/N (18000 Ft) 42.2 DBM
S/¥ (16000 Ft) 39.2 DBM
S/N (15000 Ft)' 33.2 DBM
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SECTIONS IX -~ XIT

The following sections give simulation results for both the
thrashold and delay and compare receivers in the ground-based tra;spondér
and the airborne interrogator. Each section is broken up into sub- .
sections which describe how the receilver performs as eaeh parameter
is varied in turn with the others.remaining constant, . This zllows
one to extrapolate as to the performance of the receiver under a
wide range of conditions.

An error summary is provided at the end of each section to
provide a more detailed accounting of the performance of each
receivér. This includes the performance under varying multipath

conditions at the signal to nolse ratio cutlined in the power

budget and also with a 6 DB drop in the signal teo noise ratio
as might occur with a specular reflection. The threshold level
for this summary is chosen to be within a range of wvalues where
the receiver provides the best performance with respect to noise
and multipath errors. The error in the summary has been filtered

through a 10 rad/sec lowpass filter. This process has vexy little

effect on the mean but reduces ¢ by a factor of approximately 2.Z.
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SECTION IX
SIMULATION RESULTS -~ TRANSPONDER
FIXED THRESHOLD RECEIVER

The threshold level is assumed to be set at a constant voltage
level in the f?xed threshold receiver. This means that the position.
of the threshold with respect to the pulse shape changes‘with the |
strength of the signal; A subtractive multipath with a relatively
small delay would lower the signal to noise ratio (S/N) of the pulse.
The resulting shift of the threshold to a higher point omn the
signal would cause a late threshold crossing and bias the error in
the positive direction. An additive multipath signal would cause the
opposite effect and negatively bias the error.

This type of receiver is assumed to be limited to the ground- .
based transponder so that the air to ground power budget applies here.
9.1 Threshold Levels -

The performance of the fixed thresheold receiver is greatly
dependent on the threshold setting. TFor a threshold to noise
ratio (T/N) of 6 DB, the mean error is megatively biased for both
additive and subtractive multipath signals (Figure 16). Early
threshold crossings are due to the proximity of the threshold to
the noise level and multipath has little effect unéer these conditions,
A subtractive multipath signal, however, can provide a slight
improvement since it causes a positive shift in the mean error
bringing it closer to zero,.

The noise errors are diminished and a positive shift in the

error results when the threshold is raised to higher levels. For
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subtractive multipath, it increases almost linearly and
becomes positive as the threshold level is imcreased, For additive
multipath, the error reaches a minimum and shifts toward the negative
again. The graph in Figure 16 can be separated into regions whe?e ‘
noise is the primary cause of error (up to T/N = 9DB) anﬁ where muitipath
is the primary cause of error (T/N = 12DB and above). The region between
these two is where an effective tradeoff between the two sources of
error occurs, )
9.2 Error Distribution

The demnsity function for the errvor has been described in section
8.4. Figure 17 shows the error distribution for a threshold to
noise ratio ¢f 18 DB and a subtractive half-amplitude multipath.
This is z nearly Gaussian distribution with a narrow spread about
the mean. A very different distribution of error results when the
threshold level is lowered to 6 DB (Figure 18). The mean is shifted
into the negative region and the spread of error is no longer nearly
symmetrical about this point. The error has now approached a
Rayleigh form with the error spread over a large range below the
mean and concentrated in small range above the mean.

When the error is filtered through a 10 rad/sec lowpass
filter, the spread is reduced by a factor of two to three but the
original shape remains. This makes it difficult to obtain one
expression which accurately expresses the spread of error about the

mean. Using the standard deviation, ¢, as a measure disquises the

fact that the error is not symmetrical about the mean in all cases,
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but should provide a good approximation for thresholds in the ranée
of interest. '
9.3 Changes in the Signal to Noise Ratio

A change in S/N shifts the position of the threshold on the
pulse and therefore changes the thresheld crossing time._ S/W ig
affected by changes in the signal strength due fo specular ground
reflections and receiver to receiver gain variations due tq temperature,
aging and other factors.

Ground reflections have-very short differential path delays
with respect to the direct path signal and this makes them recognizable
only a; changes in S$/N at the receiver. Lateral reflections (multipath)
have longer delays and are treated as a separate problem.

Figure 19 shows the changes in the error bias for f 6 DB
changes in S$/N while under the influence of a subtractive half-
amplitude multipath signal. The 6 DB change can cause a shift in the
error bias of up to 33 feet. This shift generally increaseg as
the threshold is raised.
9.4 Multipath Effects

Multipath in the fixed threshold receiver causes a shift in S/N
which in turn causes error as explained above. Thé magnitude of the
error is dependent upon the nultipath parameters with error increasing
as amplitude increases or as the differential path delay decreases.

The error is most severe at short delay times as shown in Figure 20.

It levels out to a relatively small erxor at about 150 nanoseconds (ns).

In the noise-free case, one would expect the error to level ocut at zero.
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When noise is added in, there is a negative bias din the erxcr, the
magnitude of which depends upon T/N. At T/N = 6DB, the noise bias is
large so that short multipath delay times can actually cause an

improvement in the error. When T/N is raised to 12 DB, the noise -

bias decreases and the error is near zero for multipath delays above

150 ns.
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T/N = 9.5 DB
Nominal 8/N = 46 DB

P

o o} (]

Multipath Phase: 0° 0 . 180 180
Multipath Delay: 100ns 200ns 100ns 200ns
Multipath  S/N E (Ft) o (Ft) E (Ft) o (Ft) E (Ft) o (Ft) E (Ft) o (F)
Amplitude (DB)

0.2 46 4.4 6.2 -3.5 6.4 ~2.6 6.5 ~3.5 6.4

0.2 40 20,7 8.1 22.3 8.4 24,5 8.8 22.6 . 8.5

0.5 46 -5.5 6.0 -3.7 6.3 ~1.0 6.8 -3.5 .

0.5 40 18.3 7.7 22,1 8.3 28.1 9.5 22.9 8.5

0.8 46° -6.8 6.2 -3.6 6.3 0.5 7.6 ~3.4 6.4

0.8 40 16.3 7.4 21,4 7.9 32.8 10.5 23.2

Table 6 Summary of Erxrrors - Transponder, Fixed Threshold Receiver



SECTION X

SIMULATION RESULTS — TRANSPONDER )
DELAY AND COMPARE RECEIVER

A delay and compare receiver compares the IF envelope with a
delayed an slightly amplified version of itself to determine the
arrival time of the DME pulse.. A diagram of this type of receiver-is
shown in Figure 21l.  The threshold crossing time is given by the
negative going zero crossing of the difference signal, d(t), and the
threshold level is set by the delay and gain parameters, T and k.

A form of automatic gain control is inherent in this type of receiver
since the imput signal is being compared with itself.

Befbre the pulse arrives, the recediver will essentially be
comparing noise signals which are highly correlated with each other
due to the short time delay. The delayed signal will also be
amplified so that there is a high probability that the difference
signal will bhe below zero during this period.- Therefore, the. false
alarm rate for this recelver is more significant than that of the
fixed threshold receiver under similar conditions and must be
reduced as outlined in section 82.

10.L Threshold Crossing Point

Figure 22 shows the mean error as a function of the threshold
crossing point. The negative bias in the error due to nolse occurs
at higher levels on the pulse than it does in the fixed threshold
receiver under the same circumstances. Assuming that the receiver
delay, 1, is fixed; it 1% necessary to increase the gain, k, to

lower the threshold. This results in an inerease in the noise level
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in the delayed signal which in turn causes an increase in early
threshold crossings and contribuées to this effect.

Tt is possible to separate the graph in Figure 22 into a region
where noise is the primary source of error (up to T/N = 24 DBi and
.a region where multipath is the primary source of erroxr (T/N= 29 DB
and above)}. The region between these two is where the minimum
over—all bias in the error due to multipath and noise occurs.
Subtractive multipaths signals cause the most significant errors
and also reach an overall minimum in this region, so these are studied
in more detail,
10.2 Error Distribution

The density function for the error developed in section 8.4
does not apply directly to the error in the delay and compare
receiver. The error density function applies only to the-direct
IF envelope signal, V(t), and not to the difference signal, d(t).
However, the overall effect is much the same. TFigure 23 shows
the error distribution for a subtractive half-amplitude multipath
signal at a T/N of 25 DB. This distribution is in the Rician
form and is similar to that found at a 6 DB threshold level in the
fixed threshold receiver. A threshold level of 29 DB gives an
error distribution which is more nearly Gaussian (Figure 24).

The most. significant difference between the srror distributions
in the two receivers is the difference in the threshold levels where
the near Gaussian distribution is acheived., This point is of interest

because it indicates the signal level at which the receiver becomes relatively
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insensitive to noise effects. It takes an increase in the
threshold level of approximately.l2 DB for the delay and compare
receiver to approach the same.level of insensitivity as the fixed
threshold receiver., This is significant because the higher threshold
levels mean more susceptibility to multipath errors.

10.3 Changes in the Signal to Noise Ratio

Positive or negative shifts in the signal to noise ratio may
be caused by specular ground reflections or receiver to receiver gain
variations. The effect of these shifts on the error bias is most
pronounced in the case of a drop in gain (Figure 25). The inherent
automafic gain control of the delay and compare receiver does not
allow the threshold level to shift with respect to the pulse shape
as S/N changes. The result is that the greatest penalty is incurred
when S/N drops since this increases noise errors. A 6 DB S/
increase causes the error bias to improve slighty.

The variations in the error bilas decrease as the threshold
level is raised due to a lessening of noise errors.
10.4 Multipath Effects

The M.I.T. study [71 has shown that the error ecaused by
multipath alone in this receiver is small when the multipath delay
is small, increases to a peak, and then diminishes steadily as the
delay time is increased with all other factors remaining constant.
This is also true when multipatﬁ and noise errors are considered
together (Figure .-26). However, in this case when subtractive

multipath is involved, the point where the peak error bias occurs
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is dependent on the threshold level. The error bias at the 25 DB
threshold level peaks at a multipath delay of approximately 50 ns. As
the threshold is increased to 28 DB the peak error point shifts
forward to about 100 ns.

The key to understanding this is the fact that subtréctive
multipath causes a change in the signal to noise ratic and at the
_point where the threshold is crossed there is a relatively larger
change when the multipath delay is small. Low signal to noise
ratios cause more noise errors (Figure "~ 25) as do low threshold
levels (Figure 26) so that the combined effect of both of these

causes a shift in. kthe peak error.
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Multipath  Phase:
Multipath  Delay:
Multipath S/N
Amplitude (DB)
0.2 46
0.2 40
0.5 46
& 0.5 40
.8 46
0.8 40
Table 7

Receiver Delay = 1Ons

T/N = 28DB
Wominal S/N = 46 DB
0° 0°
100ns 200ns

E (Ft) v (Ft) E (Ft) o (Ft)
5.3 3.0 5.4 3.4
3.1 6.8 9 9.4
12.9 2.4 15.1 3.2
“11.2 5.1 12.8 7.4
18.0 2.0 24.4 2.8
17.2 £.2 22,7 7.1

Summary of Errors -~ Transponder, Delay and Compare

180 180
100ns 20818
E (Ft) o (Ft) E (Ft) o (Ft)
-8.4 4, -6,9 3.5
-14.4 13.1 ~11.7 11.0
=-22.0 5.0 -15.1 3.5
~30.8 16.6 -20.5 12.1
-38.6 6.3 -22.4 3.5
-50.6 i92.9 -28.7 13.7
Receiver



SECTION XI

SIMULATION RESULTS -~ INTERROGATOR
ADAPTIVE THRESHOLD RECEIVER

The adaptive threshold receiver takes the DME pulse at the IF
stage and uses automatic gain control to normalize it. The threshold
is set at a constant voltage level below the pulse peak and so
does not shift its position on the pulse due to varying signal
strengths as in the fixed thresheld receiver.

The effect of the AGC is such that the noise level is increased
vhenever a loss of signal strength occurs as in subtractive multipath
conditions., This is in contrast to the delay and compare receiver
which is self-AGG'd and thus does not change the noise levels. In
cases of severe signal loss, the noise level could potentially
be multiplied to the point that it approaches the threshold ievel.
There should be a limit on the ranmge of the AGC to prevent this.

11.1 Threshold Crossings

Under the influence of additive multipath, the error bias'is
positive and relatively constant through a large range of threshold
levels (Figure 27). Under these conditions, noise errors are
insignificant due to the decrease in the noise level caused by the
AGC and as z result there is no negative ghift in the bias at the
lower threshold levels.

The noise levels are increased by subtractive multipath
causing a subsequent negative shift in the error bias at low
threshold crossing points (up to T/¥ = 15.5 DB). The error reaches a
minimum point in the 15.5-20 DB region and again shifts toward the negative
at higher threshold points due to the larger error penalties caused

by the multipath.
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Multipath and noise are not necessarily the primary causes
of error for this receiver as they were for the delay and compare
and fixed threshold receivers. Any loss of signal strengh can
potentially cause large errors due to the multiplication of the
noise level by the AGC, This dictates the investigation of a
gomewhat larger range of threshold levels than in previous receivers.
11.2 Changés in the Signal to Noise Ratio

The shift in the error bias due to a 6 DB drop in the signal
to noise ratio~is about 24 feet at a threshold level of 15.5 DB
(Figure =~ 28). This a larger shift than any encountered in the
two transponder receivers. As the threshold level is raised the
shift decreases and finally reaches a value of about 2 feet at the
23 DB level. This suggests that the increased penalties in error
bias incurred at the higher threshold levels may be offset by less
sensitivity to signal degradation.
11.3 Multipath Effects

When the multipath delay is increased with all other factors
remaining constant, the error increases to a peak at about 300 ns
(Figure 29).. The adaptive threshold receiver is therefore sensitive
to a larger range of multipath delays than either the fixed threshold
or the delay and compare receiver.

For multipath delays between 0 and 300 ns, the peak value of
the pulse.is approximately.constant and as a result the AGC compensation
is the same throughout this range. The effect on the leading edge

of the pulse, however, is greatly dependent on the multipath delay
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;nd the AGC compensation. - The first portion of the leading edge °
is unaffected by the multipath so that when the AGC normalizes

the pulse, it either sharpens oxr flattens this part of it. This
causes the threshold crossing time to be pushed either backward

or forward, respectively, from the ideal crossing time (Figure 30).

This effect increases as multipath delay increases and the direction

of the error shift is dependent only on the phase of the multipath.
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T/N = 20DB
Nominal 3/N = 40 DB

Multipath  Phase: 0° 0° 180° 180°
Multipath Delay: 100ns 20G ns 100 ns 2008
Multipath  S/N E(Tt) o (ft) E(Ft) o (Ft) B (Ft) o (Ft) E (Ft) o (Ft)
Amplitude (DB) N
0.2 40 7.8 3,2 12.3 3.2 -10.8 4.5 -15.9 3.9
0.2 34 6.9 6.5 11.2 6.2 -12.7 9.2 - -17.8 ~ 8.4
0.5 40 15.8 2.6 27.9 2.8 -36.6 6.1 -46.2 5.2
= 0.5 34 15.4 5.3 26.5 5.2 ~44,3 15.1 -53.7 12.7
0.8 40 21.2 2.2 38.6 2.2 -92.5 13.3 ~97.9 12.4
0.8 34 21.0 4.4 37.9 4.4 ~130.4 29.3 -135.5 27.3

Table 8 Summary

of Errors - Interrogator, Adaptive Threshold Receiver



SECTION XII

STMULATTON RESULTS — INTERBOGATOR
DELAY AND CCMPARE RECEIVER

The delay and compare receiver used in the intefrogator is
identical to that used in the tramsponder. The conditions uﬁder which
it operates are different, however;and are outlined in the ground-to-
air power budget.

12,1 Threshold Crossings

The increased noise level in the Interrogator results in a
larger region where noise is the dominant source of error (Figure 31).
The minimum eréor bias with respect to both noise and multipath
occurs in the 0.13 to 0.17 level range on a normalized pulse
which translates into a range of threshold to noise ratios between

22 and 25 IB.

12.2 Changes in the Signal to Noise Ratio

A 6 DB drop in the signal to noise ratic causes an increase
in the error bias of 9 to 12 ft. depending on the threshold level
(Figure 32). This ﬁegradation in performance is caused by an
increase in noise errors. A 6 DB gain in the signal to noise ratio
results in a slight improvement in each case.
12.3 Multipath Effects

The error caused by multipath in the delay and compare receivers
under these conditions is larger than it is in the transponder.
The higher threshold levels that are necessary here are the reason
for this, making multipath and noise errors the major congtituent in

the combined error.
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<

Multipath errors peak at delay times of approximately 100 ns
for threshold levels between 23 and 25 DB (Figure 33). One would
expect a shift of the peak point to shorter delay times and an
increase in error at lower thresholds as in the delay and compare

transponder.

98



Receiver Delay = 1l0ns

Multipath
172 Amplitude
180° Phase

E(Ft)

30

T/N(DB)
=20 [—
23
24

25
=10 {l

0 50 100 150 200

Multipath Delay (ns)

Figure 33 Mean Error Vs. Multipath Delay, Delay and Compare Receiver,
S/N = 40 DB

99



00T

Receiver Delay v = 1lOns

T/N = 25 DB
Nominal S/N = 40 D3

Multipath Phase: 0° 0° 180° 180°
Multipath Delay: 100ns 200ns 100ns 20Cns
Multipath S/N E (Ft) ¢ (Ft) . E (Ft) o (Ft) E (Ft) o (Ft) E (Ft) o (Ft)
Amplitude (DB)
0.2 40 5.8 5.4 8.0 6.0 -9.9 7.1 -10.3 6.2
0.2 34 3.0 11.3 4o 12.7 ~14.2 17.9 ~14.2 16.2
.5 40 13.6 4.5 21.0 5.5 -27.3 8.8 ~23.2 6.1
34 11.4 9.1 17.5 11.4 -36.4 23.2 -29.1 17.6
0.8 40 19.2 3.8 32.3 4.7 ~54.4 16.0 ~34.6 5.9
0.8 34 17.5 7.5 29.2 9.8 ~58.0 29.6 ~43,7 20.5

Table 9 Summary of Errors -~ Interrogator, Delay and

Compare Receiver



SECTION XIII
OVERALL STUDY CONCLUSIONS

Angle-Receiver Study

The dintegrated LOE/Kalman filter rveceiver algorithm_tested in
simulation as generally superior to the threshold receiver. Specifically,
in the crossing-multipath scenaric, primarily a test of tracking
performance, improvement ratios (in peak absolute errvor) ranged to
20:1 and better in certain situations involving high multipath
interference. . In the in-beam multipath and representative landing
scenarios the optimal receiver superiority was confirmed, though less
dramatically, partly because of the element of multi-path
acquisition present in these runs.

A distinct disadvantage of the optimal receiver is its complexity.
The non-adaptive receiver (of the same structure), evaluated as a
suboptimal alternative,retained some of the superiority of the optimal
receiver in multiﬁath environments at a fraction of the computational
demand. This suggests a carefully drawn compromise of performance
and complexity might result in a computationally more efficient
algorithm offering most of the principal benefits of the optimal
receiver demonstrated. This problem area along with multipath
acquisition.(idenﬁification) have been included in our plans for
next vear's effort.
DME Study

Under the assumed operating conditions of the transponder, the

fixed threshold receilver seems to provide marginally better performance
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than the delay and compare receiver. The fixed threshold receiver
can have considerable immunity to both multipath and noise effects

if the noise level is relatively low and the threshold is set at the
proper point above this level. A disadvantage of this receiver is
its sensitivity to changes in $/N which may be caused by specular
reflections, receiver to receiver gain variations, and other causes.
The delay and compare receiver has an inherent automatic gain control
and is insensitive to these effects.

The adaptife threshold receiver used in the interrogator performs
poorly under any condition which reduces the input signal amplitude.
The AGC under these conditions nmultiplies the noise level and increases
noise errors. The AGC also causes this receiver to be susceptable
to multipaths with a large range of differential path delays. The

delay and compare receiver with its inherent AGC can provide performance

superior to the adaptive threshold receiver under all of these conditions.
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ANGLE-RECEIVER INNOVATIONS STUDY

In the scan data processor, new observations data are entered

via a random process represented by the J-vector W(u|q) with representative

alement Wj, defined in (3.25), and repeated here with index j suppressed:

where

u

u

A -1 (A.1)
V14 qu
4 q+ 2n M/C;%-n 24+p2 (A.2)
c c. S )
is a real number > 0 (A.3)

n ,n  are independent Gaussian random variables with
méan 0, variance 0.5 . (A.4)

The results of a simulation study of the first and second-order

statistics of w (4.1) are given in Table A.1. The sample size was

1000 points;: the quantity RI in the table is on independent variable

equivalent to twice the g parametrer In (A.1) above. The autocorrelations

shown are really values of the sample correlation coefficient, having

been normalized to the appropriate}sample mean square value.

Conclusions drawn are as follows:

1.

The sample mean (MEAN) is much less than the sample rms value
(WRMS) for all 5 RI values used and also it seems, as a
random variable, to be well dispersed about zero; hence, it
seemed plausible that

W|q> = 0, independent of ¢ (A.5)

, TR TS ¥ )
and this, conclusiontwis*drawn.
gand " .
The sample correlation coefficients for non-zero shifts are
much less than unity for all 5 RI values used, suggesting that
a sequence of w-values with g fixed is a white process; the
‘whiteness property was assumed to extend to the more general

non—-fixed q case.
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The further observations, concerning the sample mean square value
(WMS), that
i. WMS 7 1, for RI = O

2. WMS L

T for RI large

suggested a tenative approximation formula, in terms of ¢, as follows:

<w21q> £ heo) : Ti‘“z—q (A.6)

The results of a more extensive simulation, involwving 10,000 samples
and values of g (= B%QD from 0 to 50 (corresponding to S/N = 34db),
are shown in Table A.2 and in Figures A.l and A.2, comparing plots

of the sample ' mean square value -and the approximation (A.6). The
error in the approximation peaks at about 20% for q =2 (RH0 = 4)

and seems in an average sense to be asymptotic to zero for smaller and
larger wvalues of g. The approximation (A.6) was employed in the

scan data processor with good results.



NoLQOQ0
1¢1ig)
0000000
0. 100000
05 124000
0. Lit}000
0. 200000
Q000000
0314000
Q4400000
Q. Q000
O 31000
(.79 7000
1 GOOOOG
{4 240000
o 30000
2000000
D000
Fo 1AQDN0
A4, 000000
D000000
G ALOOQO
7970000
{0, 000000
V830000
T3:800000
20000000
e 100000
Z1 . AO0000
40, G00000
HOL000000
3. 099908
AN VAN Ed
100.,000000

Table A.2 Tabulation of WMS and H

WilfiN
0, 00%. 300
Q. 010
0.+004004
G O0BU3
0. Quaditsy
0. 004/00
G-0041 11

QL OU20%0

G. 0703800
0. 008741
G001 374
(? H O .’ \’$’\')\{):J
Q021 &M
Ve QULOWY
0. 0A28Y0
SR RN S AN
G, 06900
Q00947810
0. 0446850
(046348
0, U FHN
0., 030040
0, 000700
Q.00462/48
Q. O20LYL
Q.01 /7200
O 01400y
O, 013240
0007770
O.008502
003263
Q00047

WM
Q01 340
0. 203N
0. 8/0778
0. 8/4010
Q. 3640
0. 540003
Q. 240904
Oy /02046
(e A 1TRED
Osdlialldn
Q004984
0 TLA0
Q301 888
Oedddall
0., 3808350
0.,351448
0. 314580
O B0V
O L ']. ')’ ﬁ \{) ({?:‘.J
G a0
O L4781
P.0P03049
0. O84S
0+ 0034640
O 0NOLYY
0. 038760
0051 /8Y
QORI
00170840
Q.01 G347
0. 012350
0. 010000

approx

AR X
P 000000
0.9090%]
O, 3880y
O BASLLY
0. 855443
04 299 5600
O Pl g
(e 71A004
(s GAHOAGY
Qa6L3T51
o LladAus
YPRSTeIele 1oy
Q49048
O ARYNY/
IR AR KX
0284900
O 240380
U 00000
Ol &bHAEY
A e e
Oold]aus
0, 090909
Qe D/800Y
e QURNU4
O0,047419
0, 0580414
O+DI0H AN
Q0. 024590
0. 0174608
O QI0a0]
Q.010392
DeOOFYN

versus R0 (= 2q).

IR0
0.001360

=0, QOOIEH

D 017821
O, 0LOLY
g 0A05.5 7
Ooa 3l
G.0010/4
Q. QONIA0
G OapiEill
Q. 041144
0. Q&A1
0. MHAY0OY
O Quitdv i
0, 0UsTH
O Qudavs
0, 044548
0. OAZF U
0. Q330 /Y
G 0RAPYN
Q01491
0. 01309y
Q.0G/ 160
0.00/900
O, 008102
0. 000PHO
0. 000444
Q001112
0000893
0. 00020337
0, 0000%Y

“ 0000040

0. 0Q00YY

FRAL L.
Q. Q01 440

0 00020
0y (19504

Q012090
0035404
O. 0L 694
0.001410
G010 10649
0. 0/390
G 0471 04
O 1213040
01081y
O 183514
0. 1464991
0o P48y
0. Faddan
O+ 1833001
Qe P0G/
O LA43YH0
O 1L/087
0119084
QL 0VB740
O+ LOLUIN
0. QAYIL
G, 062071
Q011634
00346000
O+ 034601
0011848
0006510
0. 003384
0.+010004



0.09

?00&0]#0000!0*0&0'#0##

0.00

0.05

Figure A,1

¥

0.

b4

X

¥

=

=
=
=

W

o

e
e

-a-céé’#‘v{oot#-’ﬁ‘06]6-&&-&#0

5

5

q =

Sample ean Square of w versus (.

*®

o
X

— %

50



.90

- %
0.81_2
0.72=
0.63_2

. 0.45.7
P -
= :
%— s
= 0.36
0.27 2

+ ottt

Figure A.2

X

Plot of H
anprox

it

(q).



APPENDIX B

(#d)
PRECEDING PAGE BLANK NOT FILMED



ADAPTIVE KALMAN FILTERING APPLIED TO AIRCRAFT- POSITION ESTIMATION

A Thesis
Presented to
the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment
of the Requirements for the Degree
Master of Science (Electrical Engineéring)
by
Stewart H. Irwin, dJdr.

August 1977



APPROVAL SHEET

This thesis is submitted in partial fulfillment of
the requirements for the degree of '

Master of Science in Elecirical Engineering

I 7.7 M /M,-,,

Autho?

Approved:

7 (7N Plow s

Faculty Advisor

gé‘fiﬂm

Dean
School of Eng1neer1ng and Applied Science

August 1977



ABSTRACT

This paper addresséé an estimation préS]em in which a landing air-
craft uses ground-transmitted micrswave information to determine its azi-
muth angular posifion‘é(t) réﬁétive,to a fixed reference. State estima- .
tion is used to lower the mean-square errdr in estimates of a{t) producead
by an envelope processor in the airborne receiver. e{t) 1s modeied as
part of the state of a linear dynamic system driven by white Gaussian
naise of unknown cqvafiance. .The.enveTope processor estimates become
linear observations of the state corrupted by additive Gaussian noise of
known covariance. Adaptive Kalman Filtering is examined as a means of
computing estimates of e(t) having minimum mean-squa}e error. Adaptive
 filtering methods are fpund in the technical 1iterature which work for
systems whers tie noise is stationary. They are then modified for use in
the aircraft pos%tion estimation problem, where the noise statistics are
time varying. The adaptive filters are tested in a digital computer sim-
ylation, where ¢t} is updated according to ajrcraft motion along an
unknown flightpath. Several of the adaptive filters work very well,
though not significantly better than suboptimal estimatofg of less

complexity.
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CHAPTER 1
INTRODUCTION

This paper describes the application of state estimaiion theory to
an aircraft landing probiem where the system model is incompletely
defined. In general the problem requires estimation of the state of a
Tinear dynamic system driven by white Gaussian-noise with unknown covari-
ance. The state is observed by a Tinear function of the state corrupted
by additive white Gaussian noise. When all model parameters are known,
the optimal minimum variance estimator becomes the Kalman fiiter [1, pp.
228-2297, {2, pp. 195-2071]. However, when the model noise covariances
are unknown, the éptimaT estiﬁator cannot be achieved, and sdme subopti-
mal approach must be employed. Several adaptive Kalman filtering methods
from the literature are examined in this paper as possible solutions to
the aircraft landing problem.

Before giving a formal description of the state estimation problem,
let us first provide a background description of the aircraft Tanding
problem. A more rigorous problem definition can then be presented, along

with a proposed course of solution.

Background on Microwave Landing System

The problem examined in this paper is part of an airborne receiver

study for the Microwave Landing System (MLS). The MLS, developed by the



Federal Aviation Adminjstration (FAA) and the National Aeronautical and
Space A&ministration (NA?A), provides electronic guidan;e in an air ter-
minal area for landing aircraft (3], [4]. The system enables an
approaching aircréft to compute its position in space relative to a fixed
ground reference. The required coordinate information is derived by thé
aircraft's receiver from ground-transmitted microwave signals. ‘

Let us establish a cartesian coordinate system, with its origin at
thé stop end of the runway. Referring to Fig. I-1.A, the runw&y center-
Tine forms the X axis, while the Z axis is normal to the ground plane.

We alsc establ{sh a spherical reference system centered at fhe same
'origin-_ At time t, the aircrafi’s position shall be defined‘by the fol-
Towing spherical coordinates:

r(t)

direct path distance from the origin to the

aircraft.

[}

a{%t) = azimuth angle from the X axis to the projection
onto the ground plane of a ray from the origin
t6 the aircraft. ‘
¢{t) = elevation angle from the ground plane up to this
ray.
The MLS enables the aircraft to compute these three coordinates. We
restrict ourselves in this paper to considering only the azimuth ang?e
o(t). First we present a brief description of the azimuth channel in
the MLS.
An antenna, located at the coordinate Urigin,eTectronicélly' scans

a *60° azimuth coverage sector with a narrow fan-shaped microwave beam.

The beam is narrow only in the azimuth sense (1° between -3 db points),
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while being wide in elevation coverage. The beam is scanned in a
"TO-FRO" fashion, as shown in Fig. I1-1.B: the beam boresight oA(t)
starts at +60° azimuth, méves at constant rate to -60°, holds there for a
brief “dead time," and then moves back. This scanning procedure takes
12.2 milliseconds and repeats at a 13 1/3 Hz update rate_[S, pp. I-10,
11, 27].

We define t, as the time at the start of the kth scanning proce-

k
dure. We also assume that é(t) is constant at e(tk) during the'12.2 mil-
‘1isec0nd duration of the écan. buring this time the chnning beam
signal, viewad ét the input to a receiver at the aircraft, is amplitude-
modu?aéeg, having large ampiitude when the boresight OA(t) is near e(tk).
The envelcpe-detected signal, shown in Fig. I-1.C, has two .pulses: one
which peaks wnan EA(t} = e(tk) during the "TO" scan; and the second which
péaks when Gﬂ(t} = e(tk) during the "FRO" scan. As seen in Figs. I-1.B,
C, the time differential beiween the centroids of the two pulses is
directly related to the value of e(tk). The aircraft can therefore
determine its azimuth angle by ?eceiving and envé]ope detecting the
ground-transmitted signal and measuring this time differential.

This scheme for computing e(tk) runs into difficulty when we real-
ize fhat the received signal is corrupted by front-end noise in the air-
borne receiver. This front-end noise produces random distortions in the
envelope so that any attempt to estimate e(tk) from envelope information
will have random errors as well.

An optimal envelope processor has been designed which, given the

noise-corrupted signal envelope for the kth scanning interval, computes

an estimate of e(tk) which minimizes mean square error. The



envelope-detected IF signal is sampled in the vicinity of the two Targe
pulses during the']2.2‘miTIisecond scanning process. Then, during the
"down time," before the next scanning process begins, the envelope sam-
plas are sent to a minicomputer. Here a "locally optimum estimation™
algorithm computes an estimate of e(tk) [5, pp. 8-29], [6,pp. 4-28;
52-61]. Using a stochastic model for the signal enveilope, this algorithm
provides an estimate of e(tk), given the envelope samples for the kth
scanhing process, which is optimal in terms of minimum mean square errof.

The optimal envelope processor estimates e(tk}_ based only upon the
envelope samp1e; taken on the kth scanning interval. At a 13 1/3 Hz azi-
muth update rate, we would expect the effects of thermal noise upon the
signal envelope to be independent between consecutive scans. The error
in consecuitve estimates should therefore be independent as well. On the
other hand, the true angle @(tk) cannot change appreciably between scans
for a large gircraft. In plotting a time sequence of estimates we
therefore expect to see random fluctuations. about a slowly changing
mean.

Since the estimates change much more rapidly than the true azimuth
angle, it seems reasonable that the estimate of e(tk) could be improved
by averaging it with past estimate values. This would produce a new
estimate based on all past envelope information and not just that
obtained on scan k, This is the objective of ;he work preserited in this
paper. Adaptive Kalman filtering is examinad as a means of producing an
estimate of‘e(tk) having a smaller mean squa?e error than that of the

envelope processor estimate.



Thesis QOverview

The above-stated prpblem is presented mathematically in Chapter Ii,
where a stochastic system model is derived. The Kalman fi]ter requires a
state variable model, where an nth-order liﬁear dynamic system is driven
by white noise of known covariance. ﬁe therefore model e(tk) as part
of the state of such a system.  The discrete Kalman filter is presented
in Chapter IIT as the optimal estimator of G(tk), given the state model of
Chapter II. It is also shown that the Kalman filter requires knowledge
of the plant noise covariance,which is annown in our problem model.
Adaptive Kalman filtering is therefore studied as a suboptimal estima-
tion approach‘in which the unknown Kaiman-gain is estimated from measure-
ment intormation.. .

éevera? candidate adaptive-filtering methods from the 1iterature
are presented in Chapter IV. Each filtering scheme is developed under
the assumption of stationary noise. 1In Chapter V we modify each of the
candidate filters to work for our specific problem, where the unknown
noise covariances are‘time varying.

The adaptive Kalman filters are tested in digital computer simula-
tion in Chapter VI. This testing proceeds in two stages. Firft the
assumed stochastic model of Chapter II is simulated.with additively cor-
rupted measurements of the state sent to a candidate adaptive filter.

The error in the filter's estimate é(tk) is plotted as a fgnction of
time. If a candidéte fiTter performs well here, it is then tested jn a
second simulation phase where the stochastic model assumption is
removed. e(tk) is now updated deterministically as the aircraft moves

along a prescribed flight path. Additively corrupted measurements of



e(tk) are again sent to the candidate filter which then computes the
estimate 6(tk). That adaptive filter is sought which minimizes the mean

square error in e(tk)' A conclusion is given in Chapter VII.



CHAPTER II
PROBLEM DEFINITION AND MODEL DEVELOPMENT

In this chapter we offer a more rigorous problem description and
then develop a stochastic model describing the evolution of the-azimuth
angle @(tk). Thig model is then used in subsequént chapters to develop

an-estimate of e(tk), based on all past envelope information.

" Problem Definition

Before formally describing the estimation problem, we place éome
mild restrictions on the aircraft’'s azimuth coordinate and its estimate
producaed by the envelope processor. We first change noéation, using o(k)
instead of e{zk) to represent the azimuth coordinate at the start of the

Kth scamning interval. .
Let us assume that the aircraft is making a landing approach along
some prescribed flight path unknown to us. As the aircraft moves along

this path, let its .azimuth angle be given by
o(k) = f(k) - (1I-1)

While we do not know the relation f(-), we shall assume that it is a
member of a known "class" of functions representing evolutions in e(k)
for typical landing approaches. For example, we can 1imit the aircraft's

maximum air speed or minimum radius of turn. More is said about this in

Chapter VI.



We define y(k) as the estimate of o(k) produced by the envelope
processor using the locally cptimum estimation algorithm. This estimate

is unbiased and can therefore be given by

y(k) = 8(K) + v(K) (11-2)
where v{k) is a zero-mean additive error term with covariance R{(k). R{k)
is computed hy the 1ocai1& optimum estimation algorithm so that we know
jts valve [6, p. 5]. The probabi]{ty distribution of v(k) is unknown.
Here, we assume that it is Gaussian. This does not appear to be an
unreasonable aésumption insofar as we would intuitively expect the error
density ito be symmetric about a single mode at zero. - Also, the Gaussian
assumptTon makes the state estimation problem to follow mathematically

tractable. He therefore write the probability density of v(k) as
pLv(K)] = N[O, R(K)] | (11-3)

We hereafter denote the first-order density of an n-dimensional Gaussian

process x(k} with meén m(k) aﬂd covariance P{k) as
plx(k)] = N[m(k), P(k)] (11-4)
where

i g
NIm(k),P(k)] 2 (2m) 2p(k)] Zexpt-Px(k)-m(k)1'P™ (k) [x(K)-m(x) ]} (11-5)

If x(k) is white or uncorrelated in time, we write:

p[x(k)] = uNfm(k), P(k)] - (11-6)
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The envelope processor error v{k} is produced by the effects of front-end
noise on the IF signal. These effects are independent from one scan

interval to the next, so that v(k) is uncorrelated. We therefore write
p[v(k)] = WN[O, R(k)] (11-7)

As mentioned in Chépter I, the envelope processor estimate y(k)
uses only the envelope information from the kth scan interval. Our -
objective is to develop an estimate of e(k) based on Yk’ the set of all

past valuas of y(k):

Y & (1), y(z), s }(k)} (11-8)

For a slowiy changing azimuth angle there is a high correlation between
o(k) and &{k + 1), while the estimates y(k) have uncorrelated errors from
scan to scan. As mentioned in Chapter I, we intuitively expect to
improve the.estimate y(k) by averaging it in some way with past values.
This could be viewed.as a low-pass filtering approach.

Let us consider a stochastic state model, driven by noise, as a
representation for the evolution of o(k). Given a valid state mode], we
could then, by treating the estimates y(k) as observations of the state,
produce a new state estimate which minimizes error iﬁ some mean-square
sense. This is the approach taken here.

We now offer a formal problem description. Given in the prob?ém is
an unknown azimuth coérdinate o(k) described by (II-1), where f{.} is a
‘member of a known class éf functions. Also given is the set Yk of past

envelope processor estimates. The estimate y(k) has zero-mean, white
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11
Gaussian error with known covariance, described by (11-2) and (II-7).
The objective can be stated as follows: using an assumed stochastic
model for the evolution of 0(k), develop an adaptive Kalman filter which
estimates o(k) so‘as to minimize mean-square ervor in the estimate. Sev-
eral adaptive Kalman filtering methods are obtained from the literature
and modified for use in this problem. Each candidate fiiter is tested in
computer simulation, with error in the -estimate of e(k) being the quant-

ity of interest.

Stochastic Model

The Kalman filter requires a state variable model where an nth-
order 1insar-system is driven by white Gaussian noise. We therefore ﬁse
such a stcchastic model in representing the evoiution of the azimuth
angle @{k). 1In order ts keep the resulting Kalman filter computationally
feasible we elect to use a two-dimensional model where the angular accel-

eration is set equal to white Gaussian noise:

8(t) 01 e(t)— 0
- = , + | fu(t) (1I-9)
e(tzj 0 0]ie(t) 1

pLu(t)] = WNO, S(t)] | (11-10)

OQur decision to model acceleration as white noise provides us with the
lowest order stochastic model for which both e(t) and 8(t) can be esti-
mated. As shown in Chapter III, 6(t) is used to linearly extrapolate the
estimate of o(t) between measurement times.

In using the noise process u(t) to model é(t), we must relate the
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noise covariance S{t) to the actual value which é(t) takes on. Since
${t) is the expected value of the square of u(t), we set it equal to the

square of the actual acceleration:

S(t) = éz(t) (I1-11)

Of course, in estimating e(t) we do not know 5(t), since the only avaijla-
ble information is the set Yknof enveiope processor estimates. S(t) is
therefore unknown in our model, at least from the aircraft's point of

view.
As stated in the problem definition, we are interested in estimat-

ing e(k}, the value of a(t)-at the start of the kth scanning interval.

rr =

We therefors obtain a discrete-time representation of the state model in
(II-8). tet us first replace (II-9) with a more general state equation:

x(t) = Ax(t) + Gu(t) 7 (11-12)

where x(t) s a general state vector driven by a vector noise process

u(t). €II-10) can still be used to describe u(t). A general discrete

state model is given by:
x(k) = a(at)x(k - 1) + ru(k - 1) (11-13)
plu(k - 1)1 = WN[O, Q(k - 1)] (11-14)

where at & tk - tk -1 (11-14) becomes the discrete equivalent of
(11-9) with x(k) representing x{t)[, . , when we use the following
k

transformations [7, pp. 60-61, 72-75]:
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~o(at) = explAat} (11-15.A)

t
ra(k - 1)1t = £ K
t

o(t, - t)ES(t)a’e (1, - t)dt (1I-15.8)

k- T

Substituting the A matrix of (II-9) into (II-15.A), we obtain for our

1 At '
a(At) = [é: ;] ‘: (11-16)

" We assume At to be constant, so that &(at) also becomes a constant and is

model ;

written hereafter as . For evaluation of (II-15.B) we assume that S({t)
is constant at S(tk) over the Jimitis of integration. This seems reasona-
ble, a%s 5(t) cannot change appreciably during one scan period at a

13 1/3 Hz update rate. Moving the scalar S(tk) outside the integral and

changing variables we obtain:

t

rq(k - 1)r' = S(tk)OIA o(c)66 8’ (v)dr . (11-17)

We then substitute for G and &(t) from (II-9) and (II-16) and evaluate

the integral:

t3

mtj;-l
‘—'-

2 (I11-18)

rQ(k - 1)r! = s(t,)
t At

N c%ta

The 1inear At term in the matrix dominates for small At, as is the case
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for our problem, where At = .075 (the period of a 13 1/3 Hz update rate).

We approximate the other terms as zero:

0 O

0 atS(t,) (11-19)

rQ(k - 1)1 =

With this approximation Q(k - 1) becomes a scalar, so that the state

equation becomes

-_

ot)| |1 atiletk - 1] o ,
e ' + | lolk - 1) (11-20)
lem] o affek -1 |1 -

plo(k - 1)1 = WN[O, Q(k - 1)] (11-21)

Qk - 1) = atS(t,) (11-22)

Since S{t) is unknown in the continuéus-time model, Q(k - 1) is unknown
as well.

We can see from (I1I-20) that the effect of our assumption in
(II-19) is to add noise only to the velocity 6(k), so that o(k) becomes
_'piecewise Tinear between measurement updates. If we were to assume a
constant acceleration between times tk -1 and tk’ é(k) would be

N

described by :

o(k) = o(k - 1) + atd(k - 1) + %ﬂtzé(k - 1) " (11-23)

In {II-20) we have discarded the nonlinear term %Atzé(k - 1), assuming it

to be negligible. For reasonable landing approaches we do not expect 0
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to exceed 0.1°/sec2 [6, p. 40]. For a 13 1/3 Hz update rate, At is.75
milliseconds, and the error in neglecting the nonlinear term is always
Tess than %{.075 sec)z(.]°/sec2), or 2.8 x 10'4 degrees. Since 0.01° is
given as a desired r.m.s. ervor specification, (I1I-20) %s a valid
approximation. o '

We now have a discrete time state model describing the evolution of
o(k). We recall from (II-2) and (II-7) that the envelope processor esti-
mate y(k) equals e(k) plus a Gaussian error term. We can thereforé view
y(k) as a linear observation, or "measurement” of the state corrupted by

additive noise:

yik} = [1 olf, J + v{k) , (1I-24)
a(k)

Finding the vaiue of o{k) now becomes a state estimation problem. We
must estimate the state of a linear dynamic system excited by white
Gaussian noise of unknown covariance, given linear measurements of the

state corrupted by additive white Gaussian noise of known covariance.



CHAPTER III
THE DISCRETE KAﬂMAN FILTER

In this chapter we examine the discrete Kalman filter, which is the
optimal estimator for the assumed state and measurement models in our
problem. As previously mentioned, the optimal estimator cannot be used
here, as the state noise covariance is ﬁnknown. The optimal estimator is
of use, however, in gbtaining the suboptimal so1ut{ons to follow, and
provides a lower bound on error performance,

Let us first provide the state and measurement equations in concise

form. From {11-7), (11-20), (1I-21), and (II-24) we have:

i“e,{f-z}—l B At e(k - U— 0
. - ] + wlk - 1) (111-1)
ok} 0 1 o(k - 1) 1
e(k)~
yik)=[1 01/, + v(k) (111-2)
a{k)
ple(k - 1)1 = WN[O, Q(k - 1)] (111-3)
plv(k)] = wN[0, R(k)] : (I1I-4)

where Q{k - 1) is unknown, Equations (III-1) and (III-2) describe a spe-

cific member within a general class of Tinear systems given by:

16
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(k) = ox(k - 1) + Ta(k - 1) (T11-5)

_ y{k) = Hx{k) + ;(k) ' (I1I-6)

where x(k) is an n-dimensional state vector, y(k) is an m-dimensional
measurement of x{k), and where w(k - 1) and v{k) are Gaussian noise vec-
tors of dimension r and m. The noise sequences for the general case are
still described by (III—Sj and (I11-4), where Q{k - 1) and R{k} are now
symhetric, non-negative definite matrices of respective dimensions r x r
and m x m.

Let us consider the general system of (IIT-5) and (III-6). We
assume in this chapter that the state noise covariance Q(g - 1} is known,

Our objective is to estimate the state x(k) given the set Y, of all past

measurements:
Yo 4 Win), y(2), -+ + y(K)2 (111-7)

Let us defins g(k[j) as an estimate of x({k), given Yj' We are concerned
with finding the optimum state estimate ;(k|k).
In order to have a quantitative measure for optimality we define a

performance index, or Toss function J(k]k):

I(K[K) = ECLx(k) = x(k]K)IWx(K) - X(k[K)]) (111-8)

where W is an n x n symmetric, non-negative definite matrix. When W is
diagonal J(k|k) becomes a weighted sum of the mean-square errors in the
elements of Q(k[k). We define the optimal state estimate of x(k) as that

estimate g(k]k) which minimizes J(k|k). It can be shown that J{k|k) is a
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member of a class of Joss functions which are minimized by that estimate
given by the conditional mean of the state given all past measurements;

i.e., the optimal estimate ;(klk) becomes

x(k]K) = E{x(K)[Y,} (111-9)

[1, pp. 227, 231], [2, pp. 147-148]. This is true for any non-nzgative
definite W.

We again referehce-the general linear system (II-3)-{II-6), and
still assume that the noise covariances are known. It is well known that
the optimallest{mate of x(k) for this system, the conditional mean which
minimizes J{k|k), is given by the discrate Kalman filter [T, pp. 228-
2291, [2., pp. 195-201]. The Kalman filter-is described by the following

equations [2, p. 201]:

x(kJk = 1) = ax(k - 1]k - " ' . (r-10)

P(kjk - 1) = oP(k - [k - T)&' + rQ(k - 1)T" (I11-11)
K(k) = P(L[k - HTLHP(K[k - TH! + R(k5]'1 | (111-12)
x(k[k) = x(k|k - 1) + K(k)[y(k) - Hx(k[k = 1)] (111-13)

P(kfk) = P(k|k - 1) - K(k)HP{k]|k - 1) (I11I-14)

where ;(k[k ~ 1) denotes the optimal predicted, or extrapolated estimate
of x(k) given Yk T while ;(klk) is the optimal updated estimate using

all measurements Y,< up to the present time. The term P(k|j) is the error
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covariance in the estimate x(kij):

P(K|3) = ECIx(K) - x(k]§)IIx(K) - x(k|HTT} (111-15)

K(k)} is the Kalman gain, which determines the weighfing given the present

measurement y(k) in computing ;(klk). Mote that K(k%) is not a function

of measurement values, so that ;(k]k) is a linear estimate of x(k).
Returning to our original problem of (III-1) to (III-4}, we define

the state estimate Q{k]k) by

T

x(k[k) = [2(k|k), &(k]K)] (111-15{

We seek.ic minimize mean-squars error in e(k]k), so that our performance

indax becomes

PI(k|k) = E{[o(k) - &(k|k)I%} (111-17)

From {II7-8) we ses that.PI{k}k) is a special case of the general loss
function J(k|k} where W is the diagonal matrix diag{l, 0}. Therefore the
Kalman filter preducas the optimal estimate for our problem when the
noise covariances are known. Ye now give the Kalman filter equations for

our specific model:

o(k[k - 1) = a(k - Tjk - 1) + atd(k - 1]k - 1) (I11-18)

2
P}I(k]k-1) = PI](k-llk-]) + ZAtPlz(k—Ilk-}) + At Pzz(k-]|k-1) (111-19)

Piplklk = 1) = Pio(k = T]k = 1) + atPy,(k - T[k - 1) (111-20)
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Pyylklk - 1) = Pyylk - 1(; - 1_) + k- 1) _ (11I-21)

Ky (k) = Pyq(klk = 1)/IPyp (KK = 1) R(KT {111-22)

K, (k) = Pi,{klk - 1)/[Pq(kik - 1) + R(X)1 | | (I11-23)
o(klk) = &(k[k - 1) + K {K)[¥{k) - olklk - )] (i11-24)
S(kjKk) = o(k - 1]k = 1) + Ry()Ly(K) - a(klk - 1)] (111-25)
oy (K[K) = Py (kK - '1)[1 - K] (111-26)

P, (K[K) =-P]2(k]k -1 - K.l(k)]’ (111-27)
Pyplkik) = Pzz(k[‘k - 1') - K, (k)P (k[k = 1) (111-28)

Lat us consider the Kalman filter for the general case of an n-
dimensional state vector with scalar noise and measurements. From {111-
12) we can see that the optimal gain matrix k{k) becomes an n-dimensional
vector. GSome of the properties of this gain-vector are useful for the
adaptive Kalman Tilter development of Chapter 1v.

We first note that for stationary noise where Q(k - 1) and R(k) are
scalar constants, the gain K(k) as well as the error covariances
P(k[k - 1) and P{k[k) reach constant steady-state values., If o{k - 1)
and R{k) are constant or slowly varying, K(k) is a function of the ratio
Q(k-~ 1)/R(k). Furthermore, K(k) can be specified if only one of its

elements are known; all remaining entries are deterministic functions of
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the one known element. The dependence of the gain on Q and R as well as
the functional relationships between_gain'e1ements can be observed numer-
ically, but we cannot usually find closed-form expressions for such pro-’
perties, especially when n is large [8, p. 274]. Another useful property
of the gain for the scalar measurement case is given by Alspacﬁ [8, p.

272]:

0 < HK(k) <1 (I11-29)

We offer a proof for (I11-29), but first we rewrite the general

Kalman gain equétion (111-12):

T

w(k) = HP(k|k = 1) + R(k) (I11-30)
T ,~1 ’ .
K{k} = P(k[k ~ T)H'W (k) (III-31)
P(k]k - 1) and R{k) are non-negative definite matrices, so that W(k) is

non-negative definite as well, having the same form as a covariance
matrix. More is said'about this property of W(k) in Chapter IV. Alspach

notes that W{k) can be written:

W(k) = [I - HK(X)T TR(K) (111-32)

[8, p. 270]. We can prove this by starting with the right-hand side and

substituting:
[1 - HK(K)]™TR(K) (I11-32.8)

= [1 - HP(k[k - DR T (0T TR(k) e - (III-32.8)
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= W(k)[W(k) - HP(k|k - H T TR(K) (111-32.C)
= W(K)[R(K) 1™ TR(k) - (111-32.D)
= W{k} {111-32.E)

(III-32.B) is obtained by substituting for K(k) from (III-31), while
(1I1-32.D) is obtained from (II1-30). For the scalar noise and measure-
ment case R(k) and W(k) become positive scalars, and (III-32) can be

rewritten:
1 - HK(k) = R{k)/u(k) (I11-33)

Since R(k} and W({k) are positive, their ratio cannot be negative, From
(I11-30) we know that W(k; must be greater than or equal to R(k), so that

the ratio in {I11I-32) cannot exceed unity. We therefore have:

0 <1 - HK(k} <1 (I11~34)

or

0 < HK(k) < 1 (111-35)

For the two-dimensional aircraft problem we can show fhat the gain
of the filter given by (III-18)-{(II1I1-28) is a function of Q{k - 1)/R(k).
We can also obtain a closed-form expression for the secondlgain element
in terms of the first. We first need to express the error covariances

. P(kjk - 1) and P(k]k) in terms of K(k). From (II1-22) we can write:

Pry (kI = 1) = K ORGI/DT = K (k)] -~ (111-36)

o
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Substituting this expression for P11{K[k = 1) into (I1I-26) we obtain:

Pi](klk) = K1(k)R(k) (I111-37)

Substituting (II1-36) for P]](klk - 1) into (I1I-23}, we have:

‘ Pip(klk - 1) = Kz(k)R(k)/[T - K](k)] — (I111-38)

And substituting this expression for P}g(klk - 1) into {III-27) we have:

PIZ(k]k) = KZ(R)R(k) (III—SQ)

We now make the assumption that the noise covariances are slowly
varying in time. This seems reasonable, as Q{k - 1) is determined by the
acceleration éitk} and R{k) depends on the signal~to-noise ratic. Nei-
ther of these gquantities can change appraciably betwean scan intervals at

3 13 1/3 Hz uypdate rate. We therefore approximate the error covariance

P(k|k - 3} as having the same value for two consecutive time periods:

P(k + 1]k) = P(kjk ~ 1) (I11-40)

Using this approximation., we substitute (III-38) and (III-33) into (III-

20} and obtain:

Poo(k[k) = Ky (K)K, (KIR(K)/[at(T - K, (K})] (I11-41)

We can now represent the second entry of the optimal gain in terms of the
first. Using the approximation of (III-40); we substitute (III-36),

(111-37), (II1I-39), and (IiI-4]) for the needed covariances into (I11-19)
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and simplify, obtaining:
Ko(k) = KF(K)/Lat(2 - & (k)T . (111-42)

We observe that Kz(k) is a monotone-increasing function of K](k). Using
{I11-35) and (I1I-42) and noting that here HK{k) equals K1(k), we estab-

1ish bounds on the gain:

0 < Ky(k) <1

(1I11-43)
0 < KZ(k) < 1/at | )

Keeping the assumption of (II1-40), we find from (I1I-21) and (III-28)
that we have iwo expressions for the difference Pzz(x[k - 1) - Pzz(k[k)

Equat1ng these we have:

Qfk - 1) = K (k)P 2(k|k - 1) ' (I111-44)

Substituting (?11—38) for P]z(klk - 1), we have:
Q(k = DRk = 1) = K5()/T1 ~ Ky (k)] (111-45)

And by using (111-42) for Kz(k) we finally have:
Q(k - ])/R(k)'= KH(K)/T8t02 - K )P - K ()] (111-46)

-
Q(k - 1)/R(k) is clearly a monotone-increasing function of K](k), ranging
from zero when K](k) is zero to infinity when K}(k) is unity. Since

Q{k - 1)/R(k} and K}(k) are both positive, we can infer that K1(k) is a
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monotene-increasing function of Q(k - 1)/R(k) as well.

We can make some iqtuitive observations from this about the optimal
filter of (II1-18)-(I11-28). From (III-18) we see that o(k|k - 1) is a
linear extrapolation of é(k -1k - 1), ba;ed upon the velocity estimate
&k - 1]k - 1). We then accept é new measurement y(k) of o{k), and use
the weighted difference between y(k) and é(k]k - 1) to update our esti-
mate to 5(k|k) in {III-24}. The weighting applied to this difference is
K1(k), varying from 0 to 1. WUe have ;ust found Kl(kj,to be a monotone-
increasing function of Q{k -~ 1)/R{k}. Ne‘mfght view Q(k - 1)/R{k) as the
‘ratio of uncertainty in our knowledge of the state x(k} to uncertainty ir
the measurament y(k). When this ratioc is Tow, indicating high confidence
in our estimate of the state, K(k) issmdl, so that y{k) has 1ittle
effect on the new estimate §(k|k). When this ratio is high, we have
greater conficence in our new measurement y(k)., K(k) becomes large, and
y(k) has mo}e weighting indetermining ;(k]k). OF course when
Q(k - 1}/R{k) approaches inf{nity, we have no prior knowledge of the
state: g(k - 1]k - 1) gives no information about x(k). K](k) becomes
unity, causing é(k[k) to become y(k).

Before leaving the subject of optimal filters, let us study the
effects of using a Kalman filter with incorrect or suboptimal gain. This
would be the case if incorrect values were used for the noise covariances
Q(k - 1) and R(k). Assume that the filter of (III-10) and (III-13) is
implemented, with a suboptimal gain ﬁ(k). From (I11-5), (I1I-10), and

(III-13) we can write the error in the state estimate:
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x(k) - x(k|k) = ex{k - 1) + To(k - 1) = ex(k - 1]k ~ 1)
. .o (I111-47)
- R(K)y(k) - Hex(k - 1[k - 1)]

‘Substituting for y(k) from (III-6) we have:

alx(k - 1) - x(k - Y|k = 1)] + ru(k - 1)

x(k) - x(k|k)

K(K)[Hox(k ~ 1) + Hrw(k - 1) + v(k) - Hex(k - 1]k - 1)]
' ' (111-48)

x(k) - x(k]K) = [T - ROOHJe[x(k = 1) = x(k = 1]k = 1)]

I

(111-49)
[1 - K(k)HITw(k - 1) - R(k)v(k)

-+ -

We recall that w{k - 1) and v(k) are samples of white sequences and are

independent of each other. Since ;(k]j) is a combination of measurements

through y(j), we can make the following assertions:

~- K < i
[x{k) -~ x(k|3)] is independent of w(i): - (111-50)
j<i
. N alt k
[x(k) - x(k]j)] is independent of v(i): (I1I-51)
Lo j < .

Therefore all three terms in (III-49) are independent, and we write the

suboptimal error covariance:

P(k|k) = Ef[x(k) - x(k[K)I[x(Kk) - x(k[K)1'} (111-52.A)
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([

[I-K(K)HJSE{Ex (k-1)-%(k-1|k=1)T[x(k-1)-x(k=1[k-1)]" 3e' [I-R(x)H]"

4

[T - ROOHITELw(k - 1ol (k - T)IETT - ROORTT + ROOED (K (k) 1RT (k)
(1I1-52.8)

Simplifying this expression, we obtain:

P(K[K) = [T - KCHILaP(k - 1]k - 1)a" + 1Q(k -~ 1110 - R(OHTT
' ‘ (I1I-53)

+ R(KR(KIK (k)

Equation (I1I-53) has been iterated until steady-state is reached
for our problem of (I1I1I1-1)-(I1i-4) with stationary noise. Figure III-1
shows P]1(kik), the steady-sfate mean-square error in 5(k]k), as a func-
tion of suboptimal gain. P]](k]k) VErsus E](klk) is plotted for three
ratios of Q{k - 1)/R{k). Note that for each case P]1(k|k) is minimum for
the optimai gain and then rises to R{(k) as ﬁ](k) approaches unity. Me
can see that as long as the suboptimal gain is near or above the optimal
value, the estimate é(klk) will have a lower mean-square error than y(k).
When the suboptimal gain becomes less than the optfma] vaTue,‘however,
PI](k|k) rises rapidly, approaching infinity as the gain goes to zero.
Here the suboptimal filter diverges, The gain is so small that insuffi-
cient weighting is given to fhe mest recent measurement y(k) in updating
the state estimate Q(klk). Too much emphasis is placed on old measure-
ment information, so that the filter cannot fellow the true dynamics of

o(k).
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CHAPTER 1V
ADAPTIVE KALMAN FILTERING: THE STATIONARY NOISE CASE

In Chapter III we introduced the discrete Kalman filterwas thé

optimal state estimator for the Tinear system described by:

x(k) = ox{k - 1) + Tw(k - 1) ' (Iv-1)
y(k) = Hx(k) + v(k) ' (IV-ZS
pla(k - 1)] =-WN[0= Q(k - 1)1 (I§"3)
pLv(K)] = N[O, R(K)] (1v-4)

We made the assumption, howsver, that the noise covariances were known.
Reviewing the ‘Kalman filter equations (I1I-10)-(III-14) we note that both
Q(k - 1) and R{k} are needed for computing the optimal gain K(k) and the
error covariances P(kjk -~ 1) and P(kjk). If either Q{k - 1) or R(k) is
unknown, as is the case for our problem, the gain K(k)'cannot be found,
We could implement the Kalman filter equations by substituting estimates
for the unknown noise covariances, but the performance of the resuiting
estimator could be highly suboptimal if these estim;tes are poor,

In thiﬁ chapter we introduce adaPtive Kalman filter as a suboptimal

estimation scheme when the noise covariances are unknown. The adaptive

Kalman filter takes the form of the optimal filier:

29
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x(kJk = 1) = ex(k ~ 1]k = 1) o (1v-5)

X(K[K) = R(k[k - 1) + ROOLy(K) - HE(k[k = 1)] (1V-6)

where'ﬁ(k) is an estimate of the unknown optimal gain K(k}. The subopti-
mal R(k) is a function of the measurements Yk: we use the measurements
to either estimate K(k) directly or to estimate the unknown noise covari-
ances for use in the Kalman equations'(Illnio)a(III-14). The adaptive
filter is therefore a nonlinear estimator, unlike the optimal Kalman
filter, which is Tinear since the gain K(k) is independent of the
measurements. _ -

Hara we-present threé adaptive Kalman filtering methods for the
stationary noise case from the literature, as well as a simpler intuitive
scheme. Each method assumes the system model of (IV-1)-(IV-4), with both
Q(k - 1} and R{k) unknown and constant. Some methods assume a model of
genetgl dimension, while others assume scalar noise and measurements. In
this chapter we present the deve}opment of each method for the general
stationary case. 1In Chapter VY we modify the adaptive filters to work
when the noise covariances are time-varying and apply them to our speci-

fic problem of (III-1) to (III-4).

The Innovations Sequence

Before presenting a development of the adaptive Kalman filtering
methods, let us first define the innovations sequence. This concept is
useful in thé filtering developments td follow, ‘

We first recall the general Kalman filter equations (III-10)-(III-

14). Specifically, the updated estimate is given by (III-13);
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x(k[Kk} = x{k[k = 1) + K(K)[y(k) - Hx(k|k - 1)] - {1V-7)

We shall. define the innovations residual vw{k) by:

w(k) = y(k) - Hx(k]k - 1) " . (1v-8)

The time sequence of these residuals is called the innovations sequence.
We can show that the residual (k) is actually the error in éhe optimal
predicted estimate of the measurement y{k) given Yk -1 From Chapter
111 we recall that the optimal, least-mean-square error estimate of y(k)
is the conditioﬁa] mean of y{k) given the available measurements. From

(111-8) we write the optimal predicted estimate as:

yklk - 1) = E(Q)]Y, 4} . (1¥-9.A)
= E{Hx(K) + v(k)|Y, _ 4} ' © (1v-9.8)
= HE(x(K)]Y, _ 7} + Ev(k)) ' - (1v-9.C)

Equation (IV-9.B) results from substituting (Iv-2) for y(k), while the
second term in {IV-9.C) results from noting that v{k) is from a white
sequence and thus 1ndependent.of Yk o1 Recalling that the optimal pre-
dicted state estimate is given by the Kalman filter, and that v{k) is

zero-mean, we have:

y{k|k - 1) = Hx(k]k - 1) (1v-10)

where ;(k[k - 1) is from the Kalman equation (I11I-10). The innovations



32
residual v(k) is therefore the difference between the measurement y(k)
and its optimal predicted estimate. This error is then muTtiblied by the
Kalman gain K(k) and use& to correct ;(k]k ) 1) in (IV-7) to produce the
optimal Etate estimate ;(k]k). .

The residual v{k) can easily be shown to 'be zero-mean:

E{v(k)} = E{y(k) - Hx(k]k - 1)} (IV-11.A)

= HE{x(k) - x(k]k = 1)} + EQv(K)} = O (IV-11.8)

(IV-11.B) is obtained by substituting {IV-2)} for y(k). It equals zero
because the Kalman estimate ;(k[k - 1)} is by definition unbiased, while

v{k} is zero-mean. We can also find the innovations covariance W(k):

W(k) = E{v(k)vT(k)} ' (IV-12.A)

-

= E{[H{x(k} - ;(k}k - 1))+ vék)][H(x(k) - ;(k]k - 1)) + v(k)]T}
IIQ-]Z.B)

From (III-51), [x(k) - g(k]k ~ 1)] and v{k) are 5ndependent, so that (IV-

12.B} becomes:

M(K) = HEC[x(K) - x(k|k=1)1[x(K) = x{k|k-1)TT3H + EQv(k)v' (k)}

(1v-13.A)

= HP(k|k - T)HT + R(k) L (1v-13)

From {I11-12) we see that the optimal filter computes W({k) in
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finding the Kalman gain K(k). The gain was written as a function of (k)
in (III-30), (III-31), although no physical interpretation was given for
W(k) at the time. We so%etimes find {t convenient to express the Kalman
gain and updated state estimate of (1I1I-12), (III;JS).in terms of the

. . i
innovations sequence:

v(k) = y(k) - ’HJ‘;(klk - 1) (1V-14)
H(k) = HP(k|k - T)HT + R(K) (Iv-15)
k(k) = P(k|k - 1)HWT (k) ' (1v-16)
x(k[k) = x(k|]k = 1) & K(K)w(K) (1v-17)

The innovations residual v(k) can be shown to be Gaussian. Assum-
ing the initial state x{0) to be Gaussian, we can see from (Iﬁ-l) that
x(k) is Gaussian, since it is a linear combination of Gaussian random
variables. Similarly from (IV-2) we see that y({k) is the linear combina-
tion of Gaussian random variables and must be Gaussian as well, Finally
we recall that for the optimal filter ;(klk - 1) is a linear combination
of the measurement values in Yk -1 and is therefore Gaussian. Since
v{k) is a linear combination of y(k)} and Q(k]k - 1), it must also be

Gaussian:
pIv(K)] = N[O, W(K)] C (1v-T)

We have already established in (IV-8)-{IV-10) that v(k) is the

zero-mean difference between y(k) and its optimal estimate ;(k]k - 1),
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Since ;(k]k - 1) is the conditional mean E{y(k)[Yk . 1}s we can represent
the conditional density p[y(k)[‘fk _ ]] as the density of w(k) with its

mean displaced to ;(k]kll 1):

pLy(k)[Y, _ 1] = N[Hx(k[k - 1), W(K)] (1-19)

The innovations sequence becoﬁes important when we realize that it
is an obtainable measure of the estimator's performance. _From (IV-13) we
know that the innovations covariance W(k) is directly related to the pre-
dicted estimate error covariance P(kjk - 1). The derivation of (IV-13}
makes no assumptions of filter optimality, so that this relation holds
whether: the Filter gain is optimal or not. (Of course P(k]k - 1) and
P(k|k) are computed for the optimal case, znd W(k) is not needed). For
our speciiic aircraft model of (II1-1)-(III-4), equation (IV-13) is given

by(I11-22}:

W(k) = Py (k[k = 1) + R(k) (1v-20)

For a constant R(k), we see that the innovations covariance rises and
falls with the mean-square error in é(klk - 1). W(k) should therefore be
minimum when the state estimator is optimal,

We can solve for W(k) as a function of suboptimal gain R(k) for our
specific system model of (III-1)-(III-4) when the noise is stationary.
We have already obtained the error covariance P(k[k) as a function of
suboptimal gain ﬁ and constant covariances Q and R in Chapter III by
iterating (111-53) until steady-state is reached., From (IV-20) we have

W(k) as a function of P{k]k - 1). We can therefore express W(k} in terms
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of K by relating P{k]k - 1) to P(k}k) for the-suboptimal filter. Using

{IV-1) and (1V-5) we write the error in the predicted estimate:

x(k) = %(klk = 1) = a[x(k ~ 1) = X(k = 1[k - 1)] + ra(k - 1) (1v-21)

]

Recalling from (III-50) that [x(k - 1) - §(k - 1]k - 1)] and w(k -~ 1) are

independent, we have:

T

P(kjk - 1) = E{[x{k) = x(k|k - T1)I[x(k) - x(k]k - 1)1'}  (IV-22.A)

1]
1

T

it

Pk - 1[k = 1)e' + rq(k - T)r (1v-22)

This is the same relation as (11I-10) for the optimal filter, which is
given by {111-18)-{111-21) for our specific aircraft problem. To obtain
Wk} we oniy need Pil(kpk - 1), given by (III-19);:

13 L . 2
Puylkik-1} = Py (k-1 [k=T) + 28tPy,{k-T[k-1) + at"Pp, (k-T[k-1)  (1V-23)

We can therefore find W(k) as a function of R, Q, and R .by first obtain-
ing P(k|k) from the steady-state solution of (III-53) and then applying
(IV-21) and {IV-20}.

Figure I¥-1 shows plots of W(k) versus suboptimal gain §1 with con-

stant Q{k -:1) and R(k) for aircraft system model (III-1)-{I1II-4). We

note that W(k) is minimum when K] equals the optimal gain K]. This is
expected, since W(k) is the sum of Pll(klk -~ 1) plus R{k), and both

P]1(k[k ~ 1) and P,.(k|k} are minimized when the filter gain is optimal.

11
We also note that W(k) rises toward infinity as R1 approaches zero; here

P}1(k|k - 1) and P]](k]k) are~both approaching infinity as the suboptimal
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filter diverges. We observe this samg effect in Figure III-1.

- .The properties of the innovations sequence presented here are of
immense value in the adaptive Kalman filtering developments which foilow.
It has been shown that the innovations sequence contains all new state
information obtained by the measurements Yk [9, p. 1761.. In addition to
the propefties stated above, Mehra shows that the innovations sequence is
white for the optimal filter aﬁd correlated when the filter gain becomes
suboptimal [é, p. 177]., This property is not used by the adaptive fil-
tering methods prasentedvhere. ‘

We are now ready to present methods of adaptive Kalman filtering

for gensrai siationary noise problems.

The Method cof Sage and Husa

Let us assume the general system medel of (IV-1)-(IV-4), whare the
state vecior x{¥) has dimension n and the measurement y(k) has dimension

m:

x(k) = ax(k = 1) + ro(k - 1) ' (1v-24)
y(k) = Hx(k) + v(k) {1v-25)
plulk - 1)1 = WN[O, Q(k - 1)] - . (1V-26)
pLv(k)] = wi[o, R(k)] ' o {1v-27)

The noise covariance matrices Q(k - 1) and R(k) are ‘unknown constants,
and shall be written hereatter as Q and R. We recall from (II-8) that Yk
is the set of all past measurements, and we define Xk as the set of all

past state values:
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= (1), ¥(2), - - - y(K)} (1V-28)

—
1}

<
It

{x(T), x(2), - « « x{k)} - (Iv-29)

Sage and ‘Husa develop maximum a posteriori (MAP)'estimates ﬁ(klk),
‘a(k]k), and ﬁ(k]k) which maximize the conditional probability density of
the unknowns given the measurements. They actually éddréss the more gen-
eral problem where the noise terms of (IV-26) and (IV-27) have unknown
means to be estimated as well. This more general procedure is not appli-
cab]e'for our problem, however, and is not covered here. The reader is
referred to the works of Sage and Husa for a description 0% their general
method [10l1, {117.

Let us form the a posteriori density of the unknown states and
noise covariances given the measurements, i.e., the condifiona] probabil-
Tty density of Xk’ Q.. and R given Yk: ‘

) pLY, %, Q, RIP[X,, Q, R]

The right-hand side of (IV-30) is obtained from Bayes Law, where

p[Xk, Q, R] is the a priori density of the unknowns given no meéasurement
information. For maximum a posteriori estimation we need to find those
vaﬁues of x(k}, Q, and R which maximize (IV-30). Noting that the denomi-
nator p[Yk] is unaffected by the choice of these values, we seek to maxi-

mize the function:

J(k) = p[Yklxk’ Qs R]pixks Q: R] ) (IV"B-I)
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Sage and Husa assume that the unknowns are independent in the absence of

measurement information, yielding:

d(k) = pLY, |X.» @ RIp[X, Ip[QIp[R] ‘ (1v-32)

They next assume that the a priori densities of ¢ and R-are-uniform

between some known limits. 'For exampie:

1 . :
pLQ; :1=1. - s 0. < Qi:< Qs
B0 1 Qgmax © Qupy’  TIMIN = RIS TAIMAX (1v-33)
u 0 otherwise

A1l we know about theijth element of Q is that it Ties somewhere between

Qs smin 274 95 5pax-

Of course, if we have no information on how large Q and R become, we can

A11 values between these Timits are equally Tikely.

allow the Timits to approach infinity (QijMIN must be positive for diago-
nal elements. as Q is non-negative definite). As long as we remain
within the allowable Timits on Qijand Rij the densities p[Q] and p[R] are

constant and do not affect the maximization of J(k). We therefore write:
3(k) = Cpl¥, |¥,» Qs RIp[X,T (1v-34)

where C is a constant.
We now solve for J{k) in terms of its component densities. p[Xk]

can be expressed:

p[Xk]'= plx(k). X _ ] (1v-35.A)

= px(k)|X, _ 11X _ 4] ~ (1v-35)
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where the last step results from the definition of conditional probabil-

ity. We then substitute (IV-24) to write:

pLx(k}[X; _ 91 = plex(k = 1) + rw(k ~ 1)|X, _ 41 (1v-36)

Given Xk -1 x(k'- 1) is known. No new information apout Tw{k - 1} is
obt?ined,s§ince from (III-50) w(k - 1} and x{j) are independent for

J é k —.1;‘ p[x(k)jxk _ 1] therefore assumes the density of rw(ki- 1) shifted
in mean by ax{k - 1): .

pLx(k)[%, _ ;1 = N[ax(k - 1), rar'] (1v-37)

Reapplying (IV-35) and the substituting (IV—37) we have:
.‘k ]
T oplx(3)]xy 41 . (Iv-38.4)

pLx, ] = pLx(0)]
N i

" k
= N[x(0), P(0)] T N[ex(j - 1), rQr'] " (1v-38)

S 3=1

We now reapply the definition of coaditional probability to obtain:

PLYy | Xgs Qs RI = piy(k), Yi. _ 1]%,5 Qs R] (1v-39.A)
= ply(k)Y, _ 15 X» Qs RIDLY, _ 41X, Q5 R] . (1v-39)

Using (IV-25) for y{k) we write:

pLy(K){Y, _ 7> X» @ RD = pIHX(K) + v(K}|Y, _ 15 X Q, R]  (1V-40)
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Given Xk, we know the value of x(k). Knowledge of the conditioﬁing vari-
ables gives no new information about v{(k), which is independent of Xk and
y(j)-for i< k. (IV—40)‘therefore becomes the density of v(k) with mean

displaced by Hx(k):

pIV(K)]Y, _ 1> %o Qo RT = NDHe(K), RT - - (1v-41)

In the same manner used to obtain (IV-38) we reapply (IV-39) and then
substitute (IV-41):

. k B .

N[Hx{3), R] (1v-43)

i
=
—l

We can now solve for J(k) by substituting {IV-38) and (IV-43) into
(1v-34): '

k k
(k) = cN[x(0), P(0)] I uLex(s - 1), rqr'] T NIHK(3), R]
J= J=
(IV-44.A)
= CN[x(0),P(0)] -
X n 1

>

JET (2m) IPQP | exp{-—EX(J) ¢X(J 1)1 (rqr! ) [x(J) @X(J 1)]} (Iv-4;)
-1 - T

21R) Zexp-LLy()-#x (1R Iy (3)-Hx() T3

>
=
——
N
A,
—t
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Incorporating into C all components of J(k) whieh‘afe unaffected-by Xk,
Q; an& R and fherefore constanf for the maximization proéedure, we have:
. & K . RS I
a(k) = cjrar’| 2R| zexpfﬂ%;g EX(J)-@X(j-l)]T(erT) [x(3)-ex{j-1}]
’ = I, - (1V-45)
il %&§1Ey(j)~HX(j)]TR"1[y(j)-HX(j)]T} -

We now have J{k) as a function of X Qs and R, Needed at ﬁime k
are the values g(k]k), ﬁ(k|k), and ﬁ(klk) which maximize J(k). Sage and
Husa solve this problem by using a'"digcrete maximgm principle" [10, p.
770]. Here we offer an a}térnate agproach‘yie]ding the same results.

We first maximize J(k) with }espect to § and R.

To obtain the MAP estimate ﬁ(k[k) we rewrite (IV-45):

k

AL I PIRAPUNNG S Nt BN
efo”ﬁ:E][X(J)-Qx(J"T)] (rqr)  [x(3)-ex(3-113 - (1v-46)
J= :

gl = c|ror']
where C contains all factors of J(k) which are not functions of Q. We
choose to redefine J in terms of In(J) and maximize this function °
instead. This is allowable, since In{-} is a monotone increasing

function:

T, K~ S T : -
JQ(k) = ~kIn|rQr |- = [x(3) - ex(3-1)1 (rar’) [x{(3) - ex(3-1)1 . (1v-47)

Jj=1

- Note that Jq(k) is a function of PQFT, so that we cannot estimate Q

directly. Subsfituting P for rQFT and z(j) for [x(J) - ex{j -~ 1)1, we
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have:

. k
J(P) = —kIn|P| - £ z'(

$)P 7 2(3) (1v-18)
3= ‘

We seek that value P, of P which maximizes (IV-48).

#]
Let us define ¢ as a scalar arbitrarily close to zero, such that

P0 + €A represents a small deviation in P from P

o Since P rapresents
0 and A are non-negative definite. We can write:

Mg+ cA) = 3Py) - 83(Fge ) (1v-29)

Obvicusly, 3J = 0 when ¢ = 0. Since J{P} is maximum at PO’ 8J cannot go

i

negative and ¥s minimum at P PU’ or at ¢ = Q¢

e =
s220(Pys €)}] g = O : (1v-50)

We now must obtain a functional relation for 6J(P0, g) in order to

solve for PG‘ Using (Iv-48), we write:

k
J(py + ) = ~kIn|Py + sA| -z 21 (3)(Py + eA)”'z(d) (1v-51)
5= -

where
" - -1

[Py + eA] = [Po(1 + ePy'AY| = |pol|T + Py Al (1v-52)

We use the approximation, valid for small e:

[I + eB} 21+ ¢ trace(B) ‘ (1v-53)



to write:
i -1
|P0 + gA] = IPO][1 + e trace(PO A)]

We next use the matrix identity [12, p. 791:

~1

+oy =8t gl sty BT

to write:

(p,+eA) =P T L p T
0

0

=1 .
O-] + (EA‘)"]] P -]

For small «. (eA)“] >> PO"], yielding the approximation:

T T P
(Pg + €A) " Z Py - &Py AP,

Now we substitute (IV-54) and (IV-57) into {IV-51):

J{PG + eA) = -k]n[POI - kIn[1 + ¢ trace(PO-]A)]
k k
- 2 23Ry l2(3) + ez 2T ()R, AR, 2(3)
J=1 j=1
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(1v-54)

(I1V-55)

(1V-56}

(Iv-57)

(1V-58)

We récognize the first and third terms of (IV-58} as J(PO) from (IV-48).

The second and fourth terms give us 6J(P0, e), so that we have:

-1 K
L(83(Pyse)y=-k[T#e trace(Py 'A)] [trace(Pp-1A)1+ 2

J=1

zT(j)P0'1AP

-1

(Iv-59)
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From (IV-50)}, we let this become zero for £ = 0, yielding:

2 ()py e l2(a) L (1v-60)
J

10 o I

k trace(PO"]A) =
1

Using the matrix identity for symmetric, non-negative definite B 1, p.

2317:
xTBx = trace(BxxT) (1v-61)
we have:
-1 K A =1l T
k tW"ce(PG A) = 2 trace[?0 APU z(3)z (3)] (IV-62)
J3=1
-1 7, -1 K T
trace(kP, 'A) = trace[P, 'AP r z{3i)z (3)] (IV-63)
0 o Yo 4 _
Equating trace arcuments and simpiifying:
p K T
P =1z z(j)z (J) . (1v-64)
0" %k

Recalling from before (IV-48) that z{j) = [x(j) - ¢x{j - 1)] and that P0

is that value of rQrT that maximizes JQ(k), we have:

[~

D) = el = DI0K) - el - N1 (1v-65)

~
L0 o B

ra(k|k)rT =
J

The state x{j) is unknown and will be replaced by the optimal smoothed

estimate of x(j) given the measurements Yy :
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[ B

rﬁ(k]k)rT = %
J=1

[x(3lK) - ex(3 - T[K)ILx(3|K) - &x(5 - T]K)TT  (Iv-66)
We obtain the MAP estimate ﬁ(k]k) in similar fashion, defining

JR(k) those factors of J(k) in (IV-45) which are functions of R:

k .
—-— L
3g(K) = C[R] Zexp{“%.z]ty(j) = (IR y) - x(@)T) (1-67)
J.—.

JR(k) has the same form as Jd.(k} in (IV-46), with R replacing FQPT and

i ) Q
[y(3) - Hx(3)] replacing [x(j) - ex{i - 1}. Maximization .of Jp(k) with
respect to R should therefore yield an estimate ﬁ(k[k) of the same form

as TQ(k|k)r' im (IV-65):

?

™M=

R{xik) =+

) - B(Iv) - Hx ()1 (1V-68)
] )

We again replace x{j) with the optimal smoothed estimate Q(j]k):

[y(3) - Hx(3[K)ILy(d) - Hx(3]K)T" (1V-69)

|-
T
———d

R{K]K) = 7

J

We make the assumption that the optimal MAP estimates of (IV-66)

and (IV-69) are very nearly equal to the true noise covariances:

rQ(k|k)r’ = rar’, R{kJk) 1 R (1v-70)

Under this assumption we can obtain the optimal MAP state estimate g(k]k)
from the linear Kalman filter of (III-10)-(11I-14), where FQFT and R are

replaced by their MAP estimates. This assumption also allows us to
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obtain the estimates ;(j]k), needed by rﬁ(klk)rT and ﬁ(k[k), from optimal
1inear smogthing. ‘

- In using the Kalman equations (III-10)-(III-14) to compute Q(klk),
we must substitute R(k - 1]k - 1) for R. x(k|k) requires R in the gain
equation (III-12), and since ﬁ(k]k) requires g(k[k) in (IV-%Q), it does
. not yet exist. ﬁ(k - 1]k = 1) is the best available estimate of R for
computing ;(k[k), and is therefore redefined:

k-1

R(K[k-1) & R(k-1[k-1) = -g%-,z][y(j) - k(3R I0v(S) - HX(IT0YT (3v-71)
J=

Sage and Husa develop an estimation algorithm which uses (IV-66)
and (IV-71) to compute rﬁ(k]k)rT and ﬁ(klk - 1) for use in the Kalman
filter. Howaever the result quickly becomes complicated and iﬁpracticai,
because- 6F the need to process smootheq estimates Q(j]k) (10, p. 762].
They then derive from (IV-66) and (IV-71) equations for computing subop-
timal estimates rés(k]k)rT and ﬁs(k[k}. These equations require only the
estimates Q(jfj - 1) and ;(jlj) produced by the Kalman fiiter. We now
present a development of their suboptimel method.

In the suboptimal design to follow we first assume that the esti-
mates for rQrT and R will be good enough that the Kalman filter using
them will be nearly optimal. We theraefore assume that the error covari-
ances P(k]k - 1) and P(k|k) are computed correctly by the Kalman filter.

We First replace R(k|k - 1) in (IV-71) with a suboptimal estimate

ﬁ(klk - 1) which does not require smoothing:
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k-1

Alklk - 1) = =5 [y(3) - BX(3]3 - DIG) - #eG3]3 - DT
k- 1.5
(1v-72.4)
k-1 .
= T 2oV () . (1v-72)
Jj=

where v(j) is the innovations residual given by {IV-8). To be unbiased,

ﬁ(k|k - 1) must have R as its expected value:.

: - -l k"'-‘ T -

j=1
S I - T ‘
E{o{i)v' (§)y =W = HP(3] - 1) +R . . (1v-74)

where ¥ is the steady-stata innovations covariance, given by (IV-13).
E{ﬁ(kik - 1)} thus equals W, so that ﬁ(k[k - 1) is biased. We note how-
ever that HP(j|J - 1)HT is computed in the Kalman filter's gain equation
(I11I-12), and can therefore be subtracted out of the summation term to

produce an unbiased estimate:

k-1

Rg(klk = 1) = gy 2 v(@)eT(3) - HP(ald - AT (19-75)
j= .

We now replace rﬁ(k]k)PT in {IV-66) with a new suboptimal estimate:

e =

Alk[k) = %1 1[i(ili)'- ex(3]3 - DIXG]I) - ex(3l3 - DIT (1v-76.A)
J
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|-
I o=
d

[K(3)w(3)IK(3)u(5)T o (v-Te)

whare (IV-76) follows from noting that K(j)v(j) is the difference between
estimates x(j]j) and x(i|j - 1) in (III-13). To Find whether A(k|k) is

unbiased we compute:

EgA(K] - 1)} = %521K(j)s{v(j)vT<j)}KT(j) (1v-77)
K(DEDVIEI ) = kDUEKTE) (1v-78.8)

= K(IMDIPGET - DT (T (1V-78.8)

- K(Q)Hp(jpj 1) (1v-78.¢)

- P(315 - 1) - PILD) (1v-78.0)

= oP(j - 1]j - e +rar' - P([J) (1v-78)

(IV-78.B) results from substituting (III-12) for K(k), while (IV-78.C)
results from noting that P(J|j - 1) and W(j) are symmetric by definition.
We then obtain (IV-78.D) from (III-14) and (IV-78) from (I1I-11). ﬁ(k|k)
is biased,'but we note that oP(J - 1[J - 1)®T and P(j]j) are computed by
the Kalman filter and can be removed from the summation., We therefore

obtain the suboptimal estimate for rQrT:

|-

r, (k|K)r! =

k
2 (3w (KT (5) + P(3[F) - oP(F = 113 - 1)’
J= )

]
(Iv-79)
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We now write {IV-75) and (IV-79) in recursive form:

Ry (k|k=1) = —=[(k-2)R{Kk=1]k-2) + w(k-1)v' (k1) - HP(k-1][k-2)H']

(IV—SO)

rQ (kKT = HL(k-1)18(k-1]k-1)r7 + K(K)u(k)vT (K)KT (k)
(1v-81)
+ P(k[K) - oP(k-1]k-1)a"]

~ Sage and Husa devise a suboptimal state estimation algorithm by
merely using the Kalman filter equations (III-10)-(III-14) and substitut-
ing the_estimétes of (IV-80) and (IY-81) for the true values R and PQPT.
We modify this algorithm in Chapter IV to work %or time-varying @ and R.

The algerithm is given below:

x(kjk - 1) = ax(k - 1]k = 1) (1v-82)

P(kjk - 1) = oP(k - 1]k = 1)o' + 1Q(k - 1|k - 1)1" (1v-83)
w(k) = y(k) - Hx(k|k - 1) (1v-84)

K(K) = P(k[k = TJH[HP(K]k - 1T + R(k]k - 1)]"] (1v-85)
x(k[k) =‘;(k[k - 1)+ K(k);(L) . (1v-86)

"PLk|K) = E(k]k 1) - K(#)Hp(k|k - 1) (1v-87)

R(k + 1[k) = —l(k - 2)R(K[k - 1) + v(K)oT (k) - HP(k|k - 1)H']

(1v-88)
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A(k[K)TT = Lk = 1)TG(k ~ 1]k - 1)1 + K{K)v(k)v (K)K' (k)

~|—

(1v-89)
+ P(k|K) - oB(k - 1]k - 1)o']

The Method of Magill

The method of Magill assumes that the unknown covariances can take
on a finite number of possible combinations.' A bank of paraliel station-
ary Kalman filters is run, where each filter assumes a different allowa-
ble combination of Q and R. The adaptive Kalman filter estimate ;(k|k)
then becomes a weighted sum o% the estimates produced by the paraliel
filters [13].

We' first assume the system model of (IV-1)-(IV-4), where the noise
covariances are constant and thus denoted as Q and R. The unknown ele-
ments of ¢ and R are coﬁtained in the vector «; we sometimes use the
notation d{a5 and R{a) to indicate that a knowledge-of o specifies § and

R. Magill assumes that o can take on one of L possibie values:

aef{ags aps ¢ v v oo} (Iv-90)

where the ith value has an a priori probability density p[“i]‘
We recall from {III-9) that the optimal minimum variance estimate

g(k]k) is the conditional mean of x(k) given the measurements ¥:
- x(k]k) = Ex(K)]Y, ) (1v-91.A)
= xp{x]Yk}dx . (IV»Q?)‘

where X is the space of all x(k). Defining A as the space of all o, we
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have:
pLx[Y, 1 = pr px, a]Y, Jda  (1v-92)
By the definition of conditi;nal p?obabf]ity:
plx, a|¥ 1 = plx]a, ¥ IplafY,] (1v-93)
Substituting (IV-92) and.(iv-93) into (IV-?]}:
ng]k) =y Xpf pix]a, Yk]P[a]Yk]dad¥ . (IV-94.A)
= o {yf xplx]e, Yk]dx}p[a[Yk]éa (1v-94)

where the last step is accomplished by reversing the order of integra-
tion. From (I¥-91) we recognize the term in brackets m (IV-94) as the
optimal estimate of x(k} given o (Magill calls this the optimal condi-

tional estimate}. (IV-94) thus becomes:
~ A
x(k}k} = Af X(k]k, a)P[aIYk]da -(Iv-95)

Lo )
= 15 X(klk, ai)P[ailYk] < {IV-96)
where {(IV-96) follows from the quantization of «.

Magill notes here that the optimal estimation of x(k) has been fac-
tored into the linear calculation of a set of conditional estimates and

the noniinear calculation of a set of weighting ceefficients [13, p.

434]. Thé first half of this factorization is easily obtained, since the
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optimal conditional estimate x(k|k, a,) is the linear Kalman filter esti-

mate produced by assuming o to be ot

x(kJk = 1, o) = ex(k - Tk = 1, @)

PIKIK - 1, ag) = oP(k - 1]k = 1, ;) * 1Q(e)r’

o(kfar) = y(k) - Hx(k[k = 1, o)

M(k]a;) = HP(k]k - T, o JH' + R(x,)
K(kfog) = PLKIK ~ T, o 8T (K]e)
x(kik, ;) = x(kjk = 1, a;) + K{k]a;)v(k|a;)

P(kiks a5) = P(k]K - T, ;) = K(kje HP(k[k - 1, a;)

{1v-97)

(1v-98)

(IV-99)

(Iv-100)

(Iv-101)

(1v-102)

(1v-103)

The remaining problem is to find the weighting coefficient pEailYk]'

We recognize the conditional density p[ailYk] as the a posteriori

density of the unknown noise covariance elements given the measurements,

From Bayes Law we have:

p[Yk[aijp[ai]
p[u'i |Yk] - P{YkT

(1v-104.A)

(IV-104)
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where p[Yk] is independent of 1 and thereby represented by a constant €

whose value is chosen so that the sum of p[ui|Yk]'0ver all i is unity. We

now write:

LY, le;1 = pIV(K), ¥, _ ,la,] (0s.8)

= pLy(R}]Y, o 15 egdplYy © qlesd ~ (1v-105)

We know from (IV-19) that:

ply(k)[Y, _ 41 = N[Hx(k|k - 1), W(K)] - (1v-106)

where ;(k|k - 1) and W(k) are given by the optimal filter. Given that

= ag, We have the optimal filter and write:

PLYCO Y, - s o] = NIHR(K[K - 15 a5), w(k]aijl (1V-107)

Reapplying (IV-105) to obtain p[Yk|ui] for use in (IV-104), we have;

. k ) .
J:
K .
= Cpla;] S NIHX(3]3 - 1, o), W(ife;)] - (1v-108.8)
J:
: 1 .
K 21T -1
= Cplogd 1 [W(3leg)| “explrgy (3leg) (Jlag)v(3ley)d - (1v-108)
j= ‘ :

The adaptive Kalman filtef algorithm of Magill is now defined. For
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the ith stationary péra]]eT filter we compute §(k|k, ai) from {IV-97)-(IV-
- 103) and pla.|Y,] from (1V-108). The adaptive filter estimate x(k|k) fol-
Tows from (IV-96)}. - . ‘
Two modifications will improve the practical imp1ementqtion of
Magill's algorithm. First, Sims and Lainiotis note that (IV-108) can be
realized by.a faster recursive form requiring less storaée [14]. Ve

reproduce their result here by rewriting (IV-108):

al
P{Gi“k] = (}P[Gillw(kla-;)l zexp{—%uT(k[ai)H-](k]ui)u(klai)}
(IV-~109.A)
k-1 SRR -1 '
X _n1|w(j|ai)[ “expl-zv (3o )W (Flas)v(d]ey)d
J‘_'
1

e

= Ciulkla, )] Zexpl-av! (ko)W (kfu;)v(k|as)Ipla ¥, _ 41 (1v-109)

The second modification results from noting that since the parallel Kalman
filters are stationary, their gains and covariances reach caonstant,
steady-state values. Before actual implementation the gain and covariance
equations for each parallel filter can be run until K(k[“i) and w(k|ai)
reach steady-state values K(ai) and N(ai). Then (IV-97)-(1Vv-103) for the

adaptive filter can be replaced by:

x(k[k = 1, a;) = ex(k = 1]k = 1, o) (1v-110)

w(klas) = y(K) - HR(K]k - T, o) | (1V-111)
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;((k|k, ai) = ;(k|k -1, ai) + K(ai)v(k[aij ) (Iv-112)

w(ai) replaces W(k|ai) in (1v-109). -

The Method of Alspach

fhe method of Alspach assumes that the ynknown'optimaT gain K(k) of
the Kalman filter is a random variable with a posterjori density p[K]Yk].‘
Alspach runs a bank of parallel stationary Kalman filters with gnough'gains
Ky to'coqeréhe space of allowable K. The-innovations sequence éf the ith
filter is used to obtain the density p[KilYk3' The resulting diséretize&
a posteriori density is thén used to compute an estimate ﬁ(k) of the
optimaT gain for use in an adaptive Kalman filter.

We assume the system model of (1Iv-1)-(IV-4)}, where the noise covar-

jances Q and R are unknown constants. For known Q and R the optimal

state es{imate is given by the stationary Kalman Tilter:
x(k|k - 1) = ex(k - 1|k - 1) © (1v-113)
x(k[k) = x(k[k = 1) + Koo [y(k) = Hx(k[k - 1)] . (1v-114)

where KapT is the gain K(k) when the Kalman filter equations {III-10)-
(II1-14) are run to steady-state. For the prob]eﬁ here KOPT is unknown
and i; assumed at time k to be a rand&m varjable with an a postériori
density pKOPT[KIijl We next impiement a bank of L stationary Kalmqn
filters running in parallel, where the ith filter has a fixed suboptimal

gain Ki:
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x(k[k - 1, K = ex(k - Tk - T, K) (IV-115)
v(kfky) = y(k) - Hx(k]k - T, K;) . (1v-116)
X(k[k, Ko = X(k[k - 1, k) + Koolk[K) - &0 (1v-117)

The gains {K], K2, - KL} are chosen tocover the space of allowable

KOPT' We desire to use the observed statistical properties of the ith

filter to compute the conditional density Py [KilYk]. By cbmputing
- QPT

Pk [Kilyk] as a function of K, for a sufficient number of gains we can
OPT ~
identify the a posteriori - density of KOPT well enough to estimate its

value.

He define W as the steady-state innovations covariance of the

OPT
optimal filter. Alspach first solves for the joint a posteriori density

of K and NOPT’ which by Bayes Law becomes:

0PT

] PLY, 1K, w]pKOPT’ NOPT[K, W] ( )

D K, WY, ] = IV-118.A
Kopt> opt k pLY, _

= CpLY, [K, WIpIK, W] : (1y-118)

where p[Yk] is_constant for all K, W and therefore repiaced by C.

p [K, W] is the a priori density of K and W, representing any
KopT* YopT :
knowiedge of KOPT and NOPT without measurement information. The sub-

scripts on p[-] are dropped where no confusion results. From the defini-

tion of conditional probability we can rewrite (IV-118):
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pLks WIY, T = CPLY, K, Wlp[u|KIplK] . (1v-118)
He then write:
PLY, 1K, W1 = pLy(k), Y, _ 4 ]K, W1 (IV-120.A)
= pLy(k)[Y, _ 7o K, WIpDY, o |ku] : (Iv-120)
From (IV-18) we know that:
r ] ) .
ply(K)]Y, _ 41 = N[Hx(k]kb- T, Kopp) > Hgprd (1v-121)
Given that KGPT = K, NOPT = W, we can therefore impute:
PIy(K) ¥, _ 15 K5 W] = N[Hx(k]k - 1, K), W] (Iv-122)
Appilying this result to ('IV-IZO) we have:
K
pLY, [K, W] - L ply(I)|¥; _ 15 K, W] (1v-123.4)
J:
K .
= 1 NLEx{jli - T, K}, W] : {1v-123)
j=
We now rewrite {IV-119):
_ 1
k 7 T /. ~ . ST
p[K, WolY, 1 = CpIW[KIp[K] m || exp{-5ly(3) - Hx(3]3 - 1, K)]
3= (1V-124.7)

x WLy(3) - Hx(3l5 - 1, KT}
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‘% 1 kT -1,
= CpLu|KIplx1{M] “exp{-3 = v (J[KM™ v(J[K)} (1v-124)
) J=l
Alspach now specializes the adaptive Kalman filtering develcpment

to the case of scalar noise and measurements. This is general enough to

cover our specific aircraft model of (II1I-1)-{III-4). Q, R, and HOPT are
now scalars, and (I1V-124) becomes:
' k Kk  2,.
Pk, WY, ] = PLHIKIPLKI Zexplg 2 v (1K), (1v-125)
J:
We define the sample covariance of w(k[K) by:
- 1 % 2
W(kIK) = ¢ 1 v(§K) (1v-126)
3=1

For stationary &aussian nofse W(k|K) is an unbiased estimate of W. (IV-

125} thus becomes:

k ~ -
o[k, WY, 1 = plo[KIp[KIN Zexpe- HLEIK), (1v-127)
We now express W, in terms of Kp. by using (III—?Z):
Hopt = R/[1 - HKOPT] ) (1v-128)

AN
Assume that the only a priori information we have about Q and R is that
they are bounded by the values QMAX and RMAX‘ Then given KOPT’ the only

information we have about HOPT is that it lies somewhere between zero and
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an upper bound NMAX(KOPT):

NMAX(KOPT) = RT’TAX/U - HKOPT] (IV—]?Q)

Alspach therefore assumes that the conditional density of NOPT given KOPT

is uniform:

plu[k) =) MAX (1v-130)

0: otherwise

Substituting (IV-130) for p[K|{], we can obtain plK|Y,1 by integrating

the joint conditional density of (IV-127) over the range of W:

p[K[Yk],= ;S plK, w[vk]dw (Iv-131.A)
Haaax (K)
ekl | oK ko
= 2y | W Zexpet e (1v-131)
MAX .
0 .

Using the variable of integration z = %ﬂ(le)/H, (IV-131) becomes:

pK ¥, 1 = 22lhd (k)1 - 2)/2 f k=822, (1y.132.8)
MAX a

i, EEEL%%T[ﬁ(kIK)J-(k - 212 1k, ) (1v-132)
MAX ‘
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where

l~g

K )
SA(K]K) My (K) (1V-133)

WT(k, K) is the integral of (IV-132.A) and is a function of the ratio
HKIK) My, (K).  We define M as the value (k - 4)/2. When M is an inte-

ger (meaning k is even and greater than 2) we can evaluate WT:

WT(k, K) = r 2'e%dz (I1V-134.4)
) .
MooM-j
- 12 a }
e (1V-134.8)
e, 1 6 - B2
K - 4, c iitk]x), (K472 2 My (KD
= (5 Hepe-f MEEL T T (1v-134)
? SR = R I

Alspach plots WT{k]K) as a function of ﬁ(k]K)/w (K) for different

MAX
values of k. His results are reproduced in Figure IV-2. He notes that
for k above 1000, WT{k, K) can be approximated as a unit step which falls
to zero at ﬁ(kIK) = NMAX(K) (This is not a bad as§umption even for

k = 50 or 100). Thus WT{(k, K) acts to discrimiﬁate against gains for

which the sample innovations covariance exceeds the maximum value:

’

Cplk] (k- 2)2 =
[Wik[K)] v W(kIK) < W,..(X)
Hyyay (K) | (kIK) < Myay

plk|Y, T =] o (1v-135)
* 0: H(K|K) > Hyy o (K)
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We now assume no a priori information about Q and R, so that QMAX
and RMAX become 1nf1n1t§. Since nothing is known about KOPT’ pfk] can be

made uniform over the 1imits of allowable gain. W X{K) now approaches

MA
infinity, so that WT(k|K) becomes unity for all ﬁ(k[K). We ‘now have:

C[ﬁ(k[K)J-(k - 2)/2, allowable gain
plr|v, T = , (IV-136)
0, otherwise

The adaptiﬁe Kalman filter of Alspach is now ready for implementa-
tion. For each of the parallel suboptimal filters the-estimate
Q(klk, Ki) and innovations residual v(k]Ki) are obtained from {IV¥-115%)-
(IV-iT?‘- The a posteriori qain density p[KiIYk] is then computed by
(Iv-138), using +the sample innovations covariance of {IV-126)}, which

Alspach writas in recursive form:

N([K) = L[(k - DH(k - T]K) + v2(k]K)] (1v-137)

il

Ao -

The adaptive filter implementation is greatly simplified when we
recall from Chapter III that for scalar noise and measurements the opti-

mal gain KDP is known when only one element is specified. (Kz(k) is

T
given as a function of K1(k) in (111-42) for our aircraft model). Also,

the gain KOPT is always bounded. We can therefore implement the paraliel
filters by uniformly .incrementing the first gain element between limits

K] and K] , 2allowing K.i(? < J < n) to be determined by the appro-
MIN MAX J
priate functional relation. We can therefore use (IV-136} to find

p[K1 |Yk] and thus estimate K
i

Alspach does not specify what
0PT . .
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estimation scheme to use in computing QT(k). However, since we know the
_ conditional mean E{K1LYk} to be the optimal minimum variance estimate

from (II-9}, we use it here:

121(k) = 121 K;pIK, Y, ] . ‘ ©(1v-138)
Q](k) automatically defines ﬁ(k), which is then used in the adaptive
filter of (IV-5) and (1V-6).

Alspach admits that his algorithm may be impractical for use in a
general-purpose digital computer where the L suboptima].stationany fil-
ters must be implemented serially. However, in a special-purpose paral-
Tel imﬁiementation the stationary filters can run simultaneousiy, produc-
ing a fast adaptive algorithm. He also nofes that,.though similar to the
para?le?_fiiters method of Magill, his algorithm is simpler, requiriﬁg
fewer paraiisi paths. Consider the scalar noise casz where § and R are
both unknown. For n possible values of Q and m values of R, we would
need n x m parallel filters in Magiil's algorithm. The number of allowa-
ble @ and R values may increase further if we do not know their_upper
bounds QMAX and RMAX’ which can approach infinity. In Alspach's algo-
rithm the oniy unknown is K]’ which is always bounded. -lWe need only to
use encugh parallel fiiters to adequately cover the range of‘allowable K1

values,

The Minimum Innovations Covariance Method

The last adaptive Kalman filtering method presented here is an-

intuitive scheme which has some theoretical backing. As in the methods
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of Magill and A]spachl a bank of parallel fixed-gain Kalman filters is
run. The gain of that filter with the minimum innovatjons sample covari-'
ance is chosen as the gain ﬁ(k)-for use in the adaptive Kalman filter.

We again assume the system model éf (IV-1) to (IV-4), but with
scalar noise and measurements, so that Q and R are ﬁnknoyn s?alar con-
staﬁts. From {I11-13) we recall that the steady-state innovations covar-
jance ¥ is minimum when the suboptimal filter gain becomes the optimal
Kalman gain. Let us revist Figure III-1 and IV-1, where P]1(k|k); the
mean-square error in é(k[k), and W are plotted as functions of suboptimal
gain Q} for thé aircraft system of {III-1)-(III-4) with stationary noise
(EZ is given by (ITI-42)). Not only are P]](k]k) and W minimum for

-

KT = KTOPTF but both increase monotonically when EI either increases or
decreases‘from the optimal gain. We can assert that the innovations
covariance W is a direct indicator of a suboptimal fiiter‘s error
performance.

He now imp]ement a bank of parallel fixed-gain Kalman filters,
where, as in the algorithm of Alépach, the gain K] is incremented between

the Timits K and K] . The ith filter is realized, just as in

Une MAX )

Alspach, by (IV-115)-(I1V-117), The sample covariance w(klai) of the
innovations sequence is computed from (IV-137)., We note that ﬁ(k|K) is
the standard covariance estimate for a stationary scalar process with
zero mean, and is therefore our best egtimate of W(k[K). It would thus
seem reasonable to choose that parallel filter with the lowest value of
ﬁ(k]Ki) as the one whose gain is closest to K; . MWe therefore choose

- oPT
the gain of this filter as the gain K(k) of our adaptive Kalman filter:
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RK) = Kgx H(RIKS) < ﬁ(lej), T<jisl (1v-139)

The adaptive filter is given by (IV-5) and (IV-6). _

This intuitive scheme has a theorefical appeaé when we recall (IV-
136), which gives p[Ki]Yk] for the ith parallel fixed-gain filter. The
gain K which minimizes ﬁ(k|K%) is the same gain which maximizes the a
posteriori density p[KilYk]’ as derived by Alspach. Instead of the con-
ditional mean estimate of KOPT’ we are choosing the maximum a posteriori

estimate of K The intuitive, minimum sample covariance estimate K(k)}

0PT”
may therefore be considered the MAP gain estimate of Alspach. Of course,

this MAP estimate does not require the calculation of p{Ki[Yk], and is

therefore zasier to implement than the method of Alspach.



CHAPTER V

ADAPTIVE KALMAN FILTERING WITH TIME-VARYING NOISE STATISTICS
In Chapter IV we presented four methods of adaptive Kaﬁﬁan'fi1ter-
ing for use in problems where the noise is stationary. We recall our
general system model of (IV-1)-(1V-4). The noise covariances Q(@ - 1)
and R(k) were unknown constants. In this chapter we remove the station-
ary noise assuﬁption and allow Q(k - 1) and R(k).to vary with time.‘ We
modify the adaptive filtering methods to work for the non-stationary

noise case and then specialize them to our aircraft system model.

-The Method of Alsvach -

We recall that Alspach assumes that the measurements and noise
. terms of the system model (IV-1)-{IV~4) are scalars. The a posteriori
density of the optimal gain K(k) is found by computing the sample innova-

tions covariance ﬁ(k]Ki) for each of the parallel stationary filters:
ek |K) = L0k - Dk - T]K;) + (k[ (v-1)

Alspach points out that as k becomes large, the present innovations
residual v(k|Ki) has little effect upon the value ﬁ(k[Ki). In order to
prevent ﬁ{k[Ki) from becoming insensitive to new information he §uggests

the following change [15, p. §53]:

67
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%{(k - (K - T[K;) + vz(lei)J; k<N :
H(k[K;) =9 ) S (v-2)
TL(N S (K - TIR) + vE(R[KOT; ko> N

\

where ¥ is chosen for the stationary noise case such that ﬁ(k]Ki) is-‘

within some acceptable r.m.s. deviation of the true covariénce w(k]Ki)

‘ for k > N: We can view (V-2) as a fading-memory estimate of w(klki),
where old innovations residuals are deweighted: values “(lei) will have
little effect on ﬁ(k]Ki) for j < {k - N). ﬁ(k]Ki) becomes fhe output of
a first—order Towpass filter with input vz(k) and time constant Nat.

If the noise covariances Q(k - 1) and R{k) are stowly changing with

_tine, we can appro#imate them as being constant for N jterations. We can
then estimate the state with stationary noise methods where only the last
N innovations residuals are used. Alspach has done this by using (V-2)
to estimate H{k]Ki) as it changes with Q{k - 1) and R{k). Of course, the
more slowiy changing the noise covariances are, the larger N becomes, -
making ﬁ(k%Ki) more accurate.  Alspach also modifies (IV-136) for comput-

ing the a posteriori density of the gain:

’C[ﬁ(k]Ki)]'(k S22y oy

plK. Y, 1 =< ' ) (v-3)
ctﬁ(klki)]‘(§ =22y g

\
The adaptive algorithm of Alspach remains the same as for the sta-

tionary case, with (V-2) replacing (IV-137) and (V-3) replacing (IV-136).

Alspach adds another modification by restricting the range of ﬁ(k|Ki)

among parallel fiiters. This is done to enhance the adaptive filter's



68
ability to follow time changes in the noise covariances, and is i1lus-
trated Ey example:

Consider two filters in the parallel filter bank, one with very Tow
gain Kj and the second with h{gh gain Ky - Consider also the case where
the ratio Q(k'- 1)/R(k) is large, so that the optimal gafﬁ'is near K, .
Recalling Figures III-1 and IV-1, we expect ﬁ(k|K]) to be Tow while
ﬁ(k]Kj) becomes very high, indicating a diverging filter. p[KjIYk] will
be nearly zero, so that only the higher gains contribute to'ﬁ(k). Now
assume that Q(k - 1)/R(k) suddenly becomes small, sc¢ that the optimal
gain 1s near Kj' The true innovations covariance H(k[Kj) becomes small,
but the sample covariance ﬁ(k]Kj) will not show this effect for a consid-
erabie time; the old residuals v(k[Kj) taken while the filter was diver-
-gent must be deweighted and replaced by new residuals of lower covari-
ance. Such & process could require more than é time constant of the
fading memory filter of (V-2).

Alspach has therefore placed a ceiling on ﬁ(lej). If ﬁ(k[K]) is
the minimum sample covariance among all parallel filters, then ﬁ(k[Kj) is
not allowed to exceed an upper bound fMAX X ﬁ(k]Kl). Whenever this Timit
is exceeded, we replace the estimate Q(klk, Kj) with ;(klk, K]). This
modification allows p[Kj[Yk] to quickly become significant when the opti-
mal gain suddenly shifts toward Kj.

Alspach aﬁso modifies his algorithm to allow the value N to adapt
to changes in the time variations of Q(k - 1) and R(k). A fading memory
estimate Q(kjk) of the adaptive filter's innovations covariance is com-
puted using (V-2). A second estimate ﬁz(klﬁ) is computed by replacing N

Jin (V-2) with a smaller time constant N, (we could make N2 some fraction,

5 (
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say 20 percent, of the nominal value of N). If N is large and
" Q(k - 1)/R({k) suddenly changes, the small time constant filter will soon
detect this change by changing ﬁz(k|ﬁ). When ﬁ(klﬁ) and ﬁz(klﬁ) differ
by more than aﬁ allowable amount, N will be decreased.
Alspach uses the following procedure for changing N: “for station-

ary noise we know that the variance in the unbiased estimate ﬁz(k[ﬁ) is:
Cvardi,(k]R)Y = (kRN (v-4)

Assuming ﬁ(k|ﬁ)‘to be our best estimate of w(k]ﬁ), we can measure stand-

ard deviation in ﬁz(klﬁ):
o, = W(k|K)/ N 72 (V-5)

Alspach then modifies N according to the rule:

a = [H(K[K) - H,(k[K)| (V-6.4)
< IF A < Oy N >N+ N2 (V-6.B).
IF A& > 202: N >N - Integer[é—N 1 (V-6.C)
. Gy 2 )

The above procedure works for situations where changes in Q{k - 1) and
R(k) produce a wide dyﬁamic range in the values of W(k[ﬁ). In the simu-
lation testing described in Chapter VI this was not the case, with ﬁ(kLé)
never changing by more than 25 percent. ‘N was chosen experimentally from

various simulation runs and left constant,
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Figure V-1 is a block diagram of the adaptive algorithm of Alspach
for the specific MLS aircraft model of (1I1-1)-(II1-4). The a1goritﬁm is
implemented as a computef.subroutine, where during the kth iteration the
measurement vy is received and estjmates éAD and.g)AD are computed and
returqed to the main program (the subroutine is not given th%‘noise
covariances Q(k ] 1) and R(k)). The adaptive filter has L péra]]el sta-
tionary filters, implemented according to (IV-115)-(IV-117). The cond{-
tional density p[KiiYk] is computed for‘each filter according to (V-3),
using the sample innovations covariance ﬁ(k]Ki)‘of (v-2}. The adaptive
Kalman filter ié then updated using the gain ﬁ computed from (IV-138).

The block diégram shown here is for an algorithm using constant M.
FIRST is z logical variéb]e which is TRUE until k is greater than N. We
should point out that since this algorithm will be imp]emenfed as a sub-
routine in & digital computer simulation, fhe parallel filters must be
run serialiy. 1In an actugl parallel implementation, the-i—loops in the
block diagram would not exist: the parallel fifters would run
simnultanecusly.

We now précede to modify the other three adaptive filtering algo-
rithms for use in problems where the noise statistics are time varying.
We make use of Alspach's Tading memory approach to ?eweighting old inno-
vations information. Each algorithm is then specialized to our aircraft

problem model of (III-1)-(11I-4).

The Minimum Innovations Covariance Method

As stated in Chapter IV, this method is actually that of Alspach

where the maximum a posteriori (MAP) estimate of the gain K(k) is used by
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the adaptive filter. fhe adaptive filter algorithm loocks like tHat of
A]sPach, except that the Fondit{ona1 density p[KilYk] is not computed.
Instead, the adaptive gain K is just set equal to the gaim of the paral-
Tel filter with Towest sample covariance ﬁ(k[Ki). We can therefore use
the block diagram of Alspach in Figure V-1, where the'on]y modifications
necessary are between points A and B. These modifications are shown }n

Figure V-2.

The Method of Sage and Husa

The suboptimal algorithm of Sage and Husa s that of a discrete
Kalman filter where the unknown noise covariances Q(k - 1) and R{k) are
rep1aced:by_zhe estimatas of (Iv-75) and (IV-79). We can make these
estimgtes responsive to changes in the noise covariances by using only

the last ¥ innovations residuals;:

- sk N
R (kir =3z K@K + P31 - (3131 (v-7)
o J=k-N
- 1 KT T s T
R(kjk - 1) =% = (v (3) - HP(J[J - T)H (V-8)
j=k=N-1

We now use recursive approximations: .

-

(K - 1){65(k STk - DE KK (kv (KK (K)

+P(K[K) - eP(k - 1]k - 1)o' ], k <
rﬁs(k]k)rT = ' (v-9)

Lo - Ded(kpioeT + k(k)v(k)T (OKT (k)

+ P(k|k) - oP(k - 1|k - I)@T}, k > N
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A L (k-2)R (k=1 {k=2) +(K)v| (k)-HP(K[k-T)HT 1, K < N
R (k]k-1) =< B . (v-10)
: TE=DR (k=1 [k=2)(k)vT (K)-HP(k]k-1)H 1, k > N

\

We note that the equations in (V-9) and (V-10) for k < N are the recur-
sive equations (IV-88) and (IV-89) in the original a1gor}thm of Sage and
Husa. We can obtain a more practical form of (V-9), in terms of quanti-
ties already computed by the Kalman filter, by recalling from (IV-83}
that eP(k - 1]k - 1)¢ equals P(k|k = 1) - rd_(k - 1[k - 1)r':

rrﬁs(k - Uk = DT+ LK) (k) (K)KT(K)

) + P(k]K) - P(k]k - D)1, k < N

rQ (kjK)r =4 | (v-11)
rQ (k = Tk = 1)+ TLK(K)w(k)v! (KT (k)

+ P(k|k) - P(k]k - 1)1, k > N

~

- The adaptive algorithm of Sage and Husa {s now given by the origi-
~nal algorithm of {IV-82)-(1V-89) with (V-10) replacing {IV-88) and (V-11)
replacing {IY-89). Figure V-3 is a block diagram of this algorithm for
the specific éircraft model of (III-1)-(1I11-4). The Kalman filter equa-
tions (IV-83)-(IV-87) are given by the specific equations (I11-18)-{III-
28}, with-ras(k]k)rT replacing rQ(k)rT. R(k) is k;own in this problem,

and so ﬁs(k]k) is not needed,

The Method of Magill

Here we modify the algorithm of Magill for the case of scalar mea-

surements and noise. We make the conditional density p[ailYk] in
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(Iv-108) a function of only the N most recent innovations residuals:

a0 = Coler] T ; ) Tr—““' O (v-12)
. = R i ex -
P C!.II Kk p a.! j:k_N J]a p{ 2 ] jle -
We then use the recursive approximation:
. _.]_ 'I, Uz(kla_i) :
Cy Z(k]a?.)exp{-—z— W}D[Gi[Yk _ »[] . k < N )
ple; [¥, 1 =3 _ (v-13)
2 N -1
;-I_ -I v (klai)‘ _.__N—
CH 2(klai)§XP{-§'?QTETE;TJ(P[Gi]Yk _ ]]) » k>N

.
_ where p[ai]Yaj = pla;]

We racall that for our specific problem mode? (III-1)-{III-4) only
the plant .noise covariance Q{k - 1) is unknown. We can therefore set the
unknown parameter vector o equal to the scalar Q(k - 1). We imﬁ1emént L
parallel Kalman filters: the ith filter usés the true value R(k) and an
estimate Qi for Q{k - 1). - ‘

The %th parallel filter is not stationary, since R{k) is time vary-
ing. The gain Ki(k) is not a steady-state value as in Chapter IV, and
this requires running all the Kalman gain and covarjance'equations. This
problem can be avoided in our case by noting that Qi is never explicitly
used in cbmputing p[Qi[Yk]; only K(k[Qi) and w(k]Qi) are needed (here we
have replaced oy with Qi)' Since for every Qs and R(k)} there exists a
unique K(k{Qi), we might ask why the gain could not be a conditioning
variable instead of Qi' We embrace this approach here. For our problem

K1(k) is bounded between 0 and 1. Ue therefore implement a bank of
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parailel stationary filters with first gain elements K, uniformly spaced

1.

: . i

between these 1imits. K2 is given by (I1I-42). We can use (III-32) to
4 . C

-obtain w(k]Ki):

M(k|K;) = R(K)/[T - K; ] o (v-18)
i ) .

The conditional estimates for the ith filter are given by:

x(k[K = 1, K;) = ex(k - 1]k - 1, k) T (v-15)
Wk[K;) = y(K) - BR(K[K = 1, k) - © (v-16)
x(k |k, ‘Ki) = x(kk - 1, K;) + Kv(k[K;) - (v-17)

We obtain-p[Ki|Yk} from (V-13), realizing that it is equal to p[aiIYk]

where o. is that value Q; which results in a Kalman gain of K+

[
1 VP(kIK. )
, CW 2(k|Ki)EXP{W}P[Ki]Yk _ i] » K < N
PLK; 1Y, ] = (v-18)
2 N~ 1 :
1 Blx],) hod
cH 2(lei)exp{W}(P[Ki[Yk 2 1)) s k>N
We then obtain the adaptive state estimate from (IV-96):
' “ L . : }
x(kjk) = = x(k|k, K.)p[K.|Yk] (v-19)
i’:] 1 i - ..

The advantage of this approach is that only the Kalman estimate
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equations must be run for the ith parallel filter, since the gain Ky s
fixed. Also, as noted by Alspach, the optimal gain is-bounded, whiie
Q{k - 1) may take on any positive value. For the general problem where
Q{k - 1) and R(k) are both unknown, this modification of Magill cannot be -
used. Given only Ki’ we do not know w(k]Ki) and thus p[Kil?k] remains
unknown. We must then resort to using parallel filters where various
combinations of {) and R are assumed.

Figure V-4 provides a flowchart of the modified Magill algorithm
for the aircﬁaf? sys£em model (I1I-1)-(III-4). As for the other algo-
rithms, the adaptive filter 1s implemented as a subroutine, receiving
y(k) and R(k) and returning estimates éAP(k k} and 5(k|k). The a priori

density of the gain Kl(k) is assumed uniform.
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CHAPTER VI
COMPUTER SIMULATION TESTING

We now develop and employ a digital computer simu]qfiog‘for teéting
‘the candidate adaptive filters for our aircraft-1anding problem. We rea-
Tize at the onset that poor performance can occur for one éf tWo reasons:
first, an adaptive Kalman filter may be a poor estimator, given the sto-
chastic state mode{ for which it was developed; secondly, the assumed
state model may inadequately describe the physical system for which the
adaptive Filter is used. Our testing is therefore conducted in two

phases. We first simulate the state model (III-1)-(III-4), repeated

!_P(g) i o(k - ])
Le(v. __} ok - 1)

below:

: (k):! '
y(k) = [ 1 ) (v1-2)
6(k) ‘ _
plo(k - 1)1 = WN[0, Qk - 1)] (V1-3)
plv(k)] =

UN[0, R(k)] (VI-4)

At each new time increment the measurement y{k) and the error covariance
R(k) are sent to the candidate adap%ive filter, which computes state
estimates é(k]k) and 5(k]k). In the second test phase we remove the

state model (VI-1) and update o(k) deterministica]ly; as in (II-1):
a3
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e = f{k) (VI-5)

where f{.) describes the‘evolution of (k) for aircrafé motion along a
given flightpath. The measurement model (VI-2), {VI-4) is retained, and‘
tée adaptive filter is retested. In this two-prong aﬁproach we establish
the performance of each candidate filter for both- the assumed state model
‘and the actual Tanding aﬁbroach.

In simulating the stochastic s&stem model (VI-1)-{VI-4) we must
select realistic functions for Q(k) and R(k}. R{k) is the covariance of -
the error in the_estimate-y(k) computed by the locally optimum estimation
algerithm in the envelope processor. This cova}iance has been computed
as a function of recéiver signal-to-noise ratio in earlier simulations

5-271. G(k) is the covariance of the Gaussian white noise driv-

I\

5, pp.

ing the system., We recall from Chapter II that our state %odel (vi-1)
was derived from a continuous-time model where acceleration é(t) was rep-
resented by wnhite noise. The mean- square of the noise was set equal to
the square of the acceleration. From (II-11) and (II-22) the discrete

modeT noise covariance is given by:

Q(k - 1) = Atéz(tk) : (VI-6)
0f course, the aircraft does not know 5(tk), so Q(k - 1) is unknown as
well.

In light of {VI-6) we use the following scheme for propagating the
state model of (VI-1). The true acceleration 5(tk) is computed in a sub-

routine for a typical deterministic flightpath and passed to the main
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program. Here Q{k - 1) is computed using (VI-8). The system stéte is
then updated usihgla‘sampje from a white Gaussian population with covari-
ance Q(k‘- 1). We are careful here not to confuse o(k) and &(k) with
. 6(ik). The former are statés of a stochastic process drivenzby white
noise. e(t ), a deterministic quant1ty, is a tool for setting Q(k - 1)
in the simulation and has nothing teo do with the state.

The same subroutine which computes e(t } for aircraft motion a]ong
a given flightpath also computes e(tk) and O(t ).  In the second pnase of ‘
simulation, whqre o(k)} is updated deterministically, thése‘vaiues are
merely passed to the main prograﬁ, which sets o(k) equal tote(tk) and
o(k) equal to é(tk). We now address the task of realizing a svitable
flightpath for updating both (k) in the stochastic case and o(k) in the

deterministic case.

The Landing Aporoach

Before assuming & test landing pattern, we first place some
restrictions on the set of allowable flightpaths. Let fkk) descrfpe the
evolution of ofk) as the aircraft travels a given flightpath. MWe recall
from Chaﬁter II that, while unknown, f(k) is a member of a known class of
functions. We restrict this class to include those functions attributa-
bie to aircraft motion along a restricted family of_flightpaths. This
familj includes what we assume to be reasonab1e‘fiightpaths, thus ruling
out unrealistic approaches for which adaptive filtering qoﬁ]d not work.l
For egampie, a missed approach wheré the afrcraft crosses the runway at

high speed within a mile of the azimuth antenna, produces very high and

rapidly changing values of é(t). The resulting covariance Q(k) in the
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system model would be too rapidly varying to be followed by an adapti&e
fi?ter. -Me therefore p]aFe the following restrictions on the Tanding
approach: X

]; Maximum airspeed = 200 knots
2. Minimum turn radi;s =1 N. mile
3. Flightpath must bé coincident with runway
centerline before runway is reached (no
missed approaches)
hHe assume these conditions to be %hose of a worst-case approach.
Given thege restrictions, é(t) has been observed in simulation to

remain below G.?°/sec.2 [6, p. 40]. From {(VI-5) we can therefore place

an upper limit on Q{k):

. (.075)(.1)% = 7.5 x 107% (VI-7)

n

where At = ,07% seconds, the time bhetween the start of successive azimuth
scans {at a 13 1/3 Hz update rate).

He now return to the task of finding a suitable test flightpath
within the above restrictions. Figure VI-1 shows a representative land-
.ing approach selected for this simulation., The aircraft travels at 120
knots along an S-curve flightpath, staying on runWa§ centerline for the
Tast 3 N. miles of the approach. The runway is 2 N. miles long, with the
azimuth antenna at the stop end. .

We have developed a FORTRAN‘computer subroutine for_computingieft)
and its derivatives as the aircraft follows an S-curve approach of varia-

ble dimension. This general flightpath, shown in Figure VI-2, has the



88

Ruway Centerline

Figure VI- 2. General S - Curve E{ligh%patﬁ.

HisSiNG
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following programmable parameters:

airspeed (knots}

v =
d1, d2, d3 =.Iengths of the Etraight segments 0%
the flightpath, as shown in Figure
F VI-2 (N. miles) '
‘ s To = turn radii (N. mi1es)
] = distance (N. miles) from azimuth

antenna to that point where the

approach first coincides with the

runway centerline {5 N. miles for .

_ Figure VI-1). _
A flowchart of the flightpath subroutine is given in Figure VI-3.

The various straight and curved sections of the approach are labeled from
A to £ on_both the flowchart and Figure VI-2. The simulated fiight runs
from t%pe tg to t5, with t] through t4_markiqg transition times from one
flightpath section to the next. The subroutine receives the present azi-
muth scan number and computes the time t. Based upon which flightpath
section the aircraft is currently following, its cartesian cdordinates X 1

and y and their derivatives are computed. The subroutine then computes

o(t), &(t), and a(t):

o = arctan(y|x) (vI-8)
6 = (xy - xy)/(x% + %) - (VI-9)

6 =[xy - xy - 28(xk + ¥/ (x° + y7) (VI-10)
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"Figure VI - 3.B Flightpath Subroutine (continued)
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The values o(t), o(t), and é(t) are returned to the main simulation pro-
gram, along with the Togical variable FINAL, which is set to TRUE when
the simulated approach has been completed.

Figure VI-4 shows the-time functions e{t), o{t), and é(t) for the
S-curve flightpath of Figure VI-1. The simulated approach begins with
the aircraft 2 N. miles ahead of the first 90° turn and ends 2 N. miles
beyond the second turn, or 1 N. mile before the runway is reached
(d] =dy = 2 N. miles). At 120 knots the aircraft covers 8.88 N. miles
in 265 seconds, or 3550 azimuth scan periods (scan update rate =

13 1/3 Hz). Figure VI-4 also shows the plant noise covariance Q(k) for

the stochastic modeling of this flightpath, computed from (VI-5).

Computer Simulation Structure

He npw'describe the éct&a1 test simulation, implemented as a
FORTRAN computer program. A Tlowchart of the overall simulation 1s given
in Figure VI-5. At the kth scan period the main program calls the -
flightpath subroutine, which updates e(t), o(t), and 5(t) according to
deterministic aircraft motion along the S-curve flightpath. The main
program then updates the state values o(k) and &(k), either stochastic-
ally with white noise or deterministically, depending on the value of the
logical variable MODEL. When MODEL is TRUE, the staie is updated with
noise according to (VI-1). Q(k - 1) is computed from 6(t) using (VI-6}.
The white noise term w(k - 1) is then obtained-from Q(k - 1) and the
output of GAUSS, a subroutine which uses the machine random number géner»
ator to produce independent samples of a standard Gaussian population

(zero mean, unity covariance). 'hen MODEL is FALSE, the state is updated
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deterministically by merely setting e(k) to o(t) and o(k) to é(f) (k] and
X, are used for o(k) and o(k} in the actual program to avoid confusion
with ett) and &(t) when the sfochastjc model is used -- seé flowchart in
‘Figure VI-4). = B . ' : .

The main proqram now uses GAUéS and R(k) to procduce én édditively
corrupted measurement y(k) of the s%ate, as-gn (vi-2). Qf{k ~.1), R(k),
and y(k) are then sent to the Kalman filter subroutine; yhich computes -
the optimal state estimates éOPT(k]k) and éOPT(k]k) (these estimat?s are
‘optimal when the assumed state variable model {(VI-1)-(VI-4) is correct).
R(k). and y(k) are then sent to the candidate adaptive Kalman filter sub-
routine{ which, without knowledge of Q(k - 1)}, computes the suboptimal o
state estimates éAD(k]k) and éAD(k]k). The main program computes errors

in estimates of o{k) and increments X to the next scan period.

Simulatior Testing: The Stochastic Model Case

The S-curve flightpath of Figure VI-1 is used in both the stochas-
tic and deterministic phases of simuiation testing. Here we use Q(k)
from Figure ¥I-4 to update the state varizble model (VI-T).

As a result of the restrictions nlaced ca the family of a]ipwab]e
.fiightpaths, wé can Timit the sdaptive gain KI' We recall from (IV-7)
that Q(k) is bounded at QMAX = 7.5 x 10"4. Ne also recall from Chapter
III that the Kalman gain K1(k) is a monotone increasing function of
0(k - T)/R(k). Given Quay» We can thus Timit Ky by placing a lower bound

on 2. In earlier simulations we have found the r.m.s. error in the enve-

lope processer estimate y(k) to remain above .01° for the expected range

of signal-tc-noise ratios (20 db or Tess) [5, p. 271. We assume a lower



Timit on r.m.s. error in y(k) of .005°, yielding the bound

- -5 . .
RMIN =2.5x 10", wheQ QMAX and RMIN are used in our system model the
Kalman filter has a steady-state gain K] = ,602. We assume the'upper
bound K, = .625. '
MAX )

Three of the agaptive filters tested here use a bgnk-af péra11e1
~ stationary Kalman filters. In each case we use 24 parallel fitters,
ipcreménting K1 uniformly from .05 to .625. For each of the th;ee adap-
tive filters-we use a fading memory time constant N of 80 scan periods in
qomputing the samplie innovations covariances. This value has been chosen
experimentq11y‘by studying the effect of different values of N 66 fflter
performance for vgrious flightpaths (from typical to worst-case-
approaches). . The adaptive filter of Sage and Husa uses a constant N of
30 scan periods.

In-addition to the adaptive filters of Chapters VI and V we also
test a suboptimal filter which does not adgpt'ta chaﬁgeg_jg Q(k). Thés
estimator is merely a Kalman filter which uses the true value R(k),- but
which replaces the unknown Q(k) with the limit Quay OF 7.5 x 10’4, from
(VI-7). Such an estimator, which is much simpler than an adaptive
filter, has some intuitive appeal. Since R(k) is known, the filter gain
ﬁ](k) is always greater than or equal .to the opt{mgl gain K](k)_(as
Quay > Q(K)). Recalling Figure I1I-1, such a filter, while not always
optimal, always has a meaﬁ-square error in 6(k|k) less Fhan R(k). We test a
second cﬁnstant-q filter which has knowledge of_maximum acceleration 5(t) .

for the actual flightpath to be used. For this simulation the S-curve

2

approach produces a peak é(t) just above .01°/sec”, while Q(k) peaks at
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8 x 10'6 (see Figure VI-4.C, D). We hawassumed in the problem defini-
tion of Chapter II that nothing is known about the actual fiiéhtpath
except that it belongs to a given family o% épproaches. We nevertheless
include this filter for test comparison with the other candidate filters.

We éssume a constant R{k)} of ]0—4 for the simulation (r.m.s. error
“in y(k) = .01°). This is not too rea]istic; because the sigﬁa]-to—noise
ratic slowly rises as the aircraft approaches tﬁe runway. A slowly
decreasing function for R(k) would seem more reasonable. But judging
from Figure VI-4.D, we would expect the more rapid variations in Q{k) to
cause the most difficulty in adaptive estimation. A constant-R simula-
‘tion should give-a fair indication as to whetheerr not adaptive filter-
ing witl wark.

The candidate édaptive'fiTters have been tested in a FORTRAN simu-~
lation on a POP-1103 computer. The stochastic state model (VI-1)-(VI-4)
is implemented, with Q(k) updated as shown in Figure VI-4.D. R{k) is
constant at 10-4- The nonadaptive filter using QMAX has a steady-state
- gain ET = _476. The second constant-Q filter, which has %now]edge of
maximum acceleration for the actual flightpath, has a steady-state qain
Ky = .190.

‘ Figure VI-6 shows the optimal gain K](k) and the adaptive filter
gains kl(k) for the simulation. No plot is shown for Magiil's algorithm,
which computes the adaptive state estimate from {V-19) as a.weighted sum
of parallel filter estimates and consequently does not use R](k). -The
optimal gain goes through three near-step changes; at t = 55 sec., 115
sec., and 200 sec. For all adaptive gain plots shown, R](k) lags K](k)

at each of these three times in changing to the new gain level. This
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time lag is most noticeable in the filter of Sage and Husa, which has the
most difficulty in estimating the optimal gain. We recall that the adap-~
tive filters all use sample innovations covariances,.eithér of an assumed
op?ima] filter in the method of Sage and Husa, or of each of a group of
paraliel filters for the other methods. The true innovationstcovariances
change immediately whenever K1(k) changes,'but the‘sample covariances are
time averages and consequeﬁtly change more siowiy. The time Tag in El(k)
is most critical at t = 55 sec. Here the adaptive gain remains lTow when
the optimal gaip is high, a condition which can produce high mean square
errors in é(k[k) (see Figure III-1).. ‘

Figure YI-7 shows the error o(k) - y(k) in the envelope processor,
as well as the error ofk) - é(k[k) for the eptimal and constant-Q fil-
ters. The reduction in error produced by the optimal filter is obvious.
The nonadaptive filter with gain §1 = 476 (Q set to QMAX) reduces the
error ia y{k}), but not as well as the optimal filter. The filter with
gain ET of .190 works about as well as the optimal, except for t > 200
seconds, where § and K1(k) go to zero. Figure VI-8 compares the optimal
filter's error in é(k]k) with that of the adaptive filters. A1l of these
Filters seem to work about as well as the optimal, except near the end of
the approach, when Q(k)-goes to zero. -

We realize that results of a single simulation run cannot provide
us with a firm basis for any meaningful conclusions. fhe results shown
here are to some degree dependent upon the noise sequences w(k) and v(k)
peculiar to this particular run. We therefore repeat the above simula-
tion 100 times: the simulation is repeated without reinitializing the

machine random number generator, so that noise samples used in one
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experimental run are %ndependent of those used in the other runs. We
then obtain an ensemble average of the mean square error in é(k[k) for a
given candidate filter. .Let éi(klk) be the error in 6(k[k) for the ith

simulation run:
“0.(k]k) = 8(k) - o(k|k); ith run ' (VI-11)

We obtain a sample mean square error by averaging the square error at

time k for all simulation runs:

" 1 ] 0‘~2 . ‘
P(k]k) =300 . ei(k[k) (vi-12)
i

nmo |
—

Assuming é{kjk) to be unbiased, ﬁ(k[k) is a variance estimate, From (V-

4) we know that the standard deviation in this estimate is given by

op = P(k|k)//T00/2 = .]41P(K[k) . (V1113)

where P(k|k) is the true error covariance for 6(k]k) (which we know only
for the optimal filter). We thus expect our sample error cova%iance
5(k]k) to be within 14 percent of the true covariénce most of the time.
Here we use the square root of ﬁ(klk) as a sample r.m.s. error in 6(k]k).
Figure VI-9 shows the sample r.m.s. error in é(k]k) computed from
100 simulation runs for each of the estimators tested. The error in the
envelope processor esgimate y(k) stays near .01°; this is éonsisten;‘with
a constant covariance R(k) of 30-4. The optimal filter sigﬁificantiy
lowers the error, usually holding it below .004°, The minimum innova-

¢

tions covariance and Alspach adaptive filters work nearly as well as the
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optimal; only for t > 200 seconds, where Q(k) goes tb zero, doeg the
optimal filter have a ﬁoticeab]y smaller r.m.s. error. The adaptive
filter of Sage-Husa does almost as wel1; with a peak r.m.s. error of
about .006°. The Magill filter was not tested here. It was much slower
than the other adaptive filters, and the time required to run a 100- -
record simulation was too great to be practical (recall that the bank of
parallel stationary filters must be implemented serially in simu]ation).-
We note, however, that the single-run results for this filter look very |
much Tike those of Alspach. This is not surprisiné, as both methods com;
pute the a posteriori gain density p[KiIYk] from_p;ra]le] f%Tters.

We note in Fiqure VI-9 that the constant-Q fiitér with gain ﬁ] of
476 hés an r.m.s. error of about .006°. This is somewhat higher than
the error associated with the adaptive filters., The nonadaptive filter
with g] at .190 does very we1l;_however, with the r.m.s. error staying
near .004°. This compares favorably with the optimal and adaptive fil-
ters. Only when Q(k) becomes very small, as for t < 50 seconds and
t > 200 seconds, do the adaptive filters work significantly better than

this filter.

Simula?ion Testing: The Deterministic Case _

We have established that the candidate adapti;e and constant-Q fil-
ters work reasonably well when the assumed_state mﬁdel is implemented.
We must now find out how well they can work in a true physical environ-
ment, where the aircraft is actually ﬁoving a]éng a given f]igh;path.
Tﬁis of course is our original objecfive: to find an adaptive Ka]man

filtering scheme for computing a minimum mean square error estimate
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o(k)k), using the estimates Y, output by the airborne receiver's envelape

K
processor.

The entire simulat%on of the preceding section has'been repeatad,
with the logical variable MODEL now changed to FALSE. etk) is now
updated deterministically as the aircraft travels at 120 knots along tha
S-curve approach of Figure VI-1 (Recall that e(t), &(t), ané é(t) are
shown for this flightpath in Figure VI-4). R(k) is sti1l held constant
at 10-4, giving an r.m.s. error of .01° in the envelope processor esti-
mate y{k). In addition to the candidate adaptive and constapt-Q filters
we also run the same optimal filter as before, setting Q(k - 1) to
Até(tk): OF course, this filter is unrealizable, since 6(tk) is unknown
to the atreraft. |

Results Tor the single simulation run are given in Figures VI-10,
11, 12, Figurs YI-T0 depicts the gain K1(k) for the optima] and adaptive
_Ka]man filters. The adaptive gains look about the same as for the sto-
chastic mcdel simulation, with the Sage-Husa Tilter again having thé most
difficulty in astimating the optimal ggin.

Figure ¥I-11 gives the error in é(k|k) for the envelope processor
as well as the optimal and constant-Q filters. Again, these plots look
about the same as for the stochastic case. The optimal filter signifi-
cantly lowers the envelope processor error, while the filter with con-
stant gain Rl at..476 also lowers the original error, but not as much.
The filter with ﬁ] at .190 performs about as-well as the optimai,fi]ter,
except for t > 200 seconds. Here, where the aircraft is on runway cen-

terline, the optimal filter hés less error. Figure VI-12 compares the

optimal filter's error with that of the adaptive filters. The minimum
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innovations covariance, Alspach, and Magii] Tilters compare favorably
with the optimal. The Sage-Husa filter experiences some difficulty, how-
ever, having a noticeable error bias, especialiy in the time region
between 50 and 100 seconds. |

Figure VI-13 shows the sample r.m.s. error in é(kfk);for 100 simu-
Tation runs for each of the filters tested. The r.m.s. er;;r in the
envelope processor estimate y{k) stays near .01°. as expected. The mini-
mum innovations covariance and Alspach filters significantly reduce this
error, generally holding it to .004° or less. Both filters show a brief
rise in error at t = 55 seconds, where the acceleration 5(£) suddenly
changes {see Figure VI-4.C). Here the adaptive gain E}(k) lags the opti-
mal gain, using a low subeptimal gain until the sample innovations covar-
%ances in the parallel filter bank can respond to the change in é{t).
Except for this temporary error fncreasé, these two filters work about as
well as the assumed optimaT-f11ter. The adaptive algorithm of Sage-Husa
lowers the r.m.s. error in the envelope processor, but not to the same
degree as the other adaptive filters. The error increase at t = 55 sec-
onds is much more pronounced, rising almost to .012°.

The nonadaptive QMAX filter with R] at .476 has an r.m.s. error af
about .006°. This is higher than the .004° error often present with the
best adaptive filters. A reduction of error from .006° to .004° seems
rather marginal, though, when we consider the added sophistication
required by the adaptive filters. If we assume that maximum 5(£) is
known for the actual flightpath, then the constant-Q filter with §1 at .
.190 can he used. This filter has an r.m.s. error of about .004°; this

error performance is only slightly different from that of the adaptive
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112
filters. We note that the aéaptive filters lower the r.m.s. error to
about .002° when t ig less than 50 seconds or greater than 206 seconds.
Citing Figure'VI-Q.C, 5(t) i's nearly zero for t < 50 seconds. and it
equals zero for t > 200 séconds (here the aircraft is flying.on runway
centeriine). Thus the adaptive filters work best only when ithe accelera-
tion is near zero. )

From these results it would seem wise to use the constant-Q filter
with knowledge of maximum é(t) for estimaﬁing o(k}. This filter works
nearly as weil as the bést adaptive filters, and is much simpler to
E impiement. The constant-Q fifter uses the same equations as‘the Katlman
filter of- {111-18)-{1I1-28). On the other hand, the miniﬁdm innovations
covariance and Alspach adaptive Tilters, which have the best error per-
formance, must implement paraliel Kalman filters. MWhile such parallel
processing would bé fast, -especially for the minimum innovations covari-
ance fiiter, the hardware cost involved in realizing a bank of parallel
filters seems unjustified by the marginal mprovement in estimation
error. )

The constant-§ filter use nere with gain ﬁ] of .190 requires a
know]edgé of the maximum acce1er§tion éMAX for the actual landing
approach. In the general problam statement of this-paper we have assumed
the landing approach to be unknown; we can compute BMAX only for the
family of allowable flightpaths. We therefore cannot realize this fiiter
for our estimation problem as formally described. Yet we assume that the
approach pattern used at a given airport and runway is standard. In such

a case 6 could be computed and stored until needed by an aircraft

MAX
landing at that runway. At the beginning of the standard approach, this
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value 6MAX could be transmitted to the aircraft, which could then. use the
above constant-Q filter. . .

If the Tanding approach is not standard, or if there is no provi-
sion for communicating 6MAX to the aircraft, we can still use the
constant-Q filter which uses éMAX for the family of allowabie fl?ghtpaths
.‘(the filter with gain §1 = .4?6 in our simulation). This filter has a
higher r.m.s. error in é(klk) than the best adaptive filters: ,006° com-
pared to .004° when the aircraft is maneuvering. Yet the improvement in
performance for the adaptive filters is still not very significant when
weiéhed against their added comp]exitx. '

. In"cenera] the adaptive filters work well. The filter of Alspach
and thes winitmum innovations covariance filter lower the envelope proces-
sor error in estimating o(k) from .01° to .004° or less: a 60% reduc-
tion. But fer cur specific problem adaptive filtering does not appear to
be necassary. The constant-Q filters work nearly as well and greatly
simplify the estimation procedure. We should point out that use of the
constant-Q filters is made possible by the fact that the measurement
'noise covariance R(k} is known in our problem. In the general adaptive
estimation problem, where Q(k) and R(k) are both unknown, we would expect
the constant-Q filter to be highly suboptimal, with the superiority of
the adaptive Kalman filters becoming clearly evident. We note that the
minimum innovations covariance and Alspach filters do not use R{k)
anyway. These filters would work just as well for our problem if R{k)
had been unknown. .

We digress here to make a general observation regarding adaptive

filtering which may be useful in future work. Both in the simulation
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runs- presented here and iq pther runs the filter of Sage and-Hgéa vias
stower” than the other adagfive filters in respoﬁdiﬁg to changes in d(k}.
The adapti&e gain R(k) did not follow the optimal gain k(k) ag well, and
the time lags between K{k) and R(k) were much more pronouncgd when Q(k)
_‘varied,rapid1y. We can speculate as to why this happengﬂ.aéjhe Sage-Husa
filter uses the sample innovations covariance of the adapt;:e ¥{1ter in
- computing E(k). It Q{k) éxperiences a step change, the sample cévariance
eventually detects this change, causing E(k) to move toward the new .
wsteady-state gain. Yet the sample innovations covariance canﬁot immedi~
ately show the ;ffect of using the new adapfive’gain R(k), since most'of
the innovations residuals used in this statistic are those computed when
ﬁ(kj was at the old value. The other adaptive éTgorithms use banks of
fixed-gain parallel Kalman filters. When the adaptive gain moves to a
new value ﬁ(k) as the fesu?t of a change in Q{k), we already have a par-
allel filzer operating‘with a gain close to E(k). This -parallel filter
has always been running at the same gain, so that the effectsAéf Etk)
upon the sample inn;vations covariance for the new value of th) are felt
much sooner.

ﬁé should bear {n mind that the filter of Sage-Husa ﬁas designed
for problems where the noise was s?ationary. Aiso,_we elected to use the
suboptimal algorithm of Sage-Husa, rather than thgir more comp]icated
optimal design based on MAP estimation. We speculate that this=f11ter,

by using smoothed state éstimates, would be much faster in adapting to

changes in Q(k) and R(k).



CHAPTER VII
CONCLUSION

We have examined adaptive Ka]man‘f11tering for use iﬁ estimating an
aircraft's-azimuth angle e(k) in the Microwave Landing 5ystem. Adaptive
filters from the literature were modified for application to the MLS
problem and then tested in a simulated Ianding'approach. The airborne -
receiver's envelope processor azimuth estimate y(k) was used as an input
to each candidﬁte filter. The fi]tér's task was to produce a new esti-
mate é(k}k} having less mean-square error than y(k). In the simu]atioﬁ
testing conducted here, where an S-curve flightpath was used, two adap-
tive filters performed well: thé r.m.s. error in y(k) was.lowered during
various onases of the approach by 60 percent or more. A suboptimal, non-
adaptive estimation scheme was found to work almost as well.

In Figure VI-13 we presented the results of our S-curve landing
simulation, where the square error in é(k]k) was averaged for time k over
100 simulated approachés‘ The minimum innovations covariance filter and
the filter of Alspach proved to be the best adaptive filters, generally
holding the r.m.s. error in 8(k]k) to .004° or 1e§s. This compares to a
constant r.m.s. error in the envelope proéessor estimate y(k) of .01°,.

An r.m.s. error of about .004° was obtained by a guboptimal filter using
a fixed estimate of the state noise covariance Q{k) in the assumed sto-
chastic model for o(k). The estimate of Q was based upon knowledge of
the maximum acceleration 6MAX for the actual S-curve flightpath. WHhen

X for the flightpath was unknown a second value of 6MAX was used,

ua
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based on maximuin acceleration for an allowable family of flightpaths. A
filter using a constant ( estimate based on this value of éMAX estimated -
g(k) with an r.m.s. error of about .006°. ‘

In Figure VI-13 we note that the adaptive filters lower the r.m.s.
error to about .002° for t above 230 seconds; here the airéfaft has been
on runway centerline for about a mile. This is the onT& pﬁ%se of the
landing approach where the adaptive filters significantly outperform the
best fixed-Q filter (the filter with steady-state gair; f(] of .190 for our -
simulation).

Yhile this constant-Q filter has an err&r performance comparable to
that of the adaptive filters, it is not realizable undér the formal con-
straints of our problem as defined in Chapter II. We-assumed that the
flightpath of the aircraft was unknown fo the candidate filter; only the
restrictions on the family of allowable flightpaths were given. Thus we
would not know 5MAX for the actual landing approach. As explained in
Chapter VI, however, this filter ecould be used at an airport runway where
the landing approach is standard. EMAX could be computed and stored for
a given standard approach, and its value subsequently transmitted to an
approaching aircratt.

If there is no provision for making the value éMAX for the given
flightpath available to the aircraft's MLS receiver, we can resort to the
less optimal constant-Q filter where 5MAX for the set of allowable
flightpaths is used. In our simulation this filter compared reasonably
well with the best adaptive filters in error performance {.006° r.m.s.
error vs. .004° r.m.s. error for large segments of the approach).

The fixed-Q filters use the Kalman filter equations of (II1I-18)-
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(I11-28), replacing (k) with Quay- Revisiting the algorithm flowcharts
in Figures V-1 to V-4, we note that the adaptive Kalman filters are much
more complex. The minimum innovations covariance and Alspach filters can
run nearly as fast as the Kalman filter, but only when the paraliel sta-
tionary filters run simultanecusly. This requires tﬁe use of a special-
purpose digital machine with parallel processing capability.

We conclude that, for a curved landing pattern similar to the S-
curve approach used here, adaptive Kalman filtering is not needad. A
nonadaptive, fixed-Q filter can estimate o{k) with a mean-square error
performance comparable to optimal. While adaptive filters can Tower this
mean-square error further, the marginal improvement is judged to be
insignificant in comparison with the added complexity and cost of realiz-
ing a bank of parailel filters.

The success of the'constan;—q filter results from the fact that the
measurement noise covariance R(k) is known in our problem. Given a know-
Tedge of R{k}, We can be assured that.our nonadaptive filter will not
diverge by mereiy set%ing our estimate of Q{k)} to some maximum Timit
never exceeded by the true value. The more accurately we can bound Q(k),
the closer to optimal this filter becomes. In tﬁe more general problem
where Q(k) and R(k) are both unknown, we specu]até that an adaptive
filter would be clearly superior. HWe note that the_minimum innovations
covariance and Alspach adaptive filters make no use of R(k} in our
problem, but assume it to be unknown. Thus their error performance would

remain unchanged if knowledge of R(k) were lost.
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