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PREDICTION OF COMPLIANT WALL DRAG REDUCTION ~ PART I

Steven A. Orszag
Cambridge Hydrodynamics, Inc.
Cambridge, Massachusetts 02139

1. INTRODUCTION

This report discusses the formulation, development,
and some applications of a numerical model of the effect of
compliant walls on turbulent boundary layer flows. Since
skin-friction drag accounts for about half the drag on
long~-haul aircraft, any reduction in this drag is of
great importance in improving fuel economy and aircraft
range as well as increasing payload efficiency and decreasing

environmental pollution.

The current state of experimental and theoretical
research on compliant walls and their effect on turbulent
boundary layers has been reviewed by Fischer, Weinstein,

. Ash & Bushnell1 and by Bushnell, Hefner & Ash2. A survey
of various alternative techniques for aircraft drag reduction
has been given recently by Hefner, Bushnell, Whitcomb, Cary
& Ash3(Ref. 2 is reproduced as a chapter in Ref, 3). In
summary, the current state of both experiments and theory
is inconclusive. Some experiments show a substantial effect
of compliant walls on drag, others do not. It is not

clear that conventional materials can serve as suitable

compliant boundaries to give drag reduction, though there



do seem to be some attractive possibilities.. It is only
clear that drag reduction by compliant walls is not as

simple é phenomenon as may be suggested by cursory consideration

4 Evidently,

of the hydrodynamical efficiency of dolphins.
the dynamical characteristics of the wall are crucial in

determining whether drag reduction or drag enhancement will

result; the response of the wall must be matched in some
dynamical sense still to be elucidated to the characteristics
of the turbulent boundary layer over it. One of the principal
purposes of the present work is to help in identifying

the nature of the effect of the wall motions on the drag

so that design of suitable walls can be expedited.

There have been several theoretical investigations
of turbulent boundary layer flows over moving walls; a
survey is given in Refs. 2,3. One of the most attractive
ideas2 for explaining drag reduction by compliant walls
is that the wall influences the turbulent burst phenomenon
by providing a pressure field that tends to inhibit bursts
‘when they normally occur. This idea leads to significant
gualitative understanding of the effect of compliant walls.
In the present report, we discuss a numerical model based
on the above idea and report quantitative tests of it as

a mechanism of compliant wall drag reduction.

In Sec. 2, we discuss the proposed mechanism of
compliant wall drag reduction. In Sec. 3, we discuss the

numerical model of the mean flow motion. Then, in Sec. 4,



we discuss techniques for the investigation of the stability

of the predicted mean flow profiles and fér the predictioh

of burst frequency. In Sec. 5, we present results of the
present model for turbulent boundary layer velocity profiles
‘auring the burst phenomenon and use these results to fix °
various parameters of the model by comparison with experimental

results. Then, in Sec. 6, we present numerical results

for the combined mean-flow and stability analysis of the
turbulent boundary layer flow over a compliant wall. S In
this analysis, we use a crude burst predictor based on
amplification factors. Finally, in Sec.7, we summarize the
current state of research on the turbulence flow model

investigated here.



2. A PROPOSED MECHANISM OF COMPLIANT WALL DRAG REDUCTION

In the last decade, there has accumulated a wealth
of experimental evidence that the process of burst formation
in turbulent boundary layer flows is not completely random,
but rather can be correlated with a set of reasonably well-
ordered dynamical events. Thus, a plausible coherent sequence
of events for formation and regeneration of bursts is as
follows® s

1. '01ld' bursts produce a large adverse pressure pulse
that moves at a speed of roughly 0.8U_ and has an amplitude
of roughly 3P£ms' where p;ms is tﬁe rms wall pressure fluctuation
intensity.5

2. This adverse gradient retards the flow near the
wall and produces a low-speed streak.

3. A new burst is created when the low-speedwstreak
creates highly inflectional velocity profiles in the wall
region.

4. The favorable part of the large-scale pressure pulse
due to previous bursts tends to assist the new burst in
'sweeping' out away from the wall. Most of the Reynolds
stress and turbulence production occurs during the burst
and sweep process, with relatively low turbulence activity
between bursts.

5. The ;new' bursts set up conditions similar to that

discussed in 1. above and the whole sequence of events is

repeated.



Bushnell2 has proposed that the above sequence of
events can be used to formulate a quaﬁtitative flow model
for the prediction of propertiés of turbulent boundary
layers. The idea is to impose.the experimentally measured
pressure pulse due to 'o0ld' bursts, to model the background
turbulence between bursts using a crude turbulence model,
and then to calculate the inflectional mean-velocity profiles
produced by the pressure pulse using a two-~dimensional Navier-
Stokes equation computer code. Finally, the occurence of
new bursts can be investigated in this flow model by
calculating the growth of Tollmien-Schlicting waves and
using an amplitude-growth criterion8 to predict the

onset of new bursts.

Bushnell's turbulent boundary layer model also
suggests a mechanism for drag_reduction by compliant walls.
If tﬁe wavelength of thé wall motions is small (at most the
wavelengtheof_the'imposea pressure pulse), the wall motion
can interrupt the feedback loop outlined above somewhere
between steps 2. and 4. If the short wavelength wall motions
can delay burst formation through the adverse part of the
imposed pressure pulse then the favorable part of the imposed
pressure pulse may inhibit bursting. 1In this case, turbulence

production and turbulent boundary-layer drag are decreased.

The present work is motivated by the above ideas of
Bushnell. The model seeks to determine quantitatively
whether realistic wall motions and imposed pressure pulses
interact in a time-dependent environment in such a way as

to decrease burst frequency and wall drag. The present



work concentrates on the numerical study of the mean
velocity p:oﬁiles produced by the imposed pressure

pulse. We use a relatively crude technique to investigate
thg stability of the resulting profiles. (see Sec. 4).

Only a limited number of different cases have been examined
to date and the conclusions regarding the flow model are
.not yet certain. It seems that if the wavelength of the
wall motions is large (of order the length of the imposed
pressure pulse), there is no drag reduction. However, if
the wavelength of the wall motions is very small (shorter
than the sublayer thickness), substantial drag reduction may
occur (although our computer runs at such short wavelengths
may have just marginal accuracy). Future work must test
the flow model further, particularly with respect to
intermediate wavelength wall motions and more accurate flow

stability calculations.



3. NUMERICAYL, MODEL FOR THE MEAN FLOW

In this Section, we discuss the numerical techniqueé.
~used to éolve the equations of Bushnell's turbulent boundaiy.
layer model discussed in Sec. 2. We solve the two-dimensional
Navier~-Stokes equations with a background turbuience model,
inflow-outflow boundary conditions, and imposed large-scale
pressure pulse at 'infinity'. The resulting mean-flow
profiles show the effect of the pressure pulse in distorting .
(retarding) the mean profiles and in producing inflectional .

profiles.

The two-dimensional Navier-Stokes equations for

incompressible flow are

3¢ <> 3> > -> >
3% + veVv = - Vp + V-% + £ (3.1)
Vv = o (3.2)

where $(x,y,t) is the two-dimensional velocity field,
p{x,y,t) is the pressure, g is the stress tensor, and %
is an imposed external force. We solve (3.1) in a channel:
0<x<L and 0 < y < H. In a typical run, the values
of L and H are L. = 600 and H = 200 in units non-dimensionalized
by the length v/UT where UT_is the friction velocity and v is
the kinematic viscosity. - |

We approximate the stress tensor z by retaining only
its x-y component: "

Tey = = uv' o+ v%%

where Vv is the viscosity, U is the mean velocity, and

u' and v' are the x and y components, respectively, of the



~

.velocity fluctuations. The Reynolds stress, -u'v', is

then evaluated by Van Driest's em.pirical..formula9 so that

_ 2 |au _ AU/ 3u
?xy = [B(.4y) |§§| (1 e )Y+ v v (3.3)

where the constant A is chosen to be .04 in agreement with
expetimental measurements of turbulent boundary-layer mean-
velocity profiles. The constant B is an ad hoc correction
to the usual Van Driest formula that accounts for the fact
that the turbulence level between bursts is small; a typical
value for the background turbulence scale constant B in our

calculations is B = ,05.

Boundary conditions

The boundary conditions to be imposed on (3.1-2) regquire
more detailed discussion. Each of the four boundaries x = 0, L,
Yy = 0, H poses its own special kind of boundary condition problem.
Let us begin by a brief-analysis of boundary conditions for
(3.1-2). We do this by an energy analysis that establishes
a uniqueness theorem for the Navier-Stokes equations.

Consider two flows 31(x,y,t) and 32(x,y,t) that both
satisfy the same boundary conditions and that both satisfy
(3.1-2). 1In this case 3(x,y,t) = $l(x,y,t) - $é(XIYIt)

satisfies the equations

¥

av > L] -) +. + = —' *
3 + vl W+ sz Vp +V E

where p = Py - Py and g = %1 - gz. It follows that the

perturbation energy E(t) defined by



satisfies
de . _ 1 2> > - e o
dt 2 JaD vV nput az IBD PV hout dz
R e > aTxx ->
- I v-(v-V)v2 dx + [ u —3 d
D D Y

where 23D is the boundary of the computational domain D,

Kout is the outward normal on 3D, and df is the surface element

on aD. It follows that if

M = max |¥v.]|
XeD 2
and

is

(i) p is specified on all of D and $-Hout

specified on all of 3D where G-Eout< 0 and T is specified on all of D:

or (ii) 6'ﬁout is specified on all of D and Vv is specified

t all points wh ven_ . <0, th
a a points where v-nout ’ en

Qolﬂa
(aaf)

< 2M E(t)

Therefore, if either of conditions (i) or (ii) holds
at each point of the boundary of the computational domain,
the error energy E(t) grows at most exponentially with t,
so the problem is well posed.

Using the above analysis, we can specify physically
interesting boundary conditions for Bushnell's turbulent
boundary layer model. We treat the four boundary surfaces
individually.

x=0

Here the flow is assumed to enter the computational
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domain. Since the boundary is an inflow boundary, it is
physically reasonable to assume that both components'of the
velocity field are known at x = 0. Thus, we impose the
inflow boundary conditions that u(0,y,t) and v(0,y,t) are
both known for all y and t.

X=H-

This boundary is an outflow boundary. Since the only
non-vanishing component of the Van Driest Reynolds stress
tensor (3.3) is Txy’ it follows that the Navier-Stokes
equations (3.1-2) are parabolized in the x direction. Therefore,
according to (i), we need only impose boundary conditions on

the outflow component of the velocity ven = u(lL.y,t).

out

However, imposition of boundary values on u{L,y,t) directly
will give some difficulty because it will generate boundary
layers near the outflow point x = L. Therefore, we

imposé the weaker boundary condition

u, (L,y,t) =0 (3.4)

Boundary conditions like (3.4) are known to have small
upstream influence so they do not disturb the main region

of computation which is away from the downstream boundary

This is the location of the compliant wall. If the
wall were rigid, we would impose the boundary conditions

V(x,O,t) =0 (3.5)



There are two effects of a moving boundary at y = 0.
First, the boundary location is shifted to y = n(x,t).
Second, the wall motion as a function of t requires the
velocity to be nonvanishing at the wall. The proper .

" boundary condition at the wall is that there is no relative
motion of the wall and the fluid at the wall-fluid interface.
We impose boundary conditions at the moving wall by

assuming linearized wall motion. This assumption is a
great simplification and is justified because the wall
motions of interest are not large compared to the sublayer

thickness. It follows that the vertical wall motion is

an (3.6)

where U = Dx/Dt is the component of wall motion in the
direction tangent to the wall. Eq. (3.6) for the vertical
wall motion v is true nonlinearly. Linearization of the
wall motion implies that all quantities in (3.6) may be
evaluated at the undisturbed wall location y = 0.

In order to complete the specification of boundary
conditions at y = 0, it is necessary to know U(x,t), the
tangential component of the wall motion. This quantity
depends on the physical model of the compliant wall, and
must be specified in addition to the vertical wall motion

n(x,t). In the present work, we do not determine the

wall motions self-consistently, in the sense that we impose
n(x,t) and do not determine the effects of wall pressure
fluctuations due to the turbulent boundary flow 6n the motion

of the wall.

11
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Most of the materials of current interest for compliant
wall dtag reduction applications are flexible materials that
can 'stretch' in the y-direction but have little lateral
freedom for movement in the x-direction. Therefore, because
of the lack of specific information on this point, we have
chosen the wall boundary condition U(x,t) = 0. Admittedly,
this is oversimplified, but a detailed model of the wall
is necessary before this boundary condition can be improved.

It is not generally recognized that both n(x,t) and
U(x,t) must be specified to determine the wall motion.
However, consider the simple wall motion y = n(t), independent
of x, The motion of the wall in its plane y = n(t) can
be arbitrary and the proper tangential boundary conditions
are

u(x,n,t) = U(x,t)

The boundary conditions imposed at the top of the
layer y = H are the most unusual, and the most difficult
to get right (see below). In order to model the large-
scale pressure pulse due to old bursts, we want to impose
the value of the pressure p(x,H,t) at the top of the
layer. According to our analysis of boundary conditions,
this obviates the need to impose the vertical (normal)
component of velocity v(x,H,t).at an outflow point.

However, on physical grounds we expect the magnitude
of the normal velocity at the top of the layer to have

profound effects on our ability to model the bursting



process., In fact, we have found by numerical experimentation
with Bushnell's model (see Sec. 5) that there is extreme
sensitivity of the model to the normal component of velocity
at y = H. Therefore, we have assumed as a crude model of
this effect that there is uniform inflow at all points of
the boundary y = H of magnitude -V:
v(x,H,t) = -V (3.7)

where V is non-negative. 8Since the boundary y =H is now
an inflow boundary, it seems to be also necessary to
specify u{x,H,t). However, it is not difficult to show
that this would overspecify the boyndary conditions at y = H
because u(0,y,t) is specified.

In computations with rigid walls, the imposition of
the boundary conditions that p(x,H,t) and v(x,H,t) are
specified has seemed to be satisfactory, except for some
slight difficulty near the intersection of the outflow

boundary x = H and the 1lid y =L; this difficulty due to a

very thin outflow boundary layer was circumvented by introducing

additional dissipation locally near x = L, y = H in the
numerical computations. However, in some recent computations
with compliant walls with wavelengths intermediate between
the sublayer thickness and the pressure pulse wavelength, we
have encountered numerical instability that appears to be due
to the top boundary conditions. This difficulty is still
under active investigation, but it should not affect in any

way the results presented in Sects. 5-6.

13
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Numerical methods

We solve (3.1-2) with the boundary conditions
discussed above using a mixed spectral-finite difference
method. The vertical (y) diréction is resolved using
expansions in Chebyshev polynomials, while the x~direction
is resolved using a second-order staggered-grid finite

difference scheme. Thus, we represent the velocity field
by

- N
V(idx,y,t) = I U (3Ax,t)T (2y/H-1) (3.8)
n=0

where Ax is the grid separation in x and Tn(y) is the
Chebyshev polynomial of degree n, defined by
Tn(cos 8) = cos n8 .

A review of spectral methods and finite-difference methods
used here as been given elsewhere}l';z Let us just summarize
here some of the important properties of these methods:

i) The use of Chebyshev polynomials in y is infinite-
order accurate, in the sense that errors go to zero faster
than any finite éower of 1/N as N » o ,

ii) The use of Chebsyhev polynomials in y yields efficient
calculations if use is made of fast Fourier transforms.

iii) Chebyshev polynomials allow accurate resolution of
boundary layers; typically, if there are boundary layers
of thickness e , they can be resolved using only 1//e¢ polynomials.

iv) The use of a staggered grid in the x-direction gives
results roughly equivalent to those achieved by non-staggered

grids with twice the spatial resolution.



v) The solution of the Poisson equation for the
pressure field p is accomplished by fast Fourier transform
in x and then reduction of the equations for the y-Chebsyhev
coefficients to a tridiagonal system of equations; The
resulting fridiagonal system can be solved efficiently
using the LU-factorization algorithm in only order N
operations; After Fourier transformation in x, the Poisson
equation for the pressure takes.the form of the system

of uncoupled two-point boundary value problems

When p is expanded in a Chebyshev series in y, the resulting

equations for the Chebyshev coefficients pn(k) in the expansion

N
plk,y) = nﬁo p, (KT (¥) (3.10)

are given in the tau approximation by12

p P
_n-2_ 1 1 n+2 _
T In@-27 T (;7 + 2n2_2) Ph ~ In(o+D) = ifn(k) (3.11)

The boundary conditions become
1¢-1)"% = a
(3.12)
an = B
The tridiagonal system (3.11-12) is essentially diagonally
dominant so that LU-decomposition is numerically well

conditioned.

15
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vi) We use Adams-Bashforth time differencing of the
nonlinear terms, together with a sémi-implicit time-
differencing scheme for the diffu#ive terms of the
Van Driest Reynolds ﬁtfess and for the inflow terms
at y = 0 and y = H. Because the Chebyshev-polynomial
expansions have so much resolution at the top and the
bottom of the channel, they would give extremely stringent
time~-step retrictions on the Adams-Bashforth scheme. We
avoid this difficulty by a semi-implicit method in which

the terms that would cause the time-step retrictions to be severe

. are treated implicitly, thereby avoiding the time step

restrictions. Detaile of this process are given in Refs, 12-13.
For the present problem, the terms that give unreasonable
time-step restrictions are just the diffusive term and the
terms representing advection through the top and bottom
boundaries. These terms are easily treated semi-implicitly
by subtracting from both sides of (3.1) constant coefficient
diffusive and convective terms that bound the troublesome
i:erms:!'2 These subtracted terms are easily treated implicitly
because they are constant coefficient terms.
vii) The code is also formulated in such a way that
a moving coordinate system in x can be used as an option.

This option is not used, however, in the calculations reported

in Sects. 5-6.



4. NUMERICAL METHODS FOR STABILITY CALCULATIONS

Once the mean-flow profiles are calculated by the.
computer code described in Sec.3, we study the stability
of the resulting flow by solution of the Orr-Sommerfeld
equation for temporally growing Qisturbances in steady, -
plane-parallel two-dimensional incompressible flow. There
are three important approximations made in this study which
should be elminated in further work on this problem. First,
we calculate only temporally growing disturbances, so we must
convert between temporal growth and spatial growth using a

' group velocity transformation].'4

In our preliminary calculations
of the stability of the mean~-flow profiles we have been even
cruder; instead of using the group-velocity transformation,

we have transformed using the more readily calculated phase
velocity vph = w/k, where w is the frequency of the disturbance
and k is its wavenumber in the x~direction. For the kinds of
distrubances under present study, the approximation of the

group velocity by the phase velocity should not introduce

errors larger than 20%.

Second, by assuming the mean-flow to be steady we neglect
possibly very important phase-coherence effects which could
strongly affect growth rates. We have included time-variation
of the mean flows only ‘through the effect of using different
profiles at different times in the evolution of a wave packet.
The justification for the approximation of steady flow is
weak; a non-steady flow stability analysis requires calculation
of the eigenvalues of a Floguet theory and is best done for

the present problem by solution of the full linearized Navier-

17
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Stokes equations.

The third limitation of the present kind of stability
analysis is the assumption that the flow is plane-parallel
in x. In fact, the mean-flow profiles we determirne
by the computer code described in Sec. 3 are space varying.
Part of the effect of the space variation is accounted for
by use of different profiles in the study of stability of
a wave-packet. However, the best way to study stability
of a time-varying, space-varying flow of the sort encountered
in the Bushnell turbulent boundary layer model is to solve
the linearized Navier-Stokes equations in the channel
0 <x<L, 0<y< H.. This task will be postponed to
future work on the problem.

The Orr-Sommerfeld equation for the streamfunction
of a linearized two-dimensional disturbance of the mean-flow

profile u(y) is

2 2
(Lo - o®?2 viy) = iR[(eE-0) (I - o) v - ad"v] (4.1)
dy dy

with boundary conditions
v = v! = 0 at y = 0,H (4.2)

Here the streamfunction is assumed to have the form
v(y)el(ax—wt) ,
where o is the wavenumber in the x~direction and w is the

(complex) frequency.



The Orr-Sommerfeld equation (4.1) with (4.2) is
solved.by expanding the eigenfunction v(y) in a series
of Chebyshev polynomials and then determining the eigenvalue
®w by means of a matrix eigenvalue computer program based on

the QR algorithm.15

This procedure is very efficient and
accurate.
We use the linear stability analysis outlines above

to predict the occurrence of a burst as follows. First,

we calculate the stability characteristics of various profiles

at a fixed x location and various values of the time t.
These calculations proceed until a.time to is found at which
the profile is unstable ( Imw > 0 for some wavenumber o ).
From that time onwards, we calculate the amplification

ratio by the formula

fl = exp I Im w dx/c (4.3)
0

where we use the phase velocity Re w/a as an estimate of c
(see above). The profiles whose stability is calculated

are related in space-time by the relation

Ax = cAt (4.4)

Next, the Michel-Smith criterion8 for occurrence
of a burst is applied; a burst is presumed to occur if

A o Q9 (4.5)

This empirical correlation has worked well for a variety of
transition flows, but it is admittedly very crude and the
power e9 may be adjusted later after we get more experience

with the present codes.

19
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There are a number of refinements of the present
stability calculations that should aléo be performed in the
future. First, the linearized.Navier-Stokes equations
should be solved to account for nonparallel and nonsteady
flow effects. Then, it may be useful to estimate the
magnitude of nonlinear effects and to use a more realistic
burst criterion than (4.5).

Some modifications in our present codes are possible that
are significantly simpler than the linearized Navier-Stokes
calculation mentioned above. First, the group velocity
of the waves should be used instead of the phase velocity.
Second, a spatial stability calculation should be performed
instead of the present tmeporal stability calculations.
Third, the effect of-the inflow velocity -V imposed at
y =H (see Sec. 3) should be included in the 0rr-Sqmﬁerfe1d
equatibn; in fact, we have written our stability code to
account for this latter effect, but it is not included in

the calculations reported in Sec. 6.



5§, FLAT PLATE RESULTS

In this Section, we report a number of numerical

experiments performed to tune the Bushrell turbulent
boundary layer model for flow over a flat plate. First,

in Fig. i, we show the results of a numerical experiment
performed to test the accuracy of the Van Driest Reynolds

stress (3.3) with B= 1 (full strength) in reproducing a
turbulent boundary layer mean-velocity profile. The calculation
(as well as the other calculations reported in this Section)
" used 33 Chebyshev polynomials to resolve the boundary layer (v)
-direction and 257 staggered grid points to resolve the downstream
(x) direction. For the experiment (Run 1l) plotted in Fig. 1,

we impose the boundary conditions'p = v = 0 at Y, = H = 200. It
is apparent from Fig. 1, that a turbulent boundary layer profile
is well preserved in evolution from the upstreamlboundary

at x = 0 to %, = 200 (and even beyond). This calculation

o+
shows that the upstream influence effect of the downstream

boundary at x, = 600 is minimal -=- in fact, no appreciable

+
upstream influence of the boundary at X, = 600 is discernible
beyond X, = 500.

The next set of runs we performed were designed to
adjust the background turbulence level constant B in (3.3)
and the infliow velocity.v at y, = H, as well as to test
the form of the required pressure pulse to achieve reasonable

mean velocity profiles. The goal of these experiments

21
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is to match the development of turbulent boundary layer
profiles between bursts as measured by Blackwelder.16
Some of Blackwelder's data for conditionally averaged
velocity profiles before, during and after the period of
burst formation are shown in Fig. 2. Observe the very strong
inflectional profile at a time delay of -3.1 ms. This
profile is strongly unstable and gives rise to a burst
a short time later.

In Fig. 3, we plot the form of the pressure pulse

used in our calculations of the Bushnell model. The magnitude

of the pulse is chosen to be 3P£ms' in agreement with Burton's

data5 and to occur over a time period of 25 (in units of
vyuz « The triangular form of this pulse is an arbitrary

choice, but it is not too inconsistent with available
experimental data. In some of the numerical experiments
reported below, the amplitude of the pressure pulse is

2.5p!

rms and in some others the length of the pulse is

decreased to 20.
In Fig. 4, we plot the results of a numerical
calculation using the code described in Sec. 3 with
B =0.05 and v = 0 at y, = H, together with the
imposed pressure pulse. The agreement with the
Blackwelder profiles shown in Fig. 2 is not very good.
In Fig. 5, we plot the results of a similar experiment
in which the vertical dimensionsion is truncated to 0 <y, < 100,
with the pressure pulse applied at Y, = 100. The agreement with
Blackwelder's measurements is even worse. We conclude from

this comparison that the pressure pulse must be imposed in
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Bushnell's model of the turbulent boundary layer. Time
differences are measured from passage of the peak of the
adverse pressure gradient pulse. The boundary conditions
at the top of the layer are v = 0.
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Figure 5. Same as Figure 4, except that the pressure pulse
is applied at y, = 100 instead of y_ = 200
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the region Y, 200, and certainly not so close to the wall

as y_ = 100.

In Fig. 6, we plot the results of a calculation
similar to that shown in Fig. 4, except that the imposed
inflow velocity at the top of the layer is v = -0.5U0 .,

In this case, the retardation'due to the imposed pressure
pulse is much larger than that shown in Fig. 4.and is in
qualitative agreement with Blackwelder's results. Then,

in Fig. 7, we plot the results of a calculation similar

to the calculations plotted in Figs. 4 and 6, except that
the inflow velocity at the top of the layer is v = -2U ,

In this case, the inflectional profile is very strong

and even our two-dimensional mean-flow code with background
turbulence model went unstable near the peak of the adverse
pressure gradient pulse, This difficulty with Run 5 (shown
in Fig. 7) is, we believe, unrelated to some calculational
difficulties with intermediate wavelength compliant wall

calculations reported later. We believe that the breakdown

of Run 5 is due to the small value of B = 0.05, so that the

background turbulence cannot stabilize (by diffusion) the
unstable profile produced by the pressure pulse.

The conclusion to be drawn from Figs. 4-7 is that
the strength of the inflectional profiles produced by
passage of the pressure pulse is a very strong function

of the inflow velocity v at the top of the boundary layer.

It seems that v & -0.5U gives results in reasonable quantitative

agreement with Blackwelder's measurements.
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Figure 6. Same as Figure 4, except that an inflow velocity
= -,5U0 is imposed at the top of the calculational domain, ¥,=200.
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6. COMPLIANT WALL RESULTS

We have performed several runs for the calculation
of meaﬂ velocity profiles of a turbulent boundary layer
over a compliant boundary with imposed wall motion. In
all the experiments to date, we have assumed that the
component of the wall motion in the direction of the
mean flow vanishes: U(x,t) = 0. As discussed in Sec.3,
the justification for this approximation is that typical
compliant boundaries have supports that stiffen the medium
to lateral deformation. Our computer code has run satisfactorily
on cases in which the wavelength of the wall motion was both
very long and very short. For example, in Fig. 8, we plot
the results of a numerical calculation for a flow over

a compliant boundary whose surface motion was a short wave,

ﬂ+ = 5 51n(2x+ - 30 t+)

This wavelength is as short as can be resolved on our

grid with 257. grid points in x.

We -have also performed stability calculations for these
flows over compliant moving walls. The amplification ratio
A/AO is calculated as in Sec. 4 and the Michel-Smith
correlation is used to predict the occurrence of a burst.

In Fig. 9, we plot the amplification ratio vs time for a

wavepacket originating at x, = 200 for Runs 4 (Fig. 6) and

+
7(Fig.8), in order to demonstrate the effect of a compliant .
wall. In Fig. 9, we plot the data two ways: the squares

and triangles indicate the amplification factors obtained
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Figufe 8. A plot of the calculated velocity profiles for Bushnell's
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Figure 9.

.A plot of the amplification ratios of the most

unstablg qlsturbaqcesof the boundary layer profiles of Runs 4

gnd 7, which are identical except that Run 7 has a short wavelength
imposed wall motion. Results are presented for disturbances

following the wavepacket and for disturbances fixed at x, = 200.
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by local stability analysis following the most unstable
wave using a phase velocity transformation; the crosses
and circles indicate the amplification factors obtained

at a fixed location x, = 200, not following the wave.

+
The effect of the wall motion in decreasing the

growth rate of disturbances in the boundary layer is

apparent from the results plotted in Fig. 9 both following

the wave and fixed in space. Also, the growth rates obtained

following the wave are larger than those obtained fixed in space,

apparently because when the packet moves it stays in a region

of large amplification rate for a longer time and does not

quickly encounter the favorable gradient portion of the

pressure pulse.

Similar calculations for a long wavelength wall motion
(wavelength = length of pressure pulse) indicate no drag

reduction (and might indicate drag enhancement).

Unfortunately, the wavelengths indicated in Run 7 are
probably much too small to be achieved by any practical
compliant wall. Since long wavelengths seem to be de-stabilizing
on the boundary layer while short wavelengths seem to be
stabilizing, it seems that the goal of compliant wall drag
reduction should be achieveable provided that dynamicaily
light materials with short wavelength résponse can be found.

In order to quantify the longest wavelengths that seem
to permit drag reduction, we began a series of numerical
experiments with the code described in Sec. 3 with imposed
wavelengths of order x, = 100. Unfortunately, we found

+

a difficult numerical instability in the mean flow code so



‘no reliable results could be obtained. The instability

does not seem to be similar to that of Run 5 at large times
where the profiles become unstable due to large inflection.

" The instability in the present cases occur too early for

this and seem to be related to an interaction between the
imposed large—-scale pressure pulse and the wall motion, perhaps
reflectiﬂg an improperly posed mathematical problem where

both p and the inflow velocity are specified as boundary
conditions at the top of the layer. This problem is under
active investigation and we hope to resolve it soon.

Since no evidence of any numerical instability is found
in any of the results plotted in Figs. 1-9, we find no
evidence that these results should be in error. However,
it is apparent that an extensive series of numerical

experiments should be performed to verify these results.
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‘7. SUMMARY AND CONCLUSIONS

We have developed a set of computer codes to test
Bushnell's boundary layer model. One code computes the
evolution of mean velocity profiles during the period
between bursts as forced by aﬁ imposed large-scale
preésure pulse due to earxlier bursts. Another code
computes the local stability characteristics of these
computed profiles. The programs use Chebyshev polynomials
to resolve the boundary layer (y) direction and a staggered
grid of mesh points to resolve the x direction. Typically,

257 grid points and 33 Chebyshev pblynomials are used
in the computations.

By carefully choosing the shapé of the imposed pressure
pulse, the level of background turbulence, the height of the
computational region, and especially the inflow velocity at the
top of the boundary layer, we are able to achieve reasonable
agreement with Blackwelder's measured velocity profiles
during the burst process on a flat plate.

Stability calculations of the resulting mean velocity ®
profiles show that compliant moving walls with short wavelengths
can have an appreciable effect in stabilizing the boundary

layer to further bursts. On the other hand, long wavelength

‘wall .motions do not seem to limit the bursting process and,

therefore, probably do not give significant drag reduction.

We are currently engaged in trying to obtain results
concerning intermediate waveléngth wall motions. However,
an instability apparently due to the boundary conditions imposed

at the top of the layer has prevented us from obtaining results



for these cases.
Future studies of Bushnell's boundary layer model
should address the following problems:
(i) intermediate wavelength wall motions;
(ii) more accurate stability célculations using a
linearized solution of the Navier-Stokes equations;
{iii)investigation of the effects of different kinds
of wall motions, including possible motion of the wall in its
own plane;
(iv) a complete investigation of different kinds of boundary
conditions on the mean flow model and more extensive tests

of the background turbulence model.
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