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CHARACTERIZATIONS OF LINEAR SUFFICIENT STATISTICS
by

B. Charles Peters, Jr.,! Richard Redner,!

and Henry P. Decell, Jr.!

We develop necessary and sufficient conditions that a surjective
bounded linear operator T from a Banach space X to a Banach
space Y be a sufficient statistic for a dominated family of
probability measures defined on the Borel sets of X . We give
applications of these resulits that characterize linear sufficient
statistics for families of the exponential type, including as
special cases the Wishart and multivariate normal distributions.
The latter result is used to establish precisely which procedures
for sampling from a normal population have the property that the

sample mean is a sufficient statistic.

lAuthor was partially supported by NASA/JSC Contract NAS-9-15000
with the University of Houston during the preparation of this
work.



1. Introduction: Let T be a surjective measureable trans-

formation from the measureable space’ (X,A) to the measureable
space (Y,B) , and let P be a set of totally finite measures on
A ." Following Halmos and Savage [2), we say that T is a

sufficient statistic relative to P if for each E ¢ A there

exists a measurcable function P(E|+) : (Y,B) + R (the real numbers)

such that for each F ¢ B, u ¢ D

-1 wd
W(EN'T (F)) = _/F.P(E|Y)du'l' (y)

In another nonequivalent definitiop of a sufficient statistic given
by Lehmann and Scheffe”[3), B is always taken to be BT , the
largest o-field on Y consistent with the measureability of T
Bahadur (1] discusses the relationship between these two definitions

at length.

In this paper our particular concern is that of developing
necessary a.d sufficient conditions that a surjective bounded
linear operator T from a Banach space X to a Banach space Y
be a sufficient statistic, where A and B are the respective
Borel fields of X and Y . Our first theorem shows that under
a very natural condition the aforementioned definitions of
sufficiency are equivalent. Specifically, the condition is that
ker T = {x ¢ X|Tx = 8} be complemented in X ; that is, for some
closed subspace 8 of X, X =ker T® S . (For example, if X
is & Hilburt space, take S = (ker T)*.) As a corollary we obtain

a simple characterization of sufficient linear statistics for
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dominated sets of measures. In Theorem 2 we replace the condition
that ker T be complemented with copditions on the density functions
corresponding to a dominated set P ., Finally, we give applications
of these results that characterize linear sufficient statistics

for families of the exponential type, including as special cases

the Wishart and multivariate normal distributions. The latter

result is used to establish precisely which procedures for sampling
from a normal population have the property that the sample mean is

a sufficient statistic. This generalizes the classical result that
the sample mean is sufficient for independent samples. The final
result deals with the connection between linear sufficient statistics

and the Gauss-Markov theorem.

If W 1is a Banach space, B(W) will denote the Borel field
generated by the open sets of W . The totally finite measures
defined on B(W) will be denoted by M(W) . We will write wu<<v
for the relation of absolute continuity and du/dv for the equiva-

lence class of Radon-Nikodym derivatives of y with respect to v

For the definitions of a dominated set of measures, equivalent sets

of measures, and their connection with o-finite measures defined

on B(W), we refer the reader to Halmos and Savage [2].

2. Principal Results: Our first theorem shows that if ker T is

complemented in S then, the two definitions of sufficiency

described in the introduction are equivulent.

Theorem 1: Let X and Y be Banach spaces, let A = B(X) and let

T be a surjective bounded linear operator from X to Y such that



ker T is complemented iw X .  Then BT = B(Y)

Proof: Since T 1is Borel mcnsureabic, it suffices to show that
21993

BTCZB(Y) . Let S be a closed subspace of X such that

X=ker T®S . If F By, then 17 (F) ¢ B(X) and if T

denotes the restriction of T to 8 , then

T”l(F) = T'l(r)r\ S ¢ B(X) . It follows that f"(F) ¢ B(8) , and

since T is a topological isomorphism, F = f%'l(F) e B(Y) .
Henceforth, we will assume that X and Y are Banach spaces,;

A= B(X) , B=B(Y) and T:(X,A) » (Y,B) 1is a surjective bounded

linear operator. According to [2.'Lemma 7], for a dominated

collection of measures D C M(X) a measure ) , equivalent to

D , can be defined by

AME) =} a,u,(E)
§=1 1*1
where {ui}“ is a countable subset of D which is equivalent

i=]

to D and T niul(X) < » ., Obviously, if P is homogeneous, we
i=1

can take ) ¢ P . Combining the results of Theorem 1 with those

of Lemma 2 and Theorem 1 of (2], we have:

Theorem 2: If ker 1T 1is complemented in X , then T is sufficient
for D if and only if for each u ¢ P there exists a real valued

function g, on Y such that gpoT e du/d)

Proof: By Theorem 1 of [2], T is sufficient if and only if for

each u ¢ D there exists a real valued Borel measureable function

g, on Y such that GuoT € du/d\ . Since ker T 1is complemented
in X . B(Y) = BT and each real valued function B, such that
19
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—'_ -

gw‘r is Borel measurcable on X must be Borel measureable on Y .

: In all that follows ég(x3;z) will denote the Gateaux

differential of the function g at x in the direction of 2z .

Corollary 1: If ker T is complemented in X , then T |is

sufficient for P if and only if for each y ¢ P there exists

fu ¢ dpu/d)r such that x ¢ X and y ¢ ker T implies dfu(x;y) = 0 ,

Proof: If T is sufficient, then for each u ¢ P there exists

gu:Y + R such that fu = gpgT € du/dr . It follows immediately
that 6fu(x;y) = 0 for each x ¢ X, ¥y ¢ ker T .

1f fu e du/dx and dfu(x;y) =0 for weUD, xeX, yceckerT,
then Iu(x+y) - fu(x) for each x ¢ X, y ecker T . For 2z ¢ Y
define gu(z) = ru(x) where 2z = Tx . Then 8, is well defined

and fu = guoT . Hence, T 1is sufficient.

The next theorem concerns a replacement of the complemented
kernel condition whenever there is a continuous Radon-Nikodym

derivative fu e du/dX for each wu ¢ D

Theorem 3: Let V C X be an open set such that A(XvV) = 0 and
let A(U) > 0O for each nonempty open subset U of V . Suppose
AMB+y) = 0 whenever B CV , A(B) =0 and y ¢ ker T . For

each y ¢ D , let ru ¢ du/dr be continuous on V ., Then T |is
sufficient.if and only if fp(x) s fu(z) whenever x, z ¢ V and

Tx = Tz

Proof: If T is a sufficient statistic, then there exists gu € du/dXr
such that gu(x) = gu(z) whenever x, 2z ¢ V, Tx = Tz . Let w ¢ D
and y ¢ ker T be fixed. The set

e



U= (x e VO(V-y)|f (x) ¢ f (x+y))

is an open subset of V contained in BL (B-y), where
B=(xeV | f(x)7g(x))

-

Since A(B) = 0 , it follows from the hypothesis that A(U) = 0

and hence, U =@ . Thus fu(x) = fu(x+y) whenever x, xty ¢ V .,

Conversely, suppose fu(x) = fu(z) for weD, x, z¢eV
whenever Tx = Tz . The function gu:T(V) + R defined by
gu(Tx) = fu(x) for x ¢ V is well defined on T(V) . Since
fv is continuous on V , fu = guéT on V , and T 1is an open
mapping, it follows that gl_I is‘continuous on the open set T(V)
For y ¢ T(V) define gu(y) = 0 . Then gu is Borel measure-

able on Y and fu = BuoT . Thus T is sufficient for D

The proof of the following corollary is clear and will be

omitted.

Corollary 2: 1If, in addition to the hypotheses of Theorem 4, the

set V is convex, then T is sufficient for P if and only if

Bfu(x;y) =0 foreach pw e ? , x eV, y e ker T.

3. Exponential Families: Let X and Y be Banach spaces,

(H,<+|+*>) a Hilbert space and v a o-finite measure on B(X)
such that v(XvW) = 0 for some nonempty open convex set VC X
for which ‘v(U) > 0 for each nonempty open set UC V. Let
D= [uY} , Y el be a family of probability measures having
exponential densities fy(x) = c(y)h(x) exp CQ(y)|t(x)e qu/dv

where c¢(y) » 0, h(x) > 0 on V a.e.(v), t:X + H 1is continuous

OF POO



and Gateaux differentiable on V , and Q:r - H .

Theorem 4. Let T:X - Y be linear,’ bounded, surjective and
v(b+y) = 0 whenever B ¢ B(X), BCV, w(B) =0 and y ¢ ker T .
If--B e ', T is a sufficient statistic for the exponential
family P if and only if <Q(v) - Q(8)|*t(x;y)> = 0 for each

Yyel, xe¢X and y ¢ ker T .

Proof: Under the stated assumptions P 1is homogeneous and thus

A may be taken to be an arbitrary element, say w_, , of D .,

B
Applying Corollary 2, T 1is sufficient for P if and own.y if

OGY.B(X;Y) =0 foreach Y eI , x eV y ¢ ker T , where

€, o(x) = c(v) exp {({Q(Y) - Q(B)|t(x)>)
Y,B g

This is equivalent to <Q(v) - Q(8)| ét(x;y))> = 0 for each

YET ; X¢V , vy ke T .

4. Applications. Let S denote the symmetric n » n matrices,

&M
I athe pog§tive definite elements of S and P a family of

Wishart probability measur2s with m > n degrees of freedom having
densities

£.(8) = (s (MM /2 oxp (- L tr (v 8))

B =

Theorem 5. If B ¢TI and T:S -+ range (T) is linear, then T
is a sufficient statistic for the Wishart family P if and only

a¥ Zi
if tr[(w -8 )K] = 0 for each y eI’ and K ¢ ker T .

Proof. The preliminary conditions of Theorem 4, are satisfied with

¥ = Lebesgue measure on S and the obvious identifications of c(y)

-G~



and h(S8) . Let H equal S with <(A|B) = tr(AB) , t(8) = S

. 1
aad Q(y)'= -y /2 . Observe that «t(S;F) = F. and apply Theorem 4.

Remark: Theorem 5, implies that there is a nontrivial linear
sufficient statistic if and only if therc exists a linear mani-

21
fold M % S such that vy e M for each y ¢ T

We will now apply thesc results to normal families of

probability measures. In Theorem 6. we will state set theoretical,
algebraic and geometrical conditions, each equivalent to the
condition that T be a linear syfficient statistic for a family

D= {PY} , Yy ¢ I' of normal n-variate probability measures having
n

densities, with respect to Lebesgue measure on R

N I 2
py(x) = (2n) n/2|n“| 1/2 exp !—% (x-nv)‘nY (x—nY)]

We will assume that for some 8 ¢ I' , ng * 6 and nB = I

This requirement imposes no loss of generality since for any

B ¢ I' there exists a non singular matrix MB for which

uensué = 1 and a change of coordinate system defined by the
transformatinr x =+ Me(x-na) allows one to recover the sufficient

statistic in the original coordinate system.

Theorem 6. If T:Rn -+ Rk is a linear transformation of rank k

and D = {Py} , Y €T is an arbitrary family of n-variate normal

probability measures such that for some ¢ ¢ I , = 8 and

g
ﬂB = I then the following conditions are equivalent:

<]



(1) T 1is sufficient for VD = (Pyl s v & F,
N A - K1
(2) kerWC. A [ker(R -T) A [n ]7)
(3) For each y ¢ TI' ,
+
(a) T T“Y = nY
+
ts) T T(ny-l) ny-l

where the notation (-)+ denotes the generalized inverse of ()

Proof: To see that (1) +» (2) observe that the preliminary
conditions of Theorem 4. are satisfied with v = Lebesgue measure
on X = R" . Make the obvious identifications for c(y) and
h(x) . Let un denote the n *x n real matrices and define

Q:f + H=MxR xM , t:X+H and ¢|[+> on H , respectively,
by Q(y) = (-ﬂ;llz. ﬂ-]n ;- ﬂ-ln n;73 y t(x) = (xx",x, I)

. T oF

and _<(A1'”1'Bl’l‘“2'w2'32’> = tr(AjA,) + wiw

1 + tr(BiBz)

2

Since Q, t and (-]-) satisfy the remaining hypotheses of
Theorem 4. and ét(x%2z) = (xz” + 2 x;7 2,06 ) for each x, 2z ¢ R" ;

it follows that for each vy ¢ I' ;

- o3
ker T C {ch":x‘(nv -1)y - y‘ﬂY h, " 0, x¢R"

= ker (n;l-l)tﬂ [n;InY]& = ker(nv-l)r\[nylt.
To see that (2) + (3) note that ™7 is the orthogonal
projection on range (T”) = (ker T)* . Since nvc(ker T)* :
(3a) holds. Furthermore, ker T+T = ker T C ker (nv-l) implies
range (nyfl) C range (T+T) and hence that T+T (ﬂY_I) = (ny—l)

which is (3b)

In order to see that (3) »- (1) recall the definition of

Q(y) , t(x) and the fact that é6t(x;z) = (xz2°+z x7 2, 6 )

- ORIGINAL B



We need omly show that x'(nv-x)y - n;y = 0 for each y ¢ I ,
x'¢c X and y ¢ ker T . Using (3b) and symmetry together with
(3a) it follows that

- = - - = - - + = I + =
X (n‘ Iy nyy X (nY I)T (Ty) "YT (Ty) D
We state the following corollary without proof.

Corollary 3. Under the hypotheses of Theorem 6., there exists

a k xn rank k sufficient statistic for {Pyl i ¥y F 1%
and only if there exists a rank k. orthogonal projection P on R"
such that (a) an &= nY and (b) P(Qy-l) = RY—I for each y ¢ T
Moreover, any k x n rank k mot*rix such that T+T = P is a

sufficient statistic for {PY} s ¥ & ¥,

Corollary 4. If T = (0, 1,+++, m=1} , ng = 0 , Ry = I and

Bz [n1|n2|---Inm_llnl—llnz-ll---|nm_1—1] then T is a linear
sufficient statistic for the finite family {Py} s Y ET of
n-variate normal probability mcasures if and only if

range (T°) = range (B) . Moreover, k = rank B 1is the smallest
integer for which there exists a k x n sufficient statistic for

{Py} s % 2 B

Proof: The equivalent condition is an immediate consequence of
Theorem 6. The minimality statement follows from the fact that

if T is a p xn rank p sufficient statistic then ™18 = B .

+*

hence, T+TBB+ = BB It follows that range (BB+) C range (T+T)

and, since (BB+)B = B, BB* satisfies Theorem 6.(3) so that k = p '



Example 1. Let Xpo Xguter, Xp,00e be a sequence of univariate

N(y,0) wvariables such that the joimt density af LN PYRRLIT
is N(u;n.nn) where cﬁ = (1,1,+++,1) . Let (Pu} , weR
be. the family of probability measures having densities N(ucn.ﬂn)

and T # & n 1 x n matrix.

Observe that T is sufficient for (Pu} , el if and

1/2
only if Tnn is sufficient for the family of probability’
1/2

measures (}u) , w ¢ R having densities N(un; £ ,I) and,

n
according to Theorem 6., that this is equivalent to the condition
- G 1/2 Y- ) .
at erTa cC [nn (n] . This is equivalent to ba wm
for some scalar . A simple calculation shows that

21
. " n(Tnnzn) so that the statistic T 1is sufficient for {Pu} ,

. | <)
¥y ¢ R 1if and only if T = [(Tnncn) :600 ]/n . In particular,
- - al -l

= * . » :
note that T = T = (cnnn gn) £n0, is sufficient for (}u}, ¥ ¢ R and th
T (xl.---.xn)’ is an unbiased estimate of yu for each integer n.
This generalizes the classical result that the samplg mean is a
sufficient statisiic for u when the samples X 1Xg,**+ are

independert,

Further note that if T = c;/n (the statistic T for the
sample mean) is a sufficient statistic for {Pu) , R
for ecach integer n , the column sums (row sums) of nn are
identically ., = (c;nnt)/n . A routine induction argument shows
that, in the latter case, Cov (xi,x ) = constant for i, j=1,2,:+-,

i4 3.

J

Example 2. Let y = Wy + ¢ , where W is a fixed m x n matrix
of rank n and ¢ ~ N (0,1I). According to the Gauss-Markov theorem,

- - =1
the minimum variance unbiased lincar estimate of y is y = (W'W) W'y

ORIGINAL PAGE 15
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1
Let T = (W-W)~ W’ and observe t' * for y ¢ R" ,
o | -
T°(TT") T Wy = Wy and, since T (TT") T-T’T._Thcurvm G, dmplico T 15
sufficient statistic for the set cof probability measures {P‘}

L]

vy ¢ R™ having densities N(Wy,I)

On the other hand, if % is a sufficient linear statistic
for (P\) , vy ¢ R" such that iy is an unbiased estimate of
then, since %W = .1 i i has rank n . Corollary 4 implies that
n is the smallest integer for which there exists a lincar n x m
sufficient statistic for {Py} , Y ¢ R" . Moreover, T = B(W’W)'lW‘
for some nonsingular n x n matrix B . Since %W = I ,

- - |
T= (W'W) W

Since ; = Ty , the Gauss-Markov estimate of y may be
characterized ~« 'he unique linear sufficient statistic T for

(Py} ;g Y & R® for which Ty is an unbiased estimate of vy

o

)l
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