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CHARACTERIZATIONS OF LINEAR SUFFICIENT STATISTICS

by

B. Charles Peters, Jr., I Richard Redner,l

and Henry P. Decell, Jr.1

We develop necessary and sufficient conditions that a surjective

bounded linear operator T from a Banach space X to a Banach

space Y be a sufficient statistic for a dominated family of

probability measures defined on the Borel sets of X . We give

applications of these results that characterize linear sufficient

statistics for families of the exponential type, including as

special cases the Wishart and multivariate normal distributions.

The latter result is used to establish precisely which procedures

for sampling from a normal population have the property that the

sample mean is a sufficient statistic.

l Author was partially supported by NASA/JSC Contract NAS-9-15000
with the University of Houston during the preparation of this
work.
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1. Introduction: Let T be a surject.ive measureable trans-

formation from the measureable space' (X,A) to the nivasureable

bParr (Y,B) , and let V be a set of totally finite measures on

A	 Following Halmos and Savage 1 2], we say that T is it

sufficient statistic relative to V if for each E c A there

exists a measureabl y function I I (EI • ) : (Y,B) -+ R (the real numbers)

such that for each F c B, u e D

p (E	 T 1 (F))	 f P ( E IY)c1uT (Y)
F

In another nonequivalent definitioli of a sufficient statistic given

by Lehmann and Schef fe' [ 31 , B is always taken to be B,I, , the

largest o-field on Y consistent with the measureability of T

Bahadur (1] discusses the relationship between these two definitions

at length.

In this paper our particular concern is that of devc,loping

necessary a.id sufficient conditions that a surjective bourided

linear operator T from a Banach space X to a Banach space Y

be a sufficient statistic, where A and B are the respective

Bore] fields of X and Y . Our first theorem shows that under

a very natural condition the aforementioned definitions of

sufficiency are equivalent. Specifically, the condition is that

ker T = ix c XITx = A) be complemented in X ; that is, for some

closed subspace S of X	 X = ker T ® S	 (For example, if X

is a Hilbert space, take S = (ker T)A-	 As a corollary we obtain

a simple characterization of sufficient linear statistics for
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dominated sets of measures. In Theorem 2.we replace the condition

that ker T be complemented with conditions on the density functions

corresponding to a dominated set D 	 Finally, we give applications

ofA here results that characterize linear sufficient statistics

for families of the exponential type, including as special cases

the Wishart and multivariate normal distributions. The latter

result is used to establish precisely which procedures for sampling;

from a normal population have the property that the sample mean is

a sufficient statistic. This generalizes the classical result that

the sample mean is sufficient for independent samples. The final

result deals with the connection between linear sufficient statistics

and the Gauss-llarkov theorem.

If W is a Banach space, B(W) will denote the: Borel field

generated by the open sets of W 	 The totally finite mea,5ures

defined on B(W) will be denoted by M(W) 	 We will write p<<v

for the relation of absolute continuity and dp/dv for the equiva-

lence class of Radon-Nikodym derivatives of p with respect to v .

For the definitions of a dominated set of measures, equivalent sets

of measures, and their connection with a-finite measures defined

on B(`ti'), we refer the reader to Halmos and Savage [2].

2. Principal Results: Our first theorem shows that if ker 'f is

complemented in S then, the two definitions of sufficiency

described in the introduction are equivalent.

Theorem 1: Let X and Y be Banach spaces, let A = B(X) and let

T be a surjective bounded linear operator from X to Y such that
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ker T is complemented iu X	 "I'l ► en KT - B(Y)

Proof: Since T is Borel measureable, it suffices to show that

BT C B(Y)	 Let S be a closed subspace of X such that
.	 l

X	 ker T 0 S	 If F c 81, , then T (F) c. B(X) and if T

denotes the restriction of '1' to S	 then
-_1	 _1	 -_1
T (F) _ T (F)n S c B(X)	 It follows that T (F) c B(S)	 and

_ 1	 j
since Z' is a Lupolo, ical isomorphism, F = 77 (F) c 8(Y) 	 a ,;

Henceforth, we will assume that X and Y are Danach spaces;

A = B(X) , B - B(Y) and T:(X,A) 	 (Y,B) is a sur,jective bounded

linear operator. According to (2, Lemma 71, for a dominated

collection of measures D C M(X) a measure a , equivalent to

D , can be defined by

a It

m

where {ui}^	 is a countable subset of D which is equivalent
i=1

to D and E r i u i (X) <	 Obviously, if D is homogeneous, we
1=1

can take a c D	 Combining the results of Theorem 1 with those

of Lemma 2 and Theorem 1 of (2j, we have:

Theorem 2: If ker T is complemented in X	 then T is sufficient

for D if and only if for each u c D there exists a real valued

function gu on Y such that g^0 T c du/da

Proof:	 Hy . Theorem 1 of (2J, T is sufficient if anti only if for

cacti u c D there exists a real valued Borel measureable function

g
u 

on Y such that g 
u 

0 T e du/dX . Since ker T is complemented

in X	 B(Y) = 8T and each real valued function g11 such that

V'j 16
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g 0'1' i,, Bore1 measurc.ible on X must be Dorel mvasureable on Y
V

In all that follows 6r(x;z) will denote the Gateaux

differential of the function 6 at x in the direction of z .

Corollary l: If ker T is complemented in X , then T is

sufficient for D if zind only if for each u c D there exists

f u a du/da such that x c X and y c ker T implies 
6f 1`1
	 = 0 .

Proof: If T is sufficient, then for each u c D there exists

g P : Y It such that fu = P, V, c du/da . It follows immediately

that 6f u (x;y) = 0 for each x c X, y c ker T

If fu a du/da and 6f u (x;y) = 0 for u c D, x E X, y c ker T

then f `I (x+y) = f P (x) for each x c X	 y c ker T	 For z E Y

define E* u (z) = f u (x) where z - Tx . Then g^ is well defined

and fu = g u0 T 	 Hence, T is sufficient.

The next theorem concerns a replacement of the complemented

kernel condition whenever there is a continuous Radon-Nikodym

derivative fU c du/da for each u c D .

Th eor em 3: Let	 V C	 `( be	 in open set such that a(X%V) = 0	 and

let	 a(U)	 > 0	 for each nonempty open subset U of	 V	 . Suppose

,\(Q+y)	 =	 0 whenever	 B CV , X(B) = 0	 and y c	 ker T. For

each u c D , let f
u 
c du/da be continuous on V . Then T is

sufficient if and only if f u (x) - f 11 (z) whenever x, r E V and

T x = T'r.

Proof:	 If T is a sufficient statistic, then there exists g  a du/da

such that g (x) = g ( •r.) whenever x, z c V, Tx = Tz	 Let it c• D
P	 u

and y c ker T be fixed. The set

-4-
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U - (x c v n (V-Y)!fu(x)	 fW(x *Y))

is an open subset of V contained in B u (B-y) ,'where

li = (x c V I f u (x) ^ gl i (x))	 .

Since AM = 0	 it follows frorn the hypothesis that A(U) - 0`

and hence, U = ¢1 . Thus f 1 (x) = f p (x+y) whenever x, x+y c V

Conversely, suppose f u (x) = i u (z) for ^i c D , x, z e V

whenever Tx = Tz . The function g v :T(V)	 R defined by

g p (Tx) = f 
1
(x) for x c V is well defined on T(V) 	 Since

f lj is continuous on V	 fp =
 9P 

O Ton V , and T is an open

mapping,	 it follows that g u is continuous on the open set T(V)

For y j T(V) define jr,
U	 V
(y) = 0 . Then R 	 is Borel rneasure-

able on Y and f p = g poT . Thus T is sufficient for D .

The proof of the following corollary is clear and will be

omitted.

Corollary 2: If, in addition to the hypotheses of 'Theorem 4, the

set V is convex, then T is sufficient for D if and only if

df p (x;y) = 0 for each p c D, x c V, y c ker T.

3. Fxponential Families: Let X and Y be Banach spaces,

(" , <-I- >) 	 a Hilbert space and v a v-finite measure on 8(X)

such that v(XtiV) = 0 for some nonempty open convex set VC X

for which v(U) > 0 for each nonempty open set	 U C V	 Let

D = (u Y ) , y c r be a family of probability measures having

exponential densities	 f  (x) = c(y)h(x) exp < Q(y) (t(x))c du  /dv

where c(y) > 0, h(x) > 0 on V a.e.(v),	 t:X -► Ii is continuous
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and Gateaux differentiable on V , and Q:r •• ii

Theorem 4. Let TA • Y be linear,'bounded, sdr,jective and

v(B+y) a 0 whenever li t B(X), 8 C V, v(B) = 0 and y e ker T

If R	 I'	 T is a sufficient statistic for the exponential

family D if and only if <Q(Y) - Q(S)jft(x;y)> = 0 for each

Y c r	 x t X and y e ker T.

Proof: Under the stated assumptions D is homogeneous and thus

X may be taken to be an arbitrary element, say u^ , of V .

Applying Corollary 2	 T is sufficient for V if and o ►.ly if

617,	 Ei (x; y) = 0 for cacti Y c r, x c V y F_ ker T, where

E: Y (x) = c0Y1 E'xP { < Q(Y) - Q(e)It(x) >)
c(a)

This is equivalent to <Q( Y ) - Q(0)l 6t(x;y)> - 0 for cacti

Y c r, x c V, y c ker T.

4. A plicatioiis.	 Let S denote the syrrunetric n - n matrices,

r ^^j(po`s tive definite elements of S and D a family of

Wishart probability mea.,uras with m > n degrees of freedom having

densities

fY(S) 
= c(Y)ISI(m-n-1)/2 exp {- 2
	

ltr (7	 am)}

Theorem 5. if B e r and T:S 4 range (T) is linear, then T

is h sufficient statistic for the Wishart family D if and only
_1	 1

if tr [(,	 ,g )K] = 0 for each Y c r and K c ker T .

Proof. The preliminary conditions of Theorem 4. are satisfied with

Y - Lebe^:gue measure on S and the obvious identifications of e(Y)

-G-



and	 h(S)	 Let	 Ii equal	 S with (Ajli> E tr(AII) ,	 t(S) - S

•	 1

aid Q(Y) '- -
Y_ 

/2	 Observe that -6t(S;F') - F . and apply Theorem q.

Remark: Theorem 5, implies that there is it nontrivial linear

sufficient statistic it and only if there exists a linear mani-

fold M c^ S Such that	 Y - 	 Al for each Y c r

We will now apply these results to normal families of

probability measures. In Theorem 6. we will state set theoretical,

algebraic and geometrical conditions, each equivalent to the

condition that T be a linear sufficient statistic for a family

D = (P Y }	 Y c P of normal n-variate probability measures having

densities, vith respect to Lebesgue measure on Itn

	

P (x) = (27T
	 S) -n/2^YI - 1 /

2 exp ; -2	
1

(x - Tj ) , P- (x - nY )J

_ © and P a = I

since for any

for which

defined by the

-over the sufficient

We will assume that for some ^ c r , 
n 

This requirement imposes no loss of generality

S c r there exists a non singular matrix A16

M S Q SA1S = I and a change of coordinate system

transformati — x • M ( X —rl 6 ) allots one to re

statistic in the original coordinate system.

Theorem G.	 If T:It n - It 	 is a linear transformation of rank k

and D = (p Y }	 Y E r is an arbitrary family of n-variate normal

probability measures such that for some E r r 	
r^s 

= 9 and

U 6 = I then the following conditions are equivalent:

-7-
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(1) T	 is sufficient for V -	 {P Y )	 y c r,

(2) ker Ir C 
Yt r 

(ker (W - I) ri ( nY)1)

(9)	 For cacti	 Y E r

(a) T+Tn y 	nY

(b) T+ T(R Y -I)	 nY
 
-I

where the notation (•)+ denotes the generalized inverse of (•)

Proof: To see that (1) 4 (2) observe that the preliminary

conditions of Theorem 4. arcs satisfied with v - Lebesgue measure

on X _ It 	 Make the obvious identifications for c(Y) and

h(x)	 Let Mn denote the n x n real matrices and define

Q: r	 II 	 NI^ i x R n x A, il ,	 t : X • It	 and	 <-I->	 on	 Ii , respectively,

by Q(Y) = ( - Q -1 /2, it - t n Y , - Q- n Y r1072) , t ( x ) _ ( xx ' , x , 1)

and	 <(A 1 ,w 1 ,Is t ) (( A 2 , w 2 , B 2 ) j = tr(A - A Z ) + wiw2 + tr(B111 2 ) .

Since Q, t and	 <•I-> satisfy the remaining hypotheses of

Theorem 'I. and dt(x;z) _ (xz' + z x; z,© ) for each x, z E kn

it followE that for each Y c r ;

t	 -1ker T C {y,R n :x'( Q
- 

-I)y - y'Q	 r, Y =	 n0	 x E R }

ker (o	
. 
I ) n [Q	 A- 

= ker(Q Y - I)n [ nY Jl.

To see that (2) -* (3) note that T +T is the orthogonal

projection on range (T') - (kor T) 1	Since n Y E(ker T)1

(3a) holds. Furthermore, ker T
+T 

= ker T C ker (Q 1 -I) implies

range (is Y71) C range (T +T) and hence that T
+T 

(u 
Y 
-I) _ (Z 

Y 
-I)

which ib (3b) .

	

In order to see that (3) 	 (1) recall the definition of

	

Q(Y) , t(x) and the fact that	 dt(x;z) _ (xz'+z x; z, © )

!s
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We need M ly show that x'(n Y -I )y - uyy - 0 for, Each Y c r

x-c X and y c ker T	 Using (3b) and symmetry together with

(3a) it follows that

x '( Sl 1 ) y - n' y	 x'(P - I ) T+ ( Ty ) - nT T+ ( Ty ) - 0 .

We state the following corollary without proof. 	 ,

Corolla ry 3. Under the hypotheses of Theorem 6., there exists

a k x n rank k sufficient statistic for 	 (I1 ),	 y c r if

Knd only if there e •:ists a rank k orthogonal projection P on R 

f;uch that (a) PnY = n Y and	 (b) s'(il Y -I) - n Y
- 

I	 for earh Y c r

Moreover, any k x n rank k ma O rix such that T+T = 1' is a

sufficient statistic for (P Y ) ,	 Y c r.

Corot lar•y 4. .	 I f	 r = ( 0, 1, • • • , m-1) ,	 n 0 = e , fl	 - I	 and

B ` [n l (r'2 I ... Inm- 11nl- Iln2- 11 ... jttm-1 -1)	 than	 T	 is a linear

sufficient statistic for the finite family (1' Y } , Y c r of

n-variate normal probability measures if and only if

range (T') = range (B) 	 Moreover, k = rank B is the smallest

integer for which there exists a k x n sufficient statistic for

(PI ) ,	 Y c r.

Proof: The

Theorem 6.

if T is a

hence, T T

and, since

equivalent condition is an immediate consi

The minirnality statement follows from the

p x n rank p sufficient statistic then

BB = 13B It follows that range (B13+ ) c

(BB+ )B = 11, BB+ satisfies Theorem 6.(3)

'quence of

fact that

T+TB = B

range (T T)

so that k = p
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Exa plu 1. Let x i , x l , ••• , x n , •• • be a sequence of univariate

N(u ,o)	 variables such t` , Rt the ,joint density of	 %1 ,x 2 , • • • ,x^^

it,	 N(ut ,n )	 where	 t'	 (1,1,..•,1)	 Let	 (P )	 u c Rn n	 n	 N

be. the family of probability measures having densItic • + N(ut11'nn)

and 'r ^ e a 1 K n matrix.

Cbserve that T is sufficient for (1' u ) , v c It if and
1/?

only if Tn n 	is sufficient for the family of probability'

measures (P	 u e It having densities Nun n	tn , I) and,

ae,cording to Theorem G., that this is equivalent to the condition

l / 2 	 _t/ 2
that ker T st n	C [Rn	 t111	 ThisThis is equivalent to 

t o = anTnn

for some scalar a n	 A simple calculation shows that

_I
an = n(Tn n t ld	 so that the statistic T is sufficient for (1'v}

1	 _1

N c It	 if and only if T	 (T0 1 n )
	 'nn J/n	 In particular,

note that Z'= T	 (tnnn t n ) tnnn 1;3 sufficient for ( 11 ), u c R and th.

T (xl,•••,xt))'	 is an unbiased estimate of a	 for each integer n.

This generalizes the classical result that the sample ►nean is a

sufficient statistic for u when the samples x l , x ••• are

In dope n der t.

Further note that if T = to/n (the statistic T for the

sample mean) is it sufficient statistic for (1)	 N c R

for each integer n , the column sums (row sums) of n n are

identically 
a11 	 (tnn n t) /n 	 A routine induction argument shows

that, in the latter case, Cov ( x i , x i )	 constant for i, J=1,2,•••,

•	 i

Example 2. Let y = WY + c 	 where W is a fixed n; - n matrix

of rank n and c ti N (0,I). According to the Gauss-Markov theorem,

the minimum variance unbiased linear estimate of Y is Y = (W'W) W'y
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Let T - (W-W) W' and observe t r 	 for y c It
n

'
T'(1'T') 

1 
T Wy = WY	 and, N t n e e T (1;1'' ) T-T +T, ,Theorem (i. Irnll

sufficient statistic for the scat of probability measures (11r)

y-c R
n 

having densities N(WY,I) .

Orr the other hand, if T is a sufficient linear statistic

for (PY }	 y c Rn suen that Ty is an unbiased estimate of Y

then, since T1Y - I	 '1' has rank n . Corollary L ir,rPlies that

n is the smallest integer for which there exists a linear n x m
r

sufficient statistic for (1) Y }	 Y c It 	 Moreover, T	 B(W'W) W'

for some nonsingular n x n matrix R	 Since TW = I
t

T - (W-W) W'

Since y	 Ty , the Gauss-6larkov estimate.' of y may be

characterized	 .he unique linear sufficient statistic T for

(P y ) , y c R 	 for which Ty is an unbiased estimate of y .

II

6
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