# Antipodes on the Moon 

Yu. N. Lipskiy and Zh. F. Rodionova<br>Shternberg State Astronomical Institute, Moscow, U.S.S.R.

Cartographic methods are presently used to study not only the Earth, but also the Moon and Mars, and will soon be used for Mercury and other planets. These methods will remain for some time the only possible methods for determination of many quantitative characteristics of surface formations such as coordinates of objects in various systems, linear dimenions of formations, areas of flat surfaces and higher order surfaces, volumes of various objects, and relative indices and characteristics.
In the department of physics of the Moon and planets of the Shternberg State Astronomical Institute (GAISH), cartometric work was done in order to determine the areas of the lunar maria and large craters. The areas of the maria were determined twice in 1968 using a photomap of the visible hemisphere at a scale of $1: 5$ million (ref. 1) and segments of a lunar globe (ref. 2), and in 1971 using a full map of the Moon (ref. 3). The results of the measurements of areas of the maria are presented in table 1, together with the data of Westfall (ref. 4) and Shoemaker and Hackmann (ref. 5). Table 2 presents the areas of circular maria, measured from the peaks of the surrounding ridges, and their mean diameters calculated from the area.
The lunar surface is characterized by asymmetry in the locations of maria. On the visible hemisphere, lava flows occupy an area of 5937 million $\mathrm{km}^{2}$ or 31.2 percent; on the back side, $474000 \mathrm{~km}^{2}$ or 2.5 percent. The northern hemisphere contains 4351 million $\mathrm{km}^{2}$ or 22.9 percent; the southern hemisphere 2060 million $\mathrm{km}^{2}$ or 10.8 percent. In the west-
ern hemisphere are 3891 million $\mathrm{km}^{2}$ or 20.0 percent, and in the eastern hemisphere 2521 million $\mathrm{km}^{2}$ or 13.3 percent. Over the entire surface of the moon, maria-type formations occupy 6411 million $\mathrm{km}^{2}$ or 16.9 percent of the surface area. Figure 1a presents a diagram of the placement of maria-type formations within 10 -degree bands of latitude by quadrants. Some 65 percent of all maria formations are concentrated within latitudes of $+40^{\circ}$ to $-10^{\circ}$.
Thalassoids and large craters over 100 km in diameter occupy the same amount of area as all of the maria taken together- $\mathbf{1 6 . 5}$ percent. In the northern hemisphere, large craters cover an area of 2371 million $\mathrm{km}^{2}$, and in the southern hemisphere 3870 million $\mathrm{km}^{2}$. The visible hemisphere contains 1906 million $\mathrm{km}^{2}$ of these formations; the back hemisphere contains 4344 million $\mathrm{km}^{2}$. Table 3 presents the distribution of large craters by hemispheres. Based on measurements of the areas of large craters, a histogram has been constructed of the dependence of the number of craters on diameter (see fig. 2a). This distribution can be approximated by a curve generated by $y=\mathrm{Ae}^{-\mathrm{Bx}}$. The coefficients $A=+138, B=+0.45$ were found by the method of least squares. This curve agrees well with the empirical distribution of craters with diameters of 100 to 300 km according to the criterion of Kolmogorov. Craters over 300 km in diameter predominate on the reverse side, where there are 12 in this range. Figure 2b shows that thalassoids have the same dimensions as do the circular maria and form a special group of formations, which has already been noted (refs. 6 and 7). The 11

Table 1.-Areas of Maria Formations Measured by Various Authors (in thousands of $\mathrm{km}^{2}$ )

| Area | $\begin{aligned} & \text { Shoemaker } \\ & \text { Hackmann } \\ & 1961 \end{aligned}$ | $\begin{gathered} \text { Rodionova } \\ 1968 \end{gathered}$ | $\begin{aligned} & \text { Westfall } \\ & 1970 \end{aligned}$ | $\begin{gathered} \text { Rodionova } \\ 1971 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Visible Side |  |  |  |
| Oceanus Procellarum | - | 2102 | 2147 | 2102 |
| Mare Imbrium | 864 | 830 | 835 | 829 |
| Mare Frigoris | 439 | 347 | 433 | 436 |
| Mare Tranquillitatis | 402 | 430 | 408 | 421 |
| Mare Fecunditatis | 311 | 311 | 334 | 326 |
| Mare Serenitatis | 318 | 305 | 312 | 303 |
| Mare Nubium | 261 | 253 | 240 | 254 |
| Mare Crisium | 165 | 180 | 197 | 176 |
| Mare Humorum | 107 | 113 | 115 | 113 |
| Mare Smythii | - | 109 | 77 | 104 |
| Sinus Roris | - | 107 | 291 | - |
| Mare Nectaris | 96 | 96 | 99 | 101 |
| Mare Cognitum | - | 73 | - | - |
| Lacus Somniorum | 65 | 66 | 66 | 72 |
| Mare Marginis | - | 64 | 82 | 62 |
| Mare Vaporum | - | 51 | 53 | 55 |
| Sinus Medii | 33 | 48 | 49 | 52 |
| Sinus Aestuum | 36 | - | 43 | 40 |
| Sinus Iridum | - | - | - | 39 |
| Palus Epidemiarum | 29 | 40 | 29 | 27 |
| Mare Humboldtianum | 99 | 23 | 28 | 22 |
| Mare Undarum | - | 13 | 19 | 21 |
| Palus Putredinis | - | - | 14 | 12 |
| Mare Spumans | - | 14 | 14 | 16 |
| Mare Veris | - | 20 | 16 | 12 |
| Lacus Mortis | 41 | - | 14 | 12 |
| Mare Anguis | - | 8 | - | 10 |
| Mare Struve | - | - | - |  |
| Mare Autumni | - | - | 4 | 3 |
| Mare Aestatis | - | 4 | 4 | 1 |
|  | Far Side |  |  |  |
| Mare Australe | - | 147 | 148 | 151 |
| Mare Orientale | - | 65 | 60 | 54 |
| Mare Moscoviense | - | 67 | 49 | 50 |
| Mare Ingenii | - | - | 27 | 15 |
| Mare Pacificus | - | 20 | - | 13 |

Table 2.-Areas of Circular Seas Measured From Surrounding Ridges

| Area | Area <br> Thousands of $\mathrm{km}^{2}$ | Diameter, km | Note |
| :--- | :---: | :---: | :--- |
|  |  |  |  |
| Mare Imbrium | 958 | 1104 |  |
| Mare Orientale | 725 | 961 | From Cordillera |
|  | 356 | 642 | From Rook Mountains |
| Mare Nectaris | 417 | 729 | From Rupes Altai |
|  | 134 | 413 | From Pyrenaeus |
| Mare Serenitatis | 356 | 641 |  |
| Mare Crisium | 209 | 460 |  |
| Mare Moscoviense | 166 | 442 |  |
| Mare Humorum | 153 | 433 |  |
| Mare Smythii | 147 | 344 |  |
| Mare Ingenii | 93 | 258 |  |
| Sinus Iridium | 52 | 254 |  |
| Mare Humboldtianum | 51 | 180 |  |
| Lacus Mortis | 25 |  |  |

a)

b)


Northern Hemisphere


Southern
Hemisphere


Visible Hemisphere


Far
Hemisphere

Figure 1.-Distribution of maria areas.

Table 3.—Distribution of Craters Over 100 km in Diameter by Hemispheres

| $\underset{\mathrm{km}}{\text { Diameter, }}$ | On Visible Hemisphere | Number of Craters |  | In Southern Hemisphere | Entire Surface |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | On Far <br> Hemisphere | In Northern Hemisphere |  |  |
| 100-120 | 37 | 46 | 31 | 52 | 83 |
| 120-140 | 26 | 26 | 20 | 32 | 52 |
| 140-160 | 16 | 15 | 12 | 19 | 31 |
| 160-180 | 5 | 11 | 7 | 9 | 16 |
| 180-200 | 5 | 10 | 7 | 8 | 15 |
| 200-220 | 5 | 4 | 4 | 5 | 9 |
| 220-240 | 1 | 4 | 3 | 2 | 5 |
| 240-260 | 2 | 4 | 3 | 3 | 6 |
| 260-280 | - | 2 | - | 2 | 2 |
| 280-300 | 2 | - | - | 2 | 2 |
| 300-320 | - | - | - | - | - |
| 320-340 | - | 4 | 1 | 3 | 4 |
| 340-360 | - | 3 | 2 | 1 | 3 |
| 360-380 | 1 | - | - | 1 | 1 |
| 380-400 | - | 1 | 1 | - | 1 |
| 400-420 | - | - | - | - | - |
| 420-440 | - | - | - | - | - |
| 440-460 | - | 2 | 1 | 1 | 2 |
| 460-480 | - | - | - | - | - |
| 480-500 | - | - | - | - | - |
| 500-520 | - | 1 |  | 1 | 1 |
| 520-540 | - | - | - | - | - |
| 540-560 | - | - | - | - | - |
| 560-580 | - | - | - | - | - |
| 580-600 | - | 1 | 1 | - | 1 |



Figure 2.-Histogram of the number of craters, according to their diameters.
formations on the back side over 300 km in diameter correspond to maria formations diametrically opposite on the visible side. Figure 3 shows a diagram of the antipodes, listed in table 4. This diagram shows the contours of the maria on the visible side between the $\pm 60^{\circ}$ parallels and their antipodes on the opposite side, arbitrarily shown in the areas diametrically opposite. The roman numerals on the map and in the table represent formations on the visible side; the arabic numerals, the far side. Only Birkhoff crater ( 342 km diameter) fails to fall within this group. It is on a common diameter with a continental area and the area of highest elevation on the visible side.


Figure 3.-Map of the antipodes on the Moon. Maria features: 1-on the nearside; 2- on the farside; 3,4-thalassoides and craters on the farside ( $\mathrm{D}>300 \mathrm{~km}, 200<\mathrm{D}<300 \mathrm{~km}$, accordingly; 5—on the nearside.

Of the 11 craters 200 to 300 km in diameter on the far side, eight are antipodes of maria formations on the visible side, and three fall in the same continental areas as does Birkhoff.

Yet another pecularity has been noted in the distribution of thalassoids and large craters (over 200 km diameter) on the surface of the Moon: most of them are located within the limits of 2 mutually perpendicular circles. The first circle has an inclination to the equator, $i=+37^{\circ} 16^{\prime}$ and intersects the equator at point $\Omega=-81^{\circ} 45^{\prime}$. It passes through the following formations (see fig. 4):

1. Oppenheimer-207 km diameter
2. Apollo- 502 km
3. Mare Orientale- 961 km
4. Oceanus Procellarum
5. Mare Imbrium-1104 km
6. Mare Serenitatis- 641 km
7. Lacus Somniorum
8. Mare Crisium- 516 km
9. Mare Marginis
10. Mare Smythii- 433 km
11. Pasteur- 251 km
12. Fermi-206 km
13. Tsiolkovskiy- 189 km
14. Gagarin- 269 km
15. Mare Ingenii- 344 km
16. Leibnitz- 247 km
17. Kármàn- 198 km
18. Poincaré- 339 km

The primary mascons are also located along this circle in Mare Imbrium, Mare Serenitatis, Mare Crisium, and Mare Smythii.

The second circle has an inclination $i=$

Table 4.-Table of Antipodes on the Moon

|  | Visible Hemisphere | Far Hemisphere |
| :---: | :---: | :---: |
| I | Oceanus Procellarium | 1 Tsiolkovskiy ${ }^{(1)}-189 \mathrm{~km}$, ${ }^{(2)}$ 1a Milne- 250 km , 1b Pasteur-251 km, 1c Gagarin ${ }^{(1)}$ - 269 km , 1d Men-deleev- 345 km |
| II | Mare Imbrium | 2a Mare Ingenii ${ }^{(1)}-344 \mathrm{~km}, 2 \mathrm{~b}$ Leibnitz ${ }^{\text {(1) }}-247 \mathrm{~km}$ 2c Kármàn ${ }^{\text {(1) }}-198 \mathrm{~km}$ |
| III | Mare Serenitatis | 3 Apollo ${ }^{(1)}-502 \mathrm{~km}$ |
| IIIa | Lacus Somniorum |  |
| IV | Mare Frigoris | 4 Planck-332 km, Poincaré ${ }^{(1)}-339 \mathrm{~km}$ |
| V | Mare Tranquillitatis | 5 Korolev-450 km |
| VI | Mare Fecunditatis | 6 Hertzspring ${ }^{(1)}-586 \mathrm{~km}$ |
| VII | Mare Nectaris | 7 Mach-196 km |
| VIII | Mare Crisium |  |
| X | Mare Marginis | 10 Mare Orientale ${ }^{(1)}$ |
| XI | Mare Smythii |  |
| XII | Mare Australe | 12 Lorentz-340 km |
| XIV | Mare Humorum | 14 Mare Moscoviense ${ }^{(1)}$ - 460 km |
|  | Bailly | Swartzschild-214 km |
|  | Unnamed Maria Surface North of Hershel | Schrödinger ${ }^{(1)}-324 \mathrm{~km}$ |

Notes: (1) Basins with bottom partially covered by lava.
(2) Diameter of basins in kilometers based on outer edge.
$-52^{\circ} 44^{\prime}$ and $\Omega=124^{\circ} 50^{\prime}$ and passes through:

1. Birkhoff— 342 km
2. Landau- 226 km
3. Lorentz- 340 km
4. Gerard Q-217 km
5. Oceanus Procellarum
6. Mare Humorum-442 km
7. Palus Epidemiarum
8. Mare Nubium
9. Deslandres- 218 km
10. Mare Australe
11. Humboldt- 205 km
12. Mare Moscoviense- 460 km
13. Campbell- 228 km
14. D'Alembert- 227 km .

This circle passes through the mascon in Mare Humorum.

Large formations not included in the two main circles include: Planck- 332 km , Schrö-dinger- 342 km . Bailly- 295 km , the thalassoid near Schiller on the visible side (coordinates at center $\left.56^{\circ} \mathrm{S}, 46^{\circ} \mathrm{W}\right)-367 \mathrm{~km}$, Schick-
ard-206 km, Swartzchild-214 km, located on the third circle, passing along meridians $-46^{\circ}, 134^{\circ}$ and perpendicular to the contemporary equator, on which are located such large formations as: Korolev- 450 km , Hertzsprung- 586 km, Oceanus Procellarum, Sinus Medii, Mare Tranquillitatis, Mare Fecunditatis, and Al-Khwarizmi discovered by Farouk El-Baz (ref. 8). We should also note the meridional placement (along $\pm 90^{\circ}$ ) of such formations as: the Mare Humboldtianum, Mare Marginis, Mare Smythii, Mare Australe, Mare Orientale, and Lorentz.

This distribution of large formations indicates the great importance of continued study of various characteristics along these belts (determination of crustal thickness, tectonic, age, and other peculiarities).

## References

1. Photographic Map of the Visible Hemisphere of the Moon; 1:5 Million Scale, Nauka Press, 1967.


Figure 4.-Diagram of maria, thalassoides, and craters (D $>200 \mathrm{~km}$ ).
2. Rodionova, Zh. F., Measurement of the Areas of the Lunar Maria and Thalassoids. Astron. Tsirk., No. 538, 1969.
3. Full Map of the Moon; 1:5 Million Scale, Nauka Press, 1969.
4. Westfall, J. F., The Areas of the Lunar Lowlands. Strolling Astronomer, Nos. 7 and 8, 1970.
5. Shoemaker, E. M., and R. J. Hackmann, Advances in the Astronomical Sciences, Vol. 8,

1961, p. 72.
6. Pskovskiy, Yu. P., Global Study of the Moon. Priroda, No. 4, 1968.
7. Atlas of the Reverse Side of the Moon, Part II, Vol. 215, 1967.
8. El-Baz, Farouk, Al-Khwarizmi: A New-Found Basin on the Lunar Far Side. Science, Vol. 180, June 1973, p. 1173.

