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SINGLE NODE ORBIT ANALYSIS WITH RADIATION
HEAT TRANSFER ONLY

INTRODUCTION

In many cases, it is desirable to simulate an orbital analysis of a
thermal responsive system without applying LOHARP or SINDA. These are
library programs capable of handling the most complex and sophisticated
thermal system, However, in many cases, the depth which can be penetrated
by these programs are not warranted on the basis of required turnaround time
and technical level,

A need exists, therefore, to handle an orbital thermal problem where
the fidelity of the analysis is commensurate with the level of decision making
demanded by a phase A/B study., This includes problem modeling and problem
solution to be accomplished within a few days,

One approach to satisfying this need is to consider sclected types of
thermal systems, The purpose of this report is to provide background tech=-
niques leading to orbital analysis of a single node having radiation heat transfer
only, To this end, a computer program has been developed to handle this
category of thermal systems, Specifically, these are:

1. Louvers systems

2, Flat plates.,
These two basic categories are subdivided into five combinations involving
thermal systems having shields, sunshades, and louvers, FEach combination
is given further definition in ""Thermal Transicnts Resulting from a Time

Varying Thermal Environment, ' contained herein,

For illustration, the same inputs have been applied to each combination,
Unless otherwise stated, these conditions are;

1. Orbit period = 90 min

2, Orbit day period — 60 min



3.

4.

6,

Ts

Solar constant — 430 Btu/h-ft?

Albedo and IR = 30 Btu/h-ft? (orbit average)
Optical properties =

1. Equipment emittance — 0, 50

b, Shield emittance = 0, 50

¢. Sun shield emittance = 0, 850

d, Sun shield absorption = 0,10

Equipment capacitance = 3 Btu/°F

Initial node temperature = 70°F,

These inputs have been selected for example purposes only (no significance ia
to be attached to them), All are variables within the program and can be
changed to suit a specific problem,

STEADY-STATE TEMPERATURE CHARACTERISTICS
RESULTING FROM A NON-TIME-VARYING
THERMAL ENVIRONMENT

In considering steady-state results, it is important to differentiate
between a time=varying thermal environment and a fixed thermal environment,
In general, the results are not the same, In the general case, the thermal
capacitance of the system prevents the temperature from increasing or decreasing
to the level predicted by a fixed thermal environment, Sometimes, the parame-
ters of the system can be such that very great differences exist,

Consider a flat plate exposed to a radiation flux, G, as illustrated in

Figure 1,

The plate has properties as indicated with insulation on the antiflux

side. An internal heat source, q/A, represents the presence of electronic
equipment that may be attached to the plate, In the steady-state, all of the
energy inputs to the plate must be equal to the energy radiated:
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FLAT PLATE

Figure 1, Flat plate showing energy components, (The entire
plate is considered as a single node,)

. B 1
OG+A“U(OTO . (‘)

Solving for temperature, To.

e[ e g

The steady=-state temperature as defined in equation (2) is independent of plate
mass, The plate is at a uniform temperature with no gradients, Actually,
equation (2) is a strong tool for evaluating the combined effect of optical pro-
perties, internal heat generation, and incident radiation, However, unless the
system has low mass per unit area, additional analyses are warranted,

Note that the plate temperature and surface emittance has been sub-
scribed with the letter (o). This subscript is meant to imply the surface on
which electronic equipment is mounted, This clarification is helpful when
shiclds are considered,



T e T

SHIELDS

The next level of sophistication to be considered in this type problem is
the introduction of a shield, Sometimes, shields are referred to as sunshades,
This is especially true if the shield is used to interrupt solar radiation from
impending upon the plate, With the use of multishields, the outermost shield is
referred to as the sunshade,

The geometry of a shield is illustrated in Figure 2, The shield is placed
in fro ' of the plate, The outer area between the shield and plate is designed to
be as smal! as possible, For purposes of analysis, this area is assumed to be a
thermal barrier,

SHIELD To
€T ‘o
‘—-———-—-—-4
2
A
aG ‘NJ

Figure 2, Shield configuration with surface
emissivity of £’

In application to thermal control systems, the shield concept has the
ability to limit the temperature extremes predicted by a single plate, The
thermal cycle is '""smoothed out, "

The steady plate temperature, To' can be obtained by writing an energy
balance between the shield and plate, Under steady=-state conditions, all of the



equipment energy must be radiated to the shield, Thus, the steady=-state tem=
perature of the shicld from equation (2) becomes

4 1 :
Tehield = ~/0_¢N (“'"*%) . (3)

The energy balance between the shicld and plate is

o AT 4 - T

q = . . (4)
= W S
CN 6'0

Substituting equation (3) into equation (4) yields

A i 4 .
%:— s [(NUTO "'ﬂ(l] 'R (5)
—N-C +2
C N
(¢}

Equation (5) can be easily solved for 'I‘o. but is much less complicated in this
form,

It is noted that equation (5) applies for a single shield having an
emissivity value of €y ©On both outside and inside, If the inside value is ¢,

equation (5) becomes

N :
%=€ - - (6)
N N
¥ +€ -cN+1
o

This equation is important because it illustrates how the heat dissipation
capability can be reduced by making ¢ a small value, In cercain applications
it may be desirable to reduce the heat dissapation rate, Also, a small power
input may be desirable to maintain a constant temperature, The rate loss can
be easily reduced by a factor of ten by adjusting the value of e,

e



Analysis of shields and sunshades are directly applicable to louver sys=
tems, A louver system is one where the surface area being shaded is variable,
Thus, the rate of heat dissipation can be varied over a wide range, Generally,
there are two louver configurations ol interest, These are known as "with
sunshade' and "without sunshade,' A louver system with sunsk “de is known as
an "internal louver system, "'

For the internal configuration, one shield would represent a "full=open'’
louver situation, and two shields would represent the "full-closed" situation,
Equation (6) represents the full-open situation, This equarion is plotted in
Figure 3, Emissivities have been selected to give near maximum heat dissipa=
tion capability, Equation (2) represents the full open situation for Je "without
sunghade' configuration,

The same techniques ag already presented can be applied to two shields
as illustrated in Figure 4, This con” 2 ration is applicable to an internal louver
system with the louvers closed, Under steady=-state conditions the equipment
eneirgy which can be radiated for the configuration illustrated in Figure 4 is

4
-c 0 L W B | (RO ' (7)
A N C.C_+1 f
172
C
N
Cl- - [2 =-¢]

€E+3e¢ =2¢ ¢
0 0

2: (0(2-()
2 =¢ oG
C3“[ ¢ ] o :

Fquation (7) is plotted in Figure 3 for typical values. The position of
the two lines can be changed by varying the emissivities, However, the position
shown is for a value of 0,8, The opened louver position curve represents the
near outer capability of louvers to control temperature,
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SUN SHIELD (SUNSHADE) SHIELD
\ / - FLAT PLATE

\
AHDNIN

I
7

oure 4, Configuration of a flat plate with
shicld and sunshade,

It is important to recognize that Figure 3 applies to steady-state condi=
tions on the day side of the orbit, An identical curve can be developed for the
night cycle (Fig. 5). However, as will be illustrated later, Figure 5 is a poor
compromise for results of orbital analysis, As a consequence, day conditions
are sometimes substituted for orbital analysis results, It will be demonstrated
later that orbital analysis of louver system results in greater heat dissipation
theo indicated in Figure 3,

TEMPERATURE TRANSIENTS RESULTING FROM A
NON-TIME-VARYING THERMAL ENVIRONMENT

Knowledge of the transients occurring within a thermal system adds to
the understanding of the problem and inspires solution techniques, The approach
to establishing the transient can be stated in the form of an instantancous heat
balance:

d : |
Mcpé = )Q (%)
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where EQ is the net energy rate gain (or joss) of the system, In general,
EQ is represented py a radiation term, thermal flux, and equipment power,

If the equipment power and thermal flux are zero, equation (8) reduces to

dr
MdeT--n(AT‘ : (9)

This expression can be easily integrated to obtain a temperature time expression,
For those systems involving shields, heat flux, equipment power, and a time=
varying environment, a computer analyzer program is the only practical way to
approach the problem. However, there is a special case that can be handled
mathematically, This is a simple flat plate under radiation heating, not subject
to a varying thermal environment, Equation (8) becomes

(_il+ac;\'l“ _aGA
dr MC — Mg "
P P

e (10)

Solution to this equation can be found in the literature, but will be repeated here
for purposes of completeness;

@+ r) (1-—T) Ty
o Gein) (-3) AT

Y/ : e/
. _ |geA b a dGA
e BT ¢ ‘ lmc
p p

e initial plate temperature (°R) .

-3
]

B |-

= [

J—

o=

(11)

Equation (11) gives temperature as the independent variable. However, this
A
equation can be generalized upon by plotting 7 % as an independent variable

(Fig. 6). Note that in a mathematical sense, steady-state temperature is
obtained only after an infinite time. The value of the steady-state temperature
can be determined by

10
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1

. Y
i (Btc:ldy-ﬁtalw) = % - [‘-::—E;-] .o (1:-’)

The argument of this parametric plot is b/a, reciprocal of the steady-state
temperature (Rankine), The independent variable allows representation of all
combinations,

o w5 ki
e T MC ’
p

However, Figure 6 is valid only for an initial plate temperature of 70°F, Thus,
a complete generalization of equation (11) cannot be made,

If it is desirable to determine just the time to reach the steady-state
temperature, it becomes necessary to talk in terms of "time to reach a per-
centage of steady=-state temperature,' This is necessary since in a mathematical

sense an infinite time is required. To solve for the time to achieve 0, 98 percent
of the steady-state temperature, let

"
T = O. 98 E = Ut BH [n_(L] .
a £EQ

In most cases the tangent functiops can be eliminated since the equation is
dominated by the logarithm function, This fact allows for quick calceulations,

The following is a sample ~ase to use in conjunction with Figure 6:

How long will it take a solar array to reach 180°F under the following
conditions:

To = T0°F (initial temperature)

'
il [ 1. S B i o A0 - BT
b [a (;] B OUIR (u.un12 bl Ll Fstondy-st:lte)
4

e = 0,8 , Cp = 0,2 Btu/lb-*F , %I" = 21b/ft? ?

12



Enter Figure 6 at 180°F for a (a/b) value of 0,0012;

e A ’
Tmcp = 00,1776 .

Making the necessary substitutions and solving for 1 gives:

0,
r = 0,1776 2 - 82 = 0,0888 h (5,32 min) .

The value of this type calculation is established if sufficient time exists
for steady=-state conditions, If time is not available, then a more sophisticated
solution is warranted,

Note how the emittance has a dual effecet, 1t affects the value of a/b and
r a'; however, its effects on ra' is much more sensitive. A greater emissivity
will decrease the heating time, Also, the mass per unit area is important,

Equation (11) has been demonstrated as considering a heating problem,
Cooling problems can be solved by the same equation. For example, if T0 >
b/a, cooling will occur, Also, T must be less than b/a,

As a matter of clarification of the units involved in equation (6), it is
noted that

x(z)

must have units of time, At first this is not obvious, By making the substitu-
tions into this set of parameters, the time unit of v can be verified:

_‘
¢
A
a—
ci=
\—-"u
i
] =
QL,,-
-
| I a—
—
=3 N
Qla
| S A |
P

[ Btu ]rt’
h-ft2=(°F)?

13
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TEMPERATURE TRANSIENTS RESULTING FROM A
TIME-VARYING THERMAL ENVIRONMENT

The application of equations presented previously for a fixed environment
have limited utility, They apply only for a unique set of circumstances which
the engincer seldom has the luxury to afford,

At best, application of the previous equations represents no more than
"first impressions' and, in gereral, cannot meet the feasibility definition
required for a Phase A Level Study, As an example of what is implied by this
disposition, consider the temperature of a flat plate in Earth orbit having the
following characteristics:

¢ = 0,85
8
a = 0.5
H = § ‘\ fftz .
A

From equation (1), the steady=-state temperature on the Sun side is
261°F, On the night cyele, the steady-state temperature is +28°F, The actual
temperature profile resulting from computerized analysis is illustrated in
Figure 7. In the steady=state, the plate temperature will vary from a maximum
of 212°F on the day cycle to a low of 190°F on the night cyele., The capacitance
of the systems combined with the cycle environment prevents the system from
reaching peaks predicted by equation (1). Note that steady-state conditions are
achieved after 900 min (10 orbits).

The real value of treating a problem above the sophistication of equation
(1) is the inherent expansion of knowledge about the behavior of thermal sys-
tems, The data of Figure 7 were developed from the computer program described
in the appendices,

14
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Figure 7. Temperature response of a flat plate,

THERMAL CONTROL ALGORITHM FOR LOUVER SYSTEMS

One consideration that expands knowledge of a louver system is the rela-
tionship between temperature and the deflecidon angle of the louvers, This rela-
tionship is called the thermal control algorithm, This control law determines
the actual equipment temperatures., The steady=-state full=open/closed charac-
teristics given in Figures 3 and 5 only establish the other temperature boundaries
that are thermally possible for a given equipment power, All of these possible
temperatures are not desirable, Figures 3 and 5 can be misleading since they
do not illustrate actual temperatures achieved, Thermal capacitance combined
with the thermal control algorithm allows any of the temperatures indicated
(within small fluctuations) to be maintained during the entire orbit,



For purposes of illustrating how temperature can be controlled, two
thermal control algorithms will be introduced, These are given in Figure % and
labeled (1)an (2). Both have a slope of Jdegrees*F, However, for (1), the
louvers do v open fully (90 degrees) until 50°F is reached, For (2), the
louvers are .y open at 60°F, Thus, it is obvious that control law (2) will
maintain the equipment at a lower temperature, Figure 9 shows the steady=
state orbital temperature for algorithms (1). The louver system accomplishes
a near constant 50°F over the entire power range of interest, Superimposed
upon this figure is the day side analysis of Figure 3, Notice how trivial the day
side analysis is compared to a simulated orbital analysis,

= 490
j (2) (+)
. \ \
g 60
5
o
£
-
0

20 40 60 80
NODE TEMPERATURE (°F)

Figure 8, Illustration of the two example thermal control algorithms,
(Specific temperatures encountered by a louver system are
determined primarily by the algorithm employed) .,

Figure 10 is equivalent informuation using algorithm (2). Here, two cases
are shown with and without sunshade, As expected, this algorithm maintains a
lower equipment temperature, The capability of a louver system can be doubled
by not employing a sunshade, Use of a sunshade will depend upon the equipment
power lcvel and the range through which it must be modulated, Figure 11 illus=
trates the temperature and louver angle variation during the orbit. The louvers
vary through an 3 degree angle while the trough is approximately a 1,5 degree
change.

16
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Figure 9, Steady-state orbit temperatures resulting from application
of algorithm (1). (The performance sensitivity to a sunshade is
dramatic. In general, heat rejection capability can be
doubled by removal of the Sun shield,)

1t is noted that application of a shield increases the thermal radiation
resistance, A system without sunshade allows for greater heat dissipation
since there is less thermal resistance to radiation,

For purposes of providing the capability for sophisticated analysis and,
at the same time, one simple enough for quick turn-around, a computer program
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has been developed for studying the temperature transients of a single node in a
time varying thermal environment which considers radiation heat transfer or'y,
A listing of this program and an explaration of the limitations and constraints
are given in Appendix A, Appendix B develops the ratienale and assumptions used
in this program, The computer program is flexible in that five types of thermal
systems can be facilitated;

1. Louver system with sunsh: Jde,

2, Louver system without sunshade,

3. Flat plate without louvers or sunshade,

1. Flat plate with one fixed shield,

5. Flat plate with two fixed shiclds,

Comments stated within the program indicate how each thermal system may
be executed,

20



APPENDIX A. LIMITATIONS, CONSTRAINTS,
AND OPERATION OF THE COMPUTER
PROGRAM

In applying the computer peogram, the operator should be aware of the
following limitations and instructions, Exercise judgement in development of
the inputs. This caution is consistent with the simplicity represented in execut=-
ing the program for quick model development and turnaround,

1. Comments are provided to execute onc of the five configurations
available, The instructions cause the program to default to the proper configu-
ration, Note the specifics of the following statements:

A, Statement 74 = Orbit time (min).

b, Statement 75 = Sun time (min),

¢, Statement 76 = View factor, Earth to node,

d, Statement 91 = Solar and albedo flux ( Btu/h=ft¥),

¢. Statement 837 — Earth IR ( Btu h-ft’).

f. Statement 108 = gives temperature at a 90 degree louver angle,

g. Statement 109 = gives temnerature at a 0 degree louver angle.

h. Statement 110 — Algorithin, equation of louver angle versus
temperature,

i. Statement 95 = Node view factor to space on day cyele,
j« Statement 97 — Node view factor to space on night cyele,

2. The program, as presented,does not accommodate a flat plate with
albedo. As written, the flat plate is insulated on one side, For a flat plate
without insulation, replace equation in statement 19 with QT = [F(93) + F(97) |*
EN*SIG* [Y**4] - G*AC.

3. Start point is at the terminator toward the day side,

4, The time into and out of the terminator is considered to be instan-
tancous. Statement 89 determines the day side flux and statement 85 determines
the night side flux (IR).
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APPENDIX B. DEVELOPMENT OF RATIONALE FOR
ORBITAL ANALYSIS OF A SINGLE NODE EXHIBITING
HEAT TRANSFER BY RADIATION ONLY

Consider the flat surface shown in Figure B-1 which has external heat
generation distributed equally over the surface, In the general case the surface
is shaded by a louver and sunshade. The louver rotated through angle # which
varies the area shaded by the louver, At g = 90 degree, the flat surface is
shielded only by the sunshade, At 0 = 0 degree the flat surface is shaded by
two shields.,

Mathematically, the temperature of the plate with one effective shicld is

'l‘N and the temperature of the plate with two effective shicelds is TC. The bulk
temperature, T, of the plate becomes
M_F M_T
i - 1l > S W . (B-1)

MC + MN MC + MN

where M c and MN are the respective shielded mass of the flat plate, The bulk

temperature, T, is defined as the node temperature and is the combined effective
temperature of the shielded plate,

It can be easily shown that MC and the projected area, "\C is
Ag = Acos (B-2)
M
C
—— = COS 0 (B-3)
+
MC MN
= -4
MC + MN M (B-1)

B |



SOLAR FLUX

T —

~— LOUVERS (MOVEABLE SHIELDS)

|
|
| !
’! | Tsf/g == —FLAT PLATE
TN \i
- i jl INSULATION

Figure B-1. General configuration of an
internal louver system,

and

AN = A (1 ~cos )

1
1\N

MC + MN

= 1 -cos

where A is the total area.

The equation describing 'l‘C becomes

dT

C 2 q
—_— . +
MC Cp dr e \Cb(t) (.-\C)

(EQUIP) (RADIATED)

dT

=N ; 9 (a4 :
My G a = TS (AN) (.-\N)
(EQUIP) (RADIATED)
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These two equations can be represented as u single equation involving only the
node temperature, T:

M dT . q q
&0 == s g G(1) +( ) -( : (B=9)
A p dr A (EQUIP) A

) (RADIATED)

The term (q/A) equipment is simply an input equivalent to the equipment power
applied to the node. Equations (6) and (7) of text can be combined to obtain the
equipment power capable of being radiated, It is noted that the solar flux falling

on surface A is a function of time depending upon orbit parameters and orienta-
tion,

Equation (B-9) is the problem representation included in Appendix A,
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