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CONSIDERATIONS IN THE UCSIGN OF TIP-COUPLED
AIR-TRANSPORT SYSTEMS

Harry H. Heyson

Langley Research Center

ABSTRACT

It is shown that the lift-drag ratio of tip-coupled systems can be expressed as

a simple multiple of the lift-drag ratio of the isolated units comprising the

system. When operated for maximum lift-drag ratio, the extent of the coupled

system is limited by maximum lift coefficient, hiqh-altitude engine character-
istics, and degraded performance of the isolated unit climbing to couple into

the system. When operated at constant altitude, the gain from coupling is
severely limited. If the cruise altitude is that for best performance of the
isolated unit, the system lift-drag ratio can be no better than twice that of
the isolated unit. even when an infinite number of units are coupled. System

performance may be further degraded since span-load distributions which yield

good performance for the individual units reduce the efficiency of the coupled
system.

Coupling a pair of modern transport aircraft results in only about half the

expected gain because of a poor span-distribution across the coupled pair.
The control deflections required to maintain roll and pitch equilibrium further
degrade the possible gain.

INTRODUCTION

One of the most obvious nirians of increasing thEr aerodynamic efficiency of an
aircraft is to reduce the induced drag by means of an extremely large aspect
ratio. Unfortunately, this procedure leads to large spans with attendent
large wing weights. In addition, the large span tends to present many

practical problems in ground handling, taxyin g , landing, and takeoff when

using current airports. PossiSly these difficulties could be overcome provided
that the iircraft could land and take off as smaller modules and be assembled

into a large-span cruise configuration in flight by coupling the modules at

their wing tips. The small modules could be specifically des i gned for opera-

tion in an extended version of such a "sky train," or, conceivably, current

aircraft could be coupled to provide improvements in either cruise efficiency

or range.

The present paper provide_ a simple generic analysis of tip-coupled air-
transport systems. The possibilities and problems of this type of operation

are examined using a simple two-term, drag polar to represent the aerodynamic



performance of the individual modules. The analvsis demonstrates that 'there
are limitations on the improvernent in efficiency and that the mode in which

the system operates in cruise must be carefrilly considered to maximize the

improvement. Next, the effect of the module planform (or span-lead distribution)
on the overall efficiency of the coupled system is considered. It is shown that

simultaneous optimumization of the aerodynamic efficiencies of both the indi-
vidual module and the tip-coupled system is not possible without the use of some
form of variable wing geometry. Finally, the coupling of a pair of modern wide-

body transports is considered and used to illustrate some of the required design
considerations.

SYMBOLS

A	 aspect ratio of wing, b2/S

b	 wing span

c	 wing chord

C D	drag coefficient, D/qS

CD'o	 profile drag coefficient, Do/qS

CD,1	
drag coefficient for lift-dependent portion of profile drag.

(see eq. 16.)

C L	lift coefficient, L/qS

C R	local lift-coefficient

D	 drag

Do	profile drag

e	 airplene efficiency factor

e	 ratio of coupled efficiency factor to isolated

efficiency factor

h	 altitude

hd	altitude at which isolated aircraft is designed to achieve

maximum L/D

M	 Mach number

m	 ratio of operating lift coefficient to the optimum lift

coefficient, CL/CL,opt
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N	 number of coupled units

q	 dynamic pressure, lf.V2

S	 wing area

V	 aircraft velocity

y	 lateral distance from centerline

t	 circulation

X	 taper ratio, ct/cr

P	 mass density of air

Subsc--ipts

avg	 average value

c	 cruise value

max	 maximum value

opt	 optimum value

p	 potential-theory value

r	 ;'oot

t	 tip

Names denote that value is for the coupled system.

RESULTS AND DISCUSSION

Maximum Cruise Efficiency

For many preliminary design purposes, it is permissible to represent the drag
polar of an aircraft by a simple parabola; that is,

2

r	 CL	 1
. 0	 C D,o + nAe

The efficiency factor e, i ntroduced by Oswald in reference 1, includes tht
potential-flow efficiency of the wing, any interference drag, and the growth

of parasite drag w i i-h lift coefficient.
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Maximum range, or maximum cruise efficiency, is attained when the quantity
ML/D is greatest. Since M is generally fixed by the onset of compressibility
effects in modern transport aircraft, maximum efficiency will be essentially
obtained under conditions whero L/D is greatest. In consequence of equation
(1), this ratio may be written as

L _	 CL
D	

C 2	 (2)

CD,o + n—Ae

It is simple to show from equation (2) that the maximum va',ue of L/D is attained

at a lift coefficient of

	

CL,opt 

u O,o	 (3)

Furthermore, the maximum value of L/D is

max
	Tr

	

 CD,	
(4)

,o

The Coupled System

At cruise altitude, the indiiidual modules are coupled at the wing tips.
Assume that all modules are identical and loaded equally. Further assume that

the mutual interference between modules does not alter their profile drag.

Then, it follows that

NLC^	 _
L - qNS C L

ND
p _ C

	

16,0 = qNS	 Do	 (5b)

On the other hand, the aspect ratio of the coupled system is significantly

altered. It becomes

4
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Operation at Maximum L/D

Coupled system.- After coupling, the assembled cruise configuration behaves as
a single aircraft of increas ed aspect ratio. The maximum value of lift-drag is
obtained by substituting equation (6) into equation (4), to obtain

( 1.	 T	 A 'e'

D max	 4 "D,o
	 (7)

Now, nondirrensionalize equation (7) by dividing by the maximum lift-drag ratio

of the isolated module as given by equation (4), to yield

(L/D)max

T—L/max	 P,e	
(8}

Assuming for the moment that the efficiency factor a is unaltered by coupling
(r = 1), e q uation (8) shows that the iraximum lift-drag ratio of the coupled
system increases without bound as additional modules couple to the system
(fig. 1). On the other hand, the cruise configuration must fly at ever

increasing values of lift coefficient in order to attain its maximum lift-
drag ratio. Performing the equivalent operations on equation (3) yields

CL

C L ,oP t
,opt

_ -_	 (9)

Obviously, there is a maximum number of coupled units which can operate at
maximum (L/D)' before the system stalls. This maximum number of units is

obtained by setting C' L,opt = CLmax in equation (9) (see fig. 2) and

solving for N to obtain

^^	 = 1	 C L,max_
max	 CL,opt 2

	

(10)

Furthermore, since the wing loading of the modules and the coupled system is

unaltered by coupling, the lift-coefficient at which the coupled system
operates can only be increased by either slowing down or by climbing to greater
altitude. A lower cruise speed decreases the range factor ML/D and,
simultaneously, decreases productivity to the point where it is not a viable

alternative. Thus, the lift coefficient must be increased by flying higher

to reduce p in indirect proportion to the increase in 
C
L,opt . The actual

required altitude depends upon the design altitude of the isolated module
(that is, the altitude at which the individual module attains L/D max ). The
required cruise altitudes are shown in figure 3.

ORIGIN AL PAGEIS
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The available thrust of turbine engines decreases rapidly at great altitudes,

and, for a given engine, there is some maximum altitude above which it is

impractical to operate. No attempt is made to determine such a limit herein;

however, it is obvious from figure 3 that, whatever the engine limit is, it
constrains the max i mum number of modules that the system can contain and still
operate at maximum efficiency. Figure 3 demonstrates that a decrease of about

3 km (10000 ft) in engine-limited altitude decreases the number of units by a

factor of approximately two. Similarly, an increase of about 3 km (10000 ft)
in h 	 reduces the number of units by a factor of approximately three.

It is observed that a decrease in engine bypass-ratio tends to decrease the

rate at which available thrust decreases with altitude. Thus, attempts to
optimize the coupled cruise-system toward larye numbers of modules may force
the designer to choose lower bypass-ratio engines which inherently have greater

specific fuel consumption.

Isolated module.- The performance of the isolated module must also be considered
in the analysis. This module must climb from sea level to the cruise altitude

of the coupled system. In some concepts, it must also be capable of trans-
ferring in flight from one "sky train" to another. Again assuming identical

modules, equation (5a) shows that C L = ^L,opt when the coupled system

operates at maximum efficienc;, and, in consequence of equations (3) and (6).

C^ 'opt =	 ,rNAe'CD o	 (11)
,

Now substitute equation (11) into equation (2) and divide by equation (4) to
obtain

L/D	 _ 2 le	
(12)

/D) max	 Ne

Equ- , tion (12) demonstrates that the efficiency of the isolated module at

coupling altitude decreases as a function of the number of coupled units

(fig. 1). For four coupled units, the lift-drag ratio of the isolated unit

is decreased by 20-percent; for 10 units, it is decreased in excess of 4C-
percent. The installed engine thrust must be increased by 25-percent in the

first case, and by over 65- percent in the second case, if the module is to

actually reach the altitude of the coupled cruise system.

Even when both the individual module and the cou p led system operate at their
respective optimum lift-coefficients, their lift-drag ratios differ signifi-

cantly (eq (7)), and, consequently, there is a significant mismatch in

required thrust between irdependent and coupled operation. Since the isolated
unit operates at a lift coefficient significantly greater than CL,opt at

coupling, this mismatch is further magnified. The resulting gross mismatch

may add to development cost, production cost, and empty weight, and, in
addition, may result in degraded specific fuel consumption during cruise.
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Operation at Constant Altitude

Coupled system.- The preceding analysis indicates that operation of the coupled

system at its maximum lift-drag ratio is not feasible under many circumstances;

therefore, a simpler operational mode, at constant altitude, will be considered
next. In the ensuing discussion, it will be convenient to specify the altitude

indirectly in terms of the lift coefficient of the isolated module; that is

t. r 
C L ' mCL,opt
	 (13)

The nondimensionalized lift-drag ratio of the coupled system of N units is

obtained by substituting equations (h) and (13) into equation (2), and then
dividing by equation (4), to obtain, after some simplification

(1./D)'	 _ 2mNJ

/M rnax	 M +  

	 (14)

Equation (14) shows that the nondimensionalized lift-drag ratio approaches

2m as the number of units N appro,iches infinity. This is not inconsistent
with equation (8) since, in the former case, the unbounded increase in (1_/D)'
was obtained only with an unbounded increase in CL .

Figure 4 shows equation (14) for the specific case of operation at the altitude

wh i ch yi(. los the greatest lift-drag ratio for the isolated module, and figure
5(a) shows the more general case where m can assume any arbitary value. The
envelope of maximum lift-drag ratios in figure 5(a) is obviously the coupled-
system curve of figure 1.

The bounded nature of the gain in (L/D)' with increasing N at constant

altitude is obv i ous in figures 4 and 5(a) as well as in the mathematical limit

of equat i on (14). Furthermore, as m (altitude) is increased, a greater

number of units must, be coupled to approach reasonably close to the limiting

value of (L/D)' .

If the cruise altitude is high (large m), the efficiency of a small coupled

system ma y be less than that of the individual modules flying near their best

cruise a",titude. For example, at an extreme altitude (m - 10), more than six

cou p led units are required to match the maximum lift-drag ratio of the isolated

module. Jnder such conditions, it would be preferable to operate the modules

independently at lower altitude.

Operation at constant altitude still entails compromises enforced by stall

and by engine uperating characteristics. The altitude (represented herein

by m) must be chosen sufficiently small to avoid these limitations.

Isolated module.- The lift-drag ratio of the isolated module at cruise altitude

is obtained by substituting equation (13) into equation (2) and dividing the

resulting equation by equation (4) to yield

(L/D)	 _	 2m

TL%Dj
max	 1 + m 2

ORIGD AT, PAG ►; to
OF POOR QUALITY

(15)
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Equation (15) is shown in figure 5(b).	 It wi l l be recognized as the generalized
lift-drag ratio function of any aircraft which can be represented b y a two-term
drag polar (ey (1)). The greatest value of L/D occurs at C 	 (m = 1) and

L,opt
the efficiency decreases significantly for other lift coefficients.

If it is desired to avoid significant overpowering of the individual modules,
these modules must operate reasonably close to CL,opt- If m is chosen to be

1.5, the module must be overpowered by 10 percent and the maximum possible gain
in the coupled system is an incredse by a factor of three in (L/D)' as N

approaches infinity. In a more practical sense, a factor of about two could be
obtained with five units, or 2.5 with ten units.

Between the excess installed thrust for isolated operation and the reduction in
required thrust for coupled operation, the individual modules must be signifi-
cantly overpowered in cruising flight. This thrust reduction in cruise might
c1 low shutting down some of the engines after coupling; however, this procedure
is forbidden b y current Federal Air Regulations.

Considerations in Module Design

As ect_ratio and profile drag cuefficient.- The performance of the coupled
system has been shown to relateto directI y to the performance of the isolated
module irrespective of th, aspect ratio or the profile drag coefficient. Thus,

the best performance of the coupled system is obtained by optimizing the design
of the individual module.

The requirements are simple; the module should have great L/D and,
simultaneously, should have a small C

L,opt 
to allow coupling a large number

of units efficiently. Examination of equations (3) and (4) demonstrate that
these requirements are satisfied simultaneously only by minimizing CD',' The

profile drag must be as small as possible, but increases in aspect ratio tend

to be self defeating in that increased aspect ratio also increases CL,opt

which decreases the number of units that can be coupled efficiently. The use

of laminar flow control should be particularly advantageous in a tip-coupled
system since it offers the promise of a major decrease in friction drag.

Potential-flow efficiency factor.- One of the parameters determining the Oswald

efficiency factor is the potential-flow efficiency of the wing. Normally, a
wing is designed with a combination of twist, taper, and ca-.,Der which produces
an almost elliptic span-load distribution in cruise, thus minimizing the induced
drag. The tip-coupled system presents a more complicated problem, for now the

span-load distribution ideally should be elliptic in both the coupled and

uncoupled modes of flight.

This problem has been examined in its simplest form by calculating the

theoretical efficiency factors e 	 for several module planforms of varying

taper ratio using the North American Rockwell Unified Vortex Lattice (NARUVL)

computer program (ref. 2). The efficiency factors have been obtained for the

8



isolated module as well as for tip-coupled systems of as many as five ident4cal
units. The individual modules were assumec to have aspect ratios of 4.0 and

module taper-ratios of 1.0, 0.5, anO 0 were considered. in all cases, the
wings were untwisted, untapered, and had zero leading-edge sweep. The planfurrns

of thesi modules coupled into systems of five units are shown in figure 6.

The chosen planforms are qualitatively r^ e5entative of three classes of wind

•	 span-load distribution. A rectangular pienform (N = 1.0) represents a heavier-

than-elli ptic loading near the wing extremities. With a taper ratio of 0 5.
the span-load distribution is approximately elliptic. The pointed wing planform

(X • 0) has a less-than-elliptic loading toward the tips, sacrificing some aero-
dynamic efficiency in favor of reduced wing bending moments.

The calculated efficiency factors for the three planforms are shown as a function
of the number of coupled units in figure 7. For a single unit, as anticipated,

the nianform with A = 0.5 is the most efficient (by about 5 percent) since it
most nearly approaches the ideal of elliptic span loading. For all planforms
considered, the efficiency factor decreases as units are added, with the rate of

decrease increasing as the taper ratio decreases. With only two coupled units,
the rectangular (a = 1.0) wing has become more efficient than the wing with a

ta per ratio of 0.5. The decrease is particularly rapid for the pointed wing

(a = 0), falling to values on the order of 0.3 by the time five units are coupled.

The radical c_nanges in the potential efficiency factor imply that the ratio e

in equations (8) to (14) is riot a constant but that it decreases with N. Thus,
the gains in efficiency from tip coupling are less than indicated in figures 1

to J. Viewed in terms of an effective aspect ratio (fig. 8), the aspect ratio

in^.reases at a significantly reduced rate as N increased. 	 I

The reason for the loss in efficiency when coupled is clearly evident in the

span-load distributionF presented in figure 9. The differences in planform

result inmajo - variations in load distribution across the span of the coupled

systems. Only the rectangular modules retain a span loadin r, with a quasi-

elliptic load distribution when coupled. in the extreme case of the pointed

wing, the load drops to zero at each .junction with a resulting aerodynamic, per-

formance that is more representative of formation flight than coupled light.

The fact that the rectangular wing appears to be the best in figures 7 to 9
should not be taken as implying that an inverse taper (X = 1) might be even
better. if N becomes very large, the span-load distribution in the central

portion of the coupled configuration will be approximately the same as for
the normal (^ -- 1) cases considered in figure 9. Thus, for large values of
N, the potential-flow efficiency factor for modules of taper ratio 10 should

be approximately the same as that for modules of taper ratio X .

The concept of coupling modules to form a cruise system of vast aspect ratio

depends upon approaching a two-dimensional case of zero induced drag as the

coupled system is extended indefinitely. The only module planform which

automatically satisfies this criterion is rectangular. 	 .n all other cases, the

load distribution across the span does not approach uniformity as modules are
added indefinitely. For each change in load (or circulation) over a span dy,

9



the wing must shed a trailing vortex of strength ^^ ay. Thus, the cyclically

repeating load distribution of the tapered modules resultsin a wake stream-

wise vorticity even for infinite aspect ratio and, consequently, the induced

drag never approaches zero as in two dimensions.

In relation to the design of the isolated module, it is clear that a less than
optimum load distribution must be adopted to avoid penalties when the system is

coupled in the cruise mode. However, the performance of the coupled system is
a relatively straight-forward ratio to the performance c' the isolated module.

Thus, the compromised span-load distribution of the module affects the perform-

ance of the overall system even when it is chosen so as to minimize the effect
on the coupled system. One solution might be some form of variable geometry
controlled automatically to adjust the spanwise load distribution according to

the number of coupled units. Such a solution would add further complexity to a
control system which would, in any event, be required to alter its character-
istics to pro0 de harmonized control in both the coupled and uncoupled modes.

Oswald efficiency factor.- The efficiency factors described in the preceding
Section o not correspond w Ah the efficiency factor of equation (1), since,

according to Oswald (ref. 1) that factor a must include all other lif t -
dependent drag such as interferen	 and growth of profile dra with lift
coefficient.	 Indeed, the proper r,lue for a in equation (I is likely to be
on the order of 0.8 even when the potential-flow efficiency factor is close to
1 (ref. 3). The difference is largely caused by the restriction of equation (1)

to a two term polar. In practice, the profile drag is not a constant, so that
a more correct expression of equation (1) would be

2

2	 CL	 16C D = C D,o + Cp l (C C - CE,C ) 
+ 7ep	

( )

Equation (16) and its subsequent treatment is basically similar to that given

in reference 4 except for notation and the presence of C L,c . The addition of

CL,c is merely a recognition that a modern aircraft is designed with camber

and wing i ncidence to produce minimum profile drag at a lift coefficient near

that of cruising flight. Now equate equations (1) and (16) and solve for e,

the equivalent Oswald efficiency factor, to obtain

e
e = -	 u

^	 (17)

1 + -aAe p C il 1	 1 - CL,c

L

Equation (17) shows that the Oswald efficiency factor is equivalent to the

potentiai- F? ow efficiency factor at only one value of C L , namely C L,c .

For any other lift coefficient, e is less than e 	 Furthermore, at these

off-design lift coefficients, the difference between a and e p becomes

greater as the aspect ratio increases. In the case of the tip-coupled system,
which must operate at greatly different lift coefficients to obtain maximum

L/D as units are added, this effect can be a severe penalty. The overall
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effect on efficiency may be significantly greater than illustrated in figures
7 and 8.

Tne use of equation (17) as a definition for a in equation (1 , would
considerably complicate the expressions for 

CL,opt 
(eq (3)) and (L/D)max

(eq (4)) since equation (17) co ltains an additional term containing C L . This

procedure has been omitted herein since it is believed that the cut-rent simple

equations adequately express the gross characteristics of tip-coupled systems
in general.

Tip Coupling of Current Aircraft

Efficiency Factor.- A more modest scheme than developing specialized modules
mig h'F e to coupe two available aircraft at their tips so as to exploit the
reduction in induced drag for either increased range or reduced fuel consump-

tion. This prospect is examined herein by calculating the potential-flow
efficiency factors and span load distributions of a current wide-boo ., transport
aircraft flying alone and flying coupled to an identical aircraft. The plan-
forms of the single aircraft and the coupled pair are shown in figure 10. The

calculations using the NARUVL program (ref. 2) included the camber, twist, and
dihedral of the actual aircraft with the aeroelastic deformations expected in

normal cruising Bight.

Since the wing is cambered and twisted, the efficiency factors (fig. 11) become
a function of the li ft coefficient. At any lift coefficient, the efficiency of
the coupled pair is significantly less than that of the single aircraft. At

cruising lift coefficients, between 0.4 and 0.5, the efficiency factor of the
coupled pair is approximately 75-percent of the efficiency factor of the
single aircraft. Titus, the effective aspect ratio is not doubled; it is only

increased by about 50-percent. In consequence, the lift-drag ratio does not

increase by over 40-percent (eq (4)), but only by abort 20 perccit. This
situation would not be improved signficantly (as suggested by equation (3))
by flying the coupled pair at greater lift coefficient since the curves of

e' p vs CL become relatively flat at the higher lift coefficients.

Even attaining the values of e' shown in figure 11 might require modifying

the wing tips. The tips must ,join with a satis factory pressure seal across
the adjoining tipF chords or else a slot effectively exists in the combined
configuration. Even for the case of ideal spanwise loading, reference 5 shows

that a s'ot having a width of 0.2 percent span reduces the efficiency factor
Ly almost 24 percent and a 2 percent slot reduces it by over '12 percent.

Swan-load distributio,r.- The heart of the induced-efficiency problem is the

spanwise o_aFdist b tion. Figure 12 compares the load distributions for the
single and coupled pair of aircraft at equal l i ft coefficients. The existing

single aircraft chosen for this calculation is typical of current wide-body
transports in that the wing is designed to have less-than-elliptic loading near

the tips, thus favoring structural weight at the expense of some increase in

induced drag. When the pair of aircraft are joined at the wing tips, the result

t 4.MNAL PAGE M
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is a deep "valley" near the center of the load distribution. This result is in

conformity with the previous more general calculation, and a rough inter-
polation between figure 16(b) and figure 12 indicates that the calculated
efficiency factors of figure 11 are in conformity witn the results obtainea
with N = 2 in figure 7.

Aircraft trim when coup -led.- Examination of figure 12 indicates that, when
coupled, t e oa distribution across each of the pair of aircraft 's not sym-

metric about the centerline of each aircraft. Thjs the two coupled aircraft
experience individual rolling moments which tend to bank them away from each

other. Because of the thin short-chord tips, these moments can not be countered
by the aircraft structure w ; chout major structural redesign. Instead, the actual

tip coupling must be "pinnea" rather than "rigid" to eliminate moment carry-over
between the aircraft. The rolling moments must be countered by the individual
lateral control systems of the two aircraft. If lateral control is by means

of tip-mounted ailerons, roll balance will deepen the "valley" in the center of
the span-load distribution with a consequent further degradation of aerodynamic
efficiency. If lateral control is by spoilers, there will be some effect on the
load distribution, and; in all probability, some increase in profile drag. 	 In
the balanced-roll configuration it appears unlikely that the tip coupled pair

of aircraft would be any more efficient than if they flew in staggered formation
flight.

As indicated in figure 12, coupling increases the loads on the adjacent wing tips.
Because of t^- wept wing, these tips are behind the center of gravity of the

aircraft.	 the increased tip loads result in a diving moment. In the

present r- u, this diving moment is equivalent to shifting the aerndynamic center
,•earward by 3.5 percent of the mean aerodynamic chord. (When the complete air-
craft is considered, coupling also reduces the downwash at the tail producing an
additional diving moment.) This diving moment must be countered by an additional

download on the tail increasing the aircraft trim drag and countering some of the

remaining small improvement in lift-drag ratio.

CONCLUSIONS

This study of the efficiency of tip-coupled ail-craft -ystems indicates that

within the limitations of an assumed two-term drao pour:

1. The lift-drjg ratio of the coupled system can be expressed as a simple

multiple of the maximum lift-drag ratio of the isolated units which compr i se the

system.

2. The number of units which can be combined into a coupled system

operating at maximum lift-drag ratio is limited by maximum lift-coeffient, high-
altitude engine characteristics, and poor performance of additional units climb-

ing to couple into the system.

3. When the cou p led system is operated at constant speed and altitude, the

gain due to tip-coupling is severely limited even when an infinite number of

12



units are combined. If the chosen altitude is that for optimum performance of

the iso l ated units, the system lift-drag ratio can be no greater than twice

that of the isolated units.

4. The coupled system performance is further degraded by required
compromises in span-load distribution. Distributions which yield 000d perfor-
mance for the individual unit result in lessed efficiency for the coupled system.

5. The span-load distribution across a coupled pair of -rodern transports

adversely affects the efficiency; the effective aspect ratio is only about 50
percent, rather than 100 percent, greater than a single aircraft. The control
deflections required to maintain roll and pitch equilibrium further degrade the

•	 possible gain.

.
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Figure 2. - Required value of 
CL,max 

to operate a tip-coupled

system at maximum lift-drag ratio. e = 1.0
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(h}	 a - 0.5
r

1

Figure 6. - Planforms of the tip-coupled systems. These planforms
are shown for systems of five units each of which has

Ian aspect ratio of 4.0.
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