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ORBITAL MOTION OF THE SOLAR POWER SATELLITE 

b y  

O t i s  F .  C r a f ,  J r .  

1 . 0  I n t r o d u c t i o n  

I t  h a s  been proposed t o  p u t  a series of large satel l i tes  
i n t o  g e o s y n c h r o n o u s  o r b i t  f o r  t h e  p u r p o s e  o f  co l lec t ing  solar  
e n e r g y  and redirect ing i t  toward t h e  e a r t h  v i a  microwave  rad i -  
a t i o n .  P r e l i m i n a r y  s t u d i e s  are be ing  carried o u t  a t  J S C  o n  
t h e  f e a s i b i l i t y  of t h e s e  S o l a r  Power Sa t e l l i t e s  (SPS).  

The  l a r g e  area of t h e  c o l l e c t i n g  s u r f a c e  ( a p p r o x i m a t e l y  
144 square k i l o m e t e r s )  means t h a t  s o l a r  r a d i a t i o n  p r e s s u r e  
w i l l  cause s i g n i f i c a n t  p e r t u r b a t i o n s  on t h e  SPS o r b i t .  I n  
f a c t  s o l a r  p r e s s u r e  w i l l  b e  a s  i m p o r t a n t  a s  g r a v i t a t i o n a l  
p e r t u r b a t i o n s .  T h i s  r e p o r t  documents  a s t u d y  on t h e  e f f e c t s  
of s o l a r  radiat ion p r e s s u r e  on t h e  SPS o r b i t .  I t  w i l l  be 

shown t h a t  t h e  eccent. . t v  o f  t h e  o r b i t  c a n  g e t  r a t h e r  l a r g e  
(.08) e v e n  t h o u g h  i . h i t i a l l y  zero. T h i s  is t h e  p r i m a r y  
d i f f e r e n c e  between JPY tjrbi + nad o t h e r  G e o s y n c h r o n o u s  
s a t e l l i t e  o r b i t s .  

The SPS c o n f i g u r a t i o n  b r i n g  ctrn+: idered h e r o  i s  d e s c r i b e d  
i n  a s t u d y  r e p o r t  b y  t h e  J o h n s o n  Space  C p n t e r  ( R e f e r e n c e  1 ) .  
O t h e r s  are d i s c u s s e d  i n  R e f e r e n c e s  2 .  3 and e l s e w h e r e .  How- 
e v e r ,  t h e  results i n  t h i s  r e p o r t  a r e  a p p l i c a b l e  to a n y  gee- 

synchron-!us s a t e l l i t e  t h a t  resembles a f l a t  s u r f a r e  t h a t  con- 
t i n u a l l y  f a c e s  t h e  s u n .  

The main p u r p o s e  of  t h i s  r e p o r t  is t o  i n v e s t i g a t e  t h e  
o r b i t a l  e v o l u t i o n  o f  t h e  SPS o v e r  i t s  e x p e c t e d  t h i r t y  y e a r  
l i f e t i m e .  As a f i r s t  s t e p 9  i t  is assumed t h a t  t h e  s a t e l l i t e  
is i n  f ree  f l i g h t , ,  i . c ' .  -ere is  n o  a c t i v e  o r h i t  c o n t r o l .  
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This will make evident the important orbital motions. One 
of the goals of this study is to describe the motion with 
analytical formulas. These could then be used as a basis 
for developing an orbit control theory that will minimize 
station Keeping costs. 

The perturbing forceF xting on the satellite are dis- 
cussed in the next section. To a first approximation, three 
types of forces can be considered separately since they have 
different effects on the orbit. 

(1) Longitude dependent tesseral terms in the earth's 
geopotential cause a slow drift of the satellite's 
mean longitude. 

(2) Sun and moon gravity cause a rotation of the 
orbital plane. 

(3) Solar radiation pressure will czuse an increase 
in the orbital eccentricity. 

Variations in orbital eccentricity e are discussed in 
Section 3 .  Analytical solution methods are used to develop 
equations for the variation in eccentricity and argument of 
perigee as a function of time. These equations are valid for 
arbitrary initial values of eccentricity and inclination. It 
is shown that e w i l l  have a periodic variatioii with an am- 
plitude of .04 and period of one year. There is also a linear 
increase so that e will grow to .08 within thirty years. 

Earth-Sun-Moon gravity will cause long period variations 
in e . These effects have been studied with numerical inte- 
gration methods and are discussed in Seciion 4 .  Evolution of 
the orbital elements is shown for a variety of initial con- 
ditions. The maximum value of e can be reduced by an ap- 
propribte choice of initial conditions. 

Implications of non-circular. non-equatorial geosynchro- 
nous orbits for t h c  SPS a r c  discussed in Section ,5. It i s  

shown that t h e  d a i l y  variation in longitude is 2e radians. 
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However ,  t h e s e  o r b i t s  o f f e r  ce r ta in  a d v a n t a g e s  for t h e  SPS 
a n d  s h o u l d  be f u r t h e r  e v a l u a t e d  f o r  t h e i r  i m p a c t  on  t h e  e n e r g y  

co l lec t ion ,  t r a n s m i t t i n g  aild r e c e i v i n g  s y s t e n s .  

2 .O P e r t u r b i n g  F o r c e s  

The  p e r t u r b a t i o n s  due t o  sun-moon g r a v i t y  a n d  non- sphe r -  
i c a l  e a r t h  h a v e  beer, e x t e n s i v e l y  d i s c u s s e d  i n  t h e  l i t e r a tu re  
and o n l y  an  o v e r v i e w  w i l l  be g i v e n  h e r e .  Acceleration due t o  
so la r  radiat ion pressure w i l l  be d e r i v e d  i n  t h i s  section, con-  
s i d e r i n g  t h e  e x p e c t e d  p h y s i c a l  d i m e n s i o n s  of t h e  SPS. 

2.1 N o n - s p h e r i c i t y  o f  t h e  E a r t h  

T h i s  p e r t u r b a t i o n  arises f r o m  t h e  f a c t  t h a t  t h e  e a r t h  is 
no t  s y m m e t r i c a l  a b o u t  its s p i n  a x i s .  A s l i c e  of t h e  e a r t h  
p e r p e n d i c u l a r  t o  i t s  s p i n  a x i s  h a s  a n  almost e l l i p t i c a l  s h a p e .  
S i n c e  t h e  en -c th  r o t a t e s  once a d a y  a n d  t h e  s a t e l l i t e  m a k e s  
one r e v o l u t i o n  i n  a p p r o x i m a t e l y  o n e  d a y ,  t h e s e  g r a v i t a t i o n a l  

p e r t u r b a t i o n s  ac t  i n  t h e  same d i r e c t i o n  o v e r  a long p e r i o d  

of ti9ne. P.s a r e s u l t  t h e r e  is a l a r g e ,  l o n g  p e r i o d  d r i f t  i n  
t h e  g e o g r a p h i c  mean l o n g i t u d e  o f  t h e  s a t e l l i t e  ( R e f e r e n c e  4 ) .  
The o t h e r  o r b i t a l  e l e m e n t s  a r e  not sc  s e v e r l y  a f f e q t e d .  Ref -  

erences 5 a n d  6 g i v e  a good d e s c r i p t i o n  of t h i s  m o t i o n .  

2 . 2  L u n i - S o l a r  G r a v i t y  - 
The l u n i - s o l a r  p e r t u r b a t i o u s  h a v e  a s u b s t a n t i a l  e f f e c t ,  

upon the node  ti a n d  i n c l i n a t i o n  I of t h e  o r b i t .  Coupl inF:  
be tween  t h e  s u n ,  moon a n d  e a r t h ' s  ob la teness  (J2) can cau : . e  
l a r g e ,  long  p e r i o d  p e r t u r b a t i o c s  i n  I (Reference 7 ) .  T a b l e  
I s h o w s  some r e d r e s e n t a t i v e  v a l u e s  of t h e  i n c l i n a t i o n  a f t e r  
two and  2 6 . 5  y e a r s .  I f  I = 0 . t h e  i n c l i n a t i o n  grows t o  
14.7' a f t e r  26 .5  y e a r s .  An i m p o r t a n t  c a s e  i s  when 1 = 7.3' 
and ho  = 13. 

0 

0 

Then t h e  i n c l i n a t i o n  and  node  a r e  almost c o n s t a n t .  
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TABLE I . -  VARIATION OF INCLINATION 

! 
l iax.  I .  (26.5 y r s . )  ho 

u n d e f .  

270' 

90 O 

180' 

O 0  

I 

1.73' 

.74 O 

2.00° 

8.00' 

7.30' 

2.3 Solar R a d i a t i o n  P r e s s u r e  

14.7' 

14.9' 

15.0' 

29.4' 

7.3' ( c o n s t . )  

T h e  m a g n i t u d e  o f  t h e  solar r a d i a t i o n  pressure depends on 
t h e  w e i g h t  a n d  cross  s e c t i o n a l  area of  t h e  s a t e l l i t e .  The  
most i m p o r t a n t  e f f e c t  is a r o t a t i o n  of t h e  l i n e  of a p s i d e s  
and a p e r i o d i c  v a r i a t i o n  i n  t h e  e c c e n t r i c i t y  w i t h  a p e r i o d  
of about o n e  y e a r .  To  compute  t h e  p e r t u r b i n g  accelerat ion.  
the f o l l o w i n g  a s s u m p t i o n s  are  made : 

(1) The  SPS is  a f l a t  p l a t e  cf lor; r c f l e c t i v i t y .  

(Rc.ferencca 1 ,  S e c t i o n  1 V . B .  1 ) .  

( 2 )  The  f l a t  p l a t e  m n i n t a i n s  a n  i n e r t i a l  o r i e n t a ?  Lon 

p L t r p c n d i c u l a r  to  t h e  s , i t e l l i  te-c;an l i n e .  
( 3 )  P r e s s u r e  f r o m  t hc. mi crowave  t r a n s m i s s i o n  c a n  be 

n e g l c c t c d .  
(d!) The  e a r t h ' s  .-;h:idow c a n  bo  n o g : l w L ( . d .  

The s o l a r  r a d i a t i o n  on a f l a t  p l a t e  i n  t he  v i c i n i t y  of 
t h e  ca r th  is ( 3 0  l ' t ~ r c ~ i i ( ~ ( ~  8 )  : 

. I  . 5 1  * l o - "  N / n i 2  ( B l a c k b o d y  
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T h u s ,  f o r  a 10% r e f l e c t i n g  b o d y ,  t h e  s o l a r  p r e s s u r e  is 

4 . 9 6 ~ 1 0 - ~  N / m 2  . 

Solar a r r a y  area a n d  w e i g h t  r a n g e s  are g i v e n  i n  R e f e r e n c e  
1 ,  F i g u r e s  IV.A.5.2, 

97 km2 < area < 186 km2 , 

48 l o 6  Lg < weight < 123 1 0 6 k g  . 

For t h e  a n a l y s e s  c a r r i e d  o u t  i n  t h i s  r e p o r t ,  t h s  fo l lowi i !g  
"nominal"  v a l u e s  were t a k e n :  

Area = 1 4 3  km2 

Weight  = 82.5 -10 '  kg. 

-+ 
L e t  F be t h e  f o r c e  d u e  t o  s v l a r  r a d i a t i o n  p r e s s u r e  and 

M t h e  spacec ra f t  w e i g h t .  Then t h e  p e r t u r b i n g  a c c e l e r a t i o n  i e  

-c 

where  t h e  m a g n i t u d e  A=IAI is c o n s t a n t .  L e t  S be t h e  s u r -  
f a c e  area i n  s q u a r e  meters, t h e n  

( 2 . 1 )  

where  : j  is the n c c c l c r n t i o n  of g r a v i t y  :.c t h e  s u r f a c e  of 

t h e  e a r t h  (17=9.807 m(sec)-'). I f  hl is e x p r e s s e d  i n  k i l o -  
grams, t h e n  

4 7 5.06 . l o - '  (2.2) 
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A 
J 

Note t h a t  - is u n i t l e s s .  U s i n g  t h e  n o m i n a l  v a l u e s  fo r  
area a n d  w e i g h t ,  

= 1.73 m 2  kg-' ii 
a n d  

A - = .875 - 
9 

I 

( 2 . 4 )  

A T a k l n g  i n t o  a c c o u n t  t h e  expected A' n g e  i n  s ize  a n d  w e i g h t ,  -- 
9 

c a n  be i n  t h e  i n t e r v a l  

.72 < - A < 1.16 lo-' 
9 

One a d d i t i o n a l  comment n e e d s  t o  be made c n  a s s u m p t i o n  
( 4 ) .  An e q u a t o r i a l  g e o s y n c h r o n o u s  s a t e l l i t e  w i l l  pass  
t h r o u g h  t h e  e a r t h ' s  shadow o n c e  a d a y  d u r i n g  t h e  e l e v e n  d a y s  
before a n d  a f t e r  t h e  e q u i n o x e s .  I t  w i l l  r e m a i n  i n  t h e  shadow 

for a maximum of 75 m i n u t e s  o n  t h e  d a y  o f  t h  q u i n o x .  T k  
amount of time i n  o n e  y e a r  t h a t  t h e  s a t e l l iLe  is i n  t h e  s h a d -  
ow is small  a n d  w i l l  n o t  be i m p o r t a n t  i n  s t u d y i n g  t h e  l o n g  
term effects of solar  r a d i a t i o n  pressure. 

3.0 Solar  R a d i a t i o n  P r e s s u r e  E f f e c t s  on t h e  Orbi t ,  ---_----.---I_. .-..__.- -. - 
V a r i a t i o n s  i n  o r b i t a l  e c c e n t r i c i t y  due  to  t h e  p p r t u r b i n g  

e f f e c t s  of s o l a r  rad ia t ion  pressure a r e  d i s c u s s e d  i n  t h i s  sec- 
t i o n .  The m a g n i t u d e  of t h e  p e r t u r b i n g  a c c e l e r a t i o n  was d i s -  

c u s s e d  t n  S e c t i o n  2.3. A n  a p p r o v i m a t e  s o l u t i o n  is g i v e n  fo r  
t h e  v a r i a t i o n  of e a s  a f u n c t i o n  of Lime. This w l u t i o n  is  
v a l i d  for  small eccent r ic i t ies ,  i . e .  e *' .08 . Compar ison  
t o  numer"ca i  i n t e g r a t i l m  s h o w s  t h a t  t h e  s o l u t i o n  is v a l i d  for 
a b o u t  e i g h t  y e a r s .  After t h a t  t i m e ,  g r a v : t a t i , m a l  effects 
( d i s e u s s e d  i n  Sect ion 4 )  become important I ~ m ~ v ~ r .  t h i s  so- 
l u t i o n  s h o w s  t h e  g e ! ~ e r a l  n a t u r e  of t h e  ;~? i**urbz t ic )ns  i n  
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e c c e n t r i c i t y  and argument of perigee. Also, i t  could  be use- 
f u l  to  compute s t a t i o n  keeping maneuvers for  orbit c o n t r o l  
purposes.  

Yusen (Reference 9) did some early work on orbi t  per- 
t u r b a t i o n s  due t o  solar radiation p res su re .  B e  was concerned 
wi th  t h e  orbit of Vanguard I where t h e  r o t a t i o n  of t h e  l i n e  
o f  a p s i d e s  (due to  o b l a t e n e s s  of t h e  earth, J2) w a s  n e a r l y  
comensura t e  w i t h  t h e  motion of t h i s  sun. This caused large 
p e r t u r b a t i o n s  i n  t h e  h e i g h t  of per igee .  H o r i  (Reference 10) 
developed a canonica l  t heo ry  f o r  t h i s  resonance problem. 
Solar p r e s s u r e  w a s  assumed by Musen and H o r i  t o  be order of 
magnitude (J2)* . 

The case where solar r a d i a t i o n  pressure is large (such 
as w i t h  t h e  SPS) has  been treated by Zee (Reference 11), 
Bosch (Reference 12), Ahmad and S t u i v e r  (Reference 13), and 
Van der H a  and Modi (Reference 14). The a n a l y s e s  o f  Bosch 
and Ahmad and S t u i v e r  are restricted t o  motion i n  t h e  ecliptic 
p lane  w i t h  t h e  sun assumed fixed. Their r e s u l t s  are t h u s  
v a l i d  for o n l y  a f e w  r e v o l u t i o n s  of t h e  satell i te.  Z e e  shows 
t h a t  t h e  eccentr ic i ty  w i l l  have a pe r iod  of one yea r ,  b u t  he 
considers on ly  t h e  case where e is i n i t i a l l y  zero, and 
does n o t  g i v e  a n y  q u a n t a t i v e  r e s u l t s .  Van der Ha and Modi 
use t h e  t w o  v a r i a b l e  expansion procedure t o  describe t h e  
y e a r l y  motion of e for t h e  case where t h e  o r b i t  lies i n  t h e  
e c l i p t i c  p lane .  They use an area t o  weight r a t i o  of 2 0 ,  where- 
as  References 1, 2 and 3 indicate  a va lue  n z a r  2 o r  3 (see 
equat ion  2.3). These i n v e s t i g a t o r s  d id  n o t  consider t h e  i m -  
p o r t a n t  s e c u l a r  i nc rease  i n  eccent r ic i ty  or codpl ing between 
radiat ion pressure and g r a v i t a t i o n a l  p e r t r u b a t i o n s .  

3.1 T..e S o l a r  Radiation Pe r tu rb ing  Function 
-P 

Let r be t h e  s a t e l l i t e ' s  p o s i t i o n  v e c t o r  referenced to 
an ear th-centered  coord ina te  s y s t e m  whose x-axis is i n  t h e  



-16- 

direction of the earth's north pole. The x- and y- axes 
lie, therefore, in the equatorial plane. 

t The acceleration vector of the satellite is 

* tt + where U is the grawitat;onal force function . p is the 
vector from the sun to the satellite (Figure 1). 

Satellite 

FIGURE 1: Earth-Satellite-Sun Geometry 

Dots refer to derivatives with respect to time, i.e. 

ttThe sun, moon and earth gravitational effects ere included 
in U' . 
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-L 

Let ro be the  vector from t h e  earth to the  sun. De- 
f i n e  the  u n i t  vector  

where 

Also, 

P = la 

For a geosynchronous satellite in a nearly c i r c u l a r  o r b i t .  

r = 42,164 Bm. 

The earth-sun dis tance  is 

= 149.5*106 Ism. r@ 
r 

Therefore. the ratio - be smallp i * e -  
=e 

The unit vector  8 can be expressed in powers of the 
small parameter. From the law of cosines (see Figure 1 ) :  

or 

r 
ro 

The above e::pression can be expanded i n  powers of - : 
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where P,(&) is t h e  Legendre polynomial w i t h  argument & 
The express ion  for #I is then  

From t h e  above express ion  it is seen  t h a t  t h e  replacement 

+ + 
P r 
P % 
-I-- (3.5) 

involves  an  error of %.8-10°4 . The equa t ions  of motion 
are then  

+ 
au* r = - A -  @ + -  

r .. 
+ 

% af 

The components of (3.6) in r ec t angu la r  coord ina te s  are 

aU* + -  % = - A -  D 
x@ 

Define t h e  new force funct ion  

The di f fe ren t ia l  equat ions  of motion are then  

(3.6) 
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Por p e r t u r b a t i o n  problems, it is desirable t o  write t h e  force 
func t ion  i n  t h e  form 

ahere 

u s -  ' (lev) D (3.10) r 

v = v* + vo + vc + ve (3.11) 

is t h e  "per turb ing  funct ion".  is t h e  g r a v i t a t i o n a l  con- 
s t a n t  for t h e  earth (3.98601-10' km3 SeC-'). vs is t h e  
c o n t r i b u t i o n  of solar r a d i a t i o n  p r e s s u r e  and can be w r i t t e n  
a s  

(3.12) 

A similar p e r t u r b i n g  func t ion  w a s  used by Hori (Reference 10). 
V,+ r e p r e s e n t s  t h e  geopo ten t i a l .  Va and Vo are t h e  grav- 
i t a t i o n a l  p o t e n t i a l  f u n c t i o n s  of t h e  moon and s u n ,  r e s p e c t i v e l y  
(Reference 7 ) .  

- 3 2 Order of Nagnitude Considerat ions 

This s e c t i o n  c o n s i d e r s  t h e  magnitudes of t h e  va r ious  
terms i n  (3.11). I t  is shown i n  Reference 7 t h a t  for  a geo- 
synchronous sa te l l i t e  i n  a n e a r l y  c i r c u l a r  o r b i t ,  t h e  magni- 
t udes  of t h e  g r a v i t a t i o n a l  terms are 
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From equat ion (3.12), 

(3.13) 

where a is t h e  semi-major axis. 

I t  )’as shown i n  Sec t ion  2.3 t h a t  a typ ica l  va lue  of A 
is 

A .815-10-6 g 0 

Since  

where Be is t h e  radius of t h e  earth, t h e  magnitude of Va 
can be w r i t t e n  as 

or 

Therefom?, solar r a d i a t i o n  pressure has t h e  order of magnitude 
of t h e  g r a v i t a t i o n a l  terms. I 

Since  Ve, Va, Vo and V8 have n e a r l y  t h e  8- m a g -  
n i t u d e s ,  it is allowed, for a first approximation, t o  cons ider  
each effect separately i n  a r r i v i n g  a t  an a n a l y t i c a l  s o l u t i o n .  
The fol lowing s e c t i o n  w i l l ,  therefore, i n v e s t i g a t e  t h e  pe r tu r -  
h t l o n s  i n  t h e  orbi ta l  elements due t o  solar r a d i a t i o n  p res su re .  
I ~. 

3.3 Delaunag-Similar Elements 

The s o l u t i o n  w i l l  be developed through t h e  use  of canon- 
ical element d i f f e r e n t i a l  equat ions  i n  an extended phase space. 
Delaunoy-Similar elements In t h e  eccentric anomaly (mu) have 
been presented  I n  References 15 and 16. The angu la r  v a r i a b l e s  
are : 
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u = eccentric anomaly, 
g = argument of perigee, 
h = argument of the ascending node, 
a - time element. 
U = related to the two-body energy, 
G = total angular momentum magnitude, 
H = z-component of the angular momentum, 
L = negative of the total energy. 

Differential equations for these variables are 

The action variables are: 

-I- 

where the Hamiltonian function is 

(3.15) 

and V is the perturbing potential function. The time is 
given in terms of DSu-elements by the equation 

t = g - -  e sin u . 
2L 

In unperturbed motion, 

u = t + constant 9 

~~~ ~~~ 

'The following 
a = u ,  a = 

1 2 

6 = H ,  B = 
3 4 

l i =  ' T + constant 
(2L) 4 2  

(3.16) 

(3.17) 

element notation is used: 
g, a = 11, a = 1 1 ,  B = 17, B = G, 

3 4 1 2 

L. 



and the remaining elements are constante. 
The following abbreviation8 are used (Reference le): 

F is numerically equal to zero, so *hat U is defined 
as 

"berefore, since both U and L depend on V,, e and a 
are slightly different from the instantaneous eccentricity 
and semi-major axis, respectively, in the case of perturbed 
motion (V4). 

3.4 Development of F in Terms of Elements 

Considering only perturbations due to solar radiation 
pressure, the hamiltonian is 

F - U - L + F e  , m 
where 

Using (3.121, 

(3.20) 
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The coordinates are given in terms of elements by 

x = a E (eos u-e) + 4" C 2  sin u L l  J 

where the following abbreviations are used: 

E l  = eo8 h cos g - s i n  h sCn g cos I 

E = cos h s i n  g - s i n  h cos g cos I 
2 

5 = s i n  h eo8 g + cos  h s i n  g cos I 
1 

= s i n  h sin g + cos h cos g cos I 
c a  

rl = s i n  g sin I , 

rl = cos g s i n  I , 

1 

2 

The direction 

X o =  
ro 

V 

cosines of t h e  sun are (see 

8 

* (3.21) 

, 

, 
(3.22) 

Appendix A ) :  

(3.23) 

t 
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where t h e  following notations are used: 

C = so~(23~27') , 

n = 360°-(365.2422 days)-' , 
Q 

(3.24) 

ea = .0167 , 

When e x p r e s s i o n s  for x,y,z,r and equat ions  (3.23) are 
i n s e r t e d  i n t o  (3 .20) ,  FS is g i v e n  i n  terms of elements: 

[5 ( eo8  e - eo eo8 go) + N l ( 8 f n  e - eo s i n  god 

+ (1-e2) s i n  u - e sin 2u 

1 

(3.26) 1 1 c 

where 

N - C Y  + S q  N = C C p  4. s ?12 . (3.26) 
1 1 1 2 
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The variable 0 in (3.25) contains the  time, 

3 = not + Roo + g, (3.27) 

Using the time equation (3.161, 0 can be considered an ab- 
breviation involving DSu-elements: 

I )  

n U  

2L 
e = n, R - AL e sin u + + . (3.28) 

Carrying out the products in (3.25) , 

+ (l+e2) N + (1-e2) 5 sin (0+u) + L 1 

+ (l+e2) N - (1-e2) 5 s i n  (0-u) - L 1 

- 3 e S  cos 8 - 3e N sin 8 + 
1 1 

(3.29) 

3 3 1 
- 2  e,(C cos  Q, + N  si^ go) (l+e2) c o s  u - ;r e - z e cos 2u - 

1 1 c 2 



-28- 

Since 
riod terms 
F This 

8 

t h e  i n t e r e s t  is in long period motion, short pe- 
(those periodic i n  u) will be e l imina ted  from 
can be done at t h e  same timp t h a t  t h e  time egua- 

t i o n  (3.28) is i n s e r t e d  into FS. The terms dependent on 
t i m e  in (3.29) are 

8 ; n ( e  + i u )  , i=O,k1,*2, 
eo8 

or 

(no !L f X sin u + E,, + gs + i u ) ,  i=O,*1,&2, s i n  
C 0 8  

where Unoe 
A = - -  

2L 

t The fol lowing relations (Reference 17, p.2 are used 

4-00 

C s i n ( a  + B s i n  y )  = Jj  ( 8 )  sin(j y + a) 
,al 

+OD 

c o s ( a  + 6 cos y )  = C Jj ( 8 )  eos(j y + a )  a 

-00 

Thus, 

+- 
s i n ( n o  R + h sin u + !Loo + 5 + i u) = C J j ( X )  s i n E ,  11 

j= - a0 
(3.30) 

+ 

The mean of a func t ion  f ( u )  with respect to u is de f ined  as 

( f ( U , > ,  = f ( u )  du . 

. 

? 

+ J, ( B )  , j = O ,  1, 2 ,  - , are t h e  Bessel c o e f f i c i e n t s .  



Therefore ,  uwing (3.30) , 

S i m i l a r l y ,  

J s i n g  (3.29), (3.31) and (3.32), t h e  e l i m i n a t i o n  of shor" 
p e r i o d  terms r e s u l t s  i n  

<FE3>" { [(1-e2) J 1 (A) N 2 - 

e (35 + J ) {d co8(ng R + Roo + ge) - 2  0 2 

J ( A )  E + 
1 2 

( 3 . 3 3 )  

e (35 ( A )  I- J ( A ) ) N  sivr(ng li + e,, + g@) + * z  0 2 

CQte t h a t  Eeveral terms cancelled because of t h e  identity 

The averaged hamiltonian is now 

IJ 
'F' = U --+<F > . 

s u  m ' 'u ( 3 . 3 4 )  

Since u does not appear explicitly in <F>u , U will be  
a c o n s t a n t .  The remaining developaents will concern (3.34) 
only. Therefore, the notation < >" will no longer be needed. 
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The h&miltonlan in terms of elements  is t h e n  

F E U - -  + F, 
Jzc 

(3.35) 

where FB 
r i g h t  s i d e  of (3.33). 

is a funct ion  of g, h ,  a ,  U, G ,  H, L given by the 

A f u r t h e r  s i m p l i f i c a + i o n  of F, can be made. Consider 
t h e  Bessel c o e f f i c i e n t s  appearing in (3.33). The argument X 
has been defined as 

2L 

Since  L is t h e  nega t ive  of t h e  to ta l  energy, 

I, a v 
2a 

L = T(1 - 2 r VS) , (3.36) 

I, where a is t h e  ins tan taneous  o s c u l a t i n g  semi-major a x i s .  
From (3.19), 

I n s e r t i n g  (3.36) into t h e  above express ion  and expanding i n  
powers of vst: 

From (5.36) and (3.37) , 

I, 2L 

U a e 

(3.37) 

(3.38) 

In t h e  unperturbed case, U is equ iva len t  t o  t h e  classical  
Delaunay v a r i a b l e  L . 
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S i n c e  s. n - is t h e  osculating mean motion, it is seen that 
3 

is approximately t h e  ratio of t h e  mean motion of the  satellite 
to man motion of t h e  sun, 1.e. 

Tber@fo--t?, 

or 

(3.39) 

for a geosynchronous satellite. Any term depending on A 

w i l l  t h e r e f o r e  be n e g l e c t e d .  

The Bessel c o e f f i c i e n t s  can be e x p r e s s e d  as a power 
series i n  t h e  argument: 

S i n c e  a l l  powers of A can be n e g l e c t e d ,  J l (A)  and J2(X) 

in Fs can b e  set to zero and Jo(A) can be set to o n e .  
Thus, t h e  expression for Fs becomes 

1 
(3.4Q) 

where 



v = n , t + I b - + g ,  . 
TIMI -11 parameter c i6 u n i t l e s e .  (&member that  A 

has units of acceleration). g is the acceleration of gravi ty  
at the  surfcce of the earth and B t h e  radius of t h e  e&th. 
Therefore, 

Q 

But from 

and ( 3 . 1 9 )  , 
G m  = ll (1-8 ) m 

8 

80 that 6 CRR be expressed as 

( 3 . 4 2 )  

Since 8 is already small, Vs and e2 can be neglected 

" = - (  A JL2  ) 
9 

(3.43) 

Therefore, the small parameter E is the order of magnitude 
of lV,l (see s e c t i o n  3 . 2 ) .  
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3.5 Element Differential Equations 

Introduce the non-singular elements 

E sin(g+h) , P' E aaa(g+h) , q = 
U2 U4 

(3.44) 

Q = -  Edw h . EO$* h , H 
P =  

H 

These elements are defined for zero eccentricity and inclina- 
tion. 

The differential equations for p and q are given by 
by the chain rule: 

. Make use of the canonical dq w i t h  a similar eqiiation for - 
dr 

differential equations 

Also, since F no longer depends on u : 
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The necessary partial  derivatives of p and q are: 

The differential equa t ions  for p and q, are then 

I t  is necessary to  develop t h e  r i g h t  sides of equa t ions  
(3.46) i n  terms of p,q,P,Q . This w i l l  be done f n  t h e  
fol lowing steps: 

(1) Compute t h e  d e r i v a t i v e s  of F with respect 

(2) 

(3) U s e  equa t ions  (3 .44)  to  express the r igh t  sides 

to  g, G, H . 
I n s e r t  these derivatives i n t o  ?he r i g h t  sides of 
equa t ions  (3.46). 

of (3.46) i n  terms of pDqDP,B . 
These three steps have been carried ou t  in Appendix B. 
t h e  necessary p a r t i a l  d e r i v a t i v e s  are given there. 
s u l t i n g  nonsingular  equat ions  are: 

A l l  
The re- 
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). + S q (qP+Qp)(l-1Q2+P')) (0- (P2+Q2)) - l ( sr 'n  v - % s i n  ga: 

- rl' C P Q - q2 S Q (2-(P'+q2))* 4 [ 

I - S p (qP+Qp) (1-(Q2+P2)) (2-(P2+Q'))-t](si. u -  cos 5) 

Notice that rl is a function of p and q : 

The differential equations for P and Q are developed 
in a similar manner as that done above. The details are car- 
ried out in Appendix B and the equations are shown on the 
following page: 
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The remaining differential equations come from the ca- 
nonical equations 

These are computed in a straightforward manner from (3.35), 
(3.40) and (3.41): 
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(3.49) 

3.6 Orbits i n  t h e  Ecliptic P l a n e  
t For o r b i t s  t h a t  l i e  i n  t h e  e c l i p t i c  p l a n e  

There fore ,  

P = 41-cos 1' ? Q = O  9 

and t h e  d i f f e r e n t i a l  e q u a t i o n s  are g r e a t l y  s i m p l i f i e d :  

'C is t h e  angle between t h e  e q u a t o r i a l  and e c l i p t i c  p l a n e s ,  



dP 
- 1 0  , 
dt 

w - = o  
dr 

(3.62) 

(3.53) 

(3.55) 
1 

Comments 

(1) Equations (3.52) and (3.53) Indicate  that  the o r b i t a l  
plane ( i . e .  Inc l inat ion)  w i l l  remain f i x e d ,  as  expected. 
Thls  is because there  are no out-of-plane perturbations 
OR the  o r b i t .  

(2) The equations no longer depend on sirs a , 

(3 )  The equations for p and q contain secu lar  terms that  
are proportional to the e c c e n t r i c i t y  of the  sun's orbit. 
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3.7 Solution of the Linearized Equations 

When the eccentricity and inclination of the satellite 
are small, the element differential equations can be simpli- 
fied by neglecting from equations (3.47),  (3.48) and (3.49), 
the second and higher degree terms in p,q,P,Q. The result- 
ing eauations are: 

+ s nP (sin v - eo sin g,) , 

(3.56) 

1 dP 

dT 3 
- P - -  

u - eo 008 && 
8.r 2 

d P 3  

d.r 4 
- - -  - J2' s E p (sin v - eo sin g d  

(3.57) 

(3.58) 

3 dQ 

8.r 4 
42' s E q (sin v - eo sin go) , (3.59) - - - - -  

(cos  v - ea cos gJ + 
(3.6G) 

d2 P 

dr (2L) 3/2 
- =  

+ c q (sin v - eo 

dL 3 

dT 2 
- = - n  F (3.61) 

These e q u a t i o n s  are n o t  l i n e a r  s i n c e  v c o n t a i n s  2 through 
t h e  equat ion  

v = n o  II + kao + go . 



Also, 8 depends on L. However, notice t h a t ' t h e  p e r t u r b -  
t i o n  i n  to ta l  energy (equat ion  43.6s)) w i i l  be small because, 
of t h e  c o e f f i c i e n t  nGI-c . I t  is also periodic. It 18 
therefore allowed to  le t  L! be a cons tan t .  

-4 

The perturbed part of t h e  t i m e  element q u i t i o n  (3.60) 
w i l l  be small became it is p r o p o r t i o n a l - t o  t h e  e c c e n t r i c i t y .  
Therefore, let 

u 
(2L)s/z * (3.62) 

The d e r i v a t i v e s  of P &d Q a r p  also propor+tiopwl t o  
In fact, the  effect of solar r a d i a t i o n  pressure on the e 

orbital plane 18 n e g l i g i b l e  wbea cmmpared to  the gravita- 
t i o n a l  effects. 
earth g r a v i t y  came PL motion of the orbital p l ane  t h a t  ib de- 

. 
I t  is shown in Wfeirence 'I tlnat sun-raoog- 

scribed by the fo l lowing  expressions: 
r i: _. ' .  

.r 

where 

cr = .0902 , y = 1.015 w = 5.170.10-5. 

a and 8 are i n t e g r a t i o n  c o n s t a n t s  t h a t  depend on t h e  i n i t i a l  
values of P and Q. The mean va lues  are 

P e a  , Q - 0  t 

and correspond t o  the  equ i l ib r ium s o l u t i o n  

(3.64) 

I = 7.31' , h - o  . 
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For most initial condition, B and Q will never be far a m y  
from their equilibrium values. Therefore, insert (3.84) 
i n t o  equations (3.56) and (3.57), giving approximate equations 
for the derivatives of p and q : 

r ,  

3 

(3.65) 

where the  additional abbreviations have been introduced: 

(3.67) 

is the mean motion of the geosynchronous 
(2L) j / i  

But since - 
satellite, 

P 

6 = (365.25)-l . (3.68) 

Equations (3.65) are uncoupled and can therefore be 
immediately solved: 

where 

3 E  

2 6  
# =  - -  , (3.70) 
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C1 and C2 are i n t e g r a t i o n  c o n s t a n t s  t h a t  depend on the 
i n i t i a l  va luas  of p a n i  q . 
Comments on the So lu t ion  

1. The motion can be represented  i n  a p lane  with g,q the 

2. In a l l  cases, p,q vi11 describe an e l l i p s e  whose c e n t e r  
r~3c tangu la r  coord ina te s .  

has a l i n e a r  t r a n s l a t i o n .  
has a period of one yea r .  

decrease. 

The motion around t h e  ell ipm 

3. The mean e c c e n t r i c i t y  w i l l  have a l i n e a r  i n c r e a s e  or 

3.8 Numerical Resu l t8  

.This s e c t i o n  w i l l  discuss some q u a n t i t a t i v e  and q u a l i t a -  
t i v e  r e s u l t s  of t h e  s o l u t i o n  developed i n  Sec t ion  3.7. 
t h e  m l u t i o n  is v e r i f i e d  by comparing it to  a numerical i n t e -  
g r a t i o n .  Then the  s o l u t i o n  is used t o  Bescr ibe the  gene ra l  
behavior  of orbital  e c c e n t r i c i t y  and long i tude  of perigee. 

F i r s t ,  

3.8.1 Numerical Experiments 

It is necessary t o  demonstrate t h a t  the  a n a l y t i c a l  so lu-  
t i o n  and i ts  associated assumptions are v a l i d .  This h a s  been 
done by  carrying o u t  cumparisons w i t h  a numerical  s o l u t i o n  
obta ined  from t h e  STEPR mul t i r evo lu t ion  program (References 
18 and 19). Since t h e  purpose here is to  check o u t  t h e  accu- 
racy of equat ions  (3.69). only solar radiation pressure was 
included as a force model option i n  STEPR. The additional 
effects of g r a v i t y  w i l l  be d iscussed  i n  Section 4. I t  w i l l  
also be shown there t h a t  equa t ions  (3.69) g ive  a good approx- 
imation t o  t h e  complete problem over  a per iod  of a few years. 

Comparisons between t h e  a n a l y t i c a l  s o l u t i o n  s.nd STEPR 
are shown i n  Tables I I ( a )  and I I (b ) .  The area t o  weight r a t i o  
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was as6umed to  be 
epoch was noon January 1, 1980. E c c e n t r i c i t y  e based on 
t h e  analytical solution was f i r s t  computed by eva lua t ing  pA 
and qA from equat ions (3.69). The algorithm f o r  computing 

1.73 ma kg-'(see Sect ion 2 ,  ) . The i n i t i a l  

and qA is described i n  Appendix C. eA is then obtained PA 

from 

The lczation of perigee is obtained from 

% eA s i n  gA = - , 

(3.71) 

(3.72) 

% where g is t h e  l ong i tude  of per igee,  defined by 

% g = g + h  . (3.73) 

I, The values from STEPR are denoted by eN and gN. . ~ 

TABLE 11.-ANALYTIC SOLUTION VERSUS NUMERICAL SOLUTION 
I, 

(a )  eo = 0 go undefined 

Percent Error 
'L 'L % 

gA - - A eN % @;N e Years - 
9.0 .0481 .0485 132.7O 133.7' 0 . 8  0.7 

19.5 . O k i l O  .0620 148.8 149.6 1.6 0.5 

30.1 .0511 ,0517 -173.8 -174 2 1.2 0 . 2  



TABLE I1 - CONTINUED 
% 

m -80.6' g0 (b)  eo - .lBl , 

Percent  Error 
r\, 

eA - g A  

9.6 . 0328 .0337 153.7' 155.0' 2.6 0.9 

4l - % - g A  - eN - A e Years - 
19.5 0502 ,0519 167.4 168.3 3.3 0.5 

30.1 .0548 .0553 -150.9 -151 9 0 .Q 0 . 7  

Comments 

1. 

2, 

3 .  

4 .  

The r e s u l t s  i n  Table I1 show that  t h e  a n a l y t i c a l  solu- 
t i o n  gives between 3 and 3 dig i t s  of accuracy c-?er a 
perioct of 30 years. 
describe the ganeral behavior  of t h e  o rb i t .  
The accuracy of equa t ions  (3.69) s u b s i a n t i a t e s  t h e  as= 
sumptions tha t  were made i n  t h e  course of t h e i r  deri.va- 
t ion.  The same approach can be used t a  s o l v e  t h e  com- 
plete problem ( inc lud ing  g r a v i t a t i o n a l  pors,urTyations). 
The errors i n  eA and gA do n o t  increass w i t h  time. 
Therefore the analytical s o l u t i o n  conterino a l l  lcng 
period effects. 
P l o t s  of e versus  time are shown i n  F igures  8 and 9, 

r e spec t ive ly .  

This is s u f f i c i e n t l y  a c c u r a t e  t o  

% 

3.8.2 Q u a l i t a t i v e  Descr ip t ion  of t h e  Orbit  

The o r b i t a l  behavior  can be described for d i f f e r e n t  
i n i t i a l  conditions on eccentricity eo an& long i tude  of 
perigee go Also, t h e  motion w i l l  depend on t h e  epoch 
of i n i t i a l i z a t i o n  since the  problem depends e x p l i c i t l y  on 
time ( i  e. on t he  p o s i t i o n  of t h e  sun i n  its imagined orbit  
about t h e  earth). The example cases considered Lere are 



shown in the table below. These cases were chosen so as to 
demonstrate some of the essential features of the motion end 
to illustrate -me preferred orbits. 

TABLE 111.- INITIAL COIWITIONS FOR EXAMPLES 

~- 

Case No. eo 

1 .o 

a .0210 

3 .om2 

4 -0214 

5 .o 

6 .o 

% 

g0 

undef i.ned 

-80. Ge 

-34.8 

-67.4 

undefined 

uadef ined 

~ ~- 

Initial Epoch 

noon, 1 Jan. 1880 

noon, 1 Jan. 1980 

noon, 1 Jan. 1980 

noon, 1 Jan. 1980 

noon, 3 April 1980 

noon, 1 Oct. 1980 

For each case, the evolution of elements p, q and e 
is conszdered over a period of ten years. This is the maxi- 
mum time interval for which the analytical solution is valid 
(see numerical comparisons in Section 4). The area to weight 
ratit was taken to be 1.73 m2 kg” , as before. Equations 
(3.69) were programmed on the Hewlett-Packard 9810 micro- 
computer, using the algorithm described i n  Appendix C. The 
KP9810 plotter was used to produce the plots shown in Figures 
2 through 9. 

Two figures illustrate the results for each case: 
(a) p versus q: This shows the motion in p,q-space. 

Also, e aod g are the polar coordinates of the point that 
traces out the curve (see equations (3.44)). The direction of 
motion is indicated by arrows. When the curve passes througb 
the origin, ;he limiting value of g will he the tangent to 
the curve. 

?, 

’L 
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I 

(b) e versus time: Thts figure shows the variations 

in e as a function of time in years. 

Discussion of Results 

Case 1 (Figures 2(a) and 2(b))  

(1) The motion begins from the origin in the p,q- 
plane and in a direction that is approximately 

t 90° from the sun's i n i t i a l  mean longitude Bo . 
This can be seen f r o m  equations (3.69) with 
6 - 1 :  

Notice that e = 0 for T = 0 . TheL, 
h 

sin ( 8  T + 8 0 ) - sin e, 

U s i n g  1'Hopital's rule, 

For this case, ncon on January first corresponds 
to 8, = - 80.6O . Therefore go = 9.40 . % 

The sun's initial mean longitude is 
is measured from t h e  vernal equinox (x-axis) in the eclip- 
t i c  plane. 

QoIReO+ge, where g@ 

See also Appendix C. 
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(2) The center of the ellipk l o  the p,q- plane 
is initially at (C,,C,) and moves toward the 
lower left at the rate of @a,2n 
Notice that this rate depends on the area to 
weight ratio of the satellite by way of the small 
parameter . The direction cosines of the 
motion are (sin g - cos go). Using ge=282.S0, 
the direction cosines are (--9763,--2166). 

per year. 

6' 

(3) The eccentricity is periodic and returns almost 
to zero after one year. Its maximum in the first 
year is approximately 2@ . The motion of the 
ellipse io Qhe p,q- plane is seen as a nearly 
linear component in the variation of e . 
(Figures 3(a) and 3(b)) --- Case 2 

'L (1) The initial values of eo *nc go were chosen 
so that constants C1 and C2 were both zero. 
The ellipse is centered initially at the origin. 
For a while, the eccentricity is nearly constant 
at the value of (0 . But as the ellipse moves 
away from the origin, the oscillations in e 
increase in amplitude. Just as the origin is no 
longer inside the ellipse, the amplitude will be 

2 @  . After that, the amplitude stays the 
same, but there is a linear cornponent to the 
variation of e . (See also Figure 9.) 

( 2 )  As lorg as the origin lies inside the ellipse, 
2, 
g will circulate once a year. I f  the origin 

is still inside the ellipse and the path passes 
near the oriTin, g will change very rapidly. 
When the origin no longer lies inside the ellipse, 

g varies about the mean value of go - 90'  . 
The amplitude of these variations decreases with 
t irne . 

% 

?, 
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case 3 (F igures  4(a) and 4(b)) 

(1) The i n i t i a l  cond i t ions  for t h i s  case were chosen 
so t h a t  t h e  ellipse would i n i t i a l l y  pass  through 
t h e  o r i g i n  and its c e n t e r  would move d i r e c t l y  
toward t h e  o r i g i n .  

(2) The important  r e s u l t  of t h i s  choice of i n i t i a l  
cond i t ions  is revealed by t h e  behavior  of e as 
shown i n  F igure  4(b).  In fact Figure  4(b) is a 
m i r r o r  image of Figure  3(b) .  

Case 4 (Figures 5(a) and S(b)) 

(1) This case is similar t o  Case 3 i n  t h a t  the c e n t e r  
of t h e  ellipse w i l l  pass through t h e  o r i g i n .  
However, t h e  motion is such that  t h e  e c c e n t r i c i t y  
is nea r ly  cons tan t  for a longer  period of t i m e .  
For -ctample the  m a x i m u m  va lue  of e c c e n t r i c i t y  w i l l  
be chan .025 for four and a ha l f  years. 

% 
(2) Thc : tude of perigee g w i l l  circulate. 

C a s e  5 (Fib,clrels 3(a) and 6(b)) 

T h i s  case and t h e  next  one show t h e  effect of t h e  
epoch of i n i t i a l i z a t i o n  on t h e  subsequent motion. 

epoch is three months later. The ellipse is mov- 
i n g  d i r ec t ly  away from t h e  o r i g i n  and t h e  l i n e a r  
growth component of e is more seve re .  T h i s  case 
is no t  desirable when large e c c e n t r i c i t i e s  are 
to  be avoided. 

% 
and go are t h e  same as i n  Case 1, bu t  t h e  eo 

Case 6 (Figur s 7(a) and 7(b))  

Again, t h e  e c c e n t r i c i t y  is i n i t i a l l y  zero, bu t  t h e  
epoch i e  s i x  months later than  Case 5 and n i n e  
months later than  Case 1. However, t h e  motion is 
very similar t o  Case 3. The center of t h e  e l l ipse 
i n  t h e  p,q-plane moves d i r e c t l y  toward t h e  or ig in  
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and the amplitude of oscillations in e decreases 
to zero after ten years. 

Figures 8 and 9 show ...e long term variations in e 
for Cases 1 and 2, respectively. Of interest here are the 
effects of the sun's orbital eccentricity e, over 30 
years. In fact, this secular increase becomes the dominant 
effect on the motion. However, the numerical studies that 
are discussed in the next section show that  gravitational 
korturbations eventually become significant and can actual- 
ly limit the secular growth in e due to ee. 

4.0 Long Period Variations in Eccentricity and Inclination 

The long period changes in the shape and orientation 
of the SPS geosynchronous orbit are discussed in this sec- 
tion. Gravitational and solar radiation perturbations are 
included in the analysis. An analytical solution does not 
yet exist when the problem contains all perturbations simul- 
taneously. Therefore, the results discussed in this section 
%re based on a numerical integration of the ssrtellite equa- 
tion of motion. 

As indicated in Sections 1 and 2, the perturbir.g 
effects can generally be separated  as  follows: 

(1) Rot'ztiorz of the  o r b i t a l  pZane 
The combined effects of SUR and moon gravity and 
the oblz teness  of t h e  earth cause large, long 
period changes in the inclination. I f  iniLially 
zero, the inclination will increase at the rata 
of ,859 degrees per year. Solar  radiation pres- 
sure has a v e r y  small effect on t h e  inclination. 

(2 )  Varfatl:ov i~ t h c  o r t t t a l  c ( ? c : c n t r i c i t y  

The eccentricity can have large changes ,  primari- 
l y  due t o  s o l a r  radiation pressure. h'owever, 
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(3) 

gravitational perturbations due to luni-solar 
gravity and earth's oblateness can be important 
over a long period of time.' 

D p Z f t  of the eateZZCte's mean ZologCtude 
This effect is caused primarily because the sat- 
ellite's orbital revolutions are in resonance 
with the daily rotation of the earth. Luni-solar 
gravity has a small direct effect on the drift in 
longitude. There is an indirect influence due to 
solar radiation pressure ( e varies ) and luni- 
solar gravity ( I varies ). 

This section is concerned with the long period (30 years) 
changes in e and I . Since these two motions are indep- 
endent (so long as e and I are relatively small) they 
will be considered separately for several types of orbits. 

All numerical results discussed in this section were ob- 
tained with the STEPR multirevolution integration program 
(References 18 and 19). 
geopotential terms up to order and degree of 6. 
moon were treated as point masses. 
iation pressure is described in Section 2.3. 

Gravitational perturbation included 
The sun and 

The mode1 for solar rad- 

4.1 Eccentricity Variations 

The variations in e have been thoroughly discussed in 
Section 3. However, as Ilnentioned there, that analysis did 
not take into account the coupling bl*+ween solar radiation 
pressure and gravity. 
variation in e . 

This effect produces a long term 

\ 

The accuracy of equation (3.69) compared to a numeri- 
cally integrated solution containing gravity Is shown in 
Table IV. The orbits compared are the same as in Table 11. 
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fb and gA are the  values obtained f r o m  the analyti- 
eS and as are the numerical solutions cal solution. 

obtained f r o m  the STEPR program. This is a comparison 
of the force model used in Section 3, not of t h e  analyti- 
cal solution method. 

eA 

TABLE 1V.-ANALYTICAL SOLUTION VERSUS STEPR SOLUTION 
% (a) eo = o  , go undefined 

Percent Error 
fb % Lt 

gA - @A - Years eA eS =A gS 

0.5 .04 18 ,0431 97.3O 99.0° 3 .0  1.6 

1.4 .0391 .0392 86.0 9c.9 0.3 5.3 

2.6 .0405 .0435 129.2 137.2 7.9 5.8 

4.6 .0422 .0460 136.9 151.0 8.2 9.3 

9.6 .0481 .0438 132. ' I  165.9 9.8 20.0 

I, (b) e, = .0210 , go = -80.6' 

Percent Error 
I, % % 

gA - eA - Years eA eS g A  gS 

0.5 ,0209 .0222 95.2' 95.7O 6 . 1  0.5 

1.4 .0193 .0202 71.6 73.1 4.6 2 . 1  

2.6 .0247 .0250 154.0 154.1 1 .4  0.1 

4 .6  .0286 .0278 163.3 166.6 2 . 9  2.0 

9.6 .0328 .0243 153.7 168.5 35.0 8.9 
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Comments on Table I! 

1. The a n a l y t i c a l  s o l u t i o n  is a c c u r a t e  t o  w i t h i n  a f e w  per- 
cen t  w i t h i n  t h e  f imt few y e a r s .  Therefore, t h e  figures 
shown in S e c t i o n  3 w i l l  be a c c u r a t e  to w i t h i n  a f e w  per- 
c e n t  and describe t h e  g e n e r a l  character of t h e  motion. 
Long period effects due t o  g r a v i t y  become important 
after about e ight  or n i n e  years .  
The a n a l y t i c a l  s o l u t i o n  cou ld  be u s e f u l  for orbi t  pre- 
d i c t i o n  and c o n t r o l  over a f e w  years. 

2. 

3. 

Long term v a r i a t i o n s  i n  e have been s t u d i e d  for t h e  
casesshown i n  Table  V. Figures  10 through 13 show e versus 
time for 30 years. For each case, t h e  I n c l i n a t i o n  w a s  approx- 
imate ly  7.3O. However, t h e  motion of e was e s s e n t i a l l y  t h e  
same.as for t h e  case when t h e  i n c l i n a t i o n  w a s  i n i t i a l l y  zero. 

TABLE V. -INITIAL CONDITIONS FOR EXAWLRS 

% 

Case No. g0 I n i t i a l  Epoch 

1 .o undefined nom, 1 Jan .  1980 

2 .0210 -80.6' noon, 1 Jan. 1980 

3 .0214 -67.4 noon, 1 Jan .  1980 

4 .o undefined noon, 3 April  1980 

The p lo ts  shown i n  F igu res  10 through 13 were ou tpu t  f r o m  
t h e  STEPR program, using t h e  CALCOMP plo t te r  hardware and 
software tha t  is a v a i l a b l e  on t h e  Johnson Space C e n t e r  Univac 
1110 computer sys tem.  
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i 

Diecumion of f b e U l t 8  

ease 1 (Figure 10) 

(1) The curve do m a t  being e x a c t l y  a t  ea0 since t h e m  
is no output  from STEPR u n t i l  after 44 revolutionrs. 
This is because the  e x t r a p o l a t i o n  table need8 to  be 
b u i l t  before the first mul t i r evo lu t ion  s t e p  is talrea. 
The long term g r a v i t a t i o n a l  effects can be seen by 
comparing Figure  10 w i t h  Figure 8. (Note tha t  t h e  
scales are d i f f e r e n t ) .  
genera l  shape. 
been moderated i n  F igure  10. 

SPS orbit. Such large va lues  a r e  probably unac- 
ceptab le  to t he  spacecraft and ground systems. 

(2) 

Both curves have the same 
The l i n e a r  t r e n d  of Figure 8 has 

(3) Large values  of e can occur  for an uncorrec ted  

Case 2 (Figure 11) 

This case can be compared w i t h  Figure 9. The al- 
most linear incrc s.? 'n amplitude l e v e l s  off after 
about 20 years. nowever, t h e  curves  are very s i m i -  
lar for the first t e n  years. 

Case 3 (Figure 12) - 
This  cases  corresponds t o  Case 4 (Figure 5(b)) i n  

. -  Sect ion  3 where t h e  value of e is limited during 
- t h e  first f e w  years. Also, if Figure 12 is shif ted 

%bout an inch t o  t h e  left  along t h e  time axis, it 
is almost identical t o  Figure 11. T h i s  can be seen 
by over lay ing  t h e  two f i g u r e s .  I n i t i a l  conditions 
of the o r b i t  can be manipulated so t h a t  t h e  nea r ly  
constant  e phase occurs  anywhere along t h e  t i m e  
a x i s .  This may be done to  achieve  certain desirable 
r e s u l t s  f o r  s t a t i o n  keeping purposes .  I t  must be 
remembered, however, t h a t  s i n c e  t h e  problem depends 
on time, t h e  epoch of i n i t i a l i z a t i o n  must a l s o  be 
taken i n t o  account.  (Compare Case, 1, 5 and 6 in 
Sect ion 3 ) .  
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Case 4 (F igure  132 

The i u i t i a l  c o n d i t i o n s  are t h e  same as f o r  Case 1 
except  t h a t  t h e  epoch is three months later.  (Com- 
pare Caet 1 and Case 5 i n  S e c t i o n  3.) The l iaear 
component i n  e is ev iden t  over t h e  first t e n  years. 
However, t h e  long per iod  effects e v e n t u a l l y  cause  a 
decrease i n  e c c e n t r i c i t y  so t h a t  t h e  maximum e 
for t h i s  case is less than  t h e  maximum e for  Case 
1. This example shows t h e  importance of t h e  long  
period g r a v i t a t i o n a l  terms. 

4.2 I n c l i n a t i o n  - '. 'ariations 

The motion of t h e  o r b i t a l  p l ane  has been thoroughly d i s -  
cussed i n  Reference 7.  The d i scuss ion  given here p r e s e n t s  a 
numerically integrated solti . ion and some p1ol.s of i n c l i n a t i o n  
as a func t ion  of t i m e .  Table VIshows t h e  cases t h a t  are d is -  

cussed  here. 

TABLE V I .  -INITIAL CONDITIONS FOR EXAMPLES 

Case N o .  - Io hO I n i t i a l  Epoch 

1 O 0  undefined noon, 1 Jan.  1980 

2 7.3O 0.O noon, 1 Jan .  1980 

3 2.0 2 7 0 . 0  noon, 1 J a n .  1980 

For each c a s e ,  t h e  eccent r ic i ty  was small and had  nc appre- 
ciable effect on i n c l i n a t i o n  o r  node. 
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Case 1 (Figure 14) 

If initially zero, the inclination increases to 
about 15' after 26 years 
the increase is almost linear at the rate of .859 
degrees per year. 

For the first few years, 

Case 2 (Figure 15) 

The inclination is nearly constant. The long period 
oscillation observed in this figure is caused by 

the precession of the moon's orbital plane on the 
ecliptic. This motion has a period of 18.6 years 
and depends on the epoch of initialization. 

Case 3 (Figure 16) 

When the node is initially near 270 degrees, the 
inclination will decrease to almost zero and then 
increase. With this approach, inclination can be 
kept small over a longer period of time. The ad- 
vantage is that out of plane station keeping ma- 
neuvers will be reduced or eliminated. The effec- 
tiveness of this procedure depends to some extent 
on the orientation of the moon's orbit and there- 
fore the epoch. 

5.0 Dally Effects Due to Nonzero Eccentricity atid - Inclination 

The changes in eccentricity and inclination that were 
described in the previous sections will cause a dsily motion 
of the satellite, as observed from the rotating earth. It 
will wander north and south of the equator as well as east 
and west of the mean longitude. The ground track may be a 
circle, ellipse, figure eight or some other shape depending 
on the values of e and I . Usually there are restrictions 
on the allowed latitude and longitude deviations of a geo- 
synchronous satellite, because of requirements on satellite 
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and ground systems. 
tracks for the case of small values of eccentricity and incli- 
nation. 

This section will show some typical ground 

5.1 Development of Equations 

The frame of reference will be a rectangular coordinate 
system with x- and y-axes in the equatorial plave and 
z-axis toward the north pole. The x-axis is directed toward 
the vernal equinox. 
be used in this development. #e 
Greenwich meridian and the x-axis . 

Figures 17 and 18 define the symbols to 
is the angle between the 

Equations will be developed here that give latitude $ 

and longitude X as a function of time. Begin with the ex- 
pressions for rectangular coordinates in terms of elements, 

x = r (cos R cos v - sin R s i n  v eos I) , 

y = r (sin R s i n  v + cos $2 sin v cos I )  , (5.1) 

z = r sin v sin I , 

where v = u + f  

z 
Since - = sin J, , 

r 

sin I) = s i n  v sin I 

( 5 . 2 )  

(5.3) 

Note t h a t  JI is u n i q u e l y  determinec? by (5.3). 

beveloprnent  of e q u a t i o n s  fo r  t h e  l o n g i t u d e  h are  some- 
what more d i f f i c u l t .  F i r s t ,  notice t h a t  e x p r e s s i o n s  must  be 
f nd for both s:n A a n d  c o s  X . From F i g u i - e  17, 
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FIGURE 17: Polar Coordinate System 
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FIGURE 18: Orbital Elements 
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80 that 

The longitude can be expressed i n  terms of (0 and by 

so that  

Insert  (5 .5)  i n t o  ( 5 . 6 ) ,  collect terms and make use  bf trigo- 
nometric i d e n t i t i e s .  After introducing tbe  small parameter 

1 

2 
u = - (1 - cos I )  , ( 5 . 7 )  

the  results are 

r 

P 
s i n  x = - [(1 - a) sin (v + Q - 

00s = f - a) co8 (v + Q - 

- a s i n  ( v  - Q + 6O)l 

+ a eo8 ( v  - n + (.)I 
( 5 . 8 )  

P 

where 
-4 r - = (1 - s i n 2  I s i n 2  V) (5.9) 

P 

The true anomaly 
t h e  impl ic i t  equation 

f is given a s  a function of time by 

n t  - Ro - E - e sin E (5.10) 
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and 
f =  2 tan :I (5.11) 

The keplerian elements n (mean mation), e, I, w ,  Q, can be 
assumed constant over a few days. 

It is desirable to measure the longitude relative to 
some "mean" value. Define the new variables 

and 
& = X - € l  (5.11) 

+ w  a (5.12) O = R o + Q -  %DO 

The rotation of t h e  earth is expressed as 

= w t + 
8 @e 

For geosynchronous satellites, 

w = n  , 
8 

so that 

Making use of the notation 

we have 
R = n t + I I o  , 

= II + @*o - to 
@Ce 

(5.13) 

Inserting (5.13) into (5.8) and using (5.12), 

s h  X = - (1-a) sin ( f  - R + 8 )  - a s i n  ( f  + II + 2w - 

=! ~ 1 - a )  cos  ( f  - R + e )  +acos ( f  + t + 2 w  - 

P 
(5 .14)  

= [  
cos  

P 
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Since  161 w i l l  be less than 90°, it can be defined by 
sin  6 . Make us8  of 

sin 6 = s i n  X co8 8 - cos A s.in 8 . (5.15) 

S u b s t i t u t e  (5.14) i n t o  (5.15) and collect terms. The r e s u l t  
18 

(5.16) 

a sin ( f  + a + 2 ~ )  3 
F i n a l l y ,  equa t ions  (5 .3) ,  (5.9), (5.10), (5.11) and (5.16) 
d e f i n e  t he  ground track as a func t ion  of t i m e .  

5.2 Small E c c e n t r i c i t y  and I n c l i n a t i o n  

I t  is desirable t o  express l a t i t u d e  J, and longi tude  6 
as e x p l i c i t  func t ions  of t i m e ,  i.e. as func t ions  of R . 
This can be done for  small e and I by making use of power 
series expansions.  Assume t h a t  

e - < .064 , I - < 7.30 

D e f i n e  

then  

1 

2 
b = - s i n I  , 

b = e  

(5.17) 

Power series expansions w i l l  be carried o u t  in terms of e 
and b , keeping terms of order e2 ,  b2 and eb . 



5.2.1 Longitude Equation 

Prom equation (5.10), sin 6 is expressed in terms of 
f and R . Consider 

This exaression can be rewritten in terms of b , 

r 

P 
- = E l  - 2b2) + 2 b' 008 2 (f + 

Expanding the above expression with the aid of the  binomial 
theorem, 

r - = (1 - 2 b2) - b2 cos 2 (f + w )  + O(b9 
P 

Also, 

1 

2 
a = - (1 - eo6 I )  = b2 + o ( b 4 )  

Therefore, after truncating terms of order b4 , the expres- 
sion for sir, b is 

G Z ~ Z  6 = (1 - 3b2) ( f  - R) 

1 

2 
- - b2 sin ( f  + 9. + 2w) 

1 

2 
- - b 2  sin (3 f  - R + 2 w )  
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Notice t h a t  3b2 can be dropped from t h e  f i r s t  term 
since sin ( f -a )  = O(e) .  Also, f can be replaced by R 
i n  t h e  last  two terms, f o r  similar reasons. Then, 

sin 6 = s i n  ( f  - R) - b2 (;en 2 (R + w ) .  (5.18) 

Making use of t h e  Bguation of the Center, 

5 

16 
f - R = 2e sin R + -  e2 s i n  23 + - - .  ? (5.19) 

and t h e  expansion f o r  s ine ,  

1 

6 
s i n  8 = 8 - - 8 3  + ... ? 

t he  e x p l i c i t  expression for  longitude is 

5 

16 
6 = 2e sin R + - e2 sin 2~ 

- b2 s i n  2 (R + w )  + O(e3 ,b3)  

5.2.2 Lat i tude Equation 

The s i n e  of l a t i t u d e  is 

sin J, = 2b sin ( f  + w )  

Using (5.19),  

where 

(5.20) 

(5.21) 

5 

16 
x ( e ,  a )  = 2e sin R + - e2 s i n  2 a  + ... . (5 .22)  
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Using t h e  power series expansions for s i n e  and cosine, and 
t h e  binomial theorem, 

cos Q = 1 - e2 + e2 C 0 8  2 R + * * e  

sin t = 2e s i n  R + - e2 s i n  PR + 0 . -  

P 

5 

16 

Then s i n  J, can be w r r t t e n  as 

s i n  JI = 2b s i n  (R + w )  

(23 + w )  - s i n  w + ... 1 
The l a t i t u d e  i o  t h e n  

J, = 2b sin (R + w )  
(5 .23)  

+ 2b e sin (23 + w )  - s i n  (r) + O(e3,b3) . r 1 
5 .3  Ground TA ack 

To an error of less t h a n  one h a l f  degrees ,  t h e  second 
degree terms can be neglected i n  equations (5 .21)  and (5 .23) ,  

6 = 2e R , (5 .24)  

J, = 2b s i n  ( I I  + w )  (5 .25)  

An approximate equat ion for t he  ground track can be obta ined  
by e l i m i n a t i n g  Q from the above equat ions .  From (5 .25 )  

J, - - s i n  II 008  w = co8 Q s i n  w 
2b 
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Squaring both sides, 

$ *  rl, - - - s i n  R cos w + s i n 2  R 3's2 w = con2 I, s i n 2  w , 
4b2 b 

But 

6 

2e 
sin R = - J 

so that  

*' 6 rl, G O 8  w d 2  - -  + - = s i n 2  w 
4b2 2b e 4e2 

(5 .26 )  

Equation ( 5 . 2 6 )  is an e l l i p s e ,  so t h a t ,  i n  general, t h e  
ground track  w i l l  be n e a r l y  an e l l i p s e .  Consider t h e  sl;..Aal 
cases : 

w = 900 (1) -- 
Then t h e  ground track equat ion becomes 

1 
i12 J 1 2  

- + - =  
4 e 2  4b2 

T h i s  is  an e l l i p s e  whose axes lie on t h e  equator  and a 
meridian.  

e - b  , w = goo 

The ground track  is a c ircle  of r a d i u s  e .  

The ground track  is a s t r a i g h t  l i n e  with  slope 
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Actual ground tracks are shown in Figures 19(a), 19(b), 
ZO(a), 20(b) for different values of e and I . These were 
produced on the Healett-Packard 9810 by using equations (5.3). 
(5.9), (5.11) and (5.16). Thus, there are no approximations 
made for small e and I . It is observed that the figures 
resemble ellipses. 

6.0 Conclusions 

The analysis developed in this report shows that the or- 
bital eccentricity of the SPS can qet relatively large. Em- 
ever, for certain case-s, the eccentricity can be reduced when 
proper choices on i:-.itial conditions are made. 

.in analyt? solution for the motion of eccentricity 
and longitude perigee has been derived. This solufion is 
valii for eight to ten pears. It could be used €or prediction 
and control of the SPS orbit. 

In oracr for the aualytical solution to be valid for 
longer periods of iime, the gravitational effects must be 
included. It has been s h m  by numerical integrations that 
gravitational perturbations on the eccentricity become impor- 
tant for time intervals longer than ten years. The complete 
analytical solution is feasible through lase af the methods 
developed in this report. 
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FIGURE 1 9 :  S a t e l l i t e  Ground Track, en.042, 1 1 7 . 3 '  
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PRKEDING PACE BLANK NOT FIIMTD 

APPENDIX A 

POSITION OF THE SUN IN EQUATORIAL COORDINATES 

It will be assumed that the sun moves on an elliptical 
orbit about the earth. Using the coordinate system described 
in Section 3.1, the direction cosines of the sun are: 

where C = cos e , S = s i n  , 
and e is the angle between the equatorial plane and the 
ecliptic plane (e= 23'27'). f, and g, are the true anomaly 
and argument of perigee, respectively, of' the sun. 

Equation (Al) needs to be expressed in terms of the sun's 
mean anomaly. This will be done by using power series expan- 
sions in the eccentricity e, of the sun's orbit. Since 
is small (e,=.0167), only first degree terms are needed: 

c o s  f ,  = - ea + c o s  R, + eo cos  2R, 

sin f ,  = sin f., + eo sin 211, 

Using ( A 2 )  in ( A l l :  
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Terms that are periodic in with coefficient e, will 
not be significant and can be neglected. 
s ions  are then 

The f i n a l  expres- 
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The d i f f e r e n t i a l  e q u a t i o n s  (3 .47)  for p and q w i l l  
be d e r i v e d  from t h e  chain rule (3 .46)  and the e x p r e s s i o n  
(3.40) of F, as  a function of the DSu v a r i a b l e s .  The fol- 
lowing d e r i v a t i v e s  are needed: 

v 2  3F - = 3 e {[- (cos h eo8 g - sin h cos I sin g) 
aG 2 e 

8 

- sin h cos I e sin g (cos v - eo cos go) 

+ E 5 (sin h COB g + eo8 h cos I s i n  g) 

1 
e 

n2 
(81) 

+ S - s i n  I sin g 
e 

e s i n  g ( cc6  v - eo8 I 
+ C cos h cos  I e s i n  g + S - 

sin I 1 

aF S 3 1  - = - E i s i n  h e sin g ( e o 8  v - ea c o s  go) 
ali 

- c cos  h e L (B2) 
e sin g ( s i n  \’ - 1 c o s  I 

sin g - S - 
sin I 
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1 3 

2 
= - G E [[I. s i n  g 008 h C e 008 8; s i n  h 008 I (008  V - 

c (e C 0 8  g 8 i n  h - €3 008 g 008 h 008 I )  - [ 
- S e cos g s i n  I ( s i n  v - e, sCn g,) 1 

I n s e r t i n g  t h e s e  d e r i v a t i v e s  i n t o  (3 .46)  and c o l l e c t i n g  terms, 
t h e  f o l l o w i n g  e x p r e s s i o n s  are obta ined  

dP 3 - = - 6 [Lo2 e08 h s i n  h (1-008 I )  

+ (008  1-1) e2 sin g s i n  (g+h) sin h (cos V - 1 
- 5 y12 (l+C08 h (eo8 1 - 1 ) )  + S n 2  sin I eo8 h - L 
- e* s i n  (g+h)  ( c o s  I -1 ) (C  C O B  h s i n  g - 

C 0 8  1 1  1 - s -q ( s i n  v - ea s i n  gal 
sin I 
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dq - = 3 E { k2 ( 1  - (1-cos I >  s i n 2  h )  - 
d T  2 

- e2eos  ( g + h ) ( c o s  1-1) szn h sir,  COB ’J - eo cos  g,) 
-.I 

* f 2  C s i n  h cos  h (1 -cos  I )  

- n’ S s i n  I sin h 

i e2 cos (g+h)(cos I - l ) ( C  cos h sin g - 
cos I 1 I 

- s -  s i n  g >  l(s<.n v - 
sin I J 

T above equat ions  can b e  expressed  i n  terms of  p , q , P , Q  by 

r.-i-ing use  of the fo l lowing  e x p r e s s i o n s :  

p = e c o s  ( g + h )  q = e s i . :  (g+h) 

P = &Zz1 cos  h , Q = - - s i n  h 

P q 
cos  ( g + h )  = * s?:n ( g + h )  = --)-, 

vp2+q2 
0 

P -Q 
c o s  h = m 
 si^ I cos h = P [z - ( P 2 + Q 2 ) l ’  

s i n  I sivl h = - Q - ( P 2 + Q 2 J t  
L J 

The resulting e x p r e s s i o n s  arc Lyivcn i n  (3.47). 
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The chain rule applied to the derivatives of P aad Q 
result in 

The fol lowing addit ional  p a r t i a l  der ivat ive  is needed: 

1 3 

'dh 2 
- - -  C 0 8  g 8 in  h + e 8 i n  g C 0 8  I C08 h (008 V - aFs 

ea cos e) + C e s i n  g C 0 8  I s i n  h - [ 
e COS g C 0 8  b ( s i n  v - eo s i n  1 

Insert ing (B2), (B3) and (B8) i n t o  (B7): 

%) - h ( c o 8 v  - e@ C 0 8  - 2 s i n  h e s i n  
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+ 2 eo8 h e sin g 1 
C cos h (sin v - eo sin &) - sin h (cos v c 

The above equations can now be expressed in terems of 
P,Q by the use of (Be). The resulting non-singular ex- 
pressions are given in (3.48). 

p,q, 
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-107- 

rK&LL)LNG PAGE BLANK NOT 

rnPENDIX c 

COMPUTATIONAL ALGORITHM FOR THE ANALYTICAL SOLUTION 

The approximate analytical solution for p and q was 
derived in Section 3.7 and is written as 

The computatioral sequence for evaluating p and q at any 
time is shown below. 

(1) Values of constants 

5 e, s i n  go = (365.25)-' (0.01675) s i n  (281O.O) 

6 e, cos go = (365.25)-' (0.01675) ccs (281O.O) 

B = 0.9679 * 6 = (365.25)-l 

(2) Value of small parameter 

S 
E = (6.611)2 - (5.06.10-7) 

bf 

S = cross-sectional surface area in square meters 

M = weight in kilagrams 

3 

2 
9s - (365.25) 6 
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( 3 )  Compute C1 and C2 

c1 = eo cos ;ire - @ B  eo8 (aeo + g,) 

c2 - eo s i n  g 0 - @ s i n  (gee + g,) I, 

= i n i t i a l  value of e c c e n t r i c i t y  

% = i n i t i a l  longitude of  perigee 

= 358°28'33" + 1295 96579" T 

= 281O13' 15" + 6189" T , 

g0 

&OO 

=a 

, 

T = Julian centuries  of 36525 ephemeris days , 
referenced to 1900 January 0 . 5  , 

(4)  Compute P(T) and q ( T )  us ing equation ( C l ) ,  where 

T = (2r) (number of revolutions)  

0 = (365.25)-' 'I + ago + g, 

I t  can be assumed that one revolution is equivalent to one day. 


