NASA CR-135272 IITRI-B6124-48

THERMAL FATIGUE AND OXIDATION DATA OF SUPERALLOYS INCLUDING DIRECTIONALLY SOLIDIFIED EUTECTICS

by

V. L. Hill and V. E. Humphreys Metals Research Division

> IIT RESEARCH INSTITUTE 10 West 35 Street Chicago, Illinois 60616

> > Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

June 1977

CONTRACT NAS3-17787

N78-15233

(NASA-CR-135272) THERMAL FATIGUE AND OXIDATION DATA OF SUPERALLOYS INCLUDING DIFFCTIONALLY SCLIDIFIED EUTECTICS (IIT Pesearch Inst.) 66 p HC A04/MF A01 CSCL 11F

NASA-Lewis Research Center Cleveland, Ohio

Peter T. Bizon, Project Manager

1. Report No NASA CR-135272	2 Government Accession	No	3 Recipient's Catalog	j No							
4. Title and Subtitle THERMAL FATIGUE AND OXIDA	RALLOYS	5 Report Date June 1977									
INCLUDING DIRECTIONALLY S	cs -	6 Performing Organi.	zation Code								
7. Author(s)			8 Performing Organiz	ation heport No							
V. L. Hill and V. E. Humap	hreys	-	ITTRI-B6124-48								
9. Performing Organization Name and Address	<u></u>										
IIT Research Institute		ŀ	11 Contract or Grant	No							
Chicago, Illinois 60616			NAS3-17787								
			13 Type of Report an	nd Period Covered							
12. Sponsoring Agency Name and Address			Contractor H	leport							
National Aeronautics and Washington, D.C. 20546	Space Administrat	ion -	14 Sponsoring Agency	r Code							
Project Manager, Peter T. Bizon, Materials and Structures Division NASA-Lewis Research Center, Cleveland, Ohio 44135 16. Abstract Thermal fatigue and oxidation data were obtained on 61 specimens, represent-											
tems. Conventionally fabrica MM 509, IN-738, IN-792 + Hf, were MM 200, MM 200 single c: and lamellar $v/v'-\delta$ (0.06C). on IN-738 and IN-792 + Hf. (1) IN-792 + Hf, MM 200 DS, MM 20 on lamellar $v/v'-\delta$ and lamelic crystal, MM 200 DS single crysters verse cracking on the small of the small of the small fatigue resistance of the small fatigue for the uncoated alloys (Suggested by Author(s)) Thermal fatigue for the small fatigue for alloys (Suggested by Author(s)) Thermal fatigue for alloys fill fatigue for alloys fill fatigue for alloys fill fatigue for alloys fill for alloys fill for alloys fill fatigue for alloys fill for alloys fill fatigue for alloys fill for alloys fill fatigue for alloys fill for all for all for all for all for alloys fill for all for all for all for allow	ated alloys inclu- and MM 200 + Hf. rystal, MM 200 bi The coatings sy Overlay coatings DO DS single crys Lar $v/v'-\delta$ (0.06C stal, and MM 200 cadius of the dou th NiCrAlY/Pt-coa nitiation. Cellu f 75-7500 cycles longitudinal cra- nibited cracks in ys. The NiCrAlY initial thermal 77 cracked in 75- 509, and MM 200 MM 509, exhibited specimens had we 00 cycles. All c	ded V57, MM 200 The direction crystal, cellu stems included evaluated incl tal, and cellu). Specimens DS survived 15 ble-edge wedge ted and uncoat lar \/v'-& eut to first crack cks prior to 20 150-250 cycle overlay coatin cracks at 2250- 150 cycles, with the foccurred significant of ight losses of oated speciment Unclassified	 and infector René 77, Ren onally solidif al v/v'-&, la pack alumini uded NiCrAlY ular v/v'-& an of uncoated M of uncoated M of ocycles w specimen. T ted, survived tectic exhibit tinitiation. cycles. Al s compared to on IN-738, 4250 cycles. hereas first c in 150-400 cy oxidation weig shad low wei had low wei 	e 125, MM 246, ied alloys imellar v/·'-& de (JoCoat) on IN-738, d NiCrAlY/Pt M 200 DS bi- ithout trans- he lamellar 4500-7500 ed variable However, all uminide coat- 250-600 IN-792 + Hf. Uncoated rack initia- cles. All ht loss in igher than ght loss.							
Eutectics	alloys										
	resistance										
19. Security Classif (of this report)	20 Security Classif (of the	s page)	21 No of Pages	22 Price							
Unclassified	Unclassified		60 + vi	\$3.00							

* For sale by the National Technical Information Service Springfield, Virgin 3, 22161

FOREWORD

This report describes the results of thermal fatigue and rxidation testing of test Series 7 specimens on NASA contract NAS3-17787. The report covers part of the work conducted on this contract during the period 1. January 1975 to 15 January 1977. Other IITRI work on fluidized bed thermal fatigue testing has been reported in NASA CR-72738, CR-121211, CR-121212, and CR-134775.

The NASA personnel who contributed to the program included:

Peter T. Bizon	-	Project Manager
John R. Danicic	-	Contract Specialist
Horace C. Moore	-	Contract Specialist
Edward J. Kolman	~	Contract Specialist
Allen L. Jones	-	Contract Specialist
John E. Dilley	-	Contract Specialist

IITRI personnel assigned to this program included: M.A.H. Howes, Director, Metals Division; V. L. Hill (Project Manager); V. E. Humphreys (Project Engineer); W. C. Keeney and J. Andersen (Contract Specialists); Harry Nichols, B. A. Humphreys, M. Scroll, and V. Johnson.

The IITRI internal designation for this report is IITRI-B6124-48. Thermal fatigue and oxidation data contained in this report are recorded in Logbook Nos. 22474, 22652, 22660, 22926, 23103.

PRECEDING PAGE BLANK NOT FILMER

TABLE OF CONTENTS

		Page
SUMMA	ARY	1
1.	INTRODUCTION	2
2.	EXPERIMENTAL PROCEDURE	3
	2.1 Materials	3
	2.2 Test Conditions	4
3.	RESULTS	5
	3.1 Oxidation Behavior	5
	3.2 Thermal Fatigue Resistance	7
4.	DISCUSSION	10
5.	SUMMARY OF RESULTS	10
REFER	RENCES	13

LIST OF TABLES

		Page
1	Summary of Alloy Compositions	14
2	Tensile Properties of Test Materials at 760°C (1400°F)	15
3	Summary of 982°C (1800°F) Creep-Rupture Properties	16
4	Dimensions and Identification of Test Specimens	17
5	Weight Change Data for Group 1 Specimens	18
6	Weight Change Data for Group 2 Specimens	19
7	Weight Change Data for Group 1 Specimens Continued Exposure	20
8	Accumulated Thermal Cycles to First Crack Initiation for Group 1 Specimens	21
9	Accumulated Thermal Cycles to First Crack Initiation for Group 2 Specimens	22
10	Summary of Crack Propagation for Group 1 Specimens .	23
11	Summary of Crack Propagation for Group 2 Specimens .	32
12	Summary of Longitudinal Crack Propagation for Group 2 Eutectic Specimens	40

LIST OF FIGURES

Ρa	ge
----	----

1	Fluidized Bed Thermal Fatigue Facility	41
2	Double-Edge Wedge Test Specimen and Holding Fixture	42
3	Percent Weight Change versus Accumulated Cycles for Coated and Uncoated MM 200	43
4	Percent Weight Change versus Accumulated Cycles for Coated and Uncoated IN-738, IN-792 + Hf, and MM 509	44
5	Percent Weight Change versus Accumulated Cycles for Uncoated Superalloys	45
6	Percent Weight Change versus Accumulated Thermal Cycles for Coated and Uncoated $\sqrt{\sqrt{-\delta}}$ DS Eutectic Alloys.	46
7	Typical Appearance of Conventionally Fabricated Superalloy Double-Edge Wedge Specimens As-Received	47
8	Typical Appearance of DS $\sqrt{\sqrt{-\delta}}$ Eutectic Double-Edge Wedge Specimens As-Received	48
9	Appearance of MM 200 + Hf after Indicated Thermal Cycles	49
10	Appearance of MM 200 + Hf DS after Indicated Thermal Cycles	50
11	Appearance of Directionally Solidified MM 200 after 15,000 Thermal Cycles	51
12	Appearance of IN-792 + Hf after 7,500 Thermal Cycles .	52
13	Appearance of IN-792 + Hf and IN-738 after 7,500 Thermal Cycles	53
14	Appearance of Coated IN-738 after Indicated Thermal Cycles	54
15	Appearance of $\sqrt{\sqrt{-6}}$ Eutectic (N1, N2) and $\sqrt{\sqrt{-6}}$ Eutectic + Overlay (O1, O2) after Indicated Thermal Cycles	55
16	Appearance of MM 509 and V57 after Indicated Thermal Cycles	56
17	Appearance of Coated and Uncoated $\sqrt{\sqrt{-\delta}}$ Eutectic after 7,500 Thermal Cycles	57
18	Appearance of Coated and Uncoated v/v'-& Eutectic (0.06C) and Coated MM 200 DS after 7,500 Thermal Cycles	58
19	Appearance of René 77 and René 125 after 7,500 Thermal Cycles	5 9
20	Appearance of MM 002 and MM 246 after 7,500 Thermal Cycles	60

SUMMARY

Thermal fatigue and oxidation testing described in this report is part of a general study of thermal fatigue being conducted by the NASA-Lewis Research Center. Earlier work in the study has been reported in NASA CR-72738, CR-121211, CR-121212, and CR-134775. All testing on this contract has been conducted employing fluidized bed heating and cooling. Testing in this program was over the temperature range 1088°/316°C employing double-edge wedge specimen.

Thermal fatigue and oxidation data were obtained on 61 specimens, representing 15 discrete alloy compositions or fabricating techniques and three coating systems. Conventionally fabricated alloys included V57, MM 002, René 77, René 125, MM 246, MM 509, IN-738, IN-792 + Hf, and MM 200 + Hf. The directionally solidified alloys were MM 200, MM 200 single crystal, MM 200 bicrystal, cellular $\sqrt{\sqrt{-5}}$, lamellar $\sqrt{\sqrt{-5}}$ and lamellar $\sqrt{\sqrt{-5}}$ (0.06C). The coatings systems included pack aluminide (JoCoat) on IN-738 and IN-792 + Hf. Overlav coatings evaluated included NiCrAlY on IN-738, IN-792 + Hf, MM 200 DS, MM 200 DS single crystal, and cellular $\sqrt{\sqrt{-5}}$ and NiCrAlY/Pt on lamellar $\sqrt{\sqrt{-5}}$ and lamellar $\sqrt{\sqrt{-5}}$ (0.06C).

Specimens of uncoated MM 200 DS bicrystal, MM 200 DS single crystal, and MM 200 DS survived 15,000 cycles without transverse cracking on the small radius of the double-edge wedge specimen. The lamellar $v/v'-\delta$ eutectic specimen, both NiCrAlY/Pt-coated and uncoated, survived 4500-7500 cycles prior to first crack initiation. Cellular $v/v'-\delta$ eutectic exhibited variable thermal fatigue resistance of 75-7500 cycles to first crack initiation. However, all eutectic specimens developed longitudinal cracks prior to 200 cycles. Aluminide coatings on IN-738 and IN-792 exhibited cracks in 150-250 cycles compared to 250-600 cycles for the uncoated alloys. The NiCrAlY overlay coatings on IN-738, IN-792 + Hf, and MM 200 + Hf DS exhibited initial thermal cracks at 2250-4250 cycles. Uncoated alloys V57, MM 002, and René 77 cracked in 75-150 cycles, whereas first crack initiation in René 125, MM 246, MM 509, and MM 200 + Hf occurred in 150-400 cycles.

All the uncoated alloys, except MM 509, exhibited significant oxidation weight loss in 7,500-15,000 cycles. MM 509 specimens had weight losses only slightly higher than coated specimens through 7500 cycles. All coated specimens had low weight loss.

1. INTRODUCTION

This report, NASA CR-135272, on Contract NAS3-17787 summarizes thermal fatigue and oxidation data for 61 specimens of conventionally fabricated nickel- and cobalt-base superalloys, directionally solidified nickel-base superalloys, and directionally solidified eutectics. Coatings on selected alloys were evaluated in the program. Double-edge wedge test specimens were cycled in a fluidized bed facility over the temperature range 1088°/316°C (1990°/600°F) for periods up to 15,000 cycles. Heating and cooling times were 180 sec each for a total thermal cycle of 360 sec. Weight change, as well as crack initiation and propagation, were obtained in the program.

Thermal fatigue data obtained previously on this contract have been reported in NSAS CR-134775.⁽¹⁾ Additional thermal fatigue data obtained in the IITRI fluidized bed on Contract NAS3-14311 are reported in NASA CR-72738, ⁽²⁾ CR-121211, ⁽³⁾ and CR-121212.⁽⁴⁾ This effort comprises part of the general study of thermal fatigue being conducted by the NASA-Lewis Research Center. Further details of the study have been reported by Spera et al., ^(5,6) Bizon et al., ⁽⁷⁻⁹⁾ and Howes. ⁽¹⁰⁾

Any material exposed to repeated rapid thermal transients is subject to tensile failure by thermal fatigue, also sometimes defined as thermal shock. The thermal fatigue degradation mechanism involves accumulation of damage during multiple thermal cycles. Thermal shock, on the other hand, generally involves failure in relatively few cycles. The difference generally lies in the tensile ductility of the material within the temperature range of the imposed thermal cycle. Ductile materials tend to fail by thermal fatigue, whereas brittle material.

Material properties, other than ductility, important in thermal fatigue are hot tensile strength, elastic modulus, thermal conductivity, and thermal expansion. Oxidation resistance apparently also plays a role in thermal fatigue. The interrelationship of material properties, the imposed thermal cycle, and component geometry defines the ability of a structure to resist thermal fatigue. However, the synergistic effects of these variables are quite complex and prediction of thermal fatigue behavior from basic properties is difficult. A major objective of the current NASA program is to develop and verify a usable model for thermal fatigue by comparing experimental data with computer-derived predictions of thermal fatigue life.

Thermal fatigue data in this report were generated using a multiple retort fluidized bed test facility consisting of one heating bed and two cooling beds. Glenny and co-workers reported the first use of fluidized beds to study thermal fatigue. (11) Fluidized bed heating and cooling provides very rapid heat transfer for both portions of the thermal cycle. An additional

advantage of fluidized bed testing is that it provides a ready means of exposing a number of samples under identical test conditions. In this program, up to 36 test specimens were exposed simultaneously.

The objective of the thermal fatigue test program was threefold:

- 1. Determine the number of imposed thermal cycles to initiation of the first trans-verse crack.
- 2. Obtain data on the rate of propagation of the three largest cracks.
- 3. Generate qualitative oxidation data for the various materials.

Cycling of test specimens was generally continued until the three largest cracks reached a length of about 10 mm (0.4 in.). This corresponds to the approximate width of the tapered section of the test specimen. In some cases, exposure of specimens was continued in order to obtain oxidation data for specific alloys.

During the test program, some alloys exhibited longitudinal cracks originating in the end notches used for specimen support. Longitudinal cracks were sometimes observed prior to initiation of transverse cracks in the radiused test section. Whenever longitudinal cracking was significant, the crack lengths were also measured at each inspection period. Longitudinal cracks are significant because they alter the stress distribution in the test specimen and thereby modify transverse cracking behavior.

2. EXPERIMENTAL PROCEDURE

2.1 Materials

Thermal fatigue testing in this program involved 61 specimens of bare and coated high temperature alloys consisting of 15 distinct alloy compositions and/or fabrication procedures. In addition, 10 coating-substrate combinations were evaluated. At least two specimens of each alloy condition or coatingsubstrate combination were evaluated in the program. All tes* specimens were supplied by the NASA-Lewis Research Center

Table 1 is a summary of the compositions of the 15 basic test alloys and/or alloy conditions. Compositional data were supplied by the alloy producers. All IN-792 specimens were hafnium modified, but only part of the MM 200 specimens contained the hafnium addition. The MM 200 directionally solidified single crystal and bicrystal specimens were of the unmodified composition. Tensile properties at 760°C (1400°F) and creep-rupture properties at 982°C (1800°F) of the test alloys are summarized in Tables 2 and 3, respectively. These data were generated at the NASA-Lewis Research Center on the same heats of the alloys used to fabricate the thermal fatigue specimens. Significant deviation for the time-to-rupture at proof stress is observable for IN-738. MM002. René 77, and MM 200 + Hf in Table 3.

Determination of the effects of three coating systems on thermal fatigue resistance was included in the test program. A pack aluminide coating (JoCoat), applied by specification PWA 273, was evaluated on both IN-738 and IN-792 + Hf. A NiCrAlY overlay coating, applied by specification PWA 267, was evaluated on IN-738, IN-792 + Hf, MM 200 + Hf, and cellular $v/v'-\delta$ eutectic substrates. Finally, a NiCrAlY/Pt coating, applied by specification PWA 267 + Pt, was employed for directionally solidified specimens of the lamellar $v/v'-\delta$ and $v/v'-\delta$ (0.06C) eutectic alloys. In this report, the NiCrAlY coating is defined as "overlay," whereas the platinum-containing overlay coating is identified as the NiCrAlY/Pt coating.

2.2 Test Conditions

The fluidized bed thermal fatigue test facility is shown in Figure 1. This equipment includes one hot bed and two cold, or intermediate, temperature beds. The lower bed temperature is maintained by a water-cooled heat exchanger for testing at ambient cold bed temperatures. For testing at a $316^{\circ}C$ ($600^{\circ}F$) intermediate bed temperature in this program, the heat exchanger was removed and the desired intermediate bed temperature was maintained by the heating elements. Heat transfer media in both hot and cold beds was 28-48 mesh tabular alumina.

During testing in this program, up to 36 test specimens were cycled simultaneously in two coupled holding fixtures. At any time during testing, one holding fixture was in the hot bed and the other in either of the two intermediate beds. The transfer carriage, operated by air cylinder, can be programmed for any combination of heating and cooling time. Transfer time between beds was about 5 sec, and the heating and cooling time 180 sec each in the current test program.

Thermal fatigue data in this program were obtained using the 101 mm long double wedge simulated blade shape and the holding fixture shown in Figure 2. Test specimens were supported by 6.3 mm wide notches machined 6.8 mm deep in the ends of the specimen. The notched specimens provide ease of fabrication and specimen removal from the fixture for examination. In addition, the potential for superimposition of mechanical stresses due to the fixture is minimized.

The holding fixture shown in Figure 2, capable of retaining 18 test specimens, was fabricated from austenitic stainless steels. End plates were 12.7 mm thick 310 stainless steel with a radius 0.25 mm less than the specimen notches. The side supports were fabricated from 304 stainless steel channel. During testing, the test fixture also generated thermal fatigue cracks and required frequent replacement.

Thermal fatigue testing of the 61 specimens was conducted in two basic groupings of 36, cycled nominally for 7500 cycles at 1088°/316°C (1990°/600°F). The Group 1 samples consisted of 36 double wedge samples without prior cycling. Group 2 specimens consisted of 25 specimens without prior cycling and 12 specimens from Group 1 that did not crack in 7500 cycles. Group 1 specimens were also added to the second test sequence as Group 2 samples were removed from testing due to excessive cracking. Accordingly, eleven of the Group 1 samples were expcsed for 15,000 and one for 13,000 cycles. These 61 test specimens comprised test Series 7 of Contract NAS3-17787.

During testing at 1088°/316°C, specimens were removed at selected intervals for gravimetric analysis and crack length measurements. The nominal removal times were 25, 50, 100, 200, 300, 500, 700, and 1000 cycles, followed by examination every 500 cycles for exposures greater than 1000 cycles. Lengths of the three longest cracks were determined by visual measurements under a microscope at 30X. The number of cycles to crack initiation was taken as the average of the number of cycles at the last inspection witnost cracks and the number of cycles at the first inspection with a crack. However, specimens were generally retained in the test program after crack initiation to obtain oxidation data.

Table 4 summarizes the dimensions and identification of the 61 test specimens evaluated in the program. Both the as-received and final dimensions are shown. Data on total thermal cycles imposed on each specimen are included for reference.

3. <u>RESULTS</u>

3.1 Oxidation Behavior

Weight change data for the 61 test specimens are contained in Tables 5 through 7. Table 5 comprises weight change data for Group 1 specimens through 7500 cycles; Table 6 provides similar data for Group 2 samples. Oxidation data in Table 7 are for Group 1 specimens for the 7,500 to 15,000 cycle exposure. These data are separated from the Group 1 initial information in Table 5, since they were generated along with oxidation data for the Group 2 specimens. Figures 3 to 6 are plots of the oxidation data for four selected groupings of the 25 discrete alloys and/or alloycoating combinations. Plotted data are for the average of the duplicate and/or triplicate specimens of each alloy condition, except for the cellular $\gamma/\gamma' - \varepsilon$ eutectic samples (N1,01) in Figure 6. The plot in Figure 6 is for a single sample of cellular $\gamma/\gamma' - \varepsilon$ eutectic (N1) and overlav coated cellular $\gamma/\gamma' - \varepsilon$ eutectic (01).

Oxidation data in Tables 5 to 7 and Figures 3 to 6 are expressed in percent of the original weight since oxidation is not uniform over the test specimen. In general, the majority of the oxidation occurs on the wedge areas of the specimen. This is because these areas are exposed to the maximum temperature of the thermal cycle for longer periods than the thicker center section of the specimen. Thermocouple calibration tests reported in NASA CR-121211(3) indicated that for double wedge specimens the center section of the specimen is nominally 17- $30^{\circ}C$ (31-54°F) less than the maximum temperature of the wedge section at the end of a 180 sec heating cycle. Thermocouple calibration data also indicate that the wedge sections of the specimen were within 25°C of the 1088°C maximum temperature for the average time of about 75 sec at the end of the 180 sec. Qualitatively, therefore, the cumulative exposure was equivalent to about 20 hr at $1088^{\circ} + 25^{\circ}C$ (1990° + 45°F) for each 1000 cycles of testing. This corresponds to 150 and 300 hr for 7,500 and 15,000 cycle exposures, respectively. Rapid thermal cycling, however, accelerates oxidation significantly in comparison to isothermal exposure at 1088°C (1990°F).

Figure 3 indicates that uncoated hafnium-modified MM 200 and MM 200 DS exhibited better oxidation resistance than MM 200 DS single crystal and bicrystal material. At 7500 cycles, weight losses were 2.8% and 3.8% for MM 200 + Hf and MM 200 + Hf DS, respectively. At this exposure, the weight losses were 5.8% and 6.5% for MM 200 DS single crystal and MM 200 bicrystal, respectively. At 15,000 cycles, weight losses were 7.6% for MM 200 + Hf DS compared to 10.3% for single crystal MM 200 DS and 11.3% for bicrystal MM 200 DS.

The NiCrAlY coating on single crystal MM 200 indicated slightly smaller weight loss (0.07%) at 7500 cycles compared to the overlay NiCrAlY coating (0.14-0.15%) on MM 200 + Hf and MM 200 + Hf DS. Weight loss of the overlay coating on MM 200 + Hf at 15,000 cycles was 0.5\%. Visually, none of the coatings on the MM 200 materials indicated significant deterioration through the 7,500 or 15,000 cycle exposures.

Figure 4 compares oxidation of uncoated IN-738, IN-792 + Hf, and NM 509 with that of coatings on these allovs. Veight loss at 7500 cycles was 5.6-5.8% for IN-733 and IM-792 + Mf, i.e., slightly less than single and bicrystalline directionally solidified NI 200. but about twice that of MM 200 + Hf. MM 509 exhibited a weight loss at 7500 cycles (0.32%) similar to that of aluminide coated IN-792 + Hf (0.24%) and IN-738 (0.18%, 6000 cycles), as well as that of the overlay (NiCrAlY) coatings (0.27-0.33%) on these alloys.

Oxidation data plotted in Figure 5 are for the uncoated superalloys V57, MM 002, MM 246, René 77, and René 125. For these alloys the highest weight loss rate was for V57 specimens --6.6% after 2000 cycles. At this exposure, V57 samples were removed from the test. René 77 exhibited the second highest weight loss of 7.1% at 7500 cycles, compared to 4.0 and 5.0% for MM 246 and René 125, respectively. Lowist weight loss (1.4%) after 7500 cycles was recorded for MM 002.

Figure 6 is a plot of the percent weight change for the $\gamma/\gamma'-\delta$ eutectic specimens. For the uncoated alloys, the single cellular eutectic specimen, N1, indicated a higher weight loss (5.3%) than the average of the duplicate lamellar (3.2%) and lamellar 0.06C (2.5%) eutectic specimens at 7500 cycles. The NiCrAlY/Pt coating exhibited low weight loss, 0.07 to 0.14%, on both lamellar $\gamma/\gamma'-\delta$ and $\gamma/\gamma'-\delta$ (0.06C) DS specimens.

Weight change data for the uncoated alloys at 7500 cycles reflected the following ranking in order of increasing oxidation resistance: V57, René 77, MM 200 DS bicrystal, IN-792 + Hf. IN-738, MM 200 DS single crystal, cellular γ/γ' - δ eutectic, lamellar γ/γ' - δ (0.06C) eutectic, MM 002 and MM 509. For comparison, MM 509 exhibited weight loss (0.32%) about one-twentieth that of René 77 (6.1%) and one seventeenth that of IN-738 (5.6%) after 7500 cycles.

Weight change indicated little difference in oxidation behavior of the three coating systems through 7500 cycles. Weight losses for all coated specimens were low, 0.07-0.8%. Generally, the NiCrAlY/Pt coating indicated the lowest weight loss (0 07-0.14%), with pack aluminide intermediate (0.27%), and the NiCrAlY overlay having highest losses at 0.27-0.79%. At these relatively low losses of 0.08-0.9 g (0.07-0.8%) a significant contribution to the weight loss may have been due to spalling of metal from the fatigue cracked areas. The high weight loss of DS MM 200 and the eutectics indicates that protective coatings are required for these alloy systems.

3.2 Thermal Fatigue Resistance

Accumulated thermal cycles to first crack initiation for Group 1 and Group 2 specimens are summarized in Tables 8 and 9, respectively. In these tables, the alloys are ranked in increasing cycles to first crack initiation on the 0.635 mm small radius. Thermal cycles to crack initiation on the 1.016 mm large radius are included for comparison. Cenerally, cracking of the large radius is of lesser importance, particularly if preceded by cracking of the small radius. The emergence of thermal cracks on the small radius influences the stress distribution in the specimen. This can increase the cycle time to initiation of cracks on the large radius.

Cycles to f rst crack in Tables 8 and 9 are based on the mear between the last inspection period without a crack and the inspection period when a crack was first visible. For example, if no cracks were observed at 100 cycles but became visible at 200 cycles, origination of the first crack is considered to be 150 cycles. Accordingly, thermal fatigue data in Tables 8 and 9 have an inherent potential error varying from \pm 12 cycles to \pm 150 cycles for exposures less than 1000 cycles. The error is \pm 250 cycles for exposures above 1000 cycles, based on the inspection periods described previously.

Fatigue data in Table 8 indicate that the lowest fatigue life was that of the $\sqrt{\sqrt{1-8}}$ eutectic specimens. One specimen, of cellular $\sqrt{\sqrt{1-8}}$ + overlay (01) did survive 7500 cycles without transverse cracks. The wide scatter for this material might have resulted from inherent structural defects in the specimen. Eutectic specimens, however, did develop severe longitudinal cracks, as will be discussed subsequently. The highest thermal fatigue resistance, >15,000 cycles, for Group 1 specimens was obtained for MM 200 DS single crystal, MM 200 DS bicrystal, MM 200 + Hf + overlay, and MM 200 + Hf DS. One of the three specimens of MM 200 + Hf DS (C5), however, did develop a crack at 11,750 cycles.

Data in Table 8 indicate that uncoated IN-738 had higher fatigue resistance (600 cycles) than IN-792 + Hf (250-600 cycles) and MM. 509 (250-400 cycles). Aluminide coatings decreased the fatigue resistance of IN-738 (150 cycles) and IN-792 + Hf (150-250 cycles). Conversely, the NiCrAlY overlay coating increased the cycles to first crack initiation for both coated IN-738 (2,250-3,750 cycles) and IN-792 + Hf (2,750-4,750 cycles). However, MM 200 + Hf DS + overlay (2,250-4,250 cycles) exhibited lower fatigue resistance than that of uncoated M1 200 + Hf DS (11,750->15,000 cycles). No reason for the higher thermal fatigue resistance of one specimen (A1) compared to the other samples (A2,A3) of MM 200 + Hf was apparent.

Thermal cycles for first crack initiation for Group 2 specimens, summarized in Table 9, indicate limited fatigue resistance of uncoated V57, MM 002, René 77, René 125, and MM 246. All specimens of these alloys exhibited small radius cracks in 75-250 cycles. Data for the lamellar eutectic alloys indicate greater resistance to transverse cracking than that of the Group 1 cellular alloys. Some specimens of both coated and uncoated $\sqrt{\gamma'-\delta}$ and $\sqrt{\gamma'-\delta}$ (0.06C) survived 7500 cycles withcut small radius cracks. The 0.06C eutectic specimen appeared to be slightly more resistant than the unmodified lamellar eutectic.

One specimen of MM 200 DS single crystal + overlay (T1) exhibited a small radius crack at 6,250 cycles whereas the other sample survived 7500 cycles without cracking. Group 1 specimens of MM 200 DS single crystal were exposed 15,000 cycles without small-radius cracks. Thus, the behavior of this material correlated with data for Group 1 alloys MM 200 + Hf DS and MM 200 + Hf DS + overlay. In both cases, overlay specimens exhibited cracking in fewer cycles than the uncoated material.

Ranking the uncoated alloys in terms of small-radius first crack initiation resulted in the following order of increasing fatigue resistance: René 77, V57, MM 002. René 125, MM 246, MM 509, III-792 + Hf, MM 200 + Hf, and III-738, with no cracking of MM 200 DS. MM 200 + Hf DS, and MM 200 DS single crystal. A similar ranking for coated alloys was: IN-738, (aluminide), IN-792 + Hf (aluminide), IN-733 (overlay), MM 200 DS + Hf (overlay), IN-792 + Hf (overlay), MM 200 DS single crystal (overlay), and IM 200 + Hf (overlay). Eutectic alloys cannot be included in rankings because of data scatter and longitudinal cracking.

Table 10 contains optically measured crack lengths for the three longest cracks on each Group 1 specimen as a function of accumulated cycles. Similar data for Group 2 specimens are contained in Table 11. Crack lengths shown are measured on both top and bottom surfaces and averaged to obtain the mean crack length. Each of the cracks is located from the bottom (numbered end) of the test specimen. Also identified in these tables is the total number of observable cracks on both the small (0.635 mm) and large (1.016 mm) radius.

Table 12 summarizes the longitudinal crack propagation from the end notches for Group 2 eutectic specimens through 7500 cycles. Longitudinal cracks became measurable on all Group 2 eutectic specimens at 200 cycles. Table 12 includes data for both top and bottom (numbered end) surfaces of the specimen. Each data point consists of the average of measurements on both sides of the specimen. At 7500 cycles, longitudinal crack lengths varied from about 13 to 28 mm.

Figures 7 and 8 show the as-received appearance of typical conventionally fabricated superalloy and eutectic alloys, respectively. As shown in Figure 8, the edges of Group 2 eutectic specimens were radiused at the ends to reduce longitudinal cracking. None of the Group 1 cutectic specimens or any other alloy, had similar end preparation. Figures 9 to 20 show the appearance of all 61 test specimens after thermal cycling. In all photographs, the small radius is at the right. Longitudinal cracking of the Group 1 eutectic samples is illustrated in Figure 15, and that of Group 2 eutectic specimens in Figures 17 and 18.

4. DISCUSSTON

Longitudinal cracking of eutectic specimens was apparently due to the inherent properties of the directionally solidified structure. These cracks initiated at relatively few thermal cycles and, in most cases, prior to transverse cracks on the small radius. Contouring the ends of the test specimen had little influence on transverse cracking. The existence of longitudinal cracks unquestionably altered the stress distribution in the specimen resulting in a lower stress in wedge areas during cycling. Thus, the initiation of transverse cracks in the small radius for eutectic specimens cannot be compared directly with the other alloys tested. In any case, the observed longitudinal cracking behavior of the eutectics in this program indicates a significant potential problem in application of these alloys.

Comparison of crack initiation of aluminide and NiCrAlY coatings on IN-738 and IN-792 + Hf indicates a possible infusion of coating ductility. The brittle aluminide coating developed transverse cracks significantly earlier than the parent metal and the more ductile NiCrAlY overlay coating. Thus, it appears that the aluminide coating, although providing similar oxidation protection, did reduce thermal fatigue resistance during cycling over the range 1088°/316°C. This, again, may be an important criterion in selection of coating systems for high-temperature cyclic operation. The relatively high weight losses for uncoated directionally solidified alloys indicate a well-defined need for protective coatings.

5. SUMMARY OF RESULTS

Thermal fatigue and oxidation data on the 61 test specimens of test Series 7 at 1088°/316°C indicate the following conclusions:

 The best oxidation resistance for the 15 uncoated alloys was obtained for MM 509, 0.32% weight loss in 7500 cycles. This weight loss was comparable to several of the coated specimens. Poorest oxidation resistance was obtained for V57, 6.6% weight loss in 2000 cycles. The remaining 13 discrete uncoated alloys, or fabrication techniques, had weight losses varying from 1.0 to 7.0" in 7500 cycles.

- 2. Directionally solidified $\gamma/\gamma' \delta$ eutectic alloys exhibited weight losses of 2.4 to 5.3% in 7500 cycles.
- Uncoated MM 200 + Hf and MM 200 + Hf DS had weight losses of 2.7-3.3% in 7500 cycles, compared to 5.5-6.3% for MM 200 DS single crystal and bicrystal.
- 4. All pack aluminide, NiCrAlY and NiCrAlY/Pt coatings survived 7500 cycles with low weight losses of 0.07 to 0.34% and no apparent coating fai^{*} res. An exception was the single specimen of NiCrAlY overlay coated cellular $\gamma/\gamma' \delta$, whose loss was 0.8% in 7500 cycles. Metal loss due to longitudinal cracking may have contributed to the higher weight loss for this, and other specimens.
- 5. Highest resistance to thermal fatigue, 11,750 to >15,000 cycles to first crack initiation, was obtained for directionally solidified alloys MM 200 DS bicrystal, MM 200 + Hf + overlay, MM 200 + Hf DS, and MM 200 DS single crystal. Directional solidification of MM 200 + Hf increased the exposure to first visible crack from 400-1750 cycles to 11,750->15,000 cycles.
- 6. First crack initiation on the small radius occurred for uncoated V57, MM 002, and René 77 in 75-150 cycles; in 150-400 cycles for René 125, MM 246, and MM 509; and 250-600 cycles for IN-738, IL-792 + Hf, and MM 200 + Hf. One specimen of TMM 200 + Hf survived 1750 cycles prior to first exack initiation.
- 7. All DS eutectic specimens initiated longitudinal cracks originating in the mounting notches in 100-200 cycles that propagated Juring continued cyclic exposure. These cracks reduced stresses affecting the initiation of transverse cracks.
- 8. Because initiation of transverse cracking was affected by early longitudinal cracking, cellular $\gamma/\gamma'-\delta$ DS eutectic specimens indicated widely variable cycles to first transverse crack for uncoated (75-400) and for NiCrAlY overlay coated (75->7500) specimens. This may also have resulted from inherent defects in the material. Transverse small-radius cracks occurred in lamellar $\gamma/\gamma'-\delta$ and $\gamma/\gamma'-\delta$ (0.06C) at 4750-6250 cycles, for both uncoated and NiCrAlY/Pt coated specimens. One specimen each of coated and uncoated $\gamma/\gamma'-\delta$ (both 0.06C modified and unmodified) survived 7500 cycles without small-radius cracks.

- 9. Aluminide coatings on IN-738 and IN-792 + Hf decreased the exposure to first crack initiation to 150-250 cycles compared to 250-600 cycles for the uncoated alloys and 2250-4750 cycles for NiCrAlY overlay coated specimens. Overlay coating on MM 200 + Hf increased cycles to first crack initiation from 400-1750 to >13,500 cycles.
- 10. Crack initiation for NiCrAlY/Pt overlay coated specimens indicated little influence on thermal fatigue resistance of DS eutectics, but the NiCrAlY coating did modify cracking behavior of MM 200 + Hf and MM 200 single crystal. Uncoated MM 200 + Hf DS survived 15,000 cycles without cracking as compared to 2250-4250 cycles for NiCrAlY overlay coated material. One NiCrAlY overlay coated specimen of MM 200 DS single crystal initiated a crack i... 6250 cycles, whereas all three uncoated specimens survived 15,000 cycles without cracking. Thus, the NiCrAlY overlay coating increased the fatigue resistance of conventionally cast IN-738, IN-792 + Hf, and MM 200 + Hf but decreased the thermal fatigue resistance of MM 200 + Hf DS and MM 200 DS single crystal.
- 11. High weight losses for directionally solidified MM 200, MM 200 + Hf, and the eutectic alloys demonstrated a need for protective coating during cyclic operation at 1088°C. All coated specimens had low weight loss.

REFERENCES

- J. Howes, M. A. H., "Thermal Fatigue Data on TAZ-8A, MAR-M 200, and Udimet 700 Superalloys," NASA CR-134755, 1975.
- 2. Howes, M. A. H., "Thermal Fatigue Data on 15 Nickeland Cobalt-Base Alloys," NASA CR-72738, 1970.
- Howes, M. A. H., "Additional Thermal Fatigue Data on Nickel- and Cobalt-Base Superalloys," Part 1, NASA CR-121211, 1973.
- Howes, M. A. H., "Additional Thermal Fatigue Data on Nickel- and Cobalt-Base Superalloys," Part 2, NASA CR-121212, 1973.
- 5. Spera, D. A., and Grisaffe, S. J., "Life Prediction of Turbine Components: On-Going Studies at the NASA-Lewis Research Center," NASA TM X-2664, 1973.
- 6. Spera, D. A., Howes, M. A. H., and Bizon, P. T., "Thermal Fatigue Resistance of 15 High-Temperature Alloys Determined by the Fluidized-Bed Technique," NASA TM X-52975, March 1971.
- Bizon, P. T., and Oldrieve, R. E., "Thermal Fatigue Resistance of NASA WAZ-20 Alloy with Three Commercial Coatings," NASA TM X-3168, 1975.
- Bizon, P. T., and Spera, D. A., "Thermal-Stress Fatigue Behavior of Twenty-Six Superalloys," ASTM Special Technical Publication 612, 1976, pp. 106-122.
- 9. Bizon, P. T., and Spera, D. A., "Comparative Thermal Fatigue Resistances of Twenty-Six Nickel- and Cobalt-Base Alloys," NASA TN D-8071, 1975.
- 10. Howes, M. A. H., "Evaluation of Thermal Fatigue Resistance of Metals Using the Fluidized Bed Technique," ASTM Special Technical Publication 520, 1973, pp. 242-254.
- 11. Glenny, E., Northwood, J. E., Shaw, S. W. K., and Taylor, T. A., "A Technique for Thermal-Shock and Thermal-Fatigue Testing Based on the Use of Fluidized Solids," J. Inst. Metals, vol. 87, 1958-1959, pp. 294-302.

Table	1
-------	---

SUMMARY OF ALLOY COMPOSITIONS

	Alloy Composition, w/o											······································							
Alloy	_ <u>c</u> _		Mn	<u> </u>	<u>S</u>	Ni	Cr	Co	Fe	<u>A1</u>	<u>_T1</u>	Mo		Сь	Ta	_ <u>B</u>	Zr	Hſ	Other
V 57	0.04	0.10	0.12	0.01	0.004	26.4	14.7		Bal	0.2	2.8	1.5				0.006			V 0.41
MB1 509	0.62	<0.1	<0.1		0.003	10.0	23.4	Bal	<0.1		0.2		7.0		3.5	<0.01	0.5		
IN-792 + Hf	0.10	<0.05	0.01	<0.01	0.003	Bal	12.0	9.1	<0.1	3.3	4.1	1.9	3.8		3.8	0.013	0.08	0.5	Cu <0.05, Pb 1.0 ppm, Bi 0.2 ppm
IN-738	0.12	0.03	0.01	<0.01	0.001	Bal	16.2	8.3	0.10	3,5	3.5	1.7	2.6	0.8	1.6	0.013	0.06		Pb <0.001, Bi <0.5 ppm
MM 246	0.15	<0.1	<0.1	<0.1	0.002	Bal	8,9	10.9	0.18	5.3	1.6	2.4	9.6		1.6	0.016	0,06		0.08Cu, Pb <2 ppm, Bi <0.3 ppm, Ag <5 ppm
MM 002	0.15	0.06	0.04		0,001	Bal	9.2	10,7	0,10	5,8	1.4	<0.1	9,8		2.6	0.02	0.05	1.4	Cu <0.01
René 77	0.06	<0.1	<0.01		0.004	Bal	14.2	15.5	0.10	4.2	3.3	4.4				0.016	<0.01	•-	Pb <1 ppm, Bi 0.25 ppm Cu <0.01
René 125	0.16	0.08	0.04	<0.01	0.002	Bal	8.8	10.4	0.07	4.7	2.6	1.7	6.9	0.08	3.8	0.02	0.05	1.6	Cu 0.01, V 0.01, Mg 0.008, Bi <0.3 ppm
MM 200 + Hf	0.16	<0.20	<0.20			Bal	8.33	10.63	<0.35	5.04	2.04		11.86	1.00		0.016	0,10	2.08	Cu <0.01, Pb <1 ppm
MM 200 + Hf DS	0.16	<0.20	<0.20			Bal	8,33	10,63	<0,35	5.04	2.04		11.86	1.00		0.016	0. 10	2.08	Cu <0.01, Pb <1 ppm, Bi <0.3 ppm
MM 200 DS single crystal	0.15	<0.10	<0.10			Bal	8,08	9.31	<0.10	4.85	1.88		12.76	1.05		0.018	0,03	•-	Сu <0.10, Рb <1 рра, Bi <0.3 рра
MM 200 DS bicrystal	0.15	<0.10	<0.10			Bal	8.08	9.31	<0.10	4,85	1.88		12.76	1.05		0.018	0.03		Cu <0.10, Pb <1 ppm, B1 <0,3 ppm
Lamellar y/y'-o [®]						Bal	6.0			2,5				20.1					
Cellular y/y'-ð ^a						Bal	6.0			2.5				20.1					
Lamellar γ/γ'-ο [#] (0.06C)	0.06					8a l	6.0			2.5				20.1					

a. Nominal

Ta	Ъ1	е	2	

TENS ILE	PROPERTIES	OF	TEST	MATERIALS	AT	760°C	(1400°F)

	Tensile Properties ^a										
	Propo	rtional	T.imit	Ultimate	Tensile	Strength	Reduc -				
Alloy	psi	N/cm ²	% of Nominal	psi	N/cm ²	% of Nominal	tion of Area, %				
V 57	71,500	49,500	102	79,500	55,000	88	15.0				
MM 509	43,000	29,500	80	90,000	62,000	105	14.0				
IN-792 + Hf	112,000	77,000	78	152,000	105,000	93	8.7				
IN-738	102,000	70,500	89	136,000	94,000	97	13.1				
MM 246	117,000	80,500	94	149,000	102,500	99	7.9				
MM 002	117,500	81,000	98	150,000	103,500	98	12.1				
René 77	114,000	78,500	114	147,500	101,500	108	13.0				
René 125	129,500	89,500	95	157,000	108,000	103	7.5				
MM 200 + Hf	121,500	84,000	100	137,000	94,500	101	11.9				
MM 200 + Hf DS	124,000	85,500	93	162,500	112,000	107	12.3				
MM 200 DS single crystal	116,000	80,000	97	135,500	93,500	89	13.6				
Lamellar y/y'-ð ^b	143,000	98,500	-	150,000	103,500	-	16.0				
Cellular $y/y' - \delta^b$	143,000	98,500	-	150,000	103,500	-	16.0				
Lamellar $v/y'-\delta + 0.06C^{b}$	143,000	98,500	-	150,000	103,500	-	16.0				

^aAverage of two tests. ^bNominal.

Table 3	5
---------	---

SUMMARY OF 982°C (1800°F) CREEP-RUPTURE PROPERTIES

	Stress-Rupture Properties ^a									
			Time to	97 C X	Reduc-					
Alloy	psi	N/cm ²	Rupture, hr	% of Nom-, inal Life ^b	tion of Area, %					
V 57										
MM 509	15,000	10,500	132.2,150.6	141.4	22.2					
IN-792 + Hf	22,100	15,000	107.5,111.5	109.5	14.1					
IN-738	20,000	14,000	47.3, 58.7	53.0	31.5					
MM 246	28,000	19,500	68.2, 76.4	72.3	14.9					
MM 002	27,000	18,500	23.1, 48.2	35.7	6.3					
René 77	18,000	12 500	39.3, 55.9	47.6	9.7					
René 125	26,000	18 000	61.3, 82.3	71.8	19.7					
MM 200 + Hf	27,000	18,500	35.5, 50.3	42.9	7.2					
MM 200 + Hf DS	29,000	20,000	101.9,156.5	129.2	51.5					
MM 200 DS single crystal	30,000	20,500	41.5, 61.9	51.7	60.0					
Lamellar $v/\gamma^{i}-\delta^{c}$	40,000	27,500			14.0					
Cellular $\gamma/\gamma' - \delta^{C}$	39,000	27,000			14.0					
Lamellar $v/v'-\delta + 0.06C^{C}$	40,000	27,500			14.0					

^aAverage of two tests.

^bNominal 100 hr.

c_{Nominal.}

Table	4
-------	---

DIMENSIONS AND IDENTIFICATION OF TEST SPECIMENS

	Specimen	Measured		Initial	Dimens	ion, mm	Total	Final	Dimensi	on, mer
Alloy	fication	Small	Large	Length	Width	ness	Test Cycles	Length	Width	Thick- ness
				Group 1						
₩M 200 + Hf	A1 A2 A3	0.71 0.71 0.71	1.04 1.04 1.07	102.08 101.68 101.42	31.19 31.12 31.12	6.30 6.28 6.40	7,500 7,500 7,500	101.98 101.66 101.44	30.98 30.84 30.85	6.29 6.28 6.37
HPH 200 + Hf + overlay	B1 B2 B3	0.89 0.89 0.8€	1.20 1.32 1.32	102.46 102.90 102.51	31.39 31.29 31.39	6.63 6.86 6.79	13,500 15,000 15,000	102.29 102.67 102.41	31.45 31.34 31.39	6.63 5.81 6.79
MM 200 + Hf DS	C1 C2 C5	0.86 0.79 0.78	1.25 1.22 1.12	102.46 102.29 103.00	51.22 31.67 31.34	6.51 6.49 6.40	15,000 15,000 15,000	102.24 101.91 102.74	30.58 30.59 30.58	6.23 6.23 6.27
MM 200 + Hf DS + overlay ^a	D2 D3 D5	0.74 0.61 0.64	1.09 0.86 0.99	101.68 101.93 101.65	31.04 31.04 30.84	6.50 6.79 6.52	7,500 7,500 7,500	101.70 101.87 101.34	31.04 31.12 31.03	6.53 6.92 4.54
MH 200 DS single crystal	E1 E2 E3	0.64 0.51 0.61	0.79 0.89 0.74	101.92 101.68 101.35	30.38 29.16 29.77	6.03 5.61 5.90	15,000 15,000 15,000	100.86 101.17 100.99	29.67 28.42 29.06	5.73 5.33 5.62
MM 200 DS bicrystal	F1 F2 F5	0.69 0.61 0.71	0.79 1.12 1.27	96.27 97.49 97.84	30.20 30.23 30.30	6.30 6.19 6.32	15,000 15,000 15,000	95.71 97.49 97.36	29.36 29.52 29.52	5.91 5.87 6 01
IN-792 + Hf	G2 G3	0.66 0.66	1.07 1.04	101.40 101.35	$31.14 \\ 31.19$	6.21 6.22	7,500 7,500	$101.24 \\ 101.38$	31.14 30.91	6.45 6.06
IN-792 + Hf + Al coated ^b	H2 H3	0.71 0.74	1.09 1.07	101.50 101.73	31.14 31.29	6.23 6.27	7,500 7,500	101.87 101.82	31.22 31.34	6.27 6.28
IN-792 + Hf + overlay ^a	11 13	0.71 0.74	0.84 0.99	101.60 101.88	30.96 30.96	6.50 6.49	7,500 7,500	101.55 101.91	$30.96 \\ 31.14$	6.51 6.45
IN-738	32 J4	0.61 0.61	1.12 1.04	101.96 102.34	31.14 31.32	6.06 6.18	7,500 7,500	101.85 101.93	30.86 30.92	5.91 6.04
IN-738 + Al coated ^b	к2 к5	0.71 0.71	1.09 1.09	101.78 101.50	31.39 31.19	6.22 6.42	6,000 5,500	101 - 8 101.47	31.23 31.22	6.32 n.41
IN-738 + overlay ^a	L1 L3	0.71 0.66	0.94 0.94	101.78 101.93	30.94 31.14	6.45 6.26	7,50° 7,5%0	$101.44 \\ 101.60$	31.05 31.23	6.45 6.25
MM 509	M1 M2	0.64 0.61	1.07 1.07	102.03 101.78	31.70 31.70	6.32 6.34	7,500 7,500	102.01 101.91	31.90 31.80	n.33 4.31
v/v'-* eutectic DS (cellular)	N1 N2	0.69 0.69	$1.24 \\ 1.12$	101.73 101.75	31.78 31.68	6.42 6.42	7,500 100	101.70 101.75	31.36 31.68	6.43 6.42
v/v'~* eutectic DS (cellular) + overlay ⁸	01 02	0.76 0.71	1.12 1.09	101.63 101.68	32.13 32.15	6.67 6.66	7,500 100	101.71 101.68	32.37 32.15	6.68 6.66
. l. l	P1	0 46	0.76	Group 2	30 81	6 76	7 500	101 50	31 55	6 37
DS (lamellar)	P2	0.43	0.97	101.65	31.00	6.40	7,500	101.53	31.70	، مَنْ ا
DS (lamellar) + NiCrAlY/Pt overlay		0.38	0.97	101.52	30.81	6.46	7,500	100 94	31.67	n.48 6,49
v/v'-* eutectic (0.066 DS (lemellar)	C) R1 R2	0.51 0.43	0.86 0.74	101.70 101.90	31.65 32.11	6.39 6.43	7,500 7,500	$101.65 \\ 101.04$	31.34 31.85	4.51 4.54
v/v'-'eutectic (0.066 DS (lamellar) + NiCrAlY/Pt overlay	C) S1 S2	0.46 0.53	1.02 0.94	101.42 101.61	31.65 31.37	6.47 6.46	7,500 7,500	101.46 101.70	31.60 31.55	н.44 н.47
MM 200 DS single crystal + overlay ^a	T1 T2	0.41 0.61	0.94 1.19	101.75 101.49	29.16 29.64	6.51 6.95	7,500 7,500	101.65 101.50	31.65 32.16	6.51 5.96
v 57	V1 V2 V5	0.71 0.71 0.69	0.86 0.86 C.86	98.53 98.53 98.50	30.81 30.81 30.73	$6.18 \\ 6.14 \\ 6.18$	2,000 2,000 2,000	96.77 96.98 97.26	$31.24 \\ 31.04 \\ 31.04$	6.26 6.12 5.05
MM 002	W1 W2 W3	0.76 0.74 0.61	0.86 0.86 0.91	98.37 98.43 98.40	30.71 30.73 30.68	$6.09 \\ 6.18 \\ 6.14$	7,500 7,500 7,500	98.37 98.43 98.43	30.53 30.71 30.48	6.21 6.21
MM 246	x1 x2 x5	$0.71 \\ 0.71 \\ 0.64$	0.86 0.84 0.84	98.30 98.37 98.07	38.81 30.71 30.71	6.15 6.05 6.09	7,500 7,500 7,500	98.22 98.20 97.94	30.48 30.43 30.46	6.10 6.04 5.44
René 77	Y1 Y2 Y4	0.66 0.66 0.74	0.84 0.91 0.89	98.37 98.45 98.40	30.76 30.76 30.71	5.69 5.61 5.64	7,500 7,500 7,500	98.15 98.12 98.15	30.38 30.48 30.46	6.12 6.13 6.11
René 125	Z2 Z3 Z6	$0.69 \\ 0.69 \\ 0.61$	0.84 0.84 0.91	98.35 98.42 98.35	30.86 30.78 30.91	$6.16 \\ 6.13 \\ 6.14$	7,500 7,500 7,500	98.17 98.25 98.25	30,56 30,44 30,58	6.05 6.00 6.01

^aNiCrAlY overlay coatings applied by specification PWA 267.

^bPack aluminide coatings (JoCoat) applied by specification PWA 273.

 $^{\rm C}{\rm NiCrAlY/Pt}$ overlay coatings applied by specification PWA 267 + Pt.

Table 5 WEIGHT CHANGE DATA FOR GROUP 1 SPECIMENS

	Sample	Starting	weight Change at Given Cycles, ⁴ "																		
Material	ldenti- fication	Weight,	100	200	300	500	700	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500
MM 200 + HE	Al A2 A3	126.1791 125.6270 126.6466	.018 .010 .017	.032 .019 .629	.038 .024 .034	043 .029 .032	.045 .029 .026	.042 .028 .019	.026 .022 .001	-0.08 -0.05 -0.05	-0.24 -0.22 -0.33	-0.31 -0.30 -0.41	-0.59 -0.43 -0.90	-0.76 -0.53 -1.02	-0.97 -0.57 -1.06	-1.30 -0.89 -1.65	-1.52 -1.14 -1.86	-2.30 -1.79 -2.04	-2.30 -1.93 -2.30	-2.62 -2.09 -2.88	-2.79 -2.28 -3.15
MM 200 + Hf + overlav	81 82 85	134.7711 137.6995 137.0364	.006 .003 .001	,003 ,004 ,004	.004 .006 .006	.008 .011 .007	.007 .009 .005	.004 .007 .003	002 .004 .001	-0.01 0 -0.01	-0.02 -0.01 -0.02	-0.04 -0.01 -0.03	-0.05 -0.03 -0.06	-0.07 -0.04 -0.06	-0,08 -0,06 -0,07	-0.09 -0.07 -0.08	-0.11 -0.38 -0.09	-0.13 -0.11 -0.11	-0.14 -0.12 -0.12	-0.16 -0.14 -0.15	-0.17 -0.15 -0.17
MM 200 + HE DS	C1 C2 C5	130.9854 130.5329 129.7829	.005 .010 .009	.015 .019 .029	.022 .024 .013	032 .031 .048	.034 .036 .049	.030 .033 .050	.002 .019 .01	-0.24 -0.23 -0.14	-0.41 -0.41 -0.61	-0.60 -0.64 -0.74	-1.01 -0.97 -1.43	-1.29 -1.21 -1.63	-1.35 -1.69 -1.67	-1.76 -2.02 -2.00	-2.20 -2.35 -2.38	-2.70 -2.64 -2.56	-2.80 -2.77 -3.41	-3.22 -3.10 -3.63	-3.38 -3.30 -3.87
MM 200 + Hf DS + overlav	D2 D3 D5	128,6899 130,5038 128,1565	,002 ,001 ,001	.005 .006 .006	.003 .006 .009	.012 .011 .010	.011 .007 .010	.009 .004 .007	.005 .001 .003	0 0 0	0 -0.02 -0.02	-0.01 -0.03 -0.02	-0.02 -0.05 -0.05	-0,03 -0.06 -0,06	-0.04 -0.07 -0.07	-0.05 -0.08 -0.09	-0.06 -0.09 -0.05	-9.09 -0.10 -0.11	-0.10 -0.11 -0.13	-0.12 -0.13 -0.16	-0,15 -0,15 -0,19
MM 200 DS single _rvstal	E1 F2 F3	114,6683 103,5326 110,1965	.024 .020 .012	.032 .028 .031	.042 .044 .040	.049 .059 .050	.056	137 045 ,061	011 050 006	-0.87 -0.36 -0.40	-1.24 -1.45 -1.32	-1.66 -1.57 -1.47	-2.21 -2.41 -2.41	-2.70 -2.98 -2.93	-3.03 -3.07 -3.02	-3.23 -3.49 -3.58	-3.89 -3.76 -3.82	-4.40 -4.31 -4.29	-4 70 -5.00 -4.87	-5.20 -5.31 -5.32	-5.32 -5,49 -5.56
MM 200 DS bicrystal	F1 F2 F5	$\frac{114.9243}{116.2061}$.011 .019 .015	.022 .028 .025	.035 .339 .037	.023 .049 .051	.059 .051	,029 ,069 ,057	052 035 043	-1.20 -0.64 -0.36	-1.73 -1.50 -1.33	-2.24 -1.84 -1.51	-2.82 -2.84 -2.29	-3,56 -3,28 -2,89	-3.68 -3.34 -2 96	-4.29 -4.24 -3.66	-5.27 -4.66 -4.16	-5.90 -5.03 -4.56	-6 20 -5.20 -4.70	-6.84 -5.76 -5.42	-7.00 -5.83 -5.97
IN-792 + Hř	6.2 6.3	$120,2165 \\ 120,1295$.035 .021	.045 .044	.063 .052	.073	037 .067	,033 ,065	014 027	-0.62 -0.29	-2.07 -0.99	•2.44 •1.37	-2.84 -2.21	-3.24 -2.60	-3.93 -3.33	-4.12 -3.55	-4.5. -3.95	-5.25 -4.44	-5. 5 9 -4.71	-5.93 -5.29	-6.14 -5.44
IN-792 + 107 + 11 coat	H2 H3	$119.7792 \\ 120.5508$.009 .010	.015	$.018 \\ .018$.021 .923	.011 .021	.004 .018	009 .007	-0.03	-0.06 -0.03	-0.08 -0.04	-0.12 -0.06	-0.14 -0.08	-0.16 -0.09	-0.18 -0.11	-0.20 -0.13	-0.22 -0.14	-0 24 -0.17	-0.26 -0.18	-0.28 -0.20
IN-792 + Of + overlay	[] [3	124 - 2494 123 - 3035	.002 .004	.005	.007 .014	$\begin{array}{c} .012 \\ .015 \end{array}$	013 .010	.010 .005	.004	-0.01 -0.02	-0.04 -0.05	-0.06 -0.07	-0.08 -0.10	-0.10 -0.11	-0.12 -0.13	-0.14 -0.16	-0.16 -0.17	-0.18 -0.21	-0.21 -0.23	-0.24 -0.26	-0.25 -0.28
IN-738	12 14	116.3581 116.4591	.022 .021	.046 .043	.053	.069 .059	.073	,070 ,060	.024 .013	-0.38 -0.26	-1.39 -1.04	-1.55 -1.27	-2.12 -2.08	-2.78 -2.92	-3.32 -3.37	-3.66 -3.48	-4.03 -3.94	-4.77 -4.5%	-5.01 -4.86	-5.30 -5.24	-5.61 -5.52
IN-738 + Al coat	к., ¹ К5	117.4508 118.6811	.013 .013	015 .018	.017 .026	.025 .034	.025 .028	.020 .023	.010 .004	-0.02 -0.03	-0.05 -0.08	-0.07 -0.11	-0.08 -0.13	-0.09 -0.17	-0.12 -0.19	-0.14 -0.22	-0.17 -0.24	-0_18	-	-	•
IN-738 + overlav	t 3	120,5007 119,0636	, 003 , 002	,004 ,008	.008 .009	.011 .009	. 007 . 006	.003 .001	008 010	-0.02 -0.02	-0.07 -0.06	-0.08 -0.08	-0,10 -0,11	-0.13 -0.14	-0.15 -0.16	-0.18 -0.19	-0.21 -0.21	-0.25 -0.25	-0.27 -0.24	-0.29 -0.32	-0,31 -0,34
VE M 509	41 42	130,3803 129,2594	.014 .013	.023 .013	.034 .013	.038 .013	. 042 . 004	.035 006	.024 019	0 -0.04	-0,01 -0,06	-0.04 -0.09	-0.06 -0.12	-0,08 -0,16	-0.11 -0.19	-0.15 -0.21	-3.15 -0.23	-0.21 -0.24	-0 23 -0,29	-0.28 -0.34	-0,29 -0 34
''- eutectic (cellular)	N1 N2 ⁻¹	128,7447 128,2936	.038 046	.088	.108 -	.096	005	070	-,184 -	-0,44	-1.31	-1.46	-2.49	-2.72	-2.87 -	-3.43	-3.61	-3.97	-4 34	-4.08	-5.26
/ '- eutectic (cellilie) + overlag	01 02 ⁻¹	132,5654 132,0808	013 011	.026	.057	.045	018	.001	027 -	-0.07	-0.16	-0.20	-0,27	-0.34	-0.39	-0.46 -	-0.49	-0.56	-0.64 -	-0.70	-0.79

^dAll weight changes are positive except where noted.

^hRemoved from test after 2500 cycles; replaced at 4500 cycles,

"Removed from test after 3000 cycles; replaced at 4500 cycles,

dRemoved from test after 100 cycles.

 Table 6

 WEIGHT CHANCE DATA FOR GROUP 2 SPECIMENS

	Sample Starting Light Change at Given Cycles, ⁴ *										tht Chan	ge at Gi	ven Cycl	•s. a •							
Material	fication	<u></u>	100	200	300	500	700	1000	1500	2000	2500	3000	1: 20	4000	4500	3000	5500	6000	6500	7000	7500
Tamellar / '-* eutectic	P1 P2	125.5251 127.9152	.044	.067 .062	.085 .081	.096 .089	.085	.071	049 108	24 26	75 64	89 80	-1.40 -1.31	-1.41 -1.37	-1.93 -1,90	-1,99 -1,96	-2.19 -2.26	-2.79 -2.36	-2.93 -2.54	-3.12 -2.73	-1.25 -3,06
Tamellar ///at eutectic + NI(TALY/Pt coat	Q1 Q'	129.1304 128.2215	.001 006	.009 .012	.010 .014	.011 .014	.013	.010 .013	.016 014	.011 .011	009 001	013 012	013 020	022 - 025	038 061	•.043 • 963	-, 046 -, 067	059 086	086 093	114	128 140
Lamellar / '-a eutectic (0,06C)	R1 R2	125.4724 130.3767	.034 .033	. 049 . 046	.069 .072	.078 .078	.079 .075	.074	028 096	19 22	71 52	80 65	-1.01	-1.06 -1.05	-1.78 -1.74	-1.80 -1.78	-2.05 -2.00	•2.13 •2.06	-2.47 -2.17	-2.53 -2.72	-2.60 -2.35
Lamellar / ' eutectle	\$1	129.2028	. 005	010	011	.014	014	.013	.018	.015	.009	012	016	024	045	-,067	- 069	077	094	126	133
(0.060)+NECRALY/DD coat	\$2	129.1955	. 002	.007	008	.010	.011	.008	010		.001	023	026	029	066	-,080	- 981	095	110	124	142
MM 200 DS + single crystal	T1	116.6730	.005	.011	. 009	.011	.014	.012	.016	.019	.019	.011	.007	001	029	032	034	-,039	049	062	069
+ overlay	72	112.1022	.003	.009	. 009	.011	.013	.012	.015	.013	.014	.002	.001	007	022	029	034	-,037	043	053	054
v 57	V1 V3 V5	109.0892 108.6878 108 1022	16 14 21	43 45 42	69 77 63	-1.27 -1.35 -1.09	-1.90 -1.92 -1.73	-2.35 -2.45 -2.13	-4.18 -4.28 -3,88	-6.75 -6.59 -6.46	Þ 5 Ե										
MM 002	พ1	115.1252	. 918	.026	.028	.030	.033	.030	.034	.044	031	087	14	27	-,65	-,70	91	- 16	-1.71	-1.82	-1.89
	พ2	116.5213	. 017	.076	.027	.031	.031	.027	.036	.036	023	081	12	19	-,50	-,53	73	83	87	90	-1.01
	พ3	115.4355	. 015	.023	.027	.029	.030	.029	.031	.019	095	157	21	36	-,82	-,85	94	-1.06	-1.10	-1.15	-1.21
NDM 246	X1	115.7291	.042	.036	.017	-,054	154	208	526	-,71	-1.27	-1.57	-1.85	-1.99	-2,94	-3,00	-3.67	-3.81	-4.39	-4.47	-4.50
	X2	113.8608	.013	.020	.022	022	.018	.016	019	-,11	33	59	74	97	-1,73	-1,78	-2.19	-2.20	-2.46	-7.51	-3.46
	X5	113.2826	.015	.024	.030	,030	.027	.018	025	-,19	54	90	-1.13	-1.37	-2,28	-2,31	-3.10	-3.13	-3.94	-4.01	-4.10
Aene ''	Y1	110.9572	.045	.068	.071	.077	.097	.084	-,739	-1.59	-2,49	-3,07	-3.38	-3.98	-5.0)	-5.04	-5.55	-5.55	-6.40	-6.47	-6,70
	Y2	109.4653	.045	.062	.070	.082	.089	.067	-,635	-1.52	-2,61	-3,47	-3.67	-7.87	5.21	-5.21	-6.03	-6.12	-6.26	-7.09	-7,43
	Y4	110.7196	.045	.064	.072	.087	.089	058	-,825	-1.93	-2,88	-3,67	-3.94	-4.57	-5.57	-5.58	-6.74	-6.24	-6.36	-6.53	-6,93
Rene 125	72	116.8762	.032	,045	.053	.063	.062	057	-,182	51	-1.34	-1.89	-2.56	-2.46	-3.94	-3.55	-4.03	-4.06	-4.77	-4.87	-4,99
	71	116.8639	.031	,049	.057	.070	.069	.056	-,227	80	-1.79	-2.19	-2.28	-2.76	-3.97	-3.94	-4.28	-4.52	-4.97	-5.04	-5,19
	76	116.3775	033	,048	.056	.063	.063	.063	- 106	60	1.61	-1.99	-2.26	-2.43	-3.68	-3.65	-3.99	-4.05	-4.53	-4.59	-4,68

MI wisht chan es are positive except where noted

BRemoved from rest after 2000 cycles

Τø	่ หา	0	7
тa	υ.		- 1

WEIGHT CHANGE DATA FOR GROUP 1 SPECIMENS CONTINUED EXPOSURE

	Sample Igenti-	Starting Weight,	Weight Change at Given Cycles, ^a %									
Material	fication	g	8000	8500	9000	9500	10,000	10,500	11,000	11,500		
MM 200 + Hf + overlay	B1 B2 B5	134.7711 137.6995 137.0364	-0.21 -0.19 -0.20	-0.21 -0.20 -0.21	-0.22 -0.21 -0.24	-0.23 -0.25 -0.26	-0.29 -3.27 -0.29	-0.30 -0.30 -0.31	-0.30 -0.31 -0.33	-0.31 -0.32 -0.35		
MM 200 + Hf DS	C1 C2 C5	130.9854 130.5329 129.7829	-4.16 -3.95 -4.57	-4.28 -4.04 -4.71	-4.59 -4.49 -5.25	-4.85 -4.72 -5.ú2	-5.39 -5.54 -6.00	-5.47 -5.62 -6.15	-5.75 -5.80 -6.25	-5.76 -5.92 -6.31		
MM 200 DS single crystal	E1 E2 E3	114.6683 103.5326 110.1965	-6.14 -6.38 -6.35	-6.33 -6.53 -6.62	-7.04 -7.10 -7.22	-7.35 -7.57 -7.40	-7.94 -8.20 -8.25	-8.00 -8.24 -8.30	-8.12 -8.35 -8.45	-8.23 -8.34 -8.57		
MM 200 DS bicrystal	F1 F2 F5	114.9243 116.2061 116.9271	-7.85 -6.71 -6.39	-8.02 -6.86 -6.53	-8.76 -7.60 -7.36	-8.91 -7.7 -7 J	-9.75 -8.59 -8.40	-9.78 -8.62 -8.42	-9.37 -8.66 -8.47	-10.03 -8.70 -8.57		

	Sample Identi-	Starting Weight.		Weight Change at Given Cycles, ^a %									
Material	fication	g	12,000	12,500	13,000	13,500	14,000	14,500	15,000				
MM 200 + Hf	B1	134.7711	-0.35	-0.38	-0.40	-	-	-	-				
+ overlay	B2	137.6995	-0.35	-0.36	-0.37	-0.38	-0.40	-0.43	-0.45				
·	B5	137.0364	-0.42	-0.42	-0.42	-0.43	-0.46	-0.49	-0.52				
MM 200 + Hf DS	C1	130.9854	-6.21	-6.31	-6.61	-6.67	-6.67	-6.96	-7.02				
	C2	130.5329	-7.01	-7.01	-6.98	-7.00	-7.33	-7.45	-7.84				
	C 5	129.7829	-6.93	-7.03	-7.27	-7.40	-7.55	-7.76	-7.80				
MM 200 DS	E1	114.6683	-8.87	-9.11	-9.57	-9.60	-9.86	-9.88	-9.91				
single crystal	E2	103.5326	-9.02	-9.24	-9.67	-9.67	-9.85	-10.06	-10.09				
0 ,	E3	110.1965	-9.38	-9.61	-9.72	-9.72	-9.99	-10.35	-10.38				
MM 200 DS	FJ.	114.9243	-11.02	-11.13	-11.70	-11.73	-11.94	-11.96	-12.12				
bicrystal	F2	116.2061	- 9.55	-9.65	-10.12	-10.31	-10.61	-10.70	-10.74				
-	F5	116.9271	-9.37	-10.01	-10.26	-10.32	-10.37	-10.87	-11.03				

^aAll weight changes are positive except where noted.

Table 8

سبدي والالبيديين بالمراكبين المرافع والنبوية والمرافع المراكبة	ويوجنني ويرجيهان ومنازعها بسياني والمتعامين والمتعادي والمتعادي والمتعادي والمتعادي والمتعادي والمتعاد					
			<u>Cycles to</u>	First Crack		
			Small	Large		
		Specimen	Radius	Radius		
		Identi-	0.625 mm	1.016 mm		
A110y		fication	(0.025 in.)	<u>(0.040 in.)</u>		
$v/v'-\delta$ eutectic	DS (cellular)	N2 N1	75 400	12 ^a 150		
γ/γ' - δ eutectic	DS (collular) + overlay ^b	02 01	75 ⊳7,500	a ⊳7,500		
IN-738	Al coated ^C	К2 К5	150 150	>7,500 >7,500		
IN-792 + Hf	Al coated ^c	H3 H2	150 250	400 >7,500		
MM 509		M1 M2	250 400	400 400		
IN-792 + Hf		G2 G3	250 600	850 1,750		
MM 200 + Hf		A2 A3 A1	400 400 1,750	4,750 1,750 2,250		
[N-738		J2 J4	600 600	1,750 2,250		
IN-738	Overlay coated ^b	L3 L1	2,250 3,750	7,250 >7,500		
MM 200 + Hf	DS + overlay ^b	D2 D5 D3	2,250 2,250 4,250	>7,500 7,250 4,250		
IN-792 + Hf	Overlay coated ^b	13 11	4.750 2,7 0	1,750 2,250		
MM 200	DS bicrystal	F2 F1 F5	>15,000 >14,750 >15,000	11,750 14,750 >15,000		
MM 200 + Hf	Overlay coated ^b	В1 В2 В5	>13,500 >15,000 >15,000	>13,300 >15,000 >15,000		
MM 200 + Hf	უS	C5 C1 C2	11,750 >15,000 >15,000	14,750 >15,000 >15,900		
MM 200	DS single crystal	E1 E2 E2	>15,000 >15,000 >15,000	>15,000 >15,000 >15,000		

ACCUMULATED THERMAL CYCLES TO FIRST CRACK INITIATION FOR GROUP 1 SPECIMENS

a Removed at 100 cycles for NASA examination.

^bNiCrAlY overlay coating.

^CPack aluminide coating (JoCoat).

Table 9

	وجود والمتعادة المتعادة الفريقية الشروعين الشام مسترعتها	·		
			Cycles to	First Crack
Alloy	Condition	Spec imen Identi- <u>fication</u>	Small Radius 0.635 mm (0.025 in.)	Large Radius 1.016 mm (0.040 in.)
René 77		Y1 Y2 Y4	75 75 75	150 75 150
V 57		V1 V3 V5	75 150 75	250 250 150
MM 002		W1 W2 W3	75 75 150	40 0 150 150
René 125		Z2 Z3 Z6	150 150 150	2,250 1,250 1,750
MM 246		X1 X2 X3	250 150 150	2,750 400 400
v/v'-ð	DS eutectic (lamellar) + NiCrAlY/Pt coating ^a	Q1 Q2	4,750 >7,500	> 7,500 >7,500
ν/γ'- δ	DS eutectic (lamellar)	P2 P1	6,250 >7,500	>7,500 7,250
√/v'-8	DS eutectic (0.06C) (lamellar)	R2 R1	6,250 >7,500	>7,500 >7,500
v/v'-8	DS eutectic (0.06C) (lamellar) + NiCrAlY/Pt coating ^a	S1 S2	6,250 >7,500	>7,500 >7,500
MM 200	DS single crystal + overlay ^b	T1 T2	6,250 >7,500	>7,500 >7,500

ACCUMULATED THERMAL CYCLES TO FIRST CRACK INITIATION FOR GROUP 2 SPECIMENS

^aNiCrAlY/Pt overlay coating.

^bNiCrAlY overlay coating.

Edge					Crack	Length	<u>, in.</u>		and Creek		Total
Radius,	Cycles	Front	<u>st Crac</u> Back	Ave	Front	Back	Ave	Front	Back	Ave	 Cracks Observed
	<u>976-119</u>					1.1		a		_1	
				Spec 1mc	n N2; y	<u>1 - 6 E</u>	utectic				
Distance	from bo	ttom, in		.97	(24.6 mm	ı)	2.09	(53.1 and	ı)		
0.044 (1.12 mm)	100	0.46	0.47	0.47	0.43	0.42	0.43				2
Bistance	from bo	tton in		2.71	(68.3 m	a)	1 40	(35.6 =	a)		
9.927	50	No c	racks					-			
(0.69 🛲) 100	0.32	0.35	0.34	0.36	0.32	0.34				2
			Specia	Nan 02.	v/v*-x	Eutecti	ic + Ove	rlav ^a			
	<i>.</i>		opeens		(AA 5 mm)			<u></u>			
Distance 0 023	from bo	CTO M , 18 30	i.: cracks	1.75		,					
(0.71 ===)) 100	0, 36	0.41	0.38							1
				Specim	en N1:	v/v"-5 1	Eutectic	a			
	•				/(0 0 -			/57 7	-)		(10 2>
Distance	100° bo	ittom, 11 No c	racks	2.73	(09.7 0	.,	2.06	(52.5	-,	1.94	(47.5 000)
0.049	200	0.06	0.04	0.05	0.03	0.03	0.03	0.04	0.02	0.03	2
(1.24	500	0.07	0.07	0.07	0.04	0.03	0.04	0.04	0.02	0.03	2
	700 1000	0.07	0.08	0.08	0.08	0.05	0.07	0.04	0.02	0.03	3
	1500	0.08	0.08	0.08	0.10	0.05	0.08	0.04	0.03	0.04	4
	2000	0.10	0.10	0.10	0.10	0.07	0.09	0.04	0.03	0.04	4
	3000	0.12	0.11	0.12	0.10	0.08	0.09	0.04	0.03	0.04	4
	3500	0.12	0.12	0.12	0.11	0.09	0.10	0.04	0.03	0.04	4
	4500	0.12	0.12	0.12	0.11	0.09	0.10	0.04	0.03	0.04	4
	5000 5500	0.12	0.12	0.12	0.11	0.09	0.'0	0.04	0.04	0.04	4
	6000	0.12	0.12	0.12	0.11	0.09	0.1)	2.04	0.04	0.04	4
	6500 7000	0.12	0.12	0.1?	0.11	0.09	0.10	0.04	0.04	0.01	4
	7500	0.12	0.12	0.12	0.11	0.0%	0.10	0.04	0.04	0.0%	4
Distance	from bo	tion in	•	2.94	(74.7 mm)	2.75(59.9 mm)		3.06	(77 7)
D	300	No .	racks	•••			20050	•		5.00	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.027	500 500	0.02	0.02	0.02	0.01	0.01	0.01 0.01	0.01	0.01	0.01	3
	1000	0.02	0.02	0.07	0.01	0.01	6.01	0.01	0.01	0.01	i i
	20 00	0.05	0.03	0.03	0.04	0.03	0.03	0.03	0.03	0.03	4
	2500	0.05	0.05	0.05	0.04	0.03	0.04	0.03	0.03	0.03	4
	3000	0.05	0.05	0.05	0.04	0.03	0.04	0.03	0.03	0.03	4 4
	4000	0.05	0.05	0.05	0.04	0.03	0.01	0.03	0.03	0.03	4
	4000 5000	0.05	0.05	0.05	0.04	0.03	0.04	0.03	0.03	0.03	<u>.</u>
	5500	0.05	0.05	0.05	0.04	0.03	0.04	0.03	0.03	0.03	-4 (4
	6000 6500	0.05	0.05	0.05	0.04 0.04	0.93	0.04	0.03	0.03	0.03	4
	7000	0.05	0.05	0.05	0.04	0.03	0.01	0.03	0.03	0.03	4
	1200	0.05	0.05	0.05	0.01	0.03	0.04	0.03	0.04	0.00	•
			<u>s</u>	<u>pec itera</u>	<u>K?: IN</u>	739 1	M_Cest				
Distance i	from bor	ton, in.	:	1.5 (38.	1 m i)	2	2.94 (74	.4 m)	2	.5 (63.	5
	100	Noc	racks	~ ~·	. • •	0 00	0.1	•••	0.1.	0.1.	20
0.028 (0.71 m	200 m) 300	0.22	0.20	0.21	6.1	0.21	0.20	0.17	0.14	0.77	26
	500 700	0.28	0.30	0.29	0.19	0.22	0.21	6.19 0.20	0.23	0.2	20
	1000	0.34	0.31	0.33	0.32	0.31	0.37	(1.73	0.25	0.2	3•-
	1500	0.34	0.32	0.33	0.34	0.31	0.33	0.37	0.27	()_3.3 ()_3.3	۲ ٦.
	2000 2500	0.37	0.39	0.38	0.30	0.35	0.5	0.37	0.35	с. т.	3
	3000	0.37	0.30	0.39	0.10	0.39	0.49	0.;	6.32	0.3	ĵ.
	3500 4000	-0.40 -0.40	-0.40	0.0	~0.40 ~0.40	~0.40 ~0.50	-0.10 -0.10	· (i - ' i 0, ' i)	0.40 -0.40	0.0	1 7
	4500	-0.40	0.40	-0.40	50.40	0.40	0./0	0,10	.0.70	<u>_0_0</u>	1
	5500	.0.40	-0.40	.0.40	0.40	.0.70	0.50	0.0	.0.70	n n	3
(R	6000 1501 off		0.40 cxc1+++	0.40 repla		-0.40 -4500 -	- 0,79 vc1++)	0.10	<u>~</u> ∩ ′(•	-0.40	4,
1						•					13

SHEMARY OF CRACK PROPAGATION FOR GROUP 1 SPECIMENS

Table 10

Table 10(cont.)

Falsa					Crac	t ter t					Total
Radius, in.	Cycles	Front	lst Cra Bacl	Ave	Front	2nd () = R + 1	e] Att	Front	3rd_(ra Back	c) Avg	Cracks Observet
						1.1. 756					••••
Distance	from be	ttom. i	n.:	2.5 (6	3.5 rsa)	187735	1.560	59,6 1 S		1 1 4 ((28.7 r.)
	100	No	crack	-	• • • •	• • /	••••				•.
0.078 (0.71 mm	205) 300	0.19	0.21	0.20 0.74	0.16 0.25	0.1(0.27	0.16 0.26	0.00	0.01	0.05	14 34
	500	0.27	0.30	0.29	0.11	0.30	6.31	0.10	0.07	0.09	14
	1000	0.33	0. 14	0.34	0.17	0.11	0.37	0.13	0.17	0.13	15
	1500	0.35	0.35	0.35	0.17	0.35	0.36	0.76	0.22	0.25	15
	2500	0.39	0.40	0.40	0.40	0.10	0.40	0.30	0.77	0.74	15
	3000 3500	>0.40 >0.40	>0.40	>0.40 >0.40	>0.40 >0.40	>0.40	>0.40	>0.40	-0.40	>0.40	15
	4000	>9.40	>0.40	>0.40	>0.40	-0.40	-0.40	>0.40	-0.40	>0.40	15
	5000	-0.40	>0.40	>0.40	-0.40	>0.40	> 40	>0.40	-0.40 -0.40	>0.40	15
(Кепари	- 5500 ed after	50,40 2500 c	50.40 ycles;	>0.40 replaced	->0.40 Lafter	->0.40 4590 су	≫.40 cles)	>0.40	>0.40	>0.40	15
				Specimen	<u>H3:</u> 1	<u> </u>	Al Coat	<u>.</u>			
Distance 0.029	from bot	tom, in	-:	1.69 (42.9 ma)	7.62 (66.5 mm))	3.00(7	6.2 m ·)
(0.74 mm)	100 200	No 0.17	cracks 0.16	0.17	0.17	0.17	0.17	0.07	0.07	0 07	7
	300 500	0.18	0.18	0.18	0.20	0.19	0.20	0.08	80.0	0.00	7
	700	0.21	0.27	0.7?	0.25	0.27	0.26	0.08	0.11	0.10	11
	1560	0.21	0.25	9.73 0.77	0.77	0.30	0.79	0.32	0.17	0.12	11
	2000	0.27	0.28	0.28	0.31	0.33	0.32	0.18	0.19	0.19	14
	3000	0.31	0.29	0.30	0.37	0.37 0.37	0.37 0.37	0.20 0.21	0.19 0.77	0.20	14 15
	3500	0.31	0.29	0.30	0.37	0.38	0.38	0.22	0.22	0.22	14
	4000	0.31	0.29	0.30	0.38	0.38	0.38 0.38	0.77 0.24	0.22	0.22	14 14
	5000 5500	0.31 0.31	0.30 0.30	0.31	0.35	0.38	0.38 0.38	0.25	0.24	0.25	14
	6000	0.31	0.30	0.31	0.38	0,35	0.38	0.26	0.24	0.25	14
	6500 7000	0.31 0.35	0.30	0.31 0.34	0.38	0.38	0.38	0.26	0.24	0.25	1.
	7500	0.35	0.35	0.15	0.38	0.38	0.34	0.76	0.2.	0.2	14
Distanc	e from b	ottom,	in.:	1.75	(44.5	r)	3.06	5(77.7 r	•)	2.06	5(52.3 mm)
0.042	300 500	0.18	cracks 0.13	0.16	0.06	0.04	0.05	0.02	0.07	0.04	5
(1.07 mm)	700	0.21	0.17	0.19	0.07	0.05	0.04	0.03	0.07	0.05	5
	1500	0.27	0.25	0.26	0.09	0.06	0.05	C.O.	0.03	0.07	6
	2000	0.30	0.20	0.28	0.10	0.08	0.10	0.15	0.15	0.15	5
	3000	0.30	0.28	0.29	0.1?	0.11	0.12	0.18	0.16	0.17	6
	4000	0.30	0.28	0.29	0.17	0.14	0.16	0.18	G.16	0.17	6
	4500	0.30	0.29	0.30	0.19	0.20	0.20	0.15	0.17	0.17	6
	\$500	0.32	0.1	0.37	0.23	0.22	0.2	0.1%	0.17	0.15	ě
	6500	0.32	0.39	0.32	0.73	0.22	0.23	0.1	0.15	0.15	6
	7000 7500	0.33 0.33	0.3? 0.33	0.33	0.24 0.24	0.22	0.23	0.21	0.27 0.77	0.27	6
				Species	n 1: ?.	1**- 7***	5 AT 64	•			
Distance	frem bot	ten, in	.:	2.50 (63.5 -)	1.2.6	1.8 + 1		1.89 (47.8 + 3
0.018	200	0.18	cracks 0.18	0.19	0.27	0.15	0.20	0.15	0.13	0.1:	3
(U.7) mr	2 50′+ 700	0.25 0.27	0.23	0.24	0.22	0.26 0.31	0.24	0.16 0.1	0.18 0.19	0.17	*
	1000 1500	0.29	0.32	0.31	6.28 0.36	0,35	0.31	0 1	0,10 1 73	0.10	4 4
	2000	0.33	0.36	0.35	0.20	0	0	0.15	C	е.	·• ′.
	2500 3000	0.34 0.35	0.38	0.36	0.3 0.3	0	ſ,	C í	0 · · ·	<u> </u>	4
	3500	0.36	0.39	0.37	0.3	0. ·	e .	e.		0	4
	4500	0.39	0.39	0.39	0.39		ì	1) 12	•	0 5	4 6

Table 10(cont.)

Edge	<u> </u>	at Crack		Crack	Length	<u>, in.</u>	3.		1.	Total Cracks
<u>in.</u> Cycl	es Front	Back	Avg	Front	Back	Ave.	Front	hack		04 1
500 530 600 650 700 750	0 >0.40 0 >0.40 0 >0.40 0 >0.40 0 >0.40 0 >0.40 0 >0.40	>0.40 >0.40 >0.40 >0.40 >0.40 >0.40 >0.40 >0.40	>0.40 >0.40 >0.40 >0.40 >0.40 >0.40 >0.40	>0.40 >0.40 >0.40 >0.40 >0.40 >6.40 >0.40	>0.40 >0.40 >0.40 >0.40 >0.40 >0.40 >0.40	>0.40 >0.40 >0.40 >0.40 >0.40 >0.40 >0.40	>0.40 >0.40 >0.40 >0.40 >0.40 >0.40 >0.40	>0.40 >0.40 >0.40 >0.40 >0.40 >0.40 >0.40	>0.40 >0.40 >0.40 >0.40 >0.40 >0.40 >0.40 >0.40	6 6 6 6 6 6 6
			Sp	ecimen M	1: MPI	509				
Distance from 0.025	bottom, in		1.44	(36.6 🚥)	2.57	(65.3 mm)	3.06 (77.7 •)
(0.64 mm) 29 30 50 70 100 150	0 20 0 0.08 6 0.08 0 0.11 0 0.13 0 0.14	cracks 0.07 0.09 0.12 0.12 0.12	0.08 0.09 0.12 0.13 0.13	0.15 0.21 0.23 0.25	0.12 0.21 0.22 0.27	0.13 0.21 0.23 0.24	0.05 0.13 0.14 0.16	0.07 0.11 0.12 0.13	0.06 0.12 0.13 0.15	1 14 15 15
200 250 300 350 400	0 0.24 0 0.28 0 0.30 0 0.31 0 0.31	0.21 0.30 0.30 0.30 0.30	0.22 0.29 0.30 0.31 0.31	0.33 0.35 0.35 0.35 0.35	0.25 0.37 0.37 0.37 0.37	0.29 0.36 0.36 0.36 0.36	0.73 0.30 0.32 0.33 0.33	0.27 0.32 0.32 0.32 0.32	0.25 0.31 0.32 0.33 0.33	18 20 22 22 22
450 500 550 600 650	0 0.31 0 0.32 0 0.32 0 0.33 0 0.33	0.30 0.30 0.30 0.32 0.32	0.31 0.31 0.31 0.33 0.33	0.35 0.35 0.35 0.37 0.37	0.37 0.37 0.37 0.38 0.38	0.36 0.36 0.38 0.38 0.38	0.36 0.36 0.36 0.36 0.36	0.33 0.35 0.35 0.35 0.35 0.35	0.35 0.36 0.36 C.36 0.36	23 24 24 24 24
700 750	0 >0.40 0 >0.40	>0.40 > >0.40 >	-0.40 -0.40	>0.40 >0.40	>0.40 >0.40	~0.40 ~0.40	>0.40 >0.40	~0.40	-0.10 -0.10	>?
Distance from	a bottom, i	 :	1.38	(35.1 =	-)	2.44	(62 mm)		3.0(76.2 m)
0.042 39 (1.07 mm) 50 70 100 150 200	No cr 0 0.05 0 0.05 0 0.12 0 0.15 0 0.26	acks 0.01 0.02 0.10 0.14 0.27	0.03 0.64 0.11 0.15 0.27	0.02 0.02 0.04 0.07 0.07	0.01 0.02 0.03 0.05 0.14	0.0? 0.02 0.04 0.06 0.11	0.03 0.04 0.06 0.10	0.02 0.03 0.05 0.17	0.03 0.04 0.06 0.11	2 7 9 16 16
250 300 350 400 450	0 0.32 0 0.34 0 0.34 0 0.34 0 0.34	0.25 0.30 0.30 0.30 0.30	0.31 0.32 0.32 0.32 0.32	0.15 0.19 0.20 0.24 0.24	0.15 0.18 0.70 0.22 0.23	0.15 0.19 0.20 0.23 0.24	0.19 0.24 0.24 0.25 0.27	0.22 0.22 0.27 0.27 0.23	0.21 0.23 0.23 0.24 0.25	24 74 24 24 24
500 550 600 650 700 750	$\begin{array}{cccc} 0 & 0.34 \\ 0 & 0.35 \\ 0 & 0.35 \\ 0 & 0.37 \\ 0 & > 0.40 \\ 0 & > 0.40 \end{array}$	0.30 0.30 0.30 0.36 >0.40 >0.40	0.32 0.33 0.33 0.37 0.40	0.24 0.24 0.25 >0.40 >0.40	0.73 0.23 0.23 0.23 >0.40 >0.40	0.24 0.24 0.24 0.24 >0.40 >0.40	0.77 0.27 0.77 >0.40 >0.40	0.23 0.23 0.23 0.23 0.24 >0.40 >0.40	0.25 0.25 0.25 0.26 >0.40 >0.40	
			<u>\$</u> p	ecimen M	?: M	509				
Distance from	botion, in	- :	1.25	(31.8)		2.00 (50.8 mm)		2.50((63.5 1 -)
0.024 50 (0.61 mm) 70 100 150 200	0 0.12 0 0.13 0 0.13 0 0.21 0 0.27	0.10 0.12 0.15 0.19 0.28	0.11 0.13 0.14 0.20 0.28	0.10 0.11 0.12 0.15 0.15	0.10 0.16 0.16 0.19 0.22	0.10 0.13 0.14 0.17 0.19	0.07 0.09 0.10 0.19 0.27	0.08 0.08 0.09 0.18 0.26	0.08 0.09 0.10 0.19 0.27	18 28 33 41 41
250 300 350 400 450	0 0.31 0 0.34 0 0.34 0 0.36 0 0.37	0.29 0.29 0.30 0.33 0.35	0.30 0.32 0.32 0.35 0.35	0.18 0.22 0.32 0.34 0.34	0.24 0.24 0.24 0.32 0.36	0.21 0.23 0.23 0.33 0.35	0.30 0.31 0.37 0.36 0.37	0.27 0.31 0.31 0.34 0.37	0,74 0,34 0,37 0,35 0,37	41 67 41 47 47
500 550 600 650 70(- 750	0 0.37 0 0.37 0 0.38 0 0.40 0 >0.40 0 >0.40	0.35 0.36 0.38 >0.40 >0.40	0.36 0.37 0.37 0.39 0.40	0.34 0.36 0.35 0.38 >0.40 >0.40	0.36 0.36 0.37 >0.40 >0.40	0.35 0.36 0.36 0.38 >0.40 >0.40	0.37 0.37 0.38 0.38 >0.40 >0.40	0.37 0.37 0.37 0.37 >0.40 >0.40	0.37 0.37 0.38 0.38 >0.40 >0.40	41 41 41 41 41 41
Distance from	bottom, in	•:	1.25	(31.8 mm))	2.88 ((73.2 חיי)		2.25	(57.2 :)
30- 0.042 50 (1.07 mm) 70 100 150 206	0 10 c 0 0.03 0 0.03 0 0.03 0 0.03 0 0.04 0 0.21	racks 0.02 0.02 0.06 0.10 0.14	0.03 0.03 0.05 0.11 0.18	0.02 0.03 0.03 0.05 0.15	0.02 0.03 0.05 0.06 0.08	0.02 0.03 0.04 0.96 0.12	0.07 0.07 0.20 0.21 0.30	0.06 0.07 0.16 0.19 0.26	0.07 0.07 0.15 0.20 0.28	8 12 15 15 19

OHUIDAL PACE HAL

Table 10 (cont.)

		·							· • · •		
Edge Radius,	C	1	st Crac	*k	<u>Cracl</u> 2	Lon <u>elli</u> nd Crae Factor	1, <u>511.</u> -1: -1:	3 Front	rd Cr. c	1	Total Cracks
<u> </u>	2500	Pront 0. 34	6	_ <u></u>	Projic 0 10	RACK	_ <u></u>	<u>Pront</u>	A		- <u>0</u> 001
	3000	0.24	0.22	0.23	0.20	0.18	0.19	0.31	0.27	0.29	27
	3500	0.24	0.25	0.25	0.23	0.74	0.24	0.31	0.28	0.30	28 28
	4500	0.27	0.28	0.28	0.29	0.26	0.28	0.33	0.31	0.32	28
	5000	0.29	0.28	0.29	0.79	0.27	0.28	0.35	0.34	0.35	28
	6000	0.31	0.28	0.30	0.30	0.28	0.29	U.36	0.34	0.35	28
	6500 7000	0.33	0.30	0.3?	0.32	0 30	0.31	0.36	0.35	0.36	28 28
	7500	0.37	0.33	0.35	0.32	0.31	0.32	0.36	0.35	0.36	28
				Spe	ecimen G	?: IN-	79?				
Distance	from hot	tom, in	.:	3.00	(76.2 m.n)	1.06	(26.9 mm)	2.13(54.1 mm)
0.0%	299 30 0	No (0.18	Cracks U,20	0.19	0.10	0.14	0.12	0.10	0.12	0,11	5
(0.66 #**)	500	0.25	0.26	0.76	0.15	0.14	0.15	0.15	0.19	0.17	5
	1000	0.77	0.29	0.28	0.20	0.18	0.19	0.21	0.20	0.21	7
	1500	0,79	0.29	0.29	0.77	0.20	0.21	0.21	0,20	0.71	7
	2000	0.33	0.30	032	0.31	0.30	0.31 0.35	0.30	0.29	0.30 0.33	7
	3000	0.36	0.38	0.37	0.38	0.36	0.37	0.32	0.34	0.33	Ż
	4000	0.36	0.39	0.38	0.38	0.36	0.37	0.33	0.34	0.34	10
	4500	0.36	0.39	0.38	0.38	0.38	0.38	0.34	0.34	0.34	10
	5500	0.39 >0.40	0.39 0.40ح	>0.39	>0.39	0.34 >0.40	0.39 >0.40	0.34 >0.40	0.35	0.35	10 10
	6000	>0.40	->0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	10
	7000	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	10
	7509	0.40-	>0.40	>0.40	>0.40	0.40	>0.40	>0.40	>0.3 0	>0.40	10
Distance	firom bot 700	ttom, in No C	.: racks	2.13	(54.1 mes))	2.5 (63.5 mms)		1.44	(36.6 ໝa)
0.042	1000	0.10	0.10	0.10	0.04	0.05	0.05				1
(1.07 000)	2000	0.20	0.22	0.21	0.04	0.05	0.05	0.05	0.02	0.04	3
	2500 3000	0.23	0.25	0.24	0.07	0.05	0.06	0.14	0.12	0.13	5
	3500	0.74	0.26	0.25	0.11	0.08	0.10	0.15	0.17	0.16	5
	4000 4500	0.25	0.26	0.26	0.11	0.10	0.11	0.26	0.23	0.25	7
	500	0.28	0.27	0.28	0.20	0.17	0.19	0.26	0.24	0.25	7
	5500	0.30	0.76	0.29	0.70	0.19	0.20	0.26	0.24	0.25	7
	6500	0.30	0.29	0.30	0.22	0.19	0.21	0.76	0.24	0.25	7
	7000 7500	0.30	0.29	0.30	0.22	0.20	0.71	0.28	C.24	0.26	17
		0.30	•••		••••	~~ ~~		0.20	V • 20	v.	• *
	f			<u>ع</u> ارد	25 4 mm	<u>63: 15</u>	-1 <u>97</u> 2 25	157 7 .		1 81	(46)
Distance	500	No C	n.: Tacks	1.00	L , .		2.75	()/.2	unu)	1	
0.026	700 01000	0.07	0.06	0.07	0.05	0.04	0.05				2
(0.00	1500	2.16	0.13	0.15	0.16	0.17	0.17	• • •			2
	2000	0.18	0.14	0.10	0.20	0.27	0.20	0.18	0.21	0.20	8
	3000	0.23	0.24	0.74	0.30	0.30	0.30	0.25	0.26	0.26	8
	3500 4000	0.25	0.28	0.27	0.30	0.30	0.30	0.25	0.27	0.20	9
	4500	0.27	0.30	0.29	0.30	0.30	0.30	0.27	0.27	0.27	ç
	5000	0.31	0.34	0.33	0.30	0.35	0.33	0.28	0.79	0.74	11
	6000	0.34	0.36	0.36	0.31	0.35	0.33	0.30	0.30	0.30	11
	6500 7000	0.36	0.36	0.35	0.31	0.35	0.33	0.30	0.30	0.30	11
	7500	0.38	0.36	0.1/	0. 17	0.35	0.34	0.31	0.32	0.37	11
Distance	fron be	tten, in	.:	3,06	(77.7 יי	·)	2.4%	(62 n.e)		1.81	(46 1)
0.0.1	1500 2000	No C 0.18	racks 0.17	0 12	0 0	0.07	0.07	0 04	0.0.	6 63	1.
(1.04 mm)	2500	0.22	0.20	0.21	0.11	0.10	0.11	0.11	0.11	0.12	ц ц
	3500	0.73	0.27	0.27	0.14	0,11	0.12	0.18	0.16	0,17	0 0
	4000	0.24	0.24	0.2%	0.17	0.17	0.16	0.19	0. 22	0.21	q

Table 10 (cont.)

Edge			et Crac	v	Crack	Length nd Cree	1 <u>, in.</u>		and Corner		Total
<u>in.</u>	Cvcles	Front	Back	AVE	Front	Back	Ave	Front	Back	Ave	Cracks Observed
	4500 5000 5500 6000 6500 7000 7500	0.26 0.26 0.26 0.27 0.27 0.27 0.27	0.25 0.25 0.27 0.27 0.27 0.27 0.27	0.26 0.26 0.27 0.27 0.27 0.27 0.27	0.19 0.19 0.19 0.25 0.25 0.25	0.19 0.19 0.19 0.19 0.20 0.21 0.25	0.19 0.19 0.19 0.23 0.23 0.73 0.25	0.19 0.20 0.20 0.20 0.20 0.73 0.23	0.22 0.25 0.25 0.25 0.25 0.25 0.75 0.25	0.21 0.23 0.73 0.73 0.23 0.23 0.24	9 11 11 11 11 11
				Spe	cimen A	2: MM 2	200 + Hf				
Distanc	e from b	ottom, i	in.:	1.63	(41.4 =	m))	2.63	(66.8 u	ern)	1.0((25.4 mm)
С.028 (0.71 лев)	300 500 700 1000 1500 2000	No 0.20 0.21 0.30 0.30 0.30	Cracks 0.23 0.24 0.27 0.28 0.30	0.22 0.23 0.29 0.29 0.30	0.05 0.05 0.08 0.08 0.21	0.05 0.06 0.13 0.14 0.23	0.05 0.06 0.11 0.12 0.22	0.07	0.06	0.07	2 2 2 7
	2500 3000 3500 4000 4500	0.30 0.30 0.33 0.33 0.33	0.30 0.30 0.32 0.33 0.33	0.30 0.30 0.33 0.33 0.33	0.21 0.21 0.21 0.21 0.23	0.24 0.24 0.24 0.24 0.24	0.23 0.23 0.23 0.23 0.24	0.13 0.16 0.17 0.17 0.21	0.10 6.11 0.12 0.14 0.19	0.12 0.14 0.15 0.16 0.20	7 7 7 7 7
	5000 5500 6000 6500 7000 7500	0.35 0.36 0.36 0.37 0.37	0.38 0.33 0.38 0.38 0.38 0.38	0.37 0.37 0.37 0.37 0.38 0.38	0.32 0.33 0.35 0.36 0.36	0.34 0.34 0.34 0.35 0.35	0.33 0.34 0.35 0.35 0.36 0.36	0.25 0.26 0.26 0.26 0.26 0.27	0.26 0.26 0.26 0.26 0.26 0.26	0.24 0.26 0.26 0.26 0.26 0.27	788899
Distance	From bot	ton, in	.:	1.88 (4	7.8 mm)		2.25 (5	57.2 mm)		2.50 (63.5~)
0.041 (1.04 mmm)	4500 50(1) 5500 6000 6500 7000 7500	No 0.05 0.06 0.07 0.07 0.11 0.11	Cracks 0.04 0.06 0.06 0.06 0.08 0.08	0.05 0.06 0.07 0.07 0.10 0.10	0.04 0.05 0.05 0.05 0.05 0.05	0.04 0.04 0.05 0.05 0.05 0.05	0.04 0.05 0.05 0.05 0.05 0.05	0.07 0.08 0.08 0.08 0.12 0.12	0.05 0.06 0.06 0.06 0.09 0.09	0.06 0.07 0.07 0.07 0.11 0.11	3 3 6 6 6 6
				Specia	<u>en 83:</u>	NEM 200	+ Hf				
Distance	from bott	om, in.	:	1.00 (2	.54 mm)		2.00 (50.8 mm)	2.69 ((13.3
0.028 (0.71 mm)	500 500 700 1000 1500 2000	No C 0.02 0.03 0.03 0.05 0.08	0.01 0.04 0.04 0.04 0.04 0.04	0.02 0.04 0.04 0.05 0.07	0.02 0.03 0.03 0.04 0.17	0.01 0.03 0.04 0.04 0.12	0.02 0.03 0.04 0.04 0.15	0.02 0.03 0.04 0.04 0.14	C.01 0.03 0.03 0.03 0.08	0.02 0.03 0.04 0.04 0.04	10 10 10 11 13
	2500 3000 3500 4000 4560	0.15 0.17 0.19 0.19 0.24	0.11 0.15 0.16 0.19 0.21	0.13 0.16 0.18 0.19 0.23	0.19 0.20 0.22 0.24 0.25	0.15 0.17 0.26 0.28 0.29	0.17 0.19 0.74 0.26 0.27	C.20 O.21 O.28 O.28 O.28 O.28	0.17 0.22 0.27 0.27 0.28	0.19 0.22 0.28 0.28 0.28	14 15 17 18 21
	5000 5500 6000 6500 7000 7500	0.24 0.25 0.25 0.25 0.30 0.31	0.21 0.21 0.21 0.21 0.21 0.28 0.29	0.23 0.23 0.23 0.23 0.23 0.29 0.30	0.26 0.26 0.26 0.26 0.26 0.26	0.29 0.29 0.29 0.29 0.29 0.29 0.29	0.28 0.28 0.28 0.28 0.28 0.28 0.28	0.29 0.29 0.79 0.29 0.29 0.29 0.29	0.30 0.30 0.30 0.30 0.30 0.30 0.32	0.30 0.30 0.30 0.30 0.30 0.31	21 21 21 21 21 21 21
Distance	from hott	om, in.	:	1.31 (3	3.3 mm)		1.75 (44	4.5 mm)		2.69 (((+
0.042 (1.07 mm)	1500 2000 2500 3000 3500 4000	No (0.03 0.03 0.08 0.08 0.11	Cracks C.03 O.03 G.06 O.07 O 08	0.03 0.03 0.07 0.08 0.10	0.02 0.04 0.07 0.07	0.07 0.04 0.06 0.07	0.02 0.04 0.07 0.07	0.07 0.07 0.08 0.10	0.02 0.07 0.07 0.09	0.07 0.07 0.05 0.10	1 7 8 12
	4500 5000 5500 6000 6500 7000 7500	0.11 0.13 0.13 0.14 0.13 0.16 0.16	0.04 0.10 0.10 0.10 0.10 0.13 0.13	0.10 0.12 0.12 0.12 0.12 0.12 0.15 0.15	0.10 0.10 0.13 0.15 0.16 0.18	0.07 0.00 0.10 0.10 0.17 0.13 0.13	0.09 0.10 0.12 0.13 0.15 0.15	0.11 0.12 0.12 0.12 0.12 0.12 0.15	0.10 0.10 0.10 0.10 0.10 0.10 0.15 0.15	0.11 0.11 0.11 0.11 0.11 0.11 0.11	12 17 17 17

Table 10(cont.)

					Crack	Len"th					lot al
Radius,	veles	Front	t Cracl Back	Avg	Ercut	nd Grad Back	<u>.</u> Av.	- Ji Front	rd (Card) _ herd	<u> </u>	Cracks Physical State
				Spec	Inen Al:	Nº1 20	0 4 HC				
Distance f	ron hot	tees, in.	:	1.43	(36.3 min)	2.38(50.5 ma)		2,60()	71.1 m)
	1500	No Cr	acks	A 04	0.03	0 03	0.03	0 07	0.62	0.02	6
(0.71 mm)	2500	0.15	80.0	0.12	0.1?	0.10	0.11	0.11	0.10	0.11	6
	3000 3500	0.15 0.17	0.12	0.14	0.17	0,20	0.19	0.16	0.15	0.16	9
	4000	0.20	0.18	0.19	0.17	0,2) 0,74	0.19	0.24	0.19	0.7?	9 10
	4500 5000	0.20	0.20	0.20	0.24	0.24	0.24	0.25	0.20	0.21	12
	5500 6000	0.20 0.20	0.20 0.21	0.20 0.21	0.24	0.24	0.24	0.25	0.20	0.23	12
	6500	0.22	0.72	0.27	0.25	0.74	0.75	0.25	0.70	0.23	12 12
	7500	0.22	0.22	0.22	0.25	0.24	0.25	0.25	0.26	0,76	12
Distance	from bot	ttom, in	•:	2.5 (63.5 mm)		1.31 (33.3 um)		7.94(74.7)
0.041	2009 2500	NC 0.04	0.02	0.03	0.04	0.02	0.03	0.0?	0.02	0.07	9
(1.04 📖)	3000	0.04	0.03	0.04	0.04	0.03	0.04	0.0?	0.07	0.02	9
	4000	0.07	0.07	0.07	0.10	0.11	0.11	0.09	0.06	0.05	9
	5000	0.10	0.00	0.10	0.13	0.11	0.12	9.15	0.07	0.05	4
	5500	0.10	0.09	0.10	0.17	0.15	9.16	0.15	0.11	0.13	9
	6500	0.13	0.10	0.12	0.19	0.17	0.18	0.16	6.11	0.14	9
	7500	0.13	0.10	0,17	0.19	0.17	0.14	0.14 0.16	0.11 0.11	0,14 0,14	11
				<u>S</u>	eciara J	12: IN-	-738				
Distance	from be	sttom, in		2.00	(50.8 m	u)	2.75	(69.9 ma	a)	1.130	28.7 mia)
0.024	500 700	No 0.05	Cracks 0.01	0.03							1
(0.61 mm)	1000	0.11	0.10	0.11	0.13	0.09	0.11	0.11	0.10	0.11	8
	2000	0.25	0.19	0.22	0.30	0.21	0.25	0.19	0.??	0.21	6
	3000	0.25	0.24	0.25	0.35	0.33	0.35	0.26	0.77	0.27	r G
	3500	0.28	0.31	0.30	0.38	0.35	0.37	0.28	0.31	0.30	9
	4500	0.35	0.33	0.34	0.38	0.35	0.17	0.35	0.35	0. 7.	12
	5000	0.35 0.4 0	0.35 50.60	0.35	>0.39	0,30 >0.40	0.38	87.U	0. SO 40	0.1° >0.40	17
	6000	-0.40	-0.40	-0.40	>0.40	-0.40	>G.40	-0.40	-0.40	0.40	12
	7660	>0.40	>0.40	>0.40	>0.40	~0.40	>0.40	>0.40 >0.40	>0.40	-0.40	12
	7500	>0.40	>0.40	>0.40	>0.40	~0.40	>0.40	>0.40	>0.40	~0.40	12
Distance	1570	10 10 10 10 10 10 10 10 10 10 10 10 10 1	.: Cracks	2.13	(04.9 103	,,	1.0	(44.13) 1000	,	2,503	
0.64	2000	0.07	0.06	0.07	0.05	0.05	0.05	0.05	0.07	0.0:	2
(1)12 (10)	3000	0.18	0.17	0.18	0.17	0.15	0.16	0.11	0.05	0.10	4
	4000	0.73	0.19	0.21	0.23	0.22	0.73	0.11	0.15	0.13	s
	4500	0.26	0.22	0.24	0.25	0.22	0.21	0.14	0.15	0.15	5 11
	5500	0.26	0.25	0.76	0.26	0.74	0.	0.1	C.1	0.1	
	6500	0.26	0.25	0.26	0.31	0	0.7	0.14	0.12	0.1	13
	7000 7500	0.26 0.26	0,25	0.20	0.31 0.32	0.27	0,20 0,33	0,14 0,21	(1, 1 (1, 1)	0,14 0,20	13
				¢	Spectmen	14: T	-739				
Di≤tanco	f r ora h	ortem, f	n.:	- 2.7	; (69.9 m	в)	1.63	(41.4 1	•••)	2.19	(55.6 -)
0 074	500	No (1.21	Cracks	6.21	0.14	0.15	0.15	0.10	0.11	0.11	٦
(0.61 mm)	1000	0.22	0.20	0.21	0.15	0.15	0.17	0.12	0.11	0.12	4
	2000	0.30	0.23	0.27	0.7/	0.25	0.2%	0.27	0,25	0.24	6
	5200	0.32	0.32	v. 32	0.55	(. 39)	W . W	9.32	Q. Y.	0.33	n

Table 10 (cont.)

Edee					Craci	k_Lengti	h, <u>in</u> .			·	Total
Radius,	Cycles	1 Front	st Cra	ck	Front	2nd Cra	Ave	Front	Brd Cra Back	Ave	Cracks
<u></u>	2000	0.33	0.36	0.34	<u> </u>	0.36	<u> </u>	A 33	0.36		<u></u>
	3500	0.35	0.35	0.36	0.35	0.36	0.36	0.36	0.36	0.34	6
	4000	0.37	0.39	0.38	0.35	0.36	0.36	0.36	0.36	0.36	6
	5000	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.30	>0.30	>0.37	6
	5500	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.4 0	6
	6000 6500	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	6
	7000	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	6
	7500	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	>0.40	6
Distance	2000	croma, in No	.: o Crack	1.31	(33.3 44	~	2.30	(0) 900)		1.94	(97,J m.u
0.041	2500	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02	?
	3500	0.03	0.02	0.03	0.02	0.02	0.02	0.03	0.02	0.02	;
	4000	J.03	0.02	0.03	0.05	0.02	0.04	0.03	0.02	0.03	7
	5000	0.03	0.03	0.03	0.00	0.02	0.04	0.03	0.02	0.03	,
	5500	0.03	0.03	0.03	0.06	0.04	0.05	0.03	0.03	0.03	ż
	6000	0.03	0.03	0.03	0.08	0.06	0.07	0.03	0.03	0.03	1?
	7000	0.03	0.03	0.03	0.13	0.12	0.13	0.18	0.16	0.17	12
	7500	0.15	0.12	0.14	0.20	0.19	0.20	0.21	0.20	0.21	12
			<u>Sp</u>	ecimen	L3: IN-	738 + 0	verlay				
Distance f	rom bot	tom, in.: No (: 'waake	1.81	(46 ജല)		2.88 ((73.2 🖦)		1.06	(26.9 mm)
0.026	2000 2500	0.27	0.27	0.27							1
(0.66 ജമ)	3000	0.27	0.31	0.29							1
	4000	0.35	0.35	0.32							1
	4500	0.35	0.35	0.35							1
	5000	0.36	0.36	0.36							1
	6000	0.38	0.37	0.38	0.07	0.07	0.07				2
	6500	0.38	0.37	0.38	0.07	0.08	30.0	0.16	0.14	A 16	2
	7500	0.38	0.40	0.39	0.16	0.12	0.14	0.16	0.14	0.15	3
Distance	from bot	ttom, in.	.:	2.06	(52.3 wm	ı)					
0.037	7000 7500	No C 0.12	racks 0.09	0.11							1
(0.94 ===)			<u>s</u>	pecimer	LI: IN	-738 +	Overlay				
Distance	from bot	ttom, in.	: 	2.56	(65 mma)		1.94	(49.3 mm)	1.63((41.4 mm)
0.078	4000	0.21	0.22	0.22							1
(0.71 mm)	4500 5000	0.25	0.27	0.2ú							1
	5500	0.32	0.31	0.32							i
	6000	0.33	0.31	0.32							1
	6500	0.33	0.31	0.32	0.08	0 10	0 00	0.04	2 02	0.03	1
	7500	0.38	0.40	0.39	0.13	0.13	0.13	0.05	0.04	0.05	5
			<u>s</u>	pecimen	13: IN	-797 + (Dverlay				
Distance f	rem boti	tom, in.:		1.44	(36.6 mm)					
0.039	2000	0.11	0.11	0.11							1
(0.99 tim)	2500 3000	0.27	0.76	0.30							1
	3500	0.32	0.37	0.32							ī
	4000	0 33	0.33	0.33							1
	4500	0.34 0.36	0.35	0.35							I I
	5500	0.40	0.40	0.40							Ī
	6000 6500	0.40	0.60	0.40							1
	7000	>0.40	>0.4	0.40							1
	7500	>0.40	>0.40	>0.40							1

Table 10 (cont.)

Radius.			st Crai	•	2 UFACI	nd Cred	• • • • •		nt tree	1	lotz Crzzk
in.	<u>Cycles</u>	Front	Back	_ <u>Ave</u> _	Front	Back	<u>_</u> N:_:	Front	Buch	. / .	<u>0</u>
Distance	Cross bot	ton, In.	.:	2.56	(65 mm)		0.88 (27.4)		
	4500	No (Cracks								
0.029	5000	0.18	0.20	0.19	0.27	0.2?	0.??				?
(0.74 844)	6000	0.31	0.32	0.1?	0.75	0.28	0.27				ž
	6500	0.3?	0.32	0.32	0.77	0.28	0.78				2
	7000 7500	0.32	0.32	0.32	0.77 0.27	0,78 0,31	0.28 0.29				2
				Specine	<u>n I): </u>	N-792 4	Overla	2			
Distance	from bo	ttom, in	.:	1.5 (38.1 mm)						
0.033	2000	No	Bilaer	• • •							
0.84 mm)	3000	0.26	0.26	U.26 0.28							1
	3500	0.28	0.30	0.29							i
	4000	0.28	0.30	0,29							ī
	4500	0.30	0.30	0.30							1
	5000	0.30	0.30	0.30							1
	6000	0.34	0.32	0.32							1
	6500	0.34	0.32	0.33							1
	7000	0.3%	0.32	0.33							ī
	7500	0.34	0.32	0.33							1
Distance	free bot	tom, in.	· : ·1	2.88()	/3.2 mm)						
0.028	3000	0.14	nacks 0.35	0.15							,
0.71 mm)	3500	0.14	0.15	0.15							1
	4000	0.20	0.21	0.21							i
	4500 5000	0.20	0.24	0.72							1
	5000	0.23	0.78	0,76							1
	5500	0.23	0.78	0.76							1
	6500	0.30	0.29	0.30							1
	7000	0.30	0.29	0.30							1
	7500	0.10	0.29	0.30							1
			<u>Spec</u>	<u>fmen D?</u> :	<u>M:1 20</u>	D + Hf	DS + Ove	rlay			
Distance	2000 F	tom, In. No C	.: racks	2.69 ((68.3 mm))	1,56(3	9.6 mma)		0.81(70.6 mm
0.029	2500	0.29	0.31	0.30							1
(0.74 mm)	3000	0.30	0.32	0.31							1
	3500 6000	0.31	0.34	0.33	0 21	0.26	0 24	0.15	0 19	0 18	1
	4500	0.37	0.37	0.37	0.25	0.27	0,26	0.22	0.72	0.22	3
	5000	0.37	0.39	0.38	0.29	0.31	0.30	0.25	0.27	0.26	3
	5500	0.37	0.39	0.38	0.30	0.31	0.31	0.25	0.27	0.26	3
	6000	0.38	0.39	0.39	0.37	0.31	0.3?	0.27	0.27	0.27	4
	0000 7000	0.38	0.39	0.39	0.32	0.31	0.32	0.30	U,28 0 28	0.79	4 A
	7500	0.38	0.39	0.39	0.32	0.31	0.32	0.30	0.29	0.30	Š
			Spec	iren Dhe	111 200	<u>+ </u>	15 + Cver	r1 av			
Vista nce	from bot	ton, in.	:	2.13 (54.1 m·)		1.31 (3	33.3 mmi)		2.56	(65 mm)
	2000	No C	racks								
0.025 /0_64 \	2500	0.14	0.16	0.15							1
19.04 mm)	3500	0.16	0.18	0.17							1
	4000	0.24	0.27	0.26	0.12	0.15	0.14				2
	450%	0.26	0.28	0.77	0.13	0.19	0.16				2
	5000	0.76	0.30	0.28	0.71	0.19	0.20				2
	5500	0.30	0.32	0.31	0.23	0.24	0.24				2
	6000	0.33	6.32	0.33	0.30	0.30	0.30				?
	7000	0.33	0.32	0.33	0.31	0.30	0.10				7
	7500	0.34	0.35	0.35	0.3'	0.32	0.37	0.11	0 09	0.10	ŝ
	from bot	ton. in.	:	1.31 (33.3 ×)		2.81 O	(1.4 m.)			
Distance							•				
Distance 0.04	7000	io C	racks								

Table 10 (cont.)

Edge			et Crac	1	Crack 2r	Length d Crac	<u>, in.</u>		rd Crac	k	Total
<u>in.</u>	Cycles	Front	Back	Avg	Front	Back	Avg	Front	Back	Avg	Observe
		-	Spec	Imen D3:	MH 200) + Hf !	<u>05 + 0v</u>	erlay			
Distance	from bot	tom, in.	.:	2.25 (57.2 mm)		2.56 (65 tem)		1.25	(31.8 ෩~1)
	4000	No C	racks								
0.024	4500	0.12	0.14	0.13							1
(0.61 88	a) 5000	0.17	0.17	0.17							1
	6000	0.17	0.20	0.19							i
	6500	0.25	0.23	0.25							,
	7000	0.20	0.25	0.26	0.04	0.03	0.04	0.03	0.07	0.05	4
	7500	0.27	0.29	0.28	0.04	0.03	0.04	0.04	0.09	0.07	Š
Distance	from bot	ttom, in.	.:	1.5 (3	8.1 am)		2.88 (73.2 mm))		
	4000	No C	Iracks								
0.034	4500	0.15	0.15	0.15							i
(U.86 mm)	5500	0.20	0.20	0.20							1
	6000	0.21	0.23	0.22							i
	6500	0.23	0.24	0.24							1
	7000	0.26	0.26	0.26	0.12	0.11	0.12				2
	7500	0.27	0.26	0.27	0.12	0.11	0.12				2
				Specimen	F2: M	1 200 D	<u>S Bicry</u>	stal			
Distance :	from bott	tom, in.:	:	2.25 (57.2 mma))					
	11,500	No Ci	racks								
044	12,000	0.05	0.05	0.05							1
(1.12 mm)	12,500	0.05	0.06	0.06							ī
	13,000	0.08	0.06	0.07							1
	14,000	0.09	0.08	0.09							1
	14,500	0.09	0.08	0.09							1
	15,000	0.10	0.08	0.09							ī
				Specime	en C5: 1	<u>M 200</u>	+ HE DS	_			
istance f	rom botte	om, in.:		1.25 (3	31.8 mm)						
031	11,500	No Ci	racks	o o1							
(0 70)	12,000	0.01	0.01	0.01							1
(0.79 000)	13,000	0.01	0.01	0.01							1
	13,500	0.03	0.03	0.03							1
	14,000	0.03	0.03	0.03							1
	14,500	0.06	0.05	0.06							i
	12,000	0.00	0.06	U.06							1
		-	2	opecimen	<u>F1: MM</u>	200 DS	Bicrys	<u>tal</u>			
istance f	rom botto	om, in.:		0.94 (2	23.9 mm)						
	14,500	.io Ci	racks								
. 055	15 000	0 02	0 02	A 63							

ORTHNASS FAIR IS OF EARTH QUALITY

Table 11

SUMMARY OF CRACK PROPAGATION FOR GROUP 2 SPECIMENS

Edge			• C	L	Crack	Length	in.		rd Canal		Total
Radius, in. C	ycles	Front	Back	Avg	Front	Back	Avg	Front	Back	Avg	Cracks Observed
	<u> </u>			s	pecimen	v1: _V	57				
Distance f	rom bot	toa, in.	:	2.94(7	4.7.000)		2.5 (6	53.5 um)		1.88 (47.8mm)
029	50		racks	0 14							
(0.71mm)	200	0.11	0.16	0.14	0.06	0.07	0.07		~ 1/		2
	300 500	0.12 0.16	0.16 0.21	0.14 0.19	$0.10 \\ 0.14$	0.09	0.10	0.10	$0.14 \\ 0.14$	0.12	11
	700	0.20	0.26	0.23	0.17	0.16	0.17	0.20	0.20	0.20	13
	1000 1500	0.26 0.29	0.28 0.33	0.27 0.31	0.18 0.22	0.24 0.25	0.21 0.24	0.25 0.27	0.22 0.26	0.24 0.27	16 16
	2000	0.31	0.32	0.32	0.22	0.25	0.24	9.36	0.27	0.32	18
Distance f	rom bo	ttom, in. ฟอ	: racks	1.25(3	1.8mm)		1.13	(28.7mm)		1.0	(25.4em)
.034	300	0.03	0.03	0.03	0.02	0.03	0.03	0.04	0.03	0.04	Ś
(U. 80mm)	700	0.10	0.11	0.13	0.08	0.11	0.10	0.10	0.10	0.10	8
	1000 1500	0.14 0.15	0.11 0.11	0.13 0.13	$0.08 \\ 0.14$	0.11 0.12	0.10	0.10 0.11	0.10 0.14	0.10 0.13	11
	2000	0.17	0.13	0.15	0.18	0.13	0.16	0.16	0.15	0.16	11
				5	pecimen	<u>v3:</u>	/ 57				
Distance f	trom bo	ttom, in	.:	2.0 (5	i0.8mm)		1.0 (25.4mm)		1.38	(35.1000)
. 023	200	0.13	0.06	0.10	0.11	0.14	0.12	0.04	o o/		1
	500	0.16	0.10	0.13	0.16	$0.14 \\ 0.14$	0.13	0.04	0.04	0.04	12 12
	700 1000	0.19 0.21	0.14 0.14	0.17 0.18	0.20 0.22	0.22 0.22	0.21 0.22	0.12 0.14	0.14 0.14	0.13 0.14	12 12
	1500	0.22	0.21	0.22	0.20	0.27	0.29	0.17	0.21	0 19	12
	2000	0.22	0.25	0.24	0.32	0.32	0.32	0.17	0.24	0.21	12
Distance	from b	ottom, ir	n.:	1.31	(33 .3mm)		1.06	(26.9000)		2.25	(57.2mma)
.034	200 300	0.11	No Crac 0.05	.ks 0.08	0.04	0.03	0.04				2
(0.86mm)	500	0.12	0.08	0.10	0.07	0.05	0.06	0.04	0.04	0.04	3
	1000	0.12	0.15	0.14	0.08	G.00	0.07	0.09	0.05	0.07	8
	2000	0.22	0.17	0.20	0.08	$0.10 \\ 0.10$	0.09	0.09 0.14	0.09 0.10	0.09 0.12	10 10
				9	Specimen	v5:	V 57				
Distance	from bo	ttom, in	•:	1.13 (28.7mm)		2.19	(55.6mm)		2.5(6	3.5mma)
. 027	50 100	0.01	No Cra 0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	4
(0 69 mm)) 200 300	0.07 0.18	0.04	0.06 0.18	0.06	0.02	0.04	0.04	0.12	0.08	4
	500 700	0.21	0.24	0.23	0.13	0.13	0.13	0.12	0.25	0.19	18
	1000	0.30	0.26	0.28	0.17	0.13	0.15	0.16	0.27	0.22	18
	1500 2000	0.30	0.26	ა.28 0.30	0.23	0.18	0.21	0.33	0.32	0.33	18 15
Distance	from bo	ottom, in	•••	1.25 (31.8mm)		1.94(49.3mm)		1.06	(25 ,9mm)
024	100	0.15	No Crac	CK 5	0.10						
(0.86mm)	300	0.15	0.13	0.08	0.12	0.13	0.06	0.13	0.06	0.09	26
	500 700	0.17 0.17	0.13	0.15 0.15	0.23	0.16 0.17	0.20	0.13	0.13	0.13	8 10
	1000	0.20	0.14	0.17	0.24	0.17	0.21	0.13	0.13	0.13	10
	1500	0.21	0.15	0.18	0.26	0.22	0.24	0.14	0.15	0.15	12
	2000	0.18	0.21	U. 20	0.35	0.37	0.36	0.30	0.26	0.28	12
	e •			Spe	cimen W	1: <u>MM</u>	002				
Distance	trom bo 5-ე	ctom, in	•: No 62	1.0(2 1655).4mm)		1.88(47.8mm.)		2.81	(71.4 ₀₀₀)
030 (0.76 mm)	100	0.12	0.08	0.10	0.14	6 08	0 11	0 14	0 11	0.17	1
	300	0.21	0.17	0.19	0.16	0.08	0.12	0.19	0.11	0.14	6
	700	0.22	0.20	0.21	0.23	0.08	0.14	0.19	0,15	0.17	6

Table 11 (cont.)

					1able 1		.,				
Edge			et Crec		Cracl	k Lengt	h, in.		3rd Cra	-k	Total
<u>in.</u>	Cycles	Front	Back	Avg	Front	Back	Avg	Front	Back	Avg	Cracks Observed
	1000	0.22	0.20	0.21	0.23	0.20	0.22	0.21	0.17	0.19	6
	2000	0.24	0.24	0.24	0.23	0.21	0.22	0.23	0.22	0.23	6
	2500 3000	0.29	0.29	0.29	0.25	0.24	0.25	0.26	0.23	0.25	6
	3500	0.34	0.35	0.25	0.23	0.24	0.23	0.27	0.23	0.25	6
	4000	0.34	0.35	0.35	0.28	0.24	0.26	0.27	0.23	0.25	6 6
	5000	0.35	0.37	0.36	0.34	0.30	0.32	0.28	0.31	0.30	7
	5500	0.35	0.37	0.37	0.34	0.32	0.33	0.28	0.31	0.30	8
	6000 6500	0.36 0.36	0.37	0.37 0.37	0.34	0.32	0.33	0.30	0.31	0.31	8
	7000	0.36	0.37	0.37	0.34	0.32	0.33	0.33	0.34	0.34	8
stance	from bot	tom, in	.:	1.38	0.34 (35.1mm)	0.34	2.75(0.34 69.9mm)	0.35	0.35	8 52 3mm)
34	30C 500	0.05	No Cruci 0.03	^{KS} 0.04				,		2.007 (J2. John /
0.86mm)	700 1000	0.06	0.03	0.04	0.03	0.05	0.03				2
	1500	0.11	0.10	0.11	0.03	0.03	0.03	0.05	0.04	0.05	4
	2000	0.11	0.10	0.11	0.03	0.03	0.03	0.05	0.04	0.05	4
	3000	0.11	0.10	0.11	0.03	0.03	0.03	0.05	0.04	0.05	4 5
	3500 4000	0.12 0.12	0.10 0.16	$0.11 \\ 0.14$	0.06	0.05	0.06	0.05	0.05	0.05	6
	4500	0.15	0.18	0.17	0.06	0.05	0.06	0.11	ò.11	ŏ.11	ž
	5500	0.15	0.20 0.20	0.18 0.23	0.06	0.05 0.24	0.06	0.11 0.11	0.12 0.12	0.12	8
	5000 6500	0.26	0.20	C.23	0.25	0.24	0.25	0.1-	0.13	0.14	8
	7000	0.26	0.20	0.23	0.25	0.24	0.25	0.15	0.13	0.14	9
	/ 200	0.20	0.20	0.25 SD4	U.25 Peimen W	0.24 2. Movi	0.25	0.15	0.13	0.14	9
lstance	from bot	tom, in	•:	1.06 (25.9mm)		1.38 ()	35.1mm)		2.44 (6	j2 mma)
030 0 76 mm	100	0.07	No Crac 0.07	¥ 5 0.07	0.15	0.11	0.13	0.0	0.04	0.05	4
	300	0.12	0.12	0.12	0.24	0.22	0.23 0.24	0.19	0.13	0.16	5
	700	0.12	0.13	0.13 0.14	0.27	0.24	0.26	0.21	0.17	0.19	5
	1000	0.14	0.15	0.15	0.27	0.26	0.27	0.23	0.17	0.20	:
	2000	0.18	0.15	0.15	0.28 0.29	0.26	0.27	0.26	0.22	0.24	6
	2500 3000	0.18 0.20	0.20	0.19	0.29	0.30	0.30	0.26	0.24	0.25	6 6
	3500	0.20	0.24	0.22	0.30	0.32	0.31	0.26	0.24	0.25	7
	4000 4500	0.20	0.24	0.22	0.31	0.33	0.32	0.26	0.24	0.25	777
	5000	0.22	0.26	0.24	0.31	0.33	0.32	0.26	0.26 0.27	0.26 0.27	8
	6000	0.22	0.26	0.24	0.31	0.33	0.32	0.33	0.31	0.32	8
	6500	0.27	0.26	0.27	0.32	0.33	0.32	0.33	0.31 0.31	0.32 0.32	8 10
	7500	0.27	0.28	0.27	0.32	0.33 0.34	0.33 0.33	0.34 0.34	0.31	0.33	10
tance f	rom bott	om, in		1.5 (38	3.1mm)		2.88 (7	3.2 mm.)		0.88(22	.4mm.)
34	200	0.05	o Grack. 0.03	³ 0.04							
0.800000)	300 500	0.05	0.03	0.04							1
	700	0.06	0.03	0.05							1
	1500	0.06	0.03	0.05							ī
	2000	0.06	0.06	0.06	0.01						1
	3000	0.06	0.06	0.06	0.04	0.03	0.04 0.06				ž
	4000	0.12	0.11	0.12	0.07	0.05	0.06	0.17	0.10	0.14	3
	4500	0.17	0.14	0.16	0.11 0.11	0.13 0.15	0.12	0.19 0.19	0.16	0.18	5
	5500	0.17 0.17	0.15 0.17	0.16	J.11 0.11	0.15	0.13	0.19	0.10	0.18	9
	6000	0.18	0.17	0.13	0.15	0.15	0.15	0.20	0.21	0.21	10 10
	6500 7000	0.19	0.17	0.18	0.15	0.15	0.15	0.20	0.21	9.21	10
	1000		* • • • /	V							
	7500	0.21	0.18	0.20	0.18	0.17	0.18	0.20	0.21	0.21	10 13

Table 11(cont.)

Edge					Crack	Length,	in.				Total
Radius, in.	Cvcles	ls Front	t Crack Back	Avg	2n Front	d Crack Back	Avg	3rd Front	Back	Ave	Cracks Observed
		<u> </u>		 6n0	cinen W3						
	from bot	tom in	•	1.19(3	0.2mm)		1.69 (42.9mm)		2.19 (55.6mm)
Distante	100	.com, 111. N	• Io Crack		,						, , , , , , , , , , , , , , , , , , ,
.024 (0.61 mm	ン 200 300	0.22 0.23	0.21 0.22	0.22 0.23	0.05 0.06	0.03 0.03	0.04 0.05	0.13	0.17 0.19	0.15 0.21	5 5
	500 700	0.24	0.22 0.22	0.23 0.24	0.07 0.37	0.03 9.04	0.05 0.06	0.25 0.25	0,19 0 23	0.22 0.24	5 7
	1000	0.25	0.24	0.25	0.07	0.04	0.06	0.26	v.23	0.25	7
	1500	0.28	0.26	0.27	0.09	0.06	0.08	0.28	0.25	0.27	777
	2500	0.28	0.28	0.28	0.11	0.10	0.11	0.28	0.25	0.27	7
	3500	0.29	0.28	0.29	0.16	0.15	0.16	0.33	0.30	0.32	ģ
	4000 4500	0.30 0.30	0.29 0.30	0.30 0.30	0.16 0.16	0.16 0.16	0.16 0.16	0.33 0.35	0.30	0.32	10 11
	5000 5500	0.30	0.30	0.30	0.19	0.16	0.18	0.35	0.30	0.33	11
	6000	0.30	0.30	0.30	0.21	0.16	0.19	0.35	0.33	0.34	ii
	6500 7000	$0.31 \\ 0.31$	0.30	0.31	0.21 0.22	0.19 0.19	0.20	0.35	0.35	0.35 0.35	11 11
	7500	0.31	0.31	0.31	0.22	0.20	0.21	0.35	0.35	0.35	11
Distance	from bo	ttom, in	·: In (march	0.88(22.4mm)		2.25()	57.2mm)		1.19	(39.2000)
.036 (0.91mm)	200	9.04 0.04	0.07	0.06	0.08	0.03	0.06	0.02	0.03	0.03	3
(01)1	500	0.07	0.12	0.10	0.09	0.08	0.09	0.10	0.12	0.11	7
	1000	0.10	0.13	0.12	0.09	0.08	0.09	0.12	0.13	0.13	8
	1500	0.11	0.13	0.12	0.09	0.08	0.09	0.12 0.19	0.13	0.13 0.16	10 10
	25/10	0.17	0.20	0.19	0.09	0.08 0.08	0.09	0.19	0.13	0.16 0.17	10 10
	3500	0.17	0.20	0.19	0.09	0.08	0.09	0.22	0.16	0.19	10
	4000 4500	0.17	0.20	0.19	0.09 C.11	0.08	0.09	0.22	0.10	0.19	10
	5000 5500	0.19 0.20	0 21 0.21	0.20	$0.14 \\ 0.14$	0.13	0.14	0.23	0.21	0.22	10
	6000 6500	0.20	0,21	0.21	0.14	0.13	0.14	0.24	0.21	0.23	10
	7000	0.21	0.21	0.21	0.14	0.13	0.14 0.15	0.24 0.24	0.22	0.23	11 11
				<u>s</u>	pecimen	<u> 11: MM</u>	246				
Distance	e from bo	ottom, in	.:	0.88	(22.4mm)		1.88	(47.8 mm)		2.56	(65 տատո)
020	200 300	0.02	Cracka 	0.01	0.07	0.11	0.09	0.08	0.12	0.10	3
(1 6	¹¹² 500 700	0.04 0.04	0.04 0.04	0.04 0.04	0.23	0.16	0.29	0.22	0.16	0.19	3
	1000 1500	0.05 0.05	0.04 0.04	0.05 0.05	0.26 0.28	0.23	0.25 0.26	0.23 0.27	0.20 0.22	0.22 0.25	5
	2006	0,15	0.23	0.19	0.32	0.25	0.29	0.31	0.26	0.29	11
	2500 3000	0.28 0.31	0.23 0.35	0.26 0.33	0.32 0.32	0.25 0.31	0.29 0.31	0.31 0.33	0.26 0.27	0.29 0.30	11 11
	3500 4000	0.32 0.34	0.35 0.35	0.34 0.35	0.32 0.33	0.31 0.31	0.32 0.32	0.33 0.35	0.27 0.31	0.30 0.33	11 11
	4500	0.34	0.35	0.35	9، ٦٤	0.36	0.37	0.35	0.33	0.34	11
	5000 5500	0.34	0.36 0.36	0.35	0.38	0.36 0.36	0.37 0.37	0.35 0.36	0.35 0.35	0.35 0.36	11 11
	6000 6500	0.35	0.36	C.36 0.36	0.38 0.38	0.36 C.36	0.37 0.37	0.36	0.35 0.35	0.36 0.36	11 11
	7000 7500	0.36 0.36	0.37 0.37	0.37 0.37	0.38 0.38	0.37 0.37	0.38 0.38	0.37 0.37	0.35 0.38	0.36 0.38	11 11
				S	peciman	<u>x1: M</u>	246				
Distance	e from bo	ottom, in	•:	1.0 (25.4 m ,		1.31	(23.3 mm)		2.50	(63.5mm)
.034	3000	0.02	0.02	0.02	0.10	0.11	0.11	0.05	•	0.03	2
(U.86n	m) 5500 4000	0.02	0.02	0.02	0.12	0.11	0.12	0.05	0.02	0.04	7
	4500 5000	0.07	0.09	0.08	0.15	0.20	0.18	າ.08 ວ່າ8	0.08	0.08 0.08	8 10

۲

Table 11(cont.)

Edge					Crack	Length	<u>, in.</u>		and Care		Total
Radius,		1	st crac	<u>k</u>	Erent	nd Crac Back	AVP	Front	<u>ro trac</u> Back	AVR	Cracks Observed
<u></u>	Cycles	Front	Back	_AVB_	rronc	Back	<u></u>	<u></u>			
	5500	0.10	0.10	0.10	0.20	0.20	0.20	0.10	0.08	0.09	11
	600u	0.10	0.11	0.11	0.21	0.20	0.21	0.10	0.08	0.09	11
	7000	0.10	0.11	0.11	0.21	0.20	0.21	0.11	0.09	0.10	16
	7500	0.15	0.14	0.15	0.21	0.20	0.21	0.13	0.14	0.14	16
				Sp	ecimen X	2: MM	246				
Distance	from bot	tom, in.	:	1.5 (3	8.1 mm)		1.06	(26.9 mm)		2.81 (71.4 mm)
.028	_\ 200	0.15	0.18	0.17							1
	¹⁾ 300	0.16	0.18	0.17	0.17	0.14	0.16	0.17	0.22	0.20	4 7
	700	C.18	0.20	0.19	¢.18	0.15	0.18	0.20	0.23	0.22	7
	1000	0.19	0.20	0,20	0.19	0.18	0.19	0.20	0.23	0.22	8
	1500	0.21	0.20	0.21	0.21	0.18	0.20	0.22	0.23	0.23	8
	2500	0.26	0.25	0.26	0.25	0.23	0.22	0.25	0.23	0.25	8
	3000 3500	0.26	0.27	0.27	0.25	0.25	0.25	0.27	0.23	0.25	9 10
	4000	0.26	0.27	0.27	0.29	0.28	0.29	0.28	0.25	0.27	10
	4500	0.32	0.32	0.32	0.29	0.29	0.29	0.32	0.28	0.30	12
	5000	0.32	0.32	0.32	0.29	0.29	0.29	0.33	0.32	0.33	13
	6000	0.32	0.32	0.32	0.29	0.30	0.30	0.03	0.32	0.33	13
	6500 7000	0.32	0.36	0.34	0.29	0.32	0.31	0.35	0.32	0.34	13
	7500	0.32	0.36	0.34	0.29	0.33	0.31	0.35	0.36	0.36	16
Distance	from bot	ttom, in	.:	2.06 (52.3 mm)		0.88	(22.4 mm))	2.88	(73.2 mm)
.033	300 500	NO C: 0.08	0.11	0.10							٦
(0.84 mm	n) 700	0.09	0.11	0.10							•
	1500	0.09	0.11	0.10							i
	2000	0.19	0.18	0.19							ī
	3000	0.19	0.18 0.18	0.19 0.19	0.05	0.06	0.06				2
	3500	0.20	0.18	0.19	0.05	0.06	0.00	0.01	0.01	0.01	3
	4500	0.27	0.25	0.25	0.10	0.08	0.12	0.04	0.02	0.03	7
	5000	0.27	0.25	0.26	0.10	0.14	0.12	0.04	C.02	0.03	8
	5500 6000	0.27	0.25	0.26	0.11	0.14	0.13	0.04	0.02 0.02	0.03	8
	6500	0.28	0.27	0.28	0.14	0.14	0.14	0.04	0.02	0.03	11
	7500	0.28	0.27	0.28	0.15	0.14	0.15	0.04	0.11	0.03	14
Distance	from he			1.04	((0.) -	、	1				
025	100	No (Tracks	1.94	(49.3 mm)	1.31	(33.3 mm)		2.81	(71.4 חדד)
(0.64 mm	n) 200	0.05	0.02	0.04	0.06	0.07	0.07	0.12	0.09	0.11	16
	500	0.13	0.07	0.10	0.13	0 08	0.11	0.14	0.14	0.14	6
	1000	0.17	0.14	0.16	0.17	0.71	0.19	0.19	0.18	0.19	6
	1500	0.22	0.20	0.21	0.25	0.23	0 24	0.23	0.20	0.22	6
	2500	0.22	0.25	0.24	0.27	0.30	0.29	0.28	0.31	0.30	8
	3000	0.29	0.25	0.27	0.29	0.31	0.30	0.28	0.32	0.30	8
	4000	0.29	0.27	0.28	0.31	0.32	0.2	0.34	0.32	0.33	8
	4500	0.29	0.30	0.30	0.37	0.32	0.32	0.54	0.32	0,33	8
	5500	0.31	0.30	0.31	0.33	0.35	0.34	0.34	0.34	0.34	8
	6000	0.31	0.30	0.31	0.34	0.35	0.35	0.34	0.34	0.34	8
	6500 7000	0.31 0.31	0.33 0.33	0.32 0.32	0.34 0.34	0.35 0.35	0.35	0.36 0.37	0.36 0.37	0.36	8
	7500	0.31	0.35	0.33	0.34	0.36	0.35	0.37	0.37	0.37	10
Distance	from bot	tom, in	• :	1.88 (47.8 mm))	2.38	(60.5 mm)		1.25	31,8 mm)
.033	500	0.03	0.03	0.03	0.06	0.11	0.09	0.04	0.05	0.05	4
(U.84 mi	m) 700 1000	0.03	0.03	0.03	0.07	0.11	0.09	0.05	0.05	0.05	5
	1500	0.03	0.03	0.03	0.09	0.11	0.10	0.05	0.05	0.05	5

Table 11(cont.)

Edge					Crac	k Lengt	h, in.				Tetal
Radius,			lst Cra	ck		2nd Cra	ck		3rd Cra	ck	Cracks
<u>ia.</u>	Cvcles	Front	Back	Avg	Front	Back	AVR	Fron	t Back	AVE	Observed
	2500	0.08	0.07	0.08	0.12	0.11	0.12	0.05	0.05	0.05	5
	3000	0.09	0.07	0.08	5.12	0.11	0.12	0.11	0.10	0.11	ş
	A000	0.11	0.08	0.10	0.17	0.17	0.17	0.11	0.10	0.11) K
	4500	0.11	0.09	0.10	0.17	0.18	0.18	0.11	0.10	0.11	;
	\$000	0 11	0 00	0.10	A 17			A 11			-
	5500	0.11	0.09	0.10	0.17	0.18	0.18	0.11	0.10	0.11	1
	6000	0.11	0.09	0.10	0.17	0.18	0.18	0.11	0.10	0.11	7
	6500 7000	0.13	0.12	0.13	0.19	0.18	0.19	0.11	0.10	0.11	7
	7500	0.13	0.12	0.13	0.19	0.18	0.19	0.11	0.10	0.11	7
				Spec	imen Vi	René	3 77		0,10	U. 11	0
Mstance f	rom bott	om. 1n.		1.0 (25	.4			1 4		2 75 10	• • •
	50	:10 C	racits		,		*****				17.9 mm)
026	100	0.14	0.11	0.13	0.19	0.15	0.17	0.12	0.08	0.10	9
(J.00 xc.)	200	0.18	0.10	0.18	0.20	0.21	0.21	0.19	0.14	0.15	10
	500	0.18	0.17	0.18	0.21	0.21	0.21	0.20	0.16	0.18	ĩõ
	700	0.18	0.18	0.18	0.22	0.21	0.22	0.21	0.16	0.19	19
	1000	0.18	0.18	0.18	0.22	0.21	0.22	0.21	0.16	0.19	10
	1500	0.18	0.18	9.18 0.18	0.22	0.21	0.22	0.21	0.20	0.21	10
	2500	0.10	0.24	0.27	0.22	0.21	0.22	0.21	0.20	0.21	10
	3000	0.31	0.29	0.50	0.27	0.30	0.29	0.25	0.25	0.25	īō
	3500	0.31	0.29	0.30	0.27	0.30	0.29	0.25	0.25	0.25	10
	4000	0.32	0.29	0.31	0.28	0.30	0.29	0.25	0.25	0.25	10
	4500	0.32	0.29	0.31	0.29	0.30	0.30	0.27	0.28	0.28	10
	5500	0.33	0.32	0.33	0.29	0.31	0.3C	0.32	0.33	0.33	iŏ
	6000	0.33	0.32	0.33	0.30	0.31	0.31	0.33	0.33	0.33	10
	6500	0.33	0.32	0.33	0.31	0.31	0.31	0.35	0.34	0.35	ĩõ
	7000	0.33	0.32	0.33	0.31	0.31	0.31	0.35	0.34	0.35	10
	7500	J. 30	0.34	0.35	0.31	0.31	0.31	0.30	0.33	0.30	10
Distance	e from bo	sttom, i	In.:	1.0	(25.4	san)	2.66	(62 mma)		7 R1	(71.4 mma)
	100	No Cr	acks							2.01	-
(0.84 cma)	200	0.07	0.05	0.06	0.05	0.04	0.05	0.07	0.08	0.08	5
、 - · - ·	500	0.11	0.08	0.10	0.07	0.09	0.08	0.09	0.08	0.09	ő
	700	0.11	0.08	0.10	0.08	0.09	0.09	0.09	0.14	0.12	6
	1000	0.12	0.09	0.11	0.08	0.09	0.09	0.09	0.14	0.12	6
	1500	0.19	0.16	0.18	0.09	0.10	0.10	0.13	6.14	0.14	7
	2500	0.19	0.16	0.18	0.15	0.12	0.14	0.15	0.20	0.18	12
	3000	0.22	0.20	0.21	0.17	0.19	9.18	0.20	0.20	0.20	14
	3500	0.24	0.21	0,23	0.17	0.19	0.18	0.21	0.20	0.21	15
	4000	0.25	0.21	C.23	0.17	0.19	0.18	0.21	0.20	0.21	15
	4300 5000	0.25	0.22	0.24	0.23	0.20	0.22	0.22	0.21	0.22	15
	5500	0 -5	0.23	0.24	0.23	0.21	0.22	0.22	0.21	0.22	8
	6000	0.26	0.23	0.25	0.23	0.21	0.27	0.22	0.21	0.22	11
	6500	0.26	0.23	0.25	0.24	0.22	0.23	0.24	0.23	0.24	11
	7000	0.26	0.26	0.26	0.24	0.22	0.23	0.24	0.23	0.24	11
	7300		V.2V	Spe	cimen Y	2: Rend	6 77	0.24	0.23	4.23	
			_	1 00 (47 A mme)		<u> </u>	21.9 mm)	2 00(7	77
Distance	נ רסים 1300 ו י-כ	. com, וח. אס ל	TACAS	1.00			,94 \		•	3-00 \	
. 926	100	0.15	0.12	0.14	0.17	0.14	0.16	0.09	0.12	0.11	5
(0.66 mm)	200	0.16	0.17	0.17	0.21	0.20	0.20	0.14	0.10	0.15	9
	500	0.25	0.24	0.25	0.23	0.20	0.22	0.20	0.21	0.21	ģ
	700	0.25	0.24	0.25	0.23	0.20	0.22	0.20	0.21	0.21	9
	1000	0.25	0.24	0.25	0.23	0.20	0.22	0.20	0.21	0.21	9
	1500	0.25	0.24	0.25	0.23	0.21	0.22	0.20	0.2?	0.21	.9
	2000) 2500	0.26	0.27	0.27	0.25	0.25	0.26	0.26	U.26	0.26	11
	3000	0.30	0.31	0.31	0.28	0.29	0.29	ŏ.3ĩ	0.31	č. 31	12
	3500	0.31	0.31	0.31	0.28	0,29	0.29	0 31	0 11	0 11	1 7
	4000	0.31	0.31	0.31	0.28	0.29	0.29	0.31	ŏ. 31	0.31	12
	4200 5000	0.31	0.34	0.33	0.32	0.31	0.32	0.32	0.32	0.32	12
	\$500	0.32	0.34	0.33	0.32	0.31	0.32	0.31	0.32	0.32	12
								~ • * * *			**

Table 11(cont.)

Edge				-1-	Crac	k Lengt	<u>h, in.</u>		and Cree		Total
Radius, in.	Cycles	Front	Back	Avg	Front	Back	Avg	Front	Back	Avg	Cracks Observed
	6000 6500	0.32 0.32	0.34	0.33	0.33	0.35	0.35	0.33	0.32	0.33	12
	7000	0.32	0.35	0.34	0.36	0.35	0.36	0.33	0.32	0.33	12
	7500	0.32	0.35	0.34	0.30	0.35	0.30	V. VS	0.35	0.35	12
Distance	from bot	tom, in.	:	2.0 (50.8mm)		1.38 (3	5.1 mm)		2.75 (6	99 aaa)
. 036	50 100	0.01	ruct.s 0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	4
(0.91 mm)	200	0.12	0.15	0.14	0.08	0.04	0.06	0.07	0.08	0.08	5 5
	500	0.18	0.17	0.18	0.14	0.16	0.15	0.16	0.16	0.16	7
	700	0.18	0.17	0.18	0.14	0.16	0.15	0.17	0.10	0.17	, R
	1500	0.21	0.17	0.19	0.15	0.16	0.16	0.17	0.17	0.17	8
	2000 2500	0.21 0.24	0.20	0.21	0.15	0.16	0.18	0.20	0.20	0.20	9
	3000	0.24	0.22	0.23	0.21	0.20	0.21	0.22	0.25	0.24	10
	3500 4000	0.26 0.27	0.22	0.24 0.25	0.22	0.20	0.21	0.24	0.26	0.25	10
	4500	0.27	0.23	0.25	0.24	0.25	0.25	0.24 0.26	0.26	0.25	11
	5500	0.27	0.25	0.26	0.25	0.26	0.26	0.26	0.27	0.27	12
	6000	0.27	0.25	0.26	0.25	0.26	0.26	0.27	0.27	0.27	12 12
	7000	0.27	0.25	0.26	0.26	0.27	0.27	0.29	0.27	0.28	12
	7500	0.28	0.26	0.27	V.26	V.27	0.27	0.29	0.27	9.7	17
				Sp	ecimen Y	4: Ren	<u>é 77</u>				
Distance	from bo	ttom, in	. : ,	1.13(28.7 uana)		1.81 ((46 mma)		2.94 (74.7 1982
.029	100	0.17	0.12	0.15	0.12	0.17	0.15	0.15	0.10	0.13	6
(0.74 🚥	a) 200 300	0.22	0.19	0.21	0.16	0.23	C.20 0.20	0.20	0.19	0.20	6
	500	0.23	0.22	0.23	0.18	0.23	0.21	0.20	0 19	0.20	6
	1000	0.26	0.22	0.24	0.19	0.23	0.21	0.20	0.20	0.20	6
	1500	0.30	0.29	0.30	0.21	0.23	0.22	0.22	0.20	0.21	8
	2500	0.32	0.33	0.33	0.29	0.30	v.30	0.26	0.28	0.27	10
	3000	0.32	0.33	0.33	0.32	0.33	0.33	0.32	0.31	0.32	10
	4000	0.33	0.35	0.34	0.33	0.34	0.34	0.33	0.35	0.34	10
	4500 5000	0.37 0.37	0.36	0.37	0.35	0.34	0.35 0.35	J.34 0.34	0.35	0.35	11
	5500	0.37	0.36	0.37	0.35	0.34	0.35	0.34	0.35	0.35	11
	6000 6500	0.37 0.37	0.36	0.37	0.35	0.34	0.35	0.34	0.35	0.35	11 11
	7000	0.37	0.36	0.37	0.35	0.35	0.35	0.34	0.35	0.35	11
			0.30	0.00 (*	·····	0.35	2.20 (6)	0.55	0.35	0.55	
Distance	I JO	rom, 1n. No. C	: racks	0.85	22.4 then /		2.38(0)			2.94 (/4.7 mm.)
.035 (0.89 mm)	200	0.07	0.06	0.07	0.06	0.15	0.11	0.11	0.10	0.11	5
	500	0.12	0.07	0.13	0.07	0.15	0.11	0.12	0.10	0.11	8
	1000	0.12	0.07	0.10	0.08	0.16	0.12	0.13	0.11	0.12	8
	1500	0.14	0.14	0.14	0.10	0.18	0.14	0.17	0.15	0.16	8
	2000 2500	0.18 0.20	0.19 0.20	0.19 0.20	0.11	0.18	0.15	0.20 0.21	0.25	0.23	9
	3000	0.22	0.26	0.24	0.21	0.21	0.21	0.27	0.26	0.27	11
	4000	0.23	0.26	0.25	0.21	0.22	0.22	0.28	0.26	0.27	11
	4500	0.27	0.26	0.27	0.26	0.22	0.24	0.30	0.27	0.29	11
	5500	0.28	0.26	0.27	0.28	0.26	0.27	0.32	0.27	0.30	13
	6000	0.28	0.26	0.27	0.28	0.26	0.27	0.32	0.27	0.30	13
	7000	0.29	0.26	0.28	0.29	0.26	0.28	0.32	0.27	0.30	13
	7500	0.29	0.26	0.28	0.29	0.26	0.28	0.32	0.27	0.30	14
	_			<u>Sp</u>	ecimen Z	2: <u>Ren</u>	<u>e 125</u>				
Distance	Eron bot	tom, in. No C	: racke	1.13 (2	2 7. / mm)		1.69 (4)	۲.୨ mm)		2.56 (6)	omen)
02.7 (0.69 mm)	200	0.07	0.11	0.09							1
	500	0.18	0.14	0.16		0 00					i
	700 1000	0.19 0.19	0.19	0.19 0.19	0.03	0.03	v.03				2

Table 11 (cont.)

Edge		Crack Length, in.									Total
Radius, in.	Cycles	Front	Back	Ave	Front	Back	Ave	Front	Back	Ave	Cracks Observed
	1500	0.19	0.19	0.19	0.11	0.14	0.13	0.16	0.20	0.18	3
	2000	0.26	0.28	0.27	0.15	0.20	0.18	0.24	0.23	0.24	3
	3000	0.28	0.28	0.28	0.28	0.32	0.30	0.28	0.30	0.29	4
	3500	9.29	0.28	0.29	0.28	0.32	0.30	0.29	0.30	0.30	4
	4000	0.29	0.30	0.30	0.28	0.32	0.30	0.30	0.31	0.31	5
	5000	0.32	0.31	0.32	0.28	0.32	0.30	0.32	0.31	0.32	ő
	5500 6000	0.35	0.33	0.34	0.32	0.32	0.32 0.32	0.32 0.32	0.33	0.33	6
	6500	0.36	0.36	0 36	0.12	0 32	A 32	0.33	0.33	0.33	
	7000	0.37	0.38	0.38	0.32	0.35	0.34	0.35	0.34	0.35	6
	7300	0.37	0.38	0.38	0.32	0.35	0,34	0.37	0.38	0.38	6
Distance f	rom boti	tow, in.	:	2.69	(68.3)	m)					
.033	2500	0.10	0.10	0.10							1
(0.84 🚥)	3000	0.11	0.12	0.12							1
	4000	0.16	0.17	0.17							î
	4500	0.16	0.17	0.17							1
	5000 5500	0.18	0.18	0.18							1
	6000	0.19	0.18	0.19							ī
	6500 7000	0.19	0.20 0.21	0.20							1
	7500	0.20	0.21	0.21							ī
				Spe	ecimen 7	3: Rer	né 125				
Distance f	roa bott	com. in.	•	1.06 (2			1.88 (4	7.8 mm)		2.81 (7	1.6 mm)
	190	8.5	Cricks	(-				,		(-	
(0.69 tm)	200 300	0.14 0.18	0.12	0.13							1
	500	0.19	0.16	0.18							ĩ
	1000	0.25	0.16	0.21							1
	1500	0.25	0.23	0.24	0.05	0.07	0.06	0.14	0.12	0.13	8
	2000	0.25	0.23	0.24	0.09	0.09	0.09	0.23	0.23	0.23	9
	3000	0.30	0.30	0.30	0.20	0.24	0.22	0.24	0.23	0.24	9
	3500	0.33	0.34	0.34	0.24	0.25	0.25	0.25	0.24	0.25	9
	4000	0.35	0.36	0.36	0.24	0.25	0.25	0.25	0.25	0.25	9
	4500 5000	0.36	0.38	0.37	0.30	0.29	0.30	0.29	0.29	0.29	10
	5500	0.36	0.38	0.37	0.30	0.29	0.30	G.30	0.29	0.30	10
	6000	0.37	0.38	0.38	0.31	0.30	0.31	0.33	0.29	0.31	10
	6500 7000	0.38	0.38	0.38	0.31	0.31	0.32	0.33	0.32	0.33	10
	7500	0.38	0.38	0.38	0.32	0.31	0.32	0.33	0.33	0.33	11
Distance f	rom bot	tom, in.	:	1.88 (47.8 mm))	0.94 (2	3.9 same)		2.63 (66.8 mama)
.033	1505 1500	0.03	0.03	0.03							1
(0.84 mm)	2000	0.04	0.05	0.05	0.04	0.04	0.04	0.04	0.04	0.04	8
	3000	0.07	0.05	0.06	0.05	0.04	0.05	0.13	0.08	0.11	8
	3500	0.11	0.11	0.11	0.07	0.09	0.08	0.13	0.09	0.11	8
	4000 4500	0.11	0.11	0.11	0.07	0.09	0.08 0.08	0.13	0.10	0.12	8 10
	5000	0.17	0.15	0.16	0.07	0.09	0.08	0.17	0.18	0.18	10
	5500 6000	0.17	0.15	0.16	0.08	0.09	0.09	0.17	0.21	0.19	10
	6500	0.17	0.15	0.16	0.08	0.05	0.09	0.20	0.21	0.21	10
	7000	0.17	0.15	0.16	0.11	0.10	0.11	0.20	0.21	0.21	10
	/300	0.13	U.1/	0.10		v	v.12	V. 22	v. 21	V. 22	10
	_			<u>Sp</u>	<u>erimen 7</u>	o: Rei	ne 125		、	/ !	·7 · 7
Distance i	rom bot: נו	tom, in. No	uracks	2.88 (∕J.∠ (1811)		1.44 (anam of.ot))	2,25(
024	200	0.19	0.19	0.19	0.15	0.10	0.11				1 2
(0 61 mm)	300 500	0.22	0.25	0.24	0.12	0,19	0.20	0.11	0.09	0.10	3
	700	0.27	0.27	0.27	. 22	0.22	0.22	0.12	0.13	0.13	3
	1000	0.40	V. 4 /	V.40	~						-

Table 11 (cont.)

Edge			et Car		Crack	Length	<u>1. 10.</u>		rd Cra		Total
tadius, in.	Cycles	Front	Back	Ave	Front	Back	Avg	Front	Back	Avg	Observed
	1600	0.28	0.17	0.20	0 33	0.21	0.23	0.16	0.15	0.16	
	2000	0.32	0.34	0.33	0.29	0.26	0.28	0.17	0.17	0.17	Ś
	2500	0.32	0.34	0.33	0.29	0.26	0.28	0.17	0.17	0.17	ş
	3000	0.34	0.34	0.34	0.29	0.27	0.28	0.18	0.17	0.18	5
	4000	0.33	0.35	0.35	0.30	0.27	0.29	0.23	0 71	0.22	ś
	4000	0.30	0.35	0.36	0.30	0.32	0.33	0.23	0.25	0.24	5
	5000	0.36	0.36	0.36	0.33	0.32	0.33	0.23	0.25	0.24	5
	5500	0.36	0.36	0.36	0.33	0.32	0.33	0.27	0.28	0.28	2
	0000	0.30	0.30	0.30	0.33	0.32	0.33	0.23	0.30	0.30	
	6500 7000	0.30	0.50	0.41	0.33	0.32	0.33	0.30	0.30	0.30	5
	7500	0.41	0.40	0.41	0.33	0.32	0.33	0.31	0.32	0.32	5
Distance	from bo	ttom, in.	i Tacks	1,44	(36.6 🗪))	1.06 (26.9 🖚)		0.94 ((23.9 mms)
.036	2000	0.09	0.11	0.10							1
(0.91 ==)	2500	0.12	0.11	0.12							1
	3000	0.12	0.11	0.12	0.02	0.02	0.02				1 2
	4000	0.13	0.12	0.13	0.02	0.02	0.02				2
	4500	0.13	0.15	0.14	0.02	0.02	0.02				2
	5000	0.16	0.15	0.16	0.02	6.02	0.02				2
	5500	0.17	0.16	0.17	0.02	0.02	0.02				2
	6500	0.20	0.19	0.20	0.02	0.02	0.02				2
	7000	0.20	0.19	0.20	0.02	0.02	0.02	0.02	0.02	0.92	3
	7500	0.20	0.19	0.20	0.03	0.02	0.03	0.02	0.04	0.03	1
		Snect	men 01-		Fute	cric +	MICHAIN	/Pt Coat			
)istance :	Eron bo	ttom, in.	.:	2.19 (55.6 maa)		2.0 (50).8		1.63(4	1.4 mm2)
077	4500	No 4	Cracks	0.00	0.05	0.05	0 0F				
.022 (0.56 mm.)	5500	0.12	0.12	0.12	0.05	0.05	0.05	0.07	0.07	0.07	4
(**** = /	6000	0.13	0.12	9.13	0.05	0.08	0.08	0.12	0.12	0.12	4
	6500	0.15	0.15	0.15	0.09	0.09	0.09	0.14	0.15	0.15	4
	7500	0.17	0.17	0.17	0.10	0.11	0.11	0.17	0.17	0.17	4
			S	pecimen_	P2: v/v	<u>/'-6</u> 1	etectic	••••	••••		-
Distance	from bo	ttom, in	.:	2.44 ((62 and)						
.017	6500	0.01	0.01	0.01							1
(0.43 🖦)	7000	0.01	0.01	0.01							ĩ
	7500	0.01	0.01	0.01							1
			Specie	en R2:	0.06C	<u>v/v'-5</u>	Eutect	<u>lc</u>			
Distance	from bo 5000	ttom, in . N ວ C	: racks	2.06 ((52.3 tame)	•	1.81 (4	46 mm)		1.75 (44.5 mm.)
.017 (0 /3)	6500	0.03	0.03	0.03	0.02	0.02	0.02	0.02	0.02	0.02	6
(U.43 1988)	7500	0.03	0.03	0.03	0.02 0.02	0.02	0.02	0.02	0.02	0.02	5
		Specime	n S1: 0	.06C v	/v'-5	Eutecti	c + NiC	Aly/De	Coat	0.02	,
)istance i	Eron bot	tom, in.	:	2.06 (52.3 tana)			<u>+</u>			
.018	6500	0 11	1 JCKS								
(0.46 mm) 7000	0.14	0.14	0.14							1
	7500	0.14	0.14	0.14							1
		Spec in	en <u>Tl:</u>	MM 200	DS Sing	le Crys	tal + N	CTALY/F	t Coat		
istance :	from bot	ttom, in.	:	2.44	(62 10000)		2.31 (58.7 mm)		
0.27	6000	N⊙ (0	ricks	0.04							-
024 061 mm	7000	0.06	0.05	0.06							1
	7500	0.07	0.05	0.06	0.06	0.01	0.04				2
			ç	Specimen	P1: 1	`'	Euterti	-			-
stance fr	om bott	om, in.:	2	2.0 (50	.8 mm.)		2.31 (58	= 3.7 anna)			
)30)76 mm)	7000	No 0	Cracks	0.01	0.01	0.01	0.01				
J 70 740	/ 500	0.01	V.VI	V. UI	0.01	0.01	0.01				2

Table 12

							-		
SUMMARY	OF	LONGITUDINAL	CRACK	PROPAGATION	FOR	GROUP	2	EUTECTIC	SPECIMENS

	······································	· · · · · · · · · · · · · · · · · · ·	Average	Longitudina						
Number		, '- 8	$\frac{1}{\sqrt{\gamma'-\delta}}$ + NiCrAlY/Pt Coated			y/y'-8	(0.06C)	$\gamma/\gamma' - \delta$ (0.06C) + N1CrA1Y/Pt Coated		
of	P1	P2	01	O2		R1	R2	S1	S2	
Cycles	Top/Bot.	Top/Bot.	Top/Bot.	Top/Bot.		Top/Bot.	Top/Bot.	Top/Bot.	Top/Bot.	
200 ^b	12.7/ 9.9	2.5/11.4	2.8/ 3.8	9.4/4.8		5.6/ 2.0	5.6/ 1.5	10.9/ 4.8	4.8/ 1.8	
1000	15.0/ 6.4	5.6/14.7	7.8/ 8.1	17.3/8.1		8.6/ 6.4	9.5/ 7.9	15.0/ 7.8	7.9/ 7.8	
1500	21.6/16.5	7.1/16.6	10.7/ 8.9	18.5/10.8		10.9/ 6.4	10.9/10.9	16.5/ 8.4	9.1/ 9.1	
2000	21.8/16.6	9.9/19.8	13.5/11.4	20.2/13.5		12.3/10.3	11.9/13.1	17.4/11.1	10.3/11.5	
2500	22.2/18.6	10.7/19.8	16.3/11.9	21.8/14.7		12.7/11.5	12.3/11.9	19.1/13.5	11.5/12.3	
3000	23.0/19.4	11.9/20.6	16.3/13.1	22.2/15.5		12.7/12.7	12.3/11.9	19.1/13.5	11.5/12.7	
3500	24.2/19.8	11.9/22.2	16.6/13.5	22.6/15.9		13.1/12.7	13.9/12.3	19.8/13.5	11.5/13.1	
4000	25.8/20.2	12.7/22.2	18.2/13.9	23.4/16.3		13.5/14.3	13.9/14.7	20.6/13.5	11.9/14.3	
4500	25.8/20.6	13.1/22.6	19.1/15.5	24.2/16.6		13.9/15.1	16.3/14.7	20.6/15.5	12.3/15.5	
5 0 00	25.8/21.4	13.1/23.8	19.8/15.5	24.2/16.6		14.7/15.1	17.0/15.1	20.6/15.5	12.3/15.5	
5500	25.8/21.4	13.5/24.6	20.6/15.9	25.0/17.4		15.9/16.3	17.0/16.3	21.4/15.5	12.7/17.0	
6000	25.8/21.4	13.9/24.6	20.6/15.9	25.0/17.4		16.3/16.3	18.6/16.3	21.8/16.3	12.7/17.0	
6500	26.2/21.4	13.9/25.4	20.6/15.9	25.0/17.9		16.3/16.6	19.1/16.3	21.8/16.3	13.1/17.0	
7000	26.2/22.2	14.3/25.8	21.0/16.3	25.4/17.9		16.3/16.6	19.1/17.4	21.8/16.3	13.1/17.4	
7500	26.6/22.2	14.3/26.2	21.4/16.3	25.8/17.9		17.0/17.0	19.1/17.4	21.8/16.3	13.1/17.4	

^aAverage crack length calculated from two scale measurements.

^bCyclic exposure with first observable longitudinal cracks.

Percent Weight Change versus Accumulated Cycles for Coated and Uncoated MM 200

Percent Weight Change versus Accumulated Cycles for Coated and Uncoated IN-738, IN-792 + Hf, and MM 509

Percent Weight Change versus Accumulated Cycles for Uncoated Superalloys

Percent Weight Change versus Accumulated Thermal Cycles for Coated and Uncoated $\gamma/\gamma' - \delta$ DS Eutectic Alloys

Typical Appearance of DS $\sqrt{\gamma'}$ -5 Eutectic Double-Edge Wedge Specimens As-Received

Appearance of Coated and Uncoated $y/y'-\delta$ Eutectic after 7,500 Thermal Cycles

53

Figure 18

Appearance of Coated and Uncoated $\sqrt{\gamma'-\delta}$ Eutectic (0.06C) and Coated MM 200 DS after 7,500 Thermal Cycles

Appearance of MM 002 and MM 246 after 7,500 Thermal Cycles