NASA Contractor Report 145278

RADAR BACKSCATTERING FROM A SEA HAVING AN AAISOTROPIC LARGE-SCALE SURFACE

\author{

- ASA-C゚ー-45278) FACAR EACRSCATTERINGFBCM N78-15663
 A SEA HAVING AN ANISOTROPIC LAFGE-SCAIE
 \therefore RFACE, PART 2 Final Befort (Wentz (Frark
 J.) and Associates) 37 FECA03/MFA01 Jaclas
 CSCI C99 G3/48 57785
}

Frank J. Hentz

Frank J. Hentz and Associates
Box 162, MIT P. 0.
Cambridge, :'14 ! !2139
nasa Purchase Opder L-2442nA
Mnsn
National Aeronautics and Space Administration

Langley Research Center Hampion. Virginia 23665

TABLE OF CONTENTS

Introduction and Sumary 1
Two-Scale Scattering Model 3
Specification of Sea Surface Roughness 8
Computations of the Normalized Radar Cross Section 12
Appendix: Small-Scale Scattering Coefficient 28
References 34

INTRODUCTION AND SUMMARY

Radar backscattering from the sea is governed by two distinct physical processes. For viewing angles ∂ near nadir the backscattering is primarily specular reflections from sea waves with wavelengths much longer than the radiation wavelength λ. The geometric-optics formulation of this large-scaie scattering results in the normalized radar cross seztion σ° being proporcionsl to the probability density function $P(\hat{n})$ of the large-scale surface normal \hat{n}. For large nadir viewing angles the backscattering is principaliy Bragg scattering from sea waves with wavelengths comparable to λ, and 0° depends on the power spectrum $N(\vec{\kappa}, \hat{\eta})$ of these small-scale waves. The argument $\vec{\kappa}$ denotes the vector sea wavenumber, and $\hat{\eta}$ denotes the normal of the underlying large-scale roughness.

In this report we derive a two-scale scattering model that combines the two types of scattering in a manner consistent with energy conservation, that includes the effect of the tilting of the small-scale roughness by the largescale roughness, and that accounts for the reduction of reflected power due to Bragg scattering. The special case of baciscattering for which the transmitted pola: ization equals the received polarization is then considered. An anisotropic large-scale surface of the type reported by Cox and Munk [1956] is used to specify $P(\hat{n})$. In order to isoiate the azimuthal variation of σ° produced by the anisotronic $P(\hat{n})$, we assume an isotrcpic small-scaie spectrum.

Computations of σ° are compared with the AAFE RADSCAT data at 13.9 GHz for three wind speeds, $U=3,6.5$, and $15 \mathrm{~m} / \mathrm{s}$. Better agreement occurs for small and large θ than for intermediaie angles. The poor agreement in the midrange may be cause by the abrupt splitting of the sea spectrum into large- and smallscale components and by the somewhat arbitrary choice of 0.25 for the perturbation parameter. The $3 \mathrm{~m} / \mathrm{s}$ data are considerably less than the computed values
at large nadir angles, and this may be due to the friction velocity being less than the critical velocity required to significantly disturb the surface. At $15 \mathrm{~m} / \mathrm{s}$ the model displays an anisotropy that closely corresponds to the measured data. The anisotropy of the model decreases with decreasing wind sfaed, and the $3 \mathrm{~m} / \mathrm{s}$ computations are essentially independent of the azimuth viewing angle ©. In contrast, the anisotropy of the measurements does not change much with wind speed, and for light winds it is probably due to a directionel small-scale spectr m, which is not considered in the present model.

Py rametric computations or σ^{0} at 14.6 GHz are also presented. The skewness of $P(\hat{n})$ results in the ratio of the upwind to downwins $\sigma 0$ oeing less than unity for small θ. This agrees with X-band measurements [Skolnik, 1970] except that the ratio for the measurements is smaller than that given by the model. The average $\left\langle\sigma^{0}\right\rangle$ of the upwind, crosswind, and downwind σ° is also found. For small $\theta,\left\langle\sigma^{0}\right\rangle$ decreases with increasing wind speed, and at large angles the opposite is true. Tre average is least sensitive to wind speed variations near 15°. At 30° the wind dependence is approximately U^{2} for horizontal polarization and U^{1-5} for vertical polarization when $U \leq 20 \mathrm{~m} / \mathrm{s}$. For large angles the horizontally polarized $\left\langle\sigma^{\circ}\right\rangle$ has a stronger wind dependence thar does the vertically polarized $\left\langle\sigma^{\circ}\right\rangle$. Finally, the dependence of $\left\langle\sigma^{\circ}\right\rangle$ on θ and on polarization diminishes for strong winds.

The mean sea surfac defines the $z=0$ plane of a x, y, z coordinate system, and the x axis points in the upwind diracion. All vectors are referenced to this system. Unit vectors are denoted by a caret, and vectors that in generai do not have unit magnitude are denoted by an arrow. The axis vectors are de. noted by \hat{x}, \hat{y}, and \hat{z}. The components of a vector are indicated by deleting the caret or arrow and inserting the superscript x, y, or z. The radar boresight direction is represented by \hat{k}_{i} pointing towards the sea surface Σ, and the viewing angle θ is defined as the angle made by $-\hat{k}_{i}$ and \hat{z}.

The definition of scattering coefficient, which will be used thrisughout this report, is the ratio of the power density $p\left(\hat{k}_{s}\right)$ to the time-averaged power incident onto the surface in question, where $p\left(\hat{k}_{s}\right) d k_{s}^{x} \mathrm{dk}_{\mathrm{s}}^{\mathrm{y}}$ is the timeaveraged scattered power having a propagation vector in the neighborhood $d k_{S} X_{S} y_{s}^{y}$ of $\hat{\mathbf{k}}_{\mathrm{s}}$. This is not the usual definition but is more compatible witn the $\hat{\mathbf{k}}_{\mathrm{i}}, \hat{\mathbf{k}}_{s}$ vector notation used herein. Note that the integral of the scattering coefficient over all $\hat{\mathrm{k}}_{\mathrm{S}}$ equals the ratio of the total scattcred power to the incident power. The scattering coefficient defined by Feake [1959] is in terms of power scattered per solid angle and is foind by multipiying our coefficient by $4 \pi k_{s}^{2}$ (a differential solid angle $d \Omega=d k_{S}^{X_{S}} d k_{S}^{y} / k_{s}^{z}$). The normalized raiar cross section $\sigma^{\circ}\left(\hat{k}_{i}\right)$ is given by the product of Peake's scattering coefficient. and $\cos \theta$. Hence in terms of our scattering coefficient $\Gamma\left(\hat{k}_{i}, \hat{k}_{s}\right)$ for the sea surface, the normalized radar srosi section is

$$
\begin{equation*}
\sigma^{\circ}\left(\hat{k}_{i}\right)=4 \pi \cos ^{2} \theta \Gamma\left(\hat{k}_{i},-\hat{k}_{i}\right) \tag{1}
\end{equation*}
$$

A two-scale scattering model is used to compute $\Gamma\left(\hat{k}_{i}, \hat{k}_{s}\right)$. The sea surface is modeled by a small-scale surface Σ_{S} superimposed onto a large-scale surface Σ_{ℓ}. The two-scale surface Σ is then the sum of Σ_{s} and Σ_{ℓ}. The rms height
variation on Σ_{s} is assumed small compared to the radiation wavelength λ, and the rms slope variation is assumed small compared to unity. These two requirements are necessary for the application of perturbation theory [Rice, 1951] in treating the radiaticn scattered by Σ_{s}. The radius of curvature R_{c} at all points on Σ_{ℓ} is assumed much sreater than λ. This allows for dividing Σ_{ℓ} into finite surface elements $\Delta \Sigma_{\ell}$ that have dimensions large relative to λ and that are nearly flat in the respect that the variation of the normal to $\Delta \Sigma_{\ell}$ is small compared to the mean normal \hat{n} of $\Delta \Sigma_{\ell}$. The electric field on the two-scale surface element $\Delta \Sigma$ associated with $\Delta \Sigma_{\ell}$ is approximated by the field that would be present on the infinte plane normal to \hat{n}, Σ_{S} being superimposed on the plane. Furthermore, the fields on adjacent elements are assumed uncorrelated. This results in the scattering coefficient of $\Delta \Sigma$ being equal to the scattering coefficient $\Gamma\left(\hat{k}_{i}, \hat{k}_{S}, \hat{n}\right)$ of the tilted small-scale surface Σ_{S}, and the total scattered power is the sum of the power scattered by the individual elements. Multiple scattering is not considered, and all of the scatcered power is assumed to escape from the surface.

The power density $p\left(\hat{k}_{s}\right)$ for the two-s le surface is found by summing over all jurface elements that are illuminated by the incident radiation.

$$
\begin{equation*}
p\left(\hat{k}_{s}\right)=\sum_{m} r\left(\hat{k}_{i}, \hat{\mathrm{k}}_{\mathrm{s}}, \hat{\eta}_{m}\right) \Delta \mathrm{p}_{\mathrm{i}}\left(\hat{\mathrm{k}}_{\mathrm{i}}, \hat{\eta}_{m}\right) \tag{2}
\end{equation*}
$$

where \hat{n}_{m} is the mean normal for the $m^{\text {th }}$ element and $\Delta p_{i}\left(\hat{k}_{i}, \hat{n}_{m}\right)$ is the power incident onto the $m^{\text {th }}$ eienent. Dividing (2) by the total incident power gives the scattering coefficient for the two-scale surface.

$$
\begin{equation*}
\Gamma\left(\hat{k}_{i}, \hat{k}_{S}\right)=(A \cos \theta)^{-1} \sum_{m} \Gamma\left(\hat{k}_{i}, \hat{k}_{s}, \hat{\eta}_{m}\right) \Delta f_{m}\left(-\hat{k}_{i} \cdot \hat{n}_{m}\right) \tag{3}
\end{equation*}
$$

where A is the area of the mean two-scale surface that is subtended by the incident plane wave and ΔA_{m} is the area of $\Delta \Sigma_{\ell}$ for the $m^{\text {th }}$ element. The
assumption that the dimension of $\Delta \Sigma_{\ell}$ is small relative to R_{c} means that the variation in $\hat{\eta}$ from one element to the next is small, and hence the above summation can be replaced by the integral

$$
\begin{equation*}
\Gamma\left(\hat{k}_{i}, \hat{k}_{s}\right)=(A \cos \theta)^{-1} \int d n^{x} \int d n^{y}\left(-\hat{k}_{i} \cdot \hat{n}\right) \xi\left(\hat{k}_{i}, \hat{n}\right) \Gamma\left(\hat{k}_{i}, \hat{k}_{s}, \hat{n}\right) \tag{4}
\end{equation*}
$$

where $\xi\left(\hat{k}_{i}, \hat{\eta}\right) d \eta^{x} d \eta^{y}$ is the area of ε_{ℓ} that has a normal in the neighborhood $d r_{1} \mathrm{Xn}^{\mathrm{y}}$ of $\hat{\eta}$ and that is illuminated by the incident radiation. The region of integration is $\left(\eta^{x}\right)^{2}+\left(\eta^{y}\right)^{2} \leq 1$.

Let $\Xi(\hat{n}) \mathrm{dn}^{x_{d n}}{ }^{y}$ denote the area of Σ_{ℓ} that has a norme. in the neighborhood $d \eta^{x} d \eta^{y}$ of $\hat{\eta}$ and that is subtended by the inc: zent wave. The probability density function $P(\hat{n})$ of the large-scale surface normal is then defined by

$$
\begin{equation*}
P(\hat{n})=n^{2} \Xi(\hat{n}) / A \tag{5}
\end{equation*}
$$

Let $I\left(\hat{k}_{j}, \hat{n}\right)$ be the fraction of $E(\hat{n}) d \eta^{x} d \eta^{y}$ that is not shadowed by a remote portion of the surface from the incident radiation. The illuminated area density function $\xi\left(\hat{k}_{i}, \hat{\eta}\right)$ is then given by the product of $E(\hat{\eta})$ and $I\left(\hat{k}_{i}, \hat{\eta}\right)$.

$$
\begin{equation*}
\xi\left(\hat{k}_{i}, \hat{n}\right)=I\left(\hat{k}_{i}, \hat{n}\right) P(\hat{n}) A / n^{2} \tag{6}
\end{equation*}
$$

The illumination function $I\left(\hat{k}_{i}, \hat{n}\right)$ is readily found by assuming that it is independent of $\hat{\eta}$ except through the unit step function $u\left(-\hat{k}_{i} \cdot \hat{\eta}\right)$, which accounts for the situation in which the angle betweer \hat{n} and $-\hat{k}_{i}$ exceeds $\pi / 2$, totally ruling out the possibility of illumination.

$$
\begin{equation*}
I\left(\hat{k}_{i}, \hat{n}\right)=x\left(\hat{k}_{i}\right) u\left(-\hat{k}_{i} \cdot \hat{n}\right) \tag{7}
\end{equation*}
$$

The function $x\left(\hat{k}_{i}\right)$ is deterned as follows. The ratio of the power incident onto area $\xi\left(\hat{k}_{i}, \hat{\eta}\right) d n^{x} d n^{y}$ to the total incident power is given by

$$
\begin{equation*}
r\left(\hat{k}_{i}, \hat{n}\right)=(A \cos \theta)^{-1}\left(-\hat{k}_{i} \cdot \hat{n}\right) \xi\left(\hat{k}_{i}, \hat{n}\right) d n^{x_{d}} \eta^{y} \tag{8}
\end{equation*}
$$

The integral of $r\left(\hat{k}_{i}, \hat{n}\right)$ over all \hat{n} is unity, and solving for $\chi\left(\hat{k}_{i}\right)$ one obtains

$$
\begin{align*}
& x\left(\hat{k}_{i}\right)=\cos \theta / \int d \eta^{x} \int d_{n}^{y} G\left(\hat{k}_{i}, \hat{n}\right) \tag{9}\\
& G\left(\hat{k}_{i}, \hat{n}\right)=\left(-\hat{k}_{i} \cdot \hat{n}\right) u\left(-\hat{k}_{i} \bullet \hat{n}\right) P(\hat{n}) / n^{z} \tag{10}
\end{align*}
$$

For situations in which shadcwing is insignificant, such as smooth seas or smail $\theta, x\left(\hat{k}_{\dot{i}}\right)$ approaches unity. Substituting (6) and (7) into (4) yields

$$
\begin{equation*}
\Gamma\left(\hat{k}_{i}, \hat{k}_{s}\right)=x\left(\hat{k}_{i}\right) \sec \theta \int d \eta^{x} \int d \eta^{y} G\left(\hat{k}_{i}, \hat{n}\right) \Gamma\left(\hat{k}_{i}, \hat{k}_{s}, \hat{\eta}\right) \tag{11}
\end{equation*}
$$

In the Appendix $\Gamma\left(\hat{k}_{i}, \hat{\mathrm{k}}_{\mathrm{S}}, \hat{n}\right)$ is derived as the sum of two scattering coefficients, one associated with the incoherent scattered power and the other with the coherent reflected power. The coherent coefficient given by (A25) has the form of a Dirac delta function, and when it is substituted into (11) yields

$$
\begin{gather*}
r_{o}\left(\hat{k}_{i}, \hat{k}_{s}\right)=x\left(\hat{k}_{i}\right) \sec \theta P\left(\hat{n}_{0}\right) \gamma\left(\hat{k}_{i}, \hat{\eta}_{0}\right) / 4 k_{s}^{2} \tag{12}\\
\hat{n}_{0}=\left(\hat{k}_{s}-\hat{k}_{i}\right) /\left|\hat{k}_{s}-\hat{k}_{i}\right| \tag{13}
\end{gather*}
$$

where the power reflection coefficient $\gamma\left(\hat{K}_{1},{ }^{\prime \prime}\right.$ is given by (A24).
We now consider the special case of backscattering, i.e., $\hat{\mathrm{k}}_{\mathrm{s}}=-\hat{\mathrm{k}}_{\mathrm{i}}$, for which the transmitted polarization equals the received polarization. Also the roughness on the small-scale surface Σ_{s} is assumed isotropic. Under these conditions (12) becomes

$$
\begin{equation*}
r_{0}\left(\hat{k}_{i},-\hat{k}_{i}\right)=\frac{3}{4} x\left(\hat{k}_{i}\right) \sec ^{2} \theta P\left(-\hat{k}_{i}\right) \gamma\left(\hat{k}_{i},-\hat{k}_{i}\right) \tag{14}
\end{equation*}
$$

where $\gamma\left(\hat{k}_{i},-\hat{k}_{i}\right)$ is given by (A32). The incoherent two-scale backscattering coefficient is given by

$$
\begin{equation*}
r_{x}\left(\hat{k}_{i},-\hat{k}_{i}\right)=x\left(\hat{k}_{i}\right) \sec \theta \int d n^{x} \int d \eta^{y} G\left(\hat{k}_{i}, \hat{n}\right) \Gamma_{x}\left(\hat{k}_{i},-\hat{k}_{i}, \hat{\eta}\right) \tag{15}
\end{equation*}
$$

where $\Gamma_{x}\left(\hat{k}_{i},-\hat{k}_{i}, \hat{n}\right)$ is given by (A31). Summing the coherent and incoherent coefficients gives the two-scale backscattering coefficient.

$$
\begin{equation*}
\Gamma\left(\hat{k}_{i},-\hat{k}_{i}\right)=\Gamma_{o}\left(\hat{k}_{i},-\hat{k}_{i}\right)+\Gamma_{x}\left(\hat{k}_{i},-\hat{k}_{i}\right) \tag{16}
\end{equation*}
$$

The two-scale scattering model requires as inputs two distributions that characterize the sea surface roughness. These are the small-scale roughness power spectrum $W(\vec{\kappa}), \vec{k}$ being the vector wavenumber, and the probability density function $F(\hat{n})$ of the large-scale surface normal \hat{n}. For the purpose of isolating the effect of an anisotropic large-scale surface, we assume an isctropic small-scale spectrum $W(\kappa)$ that depends only on $\kappa=|\vec{k}|$. Pierson and Stacy's [1973] empirical sea spectrum $S(\kappa)$ (Eqs. 2.5-2.9 in their report) is used to specify $W(\kappa)$. The amplitude of $S(k)$ is a function of the friction velocity u_{*}, which in turn is a function of the wind speed, anemometer height, and air-sea temperature difference [Cardone, 1969].

The spectrum $S(k)$ is divided into a large-scale spectrum $S_{\ell}(\kappa)$ and a smallscale spectrum $S_{S}(k)$.

$$
\begin{align*}
& S_{\ell}(\kappa)= \begin{cases}S(k) & k \leq \kappa_{c} \\
0 & k>\kappa_{c}\end{cases} \tag{17}\\
& S_{S}(\kappa)= \begin{cases}0 & k \leq \kappa_{c} \\
S(\kappa) & k>\kappa_{c}\end{cases} \tag{13}
\end{align*}
$$

and $W(r)$ is related to $S_{S}(k)$ by

$$
\begin{equation*}
W(k)=(2 / \pi) S_{\mathbf{s}}(k) / k \tag{19}
\end{equation*}
$$

The value of the cutoff wavenumber k_{c} is found by assigning a value to the small-scale perturbation parameter $k \zeta$, where k is the radiation wavenumber and r. is the ras height variation on the small-scale surface. Inteprating over the small-scale spectrur. gives ζ^{2}.

$$
\begin{equation*}
\zeta^{2}=(\pi / 2) \int_{0}^{\infty} d \kappa \kappa W(\kappa) \tag{20}
\end{equation*}
$$

or in terms of $s(x)$

$$
\begin{equation*}
\zeta^{2}=\int_{k_{c}}^{\infty} d \kappa s(k) \tag{?1}
\end{equation*}
$$

Ihe above interral can be evaluated in closed form, ζ being expressed as a function of k_{c} and u_{*}. The inverse of this function gives κ_{c} in terms of ζ and u_{*}. Perturbation theory requires that $k \zeta$ be small in comparison to unity, and setting $k \zeta$ equal to zero results in the two-scale modei degenerating to geometric optics. We use an intermediate value of 0.25 for the radar cross section computations, and the values of κ_{c} appear in the next section.

The specification of the large-scale slope density $P(\hat{\eta})$ is based on Cox and Munk's [1956] measurements of the sun glitter on rough seas. Their datit were reduced in terms of the probability density function $P\left(Z_{u}, Z_{c}\right)$ of the up/downind and crosswind surface slopes, Z_{u} and Z_{c}. The relationship between $P(\hat{n})$ and $P\left(Z_{u}, Z_{c}\right)$ is

$$
\begin{gather*}
P(\hat{n})=\left(\eta^{z}\right)^{-4} P\left(Z_{u}, z_{c}\right) \tag{22}\\
z_{u}=-n^{x} / \eta^{z} \tag{23}\\
z_{c}=-\eta^{y} / n^{z} \tag{24}
\end{gather*}
$$

where $\left(\eta^{2}\right)^{4}$ is the Jacobian relating the Z_{u}, Z_{c} coordinates to the η^{x}, n^{y} coordinates.

The sun glitter data were fitted to a two-dimensional Cram-Charlier series, and $P\left(Z_{u}, Z_{c}\right)$ was found to be close to Gaussian with some up/downwind skewness that increased with wind speed. 'The most probable slope for high winds was abcut $Z_{11}=-\tan 3^{\circ}$. The data also showed a peakedness, barely above the experimental error, such that the probability of very large and very smail slopes was greater than Gaussian. 'lhese properties are explicated in the following
expressions riven by Cox and Munk:

$$
\begin{align*}
& P\left(Z_{u}, z_{c}\right)= {\left.[1+T(\mu, v)] \exp \left[-\frac{1}{2}\left(\mu^{2}+v^{2}\right)\right] \cdot\left(2 \pi<Z_{u}^{2}\right\rangle^{\frac{1}{2}}\left\langle Z_{c}^{2}\right\rangle^{\frac{1}{2}}\right) } \tag{25}\\
& T(u, v)= c_{1} \mu\left(v^{2}-1\right)+c_{2}\left(\mu^{3}-3 \mu\right)+c_{3}\left(v^{4}-6 v^{2}+3\right) \\
&+c_{4}\left(v^{2}-1\right)\left(\mu^{2}-1\right)+c_{5}\left(\mu^{4}-6 \mu^{2}+3\right) \tag{26}\\
&\left.\mu=Z_{u} /<Z_{u}^{2}\right\rangle^{\frac{1}{2}} \tag{8.7}\\
& v=Z_{c} /<Z_{c}^{2}>^{\frac{3}{2}} \tag{28}
\end{align*}
$$

where $\left\langle Z_{u}^{2}\right\rangle$ and $\left\langle Z_{c}^{2}\right\rangle$ are the up/downind and crosswind slope variances. The skew. ness coefficients are functions of the wind speed U (in m / s)

$$
\begin{align*}
& c_{1}=-(0.01-0.0086 \mathrm{U}) / 2 \tag{29}\\
& c_{2}=-(0.04-0.033 \mathrm{U}) / 6 \tag{30}
\end{align*}
$$

and the peakedness coefficients are constants.

$$
\begin{align*}
& c_{3}=0.40 / 24 \tag{31}\\
& c_{4}=0.12 / 4 \tag{32}\\
& c_{5}=0.23 / 24 \tag{33}
\end{align*}
$$

'l'he sun folitter from large and infrequent slopes was masked by a bockground of sunlirht scattered by submerged particles and reflected skyiight, and the values for the slope variances reported by Cox and Nink represent a lower bound [Wentz, 1975]. To correct for this nd to filter out the slope contribution of the small-scale roughness, we multiply the Cox-Munk up/downwind and crosswind variances by the rat'o of the total variance calculated from the Pierson-Stacy large-scale spectrum to the Cox-Munk total variance. Fhe variances that are used in (25) are then

$$
\begin{align*}
& \left\langle Z_{u}^{2}\right\rangle=\left(\left\langle Z_{p-s}^{2}\right\rangle_{c-m}\right)\left\langle Z_{u}^{2}\right\rangle_{c-m} \tag{34}\\
& \left\langle Z_{c}^{2}\right\rangle=\left(\left\langle Z_{p-s}^{2} /\left\langle Z^{2}\right\rangle_{c-m}\right)\left\langle u_{c}^{2}\right\rangle_{c-m}\right. \tag{35}
\end{align*}
$$

where the values of the variances reported by Cox and Munk are

$$
\begin{gather*}
\left\langle Z_{u_{c-m}}^{2}=3.16 \times 10^{-3} \mathrm{U}\right. \tag{36}\\
\left\langle Z_{c}^{2}\right\rangle_{c-m}=0.003+1.92 \times 10^{-3} \mathrm{U} \tag{37}
\end{gather*}
$$

and the totel variance is

$$
\begin{equation*}
\left\langle Z^{2} z_{-m}=\left\langle Z_{u}^{2}\right\rangle_{c-m}+\left\langle Z_{c-m}^{2}\right\rangle_{c-m}\right. \tag{38}
\end{equation*}
$$

The Pierson-Stacy total variance is calculated from

$$
\begin{equation*}
\left\langle Z^{2}\right\rangle-s=\int_{0}^{k_{c}} d \kappa \kappa^{2} s(k) \tag{39}
\end{equation*}
$$

Although in the strictest sense (39) only applies to a Gaussian surface, the deviation from Gaussir: indicated by the skewness and peakedness is slight and probably does not cause s. nificant error in the vairiance calculation. Note that the Fierson-Stacy variances for the entire ses spectrum (found by integrating from 0 to ∞) are about twice as large as the Cox-Munk variances. The values of the total variances used in the radar cross section computations (i.e. the sum of (34) and (35), which equals $\left\langle Z^{2}\right\rangle_{p-s}$) appear in the next section. The error in skewness and peakedness due to the lack of sun glitter data for large slopes is not considered.

COMPUTATIONS OP THE MORMALIZED RADAR CROSS SECTIOA

The backscattering model described in the previous two sections requires the following inputs: (1) radiation frequency f, (2) pernittivity ε of seawater, (3) wind speed U, (4) nadir viewing angle θ, and (5) azimuth vieving angle \downarrow. Two frequencies are considered: 13.9 GHz for the comparisons with the AAFE RADSCAT data and 14.6 GHz for the parametric computations. The permittivities for these two frequencies are shown in Tables 1 and 2 and are calculated from expressions given by Porter and Wentz [1971] for a seawater temperature and salinity of 2840 K and $33 \% \% 0$.

The sea surface roughness distributions $W(k)$ and $P(\hat{n})$ discussed in the previous section depend on the wind speed U and friction velocity $u_{\text {. }}$. Cardone's [1969] expressions for a neutrally stratified atmosphere and for an anemometer height of 19.5 meters are used to calculate u_{*} as a function of U. Values ior u_{n} along with the cutoff waverurber k_{c} and the large-scale slope variance $\left\langle Z^{2}\right\rangle$, which are referred to in the preceding section, also appear in Tables 1 and 2.

Table 1. Inputs for the AAFE RADSCAT Comparisons
Frequency $=13.9 \mathrm{GHz}$
Permittivity $=40.1-39.3 i$

Wind Speed			
U $(\mathrm{~m} / \mathrm{s})$	Friction Velocity u_{*}	Cutoff Wavenumber κ_{c}	Slope Variance $\left\langle Z^{2}\right\rangle$
	$\mathrm{cm} / \mathrm{s})$		
$\left(\mathrm{cm}^{-1)}\right.$			

Table 2. Inputs for the Parametric Computations
Frequency $=14.6 \mathrm{GHz}$
Permittivity $=38.4$ - $39.0 i$

$\begin{gathered} \text { Wind Speed } \\ U \\ (m / s) \end{gathered}$	$\begin{gathered} \text { Friction Velocity } \\ u_{k} \\ (\mathrm{~cm} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \text { Cutoff Wavenumber } \\ \kappa_{c} \\ (\mathrm{~cm}-1) \end{gathered}$	$\begin{gathered} \text { Slope Variance } \\ \left\langle Z^{2}\right\rangle \end{gathered}$
5	16.0	0.93	0.026
10	37.2	1.27	0.054
15	61.9	1.72	0.099
20	91.1	2.28	0.175
25	122.4	2.93	0.293
30	158.5	3.75	0.492

The azimuth viewing angle is the angle made by the x axis, wiuch points upwind, and the projection of the boresight vector $\hat{\mathbf{k}}_{\dot{i}}$ onto the $2=0$ plane, which is the mean sea surface. The boresight direction is then specified by

$$
\begin{equation*}
\hat{k}_{i}=(\cos \phi \sin \theta, \sin \phi \sin \theta,-\cos \theta) \tag{40}
\end{equation*}
$$

and $=0^{\circ}, 90^{\circ}$, and 180° refer to measurements looking uprind, crosswind, and downind, respectively. The backscattering model has no crosswind asymetry, and hence the computations for ϕ and $-\phi$ are identical. The incident polarization vector \hat{P}_{i}, which appears in the Appendix, is calculated from

$$
\hat{\mathrm{P}}_{i}= \begin{cases}\hat{\mathrm{k}}_{i} \times \hat{\mathbf{z}} /\left|\hat{\mathrm{k}}_{i} \times \hat{z}\right| & \text { horizontal polarization } \tag{41}\\ \hat{\mathbf{k}}_{i} \times\left(\hat{k}_{i} \times \hat{z}\right) /\left|\hat{\mathrm{k}}_{i} \times \hat{\rho}\right| & \text { vertical polarization }\end{cases}
$$

Computations are done for the following directions:

$$
\begin{aligned}
& \theta=0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}, 20^{\circ}, 25^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ} \\
& \phi=0^{\circ}, 90^{\circ}, 180^{\circ}
\end{aligned}
$$

In addition, computations for 13.9 GHz and for $\theta=30^{\circ}$ are done for ranging
from 0° to 180° in 10° steps. In the figures these computation points are connected by straight lines.

The model is compared with the AAFE RANSCAT data at 13.9 GHz in Figures 1 through 5. The horizontally polarized normalized radar cross section σ_{h}^{0} is plotted versus the nadir viewing angle θ in Figures 1 through 3 for upwind, crosswind, and downind observations. The short-dashed, long-dashed, and solid curves represent the computations for $3,6.5$, and $15 \mathrm{~m} / \mathrm{s}$ winds, respectively. The measurements for these three wind speeds are indicated by squares, circles, and stars, respectively. The agreement between the model and the measurements is better for small and large values of θ than for intermediate vaiues. At small nadir angles the backscattering is primarily specular reflections from the large-scale surface, whereas at large angles small-scale Bragg scattering dominates. The poor agreement in the transitional region may be due to the abrupt splitting of the sea spectrum into large- and small-scale components and to the somewhat arbitrary choice of 0.25 for the perturbation parameter.

The model displays a stronger wind dependence near nadir than do the measurements. At large angles, for which the opposite is true, the agreement at $15 \mathrm{~m} / \mathrm{s}$ is iair, but the $3.5 \mathrm{~m} / \mathrm{s}$ measurements are considerably less than the computations. Experiments in wind-water tunnels show a sudden increase in wave height at a critical friction velocity near $12 \mathrm{~cm} / \mathrm{s}$ [tierson and Stacy, 1973], and the expressions that are used to specify the sea spectrum are valid only for u_{*} greater than this critical velocity. The low values of the $3.5 \mathrm{~m} / \mathrm{s}$ data at large angles possibly indicate that the friction velocity during these measurements was less than the critical velocity. This possibility is supported by the u_{*} calculations, which give a value of $10.4 \mathrm{~cm} / \mathrm{s}$ for a $3.5 \mathrm{~m} / \mathrm{s}$ wind speed.

In Figures 4 and $5, \sigma^{\circ}$ at $\theta=30^{\circ}$ is plotted versus the azimuth viewing angle for horizontal and vertical polarizations. The same convention as

Fig. 1. Upwind normalized radar cross section for horizontal polarization

Fio. 2 Crosswind normalized radar cross section for horizontal polarization

Pig. 3. Downwind normalized radar cross section for horizontal polarization

Fig. 4. Azimuth variation of the normalized radar cross section for horizontal polarization

Fig. 5. Azimuth varia lon of the normalized radar cross section for vertical polarization
described above is used to identify the computations and measurements at the three wind speeds. A blanket 6 db has been subtracted from all computations in order to align them with the measurements. The spacing between the three wind speed curves agrees he. 1 with the observations. The $15 \mathrm{~m} / \mathrm{s}$ curve shows a significant anisotropy that closely corresponds to the measured data. This dependence of the model on ϕ is due to reflections from the anisotropic largescale surface. The ϕ dependence decreases with decreasing wind speed, and the $3 \mathrm{~m} / \mathrm{s}$ curve is essentially flat. In contrast, the anisotropy shown by the measurements does not change much with wind speed, and at low wind speeds it is probably due to a directional small-scale spectrum.

Parametric computations for 14.6 GHz are presented in Figures 6 through 11. The upwind-crosswind and upwind-downwind ratios of σ° are plotted versus A in Figures 6 and 7 for horizontal and vertical polarizations. Computations for three wind speeds, 5,10 , and $20 \mathrm{~m} / \mathrm{s}$, are shown by the short-dashed, longdashed, and solid curves, respectively. X-band measurements, which are reported in the Radar Handbook [Skolnik, 1970], are indicated by crosses and represent an average over six days during which the median wind speed was $5 \mathrm{~m} / \mathrm{s}$. The measured upwind-downwind ratio drops sharply at $\theta=10^{\circ}$. In comparison, the model shows a dip but not as extreme because of the small skewness in the large-scale slope probability. For the larger angles the upwind-downwind ratio becomes greater than unity for both the computations and observations, although the $5 \mathrm{~m} / \mathrm{s}$ curve is essentially at 0 db . The discrepancy at large angies is probably due in part to neglecting the small-scale anisotropy, which seems to be an important factor for light winds.

The average $\left\langle\sigma^{0}\right\rangle$ of σ^{0} over ϕ is plotted versus θ in Figures 8 and 9 for horizontal and vertical polarizations.

$$
\begin{equation*}
\left\langle\sigma^{0}\right\rangle=\frac{\pi}{4}\left(\sigma_{\mathrm{up}}^{0}+2 \sigma_{\text {cross }}^{0}+\sigma_{\text {down }}^{0}\right) \tag{42}
\end{equation*}
$$

Fig. 6. Upwind-crosewind and upwind-downind σ° ratios for horizontal polarization

Fig. 7. Upwind-crosswind and upwind-downind σ^{0} ratios for vertical polarization

Fig. 8. The horizontalily polarized $\left\langle 0^{0}\right\rangle$ versus the nadir viewing angle

Fig. 9. The vertically polarized $\left\langle\sigma^{\circ}\right.$, versus the nadir viewing ancle

Six wind speeds, ranging from 5 to $30 \mathrm{~m} / \mathrm{s}$ in $5 \mathrm{~m} / \mathrm{s}$ steps, are shown. 'ithe curves cross each other between 100 and 300 , ju ${ }^{+}$ist consilering the 5: io, and $15 \mathrm{~m} / \mathrm{s}$ curves, the crossover region $1 s$ more narrow, veing between 10° and 15°. The curves flatten out considerably with increasing wind speed, and $<\sigma^{\circ}$. at $30 \mathrm{~m} / \mathrm{s}$ drops only about 8 db from 0° to 60° and is nearly indepeadent of polarization. The polarization independence is due to the dominance of lareescale reflections for strong winds.

The same computations that appear in Figures 8 and 9 appear again in Figures 10 ans 11 except that they are plotted versus the Jog of wind speed rather than θ. Curves for ten nadir viewing angles are shown. Near nadir $<\sigma^{\circ}$, decreases with increasing wird speed, and for the larger angles the opposite is true. The curve for $\theta=15^{\circ}$ is least sensitive to wind speed variations. At the arger angles the horizontally polarized $\left\langle\sigma^{\circ}\right\rangle$ has a stronger dependence on wind speed than does the vertically polarized $\left\langle\sigma^{\circ}\right\rangle$. At 30° the wind dependence is about the same, being U^{2} for horizontal polarization and $U^{1.5}$ for vertical polarization when $U \leq 20 \mathrm{~m} / \mathrm{s}$.

Fig. 10. The horizon ally polarized $<00 \%$ rer

Fig. 11. The vertically polarized $\left\langle\sigma^{\circ}\right\rangle$ versis the log of the wind speed

APPENDIX: SMALI-SCALE SCATTERING COEFFICIEMTT

According to Rice's [1951] perturbation theory, a plane wave incident onto a random, slightly rough surface Σ_{s} produces an incoherent scattered field and a coherent reflected field. The scattered field is represented by a set of plane waves, and the electric field $\vec{E}\left(\hat{k}_{s}\right.$; of one such plane wave having a propagation vector $\hat{\mathbf{k}}_{\mathbf{S}}$ is (suppressing the time dependence)

$$
\begin{equation*}
\vec{E}\left(\hat{k}_{s}\right)=\left[\left(\hat{P}_{i} \cdot \hat{H}_{i}\right)\left(\beta_{h h} \hat{H}_{s}+\beta_{h v} \hat{v}_{s}\right)+\left(\hat{P}_{i} \cdot \hat{v}_{i}\right)\left(\beta_{v h} \hat{H}_{s}+\beta_{v v} \hat{v}_{s}\right)\right] \exp \left[i k\left(\hat{k}_{s} \cdot \vec{r}\right)\right] \tag{AI}
\end{equation*}
$$

where k is the radiation wavenumber, \vec{r} is the position vector, and \hat{P}_{i} is the polarization vector of the incident field. The inc dent horizontal and vertical polarization vectors, \hat{H}_{i} and $\hat{\mathrm{V}}_{\mathrm{i}}$, that are referenced to the normal $\hat{\eta}$ to the mean surface are given by

$$
\begin{align*}
& \hat{H}_{i}=\hat{k}_{i} \times \hat{i} /\left|\hat{k}_{i} \times \hat{n}\right| \tag{A2}\\
& \hat{\mathrm{V}}_{i}=\hat{\mathrm{k}}_{i} \times \hat{\mathrm{H}}_{\mathrm{i}} \tag{A3}
\end{align*}
$$

where \hat{k}, is the propagation vecter of the incident plane wave. The scattered polzrization vectors, \hat{H}_{S} and $\hat{\mathrm{V}}_{\mathrm{S}}$, are given by (A2) and (A3) with the subscript s replacing the subscript i. Peake and Barrick [1967] derived the scattering terms $\beta_{m n}, m=h$ or v and $n=h$ or v, to first order in the perturbation parameter $k \zeta$, where ζ equals the rms surface height variance.

$$
\begin{equation*}
B_{m n}=-2 k\left(-\hat{k}_{i} \cdot \hat{n}\right) a_{\operatorname{mn}} N(\vec{k}) \tag{A4}
\end{equation*}
$$

where $N(\vec{k})$ is the coefficient of the roughness spectral component having the vector wavenumber \vec{k}.

$$
\begin{equation*}
\vec{k}=k\left\{\left(\hat{k}_{s}-\hat{k}_{i}\right)-\left[\left(\hat{k}_{s}-\hat{k}_{i}\right) \cdot \hat{n}\right] \hat{n}\right\} \tag{A5}
\end{equation*}
$$

The bistatic matrix elements α_{m} are given by Peake and Barrick in terms of the surface permittivity ε and the angles θ_{i}, θ_{S}, and ϕ_{S}. Thes angles are related to $\hat{\mathbf{k}}_{i}, \hat{\mathbf{k}}_{s}$, and \hat{n} by the following equations:

$$
\begin{align*}
& \theta_{i}=\arccos \left(-\hat{k}_{i} \cdot \hat{n}\right) \tag{A6}\\
& \theta_{S}=\arccos \left(\hat{k}_{s} \cdot \hat{n}\right) \tag{A7}\\
& \Phi_{S}=\arccos \left(\hat{H}_{i} \cdot \hat{H}_{s}\right) \tag{AB}
\end{align*}
$$

We use the convention that the first α subscript refers to the incident polarization and the second subscript refers to the scattered polarization. Peake and Barrick used the opposite convention. Also our $\hat{\mathrm{H}}_{\mathrm{S}}$ is the negative of that defined by them. Accordingly the following are the appropriate substitutions:

$$
\begin{align*}
& \alpha_{h h}=-\alpha_{h h}^{\prime} \tag{A9}\\
& \alpha_{h v}=\alpha_{v h}^{\prime} \tag{AiO}\\
& \alpha_{v h}=-\alpha_{h v}^{\prime} \tag{inlu}\\
& \alpha_{v v}=\alpha_{v v}^{\prime} \tag{Al2}
\end{align*}
$$

where the $\alpha_{\operatorname{mn}}^{\prime}$ are those appearing in Peake and Barrick [19ú7].
ret \hat{P}_{s} denote the polarization vector of the receiver. The $\hat{\mathrm{P}}_{\mathrm{S}}$ polarization component of the time-averaged power of plane wave $\hat{\mathrm{k}}_{\mathrm{s}}$ divided by the time-averaged incident power is given by (* denctes complex conjugate)

$$
\begin{equation*}
\left.\gamma\left(\hat{k}_{i}, \hat{k}_{s}, \hat{n}\right)=\left.\langle | \vec{E}\left(\hat{k}_{s}\right) \cdot \hat{P}_{s}^{*}\right|^{2}\right\rangle\left(\hat{k}_{s} \cdot \hat{n}\right) /\left(-\hat{k}_{i} \cdot \hat{n}\right) \tag{Al3}
\end{equation*}
$$

where the angle brackets denote average over time. The surface roughness is assumed to experience random flucuations in time such that the time-averaged electric fields of the scattered plane waves are uncorrelated, and as a result
the powers of the individual scattered plane waves are additive. The assumption of random roughness also implies

$$
\begin{equation*}
\left.\left.\langle | N(\vec{k})\right|^{2}\right\rangle=\frac{1}{4} \kappa_{0}^{2} w(\vec{k}) \tag{1}
\end{equation*}
$$

where $W(\vec{k})$ is the roughness spectrum defined by Rice and κ_{0} is the wavenumber of the fundamental roughness spectral component.

The assumption tiat k is much largor t'an k_{0} is made, and as a result the scatrerea waves are close together in $\hat{k}_{\mathbf{S}}$-space, with the spailng being

$$
\begin{equation*}
\Delta k_{s}^{x} \Delta k_{s}^{y}=\left(k_{0} \prime \prime k\right)^{2} k_{s}^{z} /\left(\hat{k}_{s} \cdot \hat{n}\right) \tag{A15}
\end{equation*}
$$

The $\overline{\mathrm{k}}_{\mathbf{s}}$-space distribution of scattered power is approximated by a continuous distribution for which the power of the discrete plane waves is eveniy spread over the spacings given by (A15). The scattering coefficient for the incoherent power is then given by

$$
\begin{equation*}
r_{x}\left(\hat{k}_{i}, \hat{k}_{s}, \hat{\eta}\right)=r\left(\hat{k}_{i}, \hat{k}_{s}, \hat{n}\right) / \Delta k_{s}^{x} \Delta k_{s}^{y} \tag{A16}
\end{equation*}
$$

Combining the above equations yields

$$
\begin{gather*}
\Gamma_{x}\left(\hat{k}_{i}, \hat{\mathrm{k}}_{s}, \hat{n}\right)=\mathrm{k}^{4}\left(-\hat{\mathrm{k}}_{i} \cdot \hat{n}\right)\left(\hat{\mathrm{k}}_{s} \cdot \hat{\eta}\right)^{2} \mathrm{~W}(\overrightarrow{\mathrm{k}})|\mathrm{T}|^{2} / \mathrm{k}_{s}^{2} \tag{A17}\\
T=\left(\hat{\mathrm{P}}_{i} \cdot \hat{\mathrm{H}}_{i}\right)\left[\left(\hat{\mathrm{P}}_{s}^{*} \cdot \hat{H}_{s}\right) \alpha_{h h}+\left(\hat{\mathrm{P}}_{s}^{*} \cdot \hat{\mathrm{~V}}_{s}\right){ }_{n v}\right]+\left(\hat{\mathrm{P}}_{i} \cdot \hat{\mathrm{~V}}_{i}\right)\left[\left(\hat{\mathrm{P}}_{s}^{*} \cdot \hat{\mathrm{H}}_{s}\right) \alpha_{v h}+\left(\hat{\mathrm{P}}_{s}^{*} \cdot \hat{\mathrm{~V}}_{s}\right) \alpha_{v v}\right] \tag{A18}
\end{gather*}
$$

The coherent reflected field is represented by a single plane wave propagating in the specular direction \hat{k}_{r}.

$$
\begin{equation*}
\hat{k}_{r}=\hat{k}_{i}+2\left(-\hat{k}_{i} \cdot \hat{n}\right) \hat{n} \tag{A19}
\end{equation*}
$$

The reflected electric field is given by

$$
\begin{equation*}
\vec{E}\left(\hat{\mathrm{k}}_{r}\right)=\left[\left(\hat{\mathrm{P}}_{\mathrm{i}} \cdot \hat{H}_{i}\right) R_{h} \hat{H}_{r}+\left(\hat{\mathrm{P}}_{i} \cdot \hat{\mathrm{~V}}_{i}\right) R_{\mathrm{v}} \hat{\mathrm{~V}}_{r}\right] \exp \left[i k\left(\hat{\mathrm{k}}_{r} \cdot \overrightarrow{\mathrm{r}}\right)\right] \tag{A20}
\end{equation*}
$$

where the reflected horizontal and vertical polarization vectors, \vec{H}_{r} and $\hat{\mathrm{v}}_{\mathrm{r}}$, are given by (A2) and (A3) with the subscript r replacing the subscript i. Wu and Fung [1972] expressed the horizontal and vertical polarization reflection coefficients, R_{h} and R_{v}, in the form

$$
\begin{gather*}
R_{m}=\rho_{m}\left(\theta_{i}\right)\left(1-Q_{m}\right) \tag{ACI}\\
Q_{m}=\left(k \cos \theta_{i} / 2\right) \int_{-\infty}^{\infty} d u \int_{-\infty}^{\infty} d w W(\vec{k}) F_{m}(u, w) \tag{A22}
\end{gather*}
$$

where $m=h$ or $v, \rho_{m}\left(\theta_{i}\right)$ are the Fresnel reflection coefficients, and the functions $F_{m}(u, w)$ are given by $W u$ and Fung and have an implicit dependence on the surface permittivity ε, k, and θ_{i}. The roughness vect,or wavenumber \vec{k} in this case is given by the two-dimensional vector

$$
\begin{equation*}
\vec{k}=\left(u-k \sin \theta_{i}, w\right) \tag{A23}
\end{equation*}
$$

Note that Q_{m} is of order $(k \zeta)^{2}$.
The $\hat{\mathrm{P}}_{\mathrm{s}}$ polarization component of the time-averaged reflected power divided by the time-averaged incident power is

$$
\begin{equation*}
r\left(\hat{k}_{i}, \hat{n}\right)=\left|\vec{E}\left(\hat{k}_{r}\right) \cdot \hat{\mathrm{P}}_{s}^{*}\right|^{2} \tag{A24}
\end{equation*}
$$

The scattering coefficient for the coherent power equals zero for all $\hat{\mathbf{k}}_{\mathbf{s}} \neq \hat{\mathrm{k}}_{\mathrm{r}}$, and its integral over all \hat{k}_{s} equals $\gamma\left(\hat{k}_{i}, \hat{n}\right)$. It thus has the form

$$
\begin{equation*}
\Gamma_{o}\left(\hat{k}_{i}, \hat{k}_{s}, \hat{n}\right)=\gamma\left(\hat{k}_{i}, \hat{n}\right) \delta\left(k_{s}^{x}-k_{r}^{x}\right) \delta\left(k_{s}^{y}-k_{r}^{y}\right) \tag{A25}
\end{equation*}
$$

where δ denotes the Dirac delta function. The total scattering coefficient for the random, siightly rough surface Σ_{s} is then

$$
\begin{equation*}
\Gamma\left(\hat{k}_{i}, \hat{k}_{s}, \hat{n}\right)=\Gamma_{x}\left(\hat{k}_{i}, \hat{k}_{s}, \hat{n}\right)+\Gamma_{o}\left(\hat{k}_{i}, \hat{k}_{s}, \hat{n}\right) \tag{A26}
\end{equation*}
$$

We now consider the special case of backscattering, i.e., $\hat{\mathbf{k}}_{\mathbf{g}}=-\hat{\mathbf{k}}_{\mathrm{i}}$. The bistatic matrix elements for backscattering are

$$
\begin{gather*}
\alpha_{h h}=(1-\varepsilon) /\left[\cos \theta_{i}+\left(\varepsilon-\sin ^{2} \theta_{i}\right)^{3 / 2}\right]^{2} \tag{A27}\\
\alpha_{h v}=0 \tag{A28}\\
\alpha_{v h}=0 \tag{A29}\\
\alpha_{v v}=(\varepsilon-1)\left[(\varepsilon-1) \sin ^{2} \theta_{i}+\varepsilon\right] /\left[\varepsilon \cos \theta_{i}+\left(\varepsilon-\sin ^{2} \theta_{i}\right)^{\frac{3}{2}}\right]^{2} \tag{A30}
\end{gather*}
$$

We also require that the transmitted polarization equals the received polarization, i.e., $\hat{P}_{i}=\hat{P}_{S}$, and that the roughness spectrum $W(\vec{K})$ be isotropic and depends only on $|\vec{k}|$. Under these conditions the incoherent backscattering coefficient becomes
$r_{x}\left(\hat{k}_{i},-\hat{k}_{i}, \hat{n}\right)=\left.k^{4} \cos ^{3} \theta_{i} W\left(2 k \sin \theta_{i}\right)| | \hat{P}_{i} \cdot \hat{H}_{i}\right|^{2} \alpha_{h h}-\left.\left|\hat{P}_{i} \cdot \hat{v}_{i}\right|^{2} \alpha_{v v}\right|^{2} /\left(-k_{i}^{z}\right)$

The scattering coefficients are integrated over $\hat{\eta}$ to obtain the two-scale scattering coefficients. The two-scale coherent backscattering coefficient contains the term $\gamma\left(\hat{k}_{i},-\hat{k}_{i}\right)$. Under the above stated conditions (A24) takes the following form when $-\hat{k}_{i}$ is substituted for $\hat{\eta}$:

$$
\begin{align*}
& \gamma\left(\hat{k}_{1},-\hat{k}_{i}\right)=|\rho(0)|^{2}(1-2 \operatorname{Re} Q) \tag{A32}\\
& Q=(\pi k / 2) \int_{0}^{\infty} d u u W(u)\left[2 k \varepsilon^{\frac{3}{2}}+2 b-2 c+u^{2}(c-b)\left(u^{2}+b c\right)^{-1}\right] \tag{A33}\\
& b=\left(k^{2}-u^{2}\right)^{\frac{1}{2}} \tag{A34}\\
& c=\left(\varepsilon k^{2}-u^{2}\right)^{\frac{1}{2}} \tag{A35}
\end{align*}
$$

where b is either positive real or negative imaginary. The Fresnel reflection
coefficient for normal incidence is

$$
\begin{equation*}
\rho(0)=\left(1-\varepsilon^{\frac{1}{2}}\right) /\left(1+\varepsilon^{\frac{1}{2}}\right) \tag{-5}
\end{equation*}
$$

where in this case the sign is arbitrary. Note that in (A32) the $|Q|^{2}$ term, which is of order $(k \zeta)^{4}$, has been dropped.

Wentz [1974] proves that the above formulation satisfies energy conservation to second order in $k \zeta$. The proof entails taking the sum of the scattering coefficients given by (A26) for two orthogonal scattered polarizations. The integral of this sum over all \hat{k}_{g} is then shown to equal unity for a perfect conductor.

REFERENCES

Cardone, V. J., Specification of the wind field distribution in the marine boundary layer for wave forecasting, Rep. TR 69-1, Geophys. Sci. Lab., New York Univ., New York, Dec. 1969.

Cox, C., and W. Munk, Slopes of the sea surface deduced from photographs of sun glitter, Bul. Scripps Inst. Oceanog. 6, 401-488, 1956.

Peake, W. H., Interaction of electromagnetic waves with some natural surfaces, IRE Trans. Antennas Propagat., 7, Special Suppl., S324-S329, 1959.

Peake, W. H., and D. E. Barrick, Scattering from surfaces with different roughness scales: Analysis and interpretation, Res. Rep. BAT-197A-10-3, Battelle Mem. Inst., Columbus, Ohio, Nov. 1067.

Pierson, W. J., and R. A. Stacy, The elevation, slope, and curvature spectra of a wind roughened sea surface, Contract. Rep. NASA CR-2247, Langley Research Center, Hampton, VA, Dec. 1973.

Porter, R. A., and F. J. Wentz, Microwave radiometric study of ocean surface characteristics, Contract. Rep. 1-35140, Nat. Environ. Satell. Serv., NOAA, Washington, D. C., July 1971.

Rice, S. O., Reflection of electromagnetic waves from slightly rough surfaces, Commun. Pure Appl. Math. 2 4, 351-378, 1951.

Skolnik, M. I., ed., Radar Handbook, chapter 26, McGraw Hill, New York, 1970.
Wentz, F. J., The effect of surface roughness on microwave sea brightness temperatures, Contract. Rep. 3-35345, Nat. Environ. Satell. Serv., NOAA, Washington, D. C., March 1974.

Wentz, F. J., Cox and Munk's sea surface slope variance, J. Geophys. Res. 81 (9), 1607-1608, March 1976.

Wu, S. T., and A. K. Fung, A noncoherent model for microwave emissions and backscattering from the sea surface, J. Geophys. Res. 77(30), 5917-5929, 1972.

[^0]
[^0]: - For sale by the National Technical Information Service. Springlielo Virginia 22161

