(NASA-CR-143849) AN ANALYSIS OF FLIGHT DATA N78-15692 FROM AIRCRAFT LANDINGS WITH AND WITHOUT THE AID OF A PAINTED DIAMOND ON THE SAME RUNWAY (System Development Corp., Edwards, Calif.) Unclas 51 p HC A04/MF A01 CSCL 05H G3/54 01828

NASA CR-143849

AN ANALYSIS OF FLIGHT DATA FROM AIRCRAFT LANDINGS

WITH AND WITHOUT THE AID OF A PAINTED DIAMOND

ON THE SAME RUNWAY

Ram Swaroop and George R. Ashworth

System Development Corporation Edwards, California 93523

February 1978

INTRODUCTION

The National Aeronautics and Space Administration Dryden Flight Research Center has been investigating the possible merits of a large single diamond painted on a runway to provide glideslope information. A flight test experiment was conducted to determine the usefulness of such a diamond as a visual aid for general aviation.

The objectives of the experiment were to determine the influence of the diamond on the pilots' ability to intercept and track the diamond projected glideslope, and to determine the influence on the pilots' touchdown performance.

For these objectives, pilots were selected from two groups: research and general aviation. Also, three different weight categories of aircraft were selected to be representative of general aviation.

The objective of this report is to present results from statistical analyses of flight data obtained from the experiment. The analyses were performed to delineate the significant effects due to the diamond after accounting for the effects of different pilots and their interactions with the diamond. Such analyses were performed separately on each aircraft and pilot group combinations.

The flight data and statistical analyses are appended to this report. The details of the experiment, analyses and discussions are part of the main report.

-> OEDING RAGPAGE'BLANK 'NOT FILMED

SYMBOLS AND NOTATIONS

*, * :	Diamond painted on runway, No diamond.
RES, GEN, EXP:	Research, General Aviation, Experienced Pilot
GSI, FPEA, TD:	Glideslope Intercept, Flight Path Elevation Angle, Touchdown Distance
SI, PA:	Straight-In, Pattern Approach
LWA, MWA, TEA:	Light Weight, Medium Weight, Twin Engine Aircraft
ANOVA:	Analysis of Variance
SSS,MS,F:	Sum of Squares, Mean Square, FStatistic
*, **:	95%, 99% Significance
X, Y, Z:	Binary (1, 0) random variables
S.D., S.E.:	Standard Deviation, Standard Error
SS:	Sample Size

EXPERIMENT AND DATA

The Experiment

The experiment at the NASA Dryden Flight Research Center was conducted to investigate the usefulness of a single painted diamond on a runway as a visual aid in safe landing of aircraft. Three general aviation aircraft [Light Weight Aircraft (LWA), Medium Weight Aircraft (MWA), Twin Engine Aircraft (TEA)], three research pilots (RES) and four general aviation pilots (GEN) participated in this experiment. One pilot (EXP) who had indepth experience with the diamond also flew, but his data were used only for comparison between the pilots. The pilots made straight-in (SI) and pattern (PA) approaches for the runway landings. The data obtained from ninety SI and ninety PA landings were analyzed by methods of analysis of variance (ANOVA) which separates out the variability accounted for by diamond (\bullet), and no diamond (\checkmark) landings, different pilots, and pilot \bullet, \star interactions.

The flight data for approach and landing consisted of three variables: glideslope intercepts (GSI), flight path elevation angles (FPEA) and touchdown distances (TD) from the runway threshold. To minimize any learning effects, SI and PA approaches were randomized in the experiment. All landings were made on the same runway, first without the painted diamond, and later with the diamond. This runway was 1828.8 meters (6;000 feet) long, level and without any obstructions or visual cues, except the normal runway markings. Use of the same runway thus delineates the fact that the only difference was the use of visual cues due to the diamond. The entire experiment was conducted under similar weather and visibility conditions.

The white painted diamond on the black asphalt runway provided a high quality of contrast when viewed from the air. The diamond was designed and so placed that it appeared as a square to the pilots when they were 402.3 meters (1/4 mile) from the runway threshold and on a 5 degree slope to the diamond. The 5 degree slope for the diamond design was selected by an examination of data obtained from flights prior to this experiment.

A manually operated tracking device, placed close to the runway was used to obtain elevation angles which were recorded on magnetic tape. The aircraft were tracked during the entire final approach until touchdown. The records on magnetic tapes were reduced to obtain GSI and FPEA data. Markers placed at 15.2 meter (50-foot) intervals alongside of the runway aided in measuring TD distances.

On each flight a safety pilot accompanied the pilot. The safety pilot handled communications, recorded pilot comments, and took photographs of the diamond when the pilot remarked that he was on the 5 degree glideslope. These qualitative data were not analyzed in this report.

The Quantitative Data

The continuous records of elevation angles on magnetic tape were sampled at one-half second intervals for PA and one second intervals for SI approaches. The elevation angle at the instant the pilot remarked that he was on the 5 degree glideslope was defined as GSI. The entire history of the sampled data from the moment the pilot remarked that he was on glideslope until touchdown was processed by regression analysis (Ref. 1) to compute the representative flight path. The elevation angle computed from this flight path was defined as FPEA. GSI data are pertinent to the perception of the

diamond, whereas FPEA are pertinent to the utilization of that perception. Touchdown data needs no reduction, and are pertinent to the end result of the diamond perception and its utilization.

These data are shown in Appendix A, which has two sections. Section A-1 shows data for SI approaches and section A-2 shows the data for PA approaches. This report deals with the data presented in this appendix and are referred to as flight data.

ANALYSIS OF FLIGHT DATA

The statistical analysis of flight data was performed on three variables: GSI, FPEA and TD. These variables were initially analyzed separately. Later, their joint relationship was investigated. The data on each variable were analyzed separately for each combination of aircraft and pilot group for SI and PA approaches.

These analyses were performed by the method of analysis of variance (ANOVA) (Ref. 2). The linear model for which ANOVA is appropriate was considered proper for these data. The linear model

 $x_{ijk} = x...+x_{i}...+x_{ij}...+x_{ij}...+x_{ij}...+(x_{ijk} - x... - x_{i}...-x_{ij}...-x_{ij}.)$ assumes that each observed data, either GSI or FPEA or TD denoted by x_{ijk} is the sum of an average value x..., an effect of \bullet or \neq treatment denoted by $x_{i}...$ (i=1 for \bullet , i=2 for \neq), an effect due to pilot denoted by x.j. (j=1,2,3,4 for j-th pilot), an effect due to differential interaction between \bullet , \neq treatment and j-th pilot denoted by $x_{ij}..$, and lastly, an effect due to randomness denoted by x_{ijk} minus the sum of x..., $x_{i}..., x_{.j}..$, and $x_{ij}..$ Randomness is an essential part of experimentation, and sometimes is referred to as uncontrolled variation, because nothing is exactly repeatable in nature. The measure of randomness is standard error (S.E.). The smaller the S.E., the smaller is the uncontrolled variation in the flight data.

Treatment $(\bullet, \not \bullet)$ effect represents a shift from a general average purely due to treatment. Pilot effect, in a similar way, represents the shift from the general average purely due to pilot. The interaction between treatment and pilot is the shift from the average value which is in addition to the shifts due to treatments and pilots separately. The importance or significance of the magnitude of various shifts can only be measured in terms of standard error units. If S.E. is large, then a shift of large magnitude is of little importance. Thus wherever the effects are 95% or 99% significant it means that these effects are much larger than the S.E. of the experiment. The over-all objective of the present analysis was to determine if shifts due to the diamond, no diamond treatments were significant.

Straight-In Approaches

The results of ANOVA and summary of results for each aircraft and pilot combination are presented in Appendix B-1. ANOVA shows the sources of variation, their degrees of freedom (df), their sum of squares (SSS), the associated mean squares sum (MS) and statistic F to test which of the sources are significant on the S.E. scale. The sources which are significant are marked by * for 95% significance, and ** for 99% significance. The summary shows the estimates of shifts for treatment and pilot combinations. S.E. for each analysis are shown at the bottom of the ANOVA tables. There are fifteen ANOVA and summary tables. The significance of \bullet , \neq effect and pilot (\bullet , \neq) interaction from these fifteen tables are shown in table I. The last column of this table shows the S.E. obtained from each analysis. Note that treatment (\bullet , \neq) effects are significant in all cases except for touchdown (TD) distances for research pilots in twin engine aircraft, and general aviation pilots in medium weight aircraft.

DATA VARIABLE	PILOT GROUP	AIRCRAFT TYPE	◆,∳ EFFECT	PILOT (+, *) INTERACTION	STANDARD ERROR
GLIDESLOPE INTERCEPT	RES	LWA MWA TEA	** ** **	**	0.32 0.36 0.34
Degrees	GEN	LWA MWA	** *	** *	0.60 0.73
FLIGHTPATH ELEVATION ANGLE (FPEA)	RES	LWA MWA TEA	** **	**	0.50 0.29 0.21
Degrees	GEN	LWA MWA	** **	**	0.58 0.53
TOUCHDOWN DISTANCE (TD)	RES	LWA MWA TEA	** **	*	35.7 (117) 36.6 (120) 58.5 (192)
Meters (Feet)	GEN	LWA MWA	*	** **	59.1 (194) 57.9 (190)

Table I. Summary of ANOVA for Straight-In Approaches

It was stated earlier that if any effect is significant, the magnitude of the effect needs to be measured in respective S.E. units. By itself, an estimate of shift due to any effect does not contain all the information; for this reason S.E. of each experiment was shown in Table I. In Table II the magnitudes of shifts due to \bullet, ϕ effects are shown. These values are from the fifteen tables given in Appendix B-1. Note that the painted diamond induces a downward shift on GSI and FPEA. For touchdown distances for research pilots, the shifts are mixed, but for general aviation pilots, the painted diamond again induced a downward shift.

DATA VARIABLE	PILOT	AIRCRAFT TYPE	▲ AVG		
	011001		· AVG	/ AVG	
GLIDESLOPE	RES	LWA	3.3	5.1	-1.8
TATEROLI		TEA	3.0	2.⊥ 4.3	-1.8 -1.3
(GSI)			0.0		
Degrees	GEN	LWA Muta	3.9	5.8	-1.9
		TITAAT		4.9	-⊥.⊥
FLIGHTPATH	RES	IWA	2.9	4.8	-1.9
ANGLE		MWA TE:A	- 2.8	3.8	-1.0
(FPEA)			ے ور		-0.4
Domood	GEN	LWA	3.3	5.9	-2.6
Degrees		IMWA	2.8	4.5	-1.7
TOUCHDOWN	RES	IWA	206.3 (677)	202.1 (663)	-56.7 (-186)
DISTANCE		MWA	285.6 (937)	219.2(719)	66.4 (218)
(TD)		TEA	201.9 (925)	242.0 (794)	39.9 (131)
	GEN	IWA	213.4 (700)	271.9 (892)	58.5 (-192)
Meters(Feet)		MWA	228.6 (750)	276.8 (908)	-48.2 (-158)

Table II. •, / Effect on Flight Data for Straight-In Approaches

Pattern Approaches

The results of ANOVA and summary of results for PA are presented in Appendix B-2. ANOVA shows the sources of variation, their df, SSS, MS and F statistics. The F statistics are labeled by * if effect is significant at 95% level, and ** if significant at 99% level. Table III shows the significances of \bullet , \neq effects and pilot (\bullet , \neq) interaction obtained from the analyses. The last column of this table shows the S.E. of each analysis. The results show that the painted diamond did effect the research pilots and not the general aviation pilots.

DATA VARIABLE	PILOT GROUP	AIRCRAFT TYPE	◆, ≠ EFFECT	PILOT (+, *) INTERACTION	STANDARD ERROR
FLIGHTPATH ELEVATION ANGLE (FPEA)	RES	lwa mwa tea	** ** **	** **	0.62 0.21 0.25
Degrees	GEN	LWA MWA	**		1.57 1.14
TOUCHDOWN DISTANCE	RES	LWA MWA TEA	**	** *	59.1 (194) 32.6 (107) 43.0 (141)
(TD) Meters(Feet)	GEN	IWA MWA			127.0 (416) 96.6 (317)

Table	III.	Summary	of	ANOVA	for	Pattern	Approaches

Table IV shows the magnitude of \bullet and \neq effects. The \bullet induced a downward effect on FPEA, but the results on touchdown data are mixed.

DATA VARIABLE	PILOT GROUP	AIRCRAFT TYPE	◆ AVG	◆,★ EFFECT ★ AVG	◆-≁ DIFF
FLIGHTPATH ELEVATION ANGLE (FPFA)	RES	LWA MWA TEA	2.7 3.9 2.6 3.7 2.7 3.4		-1.2 -1.1 -0.7
Degrees	GEN	LWA MWA	4.3 4.5	6.1 5.1	-1.8 -0.6
TOUCHDOWN DISTANCE	RES	LWA MWA TEA	192.3 (631) 253.6 (832) 206.7 (678)	190.5 (625) 205.7 (675) 201.2 (660)	1.8 (6) 47.9 (157) 5.5 (18)
(TD) Meters(Feet)	GEN	LWA MWA	242.3 (795) 251.5 (825)	309.4 (1015) 266.7 (875)	-67.1 (-220) -15.2 (-50)

Table IV. . . , / Effect on Flight Data for Pattern Approaches

Interrelationship Between Variables (GSI, FPEA, TD) As indicated earlier GSI is pertinent information on • perception, FPEA pertinent to the utilization of this information, and TD pertinent to the end result of perception and utilization. There is some commonality among the three recorded variables; none of the variables replaces the information contained in the other, yet there is some overlap. Thus it is important to investigate their interrelationship.

The interrelationship between these variables was investigated by two methods. First by defining binary random variables X from GSI, Y from FPEA, Z from TD and then determining if any pair of X, Y, Z or all three jointly, are independent variables. Let X=1 if the difference of GSI averages for \bullet and \neq is negative, and X=0 if the difference is positive. Similarly, Y and Z are 1 or 0 if the difference of averages for FPEA or TD is negative or positive. If the hypothesis of independence is true then it is expected that the chance of either X, Y or Z being 1 or 0 is

each equal to 1/2. Under this hypothesis of independence, the chances of observed data were calculated and are shown in Appendix C. If these chances are very small, then the hypothesis of independence is hard to accept. If these chances are less than 5%, then the hypothesis is rejected and indicated by *. The summary of all these results is shown in Table V. The results show that for SI approaches the binary variables X, Y and Z are not independent. Thus GSI, FPEA and TD are interrelated.

Table V. Significance of Independence Hypothesis of Variables GSI (X), FPEA (Y) and TD (Z) for $\leftarrow - \neq$ Effect Data

APPROACH	PILOT	AIRCRAFT		INDEP	ENDENCE O	F
	GROUP		(X,Y)	(X,Z)	(Y,Z)	(X, Y, Z)
SI	RES	LŴA MWA TEA	* * *	*	*	* * *
	GEN	LWA MWA	* *	-	*	* *
PA	RES	LWA MWA TEA				
	GEN	LWA MWA			*	

The interrelationship between variables was also investigated by correlation methods. The correlation, besides investigating independence, also gives a value of a correlation coefficient. The assumptions, however, in the calculation of the correlation coefficients are more restricted. Therefore, the dependence of X, Y, Z calculated earlier is not exactly equivalent to the values of correlation coefficients. The correlation coefficients are always calculated on normalized variables, i.e., subtract the average and divide by S.D., thus various shifts due to treatments are subtracted, and normalized GSI, FPEA and TD are purely reflective of the true relationship between variables not affected by various effects. Correlation coefficients were, however, calculated for \bullet and \neq data and also for all data as shown in Appendix C. The results of Appendix C are reproduced in Table VI.

AIRCRAFT	APPROACH	CORRELATION	PILOT GROUP (SAI	MPLE SIZE)
		BETWEEN VARIABLES	RESEARCH	GENERAL AVIATION
LWA	SI PA	(GSI, FPEA) (GSI, TD) (FPEA, TD) (FPEA, TD)	.8656 (18)** .4135 (18)* .4481 (18)* .3425 (18)	.8411 (24)** 2171 (24) .4963 (24)** .7638 (24)**
MWA	SI PA	(GSI, FPEA) (GSI, TD) (FPEA, TD) (FPEA, TD)	.8027 (18)** 2200 (18) .0288 (18) .3692 (18)	.4982 (12)* 6155 (12)* .2468 (12) 6730 (12)**
TEA	SI PA	(GSI, FPEA) (GSI, TD) (FPEA, TD) (FPEA, TD)	.4161 (18)* 0200 (18) .4810 (18)* .7531 (18)**	

Table VI. Correlations Between Variables (GSI, FPEA, TD)

DISCUSSION OF RESULTS

The results of analyses presented in previous sections are now discussed in reference to the question, what are the effects of the painted diamond on the recorded flight data? How and why the diamond caused these effects may be discussed and speculated, but cannot be considered here simply because flight data do not pertain to these aspects. Appropriate remarks, however, will be made on the nature of these aspects. The linear model used in analyses of flight data was considered appropriate in light of the following observation: If a pilot makes landings with and without a painted diamond on the same runway under identical conditions, and if no learning is involved, then it is expected that any recorded data will show similar distributions, only differing in their centers of location shown graphically below.

The standard deviations of the two distributions will most likely be the same because a pilot's proficiency in landing remained the same. S.D. is a measure of random variation around the shifted average values. Thus, for data obtained from landings made by equally proficient pilots, the S.D. of the data must remain the same after accounting for all the shifts of average values. This is the main assumption of a linear model.

The S.E. of analyses measures the proficiency of pilots. Proficiency may depend on the pilot's experience and the aircraft flown, thus it is proper to separately analyze data for the two groups of pilots and three types of aircraft. Smaller S.E.s may reflect a higher proficiency pilot group. The S.E. columns in Tables I and III show that in all cases the RES group has smaller S.E.s than the GEN group. Further, the S.E.s in SI approaches are lower than S.E.s in PA approaches, indicating that all pilots were more proficient in SI approaches than in PA approaches. Also, as expected the data indicate that the RES group, in every case, is more proficient than the GEN group of pilots. The different aircraft, however, do not appear to markedly affect the proficiency of pilots.

The effect of \bullet and \neq conditions will thus be discussed in terms of their relative shifts of averages which are summarized in Tables II and IV. The difference between \bullet and \neq estimates of center of the distributions may be called bias. The last column of the tables shows that the diamond produces a negative bias on GSI and FPEA for SI and PA approaches for RES and GEN groups of pilots. The biases are significant in all cases except for the GEN group of pilots in pattern approaches. This group failed to achieve significance because the S.E. is close to 1.44°, indicating that in PA approaches the GEN group has extremely low landing proficiency. All these results thus establish that the diamond, which was painted to project a 5 degree slope, somehow is perceived and utilized by RES pilots as projecting a glideslope between 2.6° and 3.9° , and for GEN pilots, a glideslope between 2.8° to 4.4°. It may thus be concluded that a painted diamond on a runway does induce a downward bias on GSI and FPEA, the amount of bias depending on the projected glideslope and the consistency of information utilized by pilots.

Further examination of the results from GSI and FPEA data relates to the effect of the different aircraft on these downward biases induced by the diamond. The summary of data presented in Table II is shown graphically below. These graphs have been prepared on average values of GSI and FPEA.

Diamond data bias due to different aircraft.

The figure shows that the amount of bias decreases with the increase in the weight class of aircraft. This holds for both RES and GEN groups of pilots. This suggests that an appropriately painted diamond would be most useful in light weight aircraft category used in general aviation.

The effect of the painted diamond on touchdown distances is more pronounced on LWA and MWA aircraft where the differences achieved significance. The differences in TEA data are not significant, and this is without any marked difference in S.E.s, that is, the proficiency of pilots. Thus, for LWA and MWA, diamond has an influence, but the direction of influence may be either negative (-) or positive (+). It is to be remarked here that with the diamond painted on the runway pilots have a sense of aim point, whereas in the absence of any aim point, the distances from the runway threshold are indicative of a pilot's perference for various aim points. This

observation may be the basis of non-agreement in the direction (-, +) of bias in the TD data.

Further, the distribution of the touchdown points without the diamond has a wider range than the touchdown points with the diamond. Since the pilot's proficiency remains unchanged, the wider range of touchdown points again is indicative of each pilot's preference for various aim points when there is no diamond on the runway.

The interaction between pilots and $(\bullet, \not \bullet)$ shown in Tables I and III needs careful interpretation. Interaction in analysis refers to that portion of shifts in an average which is over and above the shifts assignable to the treatment $(\bullet, \not \bullet)$ and pilot differences. In other words, the difference in shifts of an average may be due to either • and # alone, or due to the pilots' different landing techniques alone, or due to different landing techniques used by the same pilot when landing with or without the diamond on the runway. If none of the pilots change the technique of landing, then there is no interaction. In contrast, even if a single pilot changes the landing techniques in the experiment, the interaction is likely to be present. With this in mind, it is not unexpected that interaction may be most pronounced in LWA aircraft. Indeed, this is the situation as shown by significances in Table I for SI approaches. On PA approaches, the situation is reversed. It may be remarked that the final leg of the approach is much shorter in PA approaches than in SI approaches and the pilots have less time and opportunity to react to diamond information as compared to SI approaches.

The interrelationship between GSI, FPEA and TD flight variables studied by the above two methods shows that each contains partial information on the other and that the variables are interrelated. The amount of linear relationship, as measured by the square of the correlation coefficient shown in Table VI indicates that for RES pilots overlap information between GSI and FPEA is about 64% for SI approaches in LWA and MWA types of aircraft. In TEA aircraft, the overlap drops to 16%. For pattern approaches, the overlap for flight variables in LWA and MWA is about 10%. However, for TEA aircraft this overlap rises to 50%. For GEN pilots the overlap of information between the three variables varies between 5% and 70%. Thus, each variable contains some, but not all of the information contained in the other variables. Therefore, all variables should be considered for analysis.

CONCLUSIONS

An experiment at NASA Dryden Flight Research Center was conducted to investigate the usefulness of a painted diamond on a runway as a visual aid to perform safe landings of aircraft. Flight data on glideslope intercepts, flight path elevation angles, and touchdown distances were collected in this experiment and analyzed for this report.

It is concluded that an appropriately painted diamond on a runway has the potential of providing glideslope information for the light weight class of general aviation aircraft for all classes of pilots. This conclusion holds irrespective of the differences in landing techniques used by the pilots.

The painted diamond induces a downward bias on all flight data except the touchdown distances. The amount of bias depends on the projected glideslope and the consistency of information utilized by the pilots. The bias decreases with the increase in weight of the aircraft. The conclusions hold irrespective of the differences in landing techniques used by the pilots.

The proficiency of pilots, as measured by standard errors, shows that all pilots are more proficient performing straight-in rather than pattern approaches, and research pilots are more proficient than general aviation pilots. This conclusion holds irrespective of the aircraft flown.

The study of interrelationship between flight variables shows that each variable contains some, but not all, of the information contained in the

other variables. Therefore, all variables should be considered for analysis. This conclusion holds irrespective of bias introduced by pilots and diamond, no-diamond combinations.

REFERENCES

- R. L. Anderson and T. A. Bancroft, Statistical Theory in Research. McGraw-Hill Book Company, Inc., pp. 207-216 (1952).
- Wilfrid J. Dixon and Frank J. Massey, Jr. Introduction to Statistical Analysis. McGraw-Hill Book Company, Inc., Third Edition, pp. 175-180 (1969).

APPENDIX A. DATA FROM EXPERIMENT a

Table A. Number of Landings is each Category of Experiment.

Section A-1. Straight-In (SI) Approaches

- Table A-la. Landing data for Light Weight Aircraft (LWA) in SI.
- Table A-lb. Landing data for Medium Weight Aircraft (MWA) in SI.
- Table A-lc. Landing data for Twin Engine Aircraft (TEA) in SI.
- Table A-ld. Summary of Elevation Angles for LWA in SI.
- Table A-le. Summary of Elevation Angles for MWA in SI.
- Table A-lf. Summary of Elevation Angles for TEA in SI.

Section A-2. Pattern (PA) Approaches

- Table A-2a. Landing data for Light Weight Aircraft (LWA) in PA.
- Table A-2b. Landing data for Medium Weight Aircraft (MWA) in PA.
- Table A-2c. Landing data for Twin Engine Aircraft (TEA) in PA.
- Table A-2d. Summary of Elevation Angles for LWA in PA.
- Table A-2e. Summary of Elevation Angles for MWA in PA.
- Table A-2f. Summary of Elevation Angles for TEA in PA.

a. To convert the touchdown distance data from the English units of measure to the International System of Units, multiply distance in feet by 0.3048 to obtain meters.

		मु ♦	LIGHTS	≠ FI	IGHTS
ATRCRAFT	PILOT GROUP	SI	PA	SI	PA
LWA	RES	9	9	9	9
	EXP	3	3	3	3
	GEN	12	12	12	12
MWA	RES	9	9	9	9
	EXP	3	3	3	3
	GEN	6	6	6	6
TEA.	RES	9	9	9	9
	EXP	3	3	3	3

Table A. Number	OI.	Landings	ln	eacn	Lategory	OI.	Experiment.
-----------------	-----	----------	----	------	----------	-----	-------------

<u> </u>	<u></u>	r	1			T		
PI	<u>LOT</u>	LANDING		◆ FLIGH	<u>r</u>		♦ FLIGH	[
	GROUP	#	deg	FPEA deg	ft	GSI deg	FPEA deg	TD ft
A	RES	1 2 3	3.5 3.4 3.4	4.1 3.4 3.4	711 649 634	3.2 3.8 3.6	3.3 3.9 3.8	695 1000 775
В	RES	1 2 3	3.4 3.2 2.8	2.4 2.2 2.0	294 310 490	5.8 5.6 5.8	5.9 5.0 5.4	900 800 840
С	RES	1 2 3	3.6 3.3 2.9	2.8 2.8 3.2	1150 850 1000	6.0 6.8 5.8	6.5 4.7 5.0	760 1006 995
D	EXP	1 2 3	5.8 5.6 5.4	5.6 5.3 4.9	1150 900 1040	3.4 6.0 5.2	4.2 5.3 4.3	910 1090 840
E	GEN	1 2 3	4.0 4.0 4.0	2.9 3.5 3.2	390 775 835	3.3 3.8 3.6	2.2 4.4 3.9	300 700 525
F	GEN	1 2 3	4.0 4.0 4.4	3.3 4.2 3.8	425 775 625	5.6 6.2 5.2	7.5 6.6 6.0	1050 1400 1150
G	GEN	1 2 3	4.0 3.7 3.9	3.3 3.0 3.0	486 600 670	9.4 7.5 6.6	6.7 7.1 6.1	400 450 625
H	GEN	1 2 3	3.7 3.1 3.3	3.3 3.1 2.3	980 725 1108	5.5 6.6 6.0	6.7 6.5 7.3	1270 1150 1680

Table A-la. Landing data for Light Weight Aircraft (LWA) in SI.

PI	LOT	LANDING		FLIGHI	1	5	FLIGHT	
CODE	GROUP	#	GSI deg	FPEA deg	TD ft	GSI deg	FPEA , deg	TD ft
A	RES	1 2 3	3.0 3.6 3.5	2.9 3.5 3.3	820 900 1110	4.7 4.8 5.0	3.2 2.7 3.6	535 615 520
В	RES	1 2 3	3.4 3.5 3.1	2.8 2.6 2.5	800 700 800	4.6 5.2 4.8	4.1 3.7 3.6	575 530 550
С	RES	1 2 3	2.8 3.4 3.3	2.8 2.6 2.4	1100 1000 1200	5.0 5.2 6.2	4.5 4.4 4.7	905 940 1300
D	EXP	1 2 3	5.7 5.2 5.6	4.9 4.9 5.3	1400 1230 1000	5.4 5.5 5.3	4.4 4.3 4.3	800 1500 900
Е	GEN	1 2 3	3.4 3.6 3.2	2.7 2.9	1100 * 800 600	4.4 2.7 3.2	5.1 4.3	1900 1400 1450
G	GEN -	1 2 3	3.5 4.6 4.4	2.7 2.9 2.9	600 725 675	5.4 6.5 7.4	3.8 3.6 5.1	275 200 225

Table A-1b. Landing Data for Medium Weight Aircraft (MWA) in SI

PI	LOT	LANDING		◆ FLIG	PT	_	∳ FLIGH	IT'
CODE	GROUP	#	GSI deg	FPEA deg	TD ft	GSI deg	FPEA deg	TD ft
A	RES	1 2 3	3.2 3.2 3.1	3.0 3.0 3.2	950 700 875	3.9 4.4 4.6	3.0 3.1 3.3	600 500 500
. В	RES	1 2 3	2.6 2.3 2.3	3.2 3.3 3.4	775 1100 500	3.8 3.8 4.8	3.7 3.5 3.2	800 [°] 550 650
C	RES	1 2 3	3.1 3.8 3.4	3.0 3.0 3.6	1025 1200 1200	4.8 4.6 4.2	4.1 4.5 4.3	850 1400 1300
D	EXP	1 2 3	5.0 5.0 5.2	4.8 4.6 4.5	1200 940 1190	5.0 5.7 6.0	3.5 4.2 3.9	550 525 690

Table A-lc. Landing Data for Twin Engine Aircraft (TEA) in SI.

.

-

•

PI	IOT	LANDING	_		• FLIGHT				f	FLIGHT		
CODE	GROUP	#	SS	b ₀	bl	, ^b 2	SE	SS	b0	bl	^b 2	SE
A	RES	1 2 3	70 75 67	4.120 3.416 3.441	012 006 010		.283 .043 .048					
В	RES	1 2 3	52 57 58	3.553 3.278 2.932	022 018 015		.120 .093 .075	36 54 52	5.804 5.812 5.904	.004 015 010		.069 .166 .174
C	RES	1 2 3	72 86 89	3.744 3.087 2.858	014 003 .004		.133 .098 .128	56 49 31	5.938 7.414 5.681	.009 055 021		.088 .248 .088
D	EXP	1. 2 3	51 52 56	5.864 5.872 5.621	006 011 014		.048 .104 .128	53 49 59	2.811 5.968 5.230	.175 .075 .024	0004 0028 0018	.271 .072 .083
E	GEN -	1 2 3	64 69 68	4.071 4.186 4.105	019 011 013		.087 .134 .081	70 72 70	3.143 3.796 3.772	013 .009 .002		.168 .086 .098
F	GEN	1 2 3	58 47	4.333 4.281	017 .001		.261 .225	43 36 38	6.000 6.175 4.792	.036 .106 .174	0030 0037	.149 .126 .202
G	GEN	1 2 3	88 89 82	3.772 3.843 3.986	005 010 013		.192 .083 .090	49 56 53	9.751 7.438 6.358	061 006 .049	0010	.185 .154 .133
Н	GEN	1 2 3	43 60 55	3.755 3.017 3.484	010 .026 013	0004	.073 .046 .105	58 37 54	5.962 6.716 6.430	.012 .072 .016	.0018	.159 .062 .151

	Table A-	ld. Summary	\mathbf{of}	Elevation	Angles	for LWA	in	SI
--	----------	-------------	---------------	-----------	--------	---------	----	----

ß

PT	TOT	T AND TNG			ामरा उ	 1		······		FLIGHT		
CODE	GROUP	#	SS .	b ₀	b	^b 2	SE	SS	p ⁰	bl	b ₂	SE
A	RES	1 2 3	59 45	2.841 3.699 3.434	.021 003 004	0003	.060 .074 .059	61 61 65	5.037 4.980 5.260	029 038 027		.148 .081 .167
В	RES	1 2 3	52 51 55	3.598 3.696 3.261	015 022 013		.194 .077 .099	55 54 61	4.411 4.894 4.573	.058 .059 .052	001 002 001	.108 .097 .100
С	RES	1 2 3	66 54 73	2.878 3.561 3.243	002 018 011		.066 .056 .051	47 52 60	5.111 5.248 6.523	012 016 030		.151 .119 .270
D	EXP	1 2 3	44 35 39	6.052 5.496 5.525	026 017 005		.477 .094 .096	49 41 50	5.555 5.627 5.300	024 033 019		.088 .137 .092
E	GEN	1 2 3	44 50	3.390 3.322	016 008		.052 .100	30 49	4.136 2.550	.031 .030		.083 .103
G	GEN	1 2 3	43 58 63	3.710 4.569 4.610	024 .019 027	0008	.110 .058 .090	53 54 65	5.801 6.457 8.111	038 053 046		.298 .112 .320

Table A-le. S	Summary -	of	Elevation	Angles	for	MWA	in	SI
---------------	-----------	----	-----------	--------	-----	-----	----	----

PI	LOT	LANDING			• FLIGHT				/ I	FLIGHT		
CODE	GROUP	#	SS	b ₀	b _l	b2	SE	SS	b0	bl	b ₂	SE
A	RES	1 2 3	33 35 33	3.256 3.263 3.143	008 007 .003		.051 .037 .032	64 64 57	4.044 4.570 4.973	016 022 029		.110 .123 .175
В	RES	1 2 3	54 53 59	2.724 2.477 2.358	018 018 019		.088 .097 .115	44 39 46	4.120 4.002 3.785	010 012 012		.157 .129 .110
С	RES	1 2 3	54 53 59	3.883 3.889 3.178	017 017 .006		.105 .079 .124	60 67 73	4.511 4.700 4.069	008 005 .009		.136 .110 .095
D	EXP	1 2 3	43 36 36	5.585 5.279 5.774	018 018 036		.205 .090 .155	14 34 35	5.145 6.174 6.306	114 058 068		.032 .243 .146

Table A-lf. Summary of Elevation Angles for TEA in SI

,

PII	OT	LANDING	•]	LIGHT	. +	FLIGHT
CODE	GROUP	#	FPEA deg	TD ft	FPEA deg	TD ft
A	RES	1 2 3	2.6 2.6 2.7	608 523 607	2.5 2.7 3.0	650 59 730
В	RES	1 2 3	2.8 2.3 2.3	240 180 225	4.6 3.8 3.9	410 200 520
С	RES	1 2 3	3.1 3.1 3.2	1143 1080 1070	4.1 4.3 6.6	1300 840 910
D	EXP	1 2 3	4.8 5.6	1100 1300 1080	4.8 5.0 5.5	835 1060 880
E	GEN	1 2 3	2.1 4.8 5.8	650 770 830	4.2 6.3 7.0	350 975 1200
F	GEN	1 2 3	2.9 8.1 3.7	480 1600 615	4.0 4.9 4.1	675 950 275
G	GEN	1 2 3	2.9 4.7 4.3	525 650 590	8.0 5.3	2000 1050 350
Н -	GEN	1 2 3	2.6 5.1 4.2	945 890 1000	7.5 8.5 7.1	1450 1500 1400

Table A-2a. Landing Data for Light Weight Aircraft LWA in PA

-

PII	TOT	LANDING	♦ FL	IGHT	🔸 FL	IGHT
CODE	GROUP	#	FPEA deg	TD ft	FPEA deg	TD ft
A	RES	1 2 3	2.8 3.0 3.0	680 1070 1010	2.7 3.0 3.1	580 500 500
В	RES	1 2 3	2.0 2.0 1.7	500 450 400	3.6 3.6 3.3	620 600 600
с -	RES	1 2 3	2.8 3.0 2.9	1200 1000 1175	4.4 4.8 5.2	800 890 980
D	EXP	1 2 3	5.8 5.5 5.2	1160 1210 1080	5.4 5.0 4.2	1000 1200 950
E	GEN	1 2 3	4.2 4.0 3.6	1200 800 950	4.3 3.4	2000 900 1200
G	GEN	1 2 3	5.0 4.9 5.2	650 700 650	5.1 6.0 7.4	175 425 550

Table A-2b. Landing Data for Medium Weight Aircraft (MWA) in PA

PI	LOT	LANDING	♦ FI	IGHT	∳ <u>F</u> [.]	GHT
CODE	GROUP	#	FPEA deg	TD ft	FPEA deg	TD ft
A	RES	1 2 3	2.5 2.6 3.0	550 750 850	2.8 3.0 3.0	400 400 350
В	RES	1 2 3	1.4 1.3 1.5	475 300 400	3.3 3.4 2.7	500 720 575
С	RES	1 2 3	3.7 3.7 4.3	900 875 1000	4.3 4.5 4.2	800 900 1300
D	EXP	1 2 3	4.7 4.3 4.8	1150 1000 1020	4.6 4.4 4.7	675 725 650

Table A-2c. Landing Data for Twin Engine Aircraft (TEA) in PA.

•

PI	LOT	LANDING			• FLIGHT				4	FLIGHT		
CODE	GROUP	#	SS	b ₀	bl	^b 2	SE	SS	b ₀	b 1	^b 2	SE
A	RES	1 2 3	31 31 28	3.355 3.774 3.669	027 039 036		.058 .081 .058	41 18 45	4.340 3.500 5.322	046 047 054		.058 .033 .068
В	RES	1 2 3	17 21 20	3.690 3.996 4.591	085 081 112		.062 .053 .076	38 43 25	5.911 6.046 5.346	034 054 058		.158 .194 .104
С	RES	1 2 3	50 89 53	3.652 2.858 3.066	011 .004 .004	0001	.129 .128 .066	30 34 39	5.075 5.427 7.138	034 032 017		.061 .077 .146
D	EXP	1 2 3	26 26	5.263 6.139	018 020		.042 .064.	15 16 16	5.243 5.863 6.315	035 070 065		.045 .050 .161
E	GEN	1 2 3	34 25 31	3.947 5.333 6.407	048 024 022		.070 .051 .141	27 24 25	5.720 7.075 7.703	059 034 028		.069 .072 .074
F	GEN	1 2 3	32 31 27	4.347 6.827 3.582	046 .042 .054	0018	.133 .144 .068	19 33 28	4.274 6.027 4.754	.013 .032 .019		.073 .132 .080
G	GEN	1 2 3	37 27 23	4.343 6.483 6.248	038 069 084	i	.074 .048 .075	19 30	8.975 7.257	056 069		.108 .067
Н	GEN	1 2 3	16 15 17	3.915 5.334 4.601	010 017 033		.054 .040 .085	30 28 26	7.422 7.816 7.674	027 .026 021	.0010	.055 .103 .045

Table	A-2d.	Summary	of	Elevation	Angles for	LWA	in	PA

ц

PI	LOT	LANDING			◆ FLIGHT					FLIGHT		
CODE	GROUP	#	SS	^b 0	b 1	^b 2	SE	SS	b0	^b 1	^b 2	SE
A	RES	1 2 3	23 26 28	4.598 4.452 4.948	083 058 069		.067 .122 .119	40 28 33	4.369 5.028 5.462	043 077 075		.079 .061 .075
В	RES	1 2 3	26 24 21	3.109 2.969 2.849	046 043 060		.044 .043 .051	27 30 35	5.407 5.306 4.916	070 059 048		.065 .058 .095
C	RES	1 2 3	46 39 46	3.953 3.787 3.652	025 022 017		.091 .081 .141	28 46 33	5.552 5.713 5.884	041 016 021		.133 .083 .083
D	EXP	1 2 3	31 29 29	6.682 6.448 6.714	031 033 054		.041 .144 .083	17 17 16	6.249 6.223 5.195	055 078 077		.105 .056 .067
E	GEN	1 2 3	30 32 28	4.295 6.263 5.540	041 075 073		.053 .161 .128	17 17	4.108 3.506	.012 023	.0010	.091 .041
G	GEN	1 2 3	21 25 17	5.757 6.305 6.165	040 057 061		.073 .120 .072	36 41 37	7.410 8.263 9.062	067 055 046		.073 .122 .112

W Table A-2e. Summary of Elevation Angles for MWA in PA

•

PII	OT	LANDING		•	FLIGHT			≠ FLIGHI			≠ FLIGHT		
CODE	GROUP	#	SS	b ₀	bl	^b 2	SE	SS	b ₀	b _l	^ъ 2	SE	
A	RES	1 2 3	17 17 17 17	2.763 3.173 3.888	018 038 056		.041 .051 .063	16 29 25	3.728 4.671 4.481	065 060 062		.062 .057 .049	
В	RES	1 2 3	17 17 16	2.307 2.373 -2.748	056 067 081		.056 .044 .046	43 39 35	4.175 3.987 3.704	021 017 028		.092 .049 .065	
C	RES	1 2 3	29 24 22	4.865 4.358 4.968	042 027 034		.095 .061 .053	25 48 55	4.769 5.977 5.535	020 032 052		.131 .076 .063	
D	EXP	1 2 3	31 27 30	5.767 5.267 6.116	037 035 046		.087 .062 .142	19 21 19	5.432 6.364 5.479	052 096 044		.094 .049 .054	

Table A-2f. Summary of Elevation Angles for TEA in PA

APPENDIX B. ANOVA FOR APPROACHES^a

Section B-1. ANOVA for Straight-In (SI) approaches

- Table B-la. GSI Data Analysis of Variance (ANOVA) and Summary for SI Approaches for RES Pilots.
- Table B-lb. GSI Data Analysis of Variance (ANOVA) and Summary for SI Approaches for GEN Pilots.
- Table B-lc. FPEA Data Analysis of Variance (ANOVA) and Summary for SI Approaches for RES Pilots.
- Table B-1d. FPEA Data Analysis of Variance (ANOVA) and Summary for SI Approaches for GEN Pilots.
- Table B-le. TD Data Analysis of Variance (ANOVA) and Summary for SI Approaches for RES Pilots.
- Table B-1f. TD Data Analysis of Variance (ANOVA) and Summary for SI Approaches for GEN Pilots.

Section B-2. ANOVA for Pattern (PA) Approaches

- Table B-2a. FPEA Data Analysis of Variance (ANOVA) and Summary for PA Approaches for RES Pilots.
- Table B-2b. FPEA Data Analysis of Variance (ANOVA) and Summary for PA Approaches for GEN Pilots.
- Table B-2c. TD Data Analysis of Variance (ANOVA) and Summary for PA Approaches for RES Pilots.
- Table B-2d. TD Data Analysis of Variance (ANOVA) and Summary for PA Approaches for GEN Pilots.
- a. To convert the SSS or MS data from the English units of measure to the International System of Units, multiply either by 0.0929. To convert TD data, multiply distance in feet by 0.3048 to obtain meters.

Table B-la. GSI Data Analysis of Variance (ANOVA) and Summary for SI Approaches for RES Pilots

A	Ν	0	V	А
	_	_		

1

SUMMARY

SOURCE OF VARIATION	df	SSS	MS	F		
(* , *)	l	15.87	158.7	158.7**		
PILOTS	2	5.11	2.56	25.6**		
PILOT (+, *) INTERACTION	2	7.17	3.59	35.9**		
RANDOM	12	1.24	0.10			
S.E. = 0.32 degree						

LIGHT WEIGHT AIRCRAFT

PILOT	∳ deg	∳ deg	♦- ∳ deg
A	3.4	3.5	-0.1
В	3.1	5.7	-2.6
с	3.3	6.2	-2.9
AVG.	3.3	5.1	-1.8

MEDIUM WEIGHT AIRCRAFT

(*,*)	l	14.05	14.05	** 108.08		
PILOIS ·	2	0.19	0.10	0.77		
PILOT (�,�) INTERACTION	2	0.66	0.33	2.54		
RANDOM 12 1.54 0.13						
S.E. = 0.36 degree						

А	3.4	4.8	-1.4
В	3.3	4.9	-1.6
С	3.2	5.5	-2.3
AVG	3.3	5.1	-1.8

TWIN ENGINE AIRCRAFT

(🔹 , 🌾)	1	7.87	7.87	65.58
PILOIS	2	1.59	0.80	6.67
PILOT (♦ ,♦) INTERACTION	2	0.38	0.19	1.58
RANDOM	12	1.42	0.12	

4.1 -1.7 2.4 В 3.4 4.5 -1.1 С 3.0 4.3 -1.3 AVG

3.2

A

4.3

S.E. = 0.34 degree

-1.1

Table B-lb. GSI Data Analysis of Variance (ANOVA) and Summary for SI Approaches for GEN Pilots

ANOVA

SUMMARY

SOURCE OF VARIATION	df	SSS	MS	f		PILOT	deg	∳ deg	
(* , *)	l	22.43	22.43	63.29		Е	4.0	3.6	0.4
PILOTS	3	12.91	4.31	12.16		Ŧ	4.1	5.7	-1.6
PILOT (*, *) INTERACTION	3	15.65	5.22	** 14.79		G	3.9	7.8	-3.9
RANDOM	16	5.67	0.35			Н	3.4	6.0	-2.6
S.E. = 0.60 degrees						AVG	3.9	5.8	-1.9

LIGHT WEIGHT AIRCRAFT

0

ŧ

MEDIUM WEIGHT AIRCRAFT

(♦,♥)	1	3.97	3.97	7.39		E	3.3	3.4	-0.1
PILOIS	l	10.64	10.64	19.80		G	4.2	6.4	- 2.2
PILOT (+, +) INTERACTION	<u>1</u> ,	3.74	3.74	6.96					
RANDOM	8	4.30	0.54						
S.E. = 0.73 degree						AVG	3.8	4.9	-1.1

Table B-lc. FPEA Data Analysis of Variance (ANOVA) and Summary for SI Approaches for RES Pilots

ANOVA

.

SUMMARY

SOURCE OF VARIATION	df	SSS	MS	F		PILOT	∳ deg	∳ deg	♦- ∳ đeg
(*,*)	1	16.44	16.44	65. 76		A	3.6	3.7	-0.1
PILOTS	2	0.83	0.42	1.68		В	2.2	5.4	-3.2
PILOT (*, *) INTERACTION	2	8.37	4.19	16.76		С	2.9	5.4	-2.5
RANDOM	12	2.99	0.25						
2	S.E. = 0	.50 degre			•	AVG	2.9	4.8	-1.9

LIGHT WEIGHT AIRCRAFT

S.E. = 0.50 degree

MEDIUM WEIGHT AIRCRAFT

(•, \$)	1	4.60	4.60	** 9.39		
PILOTS	2	0.47	0.24	0.49		
PILOT (+, +) INTERACTION	2	3.05	1.53	3.12		
RANDOM	12	0.98	0.08			
S.E. = 0.29 degree						

	A	3.2	3.2	0.0
	В	2.6	3.8	-1.2
ļ	С	2.6	4.5	-1.9
	AVG	2.8	3.8	-1.0

TWIN ENGINE AIRCRAFT

(*,*)	1	0.89	0.89	0.89		
PILOTS	2	1.27	0.64	0.64		
PILOT (+, +) INTERACTION	2	0.98	0.49	0.49		
RANDOM	12	0.54	0.54	0.05		
S.E. = 0.21 degree						

	А	3.0	3.1	-0.1
	В	3.3	3.5	-0.2
	С	3.2	4.3	-1.1
	:		x	
ĺ	AVG	3.2	3.6	-0.4

37

Table B-1d. FPEA Data Analysis of Variance (ANOVA) and Summary for SI Approaches for GEN Pilots

ANOVA

SUMMARY

SOURCE OF VARIATION	df	SSS	MS	F		PILOT	• deg	∳ deg	♦-∮ deg
(•,*)	1	42.78	42.78	125.36		E.	3.2	3.5	-0.3
PILOTS	3	12.86	4.29	12.57		F	3.8	6.7	· 2. '9 '
	3	11.28	3.76	** 11.06	4	G	3.1	6.6	-3.5
RANDOM	,16	5.46	0.34		4	H	2.9	6.8	-3.9
S.E. = 0.58 degrees						AVG	3.3	<i>′</i> 5 . 9	-2.6

LIGHT WEIGHT AIRCRAFT

MEDIUM WEIGHT AIRCRAFT

(*,*)	1	6.11	6.11	** 21.69	Ţ	E	2.8	4.7	-1.9
PILOIS	lı	0.16	0.16	0.57		G	2.8	4.2	-1.4
PILOT(+, +) INTERACTION	1	0.17	0.17	0.60	į				
RANDOM	6	1.69	0.28				z		
S.E. = 0.53 degree						AVG	2.8	4.5	-1.7

TD Data Analysis of Variance (ANOVA) and Summary for SI Table B-le. Approaches for RES Pilots

ANOVA

SUMMARY

					L			7
SOURCE OF VARIATION	df	SSS	MS	F	PILOT	♦ ft	∳ ft	◆- ∳ ft
(*,*)	l	157361	157361	** 11.46	A	665	823	-158
PILOTS	2	383069	191535	13.95	В	365	847	-482
PILOT (+, +) INIERACTION	2	239330	119665	8.61	С	1000	920	80
RANDOM	12	164805	13734		AVG	677	863	-186

LIGHT WEIGHT AIRCRAFT

S.E. = 117 feet

MEDIUM WEIGHT AIRCRAFT

					-				
(*,*)	1	213422	213422	14.78		A	943	557	38
PILOIS	2	571119	285560	19.77		В	767	552	21
PILOT (*, *) INTERACTION	2	84266	42133	2.92		С	1100	1048	5
RANDOM	12	173304	14442						
S	.E. = 1	20 feet		·	•	AVG	937	719	218

TWIN ENGINE AIRCRAFT

(♦,♥)	1	76701	76701	2.07
PILOTS	2	830278	415139	11.21
PILOT (+ ,+) INTERACTION	2	91481	45741	1.21
RANDOM	12	444214	37018	

S.E. = 192 feet

A	842	533	309
В	792	666	126
С	11 42	1183	-41
AVG	925	794	131

386

215

Table B-lf. TD Data Analysis of Variance (ANOVA) and Summary for SI Approaches for GEN Pilots

ANOVA

SUMMARY

SOURCE OF VARIATION	đf	SSS	MS	F		PILOT	↓ f	
(*,*).	1	221568	221568	* 5.91		E	66	
PILOTS	3	14899995	496665	13.26		F	60	
PILOT (,) INTERACTION	3	630362	21012 1	** 5.61		G	58	
RANDOM	16	599366	37460			Н	93	
S.E. = 194 feet							70	

PILOT	◆ ft	∳ ft	•-∳ ft
E	667	508	159
F	608	1200	- 592
G	585	492	93
Н	938	1366	-428
AVG	700	892	-192

LIGHT WEIGHT AIRCRAFT

MEDIUM WEIGHT AIRCRAFT

(◆, ¢) PILOTS	1 1	75208 1725208	75208 1725208	2.08 ** 47.73			
PILOT (•, *) INTERACTION	l	1050208	1050208	29.06			
RANDOM 8 289167 36145							
S.E. = 190 feet							

E	833	1583	-750
G	667	233	434
AVG	750	908	-158

Table B-2a. FPEA Data Analysis of Variance (ANOVA) and Summary for PA Approaches for RES Pilots

ANOVA

SUMMARY

SOURCE OF VARIATION	df	SSS	MS	F		PILOT	deg	∳ deg	♦-∳ deg
(*,*)	l	6.48	6.48	17.05		A	2.6	2.7	-0.1
PILOTS	2	5.77	2.89	7.61		В	2.5	4.1	-1.6
PILOT (+, +) INTERACTION RANDOM	2 12	2.75 4.56	1.38 0.38	3.63		C	3.1	5.0	-1.9
S.E. = 0.62 degree					AVG	2.7	3.9	-1.2	

LIGHT WEIGHT AIRCRAFT

MEDIUM WEIGHT AIRCRAFT

(* , *)	1	6.13	6.13	** 153.25		А			
PILOTS	2	4.43	2.22	55.50		В			
PILOT (♦, ♦) INTERACTION	2	3.17	1.59	39.75		С			
RANDOM	12	0.53	0.04						
S.E. = 0.21 degree									

А	2.9	2.9	0
В	1.9	3.5	-1.6
С	2.9	4.8	-1.9
AVG	2.6	3.7	-1.1

-

TWIN ENGINE AIRCRAFT

(*,*)	1	2.88	2.88	48.00				
PILOTS	2	10.83	5.42	90.33				
PILOT (+, *) INTERACTION	2	2.00	1.00	16.67				
RANDOM	12	0.75	0.06					
S.E. = 0.25 degree								

	А	2.7	2.9	-0.2
	В	1.4	3.1	-1.7
	C	3.9	4.3	-0.4
-				
:	AVG	2.7	3.4	-0.7

Table B-2b. FPEA Data Analysis of Variance (ANOVA) and Summary for PA Approaches for GEN Pilots

ANOVA

SUMMARY

SOURCE OF VARIATION	đf	SSS	MS	F		PILOT	deg	deg	◆-∳ deg
(• , *)	1	24.00	24.00	9.72	•	E	4.2	5.8	-1.6
PILOIS	3	5.39	1.80	0.73		F,	4.9	4.3	·0 . 6
PILOT (+, +) INTERACTION	3	16.91	5.64	2.28		G	4.0	б.7	-2.7
RANDOM	16	39.59	2.47			H ,	4.0 (7.7 '	-3.7
S.E. = 1.57 degrees					AVG	4.3	6.1	-1.8i	

LIGHT WEIGHT AIRCRAFT

MEDIUM WEIGHT AIRCRAFT

(• , •)	1	3.41	3.41	2.63	E	3.9	3.9	0.0
PILOTS	1	4.08	4.08	3.15	G	5.0	6.2	-1.2
PILOT (+, +) INTERACTION	l	0.02	0.02	0.02		T	t	
RANDOM	8	10.37	1.30					
S.E. = 1.14 degrees					AVG	4.5	5.1	-0.6

Table B-2c. TD Data Analysis of Variance (ANOVA) and Summary for PA Approaches for RES Pilots

ANOVA

SUMMARY

SOURCE OF VARIATION	df	SSS	MS	F		PILOT	◆ ft	∳ ft	∳- ∳ ft
(+, 4)	1.	181	181			A	579	480	99
PILOTS	2	182532	912661	24.17		В	215	377	-162
PILOT (+,+) INTERACTION	2	_. 64873	32437	0.86		С	1098	1017	81
RANDOM	12	453110	37759						
S.E. = 194 feet						AVG	631	625	6

LIGHT WEIGHT AIRCRAFT

MEDIUM WEIGHT AIRCRAFT

(*, *)	1	111235	111235	** 9.67 **		A	920	527	393
PILOTS	2	696753	348377	30.28		В	450	607	-157
PILOT (+, +) INTERACTION	2	240094	120047	10.43		С	1125	890	235
RANDOM	12	138075	11506						
S.E. = 107 feet						AVG	832	675	157

TWIN ENGINE AIRCRAFT

(*, *)	1	1335	1335						
PILOIS	2	783475	391738	19 . 72					
PILOT (+, +) INTERACTION	2	237005	118503	5.97					
RANDOM	12	238348	19862						
S.E. = 141 feet									

А	717	383	334
В	392	598	-206
С	925	1000	-75
AVG	678	660	18

Table B-2d. TD Data Analysis of Variance (ANOVA) and Summary for PA: Approaches for GEN Pilots

ANOVA

SUMMARY

SOURCE OF VARIATION	df	SSS	MS	F		PILOT	∳ ft	∳ ft	← ft
(*,*)	1	288204	288204	1.66	3	E	750	842	92
PILOIS	3	712750	237583	1.37		F	898	633	265
PILOT (* ,*) INTERACTION	3	657813	219271	1.26		G	588	1133	545
RANDOM	16	2773283	173330		1	Н	945	1450	-505
S.E. = 416 feet					AVG	795	1015	-220	

LIGHT WEIGHT AIRCRAFT

MEDIUM WEIGHT AIRCRAFT

	(♦,♥)	1	7500	7500			E	983	1367	-384
	PILOIS	l	1267500	1267500	12.63		G	667	383	284
-	PILOT (�,�) INTERACTION	l	333333	333333	3.32					
	RANDOM	8	802917	100365						a
S.E. = 317 feet							AVG	825	875	-50

APPENDIX C. INTERRELATIONSHIP BETWEEN VARIABLES

- Table C-1. The frequency of landing for joint events and their probability under hypothesis of independence. Straight-in approaches.
- Table C-2. The frequency of landing for joint events and their probability under hypothesis of independence. Pattern approaches.
- Table C-3. Correlations between landing variables for straight-in and pattern approaches.

	EVENT	a		ATRCRAI		FT AND PI)	
				LWA		M	NA	TEA
X	<u>Y</u>	Z		RES	GEN'	RES	GEN	RES
0	0 1			l	1			
1 1	0 1			8	11	1 8	5	1 8 -
			TOTAL PROBABILITY	9 .000	12 .000	9 •000	5 .000	9 .000
0		0		l	3			
1		0 1		2 6	3 6	8 1	3 3	5 4
			TOTAL PROBABILITY	9 .001	12 .001	9 .000	6 .005	9 .001
	0	0		l	1	l		
	1 1 1	0 1		2 6	5 6	7 1	3 2	5 3
			TOTAL PROBABILITY	9 .001	12 .000	9 .000	5 .010	9 •002
0	0	0		1	1			
0	l	0			2			
1	1 0	1 0				1		
1	0	l			2	7	2	1
	1	1		6	5 6	1	2	3
	·		TOTAL PROBABILITY	9 .000	12 .000	9 .000	5 .000	9 .000

Table C-1. The frequency of landing for joint events and their probability under hypothesis of independence. Straight-in approaches.

a. X = 1 or 0 for GSI; Y = 1 or 0 for FPEA; Z = 1 or 0 for TD. The difference $(\bullet - \phi) < 0$ indicates 1, difference $(\bullet - \phi) > 0$ indicates 0.

Table C-2. The frequency of landings for joint events (Y, Z) and their probability under hypothesis of independence. Pattern approaches.

,

EVENTA			AIRCRAFT AND PILOT GROUP					
			LV	VÁ	MWA	TEA		
Y	Z		RES	GEN	RES	GEN	RES	
0 0 1 1	0 1 0 1		1 3 5	1 3 7	1 5 3	1 3 1	52	
		TOTAL PROBABILITY	9 .002	11 .000	9 .002	5 .020	7 .001	

^a Y = 1 or 0 for FPEA; Z = 1 or 0 for TD. The difference $(\bullet - \not \bullet) < 0$ indicates 1; difference $(\bullet - \not \bullet) > 0$ indicates 0

.

Table C-3.	Correlations	between	landing	variables	for	straight-in	and
	pattern appro	baches					

PILOT GROUP	SAMPLE SIZE	FLIGHT LANDINGS	STRAIGHT-IN APPROACHES (GSI, FPEA) (GSI, TD) (FPEA, TD)			PATIERN APPROACHES (FPEA, TD)
RES	9 9 18	All	.4619 .7861** .8656**	.1718 .4157 .4135*	.4191 .0701 .4481*	.8886** .3822 .3425
GEN	12 12 24	¢ All	.5992* .7289** .8411**	4707 .0237 2171	1960 .5623* .4963**	.7450** .8555** .7638**

LIGHT WEIGHT AIRCRAFT

MEDIUM WEIGHT AIRCRAFT

RES	9 9 18	¢ All	.3608 .5959* .8027**	1367 .8399** 2200	.0388 .7481* .0288	.1907 .9602** .3692
GEN	6 6 12	∳ All	.7378* .0151 .4982*	1484 8065* 6155*	3308 .4910 .2468	6829 6291 6730**

TWIN ENGINE AIRCRAFT

RES	9 9 18	¢ All	3574 .1896 .4161*	•5539 •1490 0200	.0184 .9140** .4810*	•9595** •8039** •7531**
-----	--------------	----------	-------------------------	------------------------	----------------------------	-------------------------------

ı

f									
1 Report No NASA CR-143849	2 Government Access	ion No	3 Recipient's Catalog No						
4 Title and Subtitle			5 Report Date						
AN ANALYSIS OF RUGHT DATA	ROM ATRCRAFT I	ANDINGS	February 1978						
WITH AND WITHOUT THE AID OF	A PAINTED DIAM		6 Performing Organiz	etion Code					
ON THE SAME RUNWAY									
7 Author(s)			8 Performing Organiza	ation Report No					
Ram Swaroop and George R. Ash	worth		10 Work Linit No						
9 Performing Organization Name and Address	^								
System Development Corporation		- T	11 Contract or Grant	No					
P.U BOX 273 Edwards, California 93523			NIA S4-2334						
		-	13 Tune of Benort an	d Period Covered					
12 Sponsoring Agency Name and Address			Contraction Des						
National Aeronautics and Space	aministration		Contractor Reg	ort - Topical					
Washington, D. C. 20546	iuminoti unon		14 Sponsoring Agency	Code					
15 Supplementary Notes									
NASA Technical Monitor: Willia	n R. Winter, NASA	Dryden Flight Resea	rch Center						
		<u> </u>	- <u></u>						
16 Abstract									
An experiment	at NASA Dryden F	light Research Cente	r was conducted						
to investigate the u	sefulness of a pain	ted diamond on a run	way as a visual						
aid to perform safe	landings of aircraf	t. Flight data on glic	leslope inter-						
this experiment we	evation angles, an	a touchdown distance	es confected fit						
tins experiment we.	e analyzeu.								
Research and	general aviation pi	lots participated in th	ie experiment						
with both groups fi	ying straight-in an	d pattern approaches	s Flight data						
were statistically as	nalyzed for signific	ant effects due to dia	mond and no						
diamond approache	s and landings. Pi	lot proficiency was m	leasured by						
standard error in t	ie ilight data.								
The results sh	ow that an appropr	riately painted diamon	nd has the						
potential of providi	ng glideslope infor	mation for the light w	reight class						
of general aviation	aircraft for all clas	ses of pilots. This c	onclusion						
holds irrespective	of the differences i	n landing techniques	used by						
the pilots.									
1									
ł									
17 Key Words (Suggested by Author(s))		18 Distribution Statement		·····					
Visual landing aid									
Painted runway diamond		Unclassified - U	nlimited						
Pilot proficiency and standard e	ror	-							
Glideslope bias									
Analysis of variance Pilot interaction			Categ	ory. 54					
19 Security Classif. (of this report)	20 Security Classif. (c	of this page)	21 No of Pages	22 Price*					
Unclassified		50	-						

*For sale by the National Technical Information Service, Springfield, Virginia 22161